
 

 

 

 

TRANSFORMATION RULES:  
A CROSS-DOMAIN DIFFICULTY 

Croset Marie-Caroline 
UJF, Leibniz-MeTAH, Grenoble, France, Marie-Caroline.Croset@imag.fr 

The learning of a symbolic system such as algebra relies on the learning of the use of 
transformation rules. The implementation of rules in a CAS (Computer Algebra Sys-
tem) for students’ modelling has pointed out some questions that are at the junction 
of three research fields: informatics, mathematics and didactics. Each of these com-
munities has its own perception of algebraic objects, founded on models or practices. 
The implementation of objects that live in school has questioned object reliability. In 
this paper, a parallel is proposed between difficulties of informatics implementation 
of transformation rules and novices’ difficulties.  
Keywords: algebraic calculations, rules, informatics implementation, students’ difficulties. 

An important part of school algebra rests on algebraic calculations, what Kieran calls 
the “transformational activity”, which she distinguishes from the generational and 
global activities (Kieran, 2001). This activity focuses on changing the form of an ex-
pression or an equation in order to maintain equivalence. This includes, for instance, 
collecting like terms, factoring and expanding expressions. These are algorithmic 
tasks like the transformation of xxx 210)5( +++  into )2)(5( ++ xx . The conserva-
tion of equivalence relies on correct rules that allow substituting expressions by oth-
ers. These rules will be called “transformation rules” in this paper. They are sup-
ported by the laws of the polynomial ring –commutative law, distributive law and so 
on. Rules produce objects of a particularly interesting form. Their use is guided by 
what the desired expression has to look like: reduced polynomial expression or fac-
tored polynomial expression. Bellard et al. (2005) call them the constituent rules of 
mathematic theory: “these rules constitute the base of the [transformational] activity, 
govern the motion and predetermine the permitted actions”. Such mathematical rules 
are supposed to be accurate and self-sufficient. 
Nevertheless, Durand-Guerrier and Herault (2006) stress the fact that rules are objects 
the usage of which is not so obvious: “the rule is not only a way to learn but it is also 
an object which has to be learned”. It is, in fact, impossible to present a rule alone to 
students. Rules have to be transposed, adapted and as such lose a part of their accu-
racy. The implicit notions of rules are compensated by a necessary didactical contract 
(Brousseau, 1997): “it is an illusion to believe that one can produce the meaning in 
the mind of someone by indirect ways through the rule and examples” (Wittgenstein, 
Ambrose, & Macdonald, 1979). Durand-Guerrier and Herault (op.cit.) also point out 
the illusion to think that the use of a rule is plain, such as “rails that would guide un-
failingly and in advance the way to be followed”. Actually, it is an interpretation that 
allows these implicit details between the rule and its application to be overcome. But 
what are exactly the notions underlying the learning of a transformation rule?  
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Our research is in line with the identification of systematic errors that students com-
mit when solving transformational exercises. A library of correct and incorrect trans-
formation rules has been built for that purpose and an automatic diagnosis mechanism 
has been implanted in order to associate a sequence of applied rules to student’s trans-
formation (Chaachoua, Croset, Bouhineau, Bittar, Nicaud, 2008). The implementation 
of these rules has raised questions about the kind of representation of a transforma-
tion rule. Automating the process forces the researcher to clarify some implicit 
mechanisms for the expert: how does a rule work? In which way does it work?  How 
is it matched?  It has led to three crucial points about implantation difficulties:  
- The reading direction of a rule; 
- The notion of sub-expression; 
- The generic status of a rule. 
Each of these points is discussed in the next sections. We propose, in addition, to link 
these three points to three classical difficulties which novices may experience when 
doing transformational activities: the difficulty of understanding the symmetric aspect 
of the equal sign (see e.g. (Kieran, 1981)); the difficulty of the structural aspect of an 
algebraic expression (see e.g. (Sfard, 1991)) and the difficulty of applying a general 
rule to a particular case (see e.g. (Durand-Guerrier, Herault, 2006, p. 144)). 
The choices made to raise difficulties in programming may shed light an improve-
ment of the teaching of algebraic rules and may overcome students’ problems. In-
deed, the reading direction of a rule is essential for a deductive reasoning, the notion 
of sub-expression allows matching correctly a rule and the generic status of a rule is 
the power of algebra. 

