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In this paper, we discuss the idea of a gap between argumentation and proof, an idea 
we think to be prevailing in the educational institution. Our claim is that the only use 
of propositional calculus is insufficient to the analysis of the validation process in 
mathematics and could artificially reinforce that idea of a gap. This claim can be 
understood as a criticism of Toulmin’s and Duval’s model, a criticism we hope to be 
a constructive one. We are then brought to the following proposal: taking explicitly 
into account the logical quantification and the mathematical objects in the models 
could help to explain mathematical creativity.     

INTRODUCTION: THE PREGNANT IDEA OF A GAP  
The issue at stake in this paper is the relationship between argumentation and proof. 
It seems to us that the assumption of a gap prevails in the educational institution. This 
prevalence could have major effects on mathematic education:  

« Is it possible, yes or no, to shift from one to the other without too many efforts or 
misunderstandings?  

[…] 

If one answers No, one admits there is a gap between the cognitive processes of 
argumentation and the deductive reasoning at stake in a proof: the use of argumentation 
could not but maintain or even reinforce the obstacles and misunderstandings about what 
a proof is, because its discursive process acts against a valid reasoning process in 
ordinary language. » (Duval, 1992, p. 43, our translation) 

Willing to take into account this gap between argumentation and proof, which is 
theorised in Duval's works, part of the teachers have been induced to put forward 
specifically the formal aspect of the proof (through structuring attempts like "I know 
that", "Now", Therefore" for example) and to distinguish this aspect from the work on 
the content of statements. This phenomenon can be seen in Kouki's thesis (2008) 
through a survey carried out among six Tunisian teachers about learning and teaching 
of equations, inequalities and functions. Moreover, Kouki shows, through a more 
extended experimental study (involving 143 pupils and students in their transient 
period between secondary school and higher education) the consequences of these 
theoretical conceptions on the students' practices which tend to apply formal 
procedures as much as possible. In another context, Segal (2000) highlights the 
tendency of UK students to evaluate proof validity only from their formal aspect. 
There are a lot of examples of this phenomenon. We shall focus on two specific ones 
in order to point out the stakes of this issue.  
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Example 1 
This example is taken from Barrier (2008) in which an extract of Battie (2003) is 
analysed. In this paper, a group of three students in scientific upper sixth form are 
asked to evaluate the following statement )1),(()1),(( 22 =⇒=∀∀ baGCDbaGCDba . The 
group starts an argumentation built on the choice of some coprime natural numbers (3 
and 2, 2 and 5, 9 and 17 then 4 and 15) and on the evaluation of the GCD of their 
respective square. Here is an extract of their dialogue (translated from French). 

1. A :  Or 125 and 16. They are relatively prime. 

2.  I don't know. 

(Laughes) 

3.  You set 125 divided by 16 and you'll see… No, it is not the right way to do 
it. 16 by 16 is 4 2, 2 times 2/ 

4. A :  No, I think 16 and 125 are relatively prime. 

5.  Yeah, when we square the things/ 

6. A :  Yeah, but we don't know, it's not written in the text book, but we can't 
prove it in the general case / 

7.  Oh we make fun of it! 

8. A1 :  We can't use it then. Well, I think, I really don't know, the teacher may have 
told it. 

In (3), a student undertakes a prime factorization of 16. This method could be used 
for the emergence of a proof of the analysed statement. However, it seems to us that 
the students, influenced by their school culture regarding proof, disregard this 
possibility. They act as if the evaluation of a statement through an argumentation 
built on the manipulation of objects and the search for proof were two distinct and 
independent activities.  
Example 2 
Alcock & Weber (2005) analyse how thirteen student volunteers taken from first-
term, first year introductory real analysis courses check the validity of the following 
proof (they were asked to determine whether or not the proof was a valid one): 

Theorem. ∞→n  as ∞→n  

Proof. We know that mm baba <⇒< .  

So baba <⇒< . 

1+< nn  so 1+< nn  for all n. 

