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Aim of this paper is to discuss the role of experiments in mathematics for the teaching 
and learning of proof. I summarize some research findings from basic research 
studies and from teaching experiments. The examples comes from teaching 
experiments at all school levels on space and geometry by means of classical 
resources although some of the findings might be expanded to other subject areas 
and to ICT. They allow to frame the topic within the international literature on 
conjecture production and proof construction: they support the advantages of 
experimental approaches to the teaching and learning of proof and, at the same time, 
point at some critical points to be controlled in order to design appropriate teaching 
interventions. 

INTRODUCTION 
A growing interest is shown, at the international level, for the development of 
approaches to mathematics where the active participation of students is encouraged 
within a laboratory setting, with hands-on activities. The emphasis on experiments, 
manipulation and perception, measurement and examples is shared by the approaches 
developed  within ICT environments (both DGE and CAS) and within classical 
technologies (straightedge, compass and ancient instruments). This experimental 
approach, where exploration plays a major role, seems appealing for students, who 
quite often find the evidence offered by a particular experiment much more 
convincing than a rigorous proof (Jahnke, 2007) and are bored by the request to 
produce also mathematical arguments.  Hence, the appeal of experimental approach 
might be suspected of obstructing the development of mathematical styles of 
reasoning: some believe that hands-on activities are useful in either science centres or 
mathematical festivals, where popularization of mathematics is in the foreground, 
whilst are not useful and may be even risky in the mathematics classrooms, where the 
construction of mathematical meanings is at stake. In other words, many mathematics 
teachers are afraid that the need of mathematical proofs and of deductive arguments is 
put in a difficult position if experiments are given too much space in the mathematics 
classroom, at least in secondary schools. In the following, after a short review of 
literature, I present some effective experiments at all school levels where experiments 
and exploration have been combined with theoretical aims like conjecture production 
and proof construction. 

                                           
1 This study is jointly funded by the MIUR and the Università di Modena e Reggio Emilia (PRIN 2007B2M4EK on 
"Instruments and representations in the teaching and learning of mathematics: theory and practice") 
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SOME STUDIES CONCERNING PROVING IN THE MATHEMATICS 
CLASSROOM. 
The literature on proof and proving is large and encompass different aspects. In the 
recent book on "Theorems in School" edited by P. Boero (2007), the following 
aspects are highlighted: the historical and epistemological dimension; curricular 
choices, historical traditions and learning of proof (including two national case 
studies); the cognitive dimension of the relationships between argumentation and 
proof; the didactical dimension including both teacher education and classroom 
practices. In the chapter authored by Bartolini Bussi et al. (2007), a mathematical 
theorem – for didactical purposes - is conceived as a system of statement, proof and 
theory. All these three components are important: the theory as a system of shared 
principles (sometimes called postulates or axioms and definitions); the statement as 
the result of a conjecturing process, where exploration through experimental activity 
is in the foreground, the proof as a sophisticated argumentation that is, on the one 
hand, connected with the conjecturing process, and, on the other hand,  consistent 
with the reasoning styles of mathematicians (e. g. deduction from the accepted 
principles). This approach is consistent with Jahnke (2007), who speaks about ‘local 
theories’, i. e. small networks of theorems based on empirical evidence and claims: 
“There is no easy definition of the very term ‘‘proof’’ since this concept is dependent 
of the concept of a theory. If one speaks about proof one has to speak about theories, 
and most teachers are reluctant to speak with seventh graders about what a theory is”. 
And Arzarello (2007) adds: "A statement B can be a theorem only relative to some 
theory; it is senseless to say that it is a theorem in itself: even a proposition like 
"2+2=4" is a theorem in a theory A (e. g. some fragments of arithmetic)". 
In the above sense, it is possible to speak about theorems also within primary school, 
provided that the theories are “germ theories”, drawing on empirical evidence, with 
the expansive potential to capture more and more principles. Germ theories, with 
principles constructed on empirical evidence, are crucial up to 8th  grade; later, 
accordingly to curriculum, the reference to more and more structured mathematical 
theories is possible. So, for instance, in the teaching experiments below, the reference 
theory from grade 11th on is expected to be elementary geometry (either 2D or  3D) 
with some additional parts concerning either isometries or conic sections. 
The links between argumentation and proof from a cognitive perspective have been 
carefully analysed by Pedemonte (2007) who devoted her doctoral thesis to the 
development of the idea of cognitive unity, meant as a kind of continuity between the 
production of a conjecture and the construction of the proof. Experimental research 
shows that proof is more ‘accessible’ to students if an argumentation activity is 
developed for the production of a conjecture: in fact this argumentation can be used 
by the student in the construction of proof by organising in a logical chain some of 
the previously produced arguments. These studies may have important consequences 
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on the teaching and learning of proof: to explain why rote learning of ready made 
proofs is not successful for most students; to select suitable problems, which might 
foster conjecture production before proof construction; to understand why in some 
cases proving remains difficult in spite of the previous conjecturing process. 
In the following sections I shall quote very quickly some experiments where 
conjecturing and proving were promoted, at different school levels and with different 
organization. 

