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INTRODUCTION 
ARGUMENTATION AND PROOF 

 
Maria Alessandra Mariotti, Università di Siena 

Leanor Camargo, Universidad Pedagogica Nacional de Bogotà 
Patrick Gibel, Université de Bordeaux 
Kristina Reiss, München Universität 

 
This chapter collects the contributions discussed during the working sessions of the 
WG2 at CERME6. The work of the participants of the Thematic Working Group on 
Argumentation and Proof was organized around the goals of  

• Putting our research studies in relation to each other. 

• Getting feedback for improving both our research work and our papers.  
Each participant was expected to act as reactor to one of the other papers, presenting 
the key issues and posing questions to the author(s). Such intervention was aimed to 
trigger a collective discussion on the paper in focus as well on general issues.  
Although they all share the issue of proof and argumentation, the contributions offer 
a quite varied spectrum of perspectives, both from the point of view of theoretical 
frameworks assumed and of issues in focus. The main themes that emerged from the 
papers were the frame according to which the working sessions of the group were 
organized, and it is the same frame we use to organize this introduction. These main 
themes were the following.  
Historic and epistemological issues 
Conjecturing and proving 
Visual aspects in proving 
Teachers and teaching of proof 
Models to describe models to explain 
 
HISTORIC AND EPISTEMOLOGICAL ISSUES 
Historic and epistemological issues were specifically addressed in some of the papers 
presented. Molinini discusses mathematical explanation in Physics using the lens of 
history. His aim is to clarify how explaining a physical phenomenon via mathematics 
may foster its understanding and consequently may have a pedagogical value. As 
Avigad says: “We look to mathematics for understanding, we value theoretical 
developments for improving our understanding, and we design our pedagogy to 
convey understanding to students” (Avigad, 2008, p. 449). 
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The relationship between argumentation and proof is also addressed by Barrier, 
Mathé and Durrand-Guerrier. Taking a semantic approach the authors try to 
overcome the limits of previous discussions concerning the gap between 
argumentation and proof. 
The function of proofs in the history of mathematics inspired the analysis presented 
by Hemmi and Lofwall that concerns the idea of transfer, that is the contiguity 
between proofs and methods for problem solving. The importance of proofs for the 
development of mathematics is compared with the opinion - shared by some of the 
mathematicians involved in the investigation - about the crucial role that certain 
proofs my have in the learning of mathematics. 
Habermas' theory of rationality is proposed by Morselli and Boero as a research tool 
and a theoretical ground according to which new educational challenges can be 
pursued. 
 
CONJECTURING AND PROVING: THE ROLE OF ARTEFACTS 
The relationship between conjecturing and proving is addressed from the specific 
point of view of the contribution offered by artefacts, either in fostering the 
production of conjectures or in developing the sense of a theoretical approach. Our 
group’s work in this area considers, in particular, three different artefacts, related to 
different mathematical domains: a linkage device to produce an ellipse – specifically 
the reconstruction of an ancient machine; a Dynamic Geometry environment – Cabri; 
a software for algebraic manipulation – Alnuset. 
The papers present different potentialities offered by the use of such artefacts. The 
field of experience of linkages (mathematical machines) may be compared with that 
offered by a Dynamic Geometry System. Bartolini Bussi discusses direct 
manipulation, highlighting the potential of the exploration tasks, where a key request 
concerns the explanation of the functioning of the linkage. Exploration tasks are also 
discussed in the paper of Baccaglini-Frank and Mariotti, where the authors present a 
model for describing and explaining the process of production of a conjecture, based 
on dragging strategies for grasping the relationship between geometrical invariant 
properties.  
In her paper, Pedemonte discusses the use of a particular symbolic manipulator, 
Alnuset, with respect to enhancing the teaching and learning of proof in algebra.  
 
VISUALIZATION  
Some of our group’s contributions address the issue of visualization in relation to 
proof and proving. Such issue is discussed from different perspectives, providing a 
good opportunity for reflecting on the diversity and the complexity of phenomena 
that are usually referred to as visualization. In fact, this issue was widely discussed in 
the working sessions, and the discussion provided a good opportunity to confront our 
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different epistemological assumptions as well as the different points of view about 
visualization. Exploring the use of visual reasoning is the goal of the paper of 
Bardelle. In her paper, she presents the results of a preliminary study concerning 
students’ way of working with visual proofs. The difficulties in treating and 
accepting visual proofs described in Bardelle’s study finds an eco in the paper of 
Biza, Nardi and Zachariades, where the authors elaborate on empirical results that 
clearly show the relationship between teachers’ and students’ beliefs. The instability 
of teachers’ beliefs about the role of visual representation with respect to what counts 
as a valid proof has a counterpart in students’ uncertainty on what counts as a proof. 
The role of visual reasoning was discussed not only with respect to the proving 
process but also with respect to the process of discovering and producing a 
conjecture. Difficulties emerge concerning the complexity of treating visual 
representation such as lack of basic geometrical knowledge or ambiguity of images 
from which it is difficult to extract useful information. However, the key issue 
concerns the uncertain status of images as argument for validating a statement. This 
issue brings to the forefront the role of the teacher in introducing students to a 
theoretical perspective in mathematics. 
 
TEACHERS AND TEACHING PROOF 
Several papers address the issue of teaching both in terms of teachers’ mathematical 
competences and in terms of teachers’ role in organizing and managing a learning 
environment that could (and should) enhance students’ proving performances. In 
many countries – in Israel for instance – recent reform recommendations require that 
proof and proving become key components of classroom practice. 
The paper of Barkai et al. reports on an empirical study showing how teachers are 
able to produce correct proofs of a given statement, but meet difficulties in 
understanding and evaluating the validity of students’ arguments supporting the 
validity of the same statement. These results question the type of competences that 
teachers should have in order to face everyday practice with students’ productions of 
proof. Along the same lines, the paper of Potari et al. discusses teachers’ reaction to 
hypothetical classroom scenarios, specifically how teachers approach the refuting of 
students’ claims. These results indicate teachers’ misleading epistemological views 
about theorems and theory, as well about the role of counterexamples in 
mathematical reasoning. 
These contributions enrich previous results concerning the relationship between 
teachers' beliefs and practices. At the same time they show the high complexity of 
treating visualization issues and the need of elaborating specific research questions 
that go beyond testing of teachers’ ability of producing correct mathematical proofs. 
Teachers’ view of what constitutes a proof and its functions influences the choice of 
what is to be integrated into one's own teaching practices and consequently how 
students evaluate their own productions.  
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Shifting the attention from the teachers to the students, two papers address students’ 
productions of proofs. The study presented by Back et al. aims at giving a clear 
picture of how students motivate their solutions and how these change throughout the 
course. The issue of evaluating students’ productions of proofs is again the focus of 
this paper that discusses how students’ justifications relate to both teachers’ and 
textbooks’ ways of justifying and explaining, focussing particularly on the opposition 
between verbal and symbolic expression. In this respect, the episode reported by 
Raman et al. is also significant. These researchers describe an episode in which 
students come very close to a proof (they reach something that a mathematician 
would have basically recognized as a proof), however they were not able to recognize 
their argument as a proof. That raises a natural but difficult question: why are 
students unable to recognize what they are saying as a proof? How to bridge the 
distance between students and experts in elaborating informal arguments into proofs? 
More specific difficulties are described in the paper of Stylianides & Al-Murani and 
in the paper of Antonini & Mariotti. The first paper focuses on the possible 
coexistence of a proof and a counterexample for the same statement. Although the 
answers to a survey seemed to provide some evidence of such misconception, the 
interview data collected in the following suggest that students’ responses originate 
from a particular interpretation of the given questions. The second paper focuses on 
difficulties related to indirect proof. Specifically, the paper discusses examples of 
abductive processes that are mobilized in order to produce explanatory hypotheses to 
establish what for the solver is a meaningful link between the contradiction produced 
in the indirect argument and the original statement to be proved.    
No great discussion on didactic issues related to proof can be found in the 
contributions to the working group. The only exception is the specific example of a 
teaching intervention presented in the paper of Douek. In this paper, after a 
theoretical introduction, the author presents the outline of the didactic engineering, 
based on the notion of cognitive unity. The author highlights the crucial role of the 
situation for a student to engage him/herself in argumentative reasoning, nevertheless 
the difficulty of implementation clearly emerges from the reported results, raising 
many open questions. 
 
CONCLUDING REMARKS 
A considerable part of the discussion in the group was devoted to the illustration and 
the comparison of the different theoretical constructs that contributed to shape the 
different investigations, directing the researcher both in selecting the questions to be 
addressed and the ways to look for possible answers.  
The opportunity of comparison that we had during the working sessions made us 
aware of the need and the usefulness of making theoretical assumptions explicit and 
clear. Similarly the comparison of different models and of their use in our 
investigations was very stimulating, suggesting possible integrations.  
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It is difficult to elaborate conclusions for a discussion group that spent a considerable 
amount of time exploiting the richness of diversity. In our discussion we were driven 
not only by the need of comparing but also by the curiosity of possible integration 
among different paradigms. This may constitute a program for our next up-coming 
meeting at CERME7. 
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UNDERSTANDING, VISUALIZABILITY  
AND MATHEMATICAL EXPLANATION 

Daniele Molinini 
REHSEIS, Université Paris 7 

 
In this paper I focus on Mathematical Explanation in Physics and I analyse its 
interplay with the concepts of understanding and visualizability. Starting from a 
recent contextual approach to scientific understanding (De Regt & Dieks, 2005) I 
will try to see how an historical analysis of the formulation of a particular theorem 
could help to clarify the role of understanding and visualizability in mathematical 
explanation. My test case will be Euler’s theorem for the existence of an 
instantaneous axis of rotation in rigid body kinematics. In particular, I will argue 
that the specific concept of vector space, defining a new standard of intelligibility, 
offers a good perspective in order to underline the dynamical character of 
mathematical explanation and its essential role in mathematical education.  
  
1. INTRODUCTION 
Different authors agree that the problematic of explanation is deeply connected to the 
debate about the nature of understanding in science. At the moment the major 
accounts of scientific explanation such as the Unificationistic (Friedman, 1974; 
Kitcher, 1981, 1989), the Causal (Salmon, 1984), the Pragmatic (Van Fraassen 1980; 
Acrhinstein, 1983) do not offer a satisfactory definition of understanding within their 
theories. While the authors and the supporters of those theories affirm that their 
particular accounts of explanation provide understanding, the notion of understanding 
remains still vague and is the cause of a series of controversies between philosophers 
of science. It seems quite plausible that a good explanation in science must provide 
understanding. But what is understanding? Is it really this “aha!” experience we are 
confronted with after some cognitive experience? And how can a good explanation 
provide understanding? 
In this paper I will focus on the very specific notion of mathematical explanation, and 
in particular on the notion of mathematical explanation in physics. As clearly 
expressed by Mancosu in his studies on mathematical explanation (Mancosu 2005, 
2008), we can have two different senses mathematical explanation:  

In the first sense “mathematical explanation” refers to explanations in the natural or 
social sciences where various mathematical facts play an essential role in the explanation 
provided. The second sense is that of explanation within mathematics itself (Mancosu, 
2008, p. 184). 
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Naturally, as pointed out by Shapiro (2000), mathematical explanation as intended in 
the first sense is connected to the more general problematic concerning the 
application of mathematics to reality and opens the mysterious problem of the 
“unreasonable effectiveness of mathematics in the natural sciences” (Wigner, 1967). 
However, leaving apart mysteries and ontological questions, many authors agree that 
it is possible to have a better comprehension of mathematical explanation of physical 
phenomena (MEPP) [1] starting from general discussions of scientific explanation 
and introducing an historical perspective (Tappenden, 2005; Kitcher, 1989). In this 
paper I will follow this line, getting my hands dirty via a bottom-up approach that 
starts from the mathematics itself. I will compare two different formulations of 
Euler’s theorem for the existence of an instantaneous axis of rotation in rigid body 
kinematics and I will try to discuss the concepts of understanding and visualizability 
under the light of dynamical MEPP. I assume as a starting point that in both the 
formulations the mathematical machinery has an essential role: they represent two 
mathematical explanations of the same physical fact. Naturally, in such a contextual 
analysis, the arena of mathematical education is of primary importance and I will 
offer a perspective in order to work in this direction. 
In a recent series of papers De Regt and Trout have discussed the notion of 
understanding in science (De Regt, 2001, 2004, 2005; Trout, 2002, 2005). My point 
will be that, contrary to Trout’s idea that is impossible to give an objective epistemic 
role to understanding (Trout, 2002), some interesting ideas of De Regt’s account 
could be utilized in order to study the role of visualizability and understanding in 
mathematical explanations. I hope this study will make clear that MEPPs have a 
dynamical character, and in some case the role of understanding in them could be 
studied if we have at disposition conceptual tools like visualizability. After all, a 
number of new studies and a sort of “renaissance in visualization” (Mancosu, 2005, 
p. 13) have emerged during the last years in philosophy of mathematics and cognitive 
sciences. The impetus in this sense has been given for the most part by the rise of 
visualization techniques in computer science, from which has clearly emerged the 
heuristic and pedagogical value of visual thinking [2]. Naturally, I stress again, my 
analysis implicitly focus on the importance of mathematical activity and education. 
Explaining a physical fact via mathematics in order to make it understandable is a 
mathematical practice, and first of all a pedagogical practice. In particular, if I 
assume with De Regt and Dieks (2005) that understanding transcends the domain of 
individual psychology and is relative to scientific communities in a specific historical 
period (they call it the “meso-level in science”), the importance of the acquisition of 
skills should be take into account in a more complete analysis. As remarked by 
Jeremy Avigad (2008) in his discussion of the notion of understanding in 
mathematical proofs:  

We look to mathematics for understanding, we value theoretical developments for 
improving our understanding, and we design our pedagogy to convey understanding to 
students. Our mathematical practices are routinely evaluated in such terms. It is therefore 
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reasonable to ask just what understanding amounts to (Avigad, 2008, p. 449. My 
emphasis). 

So mathematical education is directly linked to the concepts of understanding, 
mathematical explanation and to the intelligibility standard of visualizability. In this 
direction: transitions in the formulation of Euler’s theorem in mathematical (and 
physical) textbooks could be very helpful in order to study mathematical explanation 
in our sense and the variation of “what is considered more understandable” from a 
pedagogical point of view.  
In the next Section I will briefly give an outline of the theorem and the two different 
mathematical explanations for the physical phenomenon. In Section 3 I will claim 
that MEPPs in this particular case have dynamical character, while in Section 4 I will 
focus on visualizability, understanding and on the particular role of vector space 
theory. I will defend the epistemic relevance of a contextual notion of understanding 
and I will put in evidence a shift in the notion of visualizability for this particular case 
of explanation. The final section will contain my conclusions and some 
epistemological and educational perspective. 
 
2. EULER’S THEOREM 
2.1 Euler’s Original mathematical formulation in E177 
Euler's contributions to mechanics are numerous and of primary importance. Between 
them, the remarkable fact that Euler was the first to prove the existence of an 
instantaneous axis of rotation in the kinematics of rigid body motion. He obtained the 
result of the instantaneous axis of rotation for the first time in his paper E177 
Decouverte d’un nouveau principe de Mecanique. In this work Euler utilizes previous 
results in order to study the general motion of a rigid body with a fixed point and 
deduce the changes in the position and the velocity distribution from the given forces 
acting on the body [3]. His enterprise in the dynamics of rigid body motion in space 
was stimulated by the problem of the rotation of the Earth around its axis (as to 
explain the precession of equinoxes). The introduction of the perpendicular 
rectangular frame of reference permits Euler to apply Newton's second law separately 
with respect to each of the coordinates. This was brought about by a kinematical 
result: the instantaneous axis of rotation.  
In the section Détermination du mouvement en général, dont un corps solide est 
susceptible, pendent que son centre de gravité demeure en repos, in order to study the 
velocity distribution, Euler introduces a cartesian system fixed in absolute space and 
assumes that a point Z of the body with coordinates x, y, z has velocities P, Q, R in 
the direction of the axis. The components of the velocity P, Q, R are functions of x, y, 
z. Euler's final purpose is to found those functions. He considers another point z 
“infiniment proche du précédent Z”, of coordinates x + dx, y + dy, z + dz and 
velocities P + dP, Q + dQ, R + dR. After a mixed geometrical-analytical procedure 
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Euler is able to state that there are points, which have coordinates (Cu, -Bu, Au), that 
do not move during time dt. In other words, those points are on a straight line through 
the origin, which is called the instantaneous axis of rotation [4]. 

... tous les points du corps, qui sont contenus dans ces formules x=Cu, y=-Bu, z=Au 
demeureront en repos pendant le tems dt. Or tous ces points se trouvent dans une ligne 
droite, qui passe par le centre de gravité O; donc cette ligne droite demeurant immobile 
sera l'axe de rotation, autour duquel le corps tourne dans le présent instant (Euler, 1750. 
p. 95). 

Euler also added a geometrical proof of the existence of the instantaneous axis of 
rotation, discussing the infinitesimal motion of a spherical surface with a fixed point. 
The geometrical argument provided by Euler legitimates his analytical argument and 
holds not only for the instantaneous case but also for the discrete case. 
 
2.2 A Modern formulation in Linear Algebra  
As originally proved by Euler, the theorem for rigid body motion states that: “The 
general displacement of a rigid body with one point fixed is a rotation about some 
axis”. The motion of a rigid system in modern mechanics is described specifying at 
each instant the position of the points of the body with reference to a system of axis. 
To every point we associate a vector which belongs to an euclidean 3-dimensional 
space. The orientation of the rigid body in motion can be described at any instant by 
an orthogonal transformation, the elements of which may be expressed in terms of 
some suitable set of parameters. With the progression of time the orientation will 
change and the matrix of the transformation will evolve continuously from the 
identity transformation A(0)=1 to the general matrix A(t). Here we assume that at 
time t = 0 the body axes (the axes fixes in the rigid body) are chosen coincident with 
the space axes (a system of axes parallel to the coordinate axes of external space). 
The assumption that the operation implied in the matrix A describing the physical 
motion of the rigid body is a rotation assures that one direction (the axis of rotation) 
remains unaffected in the operation and the same holds for the magnitude of the 
vectors. If we consider as the fixed point in the rotation the origin of the sets of axes 
(and not necessarily the center of mass of the object), the displacement of the rigid 
body involves no translation of the body axes and we can restate Euler's theorem in 
the following modern mathematical form: “Every matrix A in SO(3), with A different 
from I3, has an eigenvalue +1 with a 1-dimensional eigenspace” (Sernesi, 1993, p. 
305).  
A proof of the mathematical theorem in the form I have given involves the general 
concepts of matrix, vectors (in particular the more specialized concepts of eigenvalue 
and eigenvector), eigenspace, basis, orthogonality, bilinear forms (in particular the 
scalar product, which is a symmetric and non-degenerate bilinear form). All those 
concepts are included in linear algebra and their close interplay does not permit any 
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easy separate analysis of the elements which are found in the proof structure of such a 
theorem. Israel Klein pointed out this difficulty in his History of Abstract Algebra: 

Among the elementary concepts of linear algebra are linear equations, matrices, 
determinants, linear transformations, liner independence, dimension, bilinear forms, 
quadratic forms, and vector spaces. Since these concepts are closely interconnected, 
several usually appear in a given context (e.g. linear equations and matrices) and it is 
often impossible to disengage them (Klein, 2007, p. 79). 

The modern proof of the algebrical formulation is constructed into the general 
framework of linear algebra and the particular framework of euclidean 3-dimensional 
vector space R3. Clearly, the proof's outcome is to show the existence of the 
eigenvalue λ=1 [5]. If we do not consider the concept of group, and we focus on the 
general concept of vector space, we could analyse the explanatory structure and make 
some relevant remarks. 
 
3. SHIFT IN MATHEMATICAL EXPLANATION 
It is clear that Euler did not have at disposition the modern concept of vector and 
vector space. But, as we can see from his papers, he did have the basic idea of 
geometrical transformation (point-to-point association in space and not 
transformation from physical magnitude to geometrical magnitude), which was 
central to his analysis. Differently from Euler’s original argument, in which the 
mathematical explanation is given by a mixed geometrical-analytical argument by 
means of a geometrical space (and via a geometrical intuition [6]), the modern 
explanation of the existence of an instantaneous axis of rotation is given in the 
framework of linear algebra. Having the particular structure of euclidean 3-
dimensional vector space is essential to Euler's theorem as formulated in modern 
terms because only the mathematical properties of a real vector space equipped with 
scalar product permit to “map” the properties of the kinematical system (angles, 
distances, orthogonality condition) into the algebraic structure.  
In a recent paper Gingras (2001) has underlined how the shift in explanation and the 
“disparition of substances into the acid of mathematics” are an epistemic and an 
ontological effect of the process of mathematization started with Newton. As a 
consequence of an historical process concepts like determinant, matrix, orthogonality 
or transformation are today included in the mathematical apparatus of linear algebra 
and we could profit of their interplay without exit from this framework (i.e. the 
framework of abstract algebra). In other words: in the modern algebrical proof the 
geometrical part is already “included'” in the structure of vector space and we do not 
need a geometrical argument [7]. It is very interesting to observe that Peano himself, 
in his Analisi della teoria dei vettori, remarked: 

Thus the theory of vectors appears to be developed without presupposing any previous 
geometrical study. And since, by means of this theory, all of geometry can be treated, 
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there results thereby the theoretical possibility of substituting the theory of vectors for 
elementary geometry itself  (Peano, 1898, p. 513). 

After having proved the dynamical character of mathematical explanation (i.g. the 
mathematics is essential to both the two explanations but it changes), in the following 
Section I will use De Regt & Dieks’s criteria for understanding and intelligibility in 
order to show how the theory of vector space offers a new conceptual tool of 
intelligibility and understanding. 
 
4. UNDERSTANDING AND VISUALIZABILITY IN MEPP. 
If I admit (and I do!) with De Regt & Dieks (2005) that visualizability constitutes a 
context-dependent standard of intelligibility, and only intelligible theories can 
provide an understanding of phenomena, then I can look at the shift between our two 
MEPPs in a more fruitful and interesting way. But, first of all, it is necessary to give a 
possible sense to the notions of visualizability, intelligibility and understanding. 
As showed by De Regt (2001) being a spacetime theory is a necessary but not 
sufficient condition for visualizability. It might be objected here that I deal with 
mathematical entities and the term “spacetime” is very dangerous and misleading. 
Fortunately, I am referring to MEPPs and for my particular test case the conditions of 
necessity and sufficiency for visualizability are both fulfilled (Euler’s geometrical 
framework and the framework of vector space theory both make the physical 
phenomenon visualizable in space -as a vector- at a particular time t, as could be seen 
from the diagrams we find in a common textbook of mechanics or mathematics). We 
can say that geometrical space in Euler and the modern concept of vector space map 
the physical space into a structure (a geometrical and a mathematical structure). In 
the case of vector space this mapping consists in an explicitly assumed isomorphism 
between the physical space and the 3-dimensional Euclidean space.  
De Regt & Dieks (2005) propose two criteria for understanding and intelligibility: 
CUP (Criterion for Understanding Phenomena) and CIT (Criterion for the 
Intelligibility of Theories). 

CUP: A Phenomenon P can be understood if a theory T of P exists that is intelligible (and 
meets the usual logical, methodological and empirical requirements). 

The necessary connection between visualizability and understanding is made by De 
Regt through the Criterion for the Intelligibility: 

CIT: A Scientific Theory T is intelligible for scientists (in context C) if they can 
recognize qualitatively characteristic consequences of T without performing exact 
calculations. 

In the previous Criterion I substitute “Mathematical Theorem” for “Scientific 
Theory” and I assume the applicability of the CIT in both cases (with some 
differences that should be discussed). But how do we “recognize qualitatively 
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characteristic consequences of T without performing exact calculations”? A possible 
answer: through conceptual tools. In a particular historical or methodological context 
we have at disposition some conceptual tools and visualizability could be one of them 
[8]. In other words: visualizability is a conceptual context-dependent tool, i. g. a 
conceptual contingent tool which depends from the skill of the scientific-
mathematical community and which is present during a precise historical period, and 
it could permit the intelligibility of a theory making possible the circumvention of the 
calculatory stage and the jump to the conclusion. So it is clear that also intelligibility 
is context-dependent. Naturally, as remarked by De Regt (2001), visualizability is not 
a necessary condition for intelligibility. Often other conceptual tools as abstract 
reasoning or familiarity could lead scientists and mathematicians to intelligibility as 
an immediate conclusion (see De Regt & Dieks, p. 156, for examples). Mathematical 
practice and theoretical physics are full of situations like this. 
In Euler the tool of visualization is perfectly applicable in the classical geometrical 
framework (I call it Euclidean Geometrical Theory): point-to-point association and 
geometrical considerations offer the idea (a visual idea) of what is happening to the 
mechanical system in motion. The instantaneous axis of rotation could always be 
visualized in spacetime, and its existence could be established through a geometrical-
intuitive reasoning [9]. In the modern explanation given in the framework of abstract 
algebra it might seem that this “chance” of intellegibility has been lost, but a deeper 
look shows that this is not completely true. The concept of 3-dimensional Euclidean 
vector space offers two new ways for obtaining the intelligibility (in line with CIT). 
Reading the modern formulation of Euler’s theorem a mathematician or a student 
could affirm “Yes, I see the eigenvalue +1”, just by looking at the formulation of the 
theorem in the matrix formalism. This is associated with the conceptual tool of 
familiarity, or abstract reasoning, and is related to a previous learning of matrix 
theory or other mathematical abilities. Instead of this approach, one can reach the 
same direct conclusion just by considering some general results in matrix theory and 
visualizing the eigenvector (the instantaneous axis) in the diagram [10]. The latter can 
be considered a new conceptual tool leading to the fulfilment of CIT. Naturally, the 
structure of nxn matrices with entries from R and the structure of homomorphisms of 
a 3-dimensional space (over R) into itself are isomorphic. From the last 
considerations is clear that visualizability still plays a very important role in 
understanding and in developing a fruitful strategy of mathematical education.  
 
5. CONCLUSIONS AND PERSPECTIVES 
MEPPs are context-dependent and have dynamical character. In particular, via a 
contextual approach to understanding, it is possible to recognize that the framework 
of linear algebra has defined new standards (or tools) for intelligibility which 
legitimate an explanation as “a good explanation” (an explanation which produces 
understanding). The understanding in this context is a payoff that directly comes from 
the availability of those conceptual tools. As I have showed, in the modern 
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formulation the understanding of the mathematical explanation for the existence of an 
instantaneous axis of rotation is obtained through a double route (visualization and 
abstract reasoning). I claim that this result might be very helpful in mathematical 
education and could offer a possible answer to Avigad’s question “How do we design 
our pedagogy to convey understanding to students?” for the specific case discussed. 
A new interesting direction, as showed by Marcus Giaquinto in his studies on the 
epistemic function of visualization in mathematics (Giaquinto, 2005), could emerge 
from an analysis of visualization as a powerful educational tool in the context of 
discovery [11]. 
A better comprehension of mathematical explanation could profit from the historical 
study of the interplay between the proof structure of the theorem and the system of 
concepts that characterizes the explanatory structure. If a change in one of them 
influences the other, it could be interesting to study different formulations of Euler’s 
theorem in textbooks in order to see how the mathematical explanation has been 
offered during this period and how it has changed in mathematical education. 
Naturally, the epistemological analysis of this paper opens the way to the more 
general question of how introduce proofs in classrooms and how concepts like 
explanation, understanding and visualizability should be taken into account in 
mathematical education. 
 
NOTES 
1. For shortness, from now on, I will refer to Mathematical Explanation of Physical Phenomena 
with the term MEPP. 

2. For a panoramic of this field and the very interesting discussion of this point, including how 
computer graphics has helped to recognize mathematical structures such as Julia sets which would 
have been impossible to recognize analytically, see Mancosu (2005). 

3. For a more precise reconstruction of Euler’s argument in Euler (1750) see the paper “What we 
can learn about mathematical explanations from the history of mathematics” I’ve presented at 
Novembertagung Conference, in Denmark, 5-9 November 2008.  

4. Euler does not use the word “instantaneous axis”. He refers to it simply as “axe de rotation”. 

5. For a proof of the theorem see Sernesi (1993, p. 306). 

6. The importance of the geometrical intuition in Euler emerges from the geometrical proofs he 
adds after his analytical arguments. The geometrical argument defines and legitimates the analytical 
procedure and is essential to the mathematical explanation of the existence of the axis. 

7. Vector spaces firstly appear in their axiomatic form in Peano (1888). 

8. Evidently, the intelligibility standard or tool of “casual connection” is of no interest in our 
discussion. 

9. See Euler’s geometrical argument or a modern geometrical argument (Whittaker, 1904, p. 2). 
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10. Here I am not claiming that the geometrical interpretation of matrices and eigenvectors is 
intrinsic in their definitions. I am assuming that under a particular “reading” (in our case Euler’s 
theorem in kinematics of rigid body motion), a subset of vectors of the vector space considered (the 
subset containing the instantaneous axis) has a geometrical representation in a diagram at time t (or 
a representation in a computer graphic simulation). A very good example of a case in which a 
precise situation is visualizable in the context of Vector Space Theory has been given by Artin 
(1957) and is discussed in Tappenden (2005). 

11. For simple and interesting cases in which a case of visualization could provide the discovery of 
a theorem see Giaquinto (2005) or, in a different flavour, the famous Lakatos (1978).   

 

REFERENCES 
Achinstein, Peter (1983). The Nature of Explanation. New York: Oxford University 

Press. 
Artin, E. (1957). Geometric Algebra. New York: Wiley Interscience. 
Avidag Jeremy (2008). Understanding Proofs. In Paolo Mancosu (Ed.), The 

philosophy of mathematical practice (pp 449-499). Oxford: Oxford University 
Press. 

De Regt, Henk W. (2001). Spacetime Visualisation and the Intelligibility of Physical 
Theories. Studies in History and Philosophy of Modern Physics, 32B, 243-265. 

De Regt, Henk W. (2004). Discussion note: Making sense of Understanding. 
Philosophy of Science, 71, 98-109. 

De Regt, H. & Dieks, D. (2005). A Contextual Approach to Scientific Understanding. 
Synthese, 144, 137-170. 

Euler, Leonard (1750). Decouverte d’un nouveau principe de Mecanique. In Opera 
Omnia: Series 2, Volume 5, pp. 81-108. Originally published in Mémoires de 
l’académie des sciences de Berlin, 6, 185-217 (1752).  

Friedman, Michael (1974). Explanation and Scientific Understanding. Journal of 
Philosophy, 71, 5-19.  

Giaquinto, Marcus (2005). From Symmetry Perception to Basic Geometry. In P. 
Mancosu, K. Jørgensen and S. Pedersen (Eds.), Visualization, Explanation and 
Reasoning Styles in Mathematics (pp. 31-55). Dordrecht: Springer. 

Gingras, Yves (2001). What Did Mathematics Do to Physics?. History of Science, 39, 
383-416. 

Hafner, J. and Mancosu, P. (2005). The varieties of mathematical explanation. In P. 
Mancosu, K. Jorgensen & S. Pedersen (Eds.), Visualization, Explanation and 
reasoning styles in mathematics (pp. 215-250). Dordrecht: Springer.  

Kitcher, Philip (1981). Explanatory Unification, Philosophy of Science, 48, 507-531.  

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 189



 

 

 

 

Kitcher, Philip (1989). Explanatory Unification and the Causal Structure of the 
World. In P. Kitcher and W. C. Salmon (Eds.), Scientific Explanation (pp. 410-
505), Minneapolis: University of Minnesota Press. 

Klein, Israel (2007). A History of Abstract Algebra, Birkhauser.  
Koetsier, Teun (2007). Euler and Kinematics. In R. E. Bradley and C. E. Sandifer 

(Ed.), Leonhard Euler: Life Work and Legacy (pp 167-194), Elservier. 
Lakatos, Imre (1978). What does a mathematical proof prove? In J. Worral & G. 

Currie (Eds.), Mathematics, Science and Epistemology: Philosophical Papers, Vol 
II (pp. 61-69). Cambridge: Cambridge University Press.  

Mancosu, Paolo (2005). Visualization in logic and mathematics. In Mancosu & al. 
(Eds.), Visualization, Explanation and Reasoning Styles in Mathematics (pp. 13-
30). Dordrecht: Springer. 

Mancosu, Paolo (2008). Mathematical explanation: Why it matters? In Paolo 
Mancosu (Ed.), The philosophy of mathematical practice (pp 184-208). Oxford: 
Oxford University Press.  

Peano, Giuseppe (1888). Calcolo geometrico secondo l’Ausdehnungslehre di H. 
Grassmann, preceduto dal le operazioni del la logica deduttiva, Torino: Bocca. 

Peano, Giuseppe (1898). Analisi della teoria dei vettori. Atti della Accademia del le 
Scienze di Torino, Classe di scienze fisiche, matematiche e naturale, 31, 513-534.  

Salmon, Wesley (1984). Scientific Explanation and the Causal Structure of the 
World. Princeton: Princeton University Press. 

Sernesi, E. (1993). Linear Algebra. A geometric approach, Chapman and Hall/CRC. 
Shapiro, Stewart (2000). Thinking About Mathematics. Oxford: Oxford University 

Press. 
Tappenden, Jamie (2005). Proof Style and Understanding in Mathematics I: 

Visualization, Unification and Axiom Choice. In P. Mancosu, K. Jørgensen & S. 
Pedersen (Eds), Visualization, Explanation and Reasoning Styles in Mathematics 
(pp. 147–214). Dordrecht: Springer. 

Trout, J. D. (2002). Scientific Explanation and the Sense of Understanding, 
Philosophy of Science, 69, 212-233. 

Trout, J. D. (2005). Paying the price for a theory of Explanation: De Regt’s 
discussion of Trout. Philosophy of Science, 72, 198-208. 

Van Fraassen, Bas C. (1980). The Scientific Image. Oxford: Clarendon Press. 
Whittaker, E.T. (1904). A treatise on the analytical dynamics of particles and rigid 

bodies. Cambridge: Cambridge University Press. 
Wigner, E. (1967). Symmetries and Reflections. Bloomington: Indiana University 

Press. 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 190



  

ARGUMENTATION AND PROOF: A DISCUSSION ABOUT 
TOULMIN'S AND DUVAL'S MODELS 
Th. Barrieri, A.-C. Mathéii, V. Durand-Guerrieriii 

LEPSi, iii, Université Lyon 1i, iii, LMLii, Université d’Artoisii 
In this paper, we discuss the idea of a gap between argumentation and proof, an idea 
we think to be prevailing in the educational institution. Our claim is that the only use 
of propositional calculus is insufficient to the analysis of the validation process in 
mathematics and could artificially reinforce that idea of a gap. This claim can be 
understood as a criticism of Toulmin’s and Duval’s model, a criticism we hope to be 
a constructive one. We are then brought to the following proposal: taking explicitly 
into account the logical quantification and the mathematical objects in the models 
could help to explain mathematical creativity.     

INTRODUCTION: THE PREGNANT IDEA OF A GAP  
The issue at stake in this paper is the relationship between argumentation and proof. 
It seems to us that the assumption of a gap prevails in the educational institution. This 
prevalence could have major effects on mathematic education:  

« Is it possible, yes or no, to shift from one to the other without too many efforts or 
misunderstandings?  

[…] 

If one answers No, one admits there is a gap between the cognitive processes of 
argumentation and the deductive reasoning at stake in a proof: the use of argumentation 
could not but maintain or even reinforce the obstacles and misunderstandings about what 
a proof is, because its discursive process acts against a valid reasoning process in 
ordinary language. » (Duval, 1992, p. 43, our translation) 

Willing to take into account this gap between argumentation and proof, which is 
theorised in Duval's works, part of the teachers have been induced to put forward 
specifically the formal aspect of the proof (through structuring attempts like "I know 
that", "Now", Therefore" for example) and to distinguish this aspect from the work on 
the content of statements. This phenomenon can be seen in Kouki's thesis (2008) 
through a survey carried out among six Tunisian teachers about learning and teaching 
of equations, inequalities and functions. Moreover, Kouki shows, through a more 
extended experimental study (involving 143 pupils and students in their transient 
period between secondary school and higher education) the consequences of these 
theoretical conceptions on the students' practices which tend to apply formal 
procedures as much as possible. In another context, Segal (2000) highlights the 
tendency of UK students to evaluate proof validity only from their formal aspect. 
There are a lot of examples of this phenomenon. We shall focus on two specific ones 
in order to point out the stakes of this issue.  
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Example 1 
This example is taken from Barrier (2008) in which an extract of Battie (2003) is 
analysed. In this paper, a group of three students in scientific upper sixth form are 
asked to evaluate the following statement )1),(()1),(( 22 =⇒=∀∀ baGCDbaGCDba . The 
group starts an argumentation built on the choice of some coprime natural numbers (3 
and 2, 2 and 5, 9 and 17 then 4 and 15) and on the evaluation of the GCD of their 
respective square. Here is an extract of their dialogue (translated from French). 

1. A :  Or 125 and 16. They are relatively prime. 

2.  I don't know. 

(Laughes) 

3.  You set 125 divided by 16 and you'll see… No, it is not the right way to do 
it. 16 by 16 is 4 2, 2 times 2/ 

4. A :  No, I think 16 and 125 are relatively prime. 

5.  Yeah, when we square the things/ 

6. A :  Yeah, but we don't know, it's not written in the text book, but we can't 
prove it in the general case / 

7.  Oh we make fun of it! 

8. A1 :  We can't use it then. Well, I think, I really don't know, the teacher may have 
told it. 

In (3), a student undertakes a prime factorization of 16. This method could be used 
for the emergence of a proof of the analysed statement. However, it seems to us that 
the students, influenced by their school culture regarding proof, disregard this 
possibility. They act as if the evaluation of a statement through an argumentation 
built on the manipulation of objects and the search for proof were two distinct and 
independent activities.  
Example 2 
Alcock & Weber (2005) analyse how thirteen student volunteers taken from first-
term, first year introductory real analysis courses check the validity of the following 
proof (they were asked to determine whether or not the proof was a valid one): 

Theorem. ∞→n  as ∞→n  

Proof. We know that mm baba <⇒< .  

So baba <⇒< . 

1+< nn  so 1+< nn  for all n. 

So ∞→n  as ∞→n  as required. 
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The inference between the two last propositions is invalid. Exactly two students 
rejected the proof because they had familiar counter-examples. Their rejection was 
not founded on the recognition of a logical gap between the propositions. Three other 
students rejected the proof. They did it because they failed to recognize what they 
thought to be a proof structure. In particular, they argued that the definitions of the 
mathematical concepts involved in the argument were not used. Their decision seems 
to be grounded on exclusive formal considerations. From the point of view of 
mathematical activity, this is a misconception: definitions are not always employed in 
a mathematical proof and, above all, very few mathematical proofs are enough 
detailed so that their logical structure can be recognized without any work. To finish 
with this example, notice that while only two students refused the proof because of an 
invalid warrant, ten did it when the interviewer helped them to interpret “ 1+< nn  so 

1+< nn  for all n” as “the series is increasing” and “ ∞→n  as ∞→n ” as “the 
series is divergent”. Our hypothesis is that this last intervention allowed the students 
to enter the semantic content of the proposition. Precisely, the translation into 
ordinary language could help them to go to a semantic interpretation in a familiar 
domain in which they know that there is some increasing and convergent series.  
We shall now undertake a criticism of Duval and Toulmin's models which are often 
used in research in mathematical didactics about argumentation and proof (Mathé 
(2006), Tanguay (2005), Inglis & al. (2007), Pedemonte (2007, 2008)). Our main 
thesis is that using the proposition (in the sense of propositional calculus, as opposed 
to predicate calculus) as a basic element of modelling leads to overestimate the gap 
between argumentation and proof. In particular, we consider that taking into account 
mathematical objects and quantification in the didactical analysis allows a quite 
different approach to the validation process in mathematics.  

BRIEF PRESENTATION OF DUVAL AND TOULMIN'S MODELS  
We shall begin with a brief presentation of Duval's approach. Let us use Balacheff's 
presentation (2008, p. 509): 

 ‘‘Deductive reasoning holds two characteristics, which oppose it to argumentation. First, 
it is based on the operational value of statements and not on their epistemic value (the 
belief which may be attached to them). Second, the development of a deductive 
reasoning relies on the possibility of chaining the elementary deductive steps, whereas 
argumentation relies on the reinterpretation or the accumulation of arguments from 
different points of view. (Following Duval 1991, esp. p. 240–241).’’ 

Duval often stands out that only argumentation lies on the content of propositions 
whereas what is important in a proof is the operating status of the proposition (in 
other words the way the proposition fits into the formal structure of the "modus 
ponens"). 

"This brings a first important difference between deductive reasoning and argumentative  
reasoning. The latter appeals to implicit rules which depend partly on the language 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 193



  
structure and partly on interlocutors' representations: therefore the semantic content of 
the propositions is essential. On the contrary, in a deductive step, the propositions do not 
intervene directly according to their content but according to their operating status, that 
is to the position previously assigned to them in the step process" (Duval, 1991, p. 235, 
our translation)   

Duval especially focuses on this argument to support the idea that proof and 
argumentation involve very different cognitive processes. In this matter, Balacheff 
(2008, p. 509) points out that: 

« One can imagine how this should raise question in our field considering that other 
researchers give a central role to ‘‘mathematical arguments’’ and ‘‘mathematical 
argumentation’’ in their consideration of what proof is.” 

Recently, Toulmin's model has been used in many works focused on reasoning from a 
mathematics education viewpoint. The following example shows how Pedemonte 
(2008, p. 387) presents Toulmin's restricted model: 

 “In Toulmin’s model an argument consists of three elements (Toulmin, 1993): 

C (claim): the statement of the speaker. 

D (data): data justifying claim C. 

W (warrant): the inference rule, which allows data to be connected to the claim. 

In any argument the first step is expressed by a standpoint (an assertion, an opinion). In 
Toulmin’s terminology the standpoint is called the claim. The second step consists of the 
production of data supporting the claim. The warrant provides the justification for using 
the data conceived as a support for the data-claim relationships. The warrant, which can 
be expressed as a principle, or a rule, acts as a bridge between the data and the claim.”   