So ∞→n  as ∞→n  as required. 
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The inference between the two last propositions is invalid. Exactly two students 
rejected the proof because they had familiar counter-examples. Their rejection was 
not founded on the recognition of a logical gap between the propositions. Three other 
students rejected the proof. They did it because they failed to recognize what they 
thought to be a proof structure. In particular, they argued that the definitions of the 
mathematical concepts involved in the argument were not used. Their decision seems 
to be grounded on exclusive formal considerations. From the point of view of 
mathematical activity, this is a misconception: definitions are not always employed in 
a mathematical proof and, above all, very few mathematical proofs are enough 
detailed so that their logical structure can be recognized without any work. To finish 
with this example, notice that while only two students refused the proof because of an 
invalid warrant, ten did it when the interviewer helped them to interpret “ 1+< nn  so 

1+< nn  for all n” as “the series is increasing” and “ ∞→n  as ∞→n ” as “the 
series is divergent”. Our hypothesis is that this last intervention allowed the students 
to enter the semantic content of the proposition. Precisely, the translation into 
ordinary language could help them to go to a semantic interpretation in a familiar 
domain in which they know that there is some increasing and convergent series.  
We shall now undertake a criticism of Duval and Toulmin's models which are often 
used in research in mathematical didactics about argumentation and proof (Mathé 
(2006), Tanguay (2005), Inglis & al. (2007), Pedemonte (2007, 2008)). Our main 
thesis is that using the proposition (in the sense of propositional calculus, as opposed 
to predicate calculus) as a basic element of modelling leads to overestimate the gap 
between argumentation and proof. In particular, we consider that taking into account 
mathematical objects and quantification in the didactical analysis allows a quite 
different approach to the validation process in mathematics.  

BRIEF PRESENTATION OF DUVAL AND TOULMIN'S MODELS  
We shall begin with a brief presentation of Duval's approach. Let us use Balacheff's 
presentation (2008, p. 509): 

 ‘‘Deductive reasoning holds two characteristics, which oppose it to argumentation. First, 
it is based on the operational value of statements and not on their epistemic value (the 
belief which may be attached to them). Second, the development of a deductive 
reasoning relies on the possibility of chaining the elementary deductive steps, whereas 
argumentation relies on the reinterpretation or the accumulation of arguments from 
different points of view. (Following Duval 1991, esp. p. 240–241).’’ 

Duval often stands out that only argumentation lies on the content of propositions 
whereas what is important in a proof is the operating status of the proposition (in 
other words the way the proposition fits into the formal structure of the "modus 
ponens"). 

"This brings a first important difference between deductive reasoning and argumentative  
reasoning. The latter appeals to implicit rules which depend partly on the language 
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structure and partly on interlocutors' representations: therefore the semantic content of 
the propositions is essential. On the contrary, in a deductive step, the propositions do not 
intervene directly according to their content but according to their operating status, that 
is to the position previously assigned to them in the step process" (Duval, 1991, p. 235, 
our translation)   

Duval especially focuses on this argument to support the idea that proof and 
argumentation involve very different cognitive processes. In this matter, Balacheff 
(2008, p. 509) points out that: 

« One can imagine how this should raise question in our field considering that other 
researchers give a central role to ‘‘mathematical arguments’’ and ‘‘mathematical 
argumentation’’ in their consideration of what proof is.” 

Recently, Toulmin's model has been used in many works focused on reasoning from a 
mathematics education viewpoint. The following example shows how Pedemonte 
(2008, p. 387) presents Toulmin's restricted model: 

 “In Toulmin’s model an argument consists of three elements (Toulmin, 1993): 

C (claim): the statement of the speaker. 

D (data): data justifying claim C. 

W (warrant): the inference rule, which allows data to be connected to the claim. 

In any argument the first step is expressed by a standpoint (an assertion, an opinion). In 
Toulmin’s terminology the standpoint is called the claim. The second step consists of the 
production of data supporting the claim. The warrant provides the justification for using 
the data conceived as a support for the data-claim relationships. The warrant, which can 
be expressed as a principle, or a rule, acts as a bridge between the data and the claim.”   

