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This article connects the results of an ontological investigation on elementary geo-
metry to normative questions on educational goals of  modelling.  The main thesis  
consists in the assumption that there are two different types of applications in geo-
metry and that they both are necessary and not exchangeable by each other: The first  
one contains simple applications which are paradigmatic examples to learn basic 
geometrical concepts; the second one includes more complex ones. It is claimed that  
a normative discussion on education goals of modelling is only possible as far as the  
second type is concerned. As a result, the debate on modelling differs in the scope of  
geometry significantly from similar considerations relative to other parts of mathem-
atics, and that by an ontological and not normative reason.

A CASE STUDY TO RETHINK THE ROLE OF APPLICATIONS

This article is a result of a qualitative study concerning teachers’ beliefs (Calderhead 
1996) about teaching geometry at German higher level secondary schools (the so-
called Gymnasien) including goals, contents, methods and connections to the teach-
ers’ broader understanding of mathematics as a whole system. The theoretical frame-
work follows the psychological construct of subjective theories which are defined as 
systems of cognitions containing a rationale which is, at least, implicit (Groeben et al. 
1988). The method depends on case studies. Data are collected by semi-structured in-
terviews and interpreted according to the principles of classical hermeneutics. The 
construct of subjective theories and its adaption to the didactics of mathematics are 
briefly summed up by Eichler (2006).

In the following, a small part of this study will be presented. We will describe the dif-
ficulty of making sense of a teacher’s utterances concerning geometrical applications. 
This difficulty was the initial point to rethink the role of applications in elementary 
geometry in general. Such a way of rethinking is one of the typical goals intended by 
the construct of subjective theories: This approach proposes, amongst others, to es-
tablish an exchange between individual opinions of “practising semi-specialists” and 
the theories of the scientific community.

A TEACHER’S OPINION ON APPLICATIONS IN GEOMETRY

The teacher of the case study presented here – let us call him Mr. B – has been taught 
mathematics,  physical  education,  and  computer  science  at  a  German  secondary 
school for approximately 25 years. The age of his pupils ranges from 10 to 19 years. 
He seems to be well grounded in mathematics education and equipped with an elab-
orated concept of school-compatible mathematical applications. As a part of his posi-
tion, he is involved in the education of trainee teachers in mathematics. This may be a 
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further indication for the assumption that he is familiar with recent theories and per-
spectives of didactics.

As far as applied mathematics is concerned, his criteria for “good” applications match 
a lot of the attributes which are discussed and accepted by professional didacts (cf. 
Jablonka 1999). He demands that “the result [of a model building process] has to be 
useful for practical acting and reasoning” and that the real-world problems have to be 
“authentic and realistic, and not artificial and constructed” fulfilling their educational 
functions by being “challenging, but solvable – possibly after and due to simplifica-
tion” (all quotations are translated by the author). He mentions the concepts of mod-
elling and model building processes explicitly and approves the new style of arguing 
which is  introduced to  mathematics  education by mathematization.  He concludes: 
“Modelling and mathematical applications – these are things for which I would never 
abandon just a minute to discuss an automorphism instead.”

AMIDST A STRUGGLE OF TENDENCIES?

At first sight, Mr. B seems to be a true advocate of model building processes and 
mathematization. But later, when asked how significant applications are for his every-
day lessons taught in geometry, he admits that it is “not easy to find good geometrical 
applications.” He refers to some examples taken from computer-aided design, naviga-
tion and traffic routing, but – as the main surprise – he does not expect that these ap-
plications are the ones his students should keep in mind. They should rather gain “an 
understanding of spatial relations” and forms and symmetries and they ought to deal 
with “rather simple applications” like drawing and folding figures or “reading a city 
map”; and finally, he does not ask which abilities can be conveyed by modelling and 
mathematization, but, instead, in which cases modelling is “more necessary for the 
students” – and one can add: to understand geometry.

At this point, there appears to be a rupture, possibly an inconsistency in Mr. B’s per-
spectives concerning geometrical applications. On the one hand, he stresses the abilit-
ies and capacities in modelling and problem solving, which could be enforced by us-
ing authentic and challenging real-world problems; on the other  hand,  he regards 
“simple” geometrical applications as a tool to understand the concepts and theorems 
of elementary geometry – highlighting the knowledge of geometrical objects, of their 
attributes and dependencies as an educational goal on its own, and not as a device to 
manage practical challenges and to build up general skills beyond the scope of math-
ematics. The parts of goals and means seem to be suddenly switched over.