This model has been used to analyse as well the production of arguments as the 
production of proof. In particular, Pedemonte uses this model to compare 
argumentation and proof relationships. Therefore the three elements (C, D, W) must 
be considered as more inclusive than the ternary structure of "modus ponens" (A, 
A→B, B) used by Duval to analyse the proof in the sense where the Toulmin's model 
warrant is not necessarily a theorem. Nevertheless, these two models share a common 
point by both using the proposition in the sense of propositional calculus as a basic 
element of modelling. Mathematical objects and quantification are not explicitly 
taken into account in the model structure.  

AN EXAMPLE OF USE OF A QUANTIFICATION THEORY 
Several attempts have been made to use first-order theories in order to help analysing 
mathematical reasoning in our research team (natural deduction in Durand-Guerrier 
& Arsac (2005) and Durand-Guerrier (2005), Tarski's semantics in Durand-Guerrier 
(2008), Lorenzen's dialogic logic and Hintikka's game semantics in Barrier (2008)). 
The ambition of these theories is to allow for the relationships between the semantic 
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and syntactic aspects to be taken into account in the validation activities. On the 
contrary, Duval identifies a reasoning step when applying the "modus ponens" rule. 
He asserts for example:  

«The deductive step process is well known. It is defined by the fundamental rule "modus 
ponens", also called Law of Detachment." (Duval, 1992, p. 43, our translation) 

We also saw that Toulmin's model rested on the same type of ternary structure. 
Durand-Guerrier & Arsac (2005, p. 151-152) showed that this standpoint was 
insufficient for analysing proof, especially in the case of analysis. Furthermore, the 
only "modus ponens" rule cannot exhaust the propositional calculus insofar as other 
deductive rules are necessary (Vernant, 2006, Chapter 3). Nevertheless, the deductive 
step derived from the Law of Detachment prevails in proof learning at lower 
secondary school and certainly deserves special attention. Our contribution will rather 
focus on the theoretical effects of this restriction: we consider that restricting the 
model to the propositional calculus induces to overestimate the distinction between 
argumentation and proof. Let us consider how Duval (1992, p. 44-45, our translation) 
analyses the following text by Sartre: 

« Jessica : Hugo ! You speak reluctantly. I watched you when you talked with 
Hoerderer : 

0. He convinced you. 

Hugo : 1. No, he didn't convince me. 

2. Nobody can convince me that (one must lie to its friends). 

3a. But if he had convinced me. 

3b. It would be a reason more to shoot him. 

4. Because it would prove that he would convince other guys. »          

Duval asserts that this argumentation appeals to the following deductive step: 
Premise: If he had convinced me 

Warrant: Nobody can convince me that one must… 

Conclusion: (it would prove that) he would convince other guys. 

This modelling leads Duval to draw the fundamental differences between 
argumentation and proof. Indeed, the argumentation step as modelled by Duval is 
quite different from the proof step based on the " modus ponens". Our questioning on 
this model induces us to suggest an alternative interpretation of this argumentation 
step based on natural deduction (Durand-Guerrier & Arsac (2005)). We note that xCy 
is the assertion that « x has convinced y ». The first step of Hugo's reasoning may 
then be interpreted in the following way: 

Data:   )(xCHugox¬∀  (2)  

Inference rule:   universal instantiation  
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Conclusion:   )( ugoHoedererCH¬  (1) 

We shall go on with the analysis of the reasoning (setting apart the assertion (3b) and 
identifying (4) with «he would convince other guys », i.e. removing what seems to 
refer to metalanguage) in the following way: 

Data :   ugoHoedererCH  (3a) 

Inference rule:   existential generalisation 

Conclusion:   xxHoedererC∃  

Data:    xxHoedererC∃  (recycling) 
HodererCyHoedererCxyxyxxxHoedererC ∧∧≠∃∃→∃ )( * 

(implicit axiom) 

Inference rule:  modus ponens 
Conclusion:  HodererCyHoedererCxyxyx ∧∧≠∃∃ )(  (4) 

One shall notice that without the implicit axiom (*) (if Hoederer is able to convince 
one person, then he is able to convince two persons at least) the deduction from 

ugoHoedererCH  to HodererCyHoedererCxyxyx ∧∧≠∃∃ )(  would be invalid. Therefore it 
is necessary, in a way, to complete the reasoning to make it valid. In this extract, one 
does not know whether the implicit theorem applied is part of a set of statements 
which are jointly accepted by Hugo and Jessica. However, this type of completion is 
not exclusive to argumentation, since in mathematics a fully explained proof would 
be much too long and therefore illegible. Weber (2008) puts forward an experimental 
study on how proofs are checked by mathematicians. This does not mean that the 
check is limited to the good practices of inference rules: proof checking, including 
validation, calls on not only a search for sub-proofs but also for informal or example-
based arguments.  
Now, an important question to be raised is the relationship between proof and 
proposition content. In the analysed example, we used an implicit axiom to complete 
the formal analysis of reasoning. This axiom is linked to a certain idea we have about 
the interpretation field objects (human beings in this example), what Duval calls the 
semantic content of propositions. In particular, the implicit axiom (*) is based on the 
idea that human beings are more or less homogeneous. The purpose of the following 
paragraph is to show that the content of propositions also intervenes in the proof 
construction.  

 « CONTENT » OF PROPOSITIONS AND PROOFS  
We use here an experiment from Inglis & al. (2007). Andrew, an advanced 
mathematics student, is confronted with the conjecture « if n is a perfect, then kn is 
abundant, for any INk ∈  ». Notice that a perfect number is an integer n whose 
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divisors add up to exactly 2n and that an abundant number is an integer n whose 
divisors add up to more than 2n. 

ANDREW : Ok, so if n is perfect, then kn is abundant, for any k. Ok, so what does it, 
yeah it looks, so what does it mean ? Yeah so if n is perfect, and I take 
any ip which divides this n, then afterwards the sum of these spi  is 2n. This 
is the definition. Yeah, ok, so actually we take kn, then obviously 
all ikp divide kn, actually, we sum these and we get 2kn. Plus, we’ve got 
also, for example, we’ve also got k dividing this, dividing kn. So we need to 
add this. As far, as basically, there is no disquiet, k would be the same as 
this. Yeah. And, how would this one go ? [LONG PAUSE] 

INTERVIEWER : So we’ve got the same problem as up here but in general ? With a … ? 

ANDREW : Yeah. Umm, can we find one? Right, so I don’t know. Some example. 

INTERVIEWER : I’ve got some examples for you. 

ANDREW : You’ve got examples of some perfect numbers ? OK, so 12, we’ve got 1 + 2 
+ 3 + 4 + 6, then, ok, + 12. [MUTTERS] But this is not ? Ok, perfect, I 
wanted perfect numbers. OK, so let’s say six. Yaeh, and we’ve got divisors 
2, 4, 6, 12. Plus I claim we’ve got also divisors. Yeah actually it’s simple 
because, err, because err, the argument is that we’ve also got 1 which is 
divisor, and this divisor is no longer here is we multiply. 

At the beginning of the interview, Andrew manipulates the definition of the concepts 
involved in the conjecture but this strategy fails to construct a proof. Then, he asks 
for examples and begins to play a semantic game which involves several numbers. As 
Duval says, this game increases the belief of the students in the validity of the 
conjecture (the epistemic value of the conjecture). In this sense, those kind of games 
are cumulative. However that argumentation which is linked with the content of the 
conjecture seems to be the clue of the completion of Andrew’s strategy in his former 
attempt of proof construction. This is the manipulation of the perfect number 6 which 
provides to Andrew the idea that for all n, 1 is a divisor of 2n which is not equal to 
any 2k (with k a divisor of n). Pedemonte (2008) provides several convergent 
examples concerning algebra. In particular, she stands for the need of an 
argumentation which would integrate what she calls abduction steps in the proof 
construction process. In our example, the purpose is to explain why 12 would be 
abundant, starting from the fact that it is abundant (this practice is sometimes called 
the analysis of analysis/synthesis dyade). The proof approach (the synthesis of the 
dyade) is based on this explanation (12 is abundant because 1 is a divisor of 12 which 
is not a double of any divisor of 6). Pedemonte (2007, p. 32-33) also gives an 
example of this type of approach in geometry. Besides, from experiments carried out 
in set theory and analysis, Weber & Alcock (2004) underline the weakness of 
syntactic proof procedures ("unwrap definitions" and "push symbols") compared with 
semantic procedures (which call on object instantiations).   
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ABOUT TOULMIN'S COMPLETE MODEL 
In their above-mentioned paper, Inglis & al. (2007) advocate the use of Toulmin's 
complete model which includes three new categories: the backing, the modal qualifier 
and the rebuttal which are introduced as follows (p. 4) : 

« The warrant is supported by the backing (B) which presents further evidence. The 
modal qualifier (Q) qualifies the conclusion by expressing degrees of confidence; and the 
rebuttal (R) potentially refutes the conclusion by stating the conditions under which it 
would not hold. »  

The authors show that there are various types of warrant that the students (five 
students prepare a doctorate degree and one a master degree) connect with various 
modal qualifiers. They advocate the importance of inductive and intuitive 
justifications in the mathematical activity provided that these justifications are paired 
with the appropriate modal qualifier for the conclusion of the argument. They 
underline the interest for didactics researchers to use modal qualifiers specifically in 
the analysis process.  

“The restricted form of Toulmin’s (1958) scheme used by earlier researchers to model 
mathematical argumentation constrains us to think only in terms of arguments with 
absolute conclusion.” (Inglis & al., 2007, p. 17)  

In his remark on Toulmin, Jahnke (2008, p. 370) makes this argument his own and 
emphasises the role of open general statements in mathematics. It seems to us that the 
role assigned to modal qualifiers in Toulmin's model shows that it is very difficult, in 
the didactic of mathematics, to integrate mathematical objects and their manipulation 
into models which are basically built from the propositional logic and from a 
syntactic approach of the mathematical activity. 

CONCLUSION 
Barrier (2008) advocates the necessity to appeal to transactional and intra-world 
procedures (Vernant, 2007) in order to explain mathematical creativity, i.e. to take 
into account the students' specific interactions with mathematical objects and the 
following decisions. The quantification theories, in particular the theories which 
develop a semantic point of view, allow to explain the milieu’s enrichment 
(Brousseau, 1997) along the proof processes. Durand-Guerrier (2008) also stresses 
the importance of the manipulation of objects in order to make mathematical practice 
fertile. This viewpoint seems to converge with Weber & Alcock's position:  

“Just as most streets in a town intersect many other streets, at any given point in a proof, 
there are many valid inferences that can be drawn that might seem useful to an untrained 
eye […]. Hence, writing a proof by syntactic means alone can be a formidable task. 
However, when writing a proof semantically, one can use instantiations of relevant 
objects to guide the formal inferences that one draws, just as one could use a map to 
suggest the directions that they should prescribe.” (Weber & Alcock, 2004, p. 232) 
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Obviously, every argumentation does not lead to proof, since the rules of the game 
are different in these two activities. In particular, in geometry, it is likely that the 
important gap between the different semiotic registers makes it more difficult to shift 
from an argumentation game to a proof game. As stated by Balacheff (2008, p. 509), 
it is necessary to bear this semiotic thinking in mind in order to understand Duval's 
approach. However, as we pointed it out in our examples, the assumption of an 
impassable gap between proof and argumentation is likely to hinder students' 
validation attempts. In particular, when validation is not immediate (we mean that it 
does not directly derive from the manipulation of the definitions of concepts involved 
in the statement of the proposition to be proven), it is often necessary to work on the 
content of the propositions. From a mathematical activity viewpoint, proof 
production seems to go with the familiarisation with mathematical objects. 

REFERENCES 
Alcock, L. & Weber, K. (2005). Proof validation in real analysis: Inferring and 

checking Warrants. Journal of Mathematical Behaviour, 24, 125-134.  
Balacheff, N. (2008). The role of researcher's epistemology in mathematics 

education: an essay on the case of proof. Zentblatt fur Didaktik der Mathematik,  
40/3, 501-512. 

Barrier, Th. (2008, to appear). Sémantique selon la théorie des jeux et situations de 
validation en mathématiques. Education et Didactique. 

Barrier, Th. (to appear). Quantification et Variation en Mathématiques : perspectives 
didactiques issues de la lecture d'un texte de Bolzano. Proceedings of the 5th 
International Colloquium on the Didactics of Mathematics, Rethymnon, Crete, 17-
19 April 2008. 

Battie, V. (2003). Spécificités et potentialités de l'arithmétique pour l'apprentissage 
du raisonnement mathématiques. Thesis. Université Lyon 1. 

Brousseau, G. (1997). Theory of didactical situations in mathematics. Springer 
Durand-Guerrier, V. (2008).Truth versus validity in mathematical proof. Zentralblatt 

fur Didaktik der Mathematik, 40(3), 373-384.  
Durand-Guerrier, V. (2005). Natural deduction in Predicate Calculus. A tool for 

analysing proof in a didactic perspective. CERME-4, Sant Feliu de Guixols, 
Espagne, Février 2005.  

Durand-Guerrier, V. & Arsac, G. (2005). An epistemological and didactic study of a 
specific calculus reasoning rule. Educational studies in mathematics, 60(2), 149-
172. 

Duval, R. (1991). Structure du raisonnement déductif et apprentissage de la 
démonstration. Educational Studies in Mathematics, 22, 233-261 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 199



  
Duval, R. (1992). Argumenter, démontrer, expliquer : continuité ou rupture cognitive 

? Petit x, 31, 37-61. 
Frege, G. (1967). The basic laws of arithmetic: exposition of the system. (English 

translation from parts of Grundgesetze der arithmetic (1893) M. Furth). Berkeley 
& Los Angeles: University of California Press. 

Inglis, M., Mejia-Ramos, J.-P., Simpson, A. (2007). Modelling mathematical 
argumentation: the importance of qualification. Educational Studies in 
Mathematics, 66, 3-21. 

Jahnke, H. N. (2008). Theorems that admit exceptions, including a remark on 
Toulmin. Zentralblatt fur Didaktik der Mathematik, 40(3), 363-371 

Kouki, R. (2008). Enseignement et apprentissage des équations, inéquations et 
fonctions au secondaire : entre syntaxe et sémantique. Thesis. Université de Lyon 
1, Université de Tunis. 

Mathé, A.-C. (2006). Elaboration d’une référence partagée : un exemple en géométrie 
des solides en classe de CM1-CM2. In V. Durand-Guerrier, J.-L. Héraud & C. 
Tisseron (Eds.), Jeux et enjeux de langage dans l’élaboration des savoirs en classe 
(pp. 117-135). Lyon : Presses Universitaires de Lyon.   

Pedemonte, B. (2007). How can the relationship between argumentation and proof be 
analysed ? Educational Studies in Mathematics, 66, 23-41. 

Pedemonte, B. (2008). Argumentation and algebraic proof. Zentralblatt fur Didaktik 
der Mathematik, 40(3), 385-400. 

Segal, J. (2000). Learning about mathematical proof: conviction and validity. Journal 
of mathematical behaviour, 18(2), 191-210. 

Tanguay, D. (2005). Apprentissage de la démonstration en géométrie et graphes 
orientés. Annales de Didactique et de Sciences Cognitives, 10, 55-94. 

Toulmin, S. (1958). The use of arguments. Cambridge: Cambridge University Press. 
(French translation Ph. De Brabanter (1993), Les usages de l'argumentation, Paris : 
Presse Universitaire de France) 

Vernant, D. (2006). Introduction à la logique standard. Paris : Flammarion. 
Vernant, D. (2007). The dialogical Logic of veridicity. In A. Trognon (Ed.), Logic 

and Dialogue. Nancy : Presse Universitaires de Nancy. 
Weber, K. (2008). How mathematicians determine if an argument is a valid proof. 

Journal for Research in Mathematics Education, 39(4), 431-459. 
Weber, K. and L. Alcock (2004). Semantic and syntactic proof production. 

Educational Studies in Mathematics, 56, 209-234. 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 200



  

WHY DO WE NEED PROOF 

Kirsti Hemmi     Clas Löfwall 

Linköping University, Sweden  Stockholm University, Sweden 

We explore teaching mathematicians’ views on the benefits of studying proof in the 
basic university courses in Sweden. The data consists of ten mathematicians’ written 
responses to our questions.  We found a variety of ideas and views on the function of 
proof that we call transfer. All mathematicians in the study considered proofs 
valuable for students because they offer students new methods, important concepts 
and exercise in logical reasoning needed in problem solving. The study shows that 
some mathematicians consider proving and problem solving almost as the same kind 
of activities. We describe the function of transfer in mathematics, exemplify it with 
the data at a general level and present particular proofs illuminating transfer that 
were mentioned by the mathematicians in our study. 

INTRODUCTION 

The various functions of proof in mathematics and mathematics education have been 
discussed by researchers during many years and they have gained a wide consensus 
in the mathematics education research community (Bell, 1976; De Villiers, 1990; 
Hanna, 2000). Especially the functions of conviction and explanation have been in 
focus in the field (e.g. de Villiers, 1991; Hanna, 2000; Hersh, 1993). However, 
Weber (2002) states that besides proofs that convince or/and explain there are proofs 
that justify the use of definitions or an axiomatic structure and proofs that illustrate 
proving techniques useful in other proving situations. Lucast (2003) studied the 
relation between problem solving and proof and found support for the importance of 
proofs rather than theorems in mathematics and mathematics education for example 
from Rav’s (1999) philosophical article. Lucast considers proof and methods for 
problem solving as in principal the same and states that proving is involved in the 
cognitive processes needed for problem solving. 

According to the mathematicians in our earlier study, there are proofs that can 
introduce new techniques to attack other problems in mathematics or offer 
understanding for something different from the original context. For example, they 
mentioned the method of completing the square in deriving the formula for the 
solution of the second degree equation as useful in problem solving [1] (Hemmi, 
2006).  We decided to call this function of proof for transfer and we remarked that it 
had neither been in the focus in the research on proof in mathematics education nor 
involved in the earlier models about the functions of proof. It is close to and partly 
overlapping the aspect Weber (2002) describes but not exactly the same. Recently, 
Hanna and Barbeau (2008) have started to explore this function from a point of view 
of philosophy and mathematics education [2]. Also they stress that it has been 
overlooked in mathematics education research. 
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Extended information about various functions of proof communicates something 
about the meaning of proof in mathematical practice, and the consciousness of them 
should therefore be important for how newcomers experience the practice. Some 
students in our earlier study who had difficulties to follow and understand proofs that 
were presented in the lectures expressed for instance the lack of examples from 
mathematicians about connections between proofs and problem solving.  

Most often you don’t have to be able to know anything of the proofs in order to solve 
problems.  (Student – Intermediate course, 2004 in Hemmi, 2006) 

They also advocated working manners and tasks where they could use the proofs in 
some ways in order to enhance their own engagement with proofs. 

I mean tasks in which you are supposed to calculate something using proofs. At least for 
me, it is easier to understand if I really use them for something.  (Student – Intermediate 
course, 2004 in Hemmi, 2006) 

Our recent study contributes to the field by exploring mathematicians’ often tacit 
knowledge concerning the teaching and learning of proof in the practice of 
mathematics. In this paper, we first describe the function of transfer from the 
perspective of history of mathematics and then present an analysis of a pilot study 
with ten mathematicians concerning their views on proof, in particular with respect 
to the function of transfer in the basic courses [3] of mathematics in Sweden.  

TRANSFER IN MATHEMATICS 

Proof has not always been a natural part of mathematical activity. In the old cultures 
in Babylonia, Egypt and China, mathematicians seemed to be only interested in 
presenting results which could be used in different applications and not in the 
question of how these results were obtained. They might have done verifications of 
results also, but if so, they did not think it was worth while to write them down. With 
the Greeks, the deduction style of mathematics was born and the emphasis was put 
rather on the questions of truth, foundations, logic, and proving than on practical 
applications. Their work in geometry which we know from Euclid’s Elements has 
since then been a model for scientific thinking. It was not until the 1900th century 
that proofs in algebra and analysis could be performed with the same kind of logical 
strength that was done in the Elements. Nowadays, proving has been almost a 
synonym for doing research in mathematics and an enormous amount of 
mathematical proofs are produced every year.  

A natural question to ask is why the deductive style in mathematics has been so 
successful? Nobody can question the importance and usefulness of mathematics in 
the modern society, but do we need the proofs? It is only the very results in 
mathematics that are used in other sciences and, in the end, they are important for the 
production of all the facilities we see around us. We think the “market” should have 
forced mathematics to use the “handbook” style if this turned out to be as (or more) 
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efficient as the ”deductive style”. For the Greeks it might have been possible to study 
proofs just because they thought it was an intellectual challenge, but in our society 
we think this is impossible. 

However, the deductive style in mathematics has survived and been successful. One 
important reason for this is indeed that the proofs contain information of how to get 
other results and also often contain methods of calculation used for example in 
applications. As an example, consider Archimedes result about the volume of the 
sphere. It is of course interesting for applications to be able to compute the volume 
of a sphere, and with the formula in hand also some other problems maybe solved, 
e.g., the volume of a half sphere. But without the proof it is hard to find formulas for 
the volume of other bodies. Archimedes described the method he used to find the 
formula, which may be seen as a form of integration and is interesting for other 
applications. It is a heuristic argument based on his law of the lever. The method 
contains a lot of information which may be used to reach far beyond the original 
problem. For other examples of theorems where the proofs are far more interesting 
than the results, see Rav (1999).  

There is certainly a consensus among mathematicians that the proofs contain much 
more information than just the verification of the results, but how do they think about 
this function of proof in the teaching context?  

METHODOLOGY AND THEORETICAL STANCES IN THE PILOT STUDY 

In August 2008, we e-mailed to 16 mathematicians at various universities. We 
presented the aim of the study and invited them to share their thoughts with us 
concerning the following questions.   

1. Why do you think that students in basic courses should become familiar with 
proofs and proving or do you think they do not need to do so and in this case 
why? 

2. What specific proofs/derivations do you consider as central in basic courses 
which you have taught? 

3. Are there specific proofs/derivations in the basic courses that teach students 
techniques, concepts, procedures, strategies or offer other tools that are useful 
in other contexts, for example in problem solving? 

4. Are there proofs not filling the criteria in question 3 but which you in any way 
consider as central in the basic courses, in that case which proofs and why? 

To encourage the mathematicians to response, we stressed that the answers would 
not need to be exhausting, it was enough to give some examples. Ten mathematicians 
from five different institutions e-mailed their answers. Although the responses varied 
both in length and in content we obtained very rich data. We had also the possibility 
to contact the mathematicians and ask for complementary information.   
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We consider the mathematicians as old-timers in their communities of practice of 
mathematics (see Wenger, 1998). All the mathematicians in the pilot study had at 
least ten years experience of teaching and all of them have somehow been engaged in 
the teaching of elementary courses. Learning is conceived as increasing participation 
in the mathematical practice where proof is a central artefact with many functions 
(see Hemmi, 2006). According to the theory of Lave and Wenger (1991) artefacts 
and their significance to the practice can be more or less visible for the newcomers. 
This is called the condition of transparency of proof in the teaching of mathematics, 
i.e. how and how much to focus on various aspects and functions of proof and how 
and how much to use proof in doing and presenting mathematics without a focus on 
it as proof (see also Hemmi, 2008).  

This is one of the aspects in the conceptual frame that was created by combining the 
social practice approach with theories about proof obtained from the didactical 
studies in the field. The other aspects, relevant for this study, are the functions of 
proof of conviction, explanation, communication, intellectual challenge, aesthetic 
and transfer. All these aspects are intertwined and partly overlapping but have to be 
separated in order to be able to analyse the data.  

We analysed the data with help of NVivo software by firstly relating the 
mathematicians’ responses to the aspects in the conceptual frame. Then, we used an 
open approach and looked at the issues enlightening the function of transfer from 
various points of view and connected these issues to the themes described in the 
introduction (Weber, 2002; Lucast, 2003; Hemmi, 2006; Hanna & Barbeau, 2008). 

We interpret the mathematicians’ utterances as representative of views belonging to 
the community, utterances that are influenced by the social, cultural and historical 
context of the same mathematics environment but also from other possible 
environments they are members of. The aim of the pilot study is to investigate the 
diversity of ideas among mathematicians analysing a small sample in order to later 
explore a larger sample. This is why we cannot generalise the results and there is no 
use to give exact numbers of mathematicians talking about various themes. We make 
very little quantifications when reporting the results.  

First, we sum up the main reasons mentioned by the mathematicians for why they 
wanted to include proof in the basic courses. Then we provide some examples about 
utterances concerning the function of transfer at a general level. Finally, we present 
some specific proofs that according to the mathematicians involved this function.  

RESULTS 

All the ten mathematicians stated that students in the basic courses should become 
familiar with proofs and proving. This is interesting because in our earlier study 
which concerned only one department, most of the mathematicians said they did not 
deal with proof so much in the basic courses for various reasons (Hemmi, 2006). Yet, 
some of the mathematicians in the present study pointed out that there was no use to 
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prove for example statements concerning limits of functions rigorously for the 
students studying engineering, chemistry or other sciences. One mathematician even 
stated that one should try to “serve up” mathematics for such students with so few 
proofs as possible and concentrate on applications.   

The mathematicians gave various reasons for why proof is important to include in 
the curriculum for the basic courses. Some of them stated that proof helped to make 
visible the difference between school mathematics and university mathematics for 
the students and that inclusion of proof in the curriculum helped students to leave 
their preconceived interpretations about what mathematics actually is. Proof should 
be included in the basic courses because proof is the soul and the backbone of 
mathematics. It is the very idea of doing mathematics. According to one 
mathematician, working with some proofs also offered possibilities to discuss what 
proof is. This refers to the aspect of transparency.  

In line with our earlier study many mathematicians consider school mathematics as 
teaching students to apply rules they get through examples from the teacher or a 
textbook. According to the mathematicians, this manner does not lead to 
understanding of what mathematics is, “i.e., concepts and intuitive and logical 
reasoning about these concepts and their relationships”. Proof explains how the 
concepts are related to each other. This view refers to the function of explanation.  

Another reason the mathematicians gave was that proof connects all mathematics, 
without proof “everything will collapse”. You cannot proceed without a proof. This 
refers to the verification function of proof.  

Some mathematicians stressed that it was important to present proofs (or convincing 
arguments) for statements which are not conceived as evident by the students. This 
refers to the attempts to create possibilities for the students to experience the 
function of conviction of proof. 

One mathematician stated that proof enhanced students’ interest towards 
mathematics by giving aha-experiences and also that students were curious about 
proof. The latter was confirmed by our study among university entrants. It showed 
that about 80 percent of students were interested in proof and wanted to learn more 
about proof when they came to the university (Hemmi, 2006). This refers to the 
function of intellectual challenge.  

One mathematician also pointed out that it was important to present some “beautiful 
proofs” even if he thought it was difficult to find such proofs suitable for the basic 
courses. This refers to the function of aesthetic. 

Finally, one of the mathematicians talked about proof as useful in the learning of 
mathematical language. This refers to the function of communication.  

All the functions mentioned above are interconnected and partly overlapping. Some 
of the reasons presented in this section that the mathematicians mentioned for why 
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they wanted the students to meet proof in the basic courses are already connected to 
the function of transfer, the main target of this article.  

Transfer at a general level 

All mathematicians considered proofs more or less important in a manner that they 
taught students concepts and techniques needed in problem solving even if one of 
them mostly saw benefits at this level for other proving tasks. Some of the 
mathematicians stated that all essential proofs in the basic courses carried this 
function whereas others had difficulties to find examples of proofs involving this 
function at the basic level.  

At a general level, many mathematicians mentioned that proofs helped students to 
learn mathematical and logical reasoning valuable in problem solving. 

If one becomes accustomed to study proofs one gets practiced with mathematical 
reasoning, something one can draw great advantages of in problem solving. Problem 
solving is an art of formulation. (M4) 

But they (the proofs) should also contribute to demonstrate and develop students’ skills of 
logical reasoning. This is useful in many situations. One of the function of mathematics in 
the engineering program is this. (M8)  

Yet, not all mathematicians considered this function of proof so important for 
engineering students as the one in the citation above.  

Also the understanding of generalisations, especially with respect of the models for 
problem solving within mathematics or in applied sciences could be enhanced by 
studying proof according to some mathematicians. 

They have to start to argue for the solutions of the problems for example in applications 
that they present, show that they are correct, so they can work in a manner not just filling 
in numbers in given models but tackle new problems. (M10) 

One mathematician talked about the value of proof for problem solving because they 
helped students to learn and understand new mathematical concepts.   

Mathematics is about defining concepts and to study how these concepts are connected. 
To understand the concepts you have to understand how they are connected to each other. 
[…] From the proof one should learn something about the concepts involved in it. (M8) 

Even technical proofs were considered as valuable by one mathematician as they 
helped students understanding of problem solving.  

Also the technical proofs are useful to do: the technique leads to better understanding of 
problem solving. (M1) 

Here, the mathematician might mean that the proof techniques could be explicitly 
used in problem solving. 
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Proving and problem solving involved in each other  

Some of the mathematicians stated already in their responses to the first question that 
they considered proving and calculating/problem solving as in principle the same 
activity (compare with Lucast, 2003). By highlighting this in the teaching they 
wanted to “demystify proof”.   

I don’t consider “proof” as something different from other mathematical activities – 
obviously it is about reasoning, calculating, being ingenious/creative, using one’s 
knowledge and experiences and then drawing conclusions. To prove the rule of squaring 
a binomial, to give an elementary example, is of course just to perform the calculation. 
(M9) 

I would like to extend the meaning of “proof” to refer to logical reasoning in general. In 
proofs one meets such reasoning in a concentrated form. But it is present also in problem 
solving and in mathematical discussions in general. (M4) 

There is no difference in principle between proving and calculation. When a student 
carries out a computation in several steps, then these steps is a proof of the statement that 
the final result is the answer to the question. It is important that students at all levels get 
the insight that it is always reasoning which is the core of mathematics. (M6)  

Most of the mathematicians talked about transfer only at a general level but there 
were some examples of specific proofs that we found valuable to present in order to 
later explore their potentials for further studies.  

Some examples of proofs that teach students concepts or techniques 

The mathematicians mentioned a number of proofs and exercises as valuable for 
students in order to learn techniques applicable in other proving tasks. This refers to 
the function Weber (2002) writes about. We have gathered their suggestions in the 
following table.  

The relation in Pascal’s triangle can be proved by induction 

There are an infinite number of primes enlightens proof by contradiction   

The square root of 2 is irrational. The students can then surely find other results 
where the number 2 is replaced by another integer. 

n(n+1) is divisible by 2 , if  n  is a positive integer. The same proof techniques can be 
applied in other proving tasks concerning divisibility.  

Is it true that the proposition P(x) holds for all real numbers x?” where P(x) is for 
instance an inequality. This trains the ability to see what is required of a proof, and 
that a refutation just needs a counter example which is very important in many proving 
tasks. 

Open tasks. They encourage the willingness to investigate and make hypotheses – 
which then are to be proved or disproved. 
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The next citation is an example about how studying proofs or proving statements 
concerning the derivatives is seen to help students to become familiar with and learn 
to understand new concepts and definitions, in this case the notion of the limit of a 
difference quotient as a derivative.     

The derivative is defined as the limit of a difference quotient, and you get a geometric 
interpretation as the slope of the tangent, but you also have the technical interpretation as 
change of rapidity (in a broad sense). Next you derive (prove) the rules for the derivative 
of a sum, product, … and you derive the derivatives of the elementary functions. All these 
you may of course find in a table of formulas and you should moreover know them by 
heart, they are so important for the applications. But through studying the proofs you get 
opportunity to many times consider limits of a difference quotient, and in that manner 
consolidate the definition of the important notion of derivative. (M8) 

The last quotation below is about the proof of the factor theorem. The factor theorem 
states that x – α is a divisor of the polynomial f(x) if and only if f(α)=0. We find the 
proof of this theorem as a good example of such proofs at an elementary level that 
allow mathematicians to highlight importance of studying the methods and notions in 
proofs.  

We can begin with the factor theorem. The theorem expresses for sure an equivalence and 
it is interesting to discuss that one implication is obvious while the other is deeper. If you 
look at the actual proof you then see that the proof gives a bit more than what the theorem 
states. Indeed, the proof gives us information about the remainder even in the case where 
the remainder is not zero. (M4) 

As an example of a problem where the proof of the factor theorem could be useful, 
consider the following:  Determine the remainder, without carrying out the division 
algorithm when x4 + x3 +x2 + x + 1 is divided by x – 1. 

DISCUSSION 

The study shows that the function of transfer is a natural way of thinking about proof 
for many mathematicians and all mathematicians express the importance of teaching 
proofs also in the beginning courses at university. Yet, one of them states that the 
students studying applied sciences do not need any proofs and some others that they 
do not need all the rigorous proofs. Only one mathematician did not think that proofs 
could be useful in problem solving at the basic level.  

Some mathematicians wanted to look at proving and calculation/ problem solving in 
a similar way. The resemblance between proving and problem solving has been 
studied and discussed by Lucast (2003). This is an interesting point of view as we 
can also think the other way around, i.e., students can learn concepts and techniques 
in problem solving that they can use in proving tasks.  

We find it interesting to note that the connection between proving and problem 
solving is something fundamental in the area of constructive mathematics, where 
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these two activities are considered to be not just similar but in fact the same (see 
Nordström & Löfwall, 2006). It could be fruitful to study the notions of proving and 
problem solving from the perspective of constructive mathematics in order to get 
more insight in their connections. 

In school mathematics and also in the beginning courses at university it has been a 
tendency to avoid the word “proof” in order to not frighten the students (Hemmi, 
2006). However, students lack discussions about what proof is and why it is needed. 
An important didactical question is how to in the best way highlight the connections 
between proving and problem solving in the teaching of mathematics. Consider for 
example the following citation:  

To prove the rule of squaring a binomial, to give an elementary example, is of course just 
to perform the calculation. (M9) 

The mathematician expresses here a view that proving, in this case, is just calculating 
but we could also take it the other way around and consider this calculation as 
proving.  

We have shed light on the function of proof that we call transfer from historical point 
of view and explored mathematicians’ pedagogical views on it. We have described 
transfer at a general level and exemplified some proofs where connections to 
problem solving can be made visible. It is clear that mathematical proofs are carriers 
of mathematical knowledge and there are various ways of enlightening this for 
students.  

However, we do not want to look at the function of transfer mechanically, even if 
there are situations where it is possible to just copy a proof technique to another 
proving task. In this paper, we have described transfer from the perspective of 
teaching mathematicians. We have to acknowledge that what experts consider as 
evident connections may be difficult to see for a learner. When studying transfer we 
have to study the learners’ personal constructions of similarity across proving and 
problem solving from their perspective (Lobato, 2003). Our study shows that there is 
a lot to explore in university mathematics regarding the ideas from the 
mathematicians’ personal experiences of proof in the learning and doing 
mathematics. 

NOTES 

1. Consider for example the following problem: Determine the centre and the radius of a circle x2+2x+y2-4y=0. It should 

be easier to solve it if one is familiar with the method of completing the square. 

2. However, Hanna and Barbeau (2008) do not use the word transfer for this function. 

3. With basic and elementary courses, we refer to the courses taught during the first semester. With intermediate courses 

we refer to the courses taught during the second semester. 
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PROVING AS A RATIONAL BEHAVIOUR:  

HABERMAS' CONSTRUCT OF RATIONALITY AS A 
COMPREHENSIVE FRAME FOR RESEARCH ON THE 

TEACHING AND LEARNING OF PROOF 
Francesca Morselli and Paolo Boero  

Dipartimento di Matematica, University of Genova, Italy 
In this paper we draw from Habermas’ construct of rational behaviour a construct 
for rationality in proving that we propose as suitable to investigate the teaching and 
learning of proof and generate new research developments. At first, we discuss our 
conception of the proving process, where cognitive and cultural aspects are shown to 
play a crucial role, and we present our adaptation of Habermas’ construct as a way 
of taking into account both cognitive and cultural aspects. The adapted construct is 
shown to be useful in the discussion of some examples at tertiary level; finally, 
drawing from the analysis of the examples, we indicate some research questions 
(formulated in terms of the theoretical construct) that we feel worth to be explored.  
Key-words: proof and proving, rational behaviour, Habermas, tertiary level  

INTRODUCTION 
The aim of our paper is to contribute to the debate on theoretical frameworks suitable 
to take into consideration the complex nature of the teaching and learning of proof.  
When planning the teaching of theorems and mathematical proof and when analyzing 
students’ difficulties in approaching them, we have at disposal several theoretical 
tools coming from epistemology, history of mathematics, psychology, and didactics 
of mathematics. In order to build a comprehensive framework for proof and its 
teaching and learning, encompassing the epistemological, psychological and 
didactical dimensions, we think that at first it is necessary to consider proof as a 
crucial component of mathematics and to look at mathematics from a cultural 
perspective. The definition of culture by Hatano & Wertsch (2001) suggests to 
consider mathematics as a multifaceted culture evolving through the history, which 
includes different kinds of activities and different levels of awareness, explicitness 
and voluntary use of notions, thus different levels of “scientific” mastery, according 
to the Vygotskian distinction between common knowledge and scientific knowledge 
(for further developments about mathematics as a culture, see Morselli, 2007). Within 
this cultural perspective we can situate the “culture of theorems” as the complex 
system of conscious systematic knowledge, activities and communication rules that 
refer to the processes of conjecturing and proving as well as to their final products. 
Consequently, we can describe the approach to theorems and proving as a process of 
scientific “enculturation” consisting in the development of a special kind of rational 
behaviour, characterized by the conscious mastery of the epistemic aspects of 
theorems (Mariotti et al., 1997; Balacheff, 1982) and by the intentional construction 
and control of the process that produces the proof, within a communication context 
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with its shared rules. From these considerations we can draw a link between the 
approach to theorems as a process of “scientific enculturation” and the three 
components of Habermas’ “rational behaviour” (the epistemic, the teleological and 
the communicative rationalities), as we will show in the subsequent section.  
Another entry into the same line of thought derives from the process - product 
character of proving and proof. Balacheff (1982) points out that the teaching of 
proofs and theorems should have the double aim of making students understand what 
a proof is and learn to produce it. Accordingly, we think that, in mathematics 
education, proof should be treated considering both the object aspect (a product that 
must meet the epistemic and communicative requirements established in today 
mathematics - or in school mathematics) and the process aspect (a special case of 
problem solving: a process intentionally aimed at a proof as product). Here again we 
can identify potential links with Habermas’ elaboration about rationality.  

PROVING AS A RATIONAL BEHAVIOUR 
Habermas (2003, ch. 2) distinguishes three inter-related components of a rational 
behaviour: the epistemic component (inherent in the control of the propositions and 
their enchaining), the teleological component (inherent in the conscious choice of 
tools to achieve the goal of the activity) and the communicative component (inherent 
in the conscious choice of suitable means of communication within a given 
community). With an eye to Habermas’ elaboration, in the discursive practice of 
proving we can identify: an epistemic aspect, consisting in the conscious validation of 
statements according to shared premises and legitimate ways of reasoning (cf. the 
definition of “theorem” by Mariotti & al. (1997) as the system consisting of a 
statement, a proof which is derived according to shared inference rules from axioms 
and other theorems, and a reference theory); a teleological aspect, inherent in the 
problem solving character of proving, and the conscious choices to be made in order 
to obtain the aimed product; a communicative aspect, consisting in the conscious 
adhering to rules that ensure both the possibility of communicating steps of 
reasoning, and the conformity of the products (proofs) to standards in a given 
mathematical culture. 
Our point is that considering proof and proving according to Habermas’ construct 
may provide the researcher with a comprehensive frame, within which to situate a lot 
of research work performed in the last two decades, to analyze students’ difficulties 
concerning theorems and proofs (see the four examples in the next Section) and to 
discuss some related relevant issues and possible implications for the teaching of 
theorems and proof (see the last Section).  
If we are interested in the epistemic rationality side, i.e. in the analysis of proofs and 
theorems as objects, mathematics education literature offers some historical analyses 
(like Arsac, 1988) and surveys of epistemological perspectives (like Arzarello, 2007): 
they help to understand how theorems and proofs have been originated and have been 
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considered in different historical periods and how, even in the last decades, there is 
no shared agreement about what makes proof a “mathematical proof” (cf. Habermas' 
comment about the historically and socially situated character of epistemic 
rationality). Concerning the ways mathematical proof and theorems are (or should be) 
introduced in school as “objects”, several results and perspectives have been 
produced, according to different epistemological perspectives and focus of analyses. 
In particular, De Villiers (1990), Hanna (1990), Hanna & Barbeau (2008) discuss the 
functions that mathematical proofs and theorems play within mathematics and 
advocate that the same functions should be highlighted when presenting proof in the 
classroom, in order to motivate students to proof and allow them to understand its 
importance. By referring proof to the model of formal derivation, Duval (2007) 
focuses on the distance between mathematical proof and ordinary argumentation; he 
also considers how to make students aware of that distance and able to manage the 
construction and control of a deductive chain. Harel (2008) uses the DNR construct 
to frame the classification of students’ proof schemes (we may note that they concern 
proof as a final product). We note that, in terms of Habermas’ components of 
rationality, Harel’s ritual and non-referential symbolic proof schemes may be 
attributed to the dominance of the communicative aspect, with lacks inherent in the 
epistemic component (cf. Harel’s N, “intellectual Necessity”).  
Concerning the proving process, some analyses of its relationships with arguing and 
conjecturing suggest possible ways to enable students to manage the teleological 
rationality. In particular, Boero, Douek & Ferrari (2008) focus on the existence of 
common features (“cognitive unity”) between arguing, on one side, and proving 
processes on the other, and present some activities (from grade I on), based on those 
commonalities, that may prepare students to develop effective proving processes. 
Research on abductive processes in conjecturing and proving (Cifarelli, 1999; 
Pedemonte, 2007) and the construct of “abductive system” (Ferrando, 2006) take into 
account some aspects of the creative nature of conjecturing and proving processes 
and the need of suitable educational choices to promote creativity. Boero, Garuti & 
Lemut (2007) suggest the possibility of smoothing the school approach to 
mathematical proof through unified tasks of conjecturing and proving for suitable 
theorems (those for which the same arguments produced in the conjecturing phase 
can be used in the proving phase). However Pedemonte (2007) shows how in some 
cases of “cognitive unity”, students meet difficulties inherent in the lack of “structural 
continuity” (when they have to move from creative ways of finding good reasons for 
the validity of a statement, to their organization in a deductive chain and an 
acceptable proof): her study suggests to consider the relationships between 
teleological, epistemic and communicative rationality (see the last Section).  