This model has been used to analyse as well the production of arguments as the 
production of proof. In particular, Pedemonte uses this model to compare 
argumentation and proof relationships. Therefore the three elements (C, D, W) must 
be considered as more inclusive than the ternary structure of "modus ponens" (A, 
A→B, B) used by Duval to analyse the proof in the sense where the Toulmin's model 
warrant is not necessarily a theorem. Nevertheless, these two models share a common 
point by both using the proposition in the sense of propositional calculus as a basic 
element of modelling. Mathematical objects and quantification are not explicitly 
taken into account in the model structure.  

AN EXAMPLE OF USE OF A QUANTIFICATION THEORY 
Several attempts have been made to use first-order theories in order to help analysing 
mathematical reasoning in our research team (natural deduction in Durand-Guerrier 
& Arsac (2005) and Durand-Guerrier (2005), Tarski's semantics in Durand-Guerrier 
(2008), Lorenzen's dialogic logic and Hintikka's game semantics in Barrier (2008)). 
The ambition of these theories is to allow for the relationships between the semantic 
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and syntactic aspects to be taken into account in the validation activities. On the 
contrary, Duval identifies a reasoning step when applying the "modus ponens" rule. 
He asserts for example:  

«The deductive step process is well known. It is defined by the fundamental rule "modus 
ponens", also called Law of Detachment." (Duval, 1992, p. 43, our translation) 

We also saw that Toulmin's model rested on the same type of ternary structure. 
Durand-Guerrier & Arsac (2005, p. 151-152) showed that this standpoint was 
insufficient for analysing proof, especially in the case of analysis. Furthermore, the 
only "modus ponens" rule cannot exhaust the propositional calculus insofar as other 
deductive rules are necessary (Vernant, 2006, Chapter 3). Nevertheless, the deductive 
step derived from the Law of Detachment prevails in proof learning at lower 
secondary school and certainly deserves special attention. Our contribution will rather 
focus on the theoretical effects of this restriction: we consider that restricting the 
model to the propositional calculus induces to overestimate the distinction between 
argumentation and proof. Let us consider how Duval (1992, p. 44-45, our translation) 
analyses the following text by Sartre: 

« Jessica : Hugo ! You speak reluctantly. I watched you when you talked with 
Hoerderer : 

0. He convinced you. 

Hugo : 1. No, he didn't convince me. 

2. Nobody can convince me that (one must lie to its friends). 

3a. But if he had convinced me. 

3b. It would be a reason more to shoot him. 

4. Because it would prove that he would convince other guys. »          

Duval asserts that this argumentation appeals to the following deductive step: 
Premise: If he had convinced me 

Warrant: Nobody can convince me that one must… 

Conclusion: (it would prove that) he would convince other guys. 

This modelling leads Duval to draw the fundamental differences between 
argumentation and proof. Indeed, the argumentation step as modelled by Duval is 
quite different from the proof step based on the " modus ponens". Our questioning on 
this model induces us to suggest an alternative interpretation of this argumentation 
step based on natural deduction (Durand-Guerrier & Arsac (2005)). We note that xCy 
is the assertion that « x has convinced y ». The first step of Hugo's reasoning may 
then be interpreted in the following way: 

Data:   )(xCHugox¬∀  (2)  

Inference rule:   universal instantiation  
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Conclusion:   )( ugoHoedererCH¬  (1) 

We shall go on with the analysis of the reasoning (setting apart the assertion (3b) and 
identifying (4) with «he would convince other guys », i.e. removing what seems to 
refer to metalanguage) in the following way: 

Data :   ugoHoedererCH  (3a) 

Inference rule:   existential generalisation 

Conclusion:   xxHoedererC∃  

Data:    xxHoedererC∃  (recycling) 
HodererCyHoedererCxyxyxxxHoedererC ∧∧≠∃∃→∃ )( * 

(implicit axiom) 

Inference rule:  modus ponens 
Conclusion:  HodererCyHoedererCxyxyx ∧∧≠∃∃ )(  (4) 

