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Change and invariance appear at the very early stages of learning mathematics. In 
this theoretical paper, examples of topics and tasks from primary school mathematics 
with various kinds of interplay between variation and invariants are presented. Ap-
plication of this approach might be a tool that helps to improve non-formal algebraic 
thinking of students. We present some examples of pre-service teachers’ reasoning in 
terms of variances and invariance. 

INTRODUCTION 
For over fifty years, mathematics educators have studied ways of teaching algebra. 
Beyond viewing algebra as generalized arithmetic, various classifications for mean-
ing of algebra, algebraic symbolism, procedures and skills have been proposed 
(Usiskin, 1988). In algebra, students have to manipulate letters of different natures 
such as unknown numbers (Tahta, 1972), parameters, and variables. Required skills 
include specific rules for manipulating expressions and an ability to construct and 
analyze patterns. These components form the basis for the structure of school algebra, 
which appears to students to be abstract and rather artificial. Through dealing with 
transformation of algebraic expressions, students can hardly recognize the core ideas 
of algebra, such as application of standard arithmetic procedures to unknown or un-
specified numbers. 
From the point of view of primary school teachers, algebra is comprised of letters, 
rules of operations with expressions, and formulas to solve equations. Moreover, the 
term pre-algebra in the school math curricula stands for some “advanced arithmetic” 
topics that are linked with future algebra, mostly chronologically but not conceptu-
ally. 
Since 2005, the awareness of pre- and in-service teachers about algebra has been one 
of the “hot” issues of annual conferences on training primary school math teachers in 
Israel. In order to match the course Algebraic Thinking to the needs of pre-service 
primary school mathematics teachers, a systematic study on their vision of algebra 
has been initiated. Preliminary results of this research show that only a few of these 
students are aware of non-formal components of algebra (Sinitsky, Ilany, & Guber-
man, 2009). 
What mathematical concept could help pre- and in-service teachers to construct rele-
vant algebraic comprehension?  School algebra is a combination of generalized 
arithmetic, calculations with letters, and properties of operations (Merzlyakov & 
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Shirshov, 1977). In general, it requires reasoning on connections and relations be-
tween objects, for example, finding similarities and dissimilarities between objects. 
The question “what changes and what does not change?” seems to be fruitful in a 
meta-cognitive discourse that concerns problem-solving activity (Mason, 2007; Me-
varech & Kramarski, 2003). We propose to apply this question at the very early 
stages of mathematical learning as a possible tool to connect primary school mathe-
matics with algebra. 