SOME EXAMPLES  
Morselli (2007) investigated the conjecturing and proving processes carried out by 
different groups of university students (7 first year and 11 third year mathematics 
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students, 29 third year students preparing to become primary school teachers). The 
students were given the following problem: What can you tell about the divisors of 
two consecutive numbers? Motivate your answer in general.  Different proofs can be 
carried out at different mathematical levels (by exploiting divisibility, or properties of 
the remainder, or algebraic tools). The students worked out the problem individually, 
writing down their process of solution (including all the attempts done); afterwards, 
students were asked to reconstruct their process and comment it. The a posteriori 
interviews were audio-recorded. In (Morselli, 2007) several examples of individual 
solutions and related interviews are provided, and in particular it is shown how 
students’ failures or mistakes were due to lacks in some aspects of rationality and/or 
the dominance of one aspect over the others.  
For the present paper, we selected four examples. At first, we present two very 
similar cases, concerning students that are preparing to teach in primary school, and 
we show how the theoretical construct of rationality in proving may help to single out 
important differences between the two students, as well as different needs in terms of 
intervention. Afterwards, we present two cases concerning university students in 
Mathematics: the first one is a case of success, while the second one is a case of 
failure. These two cases were analyzed in (Morselli, 2006) with a special focus on 
their use of examples. Here we discuss those proving processes by means of our 
adaptation of Habermas’ construct.  
The four examples have the double aim of illustrating how our adaptation of 
Habermas’ construct works as a tool for in-depth analysis, and introducing a 
discussion that will suggest further research developments.  
Example 1: Monica 
Monica considers two couples of numbers: 14, 15 and 24, 25. By listing the divisors, 
she discovers that “Two consecutive numbers are odd and even, hence only the even 
number will be divided by 2”. Afterwards, she lists the divisors of 6 and 7 and writes: 
“Even numbers may have both odd and even divisors”. After a check on 19 and 20, 
she writes the discovered property, followed by its proof: 

Property: two consecutive numbers have only one common divisor, the number 1. In 
order to prove it, I can start saying that two consecutive numbers cannot have common 
divisors that are even, since odd numbers certainly cannot be divided by an even number. 
They also cannot have common divisors different from 1, because between the two 
numbers there is only one unit; if a number is divisible by 3, the next number that is 
divisible by 3 will be greater by 3 units, and not by only one unit. Since 3 is the first odd 
number after 1, there are no other numbers that can work as divisors of two consecutive 
numbers.  

Monica carries out a reasoning intentionally aimed (teleological rationality): first, at 
the production of a good conjecture; then, at its proof. Proof steps are justified one by 
one (epistemic aspect) and communicated with appropriate technical expressions 
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(communicative aspect). The only lack in terms of rationality concerns the short-cut 
in the last part of the proof: Monica realizes that something similar to what happens 
with 3 (the next multiple is “greater by three units”) shall happen a fortiori with the 
other odd numbers that are bigger than 3 (“Since 3 is the first odd number after 1”), 
but she does not make it explicit. Her awareness (cf. epistemic rationality) is not 
communicated in the due, explicit mathematical form (lack of communicative 
rationality). Monica’s a posteriori comments on her text confirm the analysis: 

Monica: (...) and then I have thought that 3 was the first odd number after 1 and so if 3 
does not enter there, also the bigger ones do not enter there [from the 
previous text, we know that “there” means: between two consecutive 
numbers on the number line]. 

Interviewer: to make more general what you said with 3, what would you write now? 

Monica: ehm... I have tried to go beyond the specific case of 3, but I do not know if I 
have succeeded in it. 

Example 2: Caterina 
Starting from the fact that two consecutive numbers are always one odd and one even, we 
may conclude that the two numbers cannot be both divided by an even number. 
Afterwards, we focus on odd divisors; we start from 1, and we know that all numbers 
may be divided by 1; the second one is 3. We have two consecutive numbers, then the 
difference between them is 1, then they will not be multiples of 3, since it will be 
impossible to divide both of them by a number bigger than 1.  

Caterina is able to justify all the explicit steps of her reasoning (epistemic rationality), 
she develops a goal-oriented reasoning (teleological rationality) and illustrates her 
process with appropriate technical expressions (communicative rationality). 
Differently from Monica, in spite of a good intuition there is a lack in her reasoning: 
divisors greater than 3 are not considered. A posteriori, after having seen also the 
production of her colleagues, Caterina comments:  

My reasoning is not mistaken: indeed, I reach the conclusion giving a general 
explanation, saying that, since there is no more than one unit between the two numbers, 
the only common divisor is 1. Nevertheless, I can not create a mathematical rule. 
Observing the other solutions, I think that the correct rule is the following: along the 
number line we note that a multiple of 2 occurs every two numbers, a multiple of 3 
occurs every three numbers, hence a multiple of N occurs every N numbers. Then, two 
consecutive numbers have only 1 as common divisor.  

From the objective point of view of epistemic rationality, Caterina’s argument was 
not complete, and in her comment she reveals not to be aware of it. From her 
subjective point of view, Caterina is convinced to have found a cogent reason for the 
validity of the conjecture (“not mistaken reasoning”, “general explanation”), thus to 
have achieved her goal (teleological rationality). Some colleagues’ solutions induce 
her to reflect on the lack of a “mathematical rule”; however she doesn’t seem to 
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consider this lack as a lack in the reasoning, but as a lack in the mathematical 
communication. 
Example 3: Sara 
Sara (attending the third year of the university course in Mathematics), after having 
discovered the property by means of two numerical examples (1-2, 2-3), writes down: 

 “Two consecutive numbers are “made up” of an even number, divisible by 2 (=2n, n∈N) 
and an odd number (=2n+1, n∈N). Let’s suppose that 1 is not the only common divisor, 
that is ∃ k such that k/2n and k/2n+1. 2n= ka, a∈N  also in ka there must be the factor 
2  k=2c or a=2d; 2n+1= kb, b∈N  since k is common, k=2c, or b=2e. But only the 
product of two odd numbers is an odd number  I could not finish for a matter of time.” 

Sara seems to be aware of the way a proof should be presented (communicative 
rationality), of the importance of algebra as a proving tool and of the usefulness of 
the proof by contradiction in a case like this (two important strategic choices 
concerning teleological rationality). In particular, in the a posteriori interview she 
tells that she felt comfortable with the method of proof by contradiction, due to the 
fact that the uniqueness of 1 as a common divisor had to be proven.  
Even epistemic rationality works till the last part of her algebraic work, where she 
derives the incorrect conclusion that “k=2c, or b=2e”. However Sara gets lost after a 
few manipulations. Why did it happen? It is possible that in this case the arguments 
successfully used in the conjecturing phase (based on the distinction between odd and 
even, and thus on divisibility by 2) were misleading when applied in the proving 
phase. Incidentally, here we see that in some cases cognitive unity may act as a 
burden, if not controlled. Indeed, Sara could have reached the proof easily by 
substituting 2n=ka in the expression 2n+1=kb, but she didn’t take into consideration 
this strategy, she just focused on divisibility by two. Substituting 2n=ka in the 
expression 2n+1=kb would have required to move from the odd/even semantic-based 
argument to a pure algebraic manipulation, with a break in the continuity of the 
conjecturing and proving process. Probably, Sara got lost because, when orienting her 
proving process, she did not fully concentrate on the meaning of the expression “1 is 
not the only common divisor”, being still focused on the odd-even dichotomy. Even 
her mistake (when she derived “ k=2c, or b=2e” from the previous step) might have 
depended on her intention to get the absurd conclusion that 2n+1 would have been 
even (indeed she wrote: “But only the product of two odd numbers is an odd 
number”). Thus her failure might be interpreted in terms of one of her strategic 
choices not fitting with the aim of the proving process and not supported by a 
rigorous checking of inferences (i.e. in terms of a combined lack on the epistemic and 
teleological dimensions of rationality). 
Example 4: Valentina 
Valentina (attending the third year of the university course in Mathematics) chooses 
to carry out her exploration through an algebraic manipulation.  
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Given n∈N, if it is divisible by d∈N, then the remainder of the division of n by d is 0, 
that is to say n mod d is 0, that is to say in Zd n=0. When I consider n+1, reasoning in the 
same way I realize that dividing by d I get remainder 1, that is to say n+1=1 in Zd ∀d≠1. 
Then, the only common divisor for n and n+1 is 1. 

The exploration carried out by Valentina seems to be very useful: at the same time 
Valentina discovers the property and proves it, since the reasoning is already carried 
out in general terms. In the subsequent excerpt from the a posteriori interview, 
Valentina describes her process of conjecturing and proving. Valentina, being aware 
of the potentialities and limits of numerical examples, chooses to use algebra also in 
the exploration phase. We may say that the epistemic dimension (awareness of the 
limits of numerical examples) supports the teleological one (choice of algebra in the 
exploratory phase).  

Interviewer: Try to explain to a secondary school student how to find the property.  

Valentina: I think that… beh, I would start reasoning on data, on the hypotheses, and 
trying to see links between them, seeing what happens in various cases?  

Interviewer: do you mean using numerical examples?  

Valentina: maybe, even if this could be dangerous because induction does not always 
works, I mean, if we have limited cases, it is not a good method, it could 
even be absolutely wrong. But one could start from them; afterwards of 
course it is necessary to prove it in general… […] and just consider the 
hypothesis and try and think about them, from a general point of view, 
just…non numerical, but n, n+1, what they mean, and try exactly to think 
about them, what this data mean. 

Let us come back to Valentina's production. After the first phase, in which Valentina 
discovers and proves the property at the same time, Valentina writes down: “That 
were my fist ideas. Now I try to write them down in a better way”. This sentence 
leads to a phase of systematization of the final product.  

Given n∈ N, n and n+1 have only one common divisor, that is 1. In fact, ∀ d∈N such 
that d/n, d≠1, (n)=(0) in Zd, while (n+1)=(1) in Zd because (n+1)=(n)+(1)=(0)+(1)=(1), 
hence d∼/n+1. From the other side, ∀ p∈N such that p/n+1 and p≠1 I have that (n+1)=(0) 
in Zp and that (n)=(n+1-1)=(n+1)-(1)=(0)-(1)=(-1), hence p∼/n. On the contrary, 1/n and 
1/(n+1) because 1 divides any natural number. 

In the subsequent excerpt from the a posteriori interview, Valentina shows to put a 
great care both in the process and in the construction of the final product.  

Interviewer: ok. May I ask you why did you do a second part, in which you systematized 
what you wrote in the first part?  

Valentina: the first part was… I gave the idea, I started to write down, in a sort of draft, 
in order to make my ideas clear to myself, in order to formalize what I had 
in my mind. Afterwards, I tried to write in a more formal way, because the 
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first part was really… writing down ideas, while in the second part I tried to 
write in a more “mathematical” way, in clearer way.  

Interviewer: what do you mean by “more mathematical way”?   

Valentina: ehm… maybe using less words, trying to be more synthetic, and trying to use 
a mathematical language, then with more symbolic notation, rather than 
words.  

Interviewer: ok. But actually, as concerns the mathematical content… 

Valentina: it is the same. It is more or less the same. Yes, yes.  

We may note that Valentina is able to describe the features that, according to her, a 
mathematical proof should have. Nevertheless, Valentina is aware that the first part of 
her production is already acceptable, even if written in a less appropriate way. We 
may say that Valentina is able to manage the crucial dialectic between epistemic and 
communicative dimension: the second part is an amendment from the communicative 
point of view, but Valentina is fully aware of the fact that the communication is 
subordinated to the epistemic dimension, that is to say to the validity of the produced 
arguments.  

DISCUSSION: TOWARDS FURTHER DEVELOPMENTS 
The analysis of some examples had the double aim of showing the viability and 
usefulness of our adaptation of Habermas’ construct in the special case of 
conjecturing and proving, and of suggesting new research questions, in terms of this 
construct.  
As concerns the first aim, we have seen how success and failure may be read in terms 
of different intertwinings between the three components of rationality, or dominance, 
or lack on one of them. We may add that in the case of Valentina the communicative 
component is strictly depending on the epistemic one; furthermore, the teleological 
component intertwines with the epistemic one (choice and justification of the 
arguments) and with the communicative one (other readers will check the 
production). More generally the previous analyses suggest the opportunity of a closer 
investigation into the relationships between epistemic rationality, communicative 
rationality and teleological rationality in the case of proof and proving. Concerning 
this issue we note that in the historical development of mathematics, subjective 
evidence (or even mathematicians’ shared opinion of evidence) revealed to be 
fallacious in some cases, when new, more compelling communication rules obliged 
mathematicians to make some steps of reasoning (in particular, those concerning 
definitions: see Lakatos, 1976) fully explicit.  
From the educational point of view, while it is easy (for instance, by comparison with 
other solutions) to help Monica to make her reasoning more explicit (according to her 
need, as emerged from her comments), the intervention on Caterina is much more 
delicate: how to make her aware that the “mathematical rule” is not only a matter of 
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conventional, more complete communication, but also a matter of objective, cogent 
arguing involving the goal to achieve (an exhaustive argument)? And how to exploit 
texts that are complete (communicative aspect) in order to develop the need of an 
exhaustive argument (epistemic aspect), but at the same how to avoid that the 
necessities inherent in the communicative aspect prevail over the epistemic aspect (cf. 
Harel’s “ritual proof schemes”)? A direction for productive educational  
developments might consist in the elaboration of a suitable meta-mathematical 
discourse (see Morselli, 2007) for students (including an appropriate vocabulary), as 
well as in the choice of suitable tasks that reveal how intuitive evidence not 
developed into an explicit, detailed justification sometimes results in fallacious 
conclusions.  
These considerations raise another problem: Habermas’ construct offers only the 
possibility to evaluate a production process and its written or oral products, while in 
mathematics education we need also to consider a long term “enculturation” process. 
We are working now on the articulation between a cultural perspective to frame this 
process (see Morselli, 2007) and tools of analysis derived from Habermas’ 
elaboration on rationality. Indeed, it is within the cultural perspective outlined in the 
introduction that we think possible to deal with the approach to theorems and proving 
in school as a process of scientific “enculturation” consisting in the development of a 
special kind of rational behaviour, the one derived from Habermas, that is presented 
in this paper.  We are trying to refine the Vygotskian common concepts - scientific 
concepts dialectics in the case of theorems and proofs in order to get a frame where to 
situate the long term planning of the school approach to the culture of theorems. 
Habermas’ construct contributes to it by suggesting three interrelated dimensions 
along which to develop students’ skills in proving and students’ (and teachers’) 
awareness about crucial features of proving and proofs. The educational challenge 
consists in leading students to move from the ordinary argumentative practices of 
validation of statements in different domains to the highly sophisticated and 
culturally situated management of the components of a rational behaviour in the 
specific case of proving. 
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EXPERIMENTAL MATHEMATICS 
AND THE TEACHING AND LEARNING OF PROOF1 
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bartolini@unimore.it 
Aim of this paper is to discuss the role of experiments in mathematics for the teaching 
and learning of proof. I summarize some research findings from basic research 
studies and from teaching experiments. The examples comes from teaching 
experiments at all school levels on space and geometry by means of classical 
resources although some of the findings might be expanded to other subject areas 
and to ICT. They allow to frame the topic within the international literature on 
conjecture production and proof construction: they support the advantages of 
experimental approaches to the teaching and learning of proof and, at the same time, 
point at some critical points to be controlled in order to design appropriate teaching 
interventions. 

INTRODUCTION 
A growing interest is shown, at the international level, for the development of 
approaches to mathematics where the active participation of students is encouraged 
within a laboratory setting, with hands-on activities. The emphasis on experiments, 
manipulation and perception, measurement and examples is shared by the approaches 
developed  within ICT environments (both DGE and CAS) and within classical 
technologies (straightedge, compass and ancient instruments). This experimental 
approach, where exploration plays a major role, seems appealing for students, who 
quite often find the evidence offered by a particular experiment much more 
convincing than a rigorous proof (Jahnke, 2007) and are bored by the request to 
produce also mathematical arguments.  Hence, the appeal of experimental approach 
might be suspected of obstructing the development of mathematical styles of 
reasoning: some believe that hands-on activities are useful in either science centres or 
mathematical festivals, where popularization of mathematics is in the foreground, 
whilst are not useful and may be even risky in the mathematics classrooms, where the 
construction of mathematical meanings is at stake. In other words, many mathematics 
teachers are afraid that the need of mathematical proofs and of deductive arguments is 
put in a difficult position if experiments are given too much space in the mathematics 
classroom, at least in secondary schools. In the following, after a short review of 
literature, I present some effective experiments at all school levels where experiments 
and exploration have been combined with theoretical aims like conjecture production 
and proof construction. 

                                           
1 This study is jointly funded by the MIUR and the Università di Modena e Reggio Emilia (PRIN 2007B2M4EK on 
"Instruments and representations in the teaching and learning of mathematics: theory and practice") 
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SOME STUDIES CONCERNING PROVING IN THE MATHEMATICS 
CLASSROOM. 
The literature on proof and proving is large and encompass different aspects. In the 
recent book on "Theorems in School" edited by P. Boero (2007), the following 
aspects are highlighted: the historical and epistemological dimension; curricular 
choices, historical traditions and learning of proof (including two national case 
studies); the cognitive dimension of the relationships between argumentation and 
proof; the didactical dimension including both teacher education and classroom 
practices. In the chapter authored by Bartolini Bussi et al. (2007), a mathematical 
theorem – for didactical purposes - is conceived as a system of statement, proof and 
theory. All these three components are important: the theory as a system of shared 
principles (sometimes called postulates or axioms and definitions); the statement as 
the result of a conjecturing process, where exploration through experimental activity 
is in the foreground, the proof as a sophisticated argumentation that is, on the one 
hand, connected with the conjecturing process, and, on the other hand,  consistent 
with the reasoning styles of mathematicians (e. g. deduction from the accepted 
principles). This approach is consistent with Jahnke (2007), who speaks about ‘local 
theories’, i. e. small networks of theorems based on empirical evidence and claims: 
“There is no easy definition of the very term ‘‘proof’’ since this concept is dependent 
of the concept of a theory. If one speaks about proof one has to speak about theories, 
and most teachers are reluctant to speak with seventh graders about what a theory is”. 
And Arzarello (2007) adds: "A statement B can be a theorem only relative to some 
theory; it is senseless to say that it is a theorem in itself: even a proposition like 
"2+2=4" is a theorem in a theory A (e. g. some fragments of arithmetic)". 
In the above sense, it is possible to speak about theorems also within primary school, 
provided that the theories are “germ theories”, drawing on empirical evidence, with 
the expansive potential to capture more and more principles. Germ theories, with 
principles constructed on empirical evidence, are crucial up to 8th  grade; later, 
accordingly to curriculum, the reference to more and more structured mathematical 
theories is possible. So, for instance, in the teaching experiments below, the reference 
theory from grade 11th on is expected to be elementary geometry (either 2D or  3D) 
with some additional parts concerning either isometries or conic sections. 
The links between argumentation and proof from a cognitive perspective have been 
carefully analysed by Pedemonte (2007) who devoted her doctoral thesis to the 
development of the idea of cognitive unity, meant as a kind of continuity between the 
production of a conjecture and the construction of the proof. Experimental research 
shows that proof is more ‘accessible’ to students if an argumentation activity is 
developed for the production of a conjecture: in fact this argumentation can be used 
by the student in the construction of proof by organising in a logical chain some of 
the previously produced arguments. These studies may have important consequences 
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on the teaching and learning of proof: to explain why rote learning of ready made 
proofs is not successful for most students; to select suitable problems, which might 
foster conjecture production before proof construction; to understand why in some 
cases proving remains difficult in spite of the previous conjecturing process. 
In the following sections I shall quote very quickly some experiments where 
conjecturing and proving were promoted, at different school levels and with different 
organization. 

EXAMPLES FROM LONG TERM TEACHING EXPERIMENTS 
In the attached table, some paradigmatic examples are quoted from long term 
teaching experiments developed as coordinated studies by different research teams. 
All the tasks concern a conjecture production before proving construction. They 
appear, however, different from each other. 
Three tasks (tasks 1,2,3) concern individual activity, to be solved in paper and pencil 
setting; three tasks (tasks 4,5,6) concern small group activity, to be solved in writing 
after the exploration of a material object. The exploration is free in the case of 
sunshadows (task 4), whilst it is guided by sheets or by the teacher himself in the two 
cases from secondary school (tasks 5 and 6). The tasks 1 and 3 are construction 
problems: they require to produce a drawing and to justify the validity of the used 
method. The expressions "Explain ....." mean, in a language accessible for young 
learners, to justify the drawing process with reference to a shared (germ) theory. The 
task 2, on the contrary, seems to be given in a discursive way. Yet the explanation 
requirement with reference to a shared (germ) theory is implicit, as a part of the tacit 
rules shared within the classroom involved in these experiments. In the last three 
tasks proof is not explicitly required. Actually the focus is on the production of the 
conjecture. This is an intentional choice, because the problems are quite demanding. 
The tasks 4 and 6 concerns 3D geometry, that is usually not well mastered by 
secondary school students. The task 5 is difficult: the conjecture concerns a rotation 
around the lower point (O) in the Fig. 3. Actually to recognize it, it is necessary to 
"see" two line segments (OP and OP') that do not exist, to realize that they are always 
equal and, more generally, to be able to "see" invariants during the motion. The 
teachers, for the tasks 4, 5 and 6 had designed, according to the shared theoretical 
framework, an intermediate step where to collect and discuss the conjectures, before 
entering the proving process.  In the task 4, students are explicitly requested to 
produce a general statement. This expression was used in those classrooms to foster 
the production of statements with universal quantifiers (all, always, and so on) and 
hopefully in conditional form (if ... then) to pave the way towards the construction of 
a proof with specified hypothesis and thesis. 
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Gr. GERM THEORIES 
(REF) 

CONJECTURES - PROBLEMS 
THE TASK - TO BE SOLVED IN WRITING 

SETTING 
MATERIAL 

1.  
Gr.2 - 

8 

The invariance of 
alignment in 
perspective drawing 
(Bartolini Bussi, 
1996) 

The centre of a table drawn in central perspective. 
Draw the small ball in the centre of the table. You 
can use instruments. Explain your reasoning. 

Individual 
task 
(Fig. 1) 

2.  
Gr.2 - 

8 

Motions of geared 
wheels (Bartolini 
Bussi et al., 1999) 

The motion of trains of toothed wheels.  
What about three wheels geared with each other? 

Individual 
task 
No material 

3.  
Gr.4 - 

8 

The equality of the 
distance of the 
centres of two 
tangent circles to the 
sum of radii 
(Bartolini Bussi et 
al., 2007) 

The drawing of a circle tangent to two given 
circles. 
Draw a circle with a radius of 4 cm tangent to the 
given circles (radii 3 and 2). Explain carefully the 
method. Explain carefully why it works. 

Individual 
task (Fig. 2) 

4.  
Gr.6 - 

8 

Mathematical model 
of sunshadows.  
Basic properties of 
lines, planes, 
parallelism and 
perpendicularity (3D 
geometry) (Boero et 
al., 2007) 

The parallelism of sunshadows of sticks. 
In recent years we observed that the shadowsof 
two vertical sticks on the horizontal ground are 
always parallel. What can be said of the 
parallelism of shadows in the case of a vertical 
stick and of an oblique stick? Can shadows be 
parallel? At times? When? Always? Never? 
Formulate your conjecture as a general statement. 

Small group  
work.  
Pens, pencils, 
notebooks, 
rulers, to 
reify lines 
and planes 

5.  
Gr.11 

Elementary 
geometry (3D 
geometry). 
Definitions and 
properties of 
isometries. 
(Bartolini Bussi & 
Pergola, 1996) 

The isometry (rotation) produced, as a 
correspondence, by a pantograph. After a guided 
exploration of the pantograph. 
If P and P' are two writing points, draw two 
corresponding figures. Which are the common 
properties of the two figure? Can they be 
superimposed? Does it exist a simple motion 
which superimposes them? Describe it. 

Small group 
work. 
A pantograph 
with graphite 
leads in P and 
P' 
(Fig. 3). 

6.  
Gr.12 

Elementary 
geometry (3D 
geometry).  
Metric definition of 
conics. Equations of 
conics 
(Bartolini Bussi, 
2005) 
 

The conic obtained by cutting a cone in a suitable 
way.The task is given orally by the teacher. 
You have to obtain an important property of 
parabola [...]. As you see, [the parabola] is in a 
3D space, on the surface of the cone [...]. you 
have to discover the relationship between the 
green line segment [AE in the Fig. 4] and this line 
segment [EB  in the Fig. 4]. 

Small group 
work. 
A 3D model 
of a cone 
with a normal 
cutting plane  
(Fig. 4). 

Table 1. Some paradigmatic examples. 
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Figure 1. The small ball and the table Figure 2. The two circles and the tangent 
circle 

 
 

Figure 3. The pantograph Figure 4. The parabola 

 
At all ages, the dynamic exploration of a suitable problem situation has a crucial role 
both at the stage of conjecture production and during the proof construction. In 
particular, as to the conjecture production "the conditionality of the statement can be 
the product of a dynamic exploration of the problem situation during which the 
identification of a special regularity leads to a temporal section of the exploration 
process, which will be subsequently detached from it and then "crystal" from a logic 
point of view ('if .... then')"; and as to the proof construction, "for a statement 
expressing a sufficient condition ('if ... then'), proof can be the product of the dynamic 
exploration of the particular situation identified by the hypothesis" (Boero et al, 2007, 
p. 249 ff.). This phenomenon has been observed by Boero et al. (2007) for the task 4 
about sunshadows, by Bartolini Bussi & Pergola for the task 5 about the pantograph 
(Bartolini Bussi & Pergola, 1996) and in other ongoing experiments on either 
transformation or curve drawing devices. As concrete manipulation of materials is not 
spontaneous and guaranteed with elder students, who had already spent years to learn 
(or better to be taught) that mathematics is just a mental activity, the teacher has to 
foster it in a very coercive way: concrete exploration in demanding tasks is quite 
often the only effective way to promote dynamic exploration. Younger pupils, on the 
contrary, were accustomed to explore and to evoke exploration when no concrete 
object was available. 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 225



  
THE PROCESSES 
The six situations above, although in different modes, have been designed to foster 
cognitive unity between the conjecturing and the proving phases. I shall not try to 
summarize here the observed processes concerning them all: they are complex, long 
standing, different (also for students' age) and all available in the international 
literature. Rather I shall illustrate another simple case of conjecture production and 
proof construction at secondary school level (from grade 10 on, according on the 
curriculum), concerning a curve drawing device. I shall narrate the stories of dynamic 
exploration that show up when secondary school students are given this curve 
drawing device to foster reasoning, conjecturing and proving (another example is 
discussed by Bartolini Bussi, in press).  
I shall collect some evidences from the field notes of the exploration sessions in both 
school classrooms and the Laboratory of mathematical Machines 
(www.mmlab.unimore.it), to highlight the patterns that emerge. The two parts of the 
fig. 5 show (on the left) a drawing from the XVII century treatise by van Schooten 
(1657, p. 339) and (on the right) a photo of the brass copy reconstructed on a wood 
platform (40 cm x 40 cm) by the team of the Laboratory of Mathematical Machines at 
the Department of Mathematics of Modena, to be used with secondary and university 
students. The students are supposed to know some early properties of conics, e.g. the 
string and pencil drawing of an ellipse (together with the ellipse metric definition).                   

 

 

 

 

 

 

Fig. 5a and 5b: Van Schooten’s Ellipsograph 

There are several ways to explore the artefact (in order to produce a conjecture and to 
construct a proof of the conjecture) that span from strongly to weakly guided ones. In 
general, strongly guided exploration is suitable to the short term sessions (at most 2 
hours, including the introduction and the conclusion of the hands on activity, 
Maschietto & Martignone, in press) which take place when a classroom come to the 
Laboratory, whilst weakly guided exploration is suitable to classroom activity, when 
the teacher plans to spend more time on the same topic. Actually with a weak guide, 
the time may expand, not matching the time constraints of a short visit to the 
Laboratory. 
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A) Strongly guided exploration. Students are given a worksheet where a layout of the 
artefact is drawn with coding letters (examples: http://www.mmlab.unimore.it/on-
line/Home/VisitealLaboratorio/Materiale/articolo10005163.html) and are suggested 
to identify the fixed points, the trajectories of the moving ponts (e.g. G and F), the 
length of the bars, and so on. After this exploration, they are asked to conjecture the 
name (if any) of the trajectory of the point E (intersection of GH and FI in the fig. 5a) 
tracing it with a graphite lead on the wooden platform. The drawing is soon 
recognized as an arch of an ellipse and the conjecture is produced. Then the process 
of proof construction is to be started. We shall comment it later. 
B) Weakly guided exploration: students are given the artefact and the information 
that it may draw curves; they are given the burden to produce conjectures and to 
prove them. A graphite lead to trace the trajectory of points is available with no 
special emphasis on this experiment: they can decide to use it or not. The artefact is 
without coding letters (Fig. 5b) and actually the need of coding may be one of the 
outcomes of the exploration to understand each other (Bartolini Bussi & pergola, 
1996). When the students explore for some minutes the motion without drawing the 
arch, they may recognize a well known (although hidden) figure. HIGF (fig. 5a) is an 
isosceles trapezium with diagonals (HG and FI) and sides (FG and HI) given by brass 
bars, whilst the bases FH and GI have a variable length and are not reified by bars. 
The figure is not trivial to be noticed, as the two bases are not visible. Usually the 
students rotate G around H and observe the figure. Sometimes they seem fascinated 
by this rotation. They stay silent for minutes. They try to look at the artefact from 
different perspectives, also standing and miving around the table. They assume 
strange postures, twist their necks to follow the motion, point at the bars and follow 
the motion with the finger in the air, move the bars  forward and backward to look for 
invariants and test them stopping the continuos process. In the small group work, 
sometime a conflict arises, when the speed of the motion controlled by the actor does 
not match the exploration planned by the observer. At one point they "see" the 
trapezium and notice that EG = EI and FE = FH. When a student has "seen" the 
trapezium, this figure is immediately shared with others. When the trajectory of E is 
eventually drawn they have at disposal what they need to link the conjecture with the 
metric property of ellipse.  
I have described two 'antipodal' exploration processes with a lot of mixed cases in 
between. The weakly guided one is enjoyed by experts. The strongly guided one suits 
novices' needs to avoid frustration: it aims at encouraging to handle the artefact and at 
scaffolding the process. In both cases the demanding part is not the conjecture 
production, especially when drawing by the graphite lead is encouraged. Actually, as 
soon as the user draws the curve, the conjecture springs up, because only a limited set 
of curves is known by students: it is neither a circle nor a parabola nor an hyperbola, 
hence it must be an ellipse. The demanding task in this case concerns proof 
construction. This situation is different from the one of the tasks 4 and 5 above, 
where also conjecturing is really demanding. 
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In the strongly guided exploration, the worksheet suggests some ways to explore the 
properties of the artefact. Yet, in order to notice the properties, measuring by rulers is 
suggested. Measuring requires to stop the motion and to transform the experience of 
continuous motion into the observation of a finite set of frames. The focus risks to be 
on measuring parts of still figures. 
In the weakly guided exploration, the focus shifts on the observation of dynamically 
changing shapes and their invariants. The students have to move and observe. Their 
process seems time wasting and not effective and has to be monitored by a walking 
teacher who moves from one group to another showing how to explore the artefact, 
with changing speeds and, maybe, no word. The initial 'weak' guide seems to require 
a stronger teacher's control. The students do not need (and usually do not wish) to 
measure bars by a ruler. As soon as they notice some invariants, they use their hands: 
they pretend to pick up the line segment EG between forefinger and thumb and to 
rotate it until it matches EI. They repeat the action on the pair FE and FH. Silent 
gestures seem to be  enough to convince them. Maybe words and deductive chains 
are missing. Writing and justifying (by symmetry, for instance) the equality: 

HE + EI = HE + EG = HG 
that represents the metric property of ellipse with foci H and I is the boring 
counterpart of a relationships discovered by making "infinitely many" experiments, 
during the continuous motion of G around H. 
In both cases of exploration, if the drawing is produced too early, the attention is 
focused on the final result of drawing rather than on the dynamical process of 
drawing. I shall consider this later. 
There is a difference between the strongly guided exploration, that foster the 
production of statements concerning pointwise construction of the trajectory and the 
weakly guided exploration, that foster the production of statements  concerning the 
global construction of the trajectory by a continuous motion. This difference is 
epistemological and mirrors the ancient pointwise construction of curves and the 
modern (as from the 17th century) construction of curves by a continuous motion of a 
machine. In the pointwise construction, there is a gap between the statements 
concerning a particular point E obtained when the artefact is in a given position and 
the generalization to a whichever point of the trajectory. This gap might obstruct the 
proof construction, requiring additional arguments. 
The situation is different, yet recalls the one analysed by Pedemonte (2007) and 
concerning the construction of proofs by mathematical induction. She analysed the 
sum of the interior angles of an n-sided convex polygon, but the reasoning might be 
applied to many cases of induction. The well known formula: (n - 2) times 180°, may 
be conjectured in at least two ways, that draws on experimental activity and that are 
called: result pattern generalization (the cases of n-sided convex polygons are 
analysed separately, adding the measures of the interior angles, for n=3, n=4, n=5 and 
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so on); process pattern generalization (from an (n-1)-sided convex polygon, for n=3, 
4, 5 and so on, a new n-sided convex polygon is obtained by the juxtaposition of a 
triangle, whose sum is 180°). 
The result pattern generalization does not help much to construct the proof by 
mathematical induction, because the argumentations used have no counterpart in the 
proof. On the contrary the process pattern generalisation paves the way towards the 
proof, showing how it is possible to shift from n-1 to n. Pedemonte (2007) says that 
in the second case there is a structural continuity between the conjecture production 
(by argumentation) and proof construction (by induction). Students may succeed in 
proving the conjecture also after a result pattern generalization, but they must 
reconstruct a suitable argumentation that links the conjecture to the proving process. 
The shift to the analytic frame suggested in the Laboratory worksheets is an 
intentional break of the structural continuity, because the analytic frame is supposed 
to be the familiar context where conics are studied in secondary schools. 

DISCUSSION 
Some conclusions may be drawn from the quoted examples and research outcomes. 
First, there are good reasons to believe that conjecturing through exploration before 
proving might be very useful. Yet, when conjecture production is too fast, it might 
offer no element to be used in the proving process. Hence it is useful to look for 
strategies that slow down the conjecture production and encourage effective 
exploration of the problem. The time spent in conjecture production is not wasted and 
may be recovered in the proof construction. Second, it is not possible to give general 
rules about which exploration is effective in the conjecture production. In the last 
example, I have contrasted strongly guided and weakly guided explorations, which 
are only two examples of a very rich set of possibilities. What to choose in a 
classroom situation? The teacher's decision has to be contextualized and depends on a 
lot of issues: the time constraints, the curriculum, the students' qualifications and so 
on. This last issue is related to teacher education. The teacher's knowledge in order to 
design and to manage in the mathematics classroom this kind of activities is complex 
and does not fit in the space of this paper. A systemic approach to teacher education 
is now in the foreground in the literature on didactics of mathematics. 
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CONJECTURING AND PROVING IN DYNAMIC GEOMETRY: 
THE ELABORATION OF SOME RESEARCH HYPOTHESES 
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Research has shown that the tools provided by dynamic geometry systems impact 
students’ approach to investigating open problems in Euclidean geometry. We 
particularly focus on types of processes that might be induced by certain uses of tools 
available in Cabri. Building on the work of Arzarello (Arzarello et al., 1998) and 
Olivero (1999, 2002), we have conceived a model describing some cognitive 
processes that may occur during the production of conjectures and proofs in a 
dynamic geometry environment and that might be related to the use of specific 
dragging schemes. Moreover, we hypothesize that such cognitive processes could be 
induced by introducing students to the use of dragging schemes. 
Key words: conjecturing, dynamic geometry, dragging schemes, abductive processes, 
cognitive unity 

INTRODUCTION 
The contribution of a DGE to students’ reasoning and proving is particularly evident 
during the investigation of open problems, since this process involves making 
conjectures (Mariotti, 2006). Instead of a static-conjecture built in a paper-and-pencil 
environment in a DGE a dynamic-conjecture [1] can be developed. Moreover, in a 
DGE, the invariant geometrical properties of a construction, which lead to 
conjectures, can easily be grasped. An interesting question is: what kind of support 
can a DGE provide first during the development of a conjecture and then during the 
production of a proof? The answer seems to depend on the nature of the problem. On 
one hand the ease to immediately grasp certain invariants seems to inhibit some 
argumentation processes that lead to finding useful elements for the construction of a 
proof. On the other hand, research has shown that a DGE can foster the learners’ 
constructions and ways of thinking, and that it can help overcome some cognitive 
difficulties that students encounter with conjecturing and proving (e.g. Noss & 
Hoyles, 1996; Mariotti, 2002; De Villiers, 2004). 
Building on the work of Olivero and Arzarello (Olivero, 1999; Arzarello et al., 1998), 
we have conceived a model of cognitive processes that can occur during the 
conjecturing stage of open problem investigations in a DGE. Through a qualitative 
study, our final goal is to give a detailed description of some cognitive processes 
related to conjecturing and proving, and of how a DGE might foster such processes, 
thus providing a base for further research and for the development of new curricular 
activities.  
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ORIGIN OF OUR HYPOTHESES 
In the following paragraphs we will briefly outline the theoretical framework which 
the ideas are embedded in. 
Semiotic Mediation and Semiotic Potential of an Artifact 
A DGE like Cabri, which contains “objects” such as points, lines, circles, and ways to 
“manipulate” the objects, is a microworld (Papert, 1980; Balacheff & Kaput, 1996) 
built to resemble the mathematical world of Euclidean geometry. A key aspect of 
microworlds in mathematics education is that the “objects” included offer the 
opportunity for the user to experiment directly with the “mathematical objects” 
(Mariotti, 2005, 2006), because the logical reasoning behind the objects in the 
microworld is designed to be the same as that behind the real mathematical objects 
that they represent. 
Recent research has developed the ideas of tool of semiotic mediation and of semiotic 
potential of an artifact:  

“...any artifact will be referred to as a tool of semiotic mediation as long as it is (or 
it is conceived to be) intentionally used by the teacher to mediate a mathematical 
content through a designed didactical intervention” (Bartolini Bussi & Mariotti, 
2008).  

Computers in general, and a DGE in particular, are considered to be tools of semiotic 
mediation (Mariotti, 2006; Bartolini Bussi & Mariotti, 2008). However, the 
mediation can occur successfully only if their semiotic potential is exploited. 
Therefore it becomes necessary to study ways that foster exploitation of such 
potential. This was a main goal we had in mind when we started developing our 
hypotheses. 
A First Theoretical Model and the Dragging Schemes 
The dragging tool can be activated by the user, through the mouse. It can determine 
the motion of different objects in fundamentally two ways: direct motion, and indirect 
motion. The direct motion of a base-element (for instance a point), that is an element 
from which the construction originates, represents the variation of this element in the 
plane. The indirect motion of an element occurs when a construction has been 
accomplished. In this case dragging the base-points will determine the motion of the 
new elements obtained through the construction. The use of dragging allows one to 
feel “motion dependency”, which can be interpreted in terms of logical dependency 
within the geometrical context (Mariotti, 2002, p. 716). Starting from these 
phenomenological perspectives, a refined analysis of the dragging tool can highlight 
its semiotic potential that can be exploited by the teacher in school practice.  
The use of Cabri in the generation of conjectures is based on the interpretation of the 
dragging function in terms of logical control. In other words, the subject has to be 
capable of transforming perceptual data into a conditional relationship between 
hypothesis and thesis. The consciousness of the fact that the dragging process may 
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reveal a relationship between geometric properties embedded in the Cabri figure 
directs the way of transforming and observing the screen image (Talmon & 
Yerushalmy, 2004).  At the same time, that consciousness is needed to exploit some 
of the facilities offered by the software, like the ‘locus of points’ or ‘point on object’. 
Such a consciousness is strictly related to the possibility of exploiting the heuristic 
potential of a DGE (Mariotti, 2006). 
The theoretical model presented by Olivero, Arzarello, Paola, and Robutti (Olivero, 
2000; Arzarello, et al., 1998, 2002) addresses expert solvers’ production of 
conjectures, and how abduction marks the transition from the conjecturing to the 
proving phase, when a passage from “ascending control” to “descending control” 
occurs. Abduction guides the transition, in that it seems to be key in allowing solvers 
to write conjectures in a logical 'if…then' form, a statement which is now ready to be 
proved. Arzarello et al.’s analysis of subjects’ spontaneous development of dragging 
modalities led to the determination of a classification (Arzarello et al., 2002), which 
researchers have referred to as the “dragging schemes” (Olivero, 2002). 
Abduction 
In the previous section, the notion of abductive processes is mentioned. Peirce was 
the first to introduce the notion of abductive inference, and compare it with other 
inferences, such as deduction and induction. According to Peirce, 

“abduction looks at facts and looks for a theory to explain them, but it can only say 
a "might be", because it has a probabilistic nature. The general form of an 
abduction is: a fact A is observed; if C was true, then A would certainly be true; so, 
it is reasonable to assume C is true” (Peirce, 1960, p. 372). 