One shall notice that without the implicit axiom (*) (if Hoederer is able to convince 
one person, then he is able to convince two persons at least) the deduction from 

ugoHoedererCH  to HodererCyHoedererCxyxyx ∧∧≠∃∃ )(  would be invalid. Therefore it 
is necessary, in a way, to complete the reasoning to make it valid. In this extract, one 
does not know whether the implicit theorem applied is part of a set of statements 
which are jointly accepted by Hugo and Jessica. However, this type of completion is 
not exclusive to argumentation, since in mathematics a fully explained proof would 
be much too long and therefore illegible. Weber (2008) puts forward an experimental 
study on how proofs are checked by mathematicians. This does not mean that the 
check is limited to the good practices of inference rules: proof checking, including 
validation, calls on not only a search for sub-proofs but also for informal or example-
based arguments.  
Now, an important question to be raised is the relationship between proof and 
proposition content. In the analysed example, we used an implicit axiom to complete 
the formal analysis of reasoning. This axiom is linked to a certain idea we have about 
the interpretation field objects (human beings in this example), what Duval calls the 
semantic content of propositions. In particular, the implicit axiom (*) is based on the 
idea that human beings are more or less homogeneous. The purpose of the following 
paragraph is to show that the content of propositions also intervenes in the proof 
construction.  

 « CONTENT » OF PROPOSITIONS AND PROOFS  
We use here an experiment from Inglis & al. (2007). Andrew, an advanced 
mathematics student, is confronted with the conjecture « if n is a perfect, then kn is 
abundant, for any INk ∈  ». Notice that a perfect number is an integer n whose 
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divisors add up to exactly 2n and that an abundant number is an integer n whose 
divisors add up to more than 2n. 

ANDREW : Ok, so if n is perfect, then kn is abundant, for any k. Ok, so what does it, 
yeah it looks, so what does it mean ? Yeah so if n is perfect, and I take 
any ip which divides this n, then afterwards the sum of these spi  is 2n. This 
is the definition. Yeah, ok, so actually we take kn, then obviously 
all ikp divide kn, actually, we sum these and we get 2kn. Plus, we’ve got 
also, for example, we’ve also got k dividing this, dividing kn. So we need to 
add this. As far, as basically, there is no disquiet, k would be the same as 
this. Yeah. And, how would this one go ? [LONG PAUSE] 

INTERVIEWER : So we’ve got the same problem as up here but in general ? With a … ? 

ANDREW : Yeah. Umm, can we find one? Right, so I don’t know. Some example. 

INTERVIEWER : I’ve got some examples for you. 

ANDREW : You’ve got examples of some perfect numbers ? OK, so 12, we’ve got 1 + 2 
+ 3 + 4 + 6, then, ok, + 12. [MUTTERS] But this is not ? Ok, perfect, I 
wanted perfect numbers. OK, so let’s say six. Yaeh, and we’ve got divisors 
2, 4, 6, 12. Plus I claim we’ve got also divisors. Yeah actually it’s simple 
because, err, because err, the argument is that we’ve also got 1 which is 
divisor, and this divisor is no longer here is we multiply. 