WHY VARIANCE AND INVARIANCE? 
The two notions of variance and invariance are strongly linked, since “invariance 
only makes sense and is only detectable when there is variation” (Mason, 2007). Ma-
son claims that “invariance in the midst of change” is one of three pervasive mathe-
matical themes. Watson and Mason (2005) have elaborated the theory of possible 
variation and permissible change for the needs of mathematical pedagogy. The use of 
the concept of variance and invariance with pre-service teachers can develop their al-
gebraic thinking and provide them with tools to construct examples.  
The issue of learning processes is related to the human ability to associate and to dis-
tinguish between different characteristics of the same object. Research (Stavy & Ti-
rosh, 2000; Stavy, Tsamir, & Tirosh, 2002) shows that reasoning patterns “same A 
then same B” and “more A then more B” are prevalent among students, and direct 
analogy causes deep misconceptions in the learning of mathematics. Refining com-
prehension of various types of interconnections between change and invariance may 
be fruitful for improving cognitive schemes of students.  
Starting from secondary school, students systematically face algebraic notation and 
formalism. The most significant feature of algebra for students is manipulating with 
letters. It seems to them (and to their teachers) as a switch from four arithmetic opera-
tions with numeric operands into terra incognita of some quantities that are both un-
known and tend to change.   
Although the abilities to deal with varying objects, to explain, and to formulate are 
the very essence of secondary school algebra, students are expected to grapple with 
these based on their experience in primary school. In the framework of systematic 
construction of formal algebraic concepts, pre-algebra is responsible for the devel-
opment of pre-abstract apprehensions of algebra (Linchevski, 1995).   
In this paper, we bring up some issues from primary school mathematics and observe 
these problems in terms of change and invariance. We refer, at a non-formal level, to 
the main components of school algebra mentioned by Linchevski, i.e. using variables 
and algebraic transformations, generalization, structuring, and equations.  
We proposed related mathematical activities for pre-service primary school mathe-
matics teachers, and discuss some relevant classroom findings in the last paragraph 
and in the appendix.  
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VARIANCE AND INVARIANCE INTERPLAY IN PRIMARY SCHOOL  
Word problems and algorithms of school algebra often have an origin, or an analogy, 
in primary school mathematics. Despite the concrete numerical form of arithmetic 
problems, they usually enable some algebraic generalizations into patterns for several 
number sets with suitable restrictions. For example, the property of  being divisible 
by 9 is invariant in relation to any change in order of digits. Analysis of mathematical 
problems of primary school from the point of view of algebraic concepts may be 
fruitful for students as a step to constructing their algebraic thinking.       
A consideration of variation, change, and invariance may help to provide a non-
formal algebraic vision of arithmetic issues. Every mathematical situation provides a 
variety of variance–invariance links. Moreover, a suitable set of variations and related 
invariants that describe a task may provide a way to solve it. We illustrate the appear-
ance and application of the “change and invariance” concept in a number of topics 
from primary school mathematics.   
Quantities and numbers 
The most fundamental example of invariant is human ability to count (Invariant, n. 
d.). It starts with the transition from objects to quantities and develops through nu-
merous activities of counting objects of different nature. At this stage, quantity is in-
variant of physical properties of specific objects. Children also learn to count a given 
set of objects in different ways, and discover that the result is invariant of various 
(correct) counting procedures.  
Thus, a basic conception of equality of quantities arises: the equality represents the 
fact that the same quantity is obtained or described in two different ways. There is 
also the possibility of inverting the problem: which changes are allowed within a 
given quantity? This question seems concerns a misconception of equality. 
Linchevski and Herscovics (1996) have connected cognitive difficulties in the transi-
tion from arithmetic to algebra to dual procedural-structural algebraic thinking. A 
well-known example of such difficulties is the comprehension of the expression 
34+7= as a command to carry out an action (Gray & Tall, 1991). Accordingly, in the 
equation 8+4=∆+5 the unknown is interpreted by students as the result of adding 
8+4. In contrast, the idea of equality as an idiom of invariance invites possible 
changes. 
An appropriate didactical scheme for primary school students is to focus on problems 
of decomposition of given number into a sum of two addends. Typical questions re-
quire producing additional presentations based on a given one as demonstrated in this 
activity: 

- 8=3+5 How can you split the same number 8 into another sum of two ad-
dends? 

- How does a change in the first addend influence the second one? 
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- How does the change of addends of two “adjacent” decompositions vary? (At a 
higher level this leads to a conclusion on invariance of parity for differences of 
addends for several decompositions of the same number)  

- For a given odd (or even) number, what can you say about the parity of ad-
dends in each decomposition? 

This activity invites students to discover the role of invariant quantities in a game of 
changing in.  

In discussions with pre-service teachers, the same questions were followed by further 
generalizations. For instance, the last question on parity leads to a conclusion on the 
invariance of parity of algebraic sums of numbers, with arbitrary distribution of +/- 
signs, through an analogy to the arithmetic expression. A choice of signs +/- does not 
influence the parity of the expression a1 ± a2 ±…±ak (for integers a1, a2,…ak).At an 
advanced level, the same mathematical situation leads to combinatorial tasks, such as:  

- In how many ways can we split a given natural number into the sum of equal 
addends?  

- Can you arrange any presentation of an arbitrary multiple of three as a sum of 
consecutive addends by first splitting it into a sum of equal addends?   

- In how many ways can we split a given natural number into sum of consecutive 
addends? 

In the appendix, we present examples of pre-service primary school math teachers’ 
response to some of these questions.  