1. REPRESENTATION, READING DIRECTIONS AND REASONING 
PROCESS 
Transformation rules can be represented by two kinds of writings: equality or impli-
cation. Both present advantages and have good reasons to be used. Yet, we will see 
that rules as implication form are interesting in that it highlights the reasoning process 
in the transformation activity.  
Rules as equality, used in school 
The first representation –a rule as an equality– is the usual one used in school. Rules 
can be called by different names in the textbooks: proposition, property, identity, 
equality and sometimes even theorem (Bellard et al., 2005). Whatever their name, 
rules are often coming in the form of equality. For example, the distributive law is 
presented as: 

kbkabak +=+ )( , where   and  , bak are real.  (Eq1) 

There is a double meaning of the equal sign: that of “identity” or that of “relation”. In 
transformation rules, the equal sign is of course used as “identity”, whereas in equa-
tions, the equal sign is used rather as “relation”. This well-known duality is a real dif-
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ficulty for students. Presenting rules as identity can, on the one hand, be interesting to 
get students used to and, on the other hand, provoke confusion. 
Such representations are declarative rather than procedural: this form of identity has 
no explicit reading direction since the equal sign has a double way: from left to right 
and vice versa. A learning of the way to use such a rule has to be taught. Whereas the 
process-product has been many times denounced (Davis, 1975) and that special exer-
cises are proposed to students in order to grasp the equivalence notion, here is a case 
where the equality has to be used in one of the two ways. In fact, textbooks sense 
that, most of the time, it is necessary to distinguish the two ways by proposing two 
identities: not only (Eq1), which is used to expand expressions but also 
“ )( bakkbka +=+ ” to factor. This kind of presentation requires a specific work to 
become operative: associate a reading direction to the equality for application, ac-
cording to the aim.  
Rules as implication, used in informatics 
The second representation –a rule as an implication– is the one used in informatics. 
One calls “implication” what Durand-Guerrier, Le Berre, Pontille, & Reynaud-Feurly 
(2000) call “formal implicative”, representation used in geometry:   

)()( , xQxPx ⇒ℜ∈∀ .  

Implemented rules are represented as oriented mechanisms, also called “rewrite 
rules” (Dershowitz & Jouannaud, 1990): BA → , where A is rewritten in .B  The ob-
ject   A produces the object   B and B can not produce A unless an other rule AB →  
is considered. For example, the rules:  

kbkabak +→+ )(  (R1) is used to expand, 

)( bakkbka +→+  (R2) is used to factor. 

It is rather a necessity in computing modeling to represent rules as oriented ones than 
a choice. Indeed, it is not really possible to implement rules as identity. If a single 
rule is implemented both for expanding and for factoring, there will be some loop and 
ending problems. For example, with the single rule (Eq1), the expression “ )4(3 +x ” 
would be transformed into “ 123 +x ”, then into “ )4(3 +x ” and so on.  

Even if it is a necessity, this kind of representation is interesting because its reading 
direction is explicit: given a real or a polynomial expression under the form 
“ acab + ”, where “ a ”, “b” and “c ” are reals or polynomials, it can be rewritten into 
“ )( cba + ”. One can suppose that the use of rules as implication is easier because of 
its procedural aspect. The kind of representation has an impact on its use easiness, as 
we will show in the next section.  
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Impact of the reasoning process 
Although geometry is a special introduction field for proof, the latter is not a preroga-
tive of geometry. The “deep structure” (Duval, 1995) of the transformational activi-
ties can be presented as a ternary organisation proposed by Duval. A premise (here, a 
certain expression), a proposition (a transformation rule) and a conclusion (an other 
expression), as shown in Figure 1, constitute a deduction step. These steps follow on, 
the conclusion of the current step becoming the premise of the next one. Using Du-
val’s classification (Duval, 1990), the algebraic calculation is formed by deductive 
reasoning of steps explicitly concatenated in reference to a transformation rule. 
Thereof, this activity can be viewed as a process of demonstration: 

“Demonstration would be defined to be, a method of showing the agreement of remote 
ideas by a train of intermediate ideas, each agreeing with that next it; or, in other words, a 
method of tracing the connection between certain principles and a conclusion, by a series 
of intermediate and identical propositions, each proposition being converted into its next, 
by changing the combination of signs that represent it, into another shown to be equiva-
lent to it” (Woodhouse, 1801) 

 

Figure 1: Deduction steps. 