At the beginning of the interview, Andrew manipulates the definition of the concepts 
involved in the conjecture but this strategy fails to construct a proof. Then, he asks 
for examples and begins to play a semantic game which involves several numbers. As 
Duval says, this game increases the belief of the students in the validity of the 
conjecture (the epistemic value of the conjecture). In this sense, those kind of games 
are cumulative. However that argumentation which is linked with the content of the 
conjecture seems to be the clue of the completion of Andrew’s strategy in his former 
attempt of proof construction. This is the manipulation of the perfect number 6 which 
provides to Andrew the idea that for all n, 1 is a divisor of 2n which is not equal to 
any 2k (with k a divisor of n). Pedemonte (2008) provides several convergent 
examples concerning algebra. In particular, she stands for the need of an 
argumentation which would integrate what she calls abduction steps in the proof 
construction process. In our example, the purpose is to explain why 12 would be 
abundant, starting from the fact that it is abundant (this practice is sometimes called 
the analysis of analysis/synthesis dyade). The proof approach (the synthesis of the 
dyade) is based on this explanation (12 is abundant because 1 is a divisor of 12 which 
is not a double of any divisor of 6). Pedemonte (2007, p. 32-33) also gives an 
example of this type of approach in geometry. Besides, from experiments carried out 
in set theory and analysis, Weber & Alcock (2004) underline the weakness of 
syntactic proof procedures ("unwrap definitions" and "push symbols") compared with 
semantic procedures (which call on object instantiations).   
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ABOUT TOULMIN'S COMPLETE MODEL 
In their above-mentioned paper, Inglis & al. (2007) advocate the use of Toulmin's 
complete model which includes three new categories: the backing, the modal qualifier 
and the rebuttal which are introduced as follows (p. 4) : 

« The warrant is supported by the backing (B) which presents further evidence. The 
modal qualifier (Q) qualifies the conclusion by expressing degrees of confidence; and the 
rebuttal (R) potentially refutes the conclusion by stating the conditions under which it 
would not hold. »  

The authors show that there are various types of warrant that the students (five 
students prepare a doctorate degree and one a master degree) connect with various 
modal qualifiers. They advocate the importance of inductive and intuitive 
justifications in the mathematical activity provided that these justifications are paired 
with the appropriate modal qualifier for the conclusion of the argument. They 
underline the interest for didactics researchers to use modal qualifiers specifically in 
the analysis process.  

“The restricted form of Toulmin’s (1958) scheme used by earlier researchers to model 
mathematical argumentation constrains us to think only in terms of arguments with 
absolute conclusion.” (Inglis & al., 2007, p. 17)  

In his remark on Toulmin, Jahnke (2008, p. 370) makes this argument his own and 
emphasises the role of open general statements in mathematics. It seems to us that the 
role assigned to modal qualifiers in Toulmin's model shows that it is very difficult, in 
the didactic of mathematics, to integrate mathematical objects and their manipulation 
into models which are basically built from the propositional logic and from a 
syntactic approach of the mathematical activity. 

CONCLUSION 
Barrier (2008) advocates the necessity to appeal to transactional and intra-world 
procedures (Vernant, 2007) in order to explain mathematical creativity, i.e. to take 
into account the students' specific interactions with mathematical objects and the 
following decisions. The quantification theories, in particular the theories which 
develop a semantic point of view, allow to explain the milieu’s enrichment 
(Brousseau, 1997) along the proof processes. Durand-Guerrier (2008) also stresses 
the importance of the manipulation of objects in order to make mathematical practice 
fertile. This viewpoint seems to converge with Weber & Alcock's position:  

“Just as most streets in a town intersect many other streets, at any given point in a proof, 
there are many valid inferences that can be drawn that might seem useful to an untrained 
eye […]. Hence, writing a proof by syntactic means alone can be a formidable task. 
However, when writing a proof semantically, one can use instantiations of relevant 
objects to guide the formal inferences that one draws, just as one could use a map to 
suggest the directions that they should prescribe.” (Weber & Alcock, 2004, p. 232) 
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Obviously, every argumentation does not lead to proof, since the rules of the game 
are different in these two activities. In particular, in geometry, it is likely that the 
important gap between the different semiotic registers makes it more difficult to shift 
from an argumentation game to a proof game. As stated by Balacheff (2008, p. 509), 
it is necessary to bear this semiotic thinking in mind in order to understand Duval's 
approach. However, as we pointed it out in our examples, the assumption of an 
impassable gap between proof and argumentation is likely to hinder students' 
validation attempts. In particular, when validation is not immediate (we mean that it 
does not directly derive from the manipulation of the definitions of concepts involved 
in the statement of the proposition to be proven), it is often necessary to work on the 
content of the propositions. From a mathematical activity viewpoint, proof 
production seems to go with the familiarisation with mathematical objects. 
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