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INTRODUCTION 
ON “STOCHASTIC THINKING” 

Andreas Eichler, Universität Münster, Germany 
and 

Maria Gabriella Ottaviani, “Sapienza” University of Rome, Italy 
Floriane Wozniak, University Lyon, France 
Dave Pratt, University of London, England 

OVERVIEW 
The Working Group 3 discussed 8 three aspects that reflect the diversity of the 
research approaches on stochastic thinking: 
- theoretical issues of stochastic thinking, 
- teachers' professional development, and 
- students’ learning in respect to their success in solving stochastical tasks. 
The connective aim of all approaches was the students’ learning of stochastical 
concepts, and the students’ awareness that it is possible to use stochastics to cope 
with specific real situations. These aspects of the students’ stochastical literacy (for 
the term statistical literacy see Gal, 2004), however, were discussed using three 
different perspectives, i.e. the stochastical content (C), the teaching of stochastics (T), 
and the students’ learning about stochastics (S), that shape a didactical triangle 
referring to stochastics instruction. 

 
Figure 1: Didactical triangle involving three different perspectives on stochastics 
instruction, i.e. the content, the teachers, and the students  
In the following we will introduce the papers that match one of the three perspectives, 
and we will sketch some results of our discussion.  

STOCHASTICAL CONTENT 
Stochastics is a cocktail of statistical ideas and probabilistic ideas. Although the latter 
thesis seems to be trivial, there is a lot of evidence that the emphasis on statistics and 
probability in curricula varies, often according to knowledge and feelings of the 
teachers. In the same way, the topics of interest to researchers vary over time.  
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Currently the focus of research concerning statistics is, for instance, on distributions, 
averages, variability (including informal inference, and co-variation and correlation), 
and graphs (Shaughnessy, 2007). Concerning probability the research focus is on 
random, sample space, and probability measurement (Jones, Langrall, & Mooney, 
2007). 
The research referring to these subjects has two aims: 

- to clarify the notions, meanings or definitions of stochastical concepts. In our 
group, for instance, the talk of Hasan Akyuzulu deals with the undefined 
concept of risk highlighting the connection between risk and defined 
stochastical concepts. 

- to develop and to evaluate teaching approaches that facilitate students’ learning 
in respect to the different stochastical concepts. Matching this aspect, Herman 
Callaert discusses in his paper obstacles of the students’ learning that emerge 
through ambiguous notations and explanations of stochastical concepts in 
widely-used text books and software. 

Concerning the aspect of stochastical content, we, finally, discussed the 
recommendation of professional organisations regarding stochastics instruction. To 
this aspect, Irini Papaieronimou identifies in her paper many recommendations about 
the teaching of probability from four US professional organisations. We are 
concerned that there is insufficient support to effect a didactical transposition. 
Further, we noted an omission: such recommendations do not include the need for 
teachers to understand what it is that students know (as opposed to misconceptions). 

TEACHING OF STOCHASTICS 
A repeated claim towards the research on stochastic thinking is to increase the effort 
of investigating the teachers’ knowledge and the teachers’ beliefs concerning 
stochastical concept, and the learning and teaching of stochastics (Shaughnessy, 
2007). According to this claim, we discussed two research approaches that concern 
both, the stochastics teachers’ knowledge, and the stochastics teachers’ beliefs. 

- Carmen Batanero, Pedro Artega, and Blanca Ruiz discuss in their paper the 
knowledge of prospective primary Spanish teachers referring to statistical 
graphs based on the theoretical Framework of Curcio (1989). They found that 
some of the teachers were unable to use even basic statistical graphs, and that, 
in fact, only one third were able to draw a reasonable conclusion. 

- the paper of Andreas Eichler refers to an analysis of “ordinary” upper 
secondary teachers’ planning of stochastics instruction, the teachers’ 
classroom practice and their students’ learning. His report focus on teachers 
having differing orientations across two dimensions: seeing mathematics as: 
(i) emphasising applications or a formal subject; (ii) being dynamic or static. 
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The report gives some evidence about different modes of students’ learning 
concerning their awareness of the benefit of stochastics in the real life. 

We concluded on the one hand, that the teaching of stochastics needs to offer students 
experiences of statistics and probability before theoretical perspectives are 
introduced. On the other hand, we stated that there is much research to do to 
understand the teachers’ knowledge and the teachers’ beliefs about stochastics that 
both in some sense determine the students’ learning of stochastics.  

LEARNING ABOUT STOCHASTICS 
Finally, we discussed three considerably different research approaches focusing 
students’ learning in respect to their success in solving stochastical tasks. 

- The paper of Zoi Nikiforidou and Jenny Page provides a psychological 
experiment on children (age 5 or 6 years), in which the children made 
decisions based on posterior information. The results of this research give 
some evidence that even such young children have some understanding of 
ideas that may be the roots of probability or inference. This result argues 
against the Piagetian framework. 

- The paper of Theodosia Prodromou and Dave Pratt concerns students (15 
years of age) using a computer simulation. This research yielded that it was 
possible to design a computer simulation such that students were able to make 
use of ideas about causality to make sense of distribution. In this sense, the 
deterministic and the stochastic worlds are not disconnected but connected 
through levels of complex causality. 

- Finally, Sofia Anastasiadou provides in her paper a study referring to 
children’s meaning-making with respect to set theory. She found that the 
students were not able to recognise the mathematical concept across differing 
representations. Perhaps the lack of transfer could be attributed to the students 
lack of preparation: time to discuss, interact and work on related tasks. 

Although the papers focusing on the students’ learning match some of the claims to 
the research into stochastics education, the three research approaches mentioned 
above showed the diversity of possible research questions in this field. 

CONCLUSIONS 
The papers of Working Group 3 highlighted the diversity of research approaches 
focusing on stochastic thinking. However, we concluded with thre claims for future 
research that often combine several perspectives on the teaching and learning of 
stochastics that shape a didactical triangle (fig. 1): 

- We need empirical results that give evidence, how we can support the 
implementation of recommendations from professional organisations. 
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- We need empirical based strategies we support teachers to be more 
connectionist in their approach. 

- We need to research how students can transfer ideas from one domain to 
another. Reference could be made to connectionist theoretical frameworks. 

One of the problems to achieve these claims is that it is sometimes not possible to 
transfer results yielded into mathematics education on stochastics education due to 
the fundamental difference of stochastics in contrast to other mathematical 
disciplines. For instance, the role of context is very different in statistics from in 
mathematics. Mathematics as a discipline aims to be decontextualised whereas 
statistics may draw on context. However, in both mathematics and stochastics 
learning, the students must experience the underlying ideas in meaningful contexts. 
Another problem seems to be that stochastics instruction in Europe still emphasise 
probability, and, for this reason, studies in the field of stochastics education often 
focus on probability. Hence, we hope to see more research in statistics in future 
conferences of the ERME. Otherwise, we are afraid that statistics will be lost from 
CERME. But also, we as educationalists fear this might parallel a loss of statistics to 
mathematics education. 
However, stochastics and, in particular, statistics are certainly useful to many subjects 
and to citizens in general but it is also important to mathematics education. 

REFERENCES 
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CHANCE MODELS: BUILDING BLOCKS FOR SOUND 
STATISTICAL REASONING  

Herman Callaert 
Center for Statistics, Hasselt University, Belgium 

herman.callaert@uhasselt.be  
 
A good understanding of chance models is crucial for mastering basic ideas in 
statistical inference. Mature students should be introduced to the concepts of 
inference through a study of the underlying chance mechanisms. They should learn to 
think globally, in models. In an introductory course, these models should have their 
own clear and unambiguous notation. Fuzziness and flaws, as encountered by our 
students in textbooks and software, may hamper their learning process seriously. The 
above claims are based on my experience as an instructor for university students. 
They should be substantiated by systematic research on the potential advantage of 
“thinking in models”, possibly also for younger pupils.   

INTRODUCTION 
From my experience as a teacher of statistics, thinking in models is a stumbling block 
for many mature students when they are confronted with the basic concepts of 
statistical inference. As long as students do not master the connection between 
underlying chance mechanisms and statistical conclusions, procedures like the 
construction of confidence intervals remain “black boxes”. The main problems with 
confidence intervals have been discussed in a previous paper (Callaert 2007) where 
the ability of “thinking backwards” was shown to be essential. After seeing the data, 
the main question was: “how did those data come to me?” This is a question about an 
underlying probability model as an ideal mathematical construct for modelling 
outcomes in a physical world. Those models are the main theme of the current paper. 
This paper has two parts. It first shows how mathematical mature students can be 
introduced to chance models at all places, from populations over samples to statistics. 
A simple example illustrates how the models are built. It points at the same time to 
the fact that a clear and unambiguous notation is crucial for acquiring clear and 
unambiguous insight. Students discover the need for distinguishing a population 
mean from a sample mean, or an “observable” chance model from an “unobservable” 
but fixed parameter. Many of the inaccuracies found in research papers, textbooks 
and software packages have their origin in a lack of insight in underlying chance 
models. Some examples are given in the second part of this paper. 
The current text is focused on mathematical mature students (using explicit 
mathematical notation). The underlying concepts however are very fundamental and 
it certainly is worthwhile finding out what can be done with younger pupils. Research 
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by Prodromou (2007) and Prodromou and Pratt (2006) is most interesting in this 
respect. They look at the connection between a data-centric and a modelling view on 
distributions, and write that: “The modelling perspective reflects the mindset of 
statisticians when applying classical statistical inference”. How and at what age can 
the connection with statistical inference be made? 

THE POPULATION AS A CHANCE MODEL 
From the very start, it is important that pupils not only are interested in “what” comes 
to them but also in “how” it comes to them. When they are allowed to build their own 
chance mechanisms, it is clear that (after some time and some experiments) they 
focus on both aspects. Nice examples can be found in a variety of research papers, 
such as in the study carried out by Pratt (1998) where children are able to manipulate 
“the underlying chance mechanism” (workings box). Another example is described in 
a paper by Cerulli et al. (2007) where they write: 

In that study, one team of pupils creates not just a Garden but a Random Garden. This 
means that the pupils not only think about the composition of the garden (the flowers 
and trees) but they also know that the Bird will extract objects “at random and with 
replacement”. A competing team of pupils has to guess the Random Garden after 
they have inspected a Nest. That the objects in the Nest came “at random and with 
replacement” is key information and it is used (rather implicitly) by the competing 
team when they look at bar graphs and counters. One of the important consequences 
of the setup of this study is that pupils start discussing (and understanding) the 
concept of “equivalent chance mechanisms” (called equivalent gardens). If the study 
would have been set up differently, with the same flowers and trees but with a Bird 
that extracts objects not at random or without replacement, the “Guess my Garden 
Game” would have been completely different. This aspect might be stressed even 
more in such types of studies since it is important to find out at what age pupils are 
able to “think in models” and what kind of strategies can be used for enhancing (and 
evaluating) this type of thought-processes. 
The above examples refer to studies with younger pupils (such as 11-12 years old). 
At a later stage the concrete objects in populations (such as flowers or colored 
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segments) are replaced by numbers. But the basic question about a population stays 
unaltered: “which numbers will come to me and with what probability?” For 
mathematical mature students, comfortable with abstract notation, it is helpful to 
make a distinction between a chance model and its outcomes. In line with the notation 
for random variables, a chance model can be denoted by a capital letter (such as ) 
and outcomes by the corresponding small letter

X
x . An example of such a “population 

chance model” is what I call a red die. Physically, it is just a regular die (falling on 
each side with probability 1/6) but the numbers on the faces have been changed. 
There are 3 faces with a 1, 2 faces with a 3, and one face with a 6. The way in which 
outcomes from this population appear is governed by a throw of this red die. Hence, 
one will never see a number 2 but, for example, one will get a number 3 with 
probability 2/6 , denoted as ( 3) 2/P X 6= = . The next table gives complete 
information about this population . X

x 1 3 6 

P(X=x) 3
6

 2
6

 1
6

 

Table 1. The population described by its chance model X
Remark that also in the continuous case it is customary to describe a population by 
providing at the same time the range of the values and their chance behavior, as 
reflected by statements like: “we work with a normal  population”. (124 ;16)N

THE SAMPLE AS A CHANCE MODEL 
Once students get used to look at populations from the perspective of chance models 
one would think that the step towards looking at a sample from the same perspective 
is straightforward. For most of my students, this was not evident. The following 
(simple) example became a real eye-opener for many of them. 
What happens when one takes a sample of size 2n =  from the population  
described in table 1 (the red die)? The main point here is that students have to answer 
the question before they actually take the sample. Hence, the question: “What will be 
the result of the first draw?” is not answered by “How can I know?” (reasoning only 
about specific outcomes after an experiment has been carried out) but by “I can tell 
you, beforehand, every possible value together with its probability”. And then of 
course it is not difficult to come up with the chance model  for the first draw. The 
second draw  has the same behavior. 

X

1X
2X

 

Table 2.     Table 3.  
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A model for a sample of size 2n =  now follows easily from tables 2 and 3. The 
model is denoted by  and its outcomes by 1 2( ,X X ) 1 2)( ,x x . It is instructive for 
students to construct this model for themselves arriving at table A1 (appendix) or at 
an urn model with random draws from the urn (figure 1).  
The insight that a sample result 1 2( , )x x  is nothing 
but one of the possible outcomes of an underlying 
chance mechanism  is very important. It 
creates the appropriate context for a proper 
understanding of the behavior of the sample mean 
(or of any other statistic constructed from a 
sample). 

1 2( ,X X )

         Figure 1. 

THE SAMPLE MEAN AS A CHANCE MODEL 
Continuing the above example, it takes just a few minutes to find all possible values 
of the sample mean together with their corresponding probabilities (see table A2 in 
the appendix). This leads to the following model: 

Table 4. The sample mean  1

2
2X XX +

=  described by its chance model 

Simulation tools might be extremely useful for learning statistical concepts but it is 
my experience that mature students (and secondary school mathematics teachers) also 
need an explicit confrontation with the more abstract tool of “thinking in models”. 
For many of them, the behavior of a sample mean is better understood in the context 
of chance models like table 4 than through the experience that a simulated bar chart 
or histogram is an approximation of a so-called sampling distribution. Properties like: 
“the mean of the sample mean is the population mean” can be discovered through 
simulations, but a clear view on underlying models surely can enrich insight in this 
discovery. In either case, an unambiguous notation is needed as a support to students 
for distinguishing populations from samples, and chance models from their outcomes. 
The next sections illustrate some problems.  