EXAMPLES FROM LONG TERM TEACHING EXPERIMENTS 
In the attached table, some paradigmatic examples are quoted from long term 
teaching experiments developed as coordinated studies by different research teams. 
All the tasks concern a conjecture production before proving construction. They 
appear, however, different from each other. 
Three tasks (tasks 1,2,3) concern individual activity, to be solved in paper and pencil 
setting; three tasks (tasks 4,5,6) concern small group activity, to be solved in writing 
after the exploration of a material object. The exploration is free in the case of 
sunshadows (task 4), whilst it is guided by sheets or by the teacher himself in the two 
cases from secondary school (tasks 5 and 6). The tasks 1 and 3 are construction 
problems: they require to produce a drawing and to justify the validity of the used 
method. The expressions "Explain ....." mean, in a language accessible for young 
learners, to justify the drawing process with reference to a shared (germ) theory. The 
task 2, on the contrary, seems to be given in a discursive way. Yet the explanation 
requirement with reference to a shared (germ) theory is implicit, as a part of the tacit 
rules shared within the classroom involved in these experiments. In the last three 
tasks proof is not explicitly required. Actually the focus is on the production of the 
conjecture. This is an intentional choice, because the problems are quite demanding. 
The tasks 4 and 6 concerns 3D geometry, that is usually not well mastered by 
secondary school students. The task 5 is difficult: the conjecture concerns a rotation 
around the lower point (O) in the Fig. 3. Actually to recognize it, it is necessary to 
"see" two line segments (OP and OP') that do not exist, to realize that they are always 
equal and, more generally, to be able to "see" invariants during the motion. The 
teachers, for the tasks 4, 5 and 6 had designed, according to the shared theoretical 
framework, an intermediate step where to collect and discuss the conjectures, before 
entering the proving process.  In the task 4, students are explicitly requested to 
produce a general statement. This expression was used in those classrooms to foster 
the production of statements with universal quantifiers (all, always, and so on) and 
hopefully in conditional form (if ... then) to pave the way towards the construction of 
a proof with specified hypothesis and thesis. 
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Gr. GERM THEORIES 
(REF) 

CONJECTURES - PROBLEMS 
THE TASK - TO BE SOLVED IN WRITING 

SETTING 
MATERIAL 

1.  
Gr.2 - 

8 

The invariance of 
alignment in 
perspective drawing 
(Bartolini Bussi, 
1996) 

The centre of a table drawn in central perspective. 
Draw the small ball in the centre of the table. You 
can use instruments. Explain your reasoning. 

Individual 
task 
(Fig. 1) 

2.  
Gr.2 - 

8 

Motions of geared 
wheels (Bartolini 
Bussi et al., 1999) 

The motion of trains of toothed wheels.  
What about three wheels geared with each other? 

Individual 
task 
No material 

3.  
Gr.4 - 

8 

The equality of the 
distance of the 
centres of two 
tangent circles to the 
sum of radii 
(Bartolini Bussi et 
al., 2007) 

The drawing of a circle tangent to two given 
circles. 
Draw a circle with a radius of 4 cm tangent to the 
given circles (radii 3 and 2). Explain carefully the 
method. Explain carefully why it works. 