At first sight, there might be a simple and obvious explanation for Mr. B’s ambivalent 
statements: He could be influenced by two different schools which Kaiser claims to 
have located within the discussion on mathematical applications (Kaiser 1995). She 
distinguishes between a pragmatic and a scientific-humanistic approach: In the prag-
matic  view,  mathematics  is  a  tool  to  solve  practical  problems.  Applications  are 
deemed as practices to achieve problem solving capacities in managing real-world is-
sues (Kaiser 1995, p. 72). Therefore, applied mathematics is seen from a procedural 
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point of view and modelling and model building processes are stressed as a content of 
the curriculum. The scientific-humanistic school,  in contrast,  emphasizes the prin-
ciple of “conceptual mathematization”, that means that real-world situations are used 
to discover and develop mathematical concepts and insights and to receive mathemat-
ical ideas based on manifold associations (Kaiser 1995, p. 72).

GEOMETRICAL WORKING SPACES

To clarify the ideas of the scientific-humanistic school as far as geometry is con-
cerned, it is suitable to use the theoretical framework of geometrical working spaces 
(summed up by Houdement 2007). By this approach, geometry is split into three dif-
ferent paradigms (Houdement & Kuzniak 2003):

1) Geometry I (Natural Geometry): Geometry is seen as an empirical science which 
refers to physical objects. To proof or to refute conjectures, both deduction and ex-
periments are  allowed,  whereas  measurement  is  the main  experimental  technique. 
This theory is not axiomatic, and its type of deduction is similar to inferential argu-
ments between “local ordered” propositions in ordinary language discussions.

2) Geometry II (Natural Axiomatic Geometry): Geometry is treated as an axiomatic 
theory. The axioms are supposed to refer to the real world and, therefore, to describe 
physical figure and objects (with some idealization). Insofar, Geometry II is empiric-
al, too. But to proof or to reject propositions, no empirical argument is permitted, but 
only a deductive one based on the axioms.

3) Geometry III (Formalist Axiomatic Geometry): Geometry is seen as an axiomatic 
and deductive theory, and no connection to the real world is intended.

With reference to this approach, the main goal of the scientific-humanistic school can 
be described as the project to prevent a sudden transition from Geometry I in primary 
school to Geometry III in the higher level secondary school in Germany. Such a sud-
den transition was enforced by the scientific tradition of this type of school and even 
increased by the New Maths movement until the early 1980s (Schupp 1994).

The alternative drift of the scientific-humanistic school was to fortify Geometry II, to 
establish a tender segue from Geometry I to II, and finally to achieve Geometry III or, 
at least, an idealistic interpretation of Geometry II which replaces the reference to 
physical objects by the platonic idea of  idealistic objects not being present in the 
physical world. This project was mainly motivated by two reasons (cf. Kaiser 1995, 
p. 73): On the one hand, the ontological binding to real-world objects should be an 
intermediate stage on the way to an idealistic or formalist view of geometry to pre-
vent a not understood formalism. On the other hand, it should establish an under-
standing of the role geometry plays as a tool in natural sciences. In both cases, the on-
tological foundation in real-world objects was primarily not intended to enforce mod-
el building processes and skills, but to build up a “field of associations” in order to 
understand geometry or natural science more proficiently.
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NORMATIVE ISSUES OF APPLIED MATHEMATICS

Concerning applied mathematics, the pragmatic and scientific-humanistic approach 
differ in weighting normative parameters: One of them sets priorities in practical rel-
evance und abilities to deal with model building processes; the other one stresses the 
theoretical aspects of mathematics (and natural sciences) and uses the associations to 
real-world situations  as  a  tool  to  achieve a  deep and connected understanding of 
mathematical concepts. The origin of this controversy appears to be nothing else but a 
disagreement about educational goals; and the different role of applications does not 
seem to arise from a specific character of geometry or geometrical applications, but 
only from disparate normative points of view – a situation which seems to have the 
same consequences in every part of mathematics and mathematics education, and not 
only in matters of geometry.

Exactly this opinion is called into question by our following considerations. We will 
propose an alternative assumption to explain the main statements of Mr. B. Our ex-
planation is based on two arguments: Firstly, we will discuss an investigation on the 
ontology of geometry to clarify the question whether geometrical applications can be 
treated in the same way as other ones. Secondly, we will concern transcendental argu-
ments to elaborate the issue to what extend the use and choice of geometrical applica-
tions are within the scope of normative deliberations.