EXAMPLES FROM TEXTBOOKS 
During the past couple of decades reform in statistics education at the school level 
has been extensive in the United States. It has resulted in the production of new 
textbooks by authors such as: Yates, Moore and Starnes (2003) [YMS], Watkins, 
Scheaffer and Cobb (2004), Agresti and Franklin (2007), and many others. All these 
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books use capital letters (such as ) for random variables and small letters (such as X
1 2, ...x x ) for their outcomes. This is nice since this notation makes a clear distinction 

between an underlying chance process and a particular outcome. But once students 
start sampling, their attention is drawn to particular outcomes and the notation for 
underlying models, such as (capital) X  for the sample mean, is gone. Paul Velleman, 
author of ActivStats, says: “Convention in the introductory course is to emphasize the 
observed values, which are usually not thought of as random. Every text I know uses 
a lower case x  to represent the sample mean. The r.v. version is a hypothetical 
construct of which the sample mean at hand is one realization. A bit sloppy at times, 
but, I think, less confusing for students” [ (1999) personal communication]. The 
experience I have with my students tells me the opposite. On p.525 of [YMS] one 
reads: “The sampling distribution of x  describes how the statistic x  varies in all 
possible samples from the population. The mean of the sampling distribution is μ , so 
that x  is an unbiased estimator of μ ”. The fact that x  stands for an outcome while at 
the same time it is said that x  is unbiased is confusing. The problem persists in the 
chapter on hypothesis testing where one reads on p.568 that 0.3x =  and that 

( 0.3P x ≥ ) is needed for computing the p-value. But probability statements are 
statements 
about chance 
processes. 
Hence, the p-
value is the 
probability 
that (under the null hypothesis) the chance process X  generates values which are at 
least as large as the observed outcome x  . Notation is crucial here and the above 
phrase should be written as ( )P X x≥ . If 0.3x =  in the sample of one student while 

0.4x =  in the sample of another student, they now can start with the same notation 
( )P X x≥ . Afterwards, they only have to plug in their x -value for arriving at 
( 0.3P X ≥ )  [or at ( 0.4P X ≥ )  ] as meaningful expressions. 

EXAMPLES FROM SOFTWARE 
Software can provide powerful educational tools and can create unique opportunities 
for gaining insight in statistical concepts. This is not only true for our students but 
also for adults who (sporadically) need to carry out a statistical analysis. At those 
instances, people often use their favorite package as a fast resource, both for ideas 
and for computations. From a “statistical literacy” point of view, one would hope that 
statistical information encountered in widespread packages is clear and accurate. 
Excel 
When your student says that, in a one-sided two-sample t-test, the null hypothesis 
assumes that the two means are equal and the alternative hypothesis says that one 
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mean is larger than the other, you might be willing to consider the answer as correct. 
But when he writes 0 :H x y versus H x y= 1 : >  you can’t believe your eyes. In his 
notation, he tries to find out whether the mean in his first sample is larger than the 
mean in his second sample x y>  instead of investigating whether the mean of the 
first population is larger than the mean of the second population 1 2μ μ> . This type of 
confusion has been present in Excel for decades. Several versions in the nineties had 
in their “Data Analysis Toolpack” a help file called “Learn about the t-test: Two 
Sample Assuming Equal Variances Analyses”. What you could learn was as follows. 
“This analysis tool performs a two-sample Student’s t-test. This t-test form assumes 
that the means of both data sets are equal; it is referred to as a homoscedastic t-test. 
You can use t-tests to determine whether two sample means are equal”. Apparently, 
when you have two datasets you can use the Data Analysis Toolpack in Excel for 
finding out whether x  equals y . And you can do so at some alpha level, as follows. 
“Enter the confidence level for the test. This value must be in the range 0…1. The 
alpha level is a significance level related to the probability of having a type I error 
(rejecting a true hypothesis)”. There is no clear distinction between a null and an 
alternative hypothesis (which is the true hypothesis to be rejected?) nor is there any 
reference to underlying populations. This type of fuzziness is disturbing. Attention to 
these problems has been drawn at several occasions, even in a publication (Callaert 
1999). Change however is slow and confused. In Excel 2003 as well as in Excel 2007 
it depends on the order in which you call for help. Press F1 (Help), type the phrase 
Data Analysis and click Search. Then click on Data Analysis and in the new window 
click on t-Test. The following text appears. 
 
 
 
 
 
But if you click on Formulas –>More Functions–>Statistical–>TTEST–>”Help on 
this function”, then you can read about equality of population means together with a 
choice of using either a one-tailed or a two-tailed t-distribution. 
 
 
Fathom 
Never before I’ve worked with Fathom, so I only can give some first impressions by 
a novice (having downloaded a Fathom Evaluation Version 2.1). The fact that I was 
lost right from the start might be blamed on my inexperience. I think however that the 
rather abstract structure of Fathom working with “collections”, “attributes”, 
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“measures” and “statistical objects” is not obvious for beginning students. In contrast 
with this, Maxara and Biehler (2007) report on a study where Fathom was used 
systematically by their university students, apparently with success. I assume that 
those students’ first contact with Fathom was different from mine, since I clicked 
Help–>Sample Documents–>Statistics and started reading. I was quite amazed. 
To start with, a clear notation could be helpful. The Fathom Documents use “mu”, 
“Mean”, “popMean”, “m”, “Avg”,.. and “sigma”, “Std. dev.”, “popSD”, “s”, “sd”,… 
Why not stick to μ  and σ  for populations and to x  and s  for sample results? 

Furthermore, the notational distinction between a binomial model  (capital letter) 
and its -values (small letter) should be applauded were it not that  is said to be a 

random variable chosen from the set of possible values.  

X
x X

The binomial model comes up several times but its discrete nature is seldom stressed, 
even in small samples. The “Polling Simulation” document wants to compare theory 
and experiment and uses   resulting in a 
theoretical model where a lot of possible outcomes and their associated probabilities 
are missing. It is not because one has not seen 17 successes in a particular simulation 
(and hence not a proportion of 17/20=0.85) that the predicted probability of a 
proportion of 0.85 doesn’t exist. 
 
 
 
 
 
 
 
A further problem with this document lies in its histogram representation comparing 
the simulation results with the (also truncated of course) theoretical model. Repeating 
a poll of size 20 1000 times does not produce 1000 different outcomes. There still are 
only 21 different possible proportions. A bar graph comparing theoretical 
probabilities with experimental relative frequencies would make sense here since the 
chance model is discrete. By the way, try to let your students discover for themselves 
the formula  for drawing such a 
histogram. Of course, the problem is much deeper and relates to the obsession of 
making curves fit histograms who themselves have to represent experiments with 
discrete outcomes. The “Normal” document for example shows a histogram of 100 
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random numbers from a normal population together with [quote]: “a plotted curve of 
a normal distribution with the same mean, standard deviation, and area as the 
histogram”. Yes, with the same area! Fortunately the example uses a histogram on a 
density scale. But there is no problem if one would use a histogram with frequencies. 
In the same document under number 3 of the “To do” list attention is drawn to the 
fact that the density then has to be multiplied by both the count and the bin width. If 
you do this, you find the figure on the right. 

But  is a 
model for what? It is a curve fitting the “frequency 
histogram” but it certainly isn’t a model for an 
underlying chance mechanism. These problems are 
not uncommon. In Schaeffer and Tabor (2008) one 
finds a similar figure. This time, a histogram has been 
drawn on a Relative Frequency scale and the density has only been multiplied by the 
bin width. The authors write: “The figure shows a simulated sampling distribution of 
sample proportions. This sampling distribution has a mean of 0.53 and a standard 
deviation of 0.05 and is nicely represented by the normal distribution (overlaid 
smooth curve) with that same mean and 
standard deviation”. But the top of a 
normal density  is equal to 8, 
not to 0.16. So, what’s the name of a bell-
shaped curve that (i) is nowhere negative 
and (ii) has an area under the curve equal to 
0.02? Indeed, that’s the blue curve in that 
paper. 

(0.53; 0.05)N

Fathom’s “Central limit Theorem” document has analogous problems. Wouldn’t it be 
nice to compare the histograms of the simulated sample means x  with the target 
model of X  ? That model is normal 
with mean 1.5μ =  and with standard 
deviation / 0.5 /nσ = n . The 
document instead uses the mean and 
standard deviation of the randomly 
generated set of 200 x -values. 
Moreover, the collection called “Population” is not the population but contains the 
sample values, while the population itself is represented by a bimodal curve 
integrating out to 2 (yes, two). 

CONCLUSION 
Thinking in chance models might be too abstract for the young learner but at some 
level in the developmental process the more mature student might need more than 
“approximations by simulation” in order to fully understand the underlying reasoning 
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of statistical inference. At this point one needs a careful identification of all the 
involved entities, together with a clear notation, both in textbooks and software. It 
might be interesting for further research to investigate the impact of an unambiguous 
notation on the effectiveness of student’s learning and understanding of statistics. 
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APPENDIX 
 
 
 
 
 
 
 
 
 
 
 

Table A1. The sample  described by its chance model 1 2( ,X X )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A2. Sample mean values 1

2
2x xx +

=  for all possible sample outcomes (x1 , x2). 

The arithmetic mean is computed for all outcomes (x1 , x2) from table A1. 
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RECOMMENDED KNOWLEDGE OF PROBABILITY  
FOR SECONDARY MATHEMATICS TEACHERS 

Irini Papaieronymou 
Michigan State University, USA – PhD Candidate 

PA College, Larnaca, Cyprus – Lecturer 
Changes in school mathematics curricula in the last few decades have brought along 
an increase on the importance placed on probability (National Commission for 
Excellence in Education, 1983; National Council of Teachers of Mathematics, 2000). 
Since teachers’ knowledge can have an impact on students’ learning (Fennema & 
Franke, 1992), it is important that teachers have sufficient probability content and 
teaching knowledge. This paper identifies the suggested probability knowledge for 
secondary mathematics teachers through an examination of the recommendations 
from four professional organizations, namely the American Mathematical Society 
(AMS), the American Statistical Association (ASA), the Mathematical Association of 
America (MAA), and the National Council of Teachers of Mathematics (NCTM).  

Keywords: teachers’ knowledge, probability, professional recommendations 
 
PROBABILITY CONTENT IN THE SECONDARY SCHOOL 
MATHEMATICS CURRICULUM 
Since the late 1950s, there have been strong calls for an increase in the inclusion of 
probability in the US K-12 mathematics curriculum (NCSM, 1977; NCEE, 1983; 
NCTM, 2000). Probability has come to gain importance as a content area that 
students need to have experience with in order to be well-informed citizens since its 
study “can raise the level of sophistication at which a person interprets what he sees 
in ordinary life, in which theorems are scarce and uncertainty is everywhere” 
(Cambridge Conference on School Mathematics, 1963, p.70; as cited in Jones, 2004).  
In 1963 a group of mathematicians and National Science Foundation (NSF) 
representatives published Goals for School Mathematics in which the importance of 
“some ‘feeling’ for probability” for all students was indicated (Jones, 1970, p. 291; as 
cited in Sorto, 2004). Following, the National Council of Supervisors of Mathematics 
(NCSM) defined probability as one of the basic skills that students should acquire 
(1977). In 1983, the National Commission for Excellence in Education (NCEE) 
published A Nation at Risk, a report aimed at pointing out the immediate need for 
reform in education, with the suggestion that high school graduates understand 
elementary probability and be able to apply it in everyday life.  
More recently, the National Council for Teachers of Mathematics (NCTM) published 
the Curriculum and Evaluation Standards for School Mathematics (1989) in which it 
was recommended that in grades 5-8 students “explore situations by experimenting 
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and simulating probability models”, construct sample spaces in the attempt to 
determine probabilities of “realistic situations”, and appreciate the use of probability 
in the real world (1989, p. 109). Particular to grades 9-12, recommendations included 
the understanding of the difference between experimental and theoretical 
probabilities, theoretical and simulation techniques for computing probabilities, and 
interpreting discrete probability distributions (p. 171). In the mid to late 1990s the 
NCTM standards were revised resulting in the publication of Principles and 
Standards for School Mathematics (2000). Here, recommendations stated that  

 “middle-grades students should learn and use appropriate terminology and should be 
able to compute probabilities for simple compound events … In high school, students 
should compute probabilities of compound events and understand conditional and 
independent events.” (NCTM, 2000, p. 51). 

This increased attention on probability in school curricula is an indicator of how 
important it is that “teachers, mathematics educators, parents, and administrators, 
must provide their children and their students with alternative ways of approaching 
data and chance” (Shaughnessy, 2003, p. 223). Since “[T]here is perhaps no other 
branch of the mathematical sciences that is as important for all students, college 
bound or not, as probability and statistics” (Shaughnessy, 1992, p. 466, emphasis in 
original) and since misconceptions about probability are common among children, it 
is important that instruction allows students to confront their misconceptions and 
develop a deeper understanding of probability concepts (Garfield & Ahlgren, 1988; 
Konold, 1989; Shaughnessy, 2003). Since teachers’ knowledge can have an impact 
on students’ learning (Fennema & Franke, 1992), it is important that teachers be able 
to tackle these student difficulties and misconceptions on probability as they arise in 
mathematics classrooms. In order to be able to do so, teachers need to have sufficient 
probability content and teaching knowledge.  
Teachers’ Knowledge of Probability 
Although there have been calls for an increased attention on probability in the school 
curriculum, one of the problems encountered is the inadequate preparation of teachers 
in probability (Penas, 1987; CBMS, 2001). Many teachers have not encountered 
probability in their own K-12 mathematics courses and sometimes need convincing 
as to why they need to learn and teach probability topics (CBMS, 2001). Batanero et 
al. (2004) suggest that educators need to provide better initial training for teachers by 
offering courses at the college level specific to the didactics of probability. Such a 
course should include an introduction to the history of probability; information on 
statistics journals, associations, and conferences; the study of fundamental probability 
concepts; readings of literature on heuristics and biases in probability, as well as 
students’ difficulties and misconceptions in probability; identification of the 
educational theories and teaching approaches, assessment, teaching resources, and the 
use of technology; and examples of projects that can be used when teaching 
probability. 
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Teachers’ Knowledge of Mathematics 
Several scholars in the past three decades have provided insight into the definition of 
teachers’ knowledge. In his work, Shulman (1986) provided a framework of teachers’ 
knowledge which includes the following three categories: i) subject matter content 
knowledge which refers to “the amount and organization of knowledge per se in the 
mind of the teacher” as well as not only understanding that something is so but also 
why it is so and why it is important to the discipline (p. 9); ii) pedagogical content 
knowledge which refers to  

“the most useful forms of representation of those ideas, the most powerful analogies, 
illustrations, examples, explanations, and demonstrations – in a word, the ways of 
representing and formulating the subject that make it comprehensible to others” (p. 9).  

This category also includes knowledge of common conceptions/preconceptions that 
students have; and iii) curricular knowledge which includes knowledge about the  

“full range of programs designed for the teaching of particular subjects and topics at a 
given level, the variety of instructional materials …, and the set of characteristics that 
serve as both the indications and contraindications for the use of a particular curriculum 
or program materials in particular circumstances” (p. 10). 

The difficulty faced by educators is how to blend the components of teacher 
knowledge so as to effectively prepare teachers to help all students to learn 
meaningfully.  

FOCUS OF THE PAPER AND QUESTION 
With the above issues under consideration, a study was carried out by the author in 
which US state and national mathematics standards for grades 6-12, secondary 
mathematics textbooks, and recommendations from professional organizations were 
analyzed in order to identify the content and teaching knowledge that secondary 
mathematics teachers need to have relative to the domain of probability. A report of 
the results relating to the probability topics that secondary mathematics teachers 
should know and be able to teach was presented at a previous conference 
(Papaieronymou, 2008), whereas this paper focuses on the teaching aspects of these 
probability topics and more specifically on the following question: 

What are the aspects of teaching knowledge of probability that secondary 
mathematics teachers need to have as suggested by professional organizations? 