Individual 
task (Fig. 2) 

4.  
Gr.6 - 

8 

Mathematical model 
of sunshadows.  
Basic properties of 
lines, planes, 
parallelism and 
perpendicularity (3D 
geometry) (Boero et 
al., 2007) 

The parallelism of sunshadows of sticks. 
In recent years we observed that the shadowsof 
two vertical sticks on the horizontal ground are 
always parallel. What can be said of the 
parallelism of shadows in the case of a vertical 
stick and of an oblique stick? Can shadows be 
parallel? At times? When? Always? Never? 
Formulate your conjecture as a general statement. 

Small group  
work.  
Pens, pencils, 
notebooks, 
rulers, to 
reify lines 
and planes 

5.  
Gr.11 

Elementary 
geometry (3D 
geometry). 
Definitions and 
properties of 
isometries. 
(Bartolini Bussi & 
Pergola, 1996) 

The isometry (rotation) produced, as a 
correspondence, by a pantograph. After a guided 
exploration of the pantograph. 
If P and P' are two writing points, draw two 
corresponding figures. Which are the common 
properties of the two figure? Can they be 
superimposed? Does it exist a simple motion 
which superimposes them? Describe it. 

Small group 
work. 
A pantograph 
with graphite 
leads in P and 
P' 
(Fig. 3). 

6.  
Gr.12 

Elementary 
geometry (3D 
geometry).  
Metric definition of 
conics. Equations of 
conics 
(Bartolini Bussi, 
2005) 
 

The conic obtained by cutting a cone in a suitable 
way.The task is given orally by the teacher. 
You have to obtain an important property of 
parabola [...]. As you see, [the parabola] is in a 
3D space, on the surface of the cone [...]. you 
have to discover the relationship between the 
green line segment [AE in the Fig. 4] and this line 
segment [EB  in the Fig. 4]. 

Small group 
work. 
A 3D model 
of a cone 
with a normal 
cutting plane  
(Fig. 4). 

Table 1. Some paradigmatic examples. 
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Figure 1. The small ball and the table Figure 2. The two circles and the tangent 
circle 

 
 

Figure 3. The pantograph Figure 4. The parabola 

 
At all ages, the dynamic exploration of a suitable problem situation has a crucial role 
both at the stage of conjecture production and during the proof construction. In 
particular, as to the conjecture production "the conditionality of the statement can be 
the product of a dynamic exploration of the problem situation during which the 
identification of a special regularity leads to a temporal section of the exploration 
process, which will be subsequently detached from it and then "crystal" from a logic 
point of view ('if .... then')"; and as to the proof construction, "for a statement 
expressing a sufficient condition ('if ... then'), proof can be the product of the dynamic 
exploration of the particular situation identified by the hypothesis" (Boero et al, 2007, 
p. 249 ff.). This phenomenon has been observed by Boero et al. (2007) for the task 4 
about sunshadows, by Bartolini Bussi & Pergola for the task 5 about the pantograph 
(Bartolini Bussi & Pergola, 1996) and in other ongoing experiments on either 
transformation or curve drawing devices. As concrete manipulation of materials is not 
spontaneous and guaranteed with elder students, who had already spent years to learn 
(or better to be taught) that mathematics is just a mental activity, the teacher has to 
foster it in a very coercive way: concrete exploration in demanding tasks is quite 
often the only effective way to promote dynamic exploration. Younger pupils, on the 
contrary, were accustomed to explore and to evoke exploration when no concrete 
object was available. 
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THE PROCESSES 
The six situations above, although in different modes, have been designed to foster 
cognitive unity between the conjecturing and the proving phases. I shall not try to 
summarize here the observed processes concerning them all: they are complex, long 
standing, different (also for students' age) and all available in the international 
literature. Rather I shall illustrate another simple case of conjecture production and 
proof construction at secondary school level (from grade 10 on, according on the 
curriculum), concerning a curve drawing device. I shall narrate the stories of dynamic 
exploration that show up when secondary school students are given this curve 
drawing device to foster reasoning, conjecturing and proving (another example is 
discussed by Bartolini Bussi, in press).  
I shall collect some evidences from the field notes of the exploration sessions in both 
school classrooms and the Laboratory of mathematical Machines 
(www.mmlab.unimore.it), to highlight the patterns that emerge. The two parts of the 
fig. 5 show (on the left) a drawing from the XVII century treatise by van Schooten 
(1657, p. 339) and (on the right) a photo of the brass copy reconstructed on a wood 
platform (40 cm x 40 cm) by the team of the Laboratory of Mathematical Machines at 
the Department of Mathematics of Modena, to be used with secondary and university 
students. The students are supposed to know some early properties of conics, e.g. the 
string and pencil drawing of an ellipse (together with the ellipse metric definition).                   