THE STRUCTURAL THEORY OF EMPIRICAL SCIENCES

Our ontological consideration is influenced by a particular kind of philosophy of sci-
ence which is called the “structuralist theory of empirical sciences”, primarily estab-
lished by Sneed and later elaborated by Stegmüller and others (Sneed 1979 and Steg-
müller 1973/1985). The core assumption of this approach is the idea that empirical 
theories can be described by two components, namely by a set-theoretical predicate 
and a set of intended applications (Stegmüller 1973/1985, pp. 27–42). The set-theor-
etical predicate contains all of the formal and axiomatic aspects and is defined by the 
same method used by mathematicians in succession of Bourbaki: In the same manner, 
how it is possible to define the concept of a group as a pair (G,*) so that every ele-
ment of G fulfils certain axioms relative to *, the axiomatic background of classical 
mechanics can be expressed by a quintuplet so that every element of the carrier set 
fulfils the well-known Newtonian axioms (Stegmüller 1973/1985, pp. 106–119).

At this stage, there is no difference between an empirical and a non-empirical theory 
(for example a mathematical theory from a formalistic point of view): They both can 
be defined by set-theoretical predicates. The difference arises from the set of intended 
applications: In case of non-empirical theories, this set is empty. In case of an empir-
ical theory, it contains the applications which are claimed to be describable and ex-
plainable by the concerned theory. For instance, some of the intended applications of 
classical mechanics are pendulums, solar systems and especially apples falling from a 
tree. The set of intended applications cannot defined extensionally, but only by enu-
merating paradigmatic examples and by declaring that every entity also belongs to 
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this set which is “sufficiently similar” to the paradigmatic examples – leaving vague 
what “sufficiently similar” means (Stegmüller 1973/1985, pp. 207–215).

The concept of geometrical working spaces is a useful framework to establish a con-
nection between geometry and the structuralist theory of science: Geometry I and II 
are empirical theories insofar they are intended to refer to real-world objects, and they 
even share the same set of intended applications: physical objects of middle dimen-
sion, especially drawing figures and tinkered matters which are used at school. But 
despite sharing the same set of intended applications, these theories fundamentally 
differ in their set-theoretical predicates: Whereas Geometry II is assumed to fulfil an 
axiomatic system of Euclidean Geometry, the propositions of Geometry I may be so 
vague and psychologically motivated and so variable relative to different times and 
persons that they certainly cannot be transferred to a system of axioms and accord-
ingly to a defining set-theoretical predicate. In contrast, Geometry III is not an empir-
ical theory, since it is regarded in a formalist manner, presupposing not to have any 
applications; that means, in this case the set of intended application is empty. But on 
the other hand, Geometry III shares the same defining set-theoretical predicate with 
Geometry II: They both are intended to be a Euclidean Geometry.

The set of intended applications is not just an “illustration”, a nice, but useless thing 
which can be left out; it rather fulfils two indispensable functions: From a logical 
point of view, the set of intended applications is a conceptual attribute and a part of 
the definition of an empirical theory. It distinguishes an empirical theory from a non-
empirical one und declares the “part of the world” to which the theory is connected. 
Exactly this is the difference between Geometry II and III.

The second function results from the fact that every non-trivial empirical theory is 
based on idealization. For example, classical mechanics presupposes the existence of 
point particles without any spatial dimension. However, such entities do not exist in a 
strict sense of the word, but only “approximately” – and this is the second task of the 
set of intended applications: Since there is no way to explain explicitly under which 
condition and to what extent an approximation is allowed to make an empirical the-
ory applicable (Stegmüller 1973/1985, pp. 207–215), i. e. under which condition an 
application belongs to the set of intended application, the paradigmatic examples of 
this set provides a number of “case studies” by which the limits of approximation are 
implicitly defined and novices of the scientific community can become familiar with 
the scope and borders of their coming occupation.

In geometry, the problem of approximation will typically arise, if infinity or dimen-
sion zero occurs; straight lines, planes, and angles are paradigmatic examples of this 
case (Struve 1990, p. 43). For instance, if there is a line drawn on a paper, there will 
be two ways to deal with the question “Is this a straight line, a segment of a straight 
line or neither of them?”: From a formalist or idealistic view of geometry, this is a 
trivial question, since geometry does not refer to physical objects; a physical line is 
neither a segment nor straight line; at most, drawings could be symbolic tools to think 
about geometrical objects or propositions. But if it is taken serious that geometry can 
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be interpreted as an empirical theory (as supposed in Geometry I and II and as being 
common and necessary for geometrical applications as we will see later), the pupils 
will have to learn to treat a line sometimes as a segment and sometimes as a straight 
line. To deal with these decisions is a notorious problem in geometry. The intended 
applications like drawing figures are the paradigmatic examples by which pupils are 
supposed to learn to manage these questions.