For the purposes of addressing this question, only the recommendations from 
professional organizations were analyzed. The data sources specific to students (i.e. 
national and state standards for grades 6-12 and secondary mathematics textbooks) 
were not very informative since they did not directly address teachers’ knowledge.  
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METHODS 
Data Sources 
In particular, A Call for Change: Recommendations for the Mathematical 
Preparation of Teachers of Mathematics (1991) published by the MAA, the 
Professional Standards for Teaching Mathematics (1991) published by the NCTM, 
The Mathematical Education for Teachers (CBMS, 2001) published by the AMS, and 
the Guidelines for Assessment and Instruction in Statistics Education (GAISE) 
College Report (Aliaga et al., 2005) published by the ASA were analyzed. The ASA 
report presents a list of goals for college students – not specifically prospective 
mathematics teachers – and recommendations for the teaching of introductory 
statistics courses.  
Data Analysis 
The number of recommendations from each professional organization was as follows: 

Data Source Number of Recommendations 
before multi-coding 

AMS (2001) 27 

ASA (2005) 9 

MAA(1991) 17 

NCTM(1991) 6 

Total 59 

Table 1: Number of recommendations from each organization before multi-coding 
These 59 recommendations were categorized according to Shulman’s (1986) 
framework of teacher knowledge with 8 recommendations being placed under more 
than one category. In deciding under which knowledge category to place each 
recommendation, the verbs appearing in the recommendation and their use in 
association with the probability concepts mentioned in the respective 
recommendation were considered. Some examples of recommendations that were 
placed under each of Shulman’s categories are: 

Recommendation Knowledge 
Category 

Mathematics teachers should be able to use permutation and 
combinatorial computations in problems arising from several 
areas, including geometry, algebra, and graph theory. They 
should also understand how counting techniques apply in the 
calculation of the probability of events. (MAA report, p. 36) 

Subject-matter 
content 
knowledge 

The fact that, under random sampling, the empirical probabilities Pedagogical 
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actually converge to the theoretical (the law of large numbers) 
can be illustrated by technology (computer or graphing 
calculator) so that an understanding of probability as a long-run 
relative frequency is clearly established. (AMS report, p.116) 

content 
knowledge 

Precede computer simulations with physical explorations (e.g. 
die rolling, card shuffling) (ASA report) 

Curricular 
knowledge 

Other topics that should be introduced include fair games and 
expected value, odds, elementary counting techniques, 
conditional probability, and the use of an area model to represent 
probability geometrically (NCTM, 1991, p. 138) 

Subject-matter 
and pedagogical 
content 
knowledge 

Table 2: Examples of recommendations under Shulman’s (1986) knowledge 
categories 
In the last recommendation provided in Table 2 above, the use of the area model to 
represent probability implies pedagogical content knowledge since this type of 
knowledge includes the ways of representing the subject. The reference to topics of 
probability that should be introduced implies subject matter content knowledge; the 
topics refer to the amount of knowledge that teachers should have with respect to 
probability so as to be able to introduce these topics in their mathematics classrooms. 

RESULTS 
Once the 59 recommendations were categorized under Shulman’s framework for 
teacher knowledge, with 8 recommendations being placed under two of the 
knowledge categories, the results were: 

Data Source Subject-matter content 
knowledge 

Pedagogical content 
knowledge 

Curricular  
knowledge 

Total 

AMS (2001) 22 5 1 28 

ASA (2005) 7 1 1 9 

MAA (1991) 13 6 2 21 

NCTM (1991) 2 4 3 9 

Total 44 16 7 67 

Table 3: Number of recommendations under each of Shulman’s (1986) categories 
As can be seen from Table 3, about 66% (44 out of 67) of the recommendations from 
the four professional organizations relate to subject matter content knowledge, 24% 
(16 out of 67) of the recommendations refer to aspects of pedagogical content 
knowledge and 10% of the recommendations specify aspects of curricular knowledge 
that should be included in the preparation of secondary mathematics teachers.  
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The analysis also showed that the following topics were recommended by at least two 
of the organizations: 

Common Topic Professional Organizations in agreement 

Combinatorics AMS, MAA, NCTM 

Experimental and Theoretical Probability AMS, MAA, NCTM 

Simulations ASA, MAA, NCTM 

Probability Distributions AMS, MAA, NCTM 

Hypothesis Testing AMS, ASA, MAA 

Conditional Probability AMS, NCTM 

Expected Value AMS, NCTM 

Probabilistic Misconceptions AMS, NCTM 

Uses/Misuses of Probability AMS, MAA 

Table 5: Probability topics recommended by at least two of the organizations 

DISCUSSION 
Given the small number (59) of recommendations overall across all four 
organizations specific to the area of probability and that 66% of the recommendations 
relate to subject matter content knowledge whereas 24% refer to pedagogical content 
knowledge and only 10% refer to curricular knowledge, the results imply that it is 
still unclear what exactly the pedagogical content knowledge and curricular content 
knowledge that secondary mathematics teachers need to have in the area of 
probability is.  
A closer examination of the recommendations indicates that with respect to 
pedagogical content knowledge specific to probability, teachers need to acquire an 
awareness and ability to confront common probabilistic misconceptions and student 
difficulties relative to probability concepts (as suggested by the ASA, the MAA, and 
the NCTM). In addition, teachers need to be able to use technology to carry out 
simulations in order to illustrate probabilistic concepts (as recommended by all four 
of the professional organizations) and should also be able to use concrete objects such 
as dice, cards, and spinners to demonstrate probability concepts to students in the 
mathematics classroom (as suggested by the ASA and the NCTM). Furthermore, 
secondary mathematics teachers should be able to represent probabilities using 
various models such as the area model (as suggested by the NCTM).  
Specific to curricular knowledge, secondary mathematics teachers should be aware of 
the various materials and programs that they can use to help students understand 
probability concepts. That is, they should be aware that they can use various 
computer programs such as Fathom and DataScope in their mathematics classrooms 
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when working with probability concepts (as suggested by the AMS) and they should 
know the power of simulation as a technique that can be used to solve probability 
problems (as recommended by the MAA and the NCTM). 
As can be seen from Table 5, the four professional organizations place considerable 
emphasis on experimental versus theoretical probability and simulations. Secondary 
mathematics teachers need to be able to plan and conduct experiments and 
simulations (Aliaga et al., 2005; CBMS, 2001; Committee of the Mathematical 
Education of Teachers, 1991; NCTM, 1991), distinguish between experimental and 
theoretical probability (Committee of the Mathematical Education of Teachers, 
1991), determine experimental probabilities (CBMS, 2001; Committee of the 
Mathematical Education of Teachers, 1991), use experimental and theoretical 
probabilities to formulate and solve probability problems (Committee of the 
Mathematical Education of Teachers, 1991), and use simulations to estimate the 
solution to problems of chance (Committee of the Mathematical Education of 
Teachers, 1991; NCTM, 1991). Secondary mathematics teachers should be able to 
provide a model which gives a theoretical probability that can be compared to 
experimental results, which in turn is essential when studying the concept of relative 
frequency (CBMS, 2001). In order to help students develop an understanding of 
probability as a long-run relative frequency, secondary mathematics teachers need to 
understand the law of large numbers and be able to illustrate it using simulations 
(CBMS, 2001).  
With regards to theoretical probability, teachers should know about and be able to use 
both discrete and continuous probability distributions (NCTM, 1991), understand 
probability distributions (CBMS, 2001) and especially the normal distribution 
(CBMS, 2001; Committee of the Mathematical Education of Teachers, 1991), as well 
as the binomial, poisson, and chi-square distributions (Committee of the 
Mathematical Education of Teachers, 1991). They should also be able to use 
simulations to study probability distributions (CBMS, 2001; Committee of the 
Mathematical Education of Teachers, 1991) and demonstrate their properties (CBMS, 
2001). Moreover, they should be introduced to fair games (NCTM, 1991) and 
understand expected value (CBMS, 2001).   
Another topic among the recommendations from three of the four professional 
organizations is that of hypothesis testing. Secondary mathematics teachers should 
understand the concept of statistical significance including significance level and p-
values, and that of confidence interval (Aliaga et al., 2005; Committee of the 
Mathematical Education of Teachers, 1991) including confidence level and margin of 
error (Aliaga et al., 2005).  
Returning to the idea of theoretical probability, secondary mathematics teachers 
should be able to use counting techniques (NCTM, 1991) such as permutations and 
combinations to determine such (theoretical) probabilities (Committee of the 
Mathematical Education of Teachers, 1991). In addition, they should be exposed to 
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the applications of combinatorics (CBMS, 2001) including their use in calculating the 
probability of events (Committee of the Mathematical Education of Teachers, 1991). 
Secondary mathematics teachers should also understand and be able to calculate the 
probabilities of independent and dependent events (CBMS, 2001), compound events 
made up of independent and dependent events (CBMS, 2001) and also understand 
conditional probability (CBMS, 2001; NCTM, 1991). Various representations such as 
area models and tree diagrams should be used by teachers to aid students in better 
understanding compound events (CBMS, 2001; NCTM, 1991). 
In addition, teachers should know about the uses of probability in many fields and its 
misuses in such sources as newspapers and magazines (CBMS, 2001; Committee of 
the Mathematical Education of Teachers, 1991). Once experiments have been 
performed, teachers should be able to use probability to make decisions and 
predictions (CBMS, 2001; Committee of the Mathematical Education of Teachers, 
1991).  
An issue that arose as recommendations were being coded concerned the exact 
definition of the verbs that appeared in the documents. In many cases it was unclear 
as to what action or type of knowledge was expected of teachers based on the verb 
used since the meaning of the verb appearing in the report was unclear. Within the 
four documents of recommendations from the professional organizations, verbs 
appeared in different forms e.g. use, using, used or apply, applying, applied. Counting 
the different forms of a verb as one verb family gave rise to a total of 53 verb families 
being identified in the four reports. For example, consider the last recommendation 
on Table 2 which lists a set of probability topics that need to be ‘introduced’ in a 
mathematics classroom. The mere list of topics in this recommendation implies 
subject matter content knowledge. However, if the recommendation had established 
more clearly how, in what order, what types of problems should accompany these 
topics, and how much emphasis should be placed on each, the categorization might 
have been different. Let us also consider the verb family understand which had the 
highest frequency (29) in the four documents overall. In the mathematics education 
literature much has been written about the definition of this verb family. For example, 
Skemp (1976) makes a distinction between relational understanding (“knowing both 
what to do and why” (p.20)) and instrumental understanding (“rules without reasons” 
(p.20)). On the other hand, the National Research Council (2001) refers to procedural 
understanding and conceptual understanding. However, in the four reports examined 
in this study, it is not clearly indicated by the professional organizations which of 
these meanings the verb family understand carries when used in a recommendation. 
Such precise meanings are needed so as to accurately code the recommendations. 

CONCLUSION 
In recent decades, probability has come to gain importance as one of the content areas 
of school curricula in the United States. However, research on teachers’ knowledge in 
this content area is scarce. The identification of the knowledge of probability that 
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secondary mathematics teachers need to have in the form of content topics and their 
aspects of teaching is an essential tool that can be used in future research in this area. 
The analysis of recommendations on probability provided by professional 
organizations has revealed the importance of language in attempting to communicate 
to mathematics educators and teachers what is expected that they know and teach. As 
mentioned, 53 verb families were identified in the data sources. However, no clear 
definitions of these verbs, as related to the probability topics they accompanied, were 
provided by any of the sources leaving much to the interpretation of the researcher. 
Precise definitions of action verbs are needed in such documents to avoid possible 
errors in the coding of the recommendations and to help educators as they plan 
courses for prospective mathematics teachers.   
Last, the analysis of the reports on recommendations for the preparation of secondary 
mathematics teachers by the AMS, ASA, MAA, and NCTM, revealed the inadequate 
number of such recommendations especially with regards to pedagogical content 
knowledge and curricular knowledge requirements specific to the area of probability 
at the secondary level. Given the increased attention of probability in school 
curricula, it is essential that professional organizations provide more extensive and 
detailed reports regarding the recommended skills in probability for future 
mathematics teachers. It would perhaps be most beneficial if professional 
organizations provide such a report collaboratively so that there is common 
agreement about the expectations of probabilistic knowledge of secondary 
mathematics teachers. 
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STATISTICAL GRAPHS PRODUCED BY PROSPECTIVE TEACHERS IN 
COMPARING TWO DISTRIBUTIONS 

Carmen Batanero*, Pedro Arteaga*, Blanca Ruiz** 
*Universidad de Granada  
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We analyse the graphs produced by 93 prospective primary school teachers in an 
open statistical project where they had to compare two statistical variables. We 
classify the graphs according its semiotic complexity and analyse the teachers’ 
errors in selecting and building the graphs as well as their capacity for interpreting 
the graphs and getting a conclusion on the research question. Although about two 
thirds of participant produced a graph with enough semiotic complexity to get an 
adequate conclusion, half the graphs were either inadequate to the problem or 
incorrect. Only one third of participants were able to get a conclusion in relation to 
the research question. 
Keywords: Statistical graphs, semiotic complexity, prospective teachers, 
assessment, competence. 
 
INTRODUCTION 
Graphical language is essential in organising and analysing data, since it is a tool 
for transnumeration, a basic component in statistical reasoning (Wild & 
Pfannkuch, 1999). Building and interpreting statistical graphs is also an important 
part of statistical literacy which is the union of two related competences: 
interpreting and critically evaluating statistically based information from a wide 
range of sources and formulating and communicating a reasoned opinion on such 
information. (Gal, 2002). Because recent curricular guidelines in Spain introduce 
statistics graph since the first year of primary school level and therefore, this 
research was oriented to assess prospective primary school teachers’ graphical 
competence in order to use this information in improving the training of these 
teachers. 
Understanding statistical graphs  
In spite of its relevance, didactic research warn us that competence related to 
statistical graphs is not reached in compulsory education, since students make 
errors in scales (Li & Shen, 1992) or in building specific graphs (Pereira Mendoza 
& Mellor, 1990; Lee & Meletiou, 2003; Bakker, Biehler & Konold, 2004). Other 
authors define levels in graph understanding (Curcio, 1989; Gerber, Boulton-Lewis 
& Bruce, 1995; Friel, Curcio & Bright, 2001) that vary from a complete 
misunderstanding of the graph, going through reading isolated elements or being 
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able to compare elements to the ability to predict or expand to data that are not 
included in the graph. More recently, these levels were expanded to take into 
account the critical evaluation of information, once the student completely reads 
the graph (Aoyama, 2007): 
1. Rational/literal level. Students correctly read the graph, interpolate, detect the 

tendencies and predict. They use the graph features to answer the question posed 
but they do neither criticise the information nor provide alternative explanations. 

2. Critical level: Students read the graph, understand the context and evaluate the 
information reliability; but they are unable to think in alternative hypotheses that 
explain the disparity between a graph and a conclusion. 

3. Hypothetical level: Students read the graphs, interpret and evaluate the 
information, and are able to create their own hypotheses and models. 