Recently, researchers have renewed interest in abduction. In particular, Magnani 
defines abduction in a way that we find quite useful. According to him abduction is, 

“the process of inferring certain facts and/or laws and hypotheses that render some 
sentences plausible, that explain or discover some (eventually new) phenomenon 
or observation; it is the process of reasoning in which explanatory hypotheses are 
formed and evaluated” (Magnani, 2001, pp. 17-18). 

Moreover, the following distinction of direct abduction versus creative abduction will 
be useful for our study. Direct abduction is when the “rule” used in the abductive 
process consists of a theorem that is already known to the student; while creative 
abduction is when the “rule” of the abduction consists of something new, that is not 
previously known by the student (see also Magnani, 2001; Thagard, 2006). Other 
researchers have studied various uses of abduction in mathematics education (Reid, 
2003), and abductive processes in relation to transformational reasoning (Simon, 
1996; Cifarelli, 1999; Ferrando, 2006). The basic idea is that an abductive inference 
may serve to organize, reorganize and transform problem solvers’ actions (Cifarelli, 
1999). Abductive processes have also been observed by Arzarello et al. (1998) during 
the development of conjectures when students were using the dragging schemes, as 
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mentioned above. In the next section we describe how our work builds on that of 
Arzarello et al., trying to study in detail the processes that occur during the 
conjecturing stage in open problem investigations, how these processes may be 
fostered, and what they might lead to during the phase of proof production. 

OUR HYPOTHESES 
While Olivero, Arzarello, Paola, and Robutti (Olivero, 2000; Arzarello, et al., 2002) 
focused their attention on the subjects’ use of the dragging schemes during the 
development of a conjecture, we concentrate on the abductive processes that may be 
induced by certain dragging schemes. Arzarello et al. observed that abduction occurs 
during solvers’ use of the dragging schemes. Moreover, they claim that the 
production of conjectures is based on abductive processes. Thus, it seems that the use 
of certain dragging schemes may foster abductive processes, and, consequently, the 
production of conjectures. To some extent, the dragging schemes can be seen as 
cognitive artefacts (Norman,1991).  We would like to investigate the relationship 
between the use of the dragging schemes and the development of abductive 
processes. In order to accomplish this investigation we need to induce solvers’ use of 
dragging schemes, so we decided to introduce students to the specific dragging 
strategies.  This way we seem to be able to induce the use of specific dragging 
schemes for the solution of open problems and, consequently, the appearance of 
abductive processes.   
Below is a hypothesis of what might occur as a solver, who has been introduced to 
the dragging schemes, approaches an open problem in a DGE. 

• Step 1: conscious use of different dragging strategies to investigate the 
situation – after wandering dragging, in particular dummy locus dragging (or 
lieu muet dragging) to maintain a geometrical property of the figure 
(intentionally induced invariance, or III), and use of the trace tool. 

• Step 2: consciousness of the locus (lieu) that appears through lieu muet 
dragging – this marks a shift in control from ascending to descending – and 
description of a second invariance (invariance observed during dragging, or 
IOD). 

• Step 3: hypothesis of a conditional link between the III and the IOD, to explain 
the situation. 

• Other forms of dragging may be performed: line dragging, linked dragging, 
and the dragging test. 

• Step 4: formulation of a conjecture of the form ‘if IOD then III’ (product of the 
abduction). 

• Step 5: production of a mathematical proof of the conjecture (or attempt of it). 
Potential re-formulation of the conjecture. 
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The Notion of Path and an Example 
Another hypothesis that we advance is that there is a key element, the path, that plays 
a fundamental role in the abductive process. In this section, we will try to introduce 
the concept of path and its significance for the model.  
One of the dragging schemes, lieu muet dragging, involves dragging a point with the 
intention of maintaining a given property of the figure (which becomes the III). Some 
regularity may appear during this dragging stage, leading to the discovery of 
particular constraints that the dragged point has to respect (expressed in the IOD). 
Because of their origin from dragging, such constraints may be interpreted as the 
property of the point to belong to a particular figure. In mathematical terminology, 
that of course may not be consistent with students’ way of thinking, we can speak of 
a hidden locus (lieu muet). Such locus can be made explicit by the trace tool, through 
which it appears on the screen (lieu parlante). During lieu muet dragging the solver 
notices regularities of the point’s movement and conceptualizes them as leading to an 
explicit object. We refer to this object as a path when the solver gains consciousness 
of it, as generated through dragging, and consciousness of its property that if the 
dragged point is on it, a geometrical property of the Cabri figure is maintained. In this 
sense a path is the reification (Sfard, 1991) of a lieu that can now be used in a 
“descending control” mode (Arzarello et al., 2002). Zooming into Step 2, above, we 
observe that this is the point of the process in which the notion of path arises, and we 
can add a Step 2bis to indicate the (potential) geometric interpretation of the path, in 
order to (potentially, after Step 3) perform line dragging, linked dragging, and the 
dragging test along such path. 
We believe that the path plays an important role in relation to the abductive processes 
that can be used to develop conjectures in a DGE. In particular, recognition of a path 
can act as a bridge, fostering the formulation of a conjecture. In fact, the path can be 
used during the abductive processes, but then it may no longer appear (or it may 
appear in a different form) in the formulation of the conjecture. Below, we zoom into 
a way in which abductive processes may take place and lead to a derived conjecture, 
and then we provide an example of the model in use during an activity. 

• Intentionally Induced Invariance (III): the solver tries to maintain a certain 
geometrical property. 

• Invariance Observed during Dragging (IOD): the solver notices that when 
he/she drags a certain basic point X along the path, the III seems to be 
maintained.  

• Product of abductive process: it becomes reasonable for the solver to assume 
that if point X lies on the path (description of the IOD), the III is true. 

If the path is recognized as a particular geometrical figure F, the derived conjecture 
may be: if X lies on F, the III is true.  
Activity: Draw three points A, M, K, then construct point B as the symmetric image 
of A with respect to M, and point C as the symmetric image of A with respect to K. 
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Construct point D as the symmetric image of B with respect to K. Drag M and make 
conjectures about ABCD. Then try to prove your conjectures. 

A Response [2]: Through wandering 
dragging solvers may notice that 
ABCD can become different types of 
parallelograms. In particular, they    
might notice that in some cases 
ABCD seems to be a rectangle (they 
can choose this as the III). With the 
intention of maintaining this property 
as an invariant, solvers might mark 
some configurations of M for which 
this seems to be true, and through the 
trace tool, try to drag maintaining the 
property, as shown in Fig 1. This can 
lead to noticing some regularity (IOD) 
in the movement of M, which might 
lead to awareness of an object along 
which to drag (the circle of diameter 
AK, potentially not yet recognized as 
“a circle”). At this point, when such 
awareness arises, we can speak of  
path with respect to the regularity of 
the movement of M.  
If solvers recognize the path to be a 
familiar geometrical object, like in 
this case, they might be inclined to 
constructing it, as shown in Fig 2, and 
dragging along it (line dragging), or 
even linking the free point to it (linked 
dragging) and performing a dragging 
test. Through this abductive process, 
as an attempt at explaining the 
experienced situation, as Magnani 
describes (Magnani, 2001), solvers 

may hypothesize a conditional link between the III and IOD. At this point the 
abduction leads to a hypothesis of the form ‘if IOD then III’, leading to a conjecture 
like the following: “If M is on the circle of diameter AK, then ABCD is a rectangle,” 
or (if they discover or derive a property of the base-points which is equivalent to M 
lying on the circle): “If AKM is a right triangle, ABCD is a rectangle.” 
In the case of the first conjecture, here is how we hypothesize the abduction (creative 
abduction) might go. 

Fig 1: Dragging with the trace tool can 
help a student notice a locus (or lieu). 

Fig 2: M is being dragged along the 
path (line dragging). 
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• III: ABCD is a rectangle. 
• IOD: when M dragged along the path, fact A seems to be true. The path is a 

known geometric figure: the circle of diameter AK. 
• Product of the abduction: If point M lies on the circle of diameter AK, ABCD 

is a rectangle. 
This product of the abduction coincides with a formulation of a conjecture. However, 
solvers might also perform a second abduction (this time a direct abduction) linking 
the property “M belongs to the circle” to a property of the base-points of the 
construction. In this case this may lead to a formulation of the conjecture like: “If the 
triangle AMK is a right triangle (with ∠AMK as the right angle), ABCD is a 
rectangle.” In this case the further elaboration of  the geometrical properties 
recognized in the path will have led to a key idea (Raman, 2003) of a possible proof. 
In particular, this idea together with that of triangles AMK and ABC being similar, 
should be enough for students to successfully provide a proof to their conjecture. In 
this sense, abductive processes involving the notion of path (as a reified concept the 
solver is aware of) might be a step towards the achievement of cognitive unity [3] 
(Boero, Garuti, & Mariotti, 1996; Pedemonte, 2003). 
 
Some Research Questions 
Given the hypotheses outlined above, we propose some general questions for a 
research study. First, it would be interesting to investigate what forms of reasoning 
(abductive, deductive, ...) are actually used (and how) during the conjecturing stage 
of an open problem in a DGE. In particular, if subjects use lieu muet dragging, what 
is the role of the path? Can our model be confirmed (even in a potentially modified 
version)? Second, how does a DGE contribute to the development of the proof of a 
conjecture? It would be interesting to compare the dragging schemes (if any) used 
during this stage to those used during the conjecturing stage. It might also be 
insightful to investigate the forms of reasoning used during the conjecturing stage in 
the cases in which subjects do produce a proof. Finally, it would be interesting to 
study whether it is possible to detect a relationship between the forms of reasoning 
analyzed, and, if possible, to describe such a relationship. 

EXPERIMENTAL DESIGN AND POTENTIAL CONCLUSIONS 
We propose to structure the study in the following general way: by a selection of the 
subjects, the introduction of the subjects to the dragging schemes, finally open-
problem-activity-based interviews on pairs of students. We will use results from the 
pilot study to refine the model, the research questions, and the activities proposed 
during the interviews. In the results of this study we hope to be able to include: a 
description of some cognitive processes that occur during the conjecturing stage of 
the investigation of open problems in a DGE; and validation of the model (or of a 
revised version of it), or motivations for rejecting it as a useful descriptive model. 
Therefore, this study should help gain better comprehension of specific cognitive 
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processes. In particular, we hope to gain some insight into how abductive processes 
may occur, whether they can be fostered by preliminary introduction of the dragging 
schemes, and how the notion of path may foster the formulation of conjectures. 
A secondary objective is to gain insight into how a DGE contributes to the 
development of proofs. The activities proposed during the interviews will all be open 
problems in which students are asked to make conjectures and then try to prove them. 
The path might also play a role in the generation of a proof, in that it may be a part of 
the “reorganization and transformation” that occurs with abductive reasoning 
(Cifarelli, 1999). This might very well be new powerful tool for the solver to use in a 
potential proof (or solution of the problem) as an aid to gain cognitive unity, as 
mentioned above. In this case, it would be reasonable to hypothesize that if the 
dragging schemes were to foster abductive processes, and abductive processes were 
to foster cognitive unity, then introducing the tool of the dragging schemes to the 
students a priori might accelerate and facilitate the entire process of making a 
conjecture and reaching a proof for it. 
If our hypotheses are confirmed, and the dragging schemes and the notion of path do 
contribute positively to the formulation of conjectures (and potentially of proofs), we 
will recognize them as tools of semiotic mediation, with a semiotic potential that 
could be exploited by teachers. In this case, teaching experiments, which introduce 
the dragging schemes at a class-level, should be carried out, in order to further 
investigate how the teacher can exploit the semiotic potential of the dragging 
schemes in the classroom practice. Later, large-scale quantitative research on the 
induction of cognitive processes through introduction of the dragging schemes could 
be conducted, with the didactic objective of implementing the teaching of the 
dragging schemes in school curricula.  

NOTES 
1. With “static” and “dynamic” referred to conjecture, here we intend to emphasize the nature of the conjecture’s origin. 

2. This is only one of the many possible responses leading to this specific conjecture. Of course different students might 
reach this conjecture in different ways. Moreover there are many different conjectures that students can formulate by 
focusing their attention on different geometric invariants (in this case, having ABCD be a kite, a rhombus, or a square). 

3. Boero et al. introduce cognitive unity as follows: “During the production of the conjecture, the student progressively 
works out his/her statement through an intense argumentative activity functionally intermingled with the justification of 
the plausibility of his/her choices: during the subsequent proving stage, the student links up with his process in a 
coherent way, organizing some of the justifications (“arguments”) produced during the construction of the statement 
according to a logical chain” (Boero, Garuti, & Mariotti, 1996, p.113). 
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THE ALGEBRAIC MANIPULATOR OF ALNUSET:  
A TOOL TO PROVE 

Bettina Pedemonte  
Istituto per le Tecnologie Didattiche – CNR Genova 

This report is devoted to analyzing the influence of an algebraic system, the 
Algebraic Manipulator of ALNUSET on students’ construction of proof in proving 
equivalence among expressions. Results of an experiment, carried out with students 
at the second year of Upper Secondary school, are presented to show in which way 
this manipulator can be used in the educational practice to enhance the teaching and 
learning of algebraic proof. 

INTRODUCTION 
As underlined in the introduction to the special issue of ZDM on didactical and 
epistemological perspectives on mathematical proof (Mariotti and Balacheff, 2008), 
research work about mathematical proof has been growing in the last decade. 
Different perspectives (historical and epistemological issues, cognitive ones, 
didactical transposition of mathematical proof into the classroom) are taken into 
account framing the proof from different points of view. The actual invitation 
addressed to educational researchers is to find complementarities in this variety of 
approaches to make them converge (Balacheff, 2008). This required effort has double 
goal. On one hand, it could mean an acknowledged awareness of what connects and 
what separates our works, and on the other hand, it could strongly contribute to 
teaching and learning of proof in everyday classes. Finally, this effort could make 
possible the connection between educational research and the school context making 
our research work effective and fruitful.  
Due to my concern for this aspect, I have been studying to find “effective supports” 
to the didactical transposition of mathematical proof into the classroom. Starting from 
evidence highlighted by existing research works about students’ difficulties in 
approaching proof, I show a possible way to use technological artefact in the 
classroom to support the teaching and learning of proof effectively. In this report I 
present a part of this work in progress. In particular, some interesting results of an 
experiment carried out with students at the second year of Upper Secondary School 
are reported.  

STUDENTS DIFFICULTIES IN LEARNING PROOF 
Students’ difficulties in learning mathematical proof have been pointed out by many 
different research works. In this report I am particularly interested in two of them: 
students do not see the usefulness of a mathematical proof and they do not understand 
its language and symbolism. 
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A new balance between the need to produce logical argument and the need to provide 
an argument that explains, communicates and convinces seems to be necessary 
(Healy and Hoyles, 2000). Various authors point out the importance of the 
explicative and justificative roles of proof (Hanna, 1989, 2000, Harel and Sowder, 
1998) that often are not grasped by students. The importance of proof should go 
beyond the establishment of mathematical truth. A broader vision of proof is 
expected: proof should provide students with important mathematical strategies and 
methods for solving problems. (Hanna and Barbeau, 2008).  
This new approach to proof could effectively support students in seeing the 
usefulness of a mathematical proof but other difficulties could come out and they 
have to be considered. For example, the deductive nature of proof and its symbolism 
should be explained and justified too. Research results highlighted the great 
difference between argumentation and proof both from a semantic point of view 
(Duval, 1995) and from a structural one (Pedemonte, 2007); it is important to 
distinguish between truth and validity from a logical point of view (Durand-Guerrier, 
2008). Logical structure, language and symbolism are important aspects in the 
construction of proof but they remain often hidden for students. Proof can appear to 
students as a sub-minimal code with no vital information for understanding (Alibert 
and Thomas, 1991).  
Furthermore, some studies highlight the role of the proof as theoretical organization. 
These studies focus on the importance of introducing students to the axiomatic 
structure of proof and to a theoretical perspective (Mariotti & al., 1997). Their aim is 
to help students access the meaning of theorem and support them in the transition 
from the need of justifying to the need of validating within a mathematical system 
(Mariotti & al., 1997). 
In general, all these studies show that the role of proof in the educational practice is 
not well defined and very often difficulties emerge because some aspects of proof are 
not explicit for students and they are not well explained by teachers. 
In teaching proof, certain often implicit aspects need to become part of explicit 
educational goals (Hemmi, 2008). Through the notion of “transparence”, Hemmi 
contributes to solve the dilemma to make more or less visible to students some 
important aspects concerning proof. The concept of transparency (Lave and Wenger, 
1991) combines two characteristics: visibility and invisibility. Visibility concerns the 
ways that focus on the significance of proof (construction of the proof, logical 
structure of proof, its function, etc.). Invisibility is the form of “unproblematic 
interpretation” and integration to the activity (Hemmi, 2008, p. 414). It concerns the 
proof as a justification of the solution of a problem without considering it as a proof. 
It has been underlined that “Proof as an artifact needs to be both seen (to be visible) 
and used and seen through (to be invisible) in order to provide access to 
mathematical learning” (Hemmi, 2008, p. 425). The lack of transparency in the 
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teaching of proof regards the lack of knowledge about proof techniques, key ideas 
and proof strategies.  
These considerations offer important insights to make the transposition of 
mathematical proof into the classroom effective.  
In this context I intend to contribute through the Algebraic Manipulator of Alnuset. 
This system can be used in teaching and learning algebraic proofs to make rules and 
axioms used visible in proof processes and to make theoretical aspects usually 
implicit in algebraic manipulation emerge. The aim of this report is to show in which 
way the Algebraic Manipulator can be used in the educational practice to enhance the 
teaching and learning of algebraic proof.  

ALNUSET 
Alnuset is a system developed in the context of ReMath (IST - 4 - 26751) EC project 
for students of lower and upper secondary school (yrs 12-13 to 16/17). It is 
constituted by three integrated components: the Algebraic Line component, the 
Algebraic Manipulator component, and the Functions component. Even if the 
educational relevance of this system emerges better through the integrated use of 
these three components, in this paper I only consider the Algebraic manipulator 
component to show how it can be used to modify the approach to the algebraic proof. 
To have a more complete idea about this system you can see the report presented in 
group 7 by Chiappini G., and Pedemonte B. of this edition of CERME.  
The Algebraic Manipulator of Alnuset: a tool to prove 
The Algebraic Manipulator component (AM) of Alnuset is a structured symbolic 
calculation environment for the manipulation of algebraic expressions and for the 
solution of equations and inequations. 
Its operative features are based on pattern matching and rewriting rules techniques. In 
the AM these techniques are used in a different perspective with respect to the CAS 
where the basic rules (commutativity, associativity, etc.) are used internally in a 
sequence generally not controlled by the user, to produce a higher level result, like 
“factorize” or “combine”. As a consequence, the techniques of transformation 
involved in CAS can be obscure for a non expert user. 
In the AM, pattern matching is based on a structured set of basic rules that correspond 
to the basic properties of operations, to the equality and inequality properties between 
algebraic expressions, to basic operations among propositions and sets. These rules 
are explicit for students. They appear as commands on the interface made active only 
if they can be applied to the part of expression currently selected.  
An expression is transformed into another through this set of rules. Students can see 
the transformation of an expression as result of the application of a rule to it. 
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A sequence of rules (chosen 
from the left panel) are 
applied to the initial 
expression (x-1)(x+1). At each 
step, the rule is applied to the 
green sub-expression, 
producing the expression on 
the next line. The last line 
shows the current selection 
(x*x in yellow), and one of 
the 7 rules highlighted in 
yellow can be applied to this 
sub-expression. 

 

Moreover, the system allows the student to create new transformational rules (user 
rules) once these new rules have been previously derived. This feature also present in 
the L’Algebrista (Cerulli, Mariotti, 2003) is important because it can be used to 
construct an idea of structured theory. 
In the following I show how the AM can be used to provide a good “transparency” 
(Hemmi, 2008) for the concept of proof. This system can be used to introduce proof 
in Algebra making visible the rules and procedures of manipulation supporting the 
comprehension of proof as part of a theoretical system. Moreover, the AM could be 
used to propose problems involving proof without a direct focus on it. For space 
reasons, in this report only the role of Alnuset as tool allowing the “visibility” of 
some important concepts about algebraic proof is analysed. 

TEACHING EXPERIMENT 
In this section, students’ resolution processes of some tasks involving the 
construction of proof in the AM of Alnuset are analysed. They are taken from a set of 
data collected from an experiment carried out in a class of 24 students of the second 
year of Upper Secondary School (15-16 years old) in the context of ReMath EC 
project.  
The main aim of this experiment was to analyse the role of Alnuset in a teaching 
experiment centred on algebraic expressions and propositions. The experiment lasted 
ten weeks, with a 2-hour section each week. The first part of the teaching experiment 
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focused on algebraic expressions (equivalent expressions, opposite expressions, 
reciprocal expressions). In this part, a specific section was devoted to the 
manipulation of expressions. In this report I present results of this section.  
During the previous weeks students had used the AM of Alnuset only twice.  
Students worked in pairs with the AM of Alnuset under the supervision of the teacher 
and the researcher. 
In the following, tasks proposed to students during the section are presented.  

Tasks 

a) Use AM to prove that (2+3)*5-25 is equal to 0 
Use AM to prove the same equality starting by 0. 
Is this the only equivalence that it is possible to prove starting by 0? 

b) Use AM to prove that (2/5+4/5)*5/6 is equal to 1 
Use AM to prove the same equality starting by 1. 
Is this the only equivalence that it is possible to prove starting by 1? 

c) In solving tasks a) and b) you have used two specific commands, both in direct and indirect 
ways: the command to add two opposite expressions (A+-A 0) and the command to 
multiply two reciprocal expressions (A*1/A 1). Have you observed any difference in the 
direct and indirect use of these commands? If yes, what differences? In  your opinion, is it 
more difficult to accomplish proofs based on the direct use or proofs based on the indirect 
use of these commands? Why? 

d) Try to prove that the expression a/b+c/d is equivalent to the expression (a*d +b*c)/bd. If this
proof is difficult for you, try to prove the equivalence between the two expressions starting 
from (a*d +b*c)/bd and then to come back step by step in order to work out the more 
complex proof. 
Use the accomplished proof to create a new manipulation rule. 

e) Try to prove that the expression a2-b2 is equivalent to the expression (a+b)(a-b). If this proof 
is difficult for you, try to prove the equivalence between the two expressions starting from 
(a+b)(a-b) and then to go backward, step by step, in order to work out the more complex 
proof. Use the accomplished proof to create a new manipulation rule. 

f) Use AM to transform the following expressions using, if necessary, the rules created in the 
previous tasks:  

x2-4;    x2-1;     
2
1

1
2

−
+

+
+
+

x
x

x
x  

 
Tasks a) and b) introduce the two rules A+-A 0 and A*1/A 1 instantiated on 
specific examples. Task c) supports reflections about the direct and indirect use of 
these rules. Tasks d) and e) require to prove the rules a/b+c/d = (a*d +b*c)/bd and a2-
b2 = (a+b)(a-b) using the two rules A+-A 0 and A*1/A 1. Task f) is useful to 
strengthen the use of the new proved rules. 
Tasks a), b) and c) 
The solution of task a) in the manipulator is reported in the following table. In the 
first part there is the manipulation from the numerical expression to 0 and in the 
second part there is the manipulation from 0 to the expression. 
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The second proof (right) is more difficult for students 
with respect to the first one (left). In the second proof, 
the equivalence needs a step that obliges the user to 
write 0 as addition of two opposite numbers (25-25). 
This is not obvious for students who in general are not 
able to manage it. 

The application of the rule 0=>A+-A requires to understand that 0 can be expressed 
as sum of two opposite expressions. The problem is that there are infinite possibilities 
that can be considered to replace 0. 
In the same way, to apply the rule 1=>A*1/A students have to replace 1 with two 
reciprocal expressions. 

 
 

The second proof (right) is more difficult for students 
with respect to the first one (left). In the second 
proof, the equivalence needs 2 steps that oblige the 
user to write 1 as multiplication of two reciprocal 
numbers (5*1/5 and 6*1/6). As in the previous case, 
this is not obvious for students who are not able to 
replace 1. 

 

As shown by the results of the experiment, in general these rules are used by students 
in their manipulations in paper and pen environment, in a completely implicit way. 
Most students are able to transform an expression into another one using these rules 
but they are not able to explicit them. In better cases they are able to use these rules as 
computational techniques but they are rarely able to justify them. 
Analysis of results of tasks a), b) and c) 
The results analysis of the experiment shows that most students constructed the direct 
proof in tasks a) and b) even if for task b) the intervention of the teacher was often 
necessary. Students knew the result of the sum 2/5+4/5 but they were not able to 
make it in the AM because they didn’t manage the properties and rules hidden in the 
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technique of addition of two fractions.  
The construction of the inverse proofs (from 0 to the expression (2+3)*5-25 and from 
1 to (2/5+4/5)*5/6) was not easy for them. As expected, difficulties emerged when 
students had to replace 0 as sum of two expressions and 1 as multiplication of two 
expressions.  
Only observing the previously constructed direct proof some students (6 groups out 
of 12) were able to construct also the inverse proof, following step by step the direct 
proof and going backwards to the initial expression. Here is the dialog between two 
students while constructing the proof from 0 to the expression (2+3)*5-25. 

I: But in which way can we prove this equivalence starting from 0? 
F: perhaps… 
I: wait a moment… if a+-a is 0 it is also true that 0 is a+-a 
F: yes, of course 
I: then if 25-25 is 0 it is also true that 0 is equal to 25-25... then we can write in this way 
F: following step by step the previous proof 

The AM allowed students to make explicit rules A+-A 0, A*1/A 1 and to 
understand the intrinsic difference that characterises the two directions of the rules. 
Let’s see the following example (answers reported in the copy of a group of student): 

“a) Starting with 0 it is possible to prove whatever equivalence having 0 as result. So 
there are infinite equivalent expressions to 0. b) Starting with 1 it is possible to prove 
that 1 can be replaced by all reciprocal expressions having 1 as results. c) In our opinion 
it is easier to produce proofs based on the direct use of the command A+-A  0, 
because in the inverse case it is necessary to look for the opposite expression, while the 
direct use of the command only requires the application of the correct axiom. For the 
rule A*1/A  1 the principle is the same, but in this case consider reciprocal 
expressions and not opposite expressions”. 

Answers given by these students to task c) show that they have developed awareness 
about the role of the two rules and the way they can be used in manipulation. 
Tasks a), b), and c) allowed students to reflect deeply on these rules that are usually 
used in the algebraic manipulation in a completely “invisible” way. The AM of 
Alnuset allowed students to “make visible” these rules and their use in the 
construction of the proofs.  
Tasks d), e) and f) 
Task d) and task e) are very useful in approaching proof and in particular they are 
effective to understand the idea of theoretical systems. As a matter of fact, only when 
the rules a2-b2 = (a+b)(a-b) and a/b+c/d =(a*d +b*c)/bd are proved they can become 
new user rules and they can be used to prove expressions as those proposed in task f).  
A possible solution of the task e) in the AM is reported in the following table. 
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It is better to begin from the 
second proof (right) because in 
the first proof (left) it is 
necessary to insert 0 and replace 
it with the sum of the two 
opposite expressions ab and –ab.
 
 
Once the proof is accomplished 
students can solve it as a new 
rule: the following one. 

This user rule can be used in the 
successive manipulations.  

A lot of steps are necessary to prove the equivalence a2-b2 = (a+b)(a-b) in the AM of 
Alnuset, because manipulation requests students to make rules and axioms that are 
necessary to prove the equivalence explicit.  
In the same way it is possible to produce the proof of the equivalence a/b+c/d = (a*d 
+b*c)/bd. 
Analysis of results of tasks d), e) and f) 
Tasks d) and e) required a lot of efforts by students. Nevertheless, these tasks were 
very fruitful to understand the meaning of proving a rule starting by a basic set of 
rules and axioms. Students who tried to prove the two equivalences a/b+c/d=(a*d 
+b*c)/bd and a2-b2=(a+b)(a-b) inserting the first expression (a/b+c/d or a2-b2) were 
not able to begin the manipulation. All students were forced to follow the suggestion 
given by the text of the tasks inserting the second expression and manipulating it. 
Also in this case the solution was not obvious. Some difficulties concerned denotative 
aspects: deletion of superfluous parentheses, application of properties in order to 
make the expression match with the rule to be applied, and so on. Nevertheless, in 
some cases, difficulties concerned “conceptual aspects” usually invisible in the 
ordinary manipulation in the paper and pen environment. For example, students were 
not confident with rules such as a-b=a+-b and -a=-1*a. Thus steps concerning the 
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application of these rules were often introduced by the teacher. Let’s see the dialogue 
of two students during the resolution of task d). 

S: This is a specific product… Insert in Alnuset the expression a2-b2 
L inserts the expression in AM 
S: and then? 
L: I really have no idea…. 
S tries to apply some rules without success.  
L: Perhaps… it is better to start from the other side. Try to insert (a-b)(a+b) 
S inserts the expression in AM and then she applies the distributive law.  
She is not able to sum –ab +ab because she was not able to transform the expression 
aa+ba-(ab+bb) into the expression aa+ba-ba-bb.  
L: What? We are not able to add these two expressions. We know that the solution is 0 but... 
S: in which way can we find this result? 
Teacher: You have to apply the rules a-b=a+-b to transform –(ab+bb) into -1(ab+bb)… 
S: Ah ok! We try… 
Students complete the proof and they try to perform the inverse proof.  

Even if it was really hard for students to solve the tasks, the constructed proofs 
obliged them to make explicit axioms and rules that are used step by step during the 
transformation of an expression into another. 
In general, students were very proud of their proofs and they liked a lot to save the 
proved rules as new rules that could be used in their successive proofs. Task f) was 
solved by most students without any difficulty. In this task they eventually realised 
that the previously proved rules were useful to prove other new rules.  

CONCLUSIONS 
The results of the experiment might show that the AM of Alnuset does not help 
students construct proofs and makes proofs more complicate for them. In a sense this 
is true - a lot of students are able to transform (a+b)(a-b) into a2-b2 in paper and pen 
environment and perhaps it is not so important to be able to make the inverse 
transformation. The problem is that in school practice, algebra is usually considered 
as a body of rules and procedures for manipulating symbols. Students are usually able 
to develop calculus but they are not aware of the axioms and theorems they are using 
in performing it. Thus, algebra is taught and learned as a language and emphasis is 
put on its syntactical aspects. In this context, algebraic proof appears as a grammar 
structure made of a sequence of formulae connected by calculus rules. In this way, 
the meaning of proof is completely lost. Despite this, rigorous proof is generally 
considered as a sequence of formulae within a given system, each formula being 
either an axiom or derivable from an earlier formula by a rule of the system. The AM 
of Alnuset supports this kind of proof though in a different way. Each step in the 
manipulation is produced by the application of a rule that has to be chosen by the 
student from a set of rules. If the choice is not correct it could be very difficult for the 
student to construct the proof. During the experiment the intervention of the teacher 
often supported students that were unable to accomplish the task. Notwithstanding 
this, at the end of the experiment, students were able to explicit rules used during 
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their proofs spontaneously. Also during ordinary school practice, students justified 
their steps making the rule used in the transformation explicit. This kind of approach 
required a lot of effort but it supports the awareness of what it is an algebraic proof 
and in which way a mathematical theory can be constructed. 
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VISUAL PROOFS: AN EXPERIMENT 
Cristina Bardelle 

Università degli Studi del Piemonte Orientale “A. Avogadro” 
The main goal of this paper is to start a preliminary study of the basic features of 
visual proofs in mathematics and their use in mathematics teaching. The 
investigation, based on college mathematics students, shows a very poor use of visual 
reasoning in mathematical tasks involving figures. Moreover, students’ use of visual 
semiotic systems is not spontaneous but seems to need some special training. Some of 
the ways of working students usually adopt when dealing with visual proofs have 
been identified, showing that most often diagrams are not seen as representations of 
complete processes, but rather as ready-made aids to solve problems.      

INTRODUCTION 
Many researchers have stressed the importance of visual reasoning in the learning of 
mathematics and have remarked that research in mathematics education has still a lot 
to develop about this topic (see e.g. Dreyfus 1991, Jones 1998, Presmeg 2006). In this 
perspective this paper focuses on visual proofs i.e. on proofs where the deductive 
steps are based on figures, diagrams or graphs. This means that the inferences are 
possible through just the reading of the figures. Although geometrical figures will be 
taken into account only, the expression ‘diagrammatic proof’ or ‘visual proof’ will be 
used in a more inclusive sense. At this regard, a number of works, such as Nelsen’s 
books (1993, 2001) have provided a wide selection of examples of visual proofs from 
different sources. In literature visual proofs are usually presented with no comments 
in verbal language (i.e. without words), but only based on diagrams, possibly 
equipped with numbers, letters, arrows, dots, or other signs and sometimes associated 
with symbolic expressions; the reconstruction of the proof is left to the reader. 
Nowadays visual arguments are far to be considered legitimate arguments for 
rigorous proofs probably due to the fact that they can easily misread and therefore 
lead to wrong inferences. Anyway their importance as an aid for the discovery of new 
results and the production of more formal proofs is widely recognized. In the last 
decades interest in visual proofs has grown up leading to both new mathematical 
investigations and applications to mathematics education. On the side of 
mathematical investigations above all we mention the work of Barwise and 
Etchemendy (1991) and further developments in the same line such as Jamnik’s study 
(2001). From the educational viewpoint the role of visual reasoning in mathematics 
teaching has been taken again into account and emphasized (see e.g. Dreyfus 1991, 
Dvora & Dreyfus 2004, Hanna 1989, Presmeg 1997, 2006).  
The main goal of this paper is to identify the main difficulties in the use of diagrams 
in mathematics, in particular in the extraction of information. For this purpose some 
visual proofs have been taken into account. In the experiment I am describing some 
statements with the corresponding diagrammatic proofs have been given to 
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mathematics sophomore and third year students. Such proofs have been presented 
without any explanation on the inference steps implicit in the figures. The work is 
also aimed to compare the processes involved in visual proofs to those involved in 
the standard ones. Diagrams are not relevant only in relation to visual proofs, but they 
can also support either standard proof processes (i.e. proofs based on a verbal or 
symbolic text) or problem solving. Indeed the heuristic role of figures is widely 
recognized both by mathematicians and by mathematics educators. Therefore some 
features of diagrammatic proofs will be taken into account, which might be relevant 
from the educational viewpoint and to explore the opportunities that they can provide 
in order to improve the approach to mathematical theorems. 

THEORETICAL FRAMEWORK 
The production or the understanding of a diagrammatic proof involves constructing 
and treating (detaching, reversing, superposing, translating,…) figures and extracting 
information from them. All these operations will make evident the inferential steps 
that make up a visual proof of a statement. Moreover a diagrammatic proof is 
developed for a particular value of the domain of validity of the theorem but anyway 
it represents the proof for all values of the domain (character of generality, Barwise & 
Etchemendy 1991). 
We did not find in literature a theoretical framework closely focused on visual proofs 
in mathematics education. Although here we are focusing on visual proofs that are 
based on geometrical figures, we take into account some different works about visual 
reasoning and visualization that could help us to interpret difficulties about this topic. 
First of all, according to Fischbein (1993), geometrical figures are mental entities 
(named also ‘figural concepts’) which possess conceptual and figural characters at the 
same time. In this frame, as other studies in geometry, we refer to figures as the 
mental entities which possess properties imposed by, or derived from axiomatic 
systems and to drawings as their (external) representations. A major problem in the 
use of diagrams and figures is the potential conflict between conceptual and 
perceptual features of figures. Fischbein’s theory is very helpful at this regard. 
Fischbein argues that ‘…figural concepts constitute only the ideal limit of a process 
of fusion and integration between the logical and figural facets’ (Fischbein 1993, 
p.150). In particular visual proofs involve some logical questions concerning the 
nature of deductions based on diagrams and figures. Actually, it is to be considered 
that visual proofs are bound to correspond to some extent to proofs in the standard 
mathematical sense. In this work I do not mean to question the rigorousness of 
diagrammatic proofs (on this topic see Barwise & Etchemendy (1991), Jamnik 
(2001), Hanna & Sidoli (2007), Allwein, G. & Barwise J. – Eds. (1996) and 
references therein) but I assume that they can be regarded as legitimate mathematical 
processes.  
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Another main difficulty encountered by students is due to the lack of coordination of 
systems of semiotic representations (Duval 1993). Working with a visual proof 
requires a continuous interplay between the semiotic system of figures and the 
semiotic systems involved in the statement, usually verbal texts or symbolic 
expressions. Like Duval, I assume that semiotic systems are not neutral carriers of 
meanings but can contribute to the construction of meaning themselves. This explains 
the attention I am going to pay to semiotic systems through this paper.  

AN EXPERIMENT 
At the Università del Piemonte Orientale, in Italy, in the context of a course devoted 
to mathematical proof, we have given a group of 13 sophomore and third year 
undergraduate Mathematics students a number of tasks requiring to look at 
diagrammatic proof of some statement and to reconstruct such a proof (i.e. to 
describe how the proof could be extracted by the figure). The tasks have been 
administered as written tests and they were followed by interviews in order to better 
understand the arguments written by students.  
The problems are the following: 

Task 1. 

The picture on the right represents a visual proof of the 
Pythagoras' theorem. 

- Describe such a proof. 

- Reconstruct the figure in the case that the legs of 
the right-angled triangle have the same measure. 

 
 
Task 2. 

The picture on the right 
represents a visual proof of 
the theorem 

0

1
1
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i
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=
−∑    for 0 1.r< <  

Describe such a proof. 
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The statements are in two different fields of mathematics: the Pythagoras' theorem 
and the geometric series. Pythagoras' theorem is customarily associated to visual 
representations, whereas the latter is less common (at least in Italy), as the 
convergence of the geometrical series is usually proven using a combination of 
algebraic and analytical arguments. So this visual proof is very unusual for Italian 
mathematics college students. The choice of theorems from different fields is aimed 
at finding common features and common difficulties related just to visual reasoning. 
As the results show, students find this kind of problems very difficult. The main 
difficulty is due to the fact that the drawing is a static object while a proof is made of 
an ordered sequence of inference steps. A drawing presents in a whole all written data 
and the reader has to choose the order of the construction and how to extract the 
information. 
Analysis of task 1. Here the construction of the drawing may not present so many 
problems since it is not required a precise order of construction as far as one 
recognizes that there is a particular disposition of six right angle triangles. Troubles 
can arise when trying to find correspondences between the statement and the picture. 
This task is mainly based on visual arguments. Students could meet with difficulties 
in the identification of the area of the square built on the hypotenuse (Fig.1) and 
above all of the areas of squares whose sides are the legs of the right triangle (Fig.2) 
since they are not bounded with segments. Such a problem is related to the 
rearrangement of the figure. 

 
Fig.1 

 

 
Fig.2 

Therefore students could meet with difficulties from the perceptual side, as they 
might fail to spot the appropriate triangles or squares. In fact, as pointed out by Duval 
(1993) graphical sign can be either a help or a hindrance in understanding diagrams.  
Analysis of task 2. In this case the reconstruction of the drawing itself is a difficulty. 
It requires the conceptualization that such a construction is made of infinitely many 
steps and that it proves that the series is convergent. All this requires a good 
conceptualization of the real numbers and their representation on the line. Moreover 
students could meet difficulties, not only with perceptual aspects, but above all with 
the lack of coordination of three different semiotic systems. One has to recognize that 
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−∑  is a proportion, then to translate it in the graphical system and finally to 

identify it in the given figure.  

RESULTS 
Task 1. 
First of all in this task few students only provided an explicit description of the 
construction process of the figure. In this visual proof, the construction of the 
drawing is not related to the understanding of the proof since they succeed to achieve 
it even if with deductive arguments not based upon the whole picture but on some 
parts of it only. In particular, notice that some students do not feel the necessity to 
prove themselves that the tilted figure that looks like a square is indeed a square. In 
this case the perceptual facet is not controlled by the conceptual one. Second, all of 
them introduced letters a, b, c to indicate the measure of the sides of the triangle in 
order to find correspondence between the formula a2+b2=c2  and the figure. Finally, 
students addressed the first task in three different but not necessarily separate ways: 

1. Modifying the formula in order to find correspondence with the figure 
Some students tried to connect the formula a2+b2=c2 to 
the figure and to identify just c2 in the picture to the 
right. They were not able to do the same for a2 and b2. 
Then they wrote down (a+b)2-2ab=c2 most likely 
because they could find (a+b)2 and 2ab in the picture 
too, as shown below: 

 
 

 
This way the students recognized the remaining area 
a2+b2 in the figure on the right. This kind of proof is 
mostly based on visual arguments except for the initial 
modification of the formula.    
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2. Area computation 

This strategy is the most common in problems of this kind. It consists in calculating 
the area of the external figure in two different ways and then comparing the results to 
obtain the required relationship.  
In the first problem they calculated the area of the square of 
side a+b i.e. (a+b)2  and then the same area as the sums of 
the five subfigures (four triangles and a square of side c) 
i.e. 24

2
ab c+ . Comparing the two expressions they got the 

Pythagorean theorem through algebra. In this case they did 
not consider the dashed lines in the picture on the right.  

3. Figures as plain  tools  
The figure is not seen as a process embodying the proof of a statement but just as a 
tool that can be used to occasionally pick some piece of information useful to get a 
proof.  
For example in this problem four students considered just the 
tilted square of side c and its five subfigures (four right-angled 
triangles and the square of side a-b). Actually they did not 
consider the dashed lines in the figure on the right. Comparing 
the area of the square of side c calculated as c2  with the same 
area but regarded as the sum of the areas of the five subfigures 
one obtains the result as in point 2 (Area computation). 
Another student just considered the rectangle    

 

defining a the short side and b the long one. Then she 
used a so called “circular argument” or “begging the 
premise” (cf. Weston, 2000), i.e. she used the 
Pythagoras’ theorem to get 2 2c a b= +  and hence 
squaring both sides she got the Pythagoras’ theorem 
c2=a2+b2 . 

Notice that also the answers in point 2. (Area computation) denote that the figure is 
not seen as an autonomous process of proof.  
 