 

 

 

 

 

 

Fig. 5a and 5b: Van Schooten’s Ellipsograph 

There are several ways to explore the artefact (in order to produce a conjecture and to 
construct a proof of the conjecture) that span from strongly to weakly guided ones. In 
general, strongly guided exploration is suitable to the short term sessions (at most 2 
hours, including the introduction and the conclusion of the hands on activity, 
Maschietto & Martignone, in press) which take place when a classroom come to the 
Laboratory, whilst weakly guided exploration is suitable to classroom activity, when 
the teacher plans to spend more time on the same topic. Actually with a weak guide, 
the time may expand, not matching the time constraints of a short visit to the 
Laboratory. 
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A) Strongly guided exploration. Students are given a worksheet where a layout of the 
artefact is drawn with coding letters (examples: http://www.mmlab.unimore.it/on-
line/Home/VisitealLaboratorio/Materiale/articolo10005163.html) and are suggested 
to identify the fixed points, the trajectories of the moving ponts (e.g. G and F), the 
length of the bars, and so on. After this exploration, they are asked to conjecture the 
name (if any) of the trajectory of the point E (intersection of GH and FI in the fig. 5a) 
tracing it with a graphite lead on the wooden platform. The drawing is soon 
recognized as an arch of an ellipse and the conjecture is produced. Then the process 
of proof construction is to be started. We shall comment it later. 
B) Weakly guided exploration: students are given the artefact and the information 
that it may draw curves; they are given the burden to produce conjectures and to 
prove them. A graphite lead to trace the trajectory of points is available with no 
special emphasis on this experiment: they can decide to use it or not. The artefact is 
without coding letters (Fig. 5b) and actually the need of coding may be one of the 
outcomes of the exploration to understand each other (Bartolini Bussi & pergola, 
1996). When the students explore for some minutes the motion without drawing the 
arch, they may recognize a well known (although hidden) figure. HIGF (fig. 5a) is an 
isosceles trapezium with diagonals (HG and FI) and sides (FG and HI) given by brass 
bars, whilst the bases FH and GI have a variable length and are not reified by bars. 
The figure is not trivial to be noticed, as the two bases are not visible. Usually the 
students rotate G around H and observe the figure. Sometimes they seem fascinated 
by this rotation. They stay silent for minutes. They try to look at the artefact from 
different perspectives, also standing and miving around the table. They assume 
strange postures, twist their necks to follow the motion, point at the bars and follow 
the motion with the finger in the air, move the bars  forward and backward to look for 
invariants and test them stopping the continuos process. In the small group work, 
sometime a conflict arises, when the speed of the motion controlled by the actor does 
not match the exploration planned by the observer. At one point they "see" the 
trapezium and notice that EG = EI and FE = FH. When a student has "seen" the 
trapezium, this figure is immediately shared with others. When the trajectory of E is 
eventually drawn they have at disposal what they need to link the conjecture with the 
metric property of ellipse.  
I have described two 'antipodal' exploration processes with a lot of mixed cases in 
between. The weakly guided one is enjoyed by experts. The strongly guided one suits 
novices' needs to avoid frustration: it aims at encouraging to handle the artefact and at 
scaffolding the process. In both cases the demanding part is not the conjecture 
production, especially when drawing by the graphite lead is encouraged. Actually, as 
soon as the user draws the curve, the conjecture springs up, because only a limited set 
of curves is known by students: it is neither a circle nor a parabola nor an hyperbola, 
hence it must be an ellipse. The demanding task in this case concerns proof 
construction. This situation is different from the one of the tasks 4 and 5 above, 
where also conjecturing is really demanding. 
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In the strongly guided exploration, the worksheet suggests some ways to explore the 
properties of the artefact. Yet, in order to notice the properties, measuring by rulers is 
suggested. Measuring requires to stop the motion and to transform the experience of 
continuous motion into the observation of a finite set of frames. The focus risks to be 
on measuring parts of still figures. 
In the weakly guided exploration, the focus shifts on the observation of dynamically 
changing shapes and their invariants. The students have to move and observe. Their 
process seems time wasting and not effective and has to be monitored by a walking 
teacher who moves from one group to another showing how to explore the artefact, 
with changing speeds and, maybe, no word. The initial 'weak' guide seems to require 
a stronger teacher's control. The students do not need (and usually do not wish) to 
measure bars by a ruler. As soon as they notice some invariants, they use their hands: 
they pretend to pick up the line segment EG between forefinger and thumb and to 
rotate it until it matches EI. They repeat the action on the pair FE and FH. Silent 
gestures seem to be  enough to convince them. Maybe words and deductive chains 
are missing. Writing and justifying (by symmetry, for instance) the equality: 

