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This paper presents a case study of two students aged 14-15, as they attempt to make 
sense of distribution, adopting a range of causal meanings for the variation observed 
in the animated computer display and in the graphs generated by the simulation. The 
students’ activity is analysed through dimensions of complex causality. The results 
indicate support for our conjecture that carefully designed computer simulations can 
offer new ways for harnessing causality to facilitate students’ meaning-making for 
variation in distributions of data. In order to bridge the deterministic and the 
stochastic, the students transfer agency to specially designed active representations 
of distributional parameters, such as average and speed. 
Keywords: causality, agency, stochastic thinking, variation, randomness, probability
  
VARIATION AND CAUSALITY  
This research study builds on ideas which emerged from two research studies: 1) the 
seminal work of Piaget (1975, translated from original in 1951) and 2) Pratt’s work 
(1998; 2000) as it attempts to clarify how students let go of determinism whilst at the 
same time re-apply such ideas in new ways to account for variation (Prodromou, 
2008; Prodromou & Pratt, 2008).  
Piaget and Inhelder (1951) reported how the organism fails in the first place to apply 
operational thinking to the task of constructing meanings for random mixtures, which 
were therefore unfathomable. Only much later, according to Piaget, the organism 
succeeds in inventing probability as a means of operationalising the stochastic. In 
contrast, students soon gain mastery over the deterministic, appreciating cause and 
effect at least in a basic manner, apparently lending itself more easily to operational 
thinking. Instead of interpreting Piaget’s work as presenting an impregnable divide 
between the stochastic and the deterministic, at least until a late stage of 
development, we began to wonder whether the divide was a manifestation of 
conventional technologies and whether digital technology might provide a means by 
which the deterministic might be harnessed to support new ways of thinking about 
the stochastic. 
In Pratt’s work (for example, 2000, 2002), students aged 11 years explored computer-
based mini-simulations of everyday random generators, such as coins, spinners and 
dice. These simulations provided functionality beyond that which would be 
experienced in everyday life. For example, the students were able to change the 
workings of the simulation and so explore their ways of thinking about randomness. 
Gradually, the students articulated the heuristic that “the more times you throw the 
dice, the more even is its pie chart”. We detect in this statement a sense that the 
number of throws determined the appearance of the pie chart. Similar causal 
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statements were made about other aspects of the system, such as the effect of 
changing the workings of the simulation. 
Pratt referred to these causal heuristics as situated abstractions (Noss and Hoyles, 
1996), internal meanings for making sense of phenomena that capture the abstracted 
nature of the meaning, expressed in language tied to the situation. Pratt and Noss 
(2002) have further elaborated on the nature of situated abstractions as part of a 
model for the micro-evolution of mathematical knowledge. 
We believe Pratt has made a prima facie case that, in certain conditions, possibly 
deeply connected to the potential of technologically-based environments, students 
can construct stochastic meanings out of causality. In this study, we examine this 
possibility further by building a digital simulation to provide a window on students’ 
thinking-in-change (Noss & Hoyles, 1996) about average and spread as parameters 
within a distribution. 
First though, we must be more specific about what we mean by causality. In fact, 
causality can be seen at a variety of levels (Grotzer and Perkins, 2000; Perkins and 
Grotzer, 2000). Grotzer and Perkins have proposed a taxonomy or a classification 
scheme that attempts to organise increasing complexity of causal explanation. The 
taxonomy comprises causal explanations organised in four dimensions along which 
causal complexity is characterized: 
Mechanism includes the most superficial causal explanations, appealing to the most 
general of phenomena, or to token agents, perhaps “luck”, “destiny” or “god’s will” 
in the case of stochastic. Within this dimension we begin also to see inferences of 
underlying mechanisms.   
Interaction pattern begins with simple cause and effect explanations but extends to 
complex relational causality, involving the co-existence of two or more 
interdependent factors, possibly with feedback mechanisms. For example, agent A 
affects agent B but feedback from agent B then affects agent A.  
Probabilistic Causality relates to the use of uncertainty in modelling causal 
relationships. Often apparently deterministic systems hide uncertainty in a chaotic 
complexity. Thus, does the cup which rests on the table express the equilibrium of 
underlying static forces? Or should we seek explanation by reference to the chaotic 
dynamic motion of the sub-atomic particles that constitute the table and the cup? 
Conversely, we choose to explain phenomena in terms of probability to avoid 
reference to deep layers of underlying causality. Thus, we might choose to model the 
outcome from the throw of a dice in terms of probability, rather than by reference to 
multiple and interacting forces, such as the strength of the throw, the weight of the 
dice and the friction at the surface. 
Agency describes those explanations that recognise that causality is distributed across 
many elements. Such explanations might use ideas of emergence. For example, we 
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might consider a theoretical distribution as a pattern that emerges from the many 
pieces of data. 
We wished to explore what sorts of computer-based tools might provide us with a 
window on the use of these differing levels of causal complexity to make sense of 
distribution, as generated within a computer simulation. We set out to design a virtual 
environment that supported students in attributing agency to the emergent shape of 
the distribution while they were discriminating and moving smoothly between data as 
a series of random outcomes at the micro level, and the shape of distribution as an 
emergent phenomenon at the macro level.  
In that respect, we conjectured that the computer simulation environment could 
enable students: 