Task 2. 
The Problem 2 proved the most difficult one. Nobody succeeded in understanding 
this visual proof. So a hint was given to them while they were solving the task. It was 
told them that a fundamental tool for its comprehension was the similitude of 
triangles and in particular the proportionalities between corresponding sides of the 
triangles. After that some of them succeeded to recognize that ∆ PST and ∆ PQR are 
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similar and they found the correspondence between the formula and the sides of 
triangles.  
As a first result we have that students were able to match labels with the formula, and 
to understand the meaning of the dots ‘…’. As second finding we have that most 
students did not reconstruct the drawing. The reasons are three:  

1. Students understood the need to reconstruct the drawing. Such construction is a 
necessary step in order to consider the visual proof as a process.  Unfortunately 
they are not able to do such a reconstruction. One can see this outcome from the 
following excerpts: 

         A:  Consider a square of side of length 1 ( 0l r= ) PQMS and construct a right-
angled triangle PST such that the shorter leg is 0PS r=  and one finds that the 
longer leg ST is the sum of infinite segments having measure respectively 0r , 

1r , 2r , ….. 

     (Student A understood that the measure of ST is not an assumption but a finding 
of the construction but he could not prove that result, as it became clear from the 
interview) or 

         B:  I can not understand how in the figure 2r  comes out from r . 

2. Students considered figures just as plain tools. This is evident in task 2:  

         C:  …from figure I can see that PS  measures 1, ST measures 
0

i

i
r

+∞

=
∑ ,… 

          Student C did not see that PS 1=  is an assumption while 
0

ST i

i
r

+∞

=

=∑  is the result 

of a   deductive steps and in particular it means that the series converges.  
3. Students understood the need to reconstruct the drawing but they failed to do it 

since they considered it trivial.    
Finally some students could conclude the proof using the help given to them, but we 
distinguish  

- students who were able to prove that the triangles PST and PQR are 
similar because they recalled this notion; 

- students who did not recalled this notion or never learnt it. 
In this case the problem is that even if students had a good knowledge of similitude 
of triangles they failed to introduce such “new” tool which could not be directly 
extracted by a simple manipulation of the objects already appearing in the proof.                         
General discussion 
One of the main findings of this work is that visual proofs are not seen as processes 
but the figures are just plain tools which help to find results. The investigation of the 
protocols highlights that the unsuccessful results of this kind of tasks are due not only 
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to the semiotic system of figures or to the conflict between the conceptual and figural 
nature of visual proofs but it comes out that the concept of mathematical proof is not 
understood enough. This conclusion comes out above all from the fact that students 
do not feel the need for reconstructing the drawing. Moreover, in the first problem 
students used just some parts of the figure and not the whole of it, that is some 
students did not attribute values at every graphical sign, as it is explained in the 
analysis of the first task. Also this behaviour, in some cases, is due to a 
misunderstanding of the nature of the process of visual proofs. In fact the role of 
graphical signs and more in general of the perceptual learning of a figure is very 
important both in a positive and in a negative sense (Duval 1993). Perception can be a 
useful tool only if it is controlled by conceptual processes as pointed out by 
Fischbein.  
Second it comes out that one of the main obstacles is the lack of geometrical 
knowledge: notions like similitude and congruence of triangles, Thales’ theorem, etc. 
are hardly known, which severely prevents any attempt to work with the figure. This 
situation is found in the problem about the geometrical series. For example one of the 
fundamental steps for understanding this visual proof is to notice that the triangles ∆ 
PQR and ∆ PST are similar. No one spotted this geometrical fact. There might be two 
reasons of it. First, students have never learnt this or they have forgotten it. Second, 
they could not easily call to mind this notion, actually they knew something on 
similitude of triangles but they were not used to work with it. This means that 
students are not aware that there are some theorems, techniques, tools, which they can 
exploit when facing triangles. The fact is that Italian students work very little or do 
not work at all on the visualization of geometrical figures (for further details see 
Mariotti, 1998). Moreover, the time given for solving the task is not sufficient to 
remember or to reconstruct this notion. However, the necessity to use tools and 
constructions which are not directly related to objects at hand is a common feature in 
mathematical proofs, which do not refer to visual proofs only. Students could not 
overcome the difficulty of introducing such new elements in the visual proof we 
proposed them. Moreover, students were not even able to exploit the symbolic 
expression in the statement, since it would have required to represent it as a 

proportion, that in Italy is given prevalently by ( )
0

:1 1: 1i

i
r r

+∞

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ , and then into the 

figural system. The difficulty about the introduction of new elements, however, is not 
peculiar to visual proofs only. Indeed the first task does not present this problem. In 
this case all students succeeded in grasping the result even if in an improper way, for 
example using the figure just as a tool to extract information. Here one has just to 
manipulate the formula of the Pythagorean Theorem or manipulate its figure; there is 
no need to introduce new constructions, techniques, assumptions, tools, etc. 
Finally the analysis of protocols shows that students prefer to work with algebra 
instead of using visual arguments coming from manipulation of figures. The visual 
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proof in task one is only of visual nature but no one addressed it with just visual 
arguments. Just one student used prevalently visual arguments (see strategy 1), but 
even in this case there was a preliminary modification of the formula. 

CONCLUSION 
This explorative research outlines the lack of skills in visual reasoning by a group of 
Italian mathematics college students. This lack is due to different reasons: poor 
knowledge of certain basic mathematical tools, poor acquaintance with the use of 
figural representations, conflict between the conceptual and perceptual nature of 
diagrammatic proofs and sometimes poor understanding of the concept of 
mathematical proof itself. Besides, the research points out that it is very difficult to 
learn proofs without being able to pick and use some basic pieces of mathematical 
knowledge. In this context tasks like those presented in this work might help students 
to develop a correct use of deductive method when working with figural 
representation and not only in the field of geometry but also in other context as in the 
second task presented. Obviously graphical representations in different mathematical 
settings can present different features related to different concepts. For example, in 
the case of the geometrical series one has to take into account the graphical 
representation of real numbers and of their properties. According to Duval, the 
coordination of at least two different semiotic systems of representation of a concept 
can improve its understanding. In particular I think that the passage from verbal and 
symbolic representations into the figural one and vice versa could be very fruitful. 
Moreover I think also that problems like the second one can help to overcome the 
trend to deal with mathematical subjects in isolation. Since, as our result confirms, 
the use of graphical representation presents a lot of difficulties, its use requires a 
particular training in order to exploit its potential. In this perspective tasks like those 
presented in this work could help students to develop some important tools to 
approach also other mathematical problems such as standard proofs.       
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TEACHERS’ VIEWS ON THE ROLE OF VISUALISATION  
AND DIDACTICAL INTENTIONS REGARDING PROOF 

Irene Biza*, Elena Nardi* and Theodossios Zachariades** 
*University of East Anglia (Norwich, UK), **University of Athens (Greece) 

In this paper we explore secondary teachers’ views on the role of visualisation in the 
justification of a claim in the mathematics classroom and how these views could 
influence instruction. We engaged 91 teachers with tasks that invited them to: reflect 
on/solve a mathematical problem; examine flawed (fictional) student solutions; and, 
describe, in writing, feedback to students. Eleven teachers were also interviewed. 
Here we draw on the interviews and the responses to one Task (which involved 
recognising a line as a tangent to a curve at an inflection point) of two teachers. We 
do so in order to explore potential influences on the didactical contract regarding 
proof that these teachers are likely to offer their students. One such influence is the 
clarity and stability of their beliefs about the role of visualisation.  
Key Words: teacher beliefs, proof, visualisation, tangents, didactical contract 

INTRODUCTION 
‘The emphasis that teachers place on justification and proof no doubt plays an 
important role in shaping students’ ‘proof schemes’’1 (Harel & Sowder, 2007, p827). 
The not very extensive research in this area (p824) shows that this emphasis is 
insufficient both in terms of extent and in terms of quality. Internationally in most 
educational settings – even those with an official curricular emphasis on proof – little 
instructional time is dedicated to proof construction and appreciation (p828). 
Furthermore teachers’ own proof schemes are often predominantly empirical and 
teachers do not always seem to understand important roles of proof other than 
verification (p836). For example, in Knuth’s (e.g. 2002) study of practising 
secondary mathematics teachers, while all teachers acknowledged the verification 
role of proof, they rarely talked about its explanatory role. With regard to their proof 
schemes many of the interviewed teachers: felt compelled to check a statement on 
several examples even though they had just completed a formal proof; considered 
several of given non-proofs as proofs; and, accepted the proof of the converse of a 
statement as proof of the statement; and, found arguments based on examples or 
visual representations to be most convincing.  
One of the aims of the study we report in this paper is to explore the relationship 
between teachers’ pedagogical and epistemological beliefs about proof and their 
intended pedagogical practice (e.g. Cooney et al, 1998; Leder et al, 2002). Here we 
report some findings that relate to their beliefs about the role of visualisation. 

                                           
1 Harel & Sowder’s (1998) term which describes an individual’s and a community’s perception of 
proof. They distinguish between external conviction (authoritarian, ritual, non-referential symbolic), 
empirical (inductive, perceptual) and deductive (transformational, axiomatic) proof schemes. 
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In the last twenty years or so the debate about the potential contribution of visual 
representations to mathematical proof has intensified (e.g. Mancosu et al, 2005), not 
least because developments in IT have expanded this potential so greatly. Central to 
this debate is whether, how and to what extent, visual representation can be used not 
only as evidence and means of insight for a mathematical statement but also as part 
of its justification (Hanna & Sidoli, 2007). For example, Giaquinto (2007) argues that 
visual means are much more than a mere aid to understanding and can be resources 
for discovery and justification, even proof. Whether visual representations need to be 
treated as adjuncts to proofs, as an integral part of proof or as proofs themselves 
remains a point of contention. 
Visualisation has gained analogous visibility within mathematics education. Its 
richness, the many different roles it can play in the learning and teaching of 
mathematics – as well as its limitations – are increasingly being written about (e.g. 
Arcavi, 2003). These works address a diversity of issues, including: mathematicians’ 
perceptions and use of visualisation; students’ seeming reluctance to engage (and 
difficulty) with visualisation; etc. (Presmeg, 2006). Overall we still seem to be rather 
far from a consensus on the many roles visualisation can play in mathematical 
learning and teaching. So, while many works clearly recognise these roles, several 
(e.g. Arcavi, ibid.) also recommend caution with regard to ‘the ‘panacea’ view that 
mental imagery only benefits the learning process’ (Aspinwall et al, 1997, p315).  
One of the aims of the study we report in this paper is to contribute to the above 
debate as outlined in the work of Presmeg, Arcavi and others through exploring 
secondary mathematics teachers’ beliefs about the role of visualisation as evident in 
the reasoning and feedback they present to students. The specific part of the debate 
our study aims to contribute to concerns the relationship between these beliefs and 
teachers’ intended pedagogical practice. Our particular interest is in the potential 
influences on the didactical contract (Brousseau, 1997) that teachers offer their 
students with regard to the role of visualisation. One such potential influence is the 
clarity and stability of teachers’ belief systems (Leatham, 2006). Below we briefly 
introduce the study. 

THE STUDY AND THE TANGENT TASK  
The data we draw on in this paper originate in a study, currently in progress in 
Greece and in the UK, in which we invite teachers to engage with 
mathematically/pedagogically specific situations which have the following 
characteristics: they are hypothetical but likely to occur in practice and grounded on 
learning and teaching issues that previous research and experience have highlighted 
as seminal. The structure of the tasks we ask teachers to engage with is as follows – 
see a more elaborate description of the theoretical origins of this type of task in (Biza 
et al, 2007): reflecting upon the learning objectives within a mathematical problem 
(and solving it); interpreting flawed (fictional) student solution(s); and, describing, in 
writing, feedback to the student(s). 
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In what follows we focus on one of the tasks (Fig. 1) we have used in the course of 
the study. The Task was one of the questions in a written examination taken by 
candidates for a Masters in Mathematics Education programme. Ninety-one 
candidates (of a total 105) were mathematics graduates with teaching experience 
ranging from a few to many years. Most had attended in-service training of about 80 
hours.  

Year 12 students, specialising in mathematics, were given the following exercise: 
‘Examine whether the line with equation y = 2 is tangent to the graph of function f, where 

3( ) 3 2f x x= + .’ 
Two students responded as follows: 
Student A 
‘I will find the common points between the line and the graph solving the system: 

3 3 3 03 2 3 2 2 3 0
22 2 2

xy x x x
yy y y
=⎧ ⎧ ⎧= + + = = ⎧

⇔ ⇔ ⇔⎨ ⎨ ⎨ ⎨ == = = ⎩⎩ ⎩ ⎩
 

The common point is A(0, 2). 
The line is tangent of the graph at point A because they have only one common point (which 
is A).’ 
Student B 
‘The line is not tangent to the graph because,  
even though they have one common point,  
the line cuts across the graph, as we can see  
in the figure.’  
 
a. In your view what is the aim of the above exercise? 
b. How do you interpret the choices made by each of  

the students in their responses above? 
c. What feedback would you give to each of the  

students above with regard to their response to the exercise? 
Figure 1: The Task  

The first level of analysis of the scripts consisted of entering in a spreadsheet 
summary descriptions of the teachers’ responses with regard to the following: 
perceptions of the aims of the mathematical exercise in the Task; mathematical 
correctness; interpretation/evaluation of the two student responses included in the 
Task; feedback to the two students. Adjacent to these columns there was a column for 
commenting on the approach the teacher used (verbal, algebraic, graphical) to convey 
their commentary and feedback to the students across the script. On the basis of this 
first-level analysis we selected 11 of the participating teachers for interview. Their 
individual interview schedules were tailored to the analysis of their written responses 
and, mostly, on questions we had noted in the last column of the spreadsheet. 
Interviews lasted approximately 45 minutes and were audio recorded. 
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The mathematical problem within the Task in Fig. 1 aims to investigate students’ 
understanding of the tangent line at a point of a function graph and its relationship 
with the derivative of the function at this point, particularly with regard to two issues 
that previous research (e.g. Biza, Christou & Zachariades, 2008; Castela, 1995) has 
identified as critical: 

• students often believe that having one common point is a necessary and 
sufficient condition for tangency; and, 

• students often see a tangent as a line that keeps the entire curve in the same 
semi-plane. 

The studies mentioned above attribute these beliefs partly to students’ earlier 
experience with tangents in the context of the circle, and some conic sections. For 
example, the tangent at a point of a circle has only one common point with the circle 
and keeps the entire circle in the same semi-plane. 
Since the line in the problem is a tangent of the curve at the inflection point A the 
problem provides an opportunity to investigate the two beliefs about tangency 
mentioned above − similarly to the way Tsamir et al (2006) explore teachers’ images 
of derivative through asking them to evaluate the correctness of suggested solutions. 
Under the influence of the first belief Student A carries out the first step of a correct 
solution (finding the common point(s) between the line and the curve), accepts the 
line tangent to the curve and stops. The student thus misses the second, and crucial, 
step: calculating the derivative at the common point(s) and establishing whether the 
given line has slope equal to the value of the derivative at this/these point(s). Under 
the influence of both beliefs, and grounding their claim on the graphical 
representation of the situation, Student B rejects the line as tangent to the curve.  
With regard to the Greek curricular context, in which the study is carried out, the 
Year 12 students (age 17/18) mentioned in the Task have encountered the tangent to 
the circle in Year 10 in Euclidean Geometry and the tangent lines of conics in 
Analytic Geometry in Year 11. In Year 12, they have been introduced to the tangent 
line to a function graph as a line with a slope equal to the derivative of the 
corresponding function at the point of tangency. Although in Years 11 and 12 the 
tangent is introduced as the limiting position of secant lines, this definition is rarely 
used in problems and applications. The students’ mathematics ‘specialisation’ 
mentioned in the Task refers to the students’ choice of mathematics as one of the 
curriculum subjects for more extensive study in Years 11 and 12.  
The discussion we present in this paper is based on a theme that emerged from the 
first-level data analysis and was explored further in the interviews: the teachers’ 
beliefs about the role of visualisation in mathematics (epistemological) and in their 
students’ learning (pedagogical). This theme emerged largely from our observation 
that, in their scripts, the majority of the teachers distinguished between (and often 
juxtaposed) Student A’s algebraic approach and Student B’s graphical approach. 
Most of these teachers included in their comments an evaluative statement regarding 
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the sufficiency/acceptability of one or both approaches. And often they referred 
explicitly to their beliefs about, for example, the sufficiency/acceptability of the 
graphical approach; or about the role visual thinking may play in their students’ 
learning. The teachers’ responses also appeared significantly influenced by the 
mathematical context of the problem within the Task; namely, by their own 
perceptions of tangents and their own views as to whether the line in the Task must 
be accepted as a tangent or not.  
For example, with regard to the teachers’ evaluation/interpretation of Student B’s 
solution and feedback to Student B we scrutinised the scripts and designed the 
interviews with reference to questions such as: does the teacher turn the student away 
from the graphical approach (which may have led the student to an incorrect claim) 
and towards an algebraic solution in order to help the student change their mind about 
whether the line is a tangent or not? Does the teacher compare and contrast the 
algebraic solution to Student B’s solution or do they proceed directly to the 
presentation of an algebraic solution? What types of examples/counterexamples, if 
any, do they employ in this process? What is the teacher’s position towards Student 
B’s grounding their claim on the graph and, generally, towards the validity of 
graphical argumentation as proof? Etc.. We presented a preliminary analysis of the 
above in (Biza, Nardi & Zachariades, 2008). This analysis suggested that there was 
substantial variation amongst the participating teachers in terms of the stability and 
clarity of their beliefs about the role of visualisation (epistemological and 
pedagogical). In what follows we present evidence from the scripts and interviews of 
two teachers, Spyros and Anna2, whose cases exemplify this variation. Of particular 
interest in the accounts that follow is the interplay between the teachers’ beliefs and 
their (stated) pedagogical practice. The data is translated from Greek. 

SPYROS 
Spyros has about fifteen years of teaching experience in secondary education. In his 
written response to the Task he described what led Student A and Student B to their 
respective answers. His feedback to the students was brief and stated rather generally. 
He emphasised the significance of mathematical definitions (in this case; the 
definition of tangent) and juxtaposed students’ understanding and use of the 
definition with what he called ‘intuitive’ perception of the concept. He did not refer 
to any specific procedure through which the students could have determined whether 
the line is a tangent or not. At the same time he focused almost entirely, but rather 
generally, on the conceptual understanding of the definition and its ‘history’ in 
mathematics. We invited him to the interview in order to explore further his 
references to the ‘history’ of the concept and elaborate his feedback to the students.

                                           
2 We note that Spyros is one of the 38 (out of 91) teachers who rejected Student B’s claim that the 
line is not a tangent. Anna is one of the 25 teachers who agreed with Student B’s claim. There was 
some evidence of support for Student B’s claim in the scripts of another 18 teachers and there were 
also 9 blank or half-completed scripts. 
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During the interview he stated that he had not thought about the relationship between 
the circle tangent and the tangent to a curve. He recognised that Student A had 
regarded having a unique common point as a sufficient condition for tangency and 
stressed that this condition is neither sufficient nor necessary. He also described 
counter-examples that could help Student A reconstruct their image of a tangent line. 
While discussing Student B’s response we asked him to elaborate on whether he 
would accept an argument based on a graph. His answer was firm: ‘No, first of all it 
is not an adequate answer in exams’. (We note that in the Year 12 examination, 
which is also a university admission exam, there is a requirement for formal proof). 
We asked him to let aside the examination requirements for a moment and consider 
whether an argument based on a graph would be adequate mathematically. He 
replied: ‘Mathematically, in the classroom, I would welcome it at lesson-level and I 
would analyse it and praise it, but not in a test’. Asked to elaborate he says: ‘Through 
[the graph-based argument] I would try to lead the discussion towards a normal 
proof…with the definition, the slope, the derivative etc.’. Asked to justify he says: 

This is what we, mathematicians, have learnt so far. To ask for precision. For 
axiomatic… we have this axiomatic principle in our minds. Whatever I say I prove on the 
basis of axioms, on the basis of theorems, on the basis…. And this is what is required in 
the exams. And we are supposed to prepare the students for the exams. 

In the above, Spyros’s statement is clear: while he cannot accept a graph-based 
argument as proof, he recognises graph-based argumentation as part of the learning 
trajectory towards the construction of proof. He seems to approach visual 
argumentation from three different and interconnected perspectives: the restrictions 
of the current educational setting, in this case the Year 12 examination; the 
epistemological constraints with regard to what makes an argument a proof within 
the mathematical community; and, finally, the pedagogical role of visual 
argumentation as a means towards the construction of formal mathematical 
knowledge.  
These three perspectives reflect three roles that a mathematics teacher needs to 
balance: educator (responsible for facilitating students’ mathematical learning), 
mathematician (accountable for introducing the normal practices of the mathematical 
community) and professional (responsible for preparing candidates for one of the 
most important examinations of their student career). Spyros’ awareness of these 
roles, and their delicate interplay, is evidence of the clear and stable didactical 
contract he appears to be able to offer to his students. Below we discuss a rather 
different case. 

ANNA 
Anna is a recent graduate with about four years of teaching experience in private 
tuition. In her written response to the Task she agreed with Student B’s claim that the 
line is not a tangent. She interpreted Student A’s answer as an implication of 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 266



accepting the uniqueness of the common point between the line and the curve without 
examining the ‘nature’ of this point (she pointed out that an infinite number of lines 
pass through one point). She attempted to reconstruct Student A’s views through 
reference to graphs and then to the definition. She did not elaborate on the use of the 
definition; she simply cited the related formula but did not apply it in the case of the 
function in the Task. She accepted Student B’s graphical approach. She stressed that 
students are rarely at ease with the graphical approach and are often reluctant to use 
it. She however wrote that she would draw Student B’s attention to the fact that a 
graphical approach is not always feasible. Therefore, she wrote, she would 
demonstrate the ‘analytical’ way through an appropriate worksheet in which she 
would use a function with a hard-to-construct graph. For a ‘more complete repertory’ 
she would encourage Student A to use graphs and Student B to use the analytical 
approach. We invited Anna to the interview because of her emphasis on the necessity 
of the algebraic approach in cases where the graphical approach is not possible – not 
because of her concern for its validity. Also because we wanted to explore further 
how this sat alongside her overt appreciation of Student B’s solution. 
Anna, between writing the response and being interviewed, had realised that she 
should accept the line as a tangent. In the interviews, she attributed her, and the 
students’, ‘misunderstanding of tangents’ to earlier experience with circle tangents.  

 I thought that the tangent should be always like the circle tangent, but this is wrong. 
Because the student in question made the graph and saw it was horizontal and cuts the 
graph in half, he considered that this is not right, that’s why… he expected to see 
something like [she gestures a line touching the graph without splitting it]. 

When we asked her to describe the algebraic solution she managed only with 
extensive help on our part.  
While discussing Student B’s response we asked Anna if she would accept Student 
B’s graphical solution as correct if the student had concluded with the acceptance of 
the line as a tangent.  She said: ‘I think that we have to do all the procedure’ because 
‘the line could be here, [showing on the graph] higher or lower, where it isn’t a 
tangent’ and ‘I cannot decline that it isn’t tangent but also I cannot say that it is. 
Don’t I have to do some…’. When we asked her why, in the light of these 
reservations, she accepted the graphical explanation in her written response, she 
replied: ‘I accepted it because he said that it wasn’t and I had in my mind that when I 
see the line splitting [the graph] there is no other choice, whatever it was’. So, would 
she accept a graphical solution, in general? ‘If it is correct, I would accept it’, she 
replied. Would she accept student B’s solution as correct if the student indicated on 
the graph that, although the line intersects the curve, the intersection point is an 
inflection point, as, for example, in the case of f(x)=x3? She replied: ‘I would accept it 
[…] it is not necessary to use the algebraic method with formulas and all that, that’s 
what I believe. [hesitating] I am not sure this is correct [awkward laugh]’.  
She then added: 
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Simply, I believe that students are not so familiar with graphical representations… and, 
for them, it is easier to use formulas…they see this as a methodology, as… I do not 
believe that they have gone into depth so that they know how to construct graphs 
perfectly and know how to interpret them well and this is why most of them usually use 
algebraic formulas. […] Because to make a graph and analyse it you have to have 
understood something very, very well… to own it, completely, while for this [the 
algebraic formula] you learn how, somewhat blindly, and you solve it, that’s what I 
believe. In any case if [the claim] was correct I would accept it because I would see that 
the student understood it better than someone who can follow the algebraic formulas… 
now I don’t know, am I right? What do you think?! [to the interviewer] 

Later on in the interview, we asked her what would happen if the inflection point 
wasn’t at 2.00 but very close to it (e.g. at 2.02). That made her uncertain about the 
accuracy of the graph. She then reconsidered her previous statement and said: ‘So I 
believe that the best is that the students do the algebra and then make the graph 
[awkward laugh]’. She elaborated her change of mind as follows:  

I simply believe that after we solve through the algebraic formulas and find the result, 
then it is good to tell the students to make the graph because sometimes they reach the 
end and say ‘ok, I found it’ without having realised in their mind how it would look 
roughly and as soon as they see a graph they cannot answer immediately and I believe 
this is what happened to me… that is I was used to see circle tangents and it had crossed 
my mind… subconsciously that all of them must be like that … all tangents have to be 
like that because I was not familiar with graphs. 

In the above Anna’s beliefs about the acceptability or not of a visual argument appear 
unstable. She appears ready to accept a visual argument without any algebraic 
justification if the information in the image constitutes, for her, clear and convincing 
support for a claim. She regarded the image in the Task as sufficient evidence for 
determining that the line is not a tangent – also drawing on her belief that a tangent 
cannot intersect the graph. However she stated clearly that to prove that the line is a 
tangent an algebraic argument was necessary. Later, she stated that she could accept a 
correct statement based on the graph. When we shook her faith in the graph she 
declared the algebraic solution necessary. While initially she did not speak of 
validation of the visual statement through reference to mathematical theory, she 
asked for such validation when she realised that the image could be misleading. 
Many times in her interview she returned to her appreciation of visual representation 
and argumentation as evidence of a student’s in-depth understanding and as an 
important means towards students’ construction of mathematical knowledge. She did 
not specify whether she meant formal mathematical knowledge (for example, proof). 
Furthermore her views with regard to the sufficiency and acceptability of a visual 
argument appeared rather ambivalent and heavily dependent on the specific images 
involved in the discussion. In this sense the didactical contract she appears to be able 
to offer to her students seems less clear and stable than that of Spyros. 
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CONCLUDING REMARKS 
Spyros’ clear insistence on the class’ collective arrival at a formal proof as closure to 
the lesson is distinctly different from Anna’s fluctuation between cases where she 
would and would not accept a visual argument. Her willingness to rely, occasionally, 
on imagery in order to support a claim is ‘a practice that may mislead students into 
thinking that such are acceptable mathematical ‘proofs’ and reinforcing the 
acceptability of their empirical proof schemes.’ (Harel & Sowder, 2007, p829). 
Furthermore, her own criteria about what makes a visual argument acceptable 
appeared very personal and rather fluid. Within the unstable didactical contract that 
this vagueness might imply, how would her students distinguish between when a 
visual argument is acceptable and when not? In the already compounded didactical 
contract of school mathematics such vagueness can be detrimental.  
A clearer contract could be as follows: in a classroom discussion where a visually-
based (incorrect) claim is proposed, the class employs the algebraic, formal approach 
to convince the proposer about the incorrectness of their claim. Even when a visually-
based (correct) claim is unequivocally accepted by the whole class, the class still 
employs the algebraic approach to establish the validity of the claim formally. In both 
cases visualisation emerges as a path to insight and proof as the way to collectively 
establish the validity of insight. In both cases there is a pedagogical opportunity for 
linking imagery with algebra and for embedding the algebra in the immediately 
graspable meaning in the image. 
The above suggest a role for proof in the mathematics classroom that is not disjoint 
from the creative parts of visually-based classroom activity and that reflects an 
essential intellectual need. We conclude with quoting Harel & Sowder’s (2007, p836) 
statement regarding this intellectual need: 

The subjective notion of proof schemes is not in conflict with our insistence on 
unambiguous goals in the teaching of proof – namely, to gradually help students develop 
an understanding of proof that is consistent with that shared and practised by the 
mathematicians of today. The question of critical importance is: What instructional 
interventions can bring students to see an intellectual need to refine and alter their current 
proof schemes into deductive proof schemes. 

ACKNOWLEDGMENT 
Supported by an EU ERASMUS Programme grant and by the University of Athens. 

REFERENCES 
Arcavi, A. (2003). The role of visual representations in the learning of mathematics. 

Educational Studies in Mathematics, 52, 215-241. 
Aspinwall, L., Shaw, K. L., & Presmeg, N. C. (1997). Uncontrollable mental 

imagery: Graphical connections between a function and its derivative. Educational 
Studies in Mathematics, 33, 301-317. 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 269



Biza, I., Christou, C., & Zachariades, T. (2008). Student perspectives on the 
relationship between a curve and its tangent in the transition from Euclidean 
Geometry to Analysis. Research in Mathematics Education, 10(1), 53-70. 

Biza, I., Nardi, E., & Zachariades, T. (2007). Using tasks to explore teacher 
knowledge in situation-specific contexts. Journal of Mathematics Teacher 
Education, 10, 301-309. 

Biza, I., Nardi, E., & Zachariades, T. (2008). Persistent images and teacher beliefs 
about visualisation: the tangent at an inflection point. In O. Figueras & A. 
Sepúlveda (Eds.), Proceedings of PME32 (Vol. 2, pp. 177-184). Morelia, 
Michoacán, México. 

Brousseau, G. (1997). Theory of didactical situations in mathematics. 
Dordrecht/Boston/London: Kluwer Academic Publishers. 

Castela, C. (1995). Apprendre avec et contre ses connaissances antérieures: Un 
example concret, celui de la tangente. Recherches en Didactiques des 
Mathématiques, 15(1), 7-47. 

Cooney, J., Shealy, B. E., & Arvold, B. (1998). Conceptualizing Belief Structures of 
Preservice Secondary Mathematics Teachers. Journal for Research in Mathematics 
Education, 29(3), 306-333. 

Giaquinto, M. (2007). Visual thinking in mathematics. NY: Oxford University Press. 
Hanna, G., & Sidoli, N. (2007). Visualisation and proof: A brief survey of 

philosophical perspectives. ZDM Mathematics Education, 39, 73-78. 
Harel, G., & Sowder, L. (1998). Students’ proof schemes: results for exploratory 

studies. In A.Schoenfeld, J. Kaput and E. Dubinsky (eds.), Research in collegiate 
mathematics education 3 (pp.234-283). Providence, RI: AMS. 

Harel, G., & Sowder, L. (2007). Towards comprehensive perpectives on the learning 
and teaching of proof. In F.K.Lester (Ed.), The Second Handbook of Research on 
Mathematics Teaching and Learning (pp. 805-842). USA: NCTM. 

Knuth, E. (2002). Secondary school mathematics teachers’ conceptions of proof. 
Journal for Research in Mathematics Education, 33(5), 379–405. 

Leatham, K. R. (2006). Viewing Mathematics Teachers' Beliefs as Sensible Systems. 
Journal of Mathematics Teacher Education, 9, 91-102. 

Leder, G. C., Pehkonen, E., & Torner, G. (Eds.). (2002). Beliefs: A Hidden Variable 
in Mathematics Education? Dordrecht, NL: Kluwer. 

Mancosu, P., Jorgensen, K. F., & Pedersen, S. A. (Eds.). (2005). Visualization, 
explanation and reasoning styles in mathematics. Dordrecht, NL: Springer. 

Presmeg, N. C. (2006). Research on visualization in learning and teaching 
mathematics: Emergence from psychology. In A.Gutierrez & P. Boero (Eds.), 
Handbook of research on the psychology of mathematics education (pp. 205-235). 
Dordrecht, NL: Sense Publishers. 

Tsamir, P., Rasslan, S., & Dreyfus, T. (2006). Prospective teachers’ reactions to 
Right-or-Wrong tasks: The case of derivatives of absolute value functions. Journal 
of Mathematical Behavior, 25, 240–251. 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 270



MODES OF ARGUMENT REPRESENTATION FOR 
PROVING – THE CASE OF GENERAL PROOF 

Ruthi Barkai, Michal Tabach, Dina Tirosh, Pessia Tsamir, Tommy Dreyfus 
Tel Aviv University1 

In light of recent reform recommendations, teachers are expected to turn 
proofs and proving into an ongoing component of their classroom practice. 
At least two questions emerge from this requirement. Is the mathematical 
knowledge of high school teachers sufficient to prove various kinds of 
statements? And does their knowledge allow the teachers to determine the 
validity of an argument made by their students? The results of the present 
study point to a positive answer to the first question in the framework of 
elementary number theory (ENT). However, the picture is much less positive 
with respect to the second one.   
THEORETICAL BACKGROUND 
The calls for enhancing students’ abilities to prove and to refute 
mathematical statements appear prominently in various reform documents of 
different countries (e.g., Israeli Ministry of Education, 1994; National 
Council of Teachers of Mathematics [NCTM], 2000). In the NCTM 
document, reasoning and proof is one of five process standards for all grade 
levels. Still, there is a need to clarify what proof is in the classroom context. 
Stylianides (2007) made an attempt in this direction:   

Proof is a mathematical argument, a connected sequence of assertions for or 
against a mathematical claim, with the following characteristics: 

− It uses statements accepted by the classroom community (set of accepted 
statements) that are true and available without further justifications; 

− It employs forms of reasoning (modes of argumentation) that are valid and 
known to, or within the conceptual reach of, the classroom community; and  

− It is communicated with forms of expression (modes of argument 
representation) that are appropriate and known to, or within the conceptual 
reach of, the classroom community. (p. 107). 

Stylianides’ (2007) definition talks about the classroom community as the 
authority to determine the correctness of a proof. However, the teacher, as 
the representative of the mathematics community, has a special role in the 
endeavor. He needs to be attentive to both – the mode of argument for a 

                                                 
1 The research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 900/06) 
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given statement (such as general proof, counter example, supportive 
example), as well as the mode of argument representation (such as 
numerical, verbal or symbolic), to be able to determine the correctness of a 
justification. 
To what extent are teachers prepared to implement proofs and proving as 
part of their classroom practice? Relatively little is known on teachers' 
subject matter knowledge in this area. Dreyfus (2000), following Healy and 
Hoyles’ (1998) work with high school students, presented 44 secondary 
school teachers with nine justifications to the universal claim “The sum of 
any two even numbers is even”. He found that most secondary school 
teachers easily recognized formal proofs, but had little or no appreciation for 
other types of justifications such as verbal, visual or generic ones. Knuth’s 
(2002b) findings suggest that secondary school teachers recognized the 
variety of roles that proofs play in mathematics. Noticeably absent, however, 
was a view of proofs as tools for learning mathematics. Many of the teachers 
held limited views of the nature of proof in mathematics and demonstrated 
inadequate understandings of what constitutes proofs.  
In a different study on in-service high school teachers’ knowledge of 
elementary number theory (ENT), only a third of the 36 teachers provided 
counter examples to the (false) universal statement "All commutative actions 
are also associative" (Zaslavsky & Peled, 1996). 
These studies focused solely either on universal or on existential statements. 
Tirosh (2002) presented the same group of elementary and middle school 
teachers with both universal and existential ENT statements. Tirosh and 
Vinner (2004) analyzed 38 prospective middle-school teachers’ written 
answers to questionnaires on the issues of constructing and evaluating proofs 
and refutations in ENT. They found that about 20% of the prospective 
teachers incorrectly argued that some of the existence theorems in the 
questionnaires are false (e.g., "There exists a real number b so that a + b < 
a"). Furthermore, about half of the prospective middle school teachers 
incorrectly argued that numerical examples that satisfy existential statements 
are just examples and could not be regarded as mathematical proofs. These 
responses suggest that some prospective teachers develop a general view 
that a mathematical statement is true only if it holds for “all cases”, a view 
which is adequate for universal statements but not for existential ones.  
The present study addresses a high school teacher’s knowledge with respect 
to universal and existential statements in the area of ENT. It aims to give a 
preliminary answer to the following two questions. Is the mathematical 
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knowledge of high school teachers sufficient to prove ENT statements? And 
does their knowledge allow the teachers to determine the validity of an 
argument made by their students? 
Note: the work of Tirosh (and Vinner) and Dreyfus differ from the work 
presented here in the population and the mathematical statements.  
METHOD 
Participants 
A group of 50 high school teachers participated in the research. All teachers 
had some experience teaching in high school. Ms R was one of the teachers. 
Ms R was chosen as focus teacher for this study on the basis of her answers 
to the set of questionnaires below.  
When participating in our project, Ms R had been teaching for five years in a 
high school, working with high-achieving students from a high socio-
economic background. In parallel, she was studying for her Master’s degree 
in mathematics education. The program included a number of mathematics 
courses and a number of psycho-didactical courses.  
Tools  
In one of these courses, the participants' mathematical knowledge was 
analyzed through their written reactions to two questionnaires that dealt with 
six ENT statements. No time-limit was imposed for the work on the 
questionnaires. In this section we briefly describe each of the questionnaires. 

Predicate 
Quantifier 

Always true 
 

Sometimes true Never true 

Universal 

S1. The sum of any 
five consecutive 
natural numbers 
is divisible by 5. 

True/General proof 

S2. The sum of any 
three consecutive 
natural numbers 
is divisible by 6. 
False/Counter 

example 

S3. The sum of any 
four consecutive 
natural numbers 
is divisible by 4. 
False/Counter 

example 

Existential 

S4. There exists a 
sum of five 
consecutive 
natural numbers 
that is divisible 
by 5. 

True/Supportive 
example 

S5. There exists a 
sum of three 
consecutive 
natural numbers 
that is divisible 
by 6. 

True/Supportive 
example 

S6. There exists a 
sum of four 
consecutive 
natural numbers 
that is divisible 
by 4. 

False/General proof 

Table 1. Classification of the six statements 
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The Prove-Questionnaire was intended to identify the participants’ 
production of proofs (validations and refutations) to various (true or false) 
statements. The questionnaire included six ENT statements (statements S1-
S6 in Table 1). The statements were chosen to include one of three 
predicates (always true, sometimes true or never true), and one of two 
quantifiers (universal or existential). Clearly, the validity of a statement is 
determined by the combination of its predicate and its quantifier. Three of 
the statements are true (S1, S4, S5), and the other three are false (S2, S3, 
S6). Table 1 displays the six statements according to their quantifier and 
predicate; their truth value as well as a suitable proof method are also 
indicated. The participants were asked to examine each of the statements, to 
determine whether it is true or false, and to prove their claim.  
The True or False-Questionnaire was intended to check the participants’ 
identification of the correctness of 43 justifications for the six statements 
they had proven before, between six and nine justifications for each 
statement, using numerical, verbal or symbolic modes of arguments 
representations. For each justification, the participants were asked to 
determine whether it verifies (refutes) the statement, and to explain their 
evaluation. The justifications were presented as if they were written by 
students in various modes of argument representations. 
In analyzing teachers’ answers to the first and second questionnaire we 
related to the modes of argumentations as well as to the mode of argument 
representations.  
RESULTS AND DISCUSSION 
In this section we first present the participants' answers to the Prove-
Questionnaire, with examples of Ms R’s proofs. Then we discuss the 
participants' answers to the True or False-Questionnaire. Here we narrow 
the discussion to five justifications which relate to two statements – S1 and 
S6. We chose these two statements because they require general proofs. We 
present in detail the answers of Ms R to each justification, followed by a 
brief description of the results for all participants with regard to the same 
justifications. 
Prove-Questionnaire  
All the teachers produced correct proofs to each of the six statements. That 
is, the modes of argumentation the teachers chose for each statement were 
appropriate. Their proofs were presented in one of two modes of argument 
representation – symbolic or numeric (see Table 2). 
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All participants used the symbolic mode of argument representation for 
statements S1 and S6, which required a general mode of argumentation. 
About half of the participants produced numerical examples to refute the 
universal statements S2 and S3, and the majority of the participant provided 
a single numerical example to validate the existential statements S4 and S5. 
None of the participants provided several examples to prove or refute a 
statement. These findings indicate that the participants who used numerical 
examples knew when an example is sufficient for proving a statement. 

 S1 S2 S3 S4 S5 S6 
Numeric --- 50 44 72 80 --- 
Symbolic 100 50 56 28 20 100 

Table 2: Percentages of modes of argument representation produced by the 
participants (N=50) 

We present Ms R's proof for statement S1 which is a universal, always true: 
Let’s denote five consecutive numbers by a, a+1, a+2, a+3, a+4. Their sum is: 
a+a+1+a+2+a+3+a+4 = 5a+10.  
(5a+10):5 = a+2. a+2 is a natural number for any a that is a natural number. 
Therefore the statement is true. 

As we can see, the proof that Ms R provided related to all the cases in the 
domain, used correct inference rules, is concise, and thus exemplifies a 
sound proof. 
Ms R’s proof for statement S6, an existential, never true statement shows 
similar characteristics: 

Let’s check: a is a natural number. (a+a+1+a+2+a+3):4=(4a+6):4 
We divide the last expression by 2, obtaining (2a+3):2. But, 2a+3 is an odd 
number (the sum of even, 2a and odd, 3), and therefore is not divisible by 2. 
The statement is not true.   

Again Ms R correctly identified the need for a general mode of 
argumentation, and used a symbolic mode of argument representation.  
True or False-Questionnaire – Ms R’s explanations.  
We now focus on the two statements that required general proofs, meaning 
that the general mode of argumentation should be used. Yet, such an 
argument can be displayed in at least two modes of argument representation 
– verbal and symbolic. Five sets of justifications, Ms R’s judgments, and her 
explanations are presented. A short discussion follows each set.  
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Example 1: Verbal justification to statement S1 and Ms R’s explanation 
The given correct justification: 

Moshe claimed: I checked the sum of the first five consecutive numbers: 
1+2+3+4+5=15 is divisible by 5. The sum of the next five consecutive 
numbers is larger by 5 than this sum (each number is bigger by 1 and therefore 
the sum is bigger by 5), and therefore this sum is also divisible by 5. And so on, 
each time we add 5 to a sum that is divisible by 5, and therefore we always 
obtain sums that are divisible by 5. Therefore the statement is true. 