Hence,  the knowledge of  the set  of  indented applications and the handling of  its 
vagueness is not optional, but an integral part of a particular empirical theory and, 
therefore, one of the aspects of “possessing” and being able to apply a certain theory. 
The educational task of paradigmatic examples is primarily described by Kuhn as far 
as philosophy of science is concerned (Kuhn 1962/1976, pp. 59–62). It is also a com-
mon thesis in psychology that paradigmatic examples play a major role in learning a 
theory (e. g. Seiler 2001, pp. 144–225).

ONTOLOGICAL ASPECTS OF ELEMENTARY GEOMETRY AT SCHOOL

At this point, we will come back to didactics. Struve has investigated how elementary 
geometry is presented in secondary school following the philosophy of science struc-
turalism sketched above (Struve 1990, p. 6). Expressed in terms of the theory of geo-
metrical  working  spaces,  he  comes  to  the  conclusion  that  the  didactical  changes 
which were established to avoid a sudden switch from Geometry I to Geometry III by 
stressing Geometry II (as mentioned above) factually took the effect that the new 
textbooks present rather Geometry I than Geometry II and (even if Geometry II is 
reached) geometry is continuously taught as an empirical theory, and never as a form-
alistic or idealistic one as intended: “students learn an empirical theory in the geo-
metry lessons held at secondary school” and “concerning the empirical theory, as we 
want to call the theory the students learn in their geometry lessons according to our 
investigation, figures created by folding and drawing are the paradigmatic examples” 
(Struve 1990, pp. 38–39).

THE ISSUE OF MODELLING

Struve has mentioned some of the consequences of his result – foremost some consid-
eration on the fact that proofs have different functions in empirical and non-empirical 
theories observing that students typically treat proofs in the same manner as they are 
used in empirical sciences (Struve 1990, pp. 38–49). In this article, we will add a con-
sideration concerning modelling. If we can follow Struve’s results, Mr. B’s distinction 
between two types of geometrical applications is not confusing, but an obvious im-
plication of the empirical character of geometry as it is taught in secondary school: 
The figures created by drawing and folding and the “simple” applications based on 
these figures can be regarded as the paradigmatic examples which define the set of in-
tended applications and constitute geometry as the empirical science of the spatial en-
vironment surrounding us in everyday life.
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In this view, the supremacy of simple applications is not based on a normative de-
cision about the role of application in mathematics education, but on the specific on-
tology of geometry: The knowledge of and the familiarity to these examples of applic-
ations are defining attributes of geometry as an empirical science. Hence, with regard 
to these “basic” applications, geometry differs from the other parts of mathematics 
taught at school. In the other cases, the amount and choice of applications is a norm-
ative question guided by arguments which Kaiser has combed through. In geometry, 
however, the task of normative deliberations begins not before the set of intended ap-
plications is left. Therefore, it is not astonishing that the (rare) cases which Mr. B 
mentions as “real” examples of modelling in geometry are quite different from the 
paradigmatic examples of folding and drawing: computer-aided design,  navigation 
and traffic routing. In these cases and after some basic courses based on “simple” ap-
plications, geometry may no longer differ in modelling and mathematization.

TRANSCENDENTAL ASPECTS OF GEOMETRY

Our last task concerns the question if the dominance of an empirical view of geo-
metry at school (as Geometry I or II) is an aberration caused by psychological cir-
cumstances and enforced by “misguided” textbooks or if there are good reasons to 
teach geometry as an empirical theory (to some extend). We will argue for the latter, 
accentuating a special role of geometry in contrast to other parts of mathematics and 
aiming  for  the  conclusion  that  therefore  two  different  types  of  applications  are 
needed.

Let us start with an example: In 2003, a new national curriculum framework called 
“Bildungsstandards” (educational standards) was established in Germany. In contrast 
to former resolutions, this declaration stresses general skills, abilities and competen-
cies – and among others, abilities in mathematical modelling. The relevant paragraph 
closes with the following sentence: “This includes translating the situation which is to 
be modelled into mathematical concepts, structures and relations” (KMK 2004, p. 8). 
This  is  a  formulation  ranging  over  all  parts  of  mathematics  taught  at  secondary 
school. A specific statement focussing on geometry is not declared.

Let  us  deliberate  what  this  sentence  presupposes:  There  is  a  real-world  situation 
which can be described by mathematical concepts, but need not to be treated in this 
way. For instance, you can cross the road without thinking about the probability to be 
knocked over and you can look at the carps in a lake without having a function in 
mind to describe their growth process. Normally, a mathematical description is  not 
necessary and will only be introduced, if it promises deeper insights as a description 
in ordinary language. Besides the general skills, this is a typical educational goal of 
modelling: the awareness that mathematics is a useful tool to achieve knowledge of 
the external world and to formulate this knowledge in a very precise manner.