Graphical Competence in Prospective Teachers 
Recent research by Espinel, Bruno & Plasencia (2008) also highlight the scarce 
graphical competence in future primary school teachers, who make errors when 
building histograms or frequency polygons, or lack coherence between their 
building of a graph and their evaluation of tasks carried out by fictitious future 
students. When comparing the statistical literacy and reasoning of Spanish 
prospective teachers and American university students even when the tasks were 
hard for both groups, results were much poorer in the Spanish teachers, in 
particular when predicting the shape of a graph or reading histograms. Monteiro 
and Ainley (2007) studied the competence of Brazilian prospective teachers and 
found many of these teachers did not possess enough mathematical knowledge to 
read graphs taken from daily press. A possible explanation of all these difficulties 
is that the simplicity of graphical language is only apparent, since any graph is in 
fact a mathematical model. In producing a graph we summarize the data, going 
from the individual observations to the values of a statistical variable and the 
frequencies of these values. That is, we introduce the frequency distribution, a 
complex object that refers to the aggregate (population or sample) instead of 
referring to each particular individual and this object can be not grasped by the 
students. 

 
THE STUDY 
As stated in the introduction, the main goal in our research was to assess the 
graphical competence of prospective primary school teachers. A secondary aim was 
to classify the graphs produced by these teachers as regards its complexity. More 
specifically we analyse the graphs produced by 93 prospective teachers when 
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working in an open statistical project with the aim of providing information useful 
to teacher educators. These students had studied descriptive statistics (graphs, 
tables, averages, spread) the previous academic year (their first year of University) 
as well as in secondary school level. The data were collected along a classroom 
practice (Godino, Batanero, Roa & Wilhelmi, 2008) that was carried out in a 
Mathematics Education course (second year of University) directed to prospective 
teachers in the Faculty of Education, University of Granada. In this practice (2 
hours long) we proposed prospective teachers a data analysis project. At the end of 
the session, participants were given a sheet with the data obtained in the classroom 
and were asked to individually produce a data analysis written report to answer the 
question set in the project. Participants were free to use any statistical graph or 
summary and work with computers if they wished. They were given a week to 
complete the reports that were collected and analysed. 
The statistical project: “Check your intuitions about chance” 
This project is part of a didactical unit designed to introduce the “information 
handling, chance and probability” content included in the upper level of primary 
education. Some aims are: a) showing the usefulness of statistics to check 
conjectures and analyse experimental data; b) checking intuitions about 
randomness and realising these intuitions are sometimes misleading. The sequence 
of activities in the project was as follows. 
1. Presenting the problem, initial instructions and collective discussion. We 

started a discussion about intuitions and proposed that the future teachers carry 
out an experiment to decide whether they have good intuitions or not. The 
experiment consists of trying to write down apparent random results of flipping 
a coin 20 times (without really throwing the coin, just inventing the results) in 
such a way that other people would think the coin was flipped at random. 

2. Individual experiments and collecting data. The future teachers tried the 
experiment themselves and invented an apparently random sequence (simulated 
throwing). They recorded their sequences using H for head and T for tail. 
Afterwards the future teachers were asked to flip a fair coin 20 times and write 
the results on the same recording sheet (real throwing). 

3. Classroom discussion, new questions and activities. After the experiments were 
performed we started a discussion of possible strategies to compare the 
simulated and real random sequences. A first suggestion was to compare the 
number of heads and tails in the two sequences since we expect the average 
number of heads in a random sequence of 20 tosses to be about 10. The lecturer 
posed questions like: If the sequence is random, should we get exactly 10 heads 
and 10 tails? What if we get 11 heads and 9 tails? Do you think in this case the 
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sequence is not random? These questions introduced the idea of comparing the 
number of tails and heads in the real and simulated experiments for the whole 
class and then studying the similarities and differences.  

4. At the end of the session the future teachers were given a copy of the data set 
for the whole group of students. This data set contained two statistical 
variables: number of heads for each of real and simulated sequences and for 
each student; n cases with these 2 variables each. As prospective teachers were 
divided in 3 groups, n varied (30-40 cases in each group).  They were asked to 
complete the analysis at home and produce a report with a conclusion about the 
group intuitions concerning randomness. Students were able to use any 
statistical method or graph and should include the statistical analysis in the 
report. 

 
RESULTS AND DISCUSSION 
Once the students’ written reports were collected, we made a qualitative analysis of 
these reports. By means of an inductive procedure we classified into different 
categories the graphs produced as a part of the analysis, the interpretations of 
graphs and the conclusions about the group intuitions. The classification of graphs 
took into account the type of graph, number of variables represented in the graph, 
and underlying mathematical objects as well as some theoretical ideas that we 
summarise below. 
Font, Godino and D’Amore (2007) generalize the notion of representation, by 
taking from Eco the idea of semiotic function "there is a semiotic function when an 
expression and a content are put in correspondence" (Eco, 1979, p.83) and by 
taking into account an ontology of objects that intervene in mathematical practices: 
problems, actions, concepts-definition, language properties and arguments, any of 
which could be used as either expression or content in a semiotic function. In our 
project we propose a problem (comparing two distributions to decide about the 
intuitions in the set of students) and analyse the students' practices when solving 
the problem. More specifically we study the graphs produced by the students; these 
graphs involve a series of actions, concepts-definitions and properties that vary in 
different graphs. Consequently the semiotic functions underlying the building and 
interpretation of graphs, including putting in relation the graphs with the initial 
question by an argument also vary. We therefore should not consider the different 
graphs as equivalent representations of a same mathematical concept (the data 
distribution) but as different configurations of interrelated objects that interact with 
that distribution. Five students only computed some statistical summaries (mean, 
median or range) and did not produce graphs; we are not taking into account these 
students in our report. Using the ideas above we performed a semiotic analysis of 
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the different graphs produced by the other 88 students and defined different levels 
of semiotic complexity as follow: 
L1. Representing only his/her individual results. Some students produced a graph to 
represent the data they obtained in his/her particular experiment, without 
considering their classmates' data. These graphs (e.g. a bar chart) represent the 
frequencies of heads and tails in the 20 throwing. Students in this level tried to 
answer the project question for only his /her own case (tried to assess whether 
his/her intuition was good); part of these students manifested a wrong conception 
of chance, in assuming a good intuition would imply that the simulated sequence 
would be identical to the real sequence in some characteristic, for example the 
number of heads. Since they represented the frequency of results in the individual 
experiment, in fact these students showed an intuitive idea of statistical variable 
and distribution; although they only considered the Bernoulli variable "result of 
throwing a coin" with two possible values: "1= head", 0= tail" and 20 repetitions of 
the experiment, instead of considering a Binomial distribution "number of heads in 
the 20 throwing" that have a wider range of values (1-20 with average equal to 10) 
and r repetitions of the experiments (r= number of students in the classroom). 
L2. Representing the individual values for the number of heads. These students did 
neither group the similar values of the number of heads in the real nor in the 
simulated sequences. Instead, they represented the value (or values) obtained by 
each student in the classroom in the order the data were collected, so they did 
neither compute the frequency of the different values nor explicitly used the idea of 
distribution. The order of data in the X-axis was artificial, since it only indicated 
the arbitrary order in which the students were located in the classroom. In this 
category we got horizontal and vertical bar graphs, line graphs of one or the two 
variables that, even when did not solve the problem of comparison, at least showed 
the data variability. Other students produced graphs such as pie chart, or stocked 
bar charts, that were clearly inappropriate, since they did not allow visualizing the 
data variability.  
L3. Producing graphs separate for each distribution. The student produced a 
frequency table for each of the two variables and from it constructed a graph or else 
directly represented the graph with each of the different values of the variable with 
its frequency. This mean that the students went from the data set to the statistical 
variable “number of heads in each sequence” and its distribution and used the ideas 
of frequencies and distribution. The order in the X-axis was the natural order in the 
real line. In case the students did not use the same scale in both graphs or used 
different graphs for the two distributions the comparison was harder. Examples of 
correct graphs in this category were bar graphs and frequency polygons. Students 
also produced incorrect graphs in this category such as histograms with incorrect 
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representation of intervals, bar graphs with axes exchanged (confusing the 
independent and dependent variable in the frequency distribution), representing the 
frequencies and variable values in an attached bar graph or representing variables 
that were not related. 
L4. Producing a joint graph for the two distributions. The students formed the 
distributions for the two variables and represented them in a joint graph, which 
facilitated the comparison; the graph was more complex, since it represented two 
different variables. We found the following variety of correct graphs: attached bar 
chart; representing some common statistics (e.g. the mean or the mode) for the two 
variables in the same graph; line graphs or dot plots in the same framework. 
Example of incorrect graphs in this category were graphs presenting statistics that 
were not comparable (e.g. mean and variance in the same graphs) or the same 
statistics for variables that cannot be compared. 
In Figure 1 we present an example of graphs produced in each category. Even when 
within each of these categories we observe a variety of graphs and configurations 
of mathematical objects it is evident a qualitative gap between each of the different 
levels. In Table 1 we present the distribution of students according the semiotic 
complexity of the graph, it correctness, the interpretation of the graph and the 
conclusion about intuitions. 

Table 1. Results 

 
Correctness 
of the graph

Interpretation 
of graph 

Conclusion 
on the 

intuitions 
 1 2 3 1 2 3 1 2 3 

Total in the 
level 

L1. Representing only the student data 1  1 1 1    2 2 
L2. Representing individual results 10 1 4 4 10 1  3 12 15 
L3. Separate graphs 15 17 14 15 15 16 1 12 33 46 
L4. Joint graphs 14 6 5 9 11 5 1 7 17 25 
Total 40 24 24 29 37 22 2 22 64 88 

(1) Correct; (2) Partially correct; (3) Incorrect or no interpretation / conclusion 
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Figure 1. Examples of graphs in each different level of semiotic complexity 
 

From a total of 93 students 88 (94,6%) produced some graphs when analysing the 
data, even if the instructions given to the student did not explicitly require that they 
constructed a graph. This fact suggests that students felt the need of building a 
graph and reached, by a transnumeration process some information that was not 
available in the raw data. Most students (52,2%) produced separate graphs for each 
variable (level 3), that were generally correct o partly correct (correct graph with 
different scales or different graph in each sample; not centring the rectangles in the 
histogram, or missing labels). 
14 students in this level constructed a non-meaningful graph since they represented 
the product of values by frequencies, exchanged the frequencies and values of 
variables in the axes thus confusing the independent and dependent variable in the 
frequency distribution. 28,4% students worked at level 4, and produced only a joint 
graph for the two variables, although 6 of these graphs were partly correct and 5 
incorrect (same reasons than those described in level 3). Few students only 
analysed their own data (level 1) and only 17% of participants studied the value got 
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by each student without forming the distribution. Consequently the concept of 
distribution seemed natural for the majority of students who used it to solve the 
task, although the instructions did not require this explicitly. 
In general, these prospective teachers interpreted correctly or partially correctly the 
graphs in all the levels, reaching the Curcio’s (1989) intermediate level (reading 
between the data) and the difficulty of interpretation of graphs increased with its 
semiotic complexity. However, an important part of students in our levels 3 and 4, 
even when they built correct graphs did not reached the “reading between the data” 
level, because either they did not interpret the graph either made only a partial 
interpretation. As regards the Aoyama’s (2007) levels, the majority of prospective 
teachers only read the graphs produced at a rational/literal level, without being able 
of read the graphs at a critical or a hypothetical level. The teachers performed a 
mathematical comparison of the graphs but did not get a conclusion about the 
intuitions in the classroom (e.g. they correctly compared averages but did not 
comment what were the implications in relation to the students’ intuitions). Only 
two students in the group reached the hypothetical level in reading the graphs, as 
they got the correct conclusion about group's intuition. These two students realised 
that the group have correct intuitions about the average number of heads but poor 
intuitions about the spread. Students were supposed to get this conclusion from 
comparing the averages and range in the variables in the simulated and real 
sequences distributions. At higher level statistical tests could also be used to 
support this conclusion that have been observed in previous research about people 
perception of randomness. 22 participants got a partial conclusion that the intuition 
as regards averages was good, as they were able to perceive difference or similitude 
in the averages, but they did not considered the results obtained in comparing 
spread of the variable (number of heads) in the two sequences.  These students also 
work at the Aoyama’s (2007) hypothetical level, although they did not considered 
spread in comparing the two distributions. Those working at levels 1 and 2 got few 
partly correct conclusions and none correct conclusion, so that these levels of 
complexity in the graph were not adequate to get a complete conclusion. 

 
CONCLUSIONS 
In the project posed the prospective teachers went through the different steps in the 
statistics method as described by Wild and Pfannkunch (1999) in their PPCAI 
cycle: setting a problem, refining the research questions, collecting and analysing 
data and obtaining some conclusions. They also practiced the process of modelling, 
since, beyond working with the statistics and random variables, they should 
interpret the results of working with the mathematical model in the problem context 
(whether the students' intuitions was good or not). This last step (relating the result 
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with the research question) was the most difficult for the students, who lacked 
familiarity with statistical projects and modelling activities. Since these activities 
are today recommended in the teaching of statistics since primary school level in 
Spain and are particularly adequate to carry out group and individual work as 
recommended in the Higher European Education Space we suggest they are 
particularly suitable for the training of teachers. Our research also suggest that 
building and interpreting graphs is a complex activity and confirm some of the 
difficulties described by Espinel, Bruno and Plasencia (2008) in the future teachers, 
in spite that they should transmit graphical language to their students and use it as a 
tool in their professional life. Improving the teaching of statistics in schools should 
start from the education of teachers that should take into account statistical graphs. 
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THE ROLE OF CONTEXT IN STOCHASTICS INSTRUCTION 
Andreas Eichler 

Universität Münster 
This report focuses on a research project that combines two aspects of a stochastics 
curriculum related to teachers’ classroom practice, and their students’ stochastical 
knowledge and beliefs. Data were collected with questionnaires. The development of 
the questionnaires derived from results of a qualitative research project will be 
sketched. Afterwards, some results concerning the role of the context will be 
discussed. 
Keywords: stochastics teachers, students’ learning, beliefs, role of the context 

INTRODUCTION 
One central aim of the teaching of stochastics in school is to prepare students to deal 
with real stochastic situations in their lives (Jones, Langrall, & Mooney, 2007). This 
aim involves two goals, the students’ comprehension of stochastical concepts, and the 
students’ awareness that it is possible to use stochastics to cope with specific real 
situations. There is a wide consensus between researchers into stochastic education 
that to achieve these two goals, students must explore stochastical concepts on the 
basis of realistic situations instead of exploring solely pseudo realistic situations 
(cards, urns, dices) or learning stochastics in a formal and abstract way (e.g. Jones et 
al., 2007). While there is a consensus about the role of the context for the teaching 
and learning of stochastics, there is, however, still little insight into the daily teaching 
practice of “conventional” stochastics teachers. In this report, the results of a research 
project involving a quantitative survey concerning the classroom practice of German 
stochastics teachers will be discussed. The main focus is the role of the context based 
on the following aspect:  
1. The teachers’ beliefs about the goals of teaching stochastics, 
2. the students’ beliefs about the usefulness of stochastics, and 
3. the impact of the teachers’ beliefs on the students’ beliefs. 
The research project discussed in this report is part of a larger research project 
involving a qualitative designed investigation of stochastics teachers’ classroom 
practices and the impact of the latter on students’ learning (Eichler, 2008a; Eichler, 
2007). The results of the qualitative part of the research that provides the basis for 
the quantitative survey will be sketched in the following. 