• at the micro level to use their understanding of causality whilst at the same time 
begin to recognise its limitations in explaining local variation, and   

• at the macro level to see parameters such as average and spread as causal agents, 
impacting on the shape of distribution, whilst nevertheless not completely 
defining the distribution.  

METHOD 
Approach and tasks. The approach of this research study falls into the design 
research methodology (Cobb et al., 2003) resulting in the BasketBall simulation as 
depicted below (Fig 1). The animation of the basketball player was controlled by  

 
Fig 1: The interface of the BasketBall simulation. 
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varying the handles on the sliders of the release angle, speed, height and distance or 
by entering the data directly. Once the play button has been pressed, the player 
continues to throw with the given parameters until the pause or stop button is pressed. 
The trace of the ball can be switched off. Feedback is made available from the 
Monitors and Graphs panes. When the arrows button has been switched on, two 
arrows appear from both sides of the handle on the slider (Fig 2), in which case the 
value of the parameter is chosen from a distribution of values, centred on the handle 
of the slider. The students are able to vary these arrows to increase or decrease the 
spread of the values of the parameter around that centre. The microworld also 
allowed the students to explore various types of graphs relating the values of the 
parameters to frequencies and frequencies of success. The students have access to a 
linegraph of the success rate as well as a histogram of the frequency of successful 
throws or throws in general against release angle (or release speed, or height, or 
distance). Initially, the students were challenged to throw successfully the ball into 
the basket. When the parameters were determined, the histograms of the frequency of 
successful throws against release angle (or release speed, or height, or distance) 
appeared as a single bar columns.  
Once the preliminary task was completed, some discussion about the realism of the 
simulation followed, which normally introduced notions such as skill-level,  the use 
of the ‘arrows’ buttons and the appearance of the histograms. When bias had been 
introduced to the throws, the graphs appeared as histograms. The subsequent task for 
the students was to model a real but not perfect basketball player (one who was not 
successful on every throw). 

 
Fig 2: The value of the parameter was selected from a distribution of values, centred 
on the position of a slider.     

Participants. The simulation was used by eight pairs of students in a UK secondary 
school. It was assumed that the simulation would be used only by students ranging in 
age from fourteen to fifteen years because a tight focus on the students’ intuitions of 
the distributions indicated that the age of 14-15 years old was mainly ripe for 
conceptual change in this domain. Another important advantage of working with 
students of this age was curriculum-based. In the UK National curriculum (DfES, 
2000) students of this age are expected to know how to graph data using histograms, 
dotplots and boxplots, and compare distributions and make inferences, using the 
shapes of distributions and measures of average and range. Students of this age, 
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therefore, encounter distribution as a collection of data, either given or generated 
through experiments and surveys.  
In this paper, we concentrate on the work carried out by two students, Ethan and 
Emma (aged 14-15 years), as they engaged with modelling a real but not perfect 
basketball player. These students had already experienced moving either or both of 
the arrows, generating values that corresponded to distributions with different spread 
and bias. The first author was a participant observer during this process.  She 
frequently intervened in order to probe the reasons or intuitions that might lie behind 
participants’ actions.  
Data collection and analysis. The data collected included audio recording of the 
students’ voices, video recording of the screen output on the computer, and the first 
author’s[2] field notes. The analysis was one of progressive focussing (Robson, 
1993). At the first stage, the recordings were simply transcribed and screenshots were 
incorporated as necessary to make sense of the transcription. Subsequently, the first 
author turned the transcript into a plain account. At the third stage, an interpretative 
account was written by the first author and discussions about the validity of those 
interpretations with the second author followed, making therefore an account of the 
data before accounting for the activity (Mason, 1994). 
FINDINGS   
The case of Ethan and Emma provides an illustration of students’ typical causal 
explanations for the observed variation. The two hour session with Ethan and Emma 
demonstrates how the two students mobilized combinations of different tools to 
create explanations of variation.  
Having already found how to make a successful basket, in the following extract, 
Ethan and Emma were first introduced to the arrows and they had spent a little time 
looking at the effect on the animation:  

1 Re[1]: What do you think these arrows do? 
2 Et: …Do they change the angle and the height? 
3 Em: It’s just changed the angle, so we will get better results, so we can see. 
4 Re: What do you mean by ‘better’? 
5 Em: Because each result is different on the graph (Fig 3). 
6 Re: Why are they better? 
7 Em: Because they much more like realistic.  