Ms R's judgment: Moshe’s argument is not correct. 
Ms R’s explanation 

Moshe checked the case 1+2+3+4+5=15, which can be accidentally true. In 
proving one needs to generalize, and therefore Moshe’s justification is not 
correct. 

From Ms R’s explanation we can learn that she correctly identified the mode 
of argumentation needed for proving S1. Yet, she failed to notice the 
coverage aspect in Moshe’s justification. 
Example 2: Verbal justification to statement S1 and Ms R’s explanation 
The given correct justification 

Mali claimed: I first tried the first ten examples of 5 consecutive numbers:
 1+2+3+4+5=15  2+3+4+5+6=20   3+4+5+6+7=25  
 4+5+6+7+8=30 5+6+7+8+9=35 6+7+8+9+10=40  
 7+8+9+10+11=45          8+9+10+11+12=50  
 9+10+11+12+13=55     10+11+12+13+14=60. 
I saw that the statement is true for the first ten. All other sums of five 
consecutive numbers are obtained by adding multiples of 10 to one of the listed 
sums (for instance, the sum 44+45+46+47+48 is obtained by adding multiples 
of 10, 5 times 40, to the sequence: 4+5+6+7+8 that I checked before). Since 
multiples of 10 are also divisible by 5, the statement is true. 

Ms R's judgment: Mali’s argument is not correct. 
Ms R’s explanation 

Here also there is no generalization to all the natural numbers, and therefore this 
is incorrect. It is not a proof. 

From Ms R’s explanation in this case we can learn that Ms R is concerned 
with the mode of argumentation. She did not identify the cover aspect in 
Mali’s correct verbal justification.  
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Example 3: Symbolic justification to statement S1 and Ms R’s explanation 
The given incorrect justification 

Ayala claimed: Among any five consecutive numbers, there is one that is 
divisible by 5. Let’s look at a sequence of five consecutive numbers : 5x,  5x+1,  
5x+2,  5x+3,  5x+4  (5x is divisible by 5). The sum of this sequence is: 
5x+(5x+1)+(5x+2)+(5x+3)+(5x+4)= 25x+10, and 25x+10 is divisible by 5 
for any x. Therefore the statement is true. 

Ms R's judgment: Ayala’s argument is correct. 
Ms R’s explanation 

x represents any number, and therefore the proof  is general. 

Ms R’s explanation in this case relates to two important observations. x 
represents any number, and in this sense the justification is general. 
However, 5x represents a multiple of five, and thus the sequence 1, 2, 3, 4, 5, 
for instance, is not included. Hence, Ayala’s justification is correct for only a 
subset of the cases that one needs to relate to in order to prove S1. Ms R 
failed to notice this flaw in Ayala’s justification. 
Example 4: Verbal justification to statement S6 and Ms R’s explanation 
The given correct justification 

Moshe claimed: I checked the sum of the first four consecutive numbers: 
1+2+3+4=10, ten is not divisible by 4. The sum of the next four consecutive 
numbers is obtained by adding 4 to this sum (each of the four numbers in the 
sum grows by 1, so the sum grows by 4). It is known that adding 4 to a sum that 
is not divisible by 4 will yield a sum that is not divisible by 4 either. And so on, 
each time we add 4 to a sum that is not divisible by 4, and therefore we always 
obtain sums that are not divisible by 4. Therefore the statement is not true. 

Ms R's judgment: Moshe’s argument is not correct. 
Ms R’s explanation 

Moshe chose an example, and on the basis of this example he concluded that 
there are no such four numbers. But maybe if he would have picked up four 
other numbers it could have been correct. 

Once more, Ms R's reaction exemplifies her view that Moshe’s verbal 
explanation is an example. Again she correctly determined that for this 
statement an example is not an appropriate mode of argumentation.  
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Example 5: symbolic justification to statement S6 and Ms R’s explanation 
The given incorrect justification 

Ayala claimed: Among any four consecutive numbers, there is one that is 
divisible by 4. Let’s look at a sequence of four consecutive numbers : 4x,  4x+1,  
4x+2,  4x+3 (4x is divisible by 4). The sum of this sequence is: 
4x+(4x+1)+(4x+2)+(4x+3) = 16x+6. 16x is divisible by 4 for any x, while 6 is 
not divisible by 4. So, the sum 16x+6 is not divisible by 4. Therefore the 
statement is not true. 

Ms R's judgment: Ayala’s argument is correct. 
Ms R’s explanation 

Ayala proved the claim for all four numbers, and hence it is not possible to 
show that there are four numbers, hence the justification is correct. 

The same phenomenon as in example 3 is evident again in Ms R’s reaction. 
On the one hand, it shows that she fully understands the mode of 
argumentation needed, but on the other hand she fails to recognize whether 
the given justification carries the general aspect needed.  
It seems that for Ms R, the symbolic mode of argument representation, 
assures that the cover aspect of the proof is taken care of. Also, for Ms R, a 
verbal mode of argument representation is judged to be merely a numerical 
example.  
One may wonder whether Ms R is unique in her judgments. Let’s return to 
the entire population of 50 participants and check how many teachers made 
similar choices as Ms R. 
For the first statement (S1), 34 percent of the participants rejected the correct 
verbal justifications (Examples 1 and 2), on the ground that they are not 
general, and at the same time accepted the incorrect symbolic justification 
(Example 3), on the ground that it is general. As Ms R, these teachers 
correctly identified the mode of argumentation needed for each statement. 
For the last statement (S6), 26 percent of the participants rejected the correct 
verbal justification (Example 4), on the ground that it is not general, and at 
the same time accepted the incorrect symbolic justification (Example 5), on 
the ground that it is general. Also in this case, the teachers correctly 
identified the mode of argumentation needed for each statement. 
Twenty percent of the participants were consistent in their answers, that is 
made the same choices as Ms R in the cases of the five justifications 
presented above.   
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SUMMING UP AND LOOKING AHEAD 
The present study addressed the following two questions. Is the 
mathematical knowledge of high school teachers sufficient to prove 
mathematical statements from the field of elementary number theory? And 
does their knowledge allow the teachers to determine the validity of an 
argument made by their students?  
Our findings indicate that the participants were able to produce correct 
proofs and refutations to the statements presented. While the teachers chose 
correct modes of argumentation for each statement, it was evident that they 
were concerned with this aspect in the second questionnaire.  
The picture emerging from the True or False-questionnaire seems more 
complex. About a third of the teachers failed to identify as universal the 
general-cover aspects of the given arguments in verbal modes of 
representation. These findings substantiate similar findings reported by 
Dreyfus (2000), that teachers tend to perceive verbal proofs as deficient 
because they lack symbolic notations. However, Dreyfus (2000) found that 
teacher tended to reject verbal justifications. Our findings indicate that 
teachers had difficulties in understanding verbal justifications, but they did 
not reject them as such. Teachers’ difficulties with verbal justifications are 
particularly worrying in light of the results reported by Healy & Hoyles 
(2000), namely that high school students not only preferred verbal proofs 
due to their explanatory power but also that their verbal arguments were 
more often deductively correct than their arguments in other modes of 
representation, yet at the same time they expected to get low grades for such 
proofs.  
A quarter of the participants failed to identify when symbolic justifications 
did not cover all cases in the domain. These findings substantiate findings 
reported by Knuth (2002b): "In determining the argument's validity, these 
teachers seemed to focus solely on the correctness of the algebraic 
manipulations rather than on the mathematical validity of the argument” (p. 
392). When being presented with an algebraic justification, the teachers' 
focus was on the examination of each step, ignoring the need to evaluate the 
validity of the argument as a whole.    
The everyday practice of teachers involves a constant evaluation of students’ 
justifications for statements. It is likely that verbal or symbolic justifications 
of the kinds presented in our study, will emerge during interactions with 
students. Therefore, it is important that teachers will be familiar with verbal 
justifications and able to judge their validity. 
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MATHEMATICS TEACHERS’ REASONING FOR REFUTING 

STUDENTS’ INVALID CLAIMS  
Despina Potari*,  Theodossios Zachariades* and Orit Zaslavsky** 

*University of Athens, ** Technion - Israel Institute of Technology 
This study investigates secondary school mathematics teachers’ reasoning for 
refuting students’ invalid claims in the context of hypothetical classroom scenarios. 
The data used in this paper comes from seventy six teachers’ responses to a student’s 
invalid claim about congruency of two given triangles and from interviews with a 
number of them. Some teachers responded to the claim by trying to refute it. Two 
main approaches to refuting the student’s claim were identified: 1. by using known 
theorems; 2. by using counterexamples. Teachers’ difficulties to generate correct 
counterexamples were traced. Moreover, a rather narrow meaning of the theorems 
and their use to refute invalid claims was manifested.       

INTRODUCTION 
Reasoning and proof are considered fundamental aspects of mathematical practice 
both in the practice of mathematicians and in the practice of students and teachers 
(Hanna, 2000). A large number of studies in mathematics education have explored 
students’ justifications and proof strategies (e.g., Healy & Hoyles, 2000; Harel & 
Sowder, 1998). Refuting conjectures and justifying invalid claims requires reasoning 
that goes beyond the syntactic derivations of deductive proof which has been 
traditionally the focus of high school mathematics. It mainly involves the generation 
of counterexamples, the development of logical arguments that are grounded on 
exploration and experimentation, which are related to the construction of 
mathematical meaning and understanding. Balacheff (1991) discusses the diversity of 
ways of dealing with a refutation by referring to the epistemological work of Lakatos 
(1976) and to his own experimental study with high school students. Lin (2005) also 
demonstrates the complexity of the process by identifying the different types of 
arguments that secondary school pupils developed to refute false conjectures.  
The process of evaluating and refuting students’ claims is central to teacher practice.  
This often requires the teacher to give on the spot appropriate explanations that often 
involve the use of examples or counterexamples. Although the process of 
exemplification is highly demanding it has not been extensively investigated with 
regard to the teacher (Bills, Dreyfus, Mason, Tsamir, Watson & Zaslavsky, 2006). 
Desirable choice of examples depends on teacher’s subject matter knowledge 
(Rowland, Thwaites & Huckstep, 2003) on her teaching experience (Peled & 
Zaslavsky, 1997) and on her awareness of students’ prior experience (Tsamir & 
Dreyfus, 2002). The generation of examples and counterexamples in geometry gets a 
special meaning as the visual entailments of examples pose certain constraints (Zodik 
& Zaslavsky, 2008). In this paper, we investigate how teachers respond to students’ 
invalid claims in the context of Euclidean geometry.  
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THEORETICAL BACKGROUND 
We briefly present below the main theoretical constructs that framed our study. These 
include teacher knowledge, the process of refutation, and the nature and use of 
counterexamples. 
The process of evaluating and refuting students’ invalid claims strongly relates to 
mathematics teacher knowledge. Stylianidis and Ball (2008) studied the 
characteristics of teacher knowledge for reasoning and proof. Zodik and Zaslavsky 
(2008) also attempted to capture the dynamics of secondary mathematics teachers’ 
choice and generation of examples in the course of their teaching. They offer an 
example-based teaching cycle with respect to teacher knowledge, the planning stage 
and the actual lesson.  
The process of refutation has been mainly studied under the epistemological 
framework of Lakatos (1976) (e.g., Balacheff, 1991; Larsen & Zandieh, 2007). Lin 
(2005) developed a categorisation of students’ refutation schemes. Accordingly, he 
distinguished between rhetorical arguments (reasons relative to the person spoken to), 
heuristic arguments (reasons taking into account the constraints of the situation), and 
mathematical proofs (the process of generating correct counterexamples).  
Peled & Zaslavsky (1997) distinguished between three types of counterexamples 
suggested by mathematics teachers: specific, semi-general and general examples. 
Semi-general and general examples offer some explanation and ideas how to generate 
more counterexamples. Related to teachers’ generation of counterexamples is the 
theory of personal example spaces, which encompasses examples that are accessible 
to an individual in response to a particular situation (Bill et al, 2006). Zazkis & 
Chernoff (2008) introduced the notions of pivotal example and bridging example and 
highlighted their role in creating and resolving cognitive conflict.   
The study reported here is part of a larger study that investigates teachers’ ways of 
responding to students’ false claims. In this paper, we explore the different types of 
arguments that teachers use in dealing with an invalid claim in the context of 
geometry, an area where research is rather scarce. 
METHODOLOGY 
Seventy six teachers who were all candidates for a Masters in Mathematics Education 
programme participated in the study. Six of them were primary school teachers with 
an education degree, while the rest had a mathematics degree. Thirty of these were 
secondary school practicing mathematics teachers.  
The teachers took a three hour exam as part of the selection process for the Masters 
programme. In this exam they had to respond in writing to five tasks in which they 
were asked to react to hypothetical teaching events. Four of these hypothetical events 
were related to the process of dealing with students’ arguments and claims. Their 
written responses were analyzed from both mathematical and pedagogical 
perspectives. On the base of this analysis, 45 teachers were interviewed individually 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 282



  
in order to explore further their reactions and justifications. Each interview lasted 
about 15-30 minutes. One researcher interviewed the teachers while another one took 
notes of the conversation. Since these interviews were part of the selection process, 
we refrained from using any audio or video recordings, in order to avoid negative 
effects on the candidates.  
In this paper we analyse the data based on the test and the first set of interviews 
concerning one of the tasks. 
The task 
The task was the following: 

In a Geometry lesson, in grade 10, the teacher gave the following task: 
Two triangles ABΓ and EHZ have BΓ=HZ=12 and AB=EH=7 and the angles AΓB and EZH 
equal to 30 degrees. Examine if the two triangles are congruent. 
Two students discussed the above task and expressed the following opinions: 
Student A: The two triangles have two sides and an angle equal. Therefore they are 
congruent. 
Student B: We know from the theory that two triangles are congruent when they have two 
sides and a contained angle equal. Therefore, the given triangles are not congruent.  

If the above dialogue took place in your classroom, how would you react? 

The task refers to a hypothetical classroom scenario which focuses on issues of 
learning and teaching mathematics. Further discussion about the importance of this 
type of tasks as a research tool for exploring teachers’ thinking can be seen in Biza, 
Nardi & Zachariades (2007). This task was based on an example discussed and 
analysed by Zodik & Zaslavsky (2007). Its mathematical content, the properties of 
the triangles and their congruence, is part of the Euclidian Geometry course taught in 
grade 10 in Greek high schools. In the task, student A expresses his belief that if two 
triangles have two sides and one angle that are respectively equal then they are 
congruent. He seems to over-generalize the theorem “if two triangles have two sides 
and the contained angle that are respectively equal then they are congruent.”  

 

Figure 1: A geometric construction of a counterexample 
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There are at least three different approaches to refute the claim of this student. The 
first one is to provide a specific counterexample based on a geometric construction 
using a ruler and compass (Figure 1). 

In this case we may continue and prove a general geometric theorem based on the 
geometrical construction, namely, that two sides (a and b, were a>b) and the angle 
(β) opposite the smaller side determine exactly two distinct triangles that are not 
congruent, except for a special case where ( )β = bsin a . In the latter case the triangle 
is necessarily a right-triangle, therefore it is uniquely determined, that is, all triangles 
with these givens are congruent. The second approach is to prove this general 
theorem and apply it to the specific given case. The third approach is the use of the 
sine and cosine laws in trigonometry. By applying the cosine rule for the given angle, 
we determine the third side, and find that there are two possible values for its length. 
By applying the sine law we find that there are two possible angles opposite the 
larger side (a) – an acute one and its supplementary angle. An interpretation of this 
calculation and the verification of the existence of triangles with these sides or angles 
lead to the conclusion that there are two (and only two) distinct non-congruent 
triangles satisfying the givens.  

RESULTS 
Classifying teachers’ justifications 
In this section, we present a classification of teachers’ justifications based on their 
written responses. Out of the seventy six mathematics teachers three did not reply 
while eight considered the given triangles congruent. The remaining sixty five 
teachers acknowledged that the given triangles were not necessarily congruent. Sixty-
three of them gave an explicit justification to their assertion. These justifications were 
grouped in categories which are presented in the tree diagram in Figure 2. The 
numbers in brackets indicate the number of teachers' responses that fall in each 
category. 
Out of 63 teachers, 18 justified their claim by drawing on mathematical theorems 
relevant to the problem and 45 asserted that a counterexample was needed to justify 
their claim.  
Reasoning based on known theorems:  
As mentioned above, this type of responses was manifested by 18 teachers. Only two 
gave a full valid proof. The rest gave invalid proofs that included proof-like 
arguments.  
Valid proof. Interestingly, although the context is geometry, the two teachers who 
gave valid proofs based them on trigonometry. One of them (T64) used the sine rule, 
and the other (T32) used the cosine rule, as described earlier.  
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Figure 2: Mathematics teachers’ justifications of the assertion that the two given 
triangles are not necessarily congruent 

Invalid proof-like arguments. The remaining sixteen teachers provided invalid proof-
like arguments to support their claim by maintaining that none of the known theorems 
about the congruence of two triangles applies in this case. The following example 
indicates the latter case: “Student A replied without considering the known criteria for 
congruence of triangles. I would encourage him to draw the two triangles so that to realise 
that these criteria cannot be applied” (T10). These teachers believed that this reasoning 
offers a valid proof for refuting student A’s claim.  
Reasoning based on counterexamples: 
This type of responses was manifested by 45 teachers. Only 11 gave a specific 
counterexample with correct justification.  
General reference to a counterexample. Eight teachers only made reference to the 
need to give a counterexample by stating that they themselves or their students would 
give a counterexample. For example, T23 simply mentioned that “... to convince him 
(Student A) we could show him some triangles that have two sides and one angle equal but 
are not congruent” while T18 suggested asking the students: “... to experiment with the 
shapes and to make many different trials. So, Student A would see a good counterexample 
that would contradict his view”. 
Specific counterexamples: The remaining 37 teachers in this category, constituting 
half of the participants, gave a specific counterexample. Twenty of them provided 
incorrect counterexamples. For example, some sketched two triangles that appeared 
to satisfy the given conditions and claimed that these triangles were not congruent 
although in their drawing these triangles seemed congruent. Thus, we consider this to 
be non-appropriate examples. Other examples had too many constraints - thus were 
non-existent. For example, T72 drew two triangles that seemed symmetrical in his 

Based on known 
theorems (18) 

Reasoning for refuting 
Student A's claim (63) 

Based on 
counterexamples (45) 

Valid proof (2) Invalid proof-like 
arguments (16)

 general reference to a 
counterexample (8) 

Specific counterexample (37) 

Correct with 
justification (11) 

Incorrect (20) Seemingly correct with 
no justification (6)
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attempt to produce two triangles that were not congruent (Figure 3), however, they 
seemed congruent. 

 
Figure 3: The drawing of T72 
Some teachers considered the variation of a pair of angles but without giving specific 
measures. Others drew two triangles by attributing specific values to the angle 
contained between the two given sides. For example, T74 wrote: “ I would ask the 
students to make two triangles ABΓ and EHZ with BΓ=ZH=12, AB=EZ=7, the angles AΓB 
and EHZ equal to 30 degrees, the angle ABΓ equals 90 degrees and the angle EZH equals 
45 degrees”. In both cases, as it appeared also from the interviews and will be 
analysed further below, several teachers did not think about the existence of the 
suggested triangles and did not notice that they were suggesting non-existing cases.  
Six teachers gave counterexamples that were seemingly correct with no justification. 
They drew two triangles which satisfied the given conditions for which the angles 
opposite to the sides of length 12 seemed supplementary, like in the appropriate 
counterexample. They claimed that this was a counterexample but did not give any 
justification for their claim. Finally, eleven teachers gave a correct counterexample 
with justification by constructing geometrically the two triangles that had the given 
elements and were not congruent. Some of them suggested to explore further with the 
students the situation and to formulate relevant theorems. For example, after the 
geometrical construction of a counterexample T33 wrote: “I would ask the students to 
try to prove that if one triangle has two sides and the angle opposite to one of these sides 
equal to the corresponding sides and angle of another triangle, then the corresponding 
angles that are not contained in the two sides are either equal or supplementary”. 
Emerging epistemological issues 
The issue of existence of a (counter)example 
As shown in Figure 2, over one third of the teachers (26) had not considered the 
problem of existence in their initial responses. In the interviews, the teachers who had 
not justified the process of constructing a counterexample as well as those who gave 
an incorrect example, were asked about its existence: “How do you know that the 
triangles you have drawn exist?”. Some of them argued for the existence of their 
counterexample by inferring from a familiar theorem, recalling an image, or 
describing the drawing process. Following are some examples of their arguments: 
“I have seen this counterexample in a textbook” (T32, recalling an image) 
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“If I remember well, there is a theorem that says that the non-contained angles are equal or 
supplementary”. (T40, inferring from a theorem) 

“The sum of their angles is 180 degrees...They can be constructed...I can vary the angles” 
(T69, inferring from a theorem) 

“I made them; I measured its sides with a ruler”. (T30, describing the drawing process) 

When asked to consider the issue of existence, most of the teachers responded 
immediately that they had to check the existence of the suggested triangles. However, 
there were some who seemed to believe that the question about the existence of a 
triangle with specific properties had no meaning. Typical responses were: 
“Yes, why can’t we? Do we have to prove it?” (T46) 

“Is it possible not to exist?” (T60) 

“I thought that it is sure that there are two triangles (satisfying the given conditions) which 
are not congruent. So, I opened a bit the angle and I moved the side to that direction.” (T73)  

Another issue that emerged and was related to the problem of existence was the 
number of possible counterexamples. There were teachers who believed that there 
was more than one counterexample and in some cases they described a process of 
generating an infinite number of triangles (for example, T69, T73 mentioned above). 
This finding concurs with the findings of Zodik & Zaslavsky (2007). 
During the interviews, we observed that some of these teachers started to think about 
ways of constructing appropriate counterexamples. For example, T39 sketched two 
triangles and commented: “If we draw on the board two triangles ABΓ and EZH with the 
given elements and the angles ABΓ and EZH to be acute - one smaller than the other – it is 
easy to verify by using transparent paper that the two triangles are not congruent”. In the 
interview she formed a new hypothesis that: “if in both triangles (satisfying the given 
conditions) all angles are acute, they are congruent while they must be different if one 
triangle is acute-angled and the other obtuse.”  Later in the interview, she used the sine-
rule trying to prove her hypothesis. However, she did not manage to construct 
geometrically the suggested triangles. On the other hand, T32 had given as a 
counterexample two triangles, one right-angled and the other isosceles. In the 
interview she initially recalled a known theorem “that one pair of angles can be equal or 
supplementary” and finally she gave a correct geometrical construction of the 
counterexample.  
The issue of over-reliance on familiar criteria  
Another issue that emerged from our data was the use of theorems for justifying 
refutable (invalid) claims. A number of teachers believed that the non applicability of 
the known relevant theorems implied that the claim was wrong. In particular, some 
teachers concluded that the two triangles were not necessarily congruent as none of 
the three commonly used criteria about the congruence of triangles could be applied. 
For example, in his written response T11 reminded the (hypothetical) student these 
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three criteria, and added that “the problem statement does not satisfy the criterion S-A-S 
... so from the given data we cannot conclude that the two triangles are congruent”. The 
above argument was the only one that the teacher gave for justification. T47 also 
expressed a similar view in his written response. In the interview, although this belief 
was challenged by one of the researchers, it seemed to be rather strong as 
demonstrated in the following extract: 

T47:  The two triangles are not necessarily congruent 
R:  How do you know this? 
T47:  We cannot apply the criterion S-A-S.  
R:  Ok, a known criterion cannot be applied. But how do you know that 

there is no other way to prove the congruence of the two triangles? 
T47:  We cannot prove the congruence with the criteria we teach. 

In the above cases, the teachers seem to base their reasoning on the principle that we 
can infer that two triangles with given properties are congruent only if these 
properties satisfy one of the three commonly used criteria (S-S-S, S-A-S and A-S-A). 
So, since these conditions were not explicitly given in the task, some teachers 
(falsely) inferred that these triangles cannot be congruent, while others claimed that 
they were not necessarily congruent. Although the latter claim may reflect legitimate 
logical inference, it may also have flaws and lead to wrong conclusions. For example, 
if the length of shorter side of the two triangles of our problem were 6 instead of 7, 
then the above kind of reasoning would lead to the conclusion that the two triangles 
are not necessarily congruent, while in fact, in this case the two triangles are right-
angled and thus are indeed congruent.  
It should be noted that even though the above way of refuting invalid claims is not a 
mathematical valid proof, in some cases it can be used as a tool for posing 
conjectures. For example, in his written response T21 initially stated that the known 
criteria could not be applied and then gave a geometrical construction of the 
counterexample. 

CONCLUDING REMARKS 
From the seventy six mathematics teachers of our study only thirteen refuted 
correctly the invalid claim of student A, eleven by constructing a counterexample and 
two by using theorems. Some of the characteristics of teachers’ reasoning that were 
identified in this study are similar to those reported by Lin (2005) in the case of 
students. For example, there were teachers who confirmed the invalid claim, others 
who suggested the possibility of a counterexample without generating it, and few 
who actually constructed a counterexample accompanied by a mathematical proof.  
In our study, teachers seemed to draw on their personal example spaces in order to 
generate counterexamples. It should be noted that in the case of Student A's (false) 
claim, a carefully thought through construction of an appropriate counterexample is 
needed. Teachers who just randomly sketched two triangles were not able to come up 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 288



  
with an appropriate counterexample. In this problem, there is only one 
counterexample. This counterexample can be seen according to Mason and Pimm 
(1984) as a generic example, in the sense that it can reflect and lead to the general 
case (as illustrated in Figure 1). Similarly, in terms of Zaslavsky and Peled (1997) 
this counterexample has a high explanatory power. However, thinking of it for the 
first time turned out to be a strong demand on the teachers. 
The two main phenomena that emerged from our study should be of great concern: 
overlooking the question whether an example exists, and over-relying on familiar 
theorems and criteria. Our findings illustrate how these two phenomena may lead to 
invalid inferences. Similar to Zodik and Zaslavsky's (2008) findings, there were 
several instances where teachers considered a non-existing example as if it existed, 
and did not seem to be aware of this issue at all. The second phenomenon reflects 
teachers' beliefs that a claim can be refuted if “all” the relevant theorems that they 
know (mostly those that are included in the school textbooks) cannot be applied. This 
conception indicates a misleading epistemological view of theorems and their status 
in mathematical reasoning. 
In this paper, we focused mainly on teachers' mathematical knowledge as reflected in 
their responses. Pedagogical aspects of their knowledge that emerged from our data 
have not been discussed here. These aspects may provide a more comprehensive 
account of what is entailed in dealing with students' invalid claims.  
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STUDENT JUSTIFICATIONS IN HIGH SCHOOL MATHEMATICS 
Ralph-Johan Back, Linda Mannila and Solveig Wallin 

Åbo Akademi University, Finland  

In this paper, we continue our previous work on evaluating the use of structured derivations in the 
mathematics classroom. We have studied student justifications in 132 exam solutions and described 
the types of justifications found. We also discuss the results in light of Skemp’s (1976) framework 
for relational and instrumental understanding. 

Keywords: student justifications, structured derivations, high school, instrumental and relational 
understanding 

INTRODUCTION 

The ability to justify a step in, for instance, a proof can be considered a skill that needs to be 
mastered, at least to some extent, before proof is introduced. In a wider sense, proof can even be 
regarded as justification (Ball and Bass, 2003). Unfortunately, students are not used to justify their 
solutions (Dreyfus, 1999). It is common for teachers to ask students to explain their reasoning only 
when they have made an error; the need to justify correctly solved problems is usually de-
emphasized (Glass & Maher, 2004). Consequently, without the explanations, the reasoning that 
drives the solution forward remains implicit (Dreyfus, 1999; Leron, 1983).  

A previous study (Mannila & Wallin, 2008) indicated that high school students can improve their 
justification skills in one single course. In this paper, we will present the results from a follow-up 
study, focusing on the types of justifications given by the students. We will first discuss some 
related work and also give a brief introduction to the approach used when teaching the course. The 
main research questions are the following: What types of justifications do students give in a 
solution? Do the types of justifications change as the course progresses, and in that case how? 

RELATED WORK 

Justifications as a condition for proof 

The importance of proof and formal reasoning for the development of mathematical understanding 
is also recognized by the National Council of Teaching Mathematics (NCTM), which issues 
recommendations for school mathematics at different levels. According to the current document 
(NCTM, 2008), students at all levels should, for instance, be able to communicate their 
mathematical thinking, analyze the thinking of others, use mathematical language to express ideas 
precisely, and develop and evaluate mathematical arguments and proof. While discussing 
mathematical ideas is important, communicating mathematical thinking in writing can be even more 
efficient for developing understanding (Albert, 2000). 

To think mathematically, students must learn how to justify their results; to explain why they think 
they are correct, and to convince their teacher and fellow students. “[M]athematical reasoning is as 
fundamental to knowing and using mathematics as comprehension of text is to reading. Readers 
who can only decode words can hardly be said to know how to read. … Likewise, merely being 
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able to operate mathematically does not assure being able to do and use mathematics in useful 
ways.” (Ball & Bass, 2003; p. 29)  

Justifications are not only important to the student but also to the teacher, as the explanations (not 
the final answer) make it possible for the teacher to study the growth of mathematical 
understanding. Using arguments such as “Because my teacher said so” or “I can see it” is 
insufficient to reveal their reasoning (Dreyfus, 1999).  A brief answer such as “26/65=2/5” does not 
tell the reader anything about the student’s understanding. What if he or she has “seen” that this is 
the result after simply removing the number six (6)? 

Types of understanding and reasoning 

A review of literature on mathematics education shows that there is an interest in studying the 
distinction between being able to apply a determined set of instruction in order to solve a 
mathematical problem and being able to explain the solution by basing it on mathematical 
foundations. Several frameworks have been presented for investigating types of learning and 
understanding.  

Skemp (1976) discusses two types of understanding named by Mellin-Olsen: relational (“knowing 
both what to do and why”) and instrumental (“knowing what”, “rules without reasons”). People 
who exhibit an instrumental understanding know how to use a given rule and may think they 
understand when they really do not. For instance, getting the correct result when applying a given 
formula is an example of instrumental, not relational, understanding. One typical example can be 
found in equation solving, where students learn to “move terms to the other side and change the 
sign”, without necessarily knowing why they do it.  

Sfard (1991) investigates the role of algorithms in mathematical thinking and discusses how 
mathematical concepts can be perceived in two ways: as objects and as processes. Pirie and Kieren 
(1999) present a theory of the growth of mathematical understanding and its different levels. More 
recently, Lithner (2008) has created a research framework for different types of mathematical 
reasoning, distinguishing between two main types: imitative and creative. Imitative reasoning is 
rote learnt and can be divided into two subtypes: memorised reasoning, where the student, for 
instance, solves a problem by recalling a full answer given in the text book or by the teacher, and 
algorithmic reasoning, where a problem is solved by recalling and applying a given algorithm. The 
other main type, creative reasoning, includes a novel reasoning sequence, which can be justified 
and is based on mathematical foundations. One of the main differences between imitative and 
creative reasoning is that the former does not necessarily involve analytical and conceptual 
thinking, whereas such thinking processes are essential to creative reasoning.  

STRUCTURED DERIVATIONS 

Structured derivations is a logic-based approach to teaching mathematics (Back & von Wright, 
1998; Back & von Wright, 1999; Back et al, 2008a). The format is a further development of 
Dijkstra's calculational proof style, where Back and von Wright have added a mechanism for doing 
subderivations and for handling assumptions in proofs. Using this approach, each step in a 
solution/proof is explicitly justified.  
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In the following, we illustrate the format by briefly discussing an example where we want to prove 
that x2 > x when x > 1.  

• Prove that x2 > x:  task  

-  x > 1    assumption 

||- x2  > x    term 

≡ { Add –x to both sides }  justification 

 x2 - x > 0   term 

≡ { Factorize }        … 

 x(x - 1) > 0 

≡ { Both x and x-1 are positive according to assumption. Hence, their product is also positive 
} 

T 

The derivation starts with a description of the task (“Prove that x2 > x”), followed by a list of 
assumptions (here we have only one: x > 1). The turnstile (||-) indicates the beginning of the 
derivation and is followed by the start term (x2 > x). In this example, the solution is reached by 
reducing the original term step by step. Each step in the derivation consists of two terms, a relation 
and an explicit justification for why the first term is transformed to the second one.  

Another key feature of this format is the possibility to present derivations at different levels of 
detail using subderivations, but as these are not the focus of this paper, we have chosen not to 
present them here. For information on subderivations and a more detailed introduction to the 
format, please see the articles by Back et al. referred to above.  

Why use in education? 

As each step in the solution is justified, the final product contains a documentation of the thinking 
that the student was engaged in while completing the derivation, as opposed to the implicit 
reasoning mentioned by Dreyfus (1999) and Leron (1983). The explicated thinking facilitates 
reading and debugging both for students and teachers. According to a feedback analysis (Back et 
al., 2008b), students appreciate the need to justify each step of their solutions. They also find that 
the justifications makes solutions easier to follow and understand both during construction and 
afterwards. 

Moreover, the defined format gives students a standardized model for how solutions and proofs are 
to be written. This can aid in removing the confusion that has commonly been the result of teachers 
and books presenting different formats for the same thing (Dreyfus, 1999). A clear and familiar 
format also has the potential to function as mental support, giving students belief in their own skills 
to solve the problem. Also, as solutions and proofs look the same way using structured derivations, 
the traditional “fear” of proof might be eased. Furthermore, the use of subderivations renders the 
format suitable for new types of assignments and self-study material, as examples can be made self-
explanatory at different detail levels. 
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STUDY SETTINGS 

Data collection 

The data were collected during an elective advanced mathematics course on logic and number 
theory (about 30 hours in class) that was taught at two high schools in Turku, Finland, during fall 
2007. All in all, twenty-two (22) students completed the course at either school and participated in 
the study (32 % girls, 68 % boys). The students were on their final study year.  

The course included three exams held after 1/3, 2/3 and at the end of the course. The exams were of 
increasing difficulty level, i.e. the first was the easiest and the last the most difficult one. Two 
assignments from each were chosen for the analysis. Hence, we have in total analyzed 132 solutions 
(six solutions for each student) written as structured derivations.  

The assignments analyzed were the following: 

A1: Determine the truth value of the expression (x2 + 3 ≤ 7 ∧ y < x - 4) ∨ x + y ≤ 5, when x = 2 
and y = 4. 

A2:  Solve the equation | x - 4| = 2x - 1. 

A3:  Use de Morgan’s law (¬(p ∧ q) ⇔ ¬p ∨ ¬q) to determine if the expression  
(¬p ∨ ¬q) ∧ (p ∧ q) is a tautology or a contradiction. 

A4:  Prove that b2 - d2 = ad + bc - ab - cd if a + b = c - d. 

A5:  Prove or contradict the following: For any integers m and n, it is the case that if m*n is an 
even number, then both m and n are even. 

A6:  Prove that 2 + 1430 ≡13 106 + 2730. 

The topics covered in assignments A1 and A2 were familiar to the students from previous 
mathematics courses. The aim of these assignments was mainly to let students practice structured 
derivations and writing solutions using the new format.  

The topics covered in the rest of the analyzed assignments (A3-A6) were new to the students. A3 
and A4 focused on logical concepts and manipulation of logical expressions, whereas A5 and A6 
covered number theory.  

Method 

The data collected, i.e. the justifications, were of qualitative nature. Qualitative data are highly 
descriptive, and in order to interpret the information, the data need to be reduced. In this study, a 
content-analytical approach was chosen for this purpose. The basic idea of content analysis is to 
take texts and analyze, reduce and summarize them using emergent themes. These themes can then 
be quantified, and as such, content analysis is suitable for transforming textual material into a form, 
which can be statistically analyzed (Cohen, 2007). 

A first round of the content analysis was done by one of the authors, who analyzed 18 solutions 
from E1 and 24 solutions from E2. This initial coding resulted in a first view of the types of 
justifications. The authors discussed the results and agreed on how to combine the detailed 
justifications into higher-level categories.  Next, all solutions were analyzed using the preliminary 
categories as the coding scheme. The second round analysis showed that the categories found in the 
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initial phase were sufficient for covering all justifications found in the 132 solutions. A quantitative 
approach was then taken in order to be able to illustrate the results graphically.  

The use of both quantitative and qualitative methods has several benefits. Mixed methods avoid any 
potential bias originating from using one single method, as each method has its strengths and 
weaknesses. A mixed methods approach also allows the researcher to analyze and describe the 
same phenomenon from different perspectives and exploring diverse research questions. Whereas 
questions looking to describe a phenomenon (``How/What..?'', our first research question) are best 
answered using a qualitative approach, quantitative methods are better at addressing more factual 
questions (``Do...'', our second research question) (Cohen, 2007).  

RESULTS  

The content analysis revealed five main justification types: 

• Assumption: Referral to an assumption given in the assignment directly or in a rewritten 
format.  

• Vague/broad statement: A very brief and uninformative justification type: “logic” or 
“simplify”.  

• Rule: Referral to a name of a rule or a definition, e.g. the rule for absolute values, tautology, 
congruence etc. In some cases, the justification also included the rule explicitly written out 
in text.  

• Procedural description: An explanation of what is done in the step, i.e. a description 
including a verb. E.g. “add 2x + 4 to both sides”, “move 3 to the other side and change the 
sign” and “calculate the sum”. 

• Own explanation: An explanation for why the step is valid in own words and/or with 
symbols, e.g. ”2k2 + 2k is an integer if k is an integer. Therefore 2(2k2 + 2k) is an even 
integer”. In some justifications a mathematical definition was written out in own words, e.g. 
“2 ≡13 106 because 2 – 106 = -104, 13 | - 104”.  

Figure 1 illustrates the proportion of different justification types found in the assignments 
respectively. The diagram also shows how the types of justification used varied depending on the 
assignment.  

Some justification types are highly assignment specific. For instance, assumptions can naturally 
only be used in assignments were assumptions are present. In such assignments, it is common for 
the assumption to be used only once or twice, and the proportion of this type of justification will be 
rather low. The analysis showed that all students but one were able to handle assumptions correctly 
already in the first exam, i.e. after 1/3 of the course.  

The use of rules can also be considered assignment specific. For instance, when manipulating 
logical expressions, rules become important as these make up the basis for the manipulation. When 
students gave a rule as a justification, most usually stated only the name of the rule, whereas only a 
few also wrote out the rule itself. In the final and most difficult assignment, where the rule was 
central to the solution, a larger proportion of students (46 %) had written it out explicitly, compared 
to those who had only provided the name of the rule (22 %). 
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Figure 1: The proportion of justifications of different types in the six assignments 

In addition to these specific dependencies, the analysis also revealed some other relationships. The 
assignments in the first exam (A1-A2) were not trivial but still familiar to the students (determine 
the value of an expression and solve an equation), who consequently mainly used short 
justifications (vague/broad, assumption, rule). Given the nature of equations, the solutions to A2 
also contained a large proportion of procedural descriptions (“move 3 to the other side).  

In the second exam, students faced assignments (A3-A4) that were not as familiar anymore. In A3, 
students were to make explicit use of logical rules, which, as stated above, naturally has an impact 
on the types of justifications: almost half of all justifications referred to a given rule. The following 
assignment, A4, called for a formal proof (the Finnish high school curriculum does not include 
proofs in any other course than the elective one described in this paper). As the expression used in 
the proof was an equation, the main justification type used was, again, procedural descriptions.  

The third exam (A5-A6) is probably the most interesting one from a research perspective. The 
assignments were in a completely new domain, with which students had no prior experience: 
constructing proofs in number theory. Thus, these assignments have potential to provide insight into 
how students use justifications when adventuring into a new terrain. As indicated in the diagram 
(figure 1), the proportion of own explanations increased, in particular at the expense of the less 
informative justification type “vague/broad”.  

DISCUSSION 

As seen above, the justification types changed throughout the course. Whereas some of the 
variation (e.g. the use of assumptions and rules) is a direct result of the nature of the task at hand, 
some seems to be more related to the perceived level of difficulty.  

For instance, the most noticeable changes are found for “vague/broad” justifications and “own 
explanations”: whereas the former dominate the solutions early on, their frequency decreases 
towards the end as the number of the latter increases. The first exam was easier than the final one, 
and as easy assignments include more “straightforward” steps, students may not have seen the need 
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to justify those steps in any more detail. Rather, students seem to find the need to justify more 
carefully as the assignments become more difficult. Consequently, the occurrence of own 
explanations increase. Similarly, it is understandable that students are reluctant to write lengthy 
justifications when solving tasks similar to tasks they have solved many times before, whereas they 
may feel a need for writing more careful justifications in assignments that deal with new topics. 
This is supported by the results from our feedback study, where students found “extra writing” 
unnecessary for simple tasks (Back et al., 2008b).  

Can justifications aid in assessing understanding? 

Only two justifications types, “own explanations” and “procedural descriptions”, involve students 
writing in their own words. There is an important difference between these types. In a “procedural 
description”, students write what they do, but not why they have chosen or are allowed to do so. 
The “own explanation”, on the other hand, also gives information regarding why the step is valid. 

This is closely related to Skemp’s instrumental and relational understanding (1976). Own 
explanations are clearly relational, but the remaining four types (vague/broad, assumption, rule, 
procedural descriptions) cannot easily be mapped to either type of understanding. We will therefore 
refer to own explanations as “relational justifications” and the other four types as “instrumental 
justifications”.  

Although Skemp argued that instrumental justifications such as “move -3 to the other side” are 
examples of an instrumental approach to understanding, we do not think the situation is as black-or-
white. For instance, a simple justification such as “logic” may be the result of complex thought 
processes. Knowing that students are not keen on writing, one can also assume that students may 
choose to write a short justification even in places where they could have been more expressive in 
order to indicate their understanding. An instrumental justification simply does not reveal enough 
information about whether the student has truly understood what he or she has done. Ruling out the 
possibility of relational understanding in such situations requires more than a mere justification. 