Representing rules as implications could allows the user to follow this reasoning 
process explicitly, as shown in Figure 2. 

 

Figure 2: Example of the reasoning process in algebra. The level of making explicit a 
demonstration and the granularity of a deductive step evolves with the level of the stu-
dent. Here, for example, we have omitted to explicit the commutative law. As Arsac 
notes: “any demonstration is shortened from another demonstration” (Arsac, 2004).  

Splitting an identity into two implications conceals the fact that rules are equivalent 
but clarifies the way of application and, above all, it allows following the Duval’s 
structure of a deduction step. This is the modus ponens mode: “if p, then q, now p, 

xx 42 +
 

x)42( +  

If a polynomial is repre-
sented by ba+ca, it is also 

represented by (b+c)a 

Premise 

Conclusion

Deduction 
step 

Algebraic 
Rule 
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then q”. The representation form of a rule has an impact on its use easiness but it lets 
the difficulty to know to which object the rule can be applied.  

2. MATCHING AND SUB-EXPRESSIONS NOTION 
An unrefined syntactic unification between the premise of a rule and a part of an ex-
pression does not produce an algebraic behaviour. With an unrefined unification, a 
rule as xxx 2→+  would transform “ xx +5 ” into “5 x2 ”, which has no sense (what 
is the operator between “5” and “2”?) nor the expected result. This is a well-known 
mistake committed by students: substitute an expression by another by working only 
on a syntax level and taking no account of semantics. Mastering substitution needs 
knowing the notion of what a sub-expression of an expression is.  
The definition of an expression from the rewrite rule theory of Dershowitz (1990), in 
which rules are applied on sub-objects, underlines the notion of sub-expression, 
thanks to its recursive definition. Let us consider a set of symbols of terminal objects 
(e.g., integers), a set of symbols of variables (e.g., {x, y, z}), and a set of symbols of 
operators (e.g., +, –, ×, ^, sqrt, =, <, and, or, not). An algebraic expression is a finite 
construction obtained from the following recursive definition: 
- a symbol of terminal object  
- or a symbol of variable  
- or a symbol of operator applied to arguments which: 

- are algebraic expressions, 
- are in the correct number (correct arity [1]), 
- and have correct types [2]. 

With this definition, matching a rule R to an expression E would consist of finding a 
sub-expression E1 of E, replacing E1 in E by the expression that produces R. For ex-
ample, in “ xx +5 ”, the algebraic (sub) expressions are “ x5 ”, “ x ” (two times), “5” 
and “ xx +5 ”. The expression “ xx + ” is not a sub-expression of “ xx +5 ”. To deal 
with this problem, the internal representation of expressions in computer algebra sys-
tems (CAS) is a tree representation, in which the structure of the expression is ex-
plicit, as shown in Figure 3. 

 

Figure 3: Tree representation of the expression xx +5 . 

x

x×

+
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The necessity of the tree representation appears also in school curricula. Although 
school approach of expressions is foremost syntactic -algebraic expressions are de-
fined as “writings including one or more letters”-, new French curricula encourage 
making students work on tree representations. As they claim, tree representation al-
lows pointing out the structural aspect of an expression as defined by Kieran: 

“The term structural refers, on the other hand, to a different set of operations that are car-
ried out, not on numbers, but on algebraic expressions. […] the objects that are operated 
on are the algebraic expressions, not some numerical instantiations. The operations that 
are carried out are not computational. Furthermore, the results are yet algebraic expres-
sions.” (Kieran, 1991) 

This structure notion is essential to deal with matching difficulties. It enables under-
standing why such rule like kbkabak +→+ )(  (R1) can be applied on sub-
expressions of expressions such as )1(43 ++ x . Nevertheless, is it sufficient to under-
stand that this rule can be applied also on expressions such as )1(4 2 +xx  or 

)1(4 22 xxx ++ ? Either in informatics or at school, we will see that most of the time, 
one needs to precise as many rules as there are cases.   