RESULTS OF THE QUALITATIVE RESEARCH 
The first step of the qualitative research comprised an interview study with eight 
stochastic teachers (Eichler, 2007a). This study yielded four types of (individual) 
statistics curricula that are similar concerning the content, but considerably differ 
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with regard to the teachers’ objectives or beliefs. The distinction between the four 
types is characterised by differences of the teachers concerning two dimensions. The 
first dimension can be described with the dichotomous pairs of a static versus a 
dynamic view of mathematics or stochastics. The second dimension can be described 
with the orientation on formal mathematics versus mathematical applications. The 
four types of statistics teachers were characterised with reference to their main 
objectives as follows (Eichler, 2007a). 
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dynamic view of mathematics (dimension 1)static view of mathematics 

Application preparers: their central goal is to 
have students grasp the interplay between 
theory and applications. Students firstly must 
learn stochastical theory in order to cope with 
mathematical applications later. 

Every-day-life preparers: their central goal 
is to develop stochastical methods in a 
process, the result of which will be both the 
ability to cope with real stochastic problems 
and the ability to criticise. 

Traditionalists: their central goal is to 
establish a theoretical basis for stochastics. 
This involves algorithmic skills and insights 
into the abstract structure of mathematics, but 
it does not involve applications. 

Structuralists: their central goal is to 
encourage students’ understanding of the 
abstract system of mathematics (or 
stochastics) in a process of abstraction which 
begins with mathematical applications. 

 
Figure 1: Four types of stochastics teachers 

The second step of the qualitative research comprised the observation of the 
classroom practice of four teachers (Eichler, 2008a). One central result of this step of 
observation was that the instructional practice of the teachers provides strong 
evidence that they pursue their main objectives. Concerning the role of the context, 
the traditionalists and the every-day-life-preparers represent the extreme positions. 
The students of the traditionalists predominantly explore stochastical concepts on the 
basis of formal or pseudo realistic situations (cards, urns, dices). They seldom explore 
realistic situations. In contrast, realistic situations are crucial in the classroom practice 
of the every-day-life-preparers. Their students predominantly explore stochastical 
concepts on the basis of realistic situations or real problems, which arise, for instance, 
from articles of newspapers. 
The third step of the qualitative research comprised an interview study with five 
students of each of the four teachers who were observed before. In this step the 
construct of statistical knowledge (Broers, 2006) and the distinction of declarative 
knowledge, procedural knowledge, and conceptual knowledge (Hiebert, & Carpenter, 
1992) was used to describe the students’ knowledge (Eichler 2008a). A central result 
of the third step of the qualitative research was that the students differ in their 
knowledge and beliefs. The differences consist between the students of one teacher, 
and between sets of students of different teachers. The students also differ concerning 
the role of the context. Thus, the students differ in the use of stochastic situations 
(formal, pseudo realistic or realistic) to explain stochastical concepts. Further, the 
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students differ considerably concerning their beliefs about stochastics and 
mathematics referring to their relevance for society and their relevance for the own 
life (Eichler, 2008a). 

METHOD 
In regard to the characterisation of the four types of teachers (figure 1), a 
questionnaire including four parts was developed. The first part concerns the 
instructional contents of stochastics courses. The other three parts of the 
questionnaire concern the teachers’ objectives of statistics and mathematics 
instruction. In each of the latter three parts of the questionnaire the teachers were 
asked to rate typical statements of the teachers who represent one of the four types 
(from full agreement to no agreement, coded with 1 to 5). In these three parts 
respectively two statements of every type have to be rated. 
The questionnaire for the students involves items concerning declarative knowledge 
and conceptual knowledge. Concerning their declarative knowledge, the students 
were asked to rate a list of 28 statistical concepts whether they: are not able to 
remember the statistical concept (coded with 0), are able to remember the statistical 
concept (coded with 1), are able to approximately explain a statistical concept (coded 
with 2), are able to exactly explain a statistical concept (coded with 3).  
Concerning the conceptual knowledge, the students were asked to indicate 
interconnections into the consecutively numbered concepts (category declarative 
knowledge)  
Four parts of the questionnaire comprise the role of the context. Thus, the students 
were asked to indicate 
- stochastic situations of the classroom (category application). 
- statistical applications along with related statistical concept (category 

connections).  
- real situations (outside of the classroom), for which stochastics may be useful 

(category benefit). 
- the benefit of stochastics for students’ future life, the benefit of stochastics for the 

students’ professional career. These two categories were linked with a single item, 
in which the students are asked to rate the relevance of stochastics for their lives 
from high relevance (coded with 5) to no relevance (coded with 1, category 
relevance-life, and category relevance-profession). 

A random sample of 240 German secondary high schools was selected. These schools 
were asked to conduct the survey. 166 of these agreed. Two teachers’ of each of these 
schools and three students per teacher with different statistical performance were 
asked to fill out the questionnaire (January to July 2007). The completed 
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questionnaires of 107 teachers and 315 students were analysed. The stochastics 
courses last between three and six month with three to five hours a week. 

RESULTS CONCERNING THE TEACHERS 
The statistics curriculum is dominated by the so called classical block of probability 
(see table 1).  
Block Topics and percent of teachers  teaching the topic (n=107) 
Classical block of 
probability 

Frequencies (98%), Laplacean probability (97%), statistical probability 
(72%), probability tree (100%), Bernoulli experiment (99%), binomial 
distribution (100%), expected value (95%), standard deviation (95%) 

Inferential statistics Hypothesis testing (89%), confidence intervals (51%), Bayesian statistics 
(27%) 

Conditional 
probability 

Conditional probability (81%), (in)dependence (80%), theorem of Bayes 
(74%) 

Distributions Normal distribution (79%), hypergeometrical distribution (49%) Poisson 
distribution (49%) 

Descriptive statistics Frequencies (98%), mean (87%), spread (74%), median (52%), regression 
and correlation (16%) 

Table 1: Percentage of teachers teaching different instructional content  

Factor analysis concerning the objectives of the teachers’ statistics curricula in the 
responses to questionnaires yield three interpretable factors (table 2) which include 
15 of the 24 items referring to the objectives of the statistics curriculum. For each 
factor the number of items and the Cronbach’s Alpha is shown in table 2. 

Factor Factor 1 (5 items,  
α = 0.689) 

Factor 2 (6 items,  
α = 0.725) 

Factor 3 (4 items,   
α = 0.779) 

Interpretatio
n 

Traditional curriculum, 
little reference to real data 

Curriculum with high 
reference to real data 

Curriculum with high 
reference to process 

Table 2: Factors concerning the objectives the statistics curriculum 

In the following the main focus is on the first two factors or rather on the teachers 
with a high acceptance to the items of one of these two factors. These items are 
shown in the following table. The items involve a statement of a teacher who 
represents one of the four types of stochastic teachers (figure 2). The type is indicated 
in the brackets (T: traditionalists; S: structuralists; A-P: application-preparers; E-P: 
every-day-life-preparers). 
Factor 1 Factor 2 
- The objective of teaching stochastics is 

to establish a theoretical foundation of 
stochastics (T). 

- Students must learn to deal 
successfully with abstract and formal 
systems (S). 

- Algorithmic skills constitute the basis 
of learning statistics or mathematics

- The main goal of the teaching of stochastics is the 
students ability to understand decision-making 
processes in our society (E-P) 

- Students must explore stochastical concepts solely on 
the basis of real stochastic situations (E-P). 

- Students must learn to use stochastical or 
mathematical theory to be able to argue referring to 
real problems (A-P). 
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(T). 
- Students must be well prepared 

concerning final exams and studies (T).
- Students must learn a precision in 

reasoning in order to deal successfully 
with abstract and formal mathematics
(S). 

- Students must understand that stochastics or 
mathematics is part of the general ability of problem 
solving (E-P). 

- Students must learn to solve real problems either for 
their own or in a team (E-P). 

- Students solely will be motivated if they understand 
that stochastics or mathematics is applicable in the 
reality (A-P). 

Table 3: List of the items included in factor 1 and factor 2. 

The correlation coefficient between factor 1 and factor 2 is - 0,1. For the distinction 
between teachers with high acceptance to the items of one factor and low acceptance 
to the other, two clusters were defined by the medians concerning the value of the 
two factors. Cluster 1 includes those teachers with high acceptance to factor 1 and 
low acceptance to factor 2. Cluster 2 includes those teachers with high acceptance to 
factor 2 and low acceptance to factor 1. Cluster 1 includes 39 teachers, cluster 2 34 
teachers. 

 

Cluster 1

Cluster 2

Figure 2: Clusters of teachers concerning factor 1 and factor 2 

RESULTS CONCERNING THE STUDENTS 
Figure 3 shows the results concerning five categories: 
1. the students’ self estimated ability to explain the 28 different stochastical concepts 

(the students’ declarative knowledge), 
2. the number of connections between two different stochastical concepts as part of 

the students conceptual knowledge (for instance: if a student indicated the 
connection between the three concepts of expected value, variance and standard 
deviation, the number of possible connection is 3 over 2 or rather 3) 

3. the number of  stochastic situations of the classroom (application). 
4. the number of pairs of applications and statistical concept (connections).  
5. the number of real stochastical situations (benefit). 
Due to the fact that different teachers indicated different numbers of stochastical 
concepts taught in the classes, figure 3 shows the results concerning the category 
knowledge weighted. For this category the students’ self estimated knowledge is 
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divided by the number of concepts taught by the teachers. This category alludes to a 
restricted sample, which involves the set of completed questionnaires of one class 
(some of the completed questionnaires allude only to the teachers or only to the 
students). 
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Figure 3: Results concerning the students knowledge and beliefs (average and 95%-
interval) 

The interpretation (only for the averages) is as follows: The sum of the students’ self-
estimations concerning the 28 given stochastical concepts is in average about 39. In 
average, the students rate their knowledge about the stochastical concepts taught by 
their teachers with about 1,4. The students indicate more than 9 connections between 
different stochastical concepts, they indicate about 2,1 stochastical situations of the 
classroom and about 2 stochastical situations outside of the classroom. Finally, the 
students indicate in average about 1,9 connections of a stochastical situation and a 
specific stochastical concept.  
Concerning the role of the context it is important whether the indicated stochastical 
situations to the categories application, benefit, and connections refer to realistic 
situations or pseudo realistic situations (the pseudo realistic situations include games 
of chance). Table 4 shows the distribution of the indicated stochastical situations 
(with the number of indications in brackets) for the first two categories: 

Application  Benefit 
realistic situations 
(255) 

pseudo realistic situations 
(385) 

realistic situations 
(359) 

pseudo realistic situations
(270) 

quality control (48) game of chance (100) economy (63) game of chance (100) 
forecasts (30) lottery (91) quality control (45) lottery (78) 
elections (28) dice (66) elections (39) poker (13) 
statistics (24) urns (33) statistics (37) bets (18) 
clinical diagnostic (23) coins (23) polls (32) dice (14) 
polls (16) cards (15) clinical diagnostic (26) bingo (13) 
economy (16) poker (13) further education (26)  
weather (11) lots (10) weather (17)  
  stock market (16)  
  insurance (12)  
other situations with less than 10 indications other situations with less than 10 indications 
Table 4: Distribution of stochastical situations and number of indications in brackets 

The stochastical situations are topics: the situation economy includes, for instance, 
market research, promotion and some more specific situations. Although some of the 
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stochastic situations were indicated for both categories, application and benefit, it is 
obvious that  
- concerning the category benefit, the pseudo realistic situations are restricted to 

existing games of chance, and 
- concerning the category application, the majority of situations refers to pseudo 

realistic situations. 
Some of the indicated situations stem from typical tasks in German textbooks, in 
particular quality control, elections, and clinical diagnostic. Students predominantly 
use these three different situations connecting a stochastical situation with a specific 
stochastical concept. The students, however, more often use pseudo realistic 
situations for connecting a stochastical situation with a specific stochastical concept, 
and, in this case, predominantly dice, urns and lottery (see table 4). 

Realistic situations (157) Pseudo realistic situations (341) 
Situation Connected stochastical concepts Situation Connected stochastical concepts 
Quality 
control 
(85) 

hypothesis testing (17), binomial 
distribution (6), confidence 
interval (5), Bernoulli experiment 
(4), conditional probability (4) 
normal distribution (3), expected 
value (2), spread (2), probability 
tree (1), combinatorics (1) 
2 x 2 table (1) 

Dice Laplacean probability (36), Bernoulli 
experiment (14), probability tree (9) 
random experiment (7), expected 
value (5), binomial distribution (4) 
probability (2), statistical probability 
(2), normal distribution (2), 
hypothesis testing (1), variance (1) 
simulation (1), combinatorics (1) 

Clinical diagnostic (33), elections (9) Urns (79), lottery (53) 
Table 5: stochastical situations and related stochastical concepts 

Obviously, students remember predominantly connections between pseudo realistic 
situations and specific stochastical concepts. Further, the variation of indicated 
stochastical situations concerning the category connections is much lesser than the 
variation of indicated situations concerning the categories application and benefit.  
Although the students estimated their declarative knowledge by themselves, these 
estimations give evidence of the students’ factual knowledge. Thus, the correlations 
between the students’ declarative knowledge and other categories discussed above are 
shown in table 6:  

Application benefit connections 
realistic pseudo 

realistic 
realistic pseudo 

realistic 
realistic pseudo 

realistic 

 conceptual 
knowledge 

situations situations situations 
declarative 
knowledge 

0,418** 0,172** -0,233** 0,277** -0,181** 0,269** -0,177**

Table 6: Correlations between students’ declarative knowledge and 5 other categories  

The correlations are predominately weak, although they are significant different from 
zero. However, the correlations as a whole give evidence that the students’ self 
estimated declarative knowledge measure in some sense the students’ flexibility of 
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dealing with statistical concepts. Further, there is evidence that the higher the 
students’ flexibility of dealing with statistical concepts is the higher their reference to 
realistic statistical situations is, and the lower the reference to pseudo realistic 
situations is. 

TEACHERS – STUDENTS  
To prove possible interrelations between the teachers’ orientation concerning the 
goals of the stochastics instruction and the students’ knowledge and beliefs, the 
sample must be restricted. This was necessary, because sometimes a teacher sends his 
completed questionnaire back but his students not, sometimes the students send their 
completed questionnaires back, but the teacher not. Two strategies were used for the 
following analysis. Firstly, the correlations between the factors, i.e. factor 1 and 
factor 2 (or rather the sum of ratings the teachers given to the items of the two 
factors), and the categories concerning the students (knowledge weighted, 
application, benefit, and connections). Secondly, the clusters of teachers defined 
above (figure 2) were used to split up the sample of the students. The averages of the 
two new samples concerning the categories knowledge weighted, application, benefit, 
and connections were compared by a t-test.  
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Figure 4: Students’ weighted knowledge and students’ procedural knowledge. f1F2:  
teachers, who have low acceptance to factor 1 and high acceptance to factor 2,  F1f2: 
teachers, who have high acceptance to factor 1 and low acceptance to factor 2 

Most parts of the analysis give no evidence of an interrelation between the teachers’ 
orientation and the students’ knowledge and beliefs. For instance, concerning the 
clusters of teachers, who have low acceptance to factor 1 (traditional curriculum) and 
high acceptance to factor 2 (curriculum with high reference to real data) or who have 
low acceptance to factor 2 and high acceptance to factor 1 (see figure 2), the 
distribution of the students’ weighted knowledge and the students’ ability to indicate 
connections between stochastical concepts (figure 4). 
Although there are differences in detail, these differences are statistically not 
relevant.  Thus, there is little or no evidence that a teacher’s orientation towards a 
traditional curriculum (factor 1) or a curriculum that includes real data (factor 2) 
promote (or impede) students’ learning in reference to the students’ declarative 
knowledge, the students’ conceptual knowledge, and the students’ beliefs concerning 
the relevance of statistics except the category benefit. For this category t-test give 
some evidence that the students of teachers with high acceptance to factor 2 and low 
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acceptance to factor 1 use more often realistic situations than pseudo realistic 
situations to explain the relevance of stochastics for the society. However, the 
differences are not significant (table 7).  