In geometry, the case is quite different. If geometry could be treated like other math-
ematical theories, it would be possible to describe a situation geometrically only on 
demand. But this assumption fails since it is inevitable to use, at least, rudimental 
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geometrical concepts to describe a situation at all. You cannot cross the road or look 
at the carps in the lake without possessing, at least, a broad understanding of basic 
geometrical concepts. For instance, a (vague) understanding of relative positions is 
necessary to individuate the different things, persons or objects which are part of a 
specific situation.

The idea that space is not a thing of human perception among others, but the concep-
tual framework which allows to describe real-world phenomena was primarily intro-
duced by Kant as a part of his transcendental philosophy (Kant 1781/1998). In con-
temporary ontology the conceptual framework of space (and time) is broadly accep-
ted as  a  condition to  describe real-world situations  (for  everyday perceptions  see 
Runggaldier and Kanzian 1998, pp. 17–52, as a condition of empirical sciences see 
Bartels 1996, pp. 23–71, or Stegmüller 1973/85, p. 60).

CONCLUSION: TWO TYPES OF GEOMETRICAL APPLICATIONS

Now, it is possible to connect both arguments: Following transcendental considera-
tions, it is necessary to possess basic concepts to describe real-world situation and to 
establish  the conditions  under  which model  building  processes  are  possible.  That 
means, for mathematical reasons it may be passable to interpret geometry as a formal-
ist or idealistic theory; but for model building processes or in contexts of natural sci-
ences, it is necessary to understand geometry as an empirical theory. For some simple 
model building processes, an understanding on the level of Geometry I may be suffi-
cient,  but  for  more elaborated tasks or  as a tool  of natural sciences,  Geometry II 
seems to be indispensable.

Against this background, we attain a “two step view” of geometrical applications: 
Since concepts of an empirical geometry are necessary to apply mathematics and, in a 
structuralist view of science, these concepts correspond to a set of intended applica-
tions taken from the world of folding and drawing, the first type of applications con-
sists of very “simple” applications whose function is completely defined by learning 
and applying elementary geometry, especially by learning to manage the reference of 
concepts like “straight line” which can only be applied due to approximation. Hence, 
geometrical  applications of a “simple” kind are  inevitable ingredients of teaching 
geometry; and there is no reason to criticize the simplicity of these applications. At 
this stage, a normative debate about goals of teaching “applied geometry” is inad-
equate, since according to the empirical character of school geometry, there is no dif-
ference between teaching applied geometry and teaching geometry at all. This shall 
be our first conclusion: To some extend, it is necessary to deal with simple geometric-
al applications; and this necessity is not an inference from a normative decision about 
the goals of teaching applied mathematics, but a consequence of the specific ontolo-
gical situation of geometry and it transcendental function as a condition of natural 
science and ordinary perception. No other part of secondary school mathematics pos-
sesses this ontological and transcendental function. For this reason, the status of geo-
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metry is unique, and the debate on geometrical applications cannot be held in the 
same way as it is possible in the scope of other parts of mathematics.

The second conclusion is related to the other type of geometrical applications: If the 
“simple” and intended applications are the only ones which students get to know, 
there will be an obvious deficit in teaching general skills and model building capacit-
ies in the sense of the pragmatic view of applied mathematics.  Exactly this is the 
function of the second type of geometrical applications. It is comprehensible that ap-
plications which are intended to fulfil this task are quite different from the first ones. 
Mr. B mentions examples taken from computer-aided design, navigation and traffic 
routing. A list of similar examples is collected by Graumann (1994). Applications of 
this kind are typically not “pure geometrical”, but includes concepts or hypotheses 
taken from natural or social sciences, basic economics or empirical tedium platitudes. 
This fact can be regarded as a further indication for our claim that there two different 
types of applications with distinct functions: Whereas the simple ones are used to 
built up geometrical concepts and to manage the vagueness of applying geometrical 
concepts to real-world situations, the more complex ones are intended to use pre-ex-
isting geometrical concepts and insights to reach some of the many educational goals 
which Kaiser sums up for model building processes in general (Kaiser 1995). For this 
purpose, a real-world problem only providing geometrical aspects often does not ap-
pear to be multifarious enough to allow a model building process whose challenges 
lie in this process (including mathematization, simplification, validation and hypo-
thesis testing), and not in geometrical deliberations and calculations.
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