By looking at the animation, Ethan had recognized that the arrows were causing 
changes in the throws made by the Basketball player (line 2). Emma refers to the 
changes in the graph (line 5), and seems to acknowledge that it is more realistic for 
the basketball player to throw at varying angles (line 7).  
A few minutes later however, Emma deliberated upon the role of the arrows in 
determining the choice of angle: 
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Fig 3: Emma seems to be referring not only to the different values of the angles which 
were chosen by the basketball player, but also appears to refer to the graph of success 
rate.    

8 Re: What do you think the arrows are for? 
9 Em: Is it… where the two arrows are, every time he throws is going to be 

the distance between that arrow (the arrow to the left of the vertical 
bar on the slider) and that arrow (the arrow to the right of the vertical 
bar on the slider)… 

10 Re: Do you mean the angle? 
11 Em: Yeah … the angle … You can only throw from here to there (pointing 

to the two arrows). You cannot go any place outside the two arrows.  
Emma seemed to be conjecturing that the angle was chosen from between the two 
arrows (lines 9 and 11), though she still had offered no sense for the mechanism by 
which the choice was made. 
For several minutes, the students experimented with the arrows, at which point their 
attention was re-focused on the variation which could be perceived through the 
histograms: 

12 Re: Tell me what do you think your graphs will look like. Do you expect 
these graphs to have one bar, two bars, three bars, or four bars? 

13 Em: …about three bars.  
14 Re: So, it will not be only one bar? Why? 
15 Em: Because he is throwing at different angles… so… he is not throwing 

at the same angle all the times, so there would be more than one bar. 
Emma asserted that variation in the throwing angles would result in additional bars in 
the histogram (line 15), and soon went further to predict that “the wider apart the 
arrows around the handle, the more bars there would be in the histogram”. Although, 
as can be seem, Emma tended to lead the discussion, Ethan was also comfortable at 
this point that variation could be perceived in the player’s throws and through the 
frequency histograms. 
Their thinking about the relationship between the gap in the arrows and the number 
of bars was tested further a few minutes later when the bars were moved very far 
apart: 

16 Re: Would there be more or less bars on the histograms? 
17 Em: Because he can throw any distance between those two arrows… We 

haven’t given him a fixed angle to throw it at, so they would not be 
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the same every time. It will be different… because the arrows give 
him more of a choice… because the computer like assigns any angle 
at random between those two arrows… it records it in the graph. 

For the first time, Emma referred to a random mechanism operating to make the 
choice from the gap between the arrows (line 16). She referred also to the interactions 
between a group of agents (arrows, basketball player, computer), which somehow 
cooperated to accomplish variation in the distribution. 
So far, the discussion had centred on the connection between the gap in the arrows 
and the variation as seen in the animation or in the graphs. Later, the discussion 
switched to whether the score was successfully made or not. In the following extract, 
the handle is positioned on an angle which would successfully throw the ball into the 
basket and Emma and Ethan know this to be the case. They considered the effect of 
the arrows on success: 

18 Em: Yeah… because when we put the arrows closer together, so it doesn’t 
have enough choice, like… He can only pick between those two 
arrows for the release angle… so, he gets a better chance of… to 
score. 

19 Et: As he’s got the release angle inside… that space so… so got to choose 
that release angle that is scored… 

20 Re: Which is inside …?  
21 Em: 63.3… and 76.3… he can only choose…  a release angle between 

those two numbers.  
Emma and Ethan both seemed to grasp that a small gap reduced the possibilities for 
failing to throw a successful basket (lines 17 and 18).  
DISCUSSION   
As an expert observing Emma and Ethan’s activity, it is not difficult to recognise the 
connection between the arrows and the statistical notion of spread. Such an expert 
might see the distance between the arrows as a measure of spread. In fact, the data 
that is actually generated might portray spreads greater or less than that predicted by 
the gap between the arrows. In this sense the gap between the arrows operationalises 
the spread parameter of an underlying theoretical distribution, whereas what the 
students observe is a set of data generated randomly from that distribution. 
The above protocol illustrates, through the case of Emma and Ethan, the use of causal 
explanations, at differing levels of causal complexity, to make sense of variation as it 
is depicted in the simulated animation of a basketball player and in graphical 
feedback. These explanations do not take the form of formal robust theory-oriented 
statements but rather they emerge more as tentative, situated, conjectural utterances, 
though as the exploration continues the utterances carry more authority and assurance 
and begin to sound more like conclusions than conjectures. 
In Table 1, we list seven observed situated abstractions, based on the body of 
evidence, which the above protocol typifies: 
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Ref Characterisation of situated abstraction Line
SA1 “the arrows affect the angle that the basketball player throws 

the ball” 
2 

SA2 “the arrows affect the graph” 5 
SA3 “angles are chosen from between the arrows” 15 
SA4 “the wider apart the arrows around the handle, the more bars 

there would be in the histogram” 
15 

SA5 “the computer assigns any angle at random between the arrows 
and records it in the graph” 