To exemplify this, we now look at three different solutions to an assignment involving absolute 
values. The absolute value rule referred to below is the following: |x| = c ⇔ (x = c ∨ x = -c) ∧ c ≥ 0 

• Tom: instrumental justification, relational understanding   

Tom did not use the rule for absolute values learnt in class, but rewrote the expression in a way 
showing that he had really understood the absolute value concept. The solution was correct and 
indicated a relational understanding of absolute values. 

|x - 4| = 2x – 1 

 { rewrite the absolute value } 

(x – 4 = 2x – 1 ∧ 2x – 1 ≥  0) ∨ (-x + 4 = 2x – 1 ∧ 2x – 1 ≥ 0)  

• Layla: instrumental justification, instrumental or relational understanding  

Layla used the absolute value rule and solved the problem correctly. Despite the correct 
solution, we cannot know whether Layla understood the concept or merely used a rule she had 
learnt that “should work” for this type of problems.  

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 297



  

|x - 4| = 2x – 1 

 { rule for absolute values } 

(x – 4 = 2x – 1  ∨  x – 4 = -2x + 1) ∧  2x – 1 ≥ 0 

• Joe: instrumental justification, instrumental understanding 

Just like Layla, Joe also justified the initial step with “the rule for absolute values”. However, he 
used the rule incorrectly, as he “forgot” the second part of it (the requirement on x).  

|x - 4| = 2x – 1 

 { rule for absolute values } 

x – 4 = 2x – 1  ∨  x – 4 = -2x + 1 

This was a rather common error in our study (made by almost 36% of all students in assignment 
A2). Had Joe had a relational understanding for absolute values, the additional requirement 
would have been clear to him even if he had forgotten what the rule looked like.  

Thus, it seems as if one can in fact conclude that a given instrumental justification is not an 
example of relational understanding – this is the case if the step is incorrect as for Joe above. 
However, doing the opposite, i.e. concluding that an instrumental justification to a correct step is 
relational, is not as straightforward.  

Is a clearly relational approach always needed? 

In high school mathematics, much time is spent on things like solving equations and simplifying 
expressions. Thus, to a large extent it boils down to using rules, and consequently a seemingly 
instrumental approach becomes dominant. However, this is foregone by the teacher explaining the 
theory behind the rules and the definitions. If the student later uses the rules in an instrumental or a 
relational way is up to how well he or she understood the theory. If the underlying concept is not 
clear to the students, the rules are most likely applied without reasons, i.e. instrumentally. One area 
of high school mathematics where relational understanding most likely becomes more evident is in 
textual problems, where students first need to formalize the problem specification. In order to 
correctly specify the problem, the student needs to understand the problem domain and the 
underlying concepts. Relational understanding is naturally also important when constructing proofs.   

Furthermore, sometimes a justification with a seemingly instrumental approach is the best one that 
can be given. Take for example a complex trigonometric expression. Finnish high school students 
have a collection of rules that they can always have with them, even on exams. One can hardly 
require them to start explaining rules in order to be allowed to apply them. What is essential in such 
a situation is that they a) have an underlying understanding for trigonometry, b) know how to apply 
trigonometric rules correctly, and c) are able to manipulate the expression into a form where one of 
the many rules can be applied correctly.  

As another example we can take equation solving and the “add -3 to both sides” type of 
instrumental justification mentioned above. Let us say we have two students: one who understands 
that whenever you have an expression of the form a = b, you can add the same value to both sides 
without changing the truth value of the full expression (a + c = b + c), and another who knows that 
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one should move “lonely numbers” to the other side while changing the sign. Both of these students 
would probably use similar justifications, but only one of them would have a relational 
understanding. This student would, however, hardly write out the rule (a = b  a + c = b + c), 
which would be needed in order for the teacher to be able to distinguish the justification from that 
given by the other student.  

Justifications and validity of steps  

As was described above, a seemingly “correct” justification can lead to an incorrect derivation step. 
This can happen for several reasons, one being the one exhibited by Joe above: not completely 
remembering a rule. Careless mistakes in a step do not seem to correlate with the type or the 
accuracy of the justification. Only a small number of this type of errors was found (in 9 % of the 
assignments throughout all three exams), which was also supported by students’ feedback as they 
pointed out that they made fewer careless mistakes using structured derivations than what they 
usually do (Back et al., 2008b). 

CONCLUDING REMARKS 

The type of justification chosen in a certain situation is closely related to the assignment and/or the 
step at hand. For example, assumptions or rules will not be used in problems where there are no 
assumptions or rules to apply. Our findings suggest that students choose the level of detail in their 
justifications mainly based on the difficulty level of the task at hand: in tasks that are familiar, 
students tend to opt for broad and vague justifications, whereas justifications which say more come 
into play as the topics covered are new and/or the assignments become more difficult. Especially 
justifications written in own words are of great importance to the teacher for understanding a 
solution and the student’s thinking; this is not necessarily the case for vague and broad 
justifications. 

The study presented in this paper is a continuation on earlier qualitative studies on the use of 
structured derivations in education. Previous results indicate that students appreciate the approach 
(“it takes me longer, but I understand better”) and that it improves students’ justification skills as 
soon as during one single course (Mannila & Wallin, 2008). Furthermore, we have found that 
explicit justifications make students think more carefully when solving a problem (Back et al., 
2008b). With this study, we now also have a rather clear picture of how students justify their 
solutions and how the justifications change throughout the course. 

Getting students to clearly document their solutions step by step is a step forward, although 
“judging” the justifications is everything but straightforward. Thus, many questions still remain. Is 
it possible to teach a way of writing “good” justifications? And if we want to try, what characterizes 
such justifications? Another aspect, not considered so far, is related to teachers and course books. 
How do teachers justify their solutions when teaching using structured derivations? How are 
examples justified in texts? In order for students to develop relational understanding, we believe 
that it is essential that examples are explained freely (“using own words”) as often as possible.  
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“IS THAT A PROOF?”:  AN EMERGING EXPLANATION FOR WHY 
STUDENTS DON’T KNOW THEY (JUST ABOUT) HAVE ONE† 
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This paper describes an episode taken from the third year of a design experiment 
aimed at improving the teaching and learning of proof at the university level. In the 
episode, students come enticingly close to having a proof, at least as judged by 
competent outsiders.  However the students themselves, while satisfied with their 
result, abandon it when asked to write up a formal proof.  We offer an analysis of this 
episode and offer questions for further study. 
 
Key words:  Proof, Tertiary Level, Key Ideas, Technical Handle, Design Experiment 

 
INTRODUCTION 
Design experiments, or “developmental research” as this work is often called in 
Europe, are becoming increasingly common, at elementary, secondary, and even 
tertiary education (e.g. Brown 1992, Collins 1999, van den Akker, Branch, 
Gustafson, Nieveen, & Plomp, 1999, Lesh 2002). The goal is to find theoretically 
grounded answers to practical questions of the classroom, done in as natural a setting 
as possible, with as Brown puts it, the “the blooming, buzzing confusion” that one 
can sometimes find in real classrooms, under real pressures, with real constraints and 
opportunities. 
While the potential of merging theory and practice is quite alluring for many reasons, 
the practical and conceptual realities of doing so remain challenging.  As Kelly 
(2002) suggests: if design experiments began in the early 1990’s as a sort of art, they 
are emerging in recent years as a type of science, guided by increasingly rigorous 
methodology and increasingly useful results.  But specifying exactly what this 
science consists in, that is, how to merge research and practice in a mutually 
advantageous way, is still a matter of debate, discussion, and development. 
This paper is an emerging product of a design experiment aimed at improving the 
teaching of proof at the university level.  The research team, consisting of two 

                                         
† This research is supported by NSF grant number DUE-0736762. 
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mathematics educators and three mathematicians, came together with the aim of 
improving the teaching of “Introduction to Proof” courses, a type of course used 
frequently in American universities to help students prepare for the rigor of the 
theoretical courses like abstract algebra and analysis1.  The idea was to use videos of 
students struggling, and eventually succeeding, at proving claims that are known to 
be hard for students in this type of course, as a basis for discussion.  These videos can 
be used both as a professional development tool for teachers who want to better 
understand student difficulties with proof and as a curriculum resource for class 
discussion to help students be more aware about their own mathematical thinking. 
After three rounds of testing and piloting, we now have a fairly stable set of 
curricular materials, which include (1) carefully edited videos of students working on 
proofs that many other students find difficult, (2) materials to help teachers use these 
videos, both for their own understanding of student thinking and for classroom use.  
These materials have been tested in four colleges in the United States in the context 
of “Introduction to Proof” courses taught by members of the research team and their 
colleagues. We also are generating a number of research articles, this being one 
example, that probe questions of mathematical thinking that enhance and/or inhibit 
proof production.  
We consider our particular marriage of theory and practice to be a happy one.  The 
central questions which drive our research—how to reconcile student and faculty 
thinking about proof and proving—grew naturally from our experiences as teachers 
struggling to make the best of our own “Introduction to Proof” courses.  While not 
eliminating common sense and experience as legitimate grounds for interpreting data, 
we felt a real need to move into theoretical territory to help make sense of some of 
the mysteries of mathematical thinking.   
This paper describes one part of this theoretical journey.  We begin by describing an 
episode that our team found particularly compelling.  In the episode, students come 
enticingly close to finding a proof but do not seem to notice that they have done so.  
Rather than convert what outside observers recognize as a “key idea” of a proof into a 
formal proof, they abandon the idea and take a different, and ultimately unsuccessful 
path.  This episode is useful for a starting point in understanding the nature of key 
idea in the process of proof production, but also points to some fuzziness about the 
notion of key idea, which a more theoretical analysis can help clarify. 
 
FRAMING 
The methodology for this project, for which this paper is one small part, follows the 
program set out by Cobb, et al (2003).  The design is highly interactive and 

                                         
1 See Alcock (2007) for a similar project, focusing primarily on professional development, which 
has been successfully piloted in the US and UK. 
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interventionist, involving gathering and indexing of longitudinal data from a number 
of sources, including videos of classroom practice, individual and group interviews 
with teachers and students, journal and email records from the teachers, written 
records of student work, and audio and video records of behind-the-scenes discussion 
among the research team.  Like Cobb, et al, we see this design experiment as a 
“crucible for the generation and testing of theory.”  It is the tangible pressures of 
classroom realities that provide a needed spark for the theory to develop and 
crystallize, and one of the goals of this paper is to make part of that process visible to 
both research and practitioner communities. 
The central research questions involve characterizing the trajectory of proof 
development in a way that both helps us see where students sometimes go wrong and 
also gives some guidance towards how to teach students to prove in a more effective 
way. In particular, as we traced one particular episode in which students struggled, 
came close, and eventually failed to find a proof we wanted to know (1) what were 
the critical “moments” when there was opportunity for the proof to move forward, 
and (2) what is the nature of these moments.  In the end we found three such 
moments, which seem to play a critical role in proof production. These moments do 
not necessarily occur in every proof, nor do they necessarily occur in the order in 
which we present them, but they seem to be critical in the sense that if one is present, 
the proof can move forward in a fairly significant way, and if one is absent, it is quite 
possible that the proof will not move forward (or that a proof will be produced 
without a full sense of understanding). 
The first moment is the getting of a key idea, an idea that gives a sense of “now I 
believe it”2. The key idea is actually a property of the proof, but psychologically it 
appears as a property of an individual (we say that a particular person “has a key 
idea” if it appears that they grasp the key idea of a proof.)  We refer to “a” key idea 
rather than “the” key idea, because it appears that some proofs have more than one 
key idea.  While a key idea engenders a sense of understanding, it does not always 
provide a clue about how to write up a formal proof. 
The second moment, is the discovery of some sort of technical handle, and gives a 
sense of “now I can prove it,” that is, some way to render the ideas behind a proof 
communicable3. The technical handle is sometimes used to communicate a particular 

                                         
2 More elaborated discussions of “key idea” can be found in Raman (2003), Raman & Weber 
(2006), and Raman & Zandieh (in progress).  A key idea can be thought of as a certain kind of 
intuition that has both a public and private character:  public in the sense it can be mapped to a 
formal proof, private in the sense that it is personally understandable as a sort of primary, or prima 
facie, experience.  For a careful discussion about intuitions see Bealer (1992). 
3  The term “technical handle” here is akin to the term “key insight” in Raman & Weber (2006).  
We have chosen to change the term in part because it sounded too similar to “key idea” which has a 
very different character, and in part because the technical aspect of this “moment” seemed central to 
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key idea, but it may be based on a different key idea than the one that gives an ‘aha’-
feeling, or even on some sort of unformed thoughts or intuition (the feeling of 
‘stumbling upon’.)   
The third moment is a culmination of the argument into a standard form, which is a 
correct proof written with a level of rigor appropriate for the given audience.  This 
task involves, in some sense, logically connecting given information to the 
conclusion.  We assume that for mathematicians the conclusion is probably in mind 
for most of the proving process.  But for students, the theorem might sometimes be 
lost from sight, adding a sense of confusion to their thinking processes. 
In the data below we will illustrate how each of these moments occurs in the midst of 
proof production before turning more critically to trying to understand the nature of 
key idea.  
 
THE EPISODE  
The following example illustrates the presence and/or absence of these three 
moments as students work on the following task: 

Let n be an integer.  Prove that if n ≥ 3 then n3 > (n+1)2. 

Students were videotaped working on this task in the presence of the research team, 
and upon their completion, were asked questions about their thinking.  Afterwards, 
the research team watched and discussed the videos.  We were drawn to one part of 
the proof process that turned out to be a genuine mystery—an episode, near the 
beginning, in which the students generate what the faculty identify as a correct proof, 
but what the students, at least at some level, do not recognize as one.  
Details: In the first two minutes of working on this task, the students made an 
observation that the professors identified as a key idea of the proof, namely that a 
cubic function grows faster than a quadratic.  Rather than trying to formalize this 
idea, the students switched to an algebraic approach, what we label as a technical 
handle, to try to get to a proof. They wrote n3 > n2 + 2n + 1 which they manipulated 
into n(n2 – n – 2) > 1 and then (n-2)(n+1) > 1/n. 
The students then noticed that if n ≥ 3 then the terms on the left are both positive 
integers so the product is a positive integer.  And since n is an integer greater than 2, 
the right hand side is going to be between 0 and 1.  They wrote these observations as 

if n ≥ 3 (line break) n-2 > 0 (line break)  n+1 > 0 (line break) 0 ≤ 1/n ≤ 1 

                                                                                                                                       
its nature.  The distinction between “key idea” and “technical handle” might appear at first sight to 
be similar to the distinction Steiner (1978) makes and Hanna (1989) builds on between proofs that 
demonstrate and proofs that explain.  However, it is possible that a key idea gives rise to a proof 
that demonstrates or explains, and a technical handle can also lead to both kinds of proofs.   
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and seemed quite pleased with their reasoning, one student nodding and smiling as 
the other one wrote the last line. 

S2:   Yeah. 

S1:  This is if n is greater than 3, if n is greater than or equal to 3. 

S2:   Yeah….  Cool. 

At this point in the live proof-writing, the three professors were convinced that the 
students had a proof.  They believed that “all” the students needed was a reordering 
of their argument.  To show n3 > n2 + 2n + 1, it suffices to show (n-2)(n+1) > 1/n, 
which one can establish by showing that the left-hand side is a positive integer while 
the right is between 0 and 1.  
However, it turned out that the students, despite being pleased with their argument, 
were less than sure that they were near a formal proof. A professor asked the students 
“Is that a proof?” and S1 replied, “That’s what I’m trying to figure out.”  As the 
students moved to now write up the proof, they switched to a new track, trying a 
proof by contraposition.  This attempt ended up turning into a confusing case analysis 
in which they tried to prove the converse of the contrapositive and investigated many 
irrelevant cases. 
 
AN EVOLVING EXPLANATION 
That students can come so close to a proof without recognizing it is probably familiar 
to most experienced teachers4.  Why the students are not able to recognize that they 
are so close is another, more difficult, question.  Here we show how looking at the 
three “moments” of the proof, described above, allows us to compare what the 
students did in this problem with an idealized version of what faculty might have 
done. 
The moments are represented graphically in Figure 1 below, with the blue line 
representing the “ideal” (professor-like) proving process, and the red line  
representing the students’ process5.  The marks mi indicate the points in the proof at 
                                         
4 Another example can be found in Schoenfeld (1985) where two geometry students have what the 
researcher is convinced is a correct “proof” but when asked to write it up, they draw two columns 
and abandon all their previous work. 
5 In creating this “idealized” version of a proof, we depict a continuity between the key idea and the 
technical handle, although we realize in practice that many proofs are made without the author 
being able to connect the two.  The question about whether there exists such a connection, even if it 
has not been found, is an open one. We also realize that the process of proof development is not 
linear, even for an able mathematician, in many cases.  This picture points out more the over-all 
trajectory of the proof, with minor false-paths ruled out.  Further the heights of the peaks could 
vary. 
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which different moments are achieved: m1 for the key idea, which both faculty and 
students achieved (though the students may not realize this), m2 for the technical 
handle (which students in this case see as disconnected from their key idea), and m3 
for the organization of the key idea and/or technical handle into a clear, deductive 
argument (which in this case the students never reach.) 
Specifically, m1 is recognizing that cubic functions grow faster than quadratic ones. 
m2 is choosing an algebraic approach, factoring the polynomials before and after the 
inequality sign. We label this as a technical handle even though the students do not 
know from the beginning where this might lead6. m3 is connecting the assumption 
that n ≥ 3 with the conclusion that n3 > (n+1)2.  In this case, the students never 
reached m3, and in fact—during their attempt to write a formally accepted proof, they 
seem to lose sight of what they are proving.   
 
 

 
Figure 1:  Comparing student (red) and faculty (blue) proof strategies 

 
In the episode above, the students find two key ideas: one that cubics grow faster than 
quadratics, and another, after students have written (n-2)(n+1) > 1/n, that the right-
hand term is trapped between 0 and 1 while the left grows indefinitely.  Neither of 
these ideas gets developed into a formal proof. The curved line between m1 and m2 
represents how students move towards a technical handle and end up at the second 
key idea.   
                                         
6 The labeling of technical handle here is a bit tricky.  If the students are not themselves aware of 
the way to link their algebraic manipulation to a proof, is it misleading to say they have found a 
technical handle since technically they do not seem to register that they “know” how to prove it.  
We have tentatively labeled this moment as a technical handle anyway, in part because as outside 
observers we can see that this algebraic manipulation could lead to a correct proof. In addition, 
while the students might not see exactly how to extract a formal proof from their algebraic 
arguments, they seem to take their arguments to be convincing and that they have grounds for 
making a formal argument. 
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The crucial distinctions between the “ideal” graph and the “student” graph are the 
breaks at m1 (students do not try to connect their key idea to a technical handle) and 
m2 (students lose sight of the conclusion and end up trying to prove a converse.)  Our 
data indicate that these breaks are not merely cognitive—it isn’t that the students do 
not have the mathematical knowledge to write a proof, since they articulate the 
essence of the proof after three minutes.  The problem is epistemological—they don’t 
seem to understand the geography of the terrain.  Expecting discontinuity between a 
more intuitive argument and a more formal one, the students abandon their near-
perfect proof for something that appears to them more acceptable as a formal proof. 
Of course it is not always possible to connect key ideas to a technical handle, or to 
render a technical handle into a complete proof.  But what distinguishes the faculty 
from the students is that the faculty are aware that this connection is possible, and 
might even be preferable given that sometimes it takes little work—in this case a 
simple reordering of the algebraic argument would suffice for a proof.  As one 
professor in the study said: 

“It became clear that to formalize meant something different to them and to us.  To us, 
formalize seemed to mean ‘simply clean up the details’.  To them, it seemed to mean 
‘consider rules of logic and consciously use one’.” 

Recognizing the difference between radical jumps that need to be made to move 
mathematical thinking forward and local jumps that allow one to delicately transform 
almost rigorous arguments into rigorous ones might be an essential difference that 
mathematics teachers can learn to recognize, diagnose, and communicate to their 
students. 
 
FURTHER QUESTIONS 
The episode and analysis described above, raise a number of questions which we 
would like to discuss briefly here.  
 

1. Nature of key idea/technical handle 
One nice feature of the episode above is that the identification of key idea and 
technical handle came fairly easy, with relatively little debate or discord among 
members of the research team.  But are the notions of key idea and technical 
handle so clear that they can be picked out in any setting, for any proof?  For 
this we need to continually refine the definitions (and in this paper we have 
actually backed away from a technical definition and given more general 
descriptions.)  An ongoing research project of our team involves looking at a 
broad number of theorems, identifying key ideas and technical handles for 
different proofs, and refining the definitions based on that data. 

2. Context of discovery vs. context of justification 
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The distinction between context of discovery and context of justification7, 
which has had a significant influence on epistemology and related fields, might 
be useful for understanding why students do not realize they have a proof. 
Taking the distinction to be psychological (which was not the original intent, 
but serves our purpose here), it seems natural to suggest that in the process of 
proving one has a phase of discovery and a phase of justification.  
In the episode above, the students seem to be missing an important half of this 
combination.  They sort of “discover” the key idea without seeing it as a 
justification8.  Perhaps being able to toggle between the different contexts is a 
marker for mathematical maturity, and somehow central for being able to 
identify a proof as a proof. Specifically, the key idea might involve some 
combination of seeing the idea as a product of discovery and a grounds for 
justification (a thing to be justified).  This is just a hypothesis, and a more 
careful analysis of the distinction between discovery/justification is needed to 
be able to substantiate it.  

3. A Fregean telescope? 
Another way of seeing the difference between student and faculty 
understandings in this episode might have to do with a deep connection (or 
lack of connection) between mathematical objects and they way they are 
grasped by the mind.  This suggestion is highly tentative:  to use Frege’s 
distinction between “sinn” (roughly, sense) and “bedeutung9” (roughly, 
reference) to better understand this relationship (Frege (1892/1997)). 
Frege uses the following analogy to explain the difference between sinn and 
bedeutung:  imagine a person looking at the moon through a telescope.  The 
moon is a bedeutung, an object in the world, with a public status.  The image 
on our retina is a sinn, the personal sense we have of that object, which has a 
private status.  The telescope is sort of like a thought that connects the two—it 
has public status, in the sense that anyone can look through it, but it somehow 
makes an otherwise difficult to grasp object intelligible to the human mind. 
Without going deeply into the way Frege extends this analogy to mathematics 
(in part because there are tricky moves, both going from the bedeutung of an 
object to the bedeutung of a sentence, and going from natural language to 

                                         
7 For the original distinction see Reichenbach (1938), and for a critical discussion of this distinction 
in contemporary philosophy and history of science see Schickore & Steinle (2006). 
8 Wright (2001) warns about misinterpreting the word “discover”.  He points out that we would not 
say someone “discovered” the South Pole if they did not realize it was there. It is with this warning 
in mind that we use the term “discover” in quotation marks. 
9 We retain the German names since the English translations are not completely accurate.   
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mathematical language) it might be useful to think if there is an analogy to the 
telescope in the episode described above.  
Could it be that students stand facing some (to them) far away star, and with 
the aid of a telescope the public could be rendered private?  If so, what would 
the telescope be, and is it something that we could better encourage students to 
develop and/or use as they learn to prove?  Or is it possible that there is no 
telescope at all, just as when I look at the coffee mug on my desk, I feel I am 
simply getting sense data of the mug, without any mitigation.  Perhaps the 
mind simply grasps key ideas.  If so, then, what explains why some people 
grasp them and others don’t?   
This is perhaps merely a rephrasing of the central mystery found in the episode 
above.  But by placing this mystery in a Fregean context (which also allows 
access to his critics), perhaps we gain some conceptual tools to try to better 
understand, not only the mystery, but also what we can do about it. 
 

These questions mark a few of the places where we think it might be productive to 
push for a deeper analysis and where we see possibilities to connect to existing 
research.  We are especially excited about the potential to use results from the field of 
epistemology where questions about the relation between mental representations and 
the external world (of which we consider mathematics to be a part) have been 
discussed extensively. In the next phase of our project, we plan to devote increasing 
time to developing and refining our theoretical ideas.  We welcome any and all 
suggestions that can help us do so.  
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“CAN A PROOF AND A COUNTEREXAMPLE COEXIST?” 
A STUDY OF STUDENTS’ CONCEPTIONS ABOUT PROOF* 

Andreas J. Stylianides   Thabit Al-Murani 
                  University of Cambridge, U.K.        University of Oxford, U.K. 

Despite the importance of proof and refutation in students’ mathematical education, 
students’ conceptions about the relationship between proof and refutation have not 
been the explicit focus of research thus far. In this article, we investigate whether 
high-attaining secondary students have the misconception that it is possible to have a 
poof and a counterexample for the same mathematical statement. The data consisted 
of 57 student surveys augmented by follow-up interviews with 28 students. While 
analysis of the survey data alone offered considerable evidence for the existence of 
the misconception among several students in our sample, subsequent analysis with 
the inclusion of the interview data showed no evidence of the misconception. 
Implications for methodology and research are discussed in light of these findings. 

INTRODUCTION 
Despite the fundamental role that proof and refutation play in mathematical inquiry 
(e.g., Lakatos, 1976) and the growing appreciation of the importance of these 
concepts in students’ mathematical education (e.g., Lampert, 1992; Reid, 2002), 
students’ conceptions about the relationship between proof and refutation have not 
been the explicit focus of research thus far. The lack of research that aimed to 
investigate specifically students’ conceptions in this area creates a gap in the field’s 
understanding of how students perceive the standards of evidence in mathematics. 
Yet, existing research literature on proof and refutation allows us to make a 
hypothesis about students’ conceptions regarding the possible coexistence of a proof 
and a counterexample for the same statement. 
Specifically, research studies identified two student conceptions whose combination 
gives rise to the hypothesis that some students believe that it is possible to have a 
proof and a counterexample for the statement. The first conception that some students 
have is that counterexamples do not really refute: students tend to treat valid 
counterexamples to general statements as exceptions that do not really affect the truth 
of the statements (Balacheff, 1988). The second conception that some students have 
is that proofs do not really prove: students have difficulties to understand that a valid 
proof confers universal truth of a general statement thus making further checks 
superfluous (Fischbein, 1982). However, we point out that the hypothesis that some 

                                           
* The data reported in this article were collected and analyzed with support of an Economic Social 
and Research Council (ESRC) grant to the first author (RES-000-22-2536). The opinions expressed 
in the article are those of the authors and do not necessarily reflect the position of the ESRC. 
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students believe that a proof and a counterexample can coexist was derived by us 
considering findings from different studies that used different samples and methods 
and that were conducted in different cultural settings. So, the hypothesis is not 
attributed to any of those studies and should become the explicit focus of research. 
In this article, we aim to contribute to this domain of research by reporting findings 
from an investigation of the possible existence of the aforementioned misconception 
among high-attaining secondary students. In this investigation, we used survey data 
from 57 students and follow-up interviews with 28 of them. With the interviews, we 
aimed to clarify some student responses to the survey and to test the tentative 
conclusions we had drawn from our analysis of the survey data. 

BACKGROUND 
The research was part of a design experiment (see, e.g., Schoenfeld, 2006) that was 
conducted in two Year 10 classes in a state school in England. The school had 165 
Year 10 students (14 to 15 years old) who were set in seven classes according to their 
performance on a national assessment they took at the end of Year 9. A total of 61 
students from the two highest attaining classes participated in the research. 
Motivated in part by studies that showed that even high-attaining secondary students 
tend to have limited understanding of proof (Coe & Ruthven, 1994; Healy & Hoyles, 
2000; Küchemann & Hoyles, 2001-03), the design experiment aimed to generate 
research knowledge about possible ways in which classroom instruction can help 
these students develop their understanding of proof. The design experiment involved 
development, implementation, and analysis of the effectiveness of a collection of 
lesson sequences that extended over one to three 45-minute periods. Each lesson 
sequence was intended to promote issues of proof in the context of mathematical 
topics and student learning goals that were consistent with the provisions of the 
English national curriculum, treating proof as a vehicle to mathematical sense 
making. As far as proof was concerned, the lesson sequences aimed to offer students 
opportunities to develop their understanding of the limitations of empirical arguments 
and of the importance of proof in mathematics, to construct proofs for true 
mathematical statements, and to formulate counterexamples for false mathematical 
statements. However, the issue of the possible coexistence of a proof and a 
counterexample for the same statement was not explicitly discussed in the classes. 
The definition of proof that guided the work on proof within the two classes was an 
adapted version of the conceptualization of proof elaborated in Stylianides (2007, pp. 
291-300). The following definition was used in the first lesson sequence in each of 
the two classes as part of students’ introduction to the notion of proof.  

An argument that counts as proof [in our class] should satisfy the following criteria: 

1. It can be used to convince not only myself or a friend but also a sceptic. It should not 
require someone to make a leap of faith (e.g., “This is how it is” or “You need to 
believe me that this [pattern] will go on forever.”)  
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2. It should help someone understand why a statement is true (e.g., why a pattern works 

the way it does). 
3. It should use ideas that our class knows already or is able to understand (e.g., 

equations, pictures, diagrams). 
4. It should contain no errors (e.g., in calculations). 
5. It should be clearly presented. 

The definition was discussed and referred to by both classes several times during the 
course of the design experiment, and it can be considered to reflect the classes’ 
“idealized” shared understanding of the criteria for an argument to qualify as a proof. 

METHOD 
Data Sources 
The data for the article are derived from: (1) 57 student responses to a survey that we 
administered to the two classes at the end of the third lesson sequence of the design 
experiment (some students were absent the day we administered the survey), and (2) 
follow-up interviews with 28 students. The students completed the survey part way 
through the design experiment, after they had been given learning opportunities to 
develop understanding of different issues related to proof as described previously. 

 

  

Figure 1: A mathematical problem and two sample solutions to the problem 
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Survey 
The survey presented the students with a true statement contextualized in a 
mathematical problem, four sample solutions to the problem, and some open-ended 
and multiple-choice questions (figures 1 and 2); in this article we focus on students’ 
evaluations of only two solutions (Ben’s and Carol’s).  
Open-ended questions: 

1. Whose answer is closest to what you would do?  Explain your answer. 
2. Whose answer would get the highest mark from your teacher?  Explain your answer. 
3. Whose answer would get the lowest mark from your teacher?  Explain your answer. 

 
Multiple-choice questions: 

  

 

  
 

Figure 2: Open-ended and multiple-choice questions. 

The survey derived from one used in the Longitudinal Proof Project (Küchemann & 
Hoyles, 2001-03; Technical Report for the Year 8 Survey, pp. 93-94). We added the 
third open-ended question and the probes inviting students to explain their answers. 
We hoped these additions would increase the survey’s potential to reveal student 
thinking about the possible coexistence of a proof and a counterexample. While this 
issue does not seem to have been one that Küchemann and Hoyles aimed to explore 
(ibid, pp. 6-7), we thought the survey offered an excellent opportunity to do this: 
some students might not notice the (subtle) mistake in Carol’s solution and consider it 
a valid counterexample to the statement, while at the same time recognize the value 
of Ben’s deductive argument and consider it a proof for the statement. 
Interviews 
We interviewed 28 students based on their responses to the multiple-choice and open-
ended questions in the survey. Most interview sessions began with us asking the 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 314



  
students to review their responses to the survey and then to explain which survey 
question they found the hardest. This general interview probe was followed by 
specific probes for the students to elaborate on particular responses in their scripts. 
Procedure and Analysis 
Patterns in students’ responses were identified and used to formulate hypotheses 
about their conceptions. Interview data were then used to test/refine the hypotheses. 
With regard to students’ conceptions about the coexistence of a proof and a 
counterexample, our analysis of the survey data focused on those scripts that 
contained evidence to suggest the potential existence of the misconception. 
Specifically, we focused on the scripts that contained evidence of one or more of the 
following “inconsistencies”: (1) the student found a mistake in Carol’s solution and 
said that she would get the lowest mark from the teacher but agreed with the sentence 
that Carol’s solution showed that the statement was not true; (2) the student said that 
the highest mark from the teacher would go to both Ben’s and Carol’s solutions; and 
(3) the student agreed both with the sentence that Ben’s solution showed that the 
statement was always true and with the sentence that Carol’s solution showed that the 
statement was not true.   
We coded the type of evidence that was present in the scripts into two categories – 
strong or weak – depending on the degree of confidence that it gave us as researchers 
for the existence of the misconception. Specifically, we considered that strong 
evidence was offered by those scripts that had either “agree” or “don’t know” in the 
first multiple-choice questions for both Ben’s and Carol’s solutions, and that included 
no relevant disconfirming evidence in the open-ended questions. The scripts that we 
considered offered weak evidence for the existence of the misconception had again 
either “agree” or “don’t know” in the first multiple-choice questions for both Ben’s 
and Carol’s solutions, but included some relevant disconfirming evidence in the 
open-ended questions (e.g., they offered evidence that the student was aware that 
Carol’s solution had a mistake in it). For each of the strong or weak evidence 
categories we used the interview data to examine the extent to which there was, 
overall, evidence to suggest that the students actually had the misconception. Also, 
we used the interview data to seek possible explanations (from the students’ point of 
view) for the “inconsistencies” that we identified in their scripts. 

RESULTS 
General Findings 
Our analysis of the survey scripts showed that 16 out of the 28 students interviewed 
exhibited some evidence to suggest the existence of the misconception that a proof 
and a counterexample can coexist. Of these, ten scripts showed strong evidence and 
six showed weak evidence for the misconception. Our subsequent analysis of the 
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interview data revealed that the students in each group (i.e., strong or weak evidence 
group) tended to offer similar justifications for their choices.   
Regarding the strong evidence group, our interview data suggested that the 
inconsistencies in students’ responses derived from them considering Ben’s and 
Carol’s solutions in isolation from one another when they were completing the 
survey. While discussing their responses with the interviewers, however, all the 
students in this group became aware of the potential inconsistency between their 
evaluations of Ben’s and Carol’s solutions, presumably because the interviewers’ 
questions directed (implicitly or explicitly) students’ attention to the relationship 
between their evaluations. Yet, the manner in which the students became aware of 
this inconsistency and how the awareness played out in the interviews varied. 
On the one hand, some students realized the mistake in Carol’s solution without any 
prompting from the interviewers and immediately dismissed her solution. As a result 
of this dismissal, there was no opportunity for the interviewers to explore further 
whether these students would experience any sense of conflict that a proof and a 
counterexample can coexist. On the other hand, some other students needed explicit 
prompting from the interviewers to reflect on whether or how their evaluations of 
Ben’s and Carol’s solutions fitted together before they appreciated the potential 
inconsistency between these evaluations. Believing that Carol had found a genuine 
counterexample, these students attempted to resolve the emerging conflict by 
assuming there was a flaw in Ben’s argument, which however they were unable to 
identify. The interviewers then helped these students see the mistake in Carol’s 
solution and realize it was not a genuine counterexample. As a result of this 
realization, the students subsequently rejected Carol’s solution, but this rejection was 
not always accompanied with endorsement of Ben’s solution as a proof. 
Regarding the weak evidence group, our interview data suggested that the students in 
this group seemed to be aware of the following ‘inconsistency’ we identified in their 
scripts: the students pointed out the mistake in Carol’s solution in their response to 
the open-ended questions, but in the first multiple-choice question for Carol’s 
solution they agreed that the solution showed the statement was not true.   
During the interviews, the students argued, with different degrees of clarity, that, in 
spite of the mistake in Carol’s solution, her reasoning should be valued because her 
logic was correct and she had disproved a statement, albeit a different one from that 
in the problem. Consequently, none of these students changed their minds about their 
evaluations of Carol’s solution during the interview. The issue of the misconception 
was not pursued further by the interviewers, as the students were already aware that 
Carol’s argument was not a counterexample to the particular statement. 
To sum up, there is no evidence from our interviews to suggest that any of the 16 
students we originally identified as potentially having the misconception actually had 
it. Furthermore, the interview data showed that any potential conclusions that could 
be drawn from the survey data alone would be insecure, as students appeared to have 
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good reasons for ‘inconsistencies’ we identified in their scripts. For this reason we do 
not report findings with students we did not interview.  
Illustrative Case 1: The Case of Emily 
The first case is of a student we call Emily, whose responses to the survey showed 
strong evidence of the misconception. Emily’s script had “agree” in the first multiple-
choice question for Carol’s solution and “don’t know” in the corresponding question 
for Ben’s solution. Furthermore, in response to the second open-ended question, 
Emily wrote that both Ben and Carol would receive the highest marks from the 
teacher and justified her thinking as follows:  

Ben:  It [Ben’s solution] is carefully thought out and written down in an 
understandable and clear manner. 

Carol:  She has shown when it [the statement] is not true. 

During the interview Emily explained her thinking about Carol’s solution as follows:  
The question was saying [that] when two of them [the visible numbers on the cards] were 
even that the answer is always 27, but she proved that it’s not, so she answered the 
question that was being asked. 

In regard to Ben’s solution, Emily said:  
It [Ben’s answer] was very, like, well set out and easy to understand and I think that was 
how I would have done it cause the other answers are like gabbling on a bit and they 
don’t really explain why it’s [the statement is] true or false. 

She explained further that her “don’t know” response in the first multiple-choice 
question for Ben’s solution was because Ben “didn’t show that it’s always true, he 
only showed it for some numbers.” When asked whether she thought Ben had a 
proof, Emily said that Ben “needed to maybe expand it [his solution] a bit more to 
convince people that it was true” and noted that Ben could come up with a proof if he 
worked a bit harder on his solution.   
After summarizing what Emily said about the two arguments, the interviewer asked 
Emily how her two evaluations fitted together. Realizing the inconsistency between 
the evaluations, Emily laughed and said: “they don’t [fit together] because Carol’s 
proved that it’s wrong and so it’s impossible to prove that it’s true… cause it’s not 
true!” Asked what she thought was going on with the two arguments, Emily asserted:  

They [Ben and Carol] have both tried different ways and got different answers, so if they 
kept working at it, if Ben kept working on his [solution], he would eventually figure out 
that it’s not true.  

The interviewer then helped Emily to see the mistake in Carol’s solution. Once Emily 
realized the mistake, she exclaimed: “Oh, so she [Carol] could be wrong… so hers is 
wrong then.” On reviewing her original responses to the multiple-choice questions 
for Carol’s solution, Emily decided to change her response to the first question from 
“agree” to “disagree,” because, as she said, Carol “hasn’t followed the instruction.” 
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Emily concluded that Ben’s solution “might be true” but she decided not to change 
her responses to the multiple-choice questions for his solution. 
Illustrative Case 2: The Case of Evans 
The second case is of a student we call Evans, whose responses to the survey showed 
weak evidence of the misconception. Evans’ script had “agree” in the first multiple-
choice questions for both Ben’s and Carol’s solutions, an indication of the existence 
of the misconception. Furthermore, Evans’ responses to the first two open-ended 
questions showed particular appreciation of Ben’s solution: he wrote that Ben’s 
solution would be close to what he would do and that the solution would get the 
highest mark from his teacher “[b]ecause [it] shows working and offers convincing 
proof.” Yet Evans’ response to the third open-ended question offered disconfirming 
evidence of the existence of the misconception as it indicated that he was aware of the 
mistake in Carol’s solution and said that Carol’s answer would get the lowest mark 
from the teacher. In a series of two interviews, we tried to understand the reasoning 
for the apparent contradiction in Evans’ evaluation of Carol’s solution. 
Evans was aware that Carol’s solution had a mistake in it, but on the basis that she 
applied a correct mathematical method and that this application warranted 
recognition, he consciously agreed that she had shown the statement was not true. 

Well what she [Carol] has done is like impossible because 1 and 2 can’t be seen at the 
same time, so then I would have disagreed because that can’t be true. But seeing as 
though she has shown that she’s thought it through and like, with her own reasoning 
she’s come to an answer, then I would have put she technically has [shown the statement 
is not true] but she’s got it wrong. […] Carol tried to prove the statement wrong, so one 
counterexample was enough. She had the logic right but she didn’t succeed to come up 
with a correct counterexample.  

This interview excerpt shows that Evans evaluated Carol’s solution from her own 
point of view and that he understood the fundamental idea that a single 
counterexample suffices to refute a general statement. Evans considered that Carol’s 
solution embodied understanding of the latter idea, even though the counterexample 
she offered did not satisfy, as he observed, the problem’s conditions.   
When pressed by the interviewer to explain his thinking further, Evans described the 
different evaluation standards that he perceived existed in exams and in class work:  

In an exam you don’t get marks for the proof, do you?  You get marks for showing your 
working and actually getting the answer in the end.  But it [Carol’s solution] does show 
the proof and everything.  I don’t know, it depends on what sort of question it is… if it’s 
like what we’re doing proof and stuff [referring to the proof work in class] then that 
[Carol’s solution] would probably get the highest mark if that was what it was marked 
on… but in the exam it would be marked differently because it’s not about how you are 
thinking, it’s about getting the answer and getting the working and everything right. 
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The interviewer did not raise explicitly the issue of the possible coexistence of a 
proof and a counterexample, as Evans was clearly aware that Carol’s argument was 
not a valid counterexample to the particular statement in the problem. 