3. GENERIC STATUS OF RULES 
The third idea which emerges of rules implementation turns on the generic status of a 
rule: how a rule such as (Eq1) or (R1) can be sufficient to apply to the expressions 
“ )3(7 x+ ”, “ )3(7 x+− ”, or even “ )3(7 2xx ++ ”? How to deal with the matching of 
“ ba + ” with “ 23 xx ++ ”? It is, with no doubt, the principal difficulty for novice us-
ers of rules: the application of a general rule to a particular case. It is, in fact, the 
same in informatics. Although the two first points –reading direction & matching 
problems– have been easily resolved in informatics, it has not been the same for this 
third problem. 
The entry by rewriting rules –and thus a syntactic presentation– leads to some new 
problems. Let us study again the case of (R1). For experts, it is not really this rule that 
is used but much more the single distributive law. With this last one, experts can ex-
pand any product of polynomials. In informatics, one needs rules to be implemented 
and so, the exact structure of an expression has to be specified. For (R1) implementa-
tion, “ k ”, for example, has to be defined: is “ k ” a real, a product such as a monomial 
or a sum? It is not possible to just say “given a polynomial k ”. Indeed, to transform 
“ k ”, its structure has to be specified. For example, if “ k ” is negative, the sign of the 
entire expression is changed. The main operator of the expression becomes “minus” 
and not “times”: the entire internal tree representation is changed, as shown in Figure 
4. The same difficulty is found when “ ba + ” is a sum of three terms: it can change 
the mechanism of the implementation of the rule. Without genericity, one needs to 
distinguish cases like “ )( bak + ” from “ )( cbak ++ ”. To deal with that, the concept 
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of distributive law has been implemented. Let us consider two lists and an operator, 
the distributive rule can be written as: 

).,...,,,,...,,(),...,,(),...,,( 2212121112121 nnnnn bababababababbbaaa ∆∆∆∆∆∆→∆  

We do not have to specify the length “ n ”of the lists. 

  

Figure 4: The single change of the real 7 into -7 changes the entire structure of the tree 
representation of the expression. On the left, the expression 7(5+x); on the right, the 
expression -7(5+x). 

Another example is very representative of this problem: the rule of monomials addi-
tion, which can be written as xbabxax )( ⊕→+ , where ⊕  is the calculated sum op-
erator. Such rule is not so easy to implement. If we ask the premise to be a sum of 
two products, this rule will not apply to expressions such as “ xax + ” because “ x ” is 
a single argument and not a product: an automatic mechanism does not recognize 
“ x ” as the product of “1” and “ x ”. To deal with this problem, some concepts have 
been implemented like the monomial concept. We have implemented the added fact 
that a monomial can be either a product of a real and a variable –of explicit degree or 
not– or a single variable –of explicit degree or not. Thus, expressions such as “ 54x ”, 
“ x4 ”, “ 1x ” or “ x ” are read as monomials, and the rule xbabxax )( ⊕→+  can be 
easily implemented: one needs just to specify that the premise has to be a sum of two 
monomials. 
The same problem occurs at school: the polynomial notion is not taught in France [3]. 
The variable “k” from the rule (Eq1) is then defined as a real, so are “a” and “b”. Un-
derstanding that “a” can be itself a sum, or even a sum with variables, requires a real 
work. How do French textbooks deal with this problem? 
To answer this question, we have used the concept of praxeologies from the Cheval-
lard’s anthropological theory of didactics. Let us remain that Chevallard proposes to 
describe any human activity by a quadruplet which enables an activity to be cut in 
types of task, which can be solved by techniques –a way of doing–, which can be ex-
plained by a rational discourse, “logos” (Chevallard, 2007) [4]. Our work in progress 
(Croset, 2009) shows that French textbooks distinguish three types of task for ex-
panding expressions: 

“ )( bak + ”, “ )( bak − ” and “ ))(( dcba ++ ”. 

x

7 +

×

5
x

7 +

×

5

−
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Cases like “ )( ba +− ” or “ )( ba ++ ” are discussed in another part of textbooks (“how 
to remove brackets?”). Some textbooks propose even more distinctions: they discern 
also “ kba )( + ” and “ kba )( − ”.  