With this cluster of problems, we explored the concept of permissible changes within 
a given invariant in a variety of mathematical questions and levels.   
Comparison of quantities in terms of change and invariance 
In addition to invariance, the very basic process of counting deals with variation of 
quantity. Adding each new object to a given set of objects generates a new quantity 
that is greater than the given one. These examples are taken from the Curricula for 
Primary School in Israel (Curriculum, 2006): the sum 5+1 is greater than 5, and the 
sum 67+2 is less by1 than the sum 67+3.   
From the point of view of invariance and change, students try “to find the same” in a 
pair of arithmetic expressions. The same operand plays a role of a parameter, i.e. arbi-
trary but the same number. The only cause for different values of given expressions is 
the difference in second operands. Therefore, to compare two quantities one looks at 
them in a structural manner: namely, noting the similarity and the difference between 
them. For example, comparing the results of other arithmetic operations when one of 
the operands is the same for both expressions: 

- Which one of the differences is greater: 856 – 47 or 856 – 44? 
- What is the difference between the two products:  84 X 123 and 83 X 123?  
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- Shirli arranged dolls in nine rows with the same number in every row. She 
added two dolls to each row. By how many dolls did the total number of dolls 
increase?  

In school algebra, the presence of an unknown quantity typically turns the simple 
problem of comparing two similar expressions into a difficult one for students. For 
example, the comparing the pair a-7 and a+7 as opposed to the pair 7-a and 7+a.  

Further, in order to compare more “remote” arithmetic expressions, one can try to in-
terpret them as a different change of the same connecting expression. When pre-
service teachers discussed how to compare two differences, i.e. 1234-528 and1243-
516, they constructed intermediate expressions, 1234-516 or 1243-528.  In a similar 
way, they proposed using the product  for comparison of products 

 and . This method of comparison is also an algebraic one: two 
expressions a*b and c*d are interpreted as changes of the same basic structure a*d or 
c*b. 
Computational algorithms and techniques  
In school algebra, most procedures cause changes in algebraic expressions yet pre-
serve equality or inequality. This issue is not new for students. Almost every process 
of computation includes some transformation of a given arithmetic expression to an-
other one. The transformation is valid provided it keeps invariant the value of the ex-
pression. In fact, both the rules of arithmetic operations and standard computational 
algorithms preserve the invariants: 

- To calculate the sum 123+456, one groups similar units of addends, 
123+456=(100+400)+(20+50)+(3+6) – this is a direct analogy of gathering 
similar terms in algebraic expressions. 

- The difference 123-49 can be replaced by a new expression that retains the 
value of the given one: 123–49=124–50.  

Fraction reduction and expansion are additional examples in elementary school of 
variation that preserves value. 

The ability to find a suitable variation of a given expression that preserves its value is 
a useful starting point for oral calculations. A necessary condition to apply is the in-
variance of the value under the change of form of the calculated expression.  

 We have studied the strategies pre-service primary school math teachers apply to 
calculate sums of arithmetic progressions (Sinitsky & Ilany, 2008). Only 5% of the 
students succeeded in recalling a suitable formula and applying it correctly. After tak-
ing part in series of assignments concerning interplay of change and invariance, the 
students were given similar tasks.  They tried to calculate sums by reducing them to 
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known series in various ways 
(2+3+...+26→1+2+...+25;  3+6+9+...+60=[2+4+...+40]+[1+2+...+20]).  