Realistic 
situations (F1f2) 

14,1=x  Psudo realistic 
situations (F1f2) 

66,0=x  

Realistic 
situations (F1f2) 

83,0=x  Psudo realistic 
situations (F1f2) 

00,1=x  

Benefit 

 121,0=α   063,0=α  
Table 7: Difference of the students concerning the category benefit 

In contrast to the low interrelations between the teachers’ objectives concerning the 
statistics curriculum and their students’ knowledge and the students’ beliefs, there is 
stronger evidence that the amount of contents has an impact on the students’ 
knowledge. So, the greater the number of statistical concepts taught by the teachers 
is, the lower the declarative knowledge of the students seems to be (Pearson’s 
correlation coefficient r = -0,43**). 

CONCLUSION 
The results of the quantitative survey concerning the curriculum of statistics teachers 
and the learning of students give evidence that: 
- “The traditional way of teaching statistics, with its heavy emphasis on formal 

probability” (Broers, 2006, p.4) is still existent in German secondary high schools; 
- the teachers’ instructional contents are similar, but the teachers’ objectives differ 

considerably; 
- the quality of students’ declarative knowledge affects their conceptual knowledge 

and their beliefs concerning the relevance of statistics; 
- the students predominately indicate few realistic situations to explain both the 

relevance of stochastics for the society and connections between stochastical 
situations and specific stochastical concepts; 

- the teachers’ orientation towards a curriculum with high reference to real data 
seems to affect the students’ ability to use realistic stochastical situations to 
explain the relevance for the society. 

However, the latter interrelation between the teachers’ orientation and the students’ 
beliefs is weak. Above all, there is no evidence for the impact of the teachers’ 
orientation and the students’ knowledge and beliefs. The lack of statistical relevant 
interrelations between the teachers teaching and the students learning may be caused 
by the fact, that there are only small differences of the teachers’ stochastics teaching 
with the emphasis on probability. It is possible that a stronger orientation to a data 
driven curriculum has a stronger impact of the students’ knowledge and beliefs 
concerning the role of the context. Further it is possible, that the quantitative survey 
discussed in this report is not able to measure possible differences concerning the 
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students’ knowledge and beliefs. There is some evidence that qualitative research can 
show differences in detail between students’ of teachers who have different goals 
concerning the role of the context (see Eichler, 2008a). 
However, the stochastics teachers’ teaching is determined by the teachers’ 
fundamental orientation, i.e. the teachers’ system of objectives (or beliefs) concerning 
stochastics teaching. Pajares (1992) stated that it could be difficult to change the 
teachers’ central beliefs. One approach to change these central beliefs may start by 
the teachers’ conviction that a changed curriculum actually will promote students’ 
stochastical knowledge. For this reason it would be desirable to have more research 
into the stochastics teachers’ curricula, the students’ stochastical knowledge and 
beliefs, and, in particular, the relations between stochastics teachers’ curricula and the 
students’ stochastical knowledge or beliefs. 
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DOES THE NATURE AND AMOUNT OF POSTERIOR 
INFORMATION AFFECT PRESCHOOLER’S INFERENCES 

Z. Nikiforidou, J. Pange 
Department of Early Childhood Education 

University of Ioannina-Greece 
 
Children as young as 5 have been found to possess basic notions of probability, in 
contradiction to the piagetian perspective. In the current pilot study, preschoolers 
(N=25) participated in a probability task of single events, with alterations in the 
given posterior information. Children took into account the new sets of information 
and responded differently in each condition, depending on the nature and the amount 
of information. Such findings stress the importance of designing probability tasks in 
accordance to the children’s cognitive capacities and probabilistic understanding.  
Key words: preschoolers, posterior probability, design of probability tasks. 
 
INTRODUCTION 
The development of probabilistic thinking is a topic of much interest during the last 
decades from many perspectives, i.e. mathematical, cognitive, and educational.  
Early research carried out mainly by Piaget and Inhelder (1951) supported that 
children undergoing the pre-operational developmental stage (4-7 years old) have no 
intuitions of randomness and no conceptions of chance and probability.  Under this 
traditional perspective, probabilistic concepts develop as complementary to logical 
operational structures which emerge in relation to age (Kreitler & Kreitler, 1986). At 
the age of 5, children cannot differentiate certain from random events. 
On the other hand, Fischbein (1975) suggested that young children possess a 
particular intuition of chance and probability in the sense that they possess ‘primary 
intuitions’ which are ‘cognitive acquisitions derived from the experience of the 
individual, without the need for any systematic instruction’ (Fishcbein et al, 1971).   
Based on this intuitive perspective, young children show a minimal understanding of 
randomness and can identify the most/least likely outcomes (Way, 2003). 
Preschoolers have been found to understand the probability of an event (Jones et al, 
1997; Falk& Wilkening, 1998), to make use of random sampling and base rate 
information (Denison et al, 2007), to realize part-part comparisons in order to 
estimate probability (Spinillo, 2002), to make use of probabilistic evidence in order to 
infer about causal strength (Kushnir& Gopnik, 2005). Preschoolers are able to 
compute prior probabilities in order to predict an uncertain event.  
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In the current study preschoolers were tested onto whether they can take into account 
and manipulate posterior probability. Posterior probability is a revised probability 
that integrates new available information. What happens when children are asked to 
consider new specific information in order to make judgments about the outcome of a 
probabilistic task? According to a study carried out by Girotto & Gonzalez (2008), 
even kindergartners were found to be able to use posterior information in order to 
update their evaluations about random outcomes. Young children made optimal 
decisions while integrating new information into prior information of single events. 
The general hypothesis is that preschoolers are expected to take into consideration the 
extra-posterior information while building-up their inferences. The nature and 
amount of information that characterizes each condition (base rate vs category) is 
expected to affect children’s responses: the more precise information (condition 2 vs 
condition 1), the more accurate judgments.  

 
METHODOLOGY 
This pilot study took place in a public kindergarten in a town of Western Greece, in 
2008. The random sample consisted of both girls and boys. In this study we did not 
consider age and gender effects due to the small sample. Participants (N=25), aged 5 
to 6, were asked to make predictions in a two-stage procedure: at a first point they 
were asked to infer given prior information and then they were asked to infer again 
by taking into account new, available posterior information.  
The probabilistic task consisted of animal cards that depicted ducks and mice. In 
every condition the sample space was invariably 8 and cards were distributed 
unequally in 2 identical boxes. Among the 8 cards there was one lucky-card that had 
a sticker on it. Once children found that particular card in the correct box, they gained 
a sticker themselves. The lucky animal in all cases was a duck -participants were 
aware of that from the beginning of the task- and consequently mice were used as 
‘noise’. 

  1st stage of choice (based on 
prior information) 

2nd stage of choice (based 
on posterior information) 

1st 
condition: 
base rate 

 
 

  No info provided 
  about the content.  

Aware that one box has 6 
animal-cards vs the other 
box with 2. 

2nd 
condition: 
category 

    Aware that both 
   boxes have 4 cards 
   each.  

Aware that the 
distributions are 3:1 and 
1:3  

  
  
      

     
     
     

  
  

  
       

Table 1: Design of the probabilistic task. 
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The design of the task (Table 1) comprised 2 conditions with differences in the nature 
and amount of information and 2 stages of provided information that affected 
participants’ choice. In both conditions, participants began with information that 
didn’t favor any box; both boxes had equal chances to carry the lucky-animal (level 
of probability, 50:50). Then, posterior information would provide additional evidence 
about in which box the lucky-duck might be.  
In precise, in the 1st condition, children were given as prior information nothing, they 
were just asked to choose one box at random. As posterior information, they were 
informed that one particular box contained 6 whereas the other 2 cards.  
In the 2nd condition, information was more detailed both in the prior and the posterior 
stages. In the beginning, preschoolers were aware that both boxes had 4 cards each, 
and after, they were given as posterior information each box’s distributions of the 
sample spaces (3:1 vs 1:3).  
Children participated in pairs in a separate room of the school. They were given 
instructions about the task and were motivated by the fact that they would win 
stickers. During the game, cards remained on the table reminding them the given 
information. At a 1st level, participants were asked to select orally the box they 
believed contained the lucky animal-card. As soon as they pointed to a box and 
before drawing a card of their choice, they were given new information orally by the 
experimenter about where the lucky card might be. Based on this new information, 
children either reconsidered their prior choice and switched box or made new 
predictions in order to succeed the desired outcome, i.e. the lucky –card. All 
participants carried out the 2 conditions in the same order. 
Children recorded by themselves their final choices on specially designed sheets, 
independent of the actual outcome. These recorded sheets were used for further 
analysis. 

 
RESULTS 
Overall, children made correct predictions; they gave in total 36 correct answers out 
of 50. For the purposes of the current study, ‘correct’ is the answer that relates to the 
box with the higher probability of hiding the lucky animal. The predictions that 
related to the less probable box were scored as ‘incorrect’. Such coding is used just 
for the analysis of the current results, as there is no such ‘correct- incorrect’ in 
probability tasks.  
From the descriptive analysis (Table 2) it can be seen that in condition 1, children 
predicted the correct box by 60% and in condition 2 they responded correctly by 
84%, in terms of selecting the more probable box.  
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Table 2: Overall responses in cases 1&2. 

 

The differences in the available information of each condition affected children’s 
responses. Concerning the nature and the amount of information, it was found by the 
paired-sample t-test analysis concerning proportions, that there is a significant 
difference between conditions 1 and 2, t (25) = 2.295, p<0.05. There is a significant 
difference between the means of the two conditions. This implies that children’s 
inferences in tasks that relate to posterior probability get affected by the kind and the 
range of information provided as new.  

 
DISCUSSION   
The results of this pilot study support that preschoolers may participate in 
probabilistic tasks successfully and integrate any available information, while 
forming their inferences in more than one stage. These results comply with the 
findings of Girotto& Gonzalez (2008). Among these lines, young children correctly 
revise their decisions when given new sets of information about single, non-
repeatable events. 
The baseline for both conditions was that the sample space was 8 and the lucky 
animal was a duck. The amount of given information was more complex and detailed 
in condition 2 and was not of equivalent difficulty as in condition 1. Thus, in this 2nd 
condition preschoolers were found to be able to make more correct predictions in 
terms of choosing the more probable set of given information. Overall, children 
showed the capacity to consider and handle information while participating in a 
probabilistic task. 
However, the limited sample considers an issue for further research. Another 
limitation that could be taken into account refers to the children’s participation in 
pairs. If children conducted the task individually would they make the same 
predictions? Or do they get influenced by their classmates? In addition, more 
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conditions, randomization of the boxes, more variations in the given information (i.e. 
qualitative) and other stimuli such as cards with different themes or pictures could 
lead to different interpretations. 
In this game, children made more correct predictions when given more detailed and 
precise information about the sample space (i.e. condition 2 vs condition 1). This has 
a methodological significance that should be considered while designing probabilistic 
tasks. Children express and develop probabilistic ideas, depending on the design of 
the given activity (Papaparistodemou& Noss 2004; Pratt, 2000). The nature and the 
amount of information are important factors that affect children’s probabilistic 
thinking.  
Opposed to the piagetian perspective, young children before the age of 7 can make 
inferences and handle more than 2 combinations in order to participate in probability 
tasks. Recent studies have shown that children as young as 4 demonstrate an 
understanding of probabilities and expected value, adjust preferences based upon 
probability, understand basic notions of probabilistic thinking (Acredolo et al, 1989; 
Schlottmann, 2001; Way, 2003; Nikiforidou& Pange, 2007) and possess specific 
concepts and skills associated with probabilistic reasoning (Langrall& Mooney, 
2005).    
Furthermore, preschoolers make use of additional information and reveal a capacity 
to proceed in posterior probabilities (Girotto& Gonzalez, 2008) or in a two-stage 
choice task. Future research has to focus in this direction; in setting all the factors that 
are cognitively equivalent to young children’s probabilistic thinking. The types of 
random generators, the mathematical structure of sample space, the type of responses, 
the nature of comparison or estimation (Way, 2003), the sort and amount of given 
information should be taken into consideration while designing probability tasks for 
preschoolers, who are characterized by intuitive and non-formal thinking. 
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STUDENT’S CAUSAL EXPLANATIONS FOR DISTRIBUTION 
Theodosia Prodromou 1and Dave Pratt2  

1Vergina Lyceum, Cyprus; 2University of London, UK 
This paper presents a case study of two students aged 14-15, as they attempt to make 
sense of distribution, adopting a range of causal meanings for the variation observed 
in the animated computer display and in the graphs generated by the simulation. The 
students’ activity is analysed through dimensions of complex causality. The results 
indicate support for our conjecture that carefully designed computer simulations can 
offer new ways for harnessing causality to facilitate students’ meaning-making for 
variation in distributions of data. In order to bridge the deterministic and the 
stochastic, the students transfer agency to specially designed active representations 
of distributional parameters, such as average and speed. 
Keywords: causality, agency, stochastic thinking, variation, randomness, probability
  