DISCUSSION 
Although our analysis of the survey data alone offered considerable evidence (both 
weak and strong) for the existence of the misconception that a proof and a 
counterexample can coexist, our subsequent analysis with the inclusion of the 
interview data showed no evidence of the misconception. The size of the mismatch 
between the findings of the two analyses might have been influenced by what we 
considered as evidence for the possible existence of the misconception in our analysis 
of the survey data. Nevertheless, the existence of the mismatch reinforces and 
exemplifies the point that student responses to surveys may, by themselves, offer a 
rather limited insight into students’ conceptions and that follow-up interviews with 
selected students are important for the construction of a more trustworthy picture of 
students’ conceptions.   
The latter statement is more than a reiteration of the well known methodological 
principle that triangulation of multiple data sources allows the examination of 
research questions in more nuanced ways than when using a single data source. The 
statement is also a cautionary remark that conclusions about students’ conceptions 
that are based only on analysis of students’ responses to surveys may be seriously 
misleading. This should not be taken as a criticism of the use of surveys in examining 
educational issues in general, but rather as a concern that the complexity that 
surrounds the particular issue of students’ conceptions about multifaceted 
mathematical ideas may not be possible to be illuminated satisfactorily on the basis 
only of survey data. Of course this is not a black and white situation. The extent to 
which survey data alone can help illuminate complex issues depends on several 
factors: the methods that were used to validate a survey, the kinds of questions 
included in the survey, the conditions under which the survey was administered, the 
coding scheme used to analyse the survey data, etc.  
In spite of the limitations in the conclusions that could be drawn based on the survey 
data alone, the survey offered a meaningful context in which we discussed during our 
interviews with students their ideas about the possible coexistence of a proof and a 
counterexample. This discussion was done with reference to Ben’s deductive 
argument, which could be considered a proof, and Carol’s purported counterexample. 
Carol’s argument worked particularly well for the purposes of our research, as the 
subtle mistake in it passed unnoticed by several students, thereby helping us meet the 
challenge of presenting the students with a believable “counterexample” to a true 
statement. Ben’s argument did not work as well as Carol’s argument: students like 
Emily recognised the value of Ben’s argument, but they did not accept it as a proof, 
primarily because they thought it needed “unpacking.” The fact that some students 
did not consider that Ben’s argument qualified as a proof gave them an “easy” way to 
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resolve the problematic situation regarding the possible coexistence of a proof and a 
counterexample: these students suspected a mistake in Ben’s argument and thus felt 
less hesitant to endorse Emily’s counterexample. Given that the statement in the 
problem was true, it would not be difficult to strengthen Ben’s argument in the survey 
so that more students would accept it as a proof; this modification in the survey 
would increase its potential to elicit students’ conceptions about the possible 
coexistence of a proof and a counterexample.   
Future research on students’ conceptions in this area can use this modified version of 
the survey. Also, it would be useful if future research used an additional problem that 
asked students to evaluate a valid counterexample and a believable “proof” for a false 
statement. This would complement our examination in this study, thus contributing to 
the development of a more comprehensive approach to eliciting students’ conceptions 
about the possibility of having a counterexample and a proof for the same statement. 
The fact that our research did not reveal this misconception does not mean that there 
are no students who have it; less advanced students, younger students, or students 
with fewer experiences with proof are more likely to have the misconception than the 
students who participated in our research.   
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ABDUCTION AND THE EXPLANATION OF ANOMALIES:  
THE CASE OF PROOF BY CONTRADICTION♠ 

Samuele Antonini*, Maria Alessandra Mariotti** 
* Department of Mathematics, University of Pavia, Italy 

** Department of Mathematics, University of Siena, Italy 
Some difficulties with proof by contradiction seem to be overcome when students 
spontaneously produce indirect argumentation. In this paper, we explore this issue 
and discuss some differences between indirect argumentation and proof by 
contradiction. We will highlight how an abductive process, involved in generating 
some indirect argumentation, can have an important role in explaining the absurd 
proposition, in filling the gap between the final contradiction and the statement to be 
proved and in the treatment of impossible mathematical objects.   
Key words: proof, argumentation, abduction, proof by contradiction, indirect 
argumentation.  
INTRODUCTION 
The relationship between argumentation and proof constitutes a main issue in 
mathematics education. Research studies have been based on different theoretical 
assumptions, proposing different approaches and consequently different didactical 
implications (Mariotti, 2006). In some studies (see, for example, Duval, 1992-93), a 
distance between argumentation and proof is claimed, while in others, without 
forgetting the differences, the focus is put on the analogies between the two processes 
and their possible didactical implications (Garuti, Boero & Lemut, 1998; Garuti & 
al., 1996). As a consequence, the authors hold the importance for students to deal 
with generating conjectures, and highlight that this activity can promote some 
processes that are relevant in developing students’ competences in mathematical 
proof. 
Elaborating on this first hypothesis, concerning the continuity between the 
argumentation supporting the formulation of a conjecture and the proof subsequently 
produced, Pedemonte (2002) developed the theoretical construct of Cognity Unity in 
order to describe the relationship (continuity or break) between the argumentation 
process and the related mathematical proof in the activity of conjecture’s production.  
In this paper, we aim to investigate the relationships between argumentation and 
proof in the case of proof by contradiction. The reference to the framework of 
Cognitive Unity is of the interest for this study for the following reason. Although 
important difficulties have been identified in relation to this type of proof (see 
Antonini & Mariotti, 2008; 2007; Mariotti & Antonini, 2006; Antonini, 2004; 
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Stylianides, Stylianides & Philippou, 2004; Wy Yu, Lin & Lee, 2003; Thompson, 
1996; Leron  1985), in the literature we find evidence of arguments, spontaneously 
produced by students, that can be considered very close to proof by contradiction (see 
Antonini 2003; Reid & Dobbin, 1998; Thompson, 1996; Freudenthal, 1973; Polya, 
1945). In fact, as reported by Freudenthal:  

“The indirect proof is a very common activity (‘Peter is at home since otherwise the door 
would not be locked’). A child who is left to himself with a problem, starts to reason 
spontaneously ‘... if it were not so, it would happen that...’ “ (Freudenthal, 1973, p. 629) 

We call indirect arguments the arguments of the form ‘if it were not so, it would 
happen that…’. Indirect arguments seem to be more like to appear in the solution of 
open-ended problems, as a natural way of thinking in generating conjectures, when 
one needs to convince oneself that a statement is true, or to understand because a 
statement is true.  
Therefore, it is seems important to study differences and analogies between proof by 
contradiction and indirect argumentation, and this is what we are going to do in the 
following sections.   
DIFFICUTIES WITH PROOF BY CONTRADICTION 
According with the terminology of the model presented in (Antonini & Mariotti, 
2008, 2007), given a statement S, that we called a principal statement, a proof by 
contradiction consists in a couple of proofs: a direct proof of another statement S*, 
that we call the secondary statement, in which the hypotheses contain the negation of 
S and the thesis is a contradiction (or a part of it); and a meta-theorem stating the 
logical equivalence between the two statements, the principal and the secondary. 
Here, we analyse two aspects and their relationships: the link between the principal 
statement and the contradiction achieved through the proof of the secondary 
statement; the treatment of impossible mathematical objects in both the 
argumentation and the proof. 
The link between the contradiction and the principal statement 
The link between the final contradiction and the principal statement is a source of 
difficulties for students (see Antonini & Mariotti, 2008). It can happen that such 
difficulties are openly shown when they appear astonished and disoriented after the 
deduction of an absurd proposition. This is the case for example of Fabio, a 
university student (last year of the degree in Physics), who explains very well this 
type of difficulty: 

Fabio: Yes, there are two gaps, an initial gap and a final gap. Neither does the initial gap 
is comfortable: why do I have to start from something that is not? […] However, the final 
gap is the worst, […] it is a logical gap, an act of faith that I must do, a sacrifice I make. 
The gaps, the sacrifices, if they are small I can do them, when they all add up they are 
too big. My whole argument converges towards the sacrifice of the logical jump of 
exclusion, absurdity or exclusion… what is not, not the direct thing. Everything is fine, 
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but when I have to link back… [Italian: “Tutto il mio discorso converge verso il 
sacrificio del salto logico dell’esclusione, assurdo o esclusione… ciò che non è, non la 
cosa diretta. Va tutto bene, ma quando mi devo ricollegare...”] 

Fabio identifies two gaps (he speaks also of a “jump”!) in a proof by contradiction: an 
initial gap and a final gap. According to our model, the initial gap corresponds to the 
transition from the statement S to the proof of S*, and the final gap corresponds to the 
opposite move, from the proof of S* to the conclusion that S is proved. The 
perception of these gaps makes Fabio feel unsatisfied, as if something were missing. 
In fact, he can accept the proof but he is not convinced, as he says it is “an act of faith 
that must be done”. 
The treatment of impossible mathematical objects 
It may happen that, at the beginning of a proof by contradiction, some of the 
mathematical objects have some characteristics that are absurd and strange, in an 
evident way. These mathematical objects are proved to be impossible in some theory. 
For this reasons, difficulties can emerge in the treatment of these absurd objects. As 
discussed in (Antonini & Mariotti, 2008; Mariotti & Antonini, 2006) difficulties may 
occur in the construction of the proof of S*, but difficulties may also emerge after the 
proof of S* is achieved, when absurd objects have to be discarded. In fact, at the end 
of a proof of S*, once a contradiction is deduced, one has to realize that some of the 
objects involved do not exist; actually, they have never existed. As explained by 
Leron: 

“In indirect proofs […] something strange happens to the ‘reality’ of these objects. We 
begin the proof with a declaration that we are about to enter a false, impossible world, 
and all our subsequent efforts are directed towards ‘destroying’ this world, proving it is 
indeed false and impossible. We are thus involved in an act of mathematical destruction, 
not construction. Formally, we must be satisfied that the contradiction has indeed 
established the truth of the theorem (having falsified its negation), but psychologically, 
many questions remain unanswered. What have we really proved in the end? What about 
the beautiful constructions we built while living for a while in this false world? Are we to 
discard them completely? And what about the mental reality we have temporarily 
created? I think this is one source of frustration, of the feeling that we have been cheated, 
that nothing has been really proved, that it is merely some sort of a trick - a sorcery - that 
has been played on us.“ (Leron, 1985, p. 323). 

Our research interest is in exploring whether and how these difficulties may be 
overcome when students spontaneously produce indirect argumentation. Two 
elements seem important to take into account: on the one hand the indirect 
argumentation as a product and its differences with a proof by contradiction, on the 
other hand the processes involved in producing the argumentation (see also Antonini, 
2008). In this paper we focus on the hypotheses that in many cases the students try to 
fill the gap between the contradiction and the statement in order to re-establish a link 
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and at the same time to give a new meaning to the “objects of the impossible world”, 
so that they can be modified without being discarded.  
THE ABDUCTIVE PROCESS 
Abduction is one of the main creative processes in scientific activities (Peirce, 1960). 
Magnani defines abduction as 

“the process of inferring certain facts and/or laws and hypotheses that render some 
sentences plausible, that explain or discover some (eventually new) phenomenon or 
observation; it is the process of reasoning in which explanatory hypotheses are formed 
and evaluated” (Magnani, 2001, pp. 17-18).  

The main characteristic of abduction is that of deriving a new statement that has the 
power of enlightening the relationship between the observation and what is known. 
Many studies in mathematics education have dealt with abductive processes in 
students thinking: in problem-solving activities (Cifarelli, 1999), in generation of 
conjectures (Ferrando, 2005; Arzarello et al., 2002; Arzarello et al., 1998), 
argumentation and proofs (Pedemonte,  2007).  
In this paper, through the analysis of a case study, we will show how an abductive 
process could assume a fundamental role in the production of indirect argumentation. 
Through an abduction a new statement is produced that has no logical need but 
allows one to make sense of the absurd and strange proposition and, in this way, to 
overcome the gap between the contradiction and the principal statement.  
A CASE STUDY 
The following open-ended problem was proposed to Paolo and Riccardo (grade 13), 
two students that, according to the evaluation of their teachers, are high achievers.  
Problem: What can you say about the angle formed by two angle-bisectors in a 
triangle? 
What follows is an excerpt of their interview. After a phase of exploration, the 
students generated the conjecture that the angle S (figure 1) is obtuse. Afterwards, the 
students started to explore the possibility that the angle S might be a right angle. 

61  P: As far as 90, it would be 
necessary that both K and H are 
90 degrees, then K/2 = 45, H/2 = 
45...180 minus 90 and 90 degrees. 

62 I: In fact, it is sufficient that the sum 
is 90 degrees, that K/2 + H/2 is 
90. 

63 R: Yes, but it cannot be. 

64 P: Yes, but it would mean that K+H 
is ... a square […] 

Figure 1: The angle between two 
angle bisectors in a triangle.
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65 R: It surely should be a square, or a parallelogram 

66 P: (K-H)/2 would mean that […] K+H is 180 degrees... 

67 R: It would be impossible. Exactly, I would have with these two angles 
already 180, that surely it is not a triangle. 

[…] 
80 R: [the angle] is not 90 degrees because I would have a quadrilateral, in fact 

the sum of the two angles would be already 180, without the third angle. 
Then the only possible case is that I have a quadrilateral, that is, the sum 
of the angles is 360.  

The episode can be subdivided in three parts: the development of a first 
argumentation  (61-63), the introduction of a new figure, the parallelogram (64-67), 
the production of the final argumentation (80). This last argumentation is expressed 
by Riccardo, after the students are explicitly asked to write a mathematical proof. 
The argumentation developed in the first part (61-63) is indirect: assuming that the 
angle between two angle bisectors of a triangle is a right angle, the students deduce a 
proposition that contradicts a well known theorem of Euclidean Geometry. From the 
logical point of view, the deduction of the contradiction would be sufficient to prove 
that this triangle does not exist, or, equivalently, that the angle S is not right, thus 
concluding the argumentation. But, although convinced that the angle S cannot be a 
right angle, the students do not feel that the argumentation is concluded and they look 
for an explanation for the anomalous situation. In fact, the subsequent part (64-67) 
seems to have the goal to complete the argumentation; in particular, the students 
seem to look for an explanation to the false proposition “K+H=180° ”. An 
explanation is found by formulating a new hypothesis: the figure is not a triangle, it is 
a parallelogram. In this case, it is true that the sum of two adjacent angles (K+H) is 
180. In search of an explanation the original triangle fades becoming for the students 
an indeterminate figure that have to be determined in order to eliminate the 
anomalous consequences. In 67, Riccardo makes clear that the figure can be 
transformed during the argumentation. His expression “surely it is not a triangle” 
means “this figure is not a triangle” and it must be something else. Differently, in a 
proof by contradiction, as the proof that could arise from the first part of the 
argumentation (61-64), the figure is well determined, it is a triangle and it is not 
possible to modify it. Once a contradiction is deduced, it is proved that this figure 
does not exist. In this case, the triangle would be part of the “false, impossible world” 
and it would have had a temporarily role: at the end of the proof we know that it does 
not exist. Actually, it has never existed. 
When the new case is selected and because this new case can solve the anomaly, 
Paolo and Riccardo seem to be satisfied. In 80, Riccardo summarizes the 
argumentation in what for him is a mathematical proof. The fact that the angle S is 
not right is not proved by contradiction but is based on the analysis of different cases: 
triangle, square, parallelogram. The figure is determined, and it is not a triangle, as 
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we have thought at the beginning of the argumentation. This argument seems very 
convincing for students, more than the argument based on deriving a contradiction. 
The key point in the development of the argumentation is the generation of the new 
case that is the identification of the parallelogram. This process can be classified as 
an abduction, in fact an explanatory hypothesis is produced and evaluated, as 
Riccardo says “[the quadrilateral] it is the only possible case”.   
The assumption of the parallelogram transforms a false into a true proposition. This 
argument allows students to overcome some of the difficulties that might be raised by 
a proof by contradiction (figure 2). In particular:  

 
Figure 2: An abductive process in an indirect argumentation 

• The false proposition - “in a triangle the sum of two angles is 180°” – 
becomes a true proposition related to the new explanatory hypothesis (in a 
parallelogram the sum of adjacent angles is 180°);  

• The mathematical object (the triangle) is considered an indeterminate object 
that is identified only through the abduction with the goal to explain the 
anomaly. Then the mathematical object is changed and not discarded as it 
happens in a proof by contradiction. The problem of treatment of 
mathematical object at the end of proof by contradiction highlighted by Leron 
(1985) is bypassed. 
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• Differently to what happens with proof by contradiction, a link, that is not 
only logical, between the secondary statement and the principal statement, is 
constructed: it is not possible that S is right because otherwise the triangle 
would become a quadrilateral. 

As the previous example shows, in geometry, the identification of the case that can 
explain the anomaly and allow getting out of the “impossible world” seems to be 
related to the transformation of figures. Most of the students asked to solve the 
problem of angle bisectors provided arguments based on transforming the triangle in 
a quadrilateral or in two parallel lines.  
Further researches are necessary to corroborate this hypothesis and investigate 
whether it can be extended to other context. In fact we hypothesize that also in 
contexts other than Geometry abduction can be for students the key to come out from 
the anomalous situation that occurs in proof by contradiction. In order to support this 
extension to other contexts, we report now a short episode concerning the algebra 
domain. 
ABDUCTION AND PROOF BY CONTRADICTION IN ALGEBRA: AN 
EXAMPLE 
In a questionnaire proposed to 68 secondary school students (grade 10, 11, 12) and 19 
university students, a proof by contradiction of the incommensurability of the 
diagonal of a square with its side was presented. We aimed to investigate the 
recognition and the acceptability of this type of proof. In the presented proof, it is 
assumed that the ratio is a rational number, expressed by the fraction m/n where m 
and n are two natural numbers (with n different from 0). Then it is deduced that the 
number n is both odd and even. The students were asked to choose one of the 
following answers to explain what it is possible to conclude: 

a) This is not a proof  
b) There is a mistake in some passages, but I can not identify it 
c) There is a mistake, that is (specify the error): .......................................... 
d) We have not proved anything, because being even or odd has nothing to do with 
what we wanted to prove 
e) We have proved what we wanted, in fact:…………………………………… 
f) Other (specify): 

The 25 per cent of the students gave the correct answers and the 35 per cent chose the 
answer d). This expresses the feeling that something is missing and let us suppose the 
need to see a link between the contradiction and the statement. A hint in this direction 
comes from one of the answers. One student (grade 12) marked the correct answer 
and explained:  

“we have proved what we wanted in fact one of the two numbers [the number n] is not a 
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natural number and then the ratio is not a ratio between two natural numbers” 

The argument provided does not refer to what could be recognized as the meta-
theorem, explaining the logical equivalence between the principal statement and the 
secondary statement, and thus rejecting the existence of the mathematical object m/n. 
Differently, this student does not reject the initial assumption that the ratio is rational 
from the contradiction “n is even and odd”, rather he changes the nature of the 
number n coherently (in his opinion) with the deduced proposition. If m/n is not a 
rational number, as we have believed before, everything is explained.  
Inferring the explaining hypothesis that number n, odd and even at the same time, is 
not a natural number is the product of an abduction. The hypothesis that n is not a 
natural number can explain the anomaly “n is odd and even” and, at the same time, it 
offers a link between the deduced proposition and the principal statement: n is not a 
natural number and then the ratio m/n is not a rational number. A link between the 
contradiction and the statement is now established and the proof can be accepted. 
CONCLUSIONS 
Main difficulties with proof by contradiction are related to the link between the 
contradiction and the statement to be proved, to the treatment of the impossible 
mathematical objects during the construction of the proof and at the end, to the need 
of discarding the mathematical objects involved in the proof of the secondary 
statement. The feeling of frustration that may emerge at the end of a proof by 
contradiction, as clearly expressed by Fabio’s words, is accompanied by the need of 
giving a meaning to the absurd proposition, the need of establishing a stronger link 
with the principal statement and adjusting the “false, impossible world”. 
The analysis of the episodes proposed above shows how abductive processes may be 
mobilized to produce explanatory hypotheses. The system of relationships 
represented in the diagram of figure 2 shows the key role of the abductice process and 
highlights some differences between indirect argumentation and proof by 
contradiction.  
Interpreting these results in terms of Cognitive Unity leads us to point out the 
distance between indirect argumentation as it is spontaneously developed and the 
scheme of a proof by contradiction. In particular, it clearly appears the distance 
between the meta-theorem - providing the equivalence between the principal and the 
secondary statement - and the abductive process that might emerge in an indirect 
argumentation. The question rises whether and how such distance can be filled 
through an appropriate didactical intervention. 
Of course, further investigation is necessary to better understand the differences 
between argumentation and proof by contradiction and to identify and analyse other 
processes that could be important for the production and the development of indirect 
argumentation.  
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We think that the comprehension of these processes is fundamental for teachers to 
identify, explain and treat students’ difficulties with proof. We also believe that 
indirect argumentation, even if it presents significant differences with proof by 
contradiction, should be promoted, in particular through open-ended tasks. As 
Thompson writes: 
“If such indirect proofs are encouraged and handled informally, then when students study 
the topic more formally, teachers will be in a position to develop links between this informal 
language and the more formal indirect-proof structure.” (Thompson 1996, p.480) 

As regards the transition from the argumentation to proof by contradiction, further 
researches are necessary to identify the tools to construct the didactical activity to 
face the gaps and promote the acceptability of method of proof by contradiction. 
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APPROACHING PROOF IN SCHOOL: 
FROM GUIDED CONJECTURING AND PROVING 

TO A STORY OF PROOF CONSTRUCTION 
Nadia Douek 

IUFM de Nice, UMR – ADEF Université de Provence 
This paper presents some aspects of an ongoing research aimed at leading students 
(through activities of conjecturing, guided construction of proof and story making of 
the rationale of the proof) to become aware of some salient features of proving and 
theorems. Theoretical elaboration as well as an example of didactic engineering 
concerning Pythagoras' theorem will be outlined. 

I   INTRODUCTION 
School approach to theorems has been a subject of major concern for mathematics 
education in the last two decades. Students' learning to produce proofs and their 
understanding of what does proof consist in (Balacheff, 1987) have been considered 
under different perspectives and with different aims: among them, how to make the 
students aware of the differences between proof and ordinary argumentation (Duval, 
1991, 2007); how to favour students' access to the theoretical character of proof 
(M.A.Mariotti, 2000); how to exploit "cognitive unity" (which for some theorems 
allows students to exploit the arguments they produced in the conjecturing phase to 
construct the proof) in order to smooth the school approach to theorems (Boero, 
Garuti & Lemut,  2007); in what cases of cognitive unity do students meet difficulties 
in the passage from an inductive or abductive reasoning, to the deductive 
organization of arguments (lack of structural continuity: Pedemonte, 2007, 2008); 
what are the common aspects  between ordinary argumentation and proving, and how 
to prepare students to proving by relying on those aspects (Douek, 1999a, 1999b; 
Boero, Douek & Ferrari, 2008). Previous research work helps us to formulate and 
situate some educational problems that arise in the school approach to theorems: how 
to tackle theorems for which  cognitive unity does not work, or (if cognitive unity can 
work) when students meet important difficulties due to the lack of structural 
continuity? How to make the students aware of some salient characters of proving 
and proof? And how to lead them into some specific competencies of proving 
activity? In this paper we propose a possible way to tackle these problems in an 
integrated way.  The idea is to guide students' constructive work on proving, then to 
help them focusing on the characteristics of the organisation of proof.  
This paper presents a theoretical and pragmatic elaboration about how to deal with  
theorems for which cognitive unity does not work, and approach the rationale of a 
proof at first stages of proof teaching and learning. The theoretical elaboration also 
frames the accompaniment of students through two aspects of proving activity:  
exploration (in order either to find a statement, or to find reasons for validity of a 
statement); and organisation of  reasons (or arguments), in the perspectives of 
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producing a proof, or  of understanding the links between statements or arguments in 
a proof. Our hypothesis is that the rationale of a proof can be approached early in the 
school context through “story making” situations, preceded by suitable activities of 
conjecturing and guided proof construction, and related classroom discussions. We 
provide an example of such a didactical engineering concerning Pythagoras' theorem.  

II   FRAMING PROOF CONSTRUCTION  
Inspired by Lolli's analysis of proof production (see Arzarello, 2007), we consider 
proving as a cognitive, culturally situated activity engaging four modes of reasoning: 
1) Heuristic exploration. It occurs when one tries to interpret a proposition or to 
produce a proposition or an example. One has in mind a target but the main focus is 
not on attaining the target through an acceptable mathematical reasoning. Any 
accidental event, writing, metaphor, may move the exploration activity. This type of 
reasoning is typically open to divergent paths.  
2) Organisation of reasoning, making explicit the threads of reasoning holding 
propositions together. When a proposition seems pertinent, a calculation promising, a 
writing efficient, one searches for a convincing coherent link to a local goal or to the 
global one. The links may be theoretical reasons of validity.  The intentional and 
planning characters are typical of this mode, and abduction is a good example of it. 
Deductive reasoning is not yet a priority. Such organisational intention may concern 
partial arguments or the whole of the argumentation aimed at proof construction. 
3) Production of a deductive text following mathematicians' norms. Once ideas of 
proof are brought to light, they must be organised in a deductive reasoning. 
4) Formal structuring of the text, to approach a formal derivation. This mode will not 
at all be approached in the school context we are considering. 
These four modes could be considered as successive phases of a proof construction,  
as different moments with different intentions. But in fact, as reasoning modes, they 
seldom do appear separately. Not only the succession of modes can vary and loop, 
but even two or more of them may intervene very closely in one phase aiming mostly 
at exploring or at writing a deductive text, for instance.  
Methodologically, the consideration of these  phases based on a cognitive analysis in 
terms of the four modes offers didactical tools to organise teaching-learning 
situations into sequences with clear didactical goals. As we refer to phases of 
predominant modes of reasoning, a didactical goal can be to lead the students to be 
aware of the processes they have to go through within a specific phase, essentially to 
favour students openness in exploration and their rational control in organising 
reasoning. But no exploration is blind nor any reasoning organising is totally 
controlled: when we analyse a phase of exploration activity, we ought to capture 
some reasoning organising activity, etc... (see sequence 1, in V).  
The different modes and phases of reasoning involve several cultural rules of validity, 
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and they affect the delicate game of changes from what is allowed or even needed for 
one mode, to what is allowed or needed for another. For instance abductive reasoning 
is typical of mode 2 but is not allowed in modes 3 and 4, and student will have to 
move from it towards deductive reasoning, which is not  easy. We can also consider 
the use of examples (pertinent in mode 1 and 2 but not acceptable in modes 3 and 4), 
and the conscious handling and conversion of different semiotic registers according 
to different modes of reasoning (Morselli, 2007; Boero, Douek & Ferrari, 2008). 
This analysis leads us to give a special role to argumentation both as an intrinsic 
component of reasoning, and as a didactical tool to manage the different modes of 
reasoning and the relationships between them in a conscious way, keeping into 
account specific cultural rules (to be mediated by the teacher). 

III ARGUMENTATION IN PROOF AND PROVING  

In this paper, an "Argument" will be "A reason or reasons offered for or against a 
proposition, opinion or measure" (Webster), including verbal arguments, numerical 
data, drawings, etc. An "Argumentation" consists of one or more logically connected 
"arguments".  Proof itself is an argumentation. But other argumentations play an 
important role in proving.  Mode 2 is specially based on argumentative activity: 
discussing the use of a theory or a mathematical frame to produce a step of reasoning 
relies on a meta-mathematical argumentation (Morselli, 2007). It is not really part of 
a proof, but is needed to produce it. Analogies may implicitly affect mode 1 reasoning 
or be explicit arguments in mode 2 (Douek, 1999a, 1999b). 
For teaching and learning purposes, argumentation  is a fruitful means to control the 
validity of reasoning (as the legitimate use of examples and, or transitions from one 
mode of reasoning to another with their different cultural rules).We are therefore 
interested in two levels of argumentation: as part of the proving tasks, specially for 
producing and organising arguments (mode 2); and in discussing procedures, as a 
means to assimilate and master elements of proving processes. 
Convergent structure of argumentation in a proof 
In general, an argumentation is made of more elementary ones that may be organised 
in various ways (converging towards a conclusion, or being parallel as when 
producing different explanations, etc.). In a proof, the elementary argumentations 
may form a linear chain, each conclusion being input as an argument for the 
following argumentation, thus forming one whole "line of argumentation". But in 
many cases of proof, argumentation may contain parentheses "blocks", or side 
argumentation branches that meet the main line to input a supplementary data or 
argument. A parenthesis might be considered as a secondary line of argumentation. 
This description underlines the possible hierarchical relations between various 
argumentations involved in a proof (Knipping, 2008), which is a difficult matter for 
students who are being introduced to proof  (see the Example for a suggestion).   
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IV EDUCATIONAL ASPECTS 

In the early stages of proof teaching and learning, students can be smoothly 
introduced to theorems and proofs by conjecturing and proving activities provided 
that cognitive unity works (Boero, Garuti & Lemut, 2007). In particular exploratory 
activity (Mode1) and justification (Mode 2) can be introduced at early stages. In a 
suitable educational environment, 7th and 8th graders are able to produce conjectures 
for non trivial arithmetic or geometric situations, and move (under a loose guidance 
by the teacher) towards constructing  general justifications. Comparison of students' 
productions and classroom discussions about them, orchestrated by the teacher 
(Bartolini Bussi, 1996; Bartolini Bussi & al, 1999) allow students to appreciate some 
relevant cultural requirements of conjectures and proofs, like their generality and the 
conditionality of statements (Boero, Garuti & Lemut, 2007), and to become aware of 
processes favouring conjecturing and proving. 
In the following we will focus on mode 2 reasoning, specially in the organisation of 
reasoning phases; then in the didactical engineering we will also consider mode1 
more specially related to conjecturing. 
In spite of their usefulness to initiate students into conjecturing and proving, in those 
cases in which cognitive unity works well, with no difficulties due to the lack of 
structural continuity (Pedemonte, 2007, 2008), the peculiar argumentative structure of 
a proof does not emerge as an object of reflection for students. Indeed the fact that 
both easy-to-prove theorems must be proposed for a smooth approach to theorems, 
and that the students themselves are able to enchain the arguments in an autonomous 
way, make artificial and rather empty the discussion about the specific argumentative 
arrangement of those arguments.  However students must be enabled to move from 
theorems for which cognitive unity works to theorems (like Pythagoras') for which 
proof cannot consist in the deductive arrangement of arguments produced by 
conjecturing. For other theorems students can meet difficulties in moving from 
creative ways of thinking (abduction, induction) typical of conjecturing to deductive 
arrangements of the produced arguments  (Pedemonte, 2007). In both cases proving 
needs a strongly guided activity; and teachers' guidance can even initiate students into 
the mechanisms inherent in the Mode 2 reasoning, and open the perspective of Mode 
3. Drawing from theoretical reflections, we make the hypothesis that the inherent 
argumentative activities could be promoted through debates (with real others) about 
arguments and their relations on one side, and story making on the other.  
The debate 
Classroom debates, if well oriented and guided, stimulate efforts of expression and 
explanation. These efforts, in turn, favour the consciousness of the logical rules and 
their range of validity. For instance, discussing a statement may bring students to 
methodological and meta mathematical reflections such as: producing an example to 
support the statement can be an efficient step in the exploratory phase, but is not a 
valid argument when organising a general mathematical justification; some semiotic 
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registers (like drawing) are crucial for exploration, and may be for organising  
reasoning, but insufficient to produce a suitable argument in a deductive reasoning.  
Such discussions question cultural rules of mathematical reasoning and mathematical 
knowledge too. Also the relation between arguments and the construction of lines of 
argumentation (mode 2) can be discussed in a debate, which draws students' attention 
to the goal of the line of argumentation in relation to its steps. 
Making a story  

Logic is concerned not with the manner of our inferring, or with questions of technique: its 
primary business is a retrospective, justificatory one - with the arguments we can put forward 
afterwards to make good our claim that the conclusions arrived at are acceptable because 
justifiable conclusions.  

This quotation from Toulmin (1974, p. 6) inspires the hypothesis that in order to 
grasp the rationale of a proof, students may make an individual story from the ideas 
and calculations involved in a reasoning that validates the statement. We emphasise 
the story that connects steps and fragments with reasons, in order to serve the 
conclusion, and not particularly the story of how the steps occurred in one's mind 
(Bonaffé, 1993), nor of how learning has evolved through time (Assude & Paquelier 
2005). The goal is that the students recognise the involved lines of argumentation, 
their possible hierarchical relations, and their role in the logical combination that 
produces the proof. At least at first stages of proof learning, these individual story 
makings need to be prepared by suitable tasks of guided construction of proof and by 
related debates putting into evidence some crucial "steps" of Mode 2 reasoning. 
In our theoretical construction, debates and story makings should be considered 
together and arranged as a dynamic system of complementary situations. Individual 
story making involves students in an active personal reconstruction of the rationale of 
a proof, while a debate on the work done in individual tasks of conjecturing and 
guided proving (and story making as well) offers both openness to other possible 
combinations and regulation. We expect this system to draw students' attention to the 
"components" of the story. The deductive structure of the proof (through mode3) will 
consist of a particular relating of the pertinent components of a story. 
Students need to be gradually initiated in both activities, possibly before the activities 
on theorems in order to establish a suitable didactical contract (Brousseasu, 1986). 
However story making, in the case of theorems, shows particularities that need a 
careful mediation through sequencing suitable tasks. 
Before illustrating the above theoretical reflection by an example, let us present the 
main activities we wish students to develop and their co-ordination, and give 
methodological precisions concerning the planned experiment: 
- To associate exploration and conjecturing to enhance mode 1 (without excluding 
other modes).  
- To stimulate proving the conjecture(s); either cognitive unity can work and thus the 
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students are able to produce a proof, or it cannot work and the teacher offers a task to 
guide them towards the proof.  
- To engage the dynamic system of collective debate / individual story-making, 
starting from discussing some of students' productions, to enhance mode 2 (without 
excluding other modes). In case cognitive unity could not work, students would not 
be in a good condition to understand the proof nor to learn much of it, and this 
dynamic becomes particularly crucial.  
The analysis of the experimentation should concern: Students' engagement in the 
proposed activities; and the evolution and the differences between the various 
individual productions. Observing the discussion (or its video registration), we need 
to track: How student's individual production reappears in the collective discussion; 
how the student hold his/her position in front of other's, and if some elements of 
consciousness awakened during discussion. However, some students may not take 
active part in the debate. The final individual production of story telling that follows 
should help completing the analysis. Comparing this individual production with the 
previous one (proof construction or proof reconstitution), one can see if the debate 
helped to bring to consciousness the necessity of some types of reasoning and the 
necessity of avoiding some others. The form of storytelling may reveal hierarchies of 
the types of reasoning and more particularly the linearity of the argumentation. 
Another slightly different proving situation might follow to examine: transfer of the 
various reasoning competencies; the various methods; and the level of awareness of 
the variability of rules of validity. 
 
V AN EXAMPLE CONCERNING PYTHAGORAS THEOREM 
Pythagoras theorem was chosen for two reasons:  it is an important and early met 
theorem in school mathematics; and it is not difficult to get the conjecture through a 
loosely guided path, while the construction of a proof needs a strong guidance by the 
teacher (cognitive unity cannot work, because the geometric constructions needed for 
the usual proofs are not suggested by the work done in conjecturing). Teachers' 
guidance, classroom discussions and story making will allow students to approach the 
rationale of the proof and offer occasions for learning about proof and proving. 
First sequence: “Discovering” Pythagora's theorem, expressing the conjecture 
and making sense of it 
Students have not only to grasp the theorem, but also to develop some proving skills 
(though no proving activity is demanded in this phase) and prepare for the further 
work; thus the activity on Pythagoras' theorem is prepared by Task 1 (an individual 
production on another theorem), followed by classroom discussion: 

Task1:  Consider the statement: "In a triangle of sides a, b and c, a+b is always 
smaller than c". Is it true? always? Why? Prepare yourself to explain how you 
checked it and why you think it is true, or it is not, or what makes you doubt.  
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No triangle is presented by the teacher; students are encouraged to draw some 
triangles for a check, if they did not do it spontaneously. This task aims at exploration 
through testing examples, and (specially in the discussion) at leading the students to 
express the rationale of the activity and to make visible the generality of the 
proposition they produce. An expression like “we wanted to see if it is true that... so 
we tried to verify it with four examples” is encouraged: such simple story making 
reflects an ability (and invites) to reconstruct the logical skeleton of the activity they 
went through. It bridges a Mode 1 reasoning with a Mode 2, and prepares Task 2.  

Task 2 (individual): Now if we consider the squares of the lengths, instead of the 
lengths themselves, the situation is different. See if a relation between the squares 
of the lengths of the sides of a triangle exists. Once you think you produced a valid 
statement (a "conjecture"), put it clearly in words to explain it to other students.  

Right angled, acute and obtuse triangles, are presented on the worksheet. Afterwards 
a collective discussion guided by the teacher is engaged to share and discuss the 
conjecture(s) produced, and the ways followed to produce them; and to attain and 
share acceptable expressions of the conjecture(s) (according to mathematical 
standards). An incomplete conjecture or an erroneous one may offer fine 
opportunities to make explicit the important elements of the theorem (in particular the 
condition of validity of Pythagoras' theorem, i.e. the angle being right) and their role. 

Task 3 (individual): Write down the conjecture as now you think it should be. 
Explain it and illustrate it with some examples. 

The teacher concludes with the standard formulation of Pythagoras' theorem. 
Concerning proof learning, this first sequence aims at involving students in Modes 1 
and 2:  Exploring (drawing, measuring, calculating, induction when modelling and 
producing algebraic expressions, repeating procedures and modifying data) mostly in 
mode 1; and, mostly in mode 2, organising the exploitation of the gathered data, 
classifying them in order to find some rule, expressing results as general   (everyday 
language being acceptable), etc; discussing and justifying propositions, and 
organising the steps of exploration in relation to a goal. Classifying and modelling are 
as much in mode 1 and mode 2. The explicit intentions of exploration and of 
organisation are satisfying sign in my opinion, as a main didactical goal is to enhance 
the processes students have to go through.  
Second sequence: Guiding Pythagoras' theorem proof, and teaching/learning to 
organise the steps of reasoning into lines of argumentation 
Given that cognitive unity cannot work, students are guided by means of individual 
and collective activities; then they reconstruct the lines of argumentation. 

Task 4 (individual): Here we study the proof of the theorem we have conjectured, 
you will be guided towards this proof. Consider a right angled triangle with sides a, 
b, c. We use it to build the square A (see below). Its central square S is of area c2.  
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    I) Can you describe how A can be obtained by using only our squared triangle?  
explain why S is a square (of area c2)?  

II) Try to write the area of A in two different ways (you may need to arrange the 
four identical square triangle differently). Find and explain the two ways. 
III) How can this help us to validate our conjecture?  

A geometrical reasoning is expected to intertwine with an algebraic reasoning in 
order to attain the equality between the areas. If needed, some supplementary tasks 
can be inserted either for the whole group or for some students.  
After students' individual work, the teacher orchestrates a collective discussion 
(Bartolini Bussi, 1996) concerning the reasoning that allows to prove the steps of 
argumentation and the calculations and why they are needed, and in particular, the 
connection between geometrical arguments and algebraic arguments. The interactions 
must be based on their own reasoning productions, theirs insights and their 
shortcomings. Therefore the teacher selects elements of students' production to 
provoke fruitful interactions. Two complementary levers can help maturing students' 
awareness of the reasoning organization “rules”, and their specificity in contrast to 
exploration reasoning: analyzing elements of reasoning, and rising direct 
methodological questions in the debate. The aim is to favor the elaboration of some 
satisfactory reasoning about the quality of which the student may agree, and, on 
another hand, to characterize some insufficiencies found in some produced reasoning. 
The parts of debate concerning specific algebraic or geometric steps and some sort of 
gap filling reasoning (directly concerned by the activity) need to be intertwined with 
methodological reflection about the validity of a reasoning, its communicability, the 
bases on which it can be accepted by another (indirect, implicit activity in student's 
individual production). Open “methodological” questions may be: how exploration 
and induction had been produced (algebraic induction); which different rules allow a 
reasoning to be valid (in exploration, measures and experiment are welcome, in 
proving deductive reasoning is needed, here based on elementary geometry and on 
algebraic calculus); and, in reasoning organization, how to come to such reasoning, 
and why (in particular how exploring the disposition of the four rectangles may 
favour algebraic exploration). This double level of discussion concerning the activity, 
on one hand, and the meaning and mathematical rules of the activity, on the other, is 
theoretically developed by M.A.Mariotti (2000) based on M.Bartolini Bussi's 
mathematical discussion theoretical frame. 
Task 4 is formulated and organised in a way to approach a story making of the proof. 
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The subsequent discussion of the organisation of the lines of argumentation and the 
insertion of "blocks" of arguments/calculations in the main line is meant to prepare 
students to write a “story”. 
Third sequence: story making  

Task 5 (individual): Write down how you organized your steps of reasoning to 
reach a general justification of the conjecture, and justify why those steps are 
important   

This task is particularly important for the students who were not productive in the 
previous sequence. It should allow them (as well as the others) to grasp and 
reconstruct the rationale of the proof. Here is the kind of arguments we hope the 
students produce: 

first (block 1) we calculate the area of A, then (block 2) we organised differently 
the calculation of the area (or we organised differently the disposition of the 
triangles) so that we found another algebraic expression of the are, because 
(looking forward to the final goal) surface measures of squares are written as 
algebraic squares. So we think that a2, b2 and c2 will appear and will be related 
(possibility to rejoin the main line). So, we can write the algebraic equality, and 
find the relation after transformations. 

Mode 2 reasoning is needed for this task in block 2:  students must go through an 
abductive reasoning ("how can I find a2 and b2 in this big square?") while deduction 
prevails in block 1 and will prevail afterwards, till the end.  
It is important to notice with the students that the algebraic equality is the principal 
aim (and first to come to the mind, since it is near to the conclusion we want to reach) 
but that we have to begin with geometrical considerations, which are like parentheses 
besides the principal aim. Thus the reasoning is made of a principal line of 
argumentation and side parentheses involving geometrical reasoning and calculations, 
whose conclusions flow into the main argumentation line. Getting familiar with 
mathematical proof practices (like moving from a geometrical frame to an algebraic 
one, using geometry only for strategic purposes...) is a particular aspect of this work. 
Difficulties inherent in the classroom implementation of the proposal 
Comparing the proposal with the style of teaching of most teachers, and keeping into 
account my first experiences of work with teachers on this subject, I must say that 
teachers meet some difficulties in engaging in a coherent classroom implementation 
of the proposal. One difficulty consists in the fact that "To produce a conjecture" is a 
task that does not fit the most frequent didactical contract in our schools (statements 
are usually presented and illustrated by the teacher, and learnt by students who repeat 
and apply them afterwards; the same for proofs). Another is that teachers tend to 
identify student's task of reasoning and the task of explaining the rationale of a 
reasoning as bearing the same learning targets. And, finally, the presentation and 
management of the tasks in a way that guides students' work but does not prevents 
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creativity is not easy; however, if creativity is not practised, there would be no sense 
in making a story out of a series of calculations. 
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