Number properties and range of generalization 
When students manipulate algebraic expressions, the application of natural intuitive 
reasoning schemes “same A then same B” or “more A then more B” leads them to 
false reasoning: “x2 = y2 implies x = y”, “ –x > 2, therefore x > − 2”. In terms of 
change and invariance, this is a problem of connection between different invariants.    
There are numerous examples of correct ways of reasoning when letters A and B 
stand for the property of numbers. Examples of correct propositions concerning 
squares of natural numbers: “If the unit digits of two numbers are the same their 
squares have the same unit digit”; “The squares of numbers with the same parity are 
also of the same parity”`; “As natural numbers increase so do their squares”.  
Such a convenient tie between invariants and changes invites a wide generalizing. 
Accordingly, questions that lead to counter examples and determination of range of 
possible changes or invariants are crucial: “Does changing the order of a sum change 
the result?”; “Does equal square/rectangle/parallelogram area imply the same perime-
ter?”; “Does multiplying a number by 2 increase the number of its divisors?” 
Generalizing regularities and solving problems without algebraic formalism 
An equation composed to solve a word problem algebraically expresses an invariance 
of some (typically unknown) value. For example, in problems that concerns motion, 
the same distance that two vehicles cover in different manners is the invariant of the 
two processes involved. Hence, the ability to identify invariance through some 
changes is useful for solving mathematical problems.  
At primary school level, the search for invariance is an effective tool to discover 
regularities in numerical tables and in tables of arithmetic operations. For example, in 
the hundred table (see appendix, example 2) numbers increase constantly, but the 
change between adjacent cells in any row or column is invariant of the cell position. 
Similarly, the difference of products of diagonals of any   square is an invariant 
of the choice of square. 
The next stage of proving those propositions typically involves some algebraic ma-
nipulation. Detecting a proper invariant for the problem can help avoiding formal al-
gebra and provide a transparent proof with a generic example (Mason & Pimm, 
1984). This type of reasoning is presented in the appendix.     
Coming back to word problems and relevant equations, we illustrate another aspect of 
interaction between variation and invariance in pre-algebra mathematics. This inter-
play may provide non-algebraic solutions for some word problems. For example:  
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John bought two kinds of items: pencils that cost 30 cents each and pens that 
cost 50 cents each. He paid 6.20 euro for 16 items. How many pencils and how 
many pens did John buy?  

We restate here a well-known arithmetic solution of the problem with an emphasis on 
variation and invariance. We start with the possibility that John bought 16 pencils at a 
cost of 4.80 euro. Now we need to vary the cost, keeping invariant the number of 
items. The answer to the question “How many pencils do we need to exchange for 
pens to increase the total price by 1.40?” provides the solution of the problem. In this 
approach, the total number of items is an invariant of the process. An alternative 
method of solution starts from any combination of items that provides the desirable 
cost (for example, 10 pens and 4 pencils). The next step is to vary the number of 
items keeping the total cost invariant. 
A taxonomy of change and invariants 
Due to many characteristics of each object or process, every variance results in sev-
eral changes and introduces invariants as well. Alternatively, preserving some invari-
ant permits variances of other properties. Thus, there are many possibilities of interre-
lation between change and invariance. The same sort of connection can occur in vari-
ous mathematical problems and topics.  
From the above and other examples, we have derived a suggested taxonomy for 
change, variance, and invariance:  

- An invariant is given a priori, and the focus is on possible changes and related 
invariants. 

- To understand the action of prescribed change, we look for imposed variations 
and for given invariants. 

- To solve a problem, it is necessary to find some key invariant of all the proce-
dures involved. 

- To treat a mathematical situation, we introduce a suitable variation or a se-
quence of variations.  

Within this classification, the two latter cases seem to be more complicated since they 
involve construction of relevant objects or procedures. On the other hand, a specific 
kind of relation between variation and invariance is connected more with the method 
of solving the problem than with the problem itself. Thus, various solutions of the 
same problem may bring into play different kinds of interaction of change and invari-
ance or even a combination of those interactions. 