VARIATION AND CAUSALITY  
This research study builds on ideas which emerged from two research studies: 1) the 
seminal work of Piaget (1975, translated from original in 1951) and 2) Pratt’s work 
(1998; 2000) as it attempts to clarify how students let go of determinism whilst at the 
same time re-apply such ideas in new ways to account for variation (Prodromou, 
2008; Prodromou & Pratt, 2008).  
Piaget and Inhelder (1951) reported how the organism fails in the first place to apply 
operational thinking to the task of constructing meanings for random mixtures, which 
were therefore unfathomable. Only much later, according to Piaget, the organism 
succeeds in inventing probability as a means of operationalising the stochastic. In 
contrast, students soon gain mastery over the deterministic, appreciating cause and 
effect at least in a basic manner, apparently lending itself more easily to operational 
thinking. Instead of interpreting Piaget’s work as presenting an impregnable divide 
between the stochastic and the deterministic, at least until a late stage of 
development, we began to wonder whether the divide was a manifestation of 
conventional technologies and whether digital technology might provide a means by 
which the deterministic might be harnessed to support new ways of thinking about 
the stochastic. 
In Pratt’s work (for example, 2000, 2002), students aged 11 years explored computer-
based mini-simulations of everyday random generators, such as coins, spinners and 
dice. These simulations provided functionality beyond that which would be 
experienced in everyday life. For example, the students were able to change the 
workings of the simulation and so explore their ways of thinking about randomness. 
Gradually, the students articulated the heuristic that “the more times you throw the 
dice, the more even is its pie chart”. We detect in this statement a sense that the 
number of throws determined the appearance of the pie chart. Similar causal 
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statements were made about other aspects of the system, such as the effect of 
changing the workings of the simulation. 
Pratt referred to these causal heuristics as situated abstractions (Noss and Hoyles, 
1996), internal meanings for making sense of phenomena that capture the abstracted 
nature of the meaning, expressed in language tied to the situation. Pratt and Noss 
(2002) have further elaborated on the nature of situated abstractions as part of a 
model for the micro-evolution of mathematical knowledge. 
We believe Pratt has made a prima facie case that, in certain conditions, possibly 
deeply connected to the potential of technologically-based environments, students 
can construct stochastic meanings out of causality. In this study, we examine this 
possibility further by building a digital simulation to provide a window on students’ 
thinking-in-change (Noss & Hoyles, 1996) about average and spread as parameters 
within a distribution. 
First though, we must be more specific about what we mean by causality. In fact, 
causality can be seen at a variety of levels (Grotzer and Perkins, 2000; Perkins and 
Grotzer, 2000). Grotzer and Perkins have proposed a taxonomy or a classification 
scheme that attempts to organise increasing complexity of causal explanation. The 
taxonomy comprises causal explanations organised in four dimensions along which 
causal complexity is characterized: 
Mechanism includes the most superficial causal explanations, appealing to the most 
general of phenomena, or to token agents, perhaps “luck”, “destiny” or “god’s will” 
in the case of stochastic. Within this dimension we begin also to see inferences of 
underlying mechanisms.   
Interaction pattern begins with simple cause and effect explanations but extends to 
complex relational causality, involving the co-existence of two or more 
interdependent factors, possibly with feedback mechanisms. For example, agent A 
affects agent B but feedback from agent B then affects agent A.  
Probabilistic Causality relates to the use of uncertainty in modelling causal 
relationships. Often apparently deterministic systems hide uncertainty in a chaotic 
complexity. Thus, does the cup which rests on the table express the equilibrium of 
underlying static forces? Or should we seek explanation by reference to the chaotic 
dynamic motion of the sub-atomic particles that constitute the table and the cup? 
Conversely, we choose to explain phenomena in terms of probability to avoid 
reference to deep layers of underlying causality. Thus, we might choose to model the 
outcome from the throw of a dice in terms of probability, rather than by reference to 
multiple and interacting forces, such as the strength of the throw, the weight of the 
dice and the friction at the surface. 
Agency describes those explanations that recognise that causality is distributed across 
many elements. Such explanations might use ideas of emergence. For example, we 
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might consider a theoretical distribution as a pattern that emerges from the many 
pieces of data. 
We wished to explore what sorts of computer-based tools might provide us with a 
window on the use of these differing levels of causal complexity to make sense of 
distribution, as generated within a computer simulation. We set out to design a virtual 
environment that supported students in attributing agency to the emergent shape of 
the distribution while they were discriminating and moving smoothly between data as 
a series of random outcomes at the micro level, and the shape of distribution as an 
emergent phenomenon at the macro level.  
In that respect, we conjectured that the computer simulation environment could 
enable students: 

• at the micro level to use their understanding of causality whilst at the same time 
begin to recognise its limitations in explaining local variation, and   

• at the macro level to see parameters such as average and spread as causal agents, 
impacting on the shape of distribution, whilst nevertheless not completely 
defining the distribution.  

METHOD 
Approach and tasks. The approach of this research study falls into the design 
research methodology (Cobb et al., 2003) resulting in the BasketBall simulation as 
depicted below (Fig 1). The animation of the basketball player was controlled by  

 
Fig 1: The interface of the BasketBall simulation. 
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varying the handles on the sliders of the release angle, speed, height and distance or 
by entering the data directly. Once the play button has been pressed, the player 
continues to throw with the given parameters until the pause or stop button is pressed. 
The trace of the ball can be switched off. Feedback is made available from the 
Monitors and Graphs panes. When the arrows button has been switched on, two 
arrows appear from both sides of the handle on the slider (Fig 2), in which case the 
value of the parameter is chosen from a distribution of values, centred on the handle 
of the slider. The students are able to vary these arrows to increase or decrease the 
spread of the values of the parameter around that centre. The microworld also 
allowed the students to explore various types of graphs relating the values of the 
parameters to frequencies and frequencies of success. The students have access to a 
linegraph of the success rate as well as a histogram of the frequency of successful 
throws or throws in general against release angle (or release speed, or height, or 
distance). Initially, the students were challenged to throw successfully the ball into 
the basket. When the parameters were determined, the histograms of the frequency of 
successful throws against release angle (or release speed, or height, or distance) 
appeared as a single bar columns.  
Once the preliminary task was completed, some discussion about the realism of the 
simulation followed, which normally introduced notions such as skill-level,  the use 
of the ‘arrows’ buttons and the appearance of the histograms. When bias had been 
introduced to the throws, the graphs appeared as histograms. The subsequent task for 
the students was to model a real but not perfect basketball player (one who was not 
successful on every throw). 

 
Fig 2: The value of the parameter was selected from a distribution of values, centred 
on the position of a slider.     

Participants. The simulation was used by eight pairs of students in a UK secondary 
school. It was assumed that the simulation would be used only by students ranging in 
age from fourteen to fifteen years because a tight focus on the students’ intuitions of 
the distributions indicated that the age of 14-15 years old was mainly ripe for 
conceptual change in this domain. Another important advantage of working with 
students of this age was curriculum-based. In the UK National curriculum (DfES, 
2000) students of this age are expected to know how to graph data using histograms, 
dotplots and boxplots, and compare distributions and make inferences, using the 
shapes of distributions and measures of average and range. Students of this age, 

WORKING GROUP 3

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 397



 

 

 

 

therefore, encounter distribution as a collection of data, either given or generated 
through experiments and surveys.  
In this paper, we concentrate on the work carried out by two students, Ethan and 
Emma (aged 14-15 years), as they engaged with modelling a real but not perfect 
basketball player. These students had already experienced moving either or both of 
the arrows, generating values that corresponded to distributions with different spread 
and bias. The first author was a participant observer during this process.  She 
frequently intervened in order to probe the reasons or intuitions that might lie behind 
participants’ actions.  
Data collection and analysis. The data collected included audio recording of the 
students’ voices, video recording of the screen output on the computer, and the first 
author’s[2] field notes. The analysis was one of progressive focussing (Robson, 
1993). At the first stage, the recordings were simply transcribed and screenshots were 
incorporated as necessary to make sense of the transcription. Subsequently, the first 
author turned the transcript into a plain account. At the third stage, an interpretative 
account was written by the first author and discussions about the validity of those 
interpretations with the second author followed, making therefore an account of the 
data before accounting for the activity (Mason, 1994). 
FINDINGS   
The case of Ethan and Emma provides an illustration of students’ typical causal 
explanations for the observed variation. The two hour session with Ethan and Emma 
demonstrates how the two students mobilized combinations of different tools to 
create explanations of variation.  
Having already found how to make a successful basket, in the following extract, 
Ethan and Emma were first introduced to the arrows and they had spent a little time 
looking at the effect on the animation:  

1 Re[1]: What do you think these arrows do? 
2 Et: …Do they change the angle and the height? 
3 Em: It’s just changed the angle, so we will get better results, so we can see. 
4 Re: What do you mean by ‘better’? 
5 Em: Because each result is different on the graph (Fig 3). 
6 Re: Why are they better? 
7 Em: Because they much more like realistic.  

By looking at the animation, Ethan had recognized that the arrows were causing 
changes in the throws made by the Basketball player (line 2). Emma refers to the 
changes in the graph (line 5), and seems to acknowledge that it is more realistic for 
the basketball player to throw at varying angles (line 7).  
A few minutes later however, Emma deliberated upon the role of the arrows in 
determining the choice of angle: 
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Fig 3: Emma seems to be referring not only to the different values of the angles which 
were chosen by the basketball player, but also appears to refer to the graph of success 
rate.    

8 Re: What do you think the arrows are for? 
9 Em: Is it… where the two arrows are, every time he throws is going to be 

the distance between that arrow (the arrow to the left of the vertical 
bar on the slider) and that arrow (the arrow to the right of the vertical 
bar on the slider)… 

10 Re: Do you mean the angle? 
11 Em: Yeah … the angle … You can only throw from here to there (pointing 

to the two arrows). You cannot go any place outside the two arrows.  
Emma seemed to be conjecturing that the angle was chosen from between the two 
arrows (lines 9 and 11), though she still had offered no sense for the mechanism by 
which the choice was made. 
For several minutes, the students experimented with the arrows, at which point their 
attention was re-focused on the variation which could be perceived through the 
histograms: 

12 Re: Tell me what do you think your graphs will look like. Do you expect 
these graphs to have one bar, two bars, three bars, or four bars? 

13 Em: …about three bars.  
14 Re: So, it will not be only one bar? Why? 
15 Em: Because he is throwing at different angles… so… he is not throwing 

at the same angle all the times, so there would be more than one bar. 
Emma asserted that variation in the throwing angles would result in additional bars in 
the histogram (line 15), and soon went further to predict that “the wider apart the 
arrows around the handle, the more bars there would be in the histogram”. Although, 
as can be seem, Emma tended to lead the discussion, Ethan was also comfortable at 
this point that variation could be perceived in the player’s throws and through the 
frequency histograms. 
Their thinking about the relationship between the gap in the arrows and the number 
of bars was tested further a few minutes later when the bars were moved very far 
apart: 

16 Re: Would there be more or less bars on the histograms? 
17 Em: Because he can throw any distance between those two arrows… We 

haven’t given him a fixed angle to throw it at, so they would not be 
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the same every time. It will be different… because the arrows give 
him more of a choice… because the computer like assigns any angle 
at random between those two arrows… it records it in the graph. 

For the first time, Emma referred to a random mechanism operating to make the 
choice from the gap between the arrows (line 16). She referred also to the interactions 
between a group of agents (arrows, basketball player, computer), which somehow 
cooperated to accomplish variation in the distribution. 
So far, the discussion had centred on the connection between the gap in the arrows 
and the variation as seen in the animation or in the graphs. Later, the discussion 
switched to whether the score was successfully made or not. In the following extract, 
the handle is positioned on an angle which would successfully throw the ball into the 
basket and Emma and Ethan know this to be the case. They considered the effect of 
the arrows on success: 

18 Em: Yeah… because when we put the arrows closer together, so it doesn’t 
have enough choice, like… He can only pick between those two 
arrows for the release angle… so, he gets a better chance of… to 
score. 

19 Et: As he’s got the release angle inside… that space so… so got to choose 
that release angle that is scored… 

20 Re: Which is inside …?  
21 Em: 63.3… and 76.3… he can only choose…  a release angle between 

those two numbers.  
Emma and Ethan both seemed to grasp that a small gap reduced the possibilities for 
failing to throw a successful basket (lines 17 and 18).  
DISCUSSION   
As an expert observing Emma and Ethan’s activity, it is not difficult to recognise the 
connection between the arrows and the statistical notion of spread. Such an expert 
might see the distance between the arrows as a measure of spread. In fact, the data 
that is actually generated might portray spreads greater or less than that predicted by 
the gap between the arrows. In this sense the gap between the arrows operationalises 
the spread parameter of an underlying theoretical distribution, whereas what the 
students observe is a set of data generated randomly from that distribution. 
The above protocol illustrates, through the case of Emma and Ethan, the use of causal 
explanations, at differing levels of causal complexity, to make sense of variation as it 
is depicted in the simulated animation of a basketball player and in graphical 
feedback. These explanations do not take the form of formal robust theory-oriented 
statements but rather they emerge more as tentative, situated, conjectural utterances, 
though as the exploration continues the utterances carry more authority and assurance 
and begin to sound more like conclusions than conjectures. 
In Table 1, we list seven observed situated abstractions, based on the body of 
evidence, which the above protocol typifies: 

WORKING GROUP 3

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 400



 

 

 

 

Ref Characterisation of situated abstraction Line
SA1 “the arrows affect the angle that the basketball player throws 

the ball” 
2 

SA2 “the arrows affect the graph” 5 
SA3 “angles are chosen from between the arrows” 15 
SA4 “the wider apart the arrows around the handle, the more bars 

there would be in the histogram” 
15 

SA5 “the computer assigns any angle at random between the arrows 
and records it in the graph” 

16 

SA6 “The computer assigns a random value from the gap between 
the arrows for the basketball player to throw the ball” 

17 

SA7 “the closer together the arrows, the more is that chance to 
score” 

18 

Table 1: Examples of situated abstractions  

The situated abstraction, SA1, reflects an awareness that the arrows have a causal 
affect on the variation in throws by the animated basketball player. SA2 similarly 
recognises a causal effect on the graph. Both these situated abstractions seem to 
operate at the mechanism level in the Grotzer and Perkins taxonomy. There appears 
at this stage to be little appreciation of further underlying levels of causal complexity 
though these begin to emerge later. Situated abstractions, SA3 and SA4, show an 
increased focus on mechanism as Emma and Ethan strive to make sense of how the 
arrows affect the player’s actions and the appearance of the graphs. 
Situated abstraction, SA5, portrays the relationship not as purely deterministic but as 
including a random element. This introduction of uncertainty seems to represent a 
move from the mechanism level to probabilistic causality in the terminology of 
Grotzer and Perkins. Emma and Ethan do not have a sophisticated understanding of 
probability and so they do not progress deeply into this level but they do seek out, as 
articulated in both SA5 and SA6, explanations that accept a probabilistic language as 
a means of coping with a possible multitude of unknown factors. Of course, this 
move may have been all the easier to make because randomness is something they 
perhaps regularly experience on computers through, for example, playing computer 
games.In SA7, Emma and Ethan recognise, even with their ongoing probabilistic 
language, combinations of agents, as predicted in the interaction pattern level in the 
Grotzer and Perkins taxonomy. Emma and Ethan envisage a transference of agency 
from the computer to the arrows and then to the Basketball player. We note that we 
have previously reported a similar transference of agency from the student itself to 
the arrows (Prodromou, 2008; Prodromou & Pratt, 2006). 
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CONCLUSION 
The facility to transfer agency seems to be a crucial move in making connections 
between the causal and the stochastic (from our perspective on the student’s 
psychological state) and in harnessing the deterministic (from the perspective of 
designing for the student’s abstraction). Indeed, by providing handles, arrows and a 
basketball player, together with feedback on “their actions” (and here we 
intentionally give these things agency), we set up the possibility that distribution 
might be seen as generated by the agents. Technological tools, therefore, may have 
been especially significant in supporting the construction of stochastic meanings out 
of causality and that in this sense they may provide a route towards operationalising 
the stochastic in the absence of formal operations. 
We believe that such a view of distribution is consistent with the expert position in 
which a theoretical distribution is sometimes viewed as a generative model, for 
example sending out a signal determined by the average parameter and noise 
determined by the spread parameter. Such a position accepts that the deterministic 
view of distribution is useful within limitations. Simulations such as basketball might 
provide opportunities for students to begin to appreciate that expert position. 
Even though we have referred regularly to agents, the reader may have noticed that 
nothing has actually been said about the final level in the Grotzer and Perkins 
taxonomy, that of agency in which causality is distributed across many agents. In 
fact, we intend to report elsewhere on students’ attempts to make connections from 
the distribution of data to the theoretical distribution, a direction which demanded an 
emergent perspective from the students. 