HE + EI = HE + EG = HG 
that represents the metric property of ellipse with foci H and I is the boring 
counterpart of a relationships discovered by making "infinitely many" experiments, 
during the continuous motion of G around H. 
In both cases of exploration, if the drawing is produced too early, the attention is 
focused on the final result of drawing rather than on the dynamical process of 
drawing. I shall consider this later. 
There is a difference between the strongly guided exploration, that foster the 
production of statements concerning pointwise construction of the trajectory and the 
weakly guided exploration, that foster the production of statements  concerning the 
global construction of the trajectory by a continuous motion. This difference is 
epistemological and mirrors the ancient pointwise construction of curves and the 
modern (as from the 17th century) construction of curves by a continuous motion of a 
machine. In the pointwise construction, there is a gap between the statements 
concerning a particular point E obtained when the artefact is in a given position and 
the generalization to a whichever point of the trajectory. This gap might obstruct the 
proof construction, requiring additional arguments. 
The situation is different, yet recalls the one analysed by Pedemonte (2007) and 
concerning the construction of proofs by mathematical induction. She analysed the 
sum of the interior angles of an n-sided convex polygon, but the reasoning might be 
applied to many cases of induction. The well known formula: (n - 2) times 180°, may 
be conjectured in at least two ways, that draws on experimental activity and that are 
called: result pattern generalization (the cases of n-sided convex polygons are 
analysed separately, adding the measures of the interior angles, for n=3, n=4, n=5 and 
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so on); process pattern generalization (from an (n-1)-sided convex polygon, for n=3, 
4, 5 and so on, a new n-sided convex polygon is obtained by the juxtaposition of a 
triangle, whose sum is 180°). 
The result pattern generalization does not help much to construct the proof by 
mathematical induction, because the argumentations used have no counterpart in the 
proof. On the contrary the process pattern generalisation paves the way towards the 
proof, showing how it is possible to shift from n-1 to n. Pedemonte (2007) says that 
in the second case there is a structural continuity between the conjecture production 
(by argumentation) and proof construction (by induction). Students may succeed in 
proving the conjecture also after a result pattern generalization, but they must 
reconstruct a suitable argumentation that links the conjecture to the proving process. 
The shift to the analytic frame suggested in the Laboratory worksheets is an 
intentional break of the structural continuity, because the analytic frame is supposed 
to be the familiar context where conics are studied in secondary schools. 

DISCUSSION 
Some conclusions may be drawn from the quoted examples and research outcomes. 
First, there are good reasons to believe that conjecturing through exploration before 
proving might be very useful. Yet, when conjecture production is too fast, it might 
offer no element to be used in the proving process. Hence it is useful to look for 
strategies that slow down the conjecture production and encourage effective 
exploration of the problem. The time spent in conjecture production is not wasted and 
may be recovered in the proof construction. Second, it is not possible to give general 
rules about which exploration is effective in the conjecture production. In the last 
example, I have contrasted strongly guided and weakly guided explorations, which 
are only two examples of a very rich set of possibilities. What to choose in a 
classroom situation? The teacher's decision has to be contextualized and depends on a 
lot of issues: the time constraints, the curriculum, the students' qualifications and so 
on. This last issue is related to teacher education. The teacher's knowledge in order to 
design and to manage in the mathematics classroom this kind of activities is complex 
and does not fit in the space of this paper. A systemic approach to teacher education 
is now in the foreground in the literature on didactics of mathematics. 
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