On the one hand, it seems that textbooks decide to specify many cases although all 
these tasks are explained by a single “logos”: the distributive law. The fact that text-
books need to precise many cases points out the well-known difficulties of students to 
apply a general rule to particular cases. On the other hand, all possible cases cannot 
be specified. Textbooks do not specify types of tasks as “ )( cbak ++ ” or 
“ ))(( dcbak ++ ”. Understanding the structure of the expression is supposed to be 
sufficient to deal with all these forms. Nevertheless, we have not found such work 
and reflection about the generality of rules. Only a few textbooks precise links be-
tween the three types of task described above. Explanations such as using  

kbkabak +→+ )(  to expand “ ))(( dcba ++ ” are not common. Neither are pre-
sented the iteration concept to expand “ ))(( dcbak ++ ” whereas our work (ibid.) 
shows that students’ mistakes occur specially in this sub-type of task.  
The second problematic example about monomials revealed by the computing im-
plementation occurs also in students’ difficulties: recognizing “ x ” as a monomial is 
not an easy task for a novice. A novice’s common mistake is precisely to transform 
“ xax + ” into “ ax ” because of the lack of the explicit coefficient “1” ahead of the 
“ x ”: when “ a ” is added to “nothing”, it remains “ a ” [5]. The concept of monomial 
is not taught currently in French curriculum. We speak about “like terms” but few 
textbooks precise that “ x ”, “ x1 ”, and “ 1x ” are “like terms” which can be collected. 
The force of algebra lies in the writings generic status. Its interest is lost if all cases 
are presented. To avoid that, a specific work on concepts such as distributive law or 
monomial could be proposed to novices, just like it has been done for the computing 
implementation.       

4. CONCLUSION 
The learning of the transformational activity cannot be restricted to memorizing rules. 
This requires a specific work about the application of rules. Our research focusing on 
automatic student modelling has brought to light three important difficulties concern-
ing the application of transformation rules, which have been compared with similar 
novices’ difficulties: knowing that a rule has a reading direction allows students to 
follow a reasoning process when they transform algebraic expressions; knowing the 
structure of an expression permits a correct matching; finally, having a good percep-
tion of the generic status of rules allows students to apply a general rule to a particu-
lar case. All these elements are necessary conditions for learning the algebraic sym-
bolic system. Our paper has described the parallel between informatics implementa-
tion difficulties and the ones met by novices. One can wonder if the way to deal with 
the first ones could be used to deal with the second ones.  
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Regarding these three points, rules have been looked at from a technical point of 
view. Another point of view would be considering what experts’ criteria are to con-
trol their transformations: substitute numerical values to equivalent expressions in or-
der to verify the equivalence; in other words, being aware that equivalent expressions 
denote the same object. Similarly, another interesting point of view is to explore how 
to choose the appropriate rule. We have seen that a rule is general but the choice of a 
rule is crucial to obtain the form that one needs. The raison d’être of a rule, the stra-
tegic process and elements that guide an expert in choosing this particular rule, and 
not another one, have not been discussed here, despite the fact that informatics is also 
interested in such questions. We can expect that a parallel would be again possible 
between novices’ strategic difficulties and the implementation ones. 

NOTES 
1. The arity of an operation is the number of arguments or operands that the operation takes. For example, addition is 
an operation of arity 2, sqrt is an operation of arity 1. 

2. For example the expression “ 35 =x ” has not a correct type. 

3. A recent study has compared the algebra learning in France and in Vietnam (Nguyen, 2006). It shows that algebraic 
expressions found in French textbooks rely on the notion of polynomial function whereas the ones that can be found in 
Vietnamese textbooks rely on the polynomial notion. 

4. The reference (Chevallard, 2007) is not the best one for the notion of praxeology but it presents the advantage of 
being written in English. French reader can see also (Bosch & Chevallard, 1999). 

5. Haspekian (2005) proposes another explanation to this mistake: the difficult notion of neutrality of the multiplicative 
law. We think that, in our context, the mistake is more relative to a visual lack. 
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