PEDAGOGICAL ASPECTS OF THE APPROACH  
We require that primary school mathematics teachers be competent to recognize rele-
vant kinds of variations and invariants in various issues and problems of elementary 
mathematics. We need to start introducing this concept in teachers’ education to en-
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sure that they can construct an additional didactical tool for mathematical discourse in 
a classroom.  
To test the influence of discourse in terms of interplay between variance and invari-
ance on algebraic thinking of students, we designed an experimental study. The re-
search involved future and current teachers of mathematics at elementary school. We 
tried to learn if, and to what extent, discourse on variance and invariance influenced 
beliefs and knowledge on the ability of further application of non-formal algebraic 
reasoning. In addition to checking the validity of our conjectures, we would like to 
improve the awareness of school educators about the use of variation and invariance 
at primary school level.  
So far, pre-service teachers have participated in the study through problem solving 
activities in the framework of their courses in pedagogical colleges. Throughout these 
activities, they have discussed the ideas of variance and invariance with specific 
mathematical issues. We have found that future teachers have begun to construct ex-
amples for teaching in elementary school that invite algebraic thinking and argumen-
tation in terms of change, comparison and invariants (Sinitsky & Ilany, 2008). 
To promote this concept, we designed additional mathematical assignments. Each 
task includes a cluster of math problems on different issues at various levels of diffi-
culty united by the same relation of variance and invariance. The starting point is 
part of the school curriculum, should be familiar to every pre-service teacher, and is a 
basis for further generalizations and analogies. The style of all the assignments is that 
of open problems in order to stimulate various approaches and strategies. 

CONCLUSION 
In this paper, we discussed applications of conception of changes and invariants in 
primary school mathematics. We looked at numerical problems from a point of view 
that is general and in many cases algebraic. The same types of connection can be de-
tected in different mathematical issues. The ability to recognize variation and invari-
ants may be an effective tool in constructing non-formal algebraic thinking of stu-
dents. However, as a necessary stage, it requires the awareness of teachers on the sub-
ject. Some preliminary evidence on pre-service teachers’ activities seems encourag-
ing and invites further wide-scale research. 
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APPENDIX: IT LOOKS LIKE ALGEBRA 
Two samples of reasoning involving variance and invariance interplay are presented.  

1. Representations of natural number as a sum of consequent addends – fragment of 
transcript of discussion with pre-service primary school mathematics teachers 

Students wrote down all the pairs with the given product, 30, and constructed sample sums 
of equal addends.   
Student A: “I start with equal addends. Now, for 30=10+10+10, I keep the total sum but 
vary the addends: (she moves a finger from the first term to the third one and has marked it 
with an arrow) 30=10+10+10. We get 30=9+10+11, and it is possible to do this for each of 
these sums of equal addends! For example, I can derive from this sum (she points 
30=6+6+6+6+6) another sum of consequent addends: 30=4+5+6+7+8 and... No, it does 
not work with 30=15+15: we need the sum to be invariant but also keep a middle term, and 
there is no middle addend here. Ah, I can try to split each one of 15s, but it changes the 
number of addends...”  
Students also obtained representation of 30 as a sum of four consequent addends: 
30=6+7+8+9, and tried to derive sum of consequent addends from the sum of fifteen equal 
ones.  
Student B: “But we need negative numbers. Aha, after the cancellation we get exactly the 
same sum! It means that for every presentation of natural number as a sum of consequent 
natural numbers we can make more sums if we use  integer numbers that will be cancelled 
after that, for example, 12=3+4+5 and also 12=(-2)+(-1)+0+1+2+3+4+5, because 
 (-2)+(-1)+0+1+2=0”  

2. Divisibility of differences of two-digit numbers with “inverted” digits – sample proof 
Conjecture: The difference of two two-digit numbers, where the second number has the 
same digits as the first one but in inverted order, is a multiple of 9.  
How can we introduce the justification of this proposition without algebraic formalism in 
the framework of discussion with the students?  
Let us check, what is the same in each pair of these num-
bers? They have the same digits, therefore also the same 
sum of digits. Now, let us mark an arbitrary pair of these 
numbers in a hundred table, for instance, 62 and 26. Their 
difference is just a distance between cells. Can we con-
struct the route from 26 to 62 that keeps invariant the 
sum of digits? The route passes through 35, 44 and 53 
before reaching 62. Each step increases the number by 9 
(see “decomposition” of one of the steps in the table), 
therefore the total difference is a multiple of 9. Moreover, 
the difference between inverted two-digit numbers equals 
the number of such steps multiplied by 9. 

...6 5 4 3 2 1 

...16 15 14 13 12 11 

...26 25 24 23 22 21 

...36 35 34 33 32 31 

...46 45 44 43 42 41 

...56 55 54 53 52 51 

...66 65 64 63 62 61 

...... ... ... ... ... ... 
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