16 

SA6 “The computer assigns a random value from the gap between 
the arrows for the basketball player to throw the ball” 

17 

SA7 “the closer together the arrows, the more is that chance to 
score” 

18 

Table 1: Examples of situated abstractions  

The situated abstraction, SA1, reflects an awareness that the arrows have a causal 
affect on the variation in throws by the animated basketball player. SA2 similarly 
recognises a causal effect on the graph. Both these situated abstractions seem to 
operate at the mechanism level in the Grotzer and Perkins taxonomy. There appears 
at this stage to be little appreciation of further underlying levels of causal complexity 
though these begin to emerge later. Situated abstractions, SA3 and SA4, show an 
increased focus on mechanism as Emma and Ethan strive to make sense of how the 
arrows affect the player’s actions and the appearance of the graphs. 
Situated abstraction, SA5, portrays the relationship not as purely deterministic but as 
including a random element. This introduction of uncertainty seems to represent a 
move from the mechanism level to probabilistic causality in the terminology of 
Grotzer and Perkins. Emma and Ethan do not have a sophisticated understanding of 
probability and so they do not progress deeply into this level but they do seek out, as 
articulated in both SA5 and SA6, explanations that accept a probabilistic language as 
a means of coping with a possible multitude of unknown factors. Of course, this 
move may have been all the easier to make because randomness is something they 
perhaps regularly experience on computers through, for example, playing computer 
games.In SA7, Emma and Ethan recognise, even with their ongoing probabilistic 
language, combinations of agents, as predicted in the interaction pattern level in the 
Grotzer and Perkins taxonomy. Emma and Ethan envisage a transference of agency 
from the computer to the arrows and then to the Basketball player. We note that we 
have previously reported a similar transference of agency from the student itself to 
the arrows (Prodromou, 2008; Prodromou & Pratt, 2006). 
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CONCLUSION 
The facility to transfer agency seems to be a crucial move in making connections 
between the causal and the stochastic (from our perspective on the student’s 
psychological state) and in harnessing the deterministic (from the perspective of 
designing for the student’s abstraction). Indeed, by providing handles, arrows and a 
basketball player, together with feedback on “their actions” (and here we 
intentionally give these things agency), we set up the possibility that distribution 
might be seen as generated by the agents. Technological tools, therefore, may have 
been especially significant in supporting the construction of stochastic meanings out 
of causality and that in this sense they may provide a route towards operationalising 
the stochastic in the absence of formal operations. 
We believe that such a view of distribution is consistent with the expert position in 
which a theoretical distribution is sometimes viewed as a generative model, for 
example sending out a signal determined by the average parameter and noise 
determined by the spread parameter. Such a position accepts that the deterministic 
view of distribution is useful within limitations. Simulations such as basketball might 
provide opportunities for students to begin to appreciate that expert position. 
Even though we have referred regularly to agents, the reader may have noticed that 
nothing has actually been said about the final level in the Grotzer and Perkins 
taxonomy, that of agency in which causality is distributed across many agents. In 
fact, we intend to report elsewhere on students’ attempts to make connections from 
the distribution of data to the theoretical distribution, a direction which demanded an 
emergent perspective from the students. 

When students view variation as an accomplishment of a combination of agents, they 
think about distribution in terms of a relational model. Their expressions move along 
the underlying causality dimension towards considering that the simulated BasketBall 
is a context perturbed by a random mechanism. Students’ accounts began gradually to 
address dimensions of probabilistic causality, such as noisy systems, chancy systems. 
Students were able to view the activities in the BasketBall context as noisy processes 
dependent on a variety of intervening variables. Those accounts were themselves 
preceded by students’ understanding of mediating causality, where predominant 
causal agents, such as the arrows, and neglected agents of lower saliency in the 
context, such as the basketball player and the computer, mediate the effect of one 
agent to another in order to cause variation in the setting (Interaction pattern).   
NOTES 
1. ‘Re’ refers to the first named author (Dr. Theodosia Prodromou). 

2. The data were collected for the first author’s doctoral thesis.  
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