When students view variation as an accomplishment of a combination of agents, they 
think about distribution in terms of a relational model. Their expressions move along 
the underlying causality dimension towards considering that the simulated BasketBall 
is a context perturbed by a random mechanism. Students’ accounts began gradually to 
address dimensions of probabilistic causality, such as noisy systems, chancy systems. 
Students were able to view the activities in the BasketBall context as noisy processes 
dependent on a variety of intervening variables. Those accounts were themselves 
preceded by students’ understanding of mediating causality, where predominant 
causal agents, such as the arrows, and neglected agents of lower saliency in the 
context, such as the basketball player and the computer, mediate the effect of one 
agent to another in order to cause variation in the setting (Interaction pattern).   
NOTES 
1. ‘Re’ refers to the first named author (Dr. Theodosia Prodromou). 

2. The data were collected for the first author’s doctoral thesis.  
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GREEK STUDENTS’ ABILITY IN PROBABILITY PROBLEM SOLVING  
Sofia Anastasiadou 

University of Western Macedonia 
This study aims to contribute to the understanding of the approaches students develop 
and use in solving probabilistic tasks and to examine which approach is more correlated 
with students’ ability in probability problem solving. Participants were students from the 
12th grade. Implicative statistical analysis was performed to evaluate the relation 
between students’ approach and their ability to solve problems. Results provided 
support for students’ intention to use the algebraic approach and avoid Venn’s 
diagrams. Students who were able to use the coordinated approach by using multiple 
representations had better results in problem solving. In addition the results suggest the 
flexibility in multiple representations is a trivial predictor of probabilistic problem 
solving. 
Keywords: Probability, problem solving, 12th grade students, representations. 
 
INTRODUCTION 
There is an increasing recognition that statistical and probabilistic concepts are among 
the most important unifying ideas in mathematics. Statistical concepts form the single 
most important idea in all mathematics, in terms of understanding the subject as well as 
for using it for exploring other topics. The reasons to include probability and statistics 
teaching refer to the usefulness of statistics and probability for daily life, its instrumental 
role in other disciplines, the need for a basic stochastic knowledge in many professions 
and its role in developing a critical reasoning (Gal, 2002).  
The understanding of probabilistic and statistical concept does not appear to be easy, 
given the diversity of representations associated with this concept, and the difficulties 
presented in the processes of articulating the appropriate systems of representation 
involved in probabilistic and statistical problem solving (SPS) (Anastasiadou, 2007).  
Probability is difficult to teach for various reasons, including disparity between intuition 
and conceptual development even as regards apparently elementary concepts 
(Chadjipadelis and Gastaris, 1995). Since an education that only focuses on technical 
skills is unlikely to help teachers overcome their erroneous beliefs, it is important to find 
new ways to teach probability to them, while at the same time bridging their content 
knowledge and their pedagogical content knowledge (Batanero et al, 2005). 
There is general consensus in the mathematics education community that teachers need a 
deep and meaningful understanding of any mathematical content they teach 
(Chadjipadelis, 2003). Biehler (1990) suggests that teachers require meta-knowledge 
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about probabilities and statistics, including a historical, philosophical, cultural and 
epistemological perspective on statistics and its relations to other domains of science. 
In primary and secondary school levels, probability and statistics is part of the 
mathematics curriculum and primary school teachers and mathematics teachers 
frequently lack specific preparation in statistics education (Anastasiadou and Gagatsis, 
2007; Chadjipadelis, 2003). According to Batanero  et al., (Batanero et al, 2005) 
probability is increasingly taking part in the school mathematics curriculum; yet most 
teachers have little experience with probability and share with their students a variety of 
probabilistic misconceptions. The understanding of probabilistic concepts has been a 
main concern of statistics education that is an important focus of interest for the 
International Statistical Institute and of the International Association for Statistical 
Education. 
In the field of statistics learning and instruction, representations play an important role 
as an aid for supporting reflection and as a means in communicating statistical ideas. 
Furthermore the NCTM’s Principles and Standards for School Mathematics (2000) 
document include a new process standard that addresses representations and stress the 
importance of the use of multiple representations in statistical learning. In addition, an 
important educational objective in statistics is for pupils to identify and use efficiently 
various forms of representation of the same mathematical concept and move flexibly 
from one system of representation of the concept to another.  
A representation is defined as any configuration of characters, images, concrete objects 
etc., that can symbolize or “represent” something else (Confrey & Smith, 1991, Goldin, 
1998). Representations have been classified into two interrelated classes: external and 
internal (Goldin, 1998). Internal representations refer to mental images corresponding to 
internal formulations that we construct of reality. External representations concern the 
external symbolic organizations representing externally a certain mathematical reality. 
In this study the term “representations” is interpreted as the “external” tools used for 
representing statistical ideas such as tables and graphs (Confrey & Smith, 1991). The 
need for a variety of semiotic representations in the teaching and learning of 
probabilities is usually explained through reference to the cost of processing, the limited 
representation affordances for each domain of symbolism and the ability to transfer 
knowledge from one representation to another (Duval, 1987). By a translation process, 
we mean the psychological processes involving the moving from one mode of 
representation to another (Janvier, 1987). Several researchers in the last two decades 
addressed the critical problem of translation between and within representations, and 
emphasized the importance of moving among multiple representations and connecting 
them (Gagatsis & Elia, 2004; Goldin, 1998; Yerushalmy, 1997). Different 
representations refering to the same concept complement each ither and all these 
together contribute to a glibal understanding of it (Gagatsis & Siakalli, 2004).  Duval 
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(2002) claimed that the conversion of a mathematical concept from one representation to 
another is a presupposition for successful problem solving. A person who cans easily 
transfer this knowledge from one structural system of the mind to another is more likely 
to be successful in problem solving by using a plurality of solution strategies and 
regulation processes of the system for handling cognitive difficulties.  Kaput (1987) 
suggest that the concept of representation involves the following five components: a 
representational entity, the entity that it represents, particular aspects of the 
representation entity, the particular aspects of the entity that it represents that form the 
representation and finally the correspondence between the two entities. According to the 
above definition, the representation is considered a mental symbol or concept, which 
represents a concrete material symbol. It takes the place of another element and obtains 
more capabilities tan the object itself. Many studies identified the difficulties that arise 
in the conversion from one mode of representation of a mathematical concept to another. 
They revealed students inconsistencies when dealing with relative tasks that differ in a 
certain feature, i.e. mode of representation. This incoherent behavior was addressed as 
one of the basic features of the phenomenon of compartmentalization, which may affect 
mathematics learning in a negative way (Gagatsis & Elia & Mousoulidis, 2006). 
According to Duval (Duval, 2002), the phenomenon of compartmentalization reveals a 
cognitive difficulty that arises from the need to accomplish flexible and competent 
conversion back and forth between different kinds of mathematical representations. 
In Greece, the introduction of Statistics in the mathematics textbook of primary schools 
took place at the end of nineties. The teaching of fundamental statistical concepts was 
assigned to primary school teachers who are responsible for teaching all the curriculum 
subjects in the primary level. (Anastasiadou, 2007).  The emphasis on statistics and 
probability in curricula varies, often according to knowledge and feelings of the teacher. 
Although that many researches have been done in relation to study of the of the 
representations role in mathematical understanding and learning, there only a few that 
explore students’ performance in using multiple representations of statistical and 
probability concepts with emphasis on the effects exerted on performance and on the 
relations among the various conversion abilities from one representation to another. 
The purpose in this study is to contribute to the statistics education research community 
understands of approach students build up and use in solving statistical tasks and to 
examine which approach is more associated with students’ ability in solving statistical 
concepts. A main question of this study referred to the approach primary school students 
use in order to solve simple probability tasks. It is important to know whether students 
are flexible in using algebraic, graphical and verbal representations in probabilistic 
problems. Most of the students used an algebraic approach in order to solve the simple 
probabilistic tasks. This study intends to shed light on the role of different modes of 
representation on the understanding of some basic probabilistic concepts. This study 
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investigated pre-service teachers’ performance, in two aspects of probabilistic 
understanding: the flexibility in multiple representations and the problem solving ability. 
METHOD 
Participants- Data analysis-Tasks 
The sample of the study involved 132 12th grade students from secondary schools in 
different regions of Thessaloniki (Western Thessalonki, Eastern Thessaloniki, Central 
Thessaloniki) in Greece. These regions were selected because of their diversity in size 
and population. In Greek secondary education only students of the 12th grade are taught 
basic concepts of probability theory. 
For the analysis of the collected data the similarity statistical method (Lerman, 1981) 
was conducted using a computer software called C.H.I.C. (Classification Hiérarchique, 
Implicative et Cohésitive) (Bodin, Coutourier & Gras, 2000). This method of analysis 
determines the similarity connections of the variables. In particular, the similarity 
analysis is a classification method which aims to identify in a set V of variables, thicker 
and thicker partitions of V, established in an ascending manner. These partitions, when 
fit together, are represented in a hierarchically constructed diagram (tree) using a 
similarity statistical criterion among the variables. The similarity is defined by the cross-
comparison between a group V of the variables and a group E of the individuals (or 
objects). This kind of analysis allows for the researcher to study and interpret in terms of 
typology and decreasing similarity, clusters of variables which are established at 
particular levels of the diagram and can be opposed to others, in the same levels. It 
should be noted that statistical similarities do not necessarily imply logical or cognitive 
similarities. The red horizontal lines represent significant relations of similarity.  
The test consisted of 12 tasks of two “equivalent” problems in difficulty from the 
mathematical point of view. In particular, the tasks concerned concepts of the 
probability theory such as probability, Venn’s diagrams, events and probability 
problems. 
Right and wrong or no answers were scored as 1 and 0, respectively. Students’ responses 
to the tasks comprise the variables of the study which were codified by an uppercase V 
(variable concerns Venn’s diagrams) or P (probability problem), ή R (concept definition, 
e.g.event), followed by the number indicating the exercise number. Following is the 
letter that signifies the type of initial representation (e.g. r=representation, t=table, 
g=graphic, v=verbal) and, lastly, comes the letter that signifies the type of final 
representation.  
For example the first and second tasks are the following ones: Task 1. Given two events 
A and B of a chance experiment and with the help of set theory we have the following 
event . Present with a Venn diagram this event (V1sg). Task 2. Given two events 
A and B of a chance experiment and with the help of set theory we have the following 

'Α ∩Β '
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event . Express the verbal representation of this event (V2sv).  ( ' ) ( ')Α ∩Β ∪ Α∩Β

 
RESULTS 
Descriptive results 
Table 1 presents the success rates of third, fifth and sixth grade indigenous students and 
immigrants in all types of conversions.  
 

Tasks Type of translation 

 

12th grade 

success rate  

of students 
(%) 

Tasks Type of translation 12th grade  

success rate 
of 

students (%) 

V1sg Symbolic - Graphic 52.8% P7va Verbal  - Algebraic 32.6% 

V2sv Symbolic  - Verbal 51.6% P8vg Verbal - Graphic 28.3% 

V3gs Graphic - Symbolic 34.5% P9vs Verbal - Symbolic 22.6% 

V4gv Graphic  - Verbal 30.7% P10vv Verbal - Verbal 27.5% 

V5vg Verbal - Graphic 46.2% R11vv Verbal - Verbal 23.1% 

V6vs Verbal  - Symbolic 48.6% R12vs Verbal  - Symbolic 22.9% 

Table 1: Success rates of indigenous students and immigrants in the tasks 

Similarity  diagram of students’ responses to the two tests  
The similarity diagram in this study concern the data 11th grade and allow for the 
arrangement of students’ responses ((V1sg), (V2sv), (V3gs), (V4gv), (V5vg), (V6vs), 
(P7va), (P8vg), (P9vs), (P10vv), (R11vv), (R12vs), to the tasks into groups according to 
their homogeneity. 
Two clusters (Cluster A and B) of variables are identified in the similarity diagram of 
11th grade students’ responses as shown in Figure 1. Cluster A involves three pairs of 
variables V1sg-V2sv, V3gs-V4gv, V5vg-V6vs in Cluster A and concerns events 
representations with the aid of Venn diagrams. Cluster B involves three pairs of 
variables R11vv- R12vs, P7va-P8vg, P9vs-P10vv and involves variables relating to 
probability problem solving. This grouping suggests that students dealt similarly with 
the conversions involving probability problems. 
The structure of the diagram reveals a cognitive difficulty that arises from the need to 
accomplish flexible and competent conversion back and forth between different kinds of 
probabilistic representations. Thus, this particular structure of the diagram indicates a 

WORKING GROUP 3

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 408



compartmentalization of the tasks of the tests. Students approached in a completely 
distinct way the tasks which involved the use of Venn’s diagrams and the probability 
problems. Therefore, possible instructive activities would focus on the identification of 
the two different groups. The strongest similarity (almost 1) occurs between variables 
(V3gs-V4gv) (Figure 1) that were the most difficult for the students of 12th grade (Table 
1). Furthermore the similarity (V1sg-V2sv, V3gs-V4gv) is also important (0.923). 
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Figure 1: Similarity Diagram 
 
CONCLUSIONS RESULTS  
Representations enable students to interpret situations and to comprehend the relations 
embedded in probabilistic problems. Thus, we consider representations to be extremely 
important with respect to cognitive processes in developing probabilistic concepts. The 
main contribution of the present study is the identification of secondary students’ 
abilities to handle various representations and to translate among representations related 
to the same probabilistic relationship. Our findings provide a strong case for the role of 
different modes of representation on 12th grade students’ performance to tasks on basic 
statistical concepts such as frequency. At the same time they enable a developmental 
interpretation of students’ difficulties in relation to representations of Venn diagrams. 
Lack of connections among different modes of representations in the similarity diagram 
indicates the difficulty in handling two or more representations in probabilistic tasks. 
This incompetence is the main feature of the phenomenon of compartmentalization in 
representations, which was detected in students if both grades. This inconsistent 
behavior can be seen as an indication of students’ conception that different 
representations of the same concept are completely distinct and autonomous 
mathematical objects and not just different ways of expressing the meaning of a 
particular notion. An alternative explanation for the difficulty in transferring knowledge 
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could be the emphasis on stating with representations and defining transfer as 
connecting those representations. Perhaps links that were more powerful and meaningful 
for the students would have led to a space of the utility of the statistical and probability 
construct (Ainley and Pratt, 2002). Transfer might then be achieved by recognizing new 
situations which are consistent with the same meaning. In addition the lack of transfer 
may be attributed to the students’ lack of preparation: time to discuss, interact and work 
on related tasks. 
Probability instruction needs to encourage pupils’ involvement in activities including 
translations between different modes of representation. Even more educators should 
focus on reasons that we use a specific representation or another of the same probability 
concept. As a result, students will be able to overcome the compartmentalization 
difficulties and develop their flexibility in understanding and using a concept within 
various contexts or modes of representation and in moving from one mode of 
representation to another. Moreover there is a strong need for teachers to understand 
what it is that students know about stochastic and offer them experiences of probability 
before theoretical perspectives are introduced. 
It seems that there is a need for further investigation into the subject with the inclusion 
of a more extended qualitative and quantitative analysis. In the future, it is interesting to 
compare the strategies and modes of representations students used in order to solve the 
problems. Besides, longitudinal performance investigation in the multiple representation 
flexibility tasks for secondary students should be carried out.    
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