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In this paper I focus on Mathematical Explanation in Physics and I analyse its 
interplay with the concepts of understanding and visualizability. Starting from a 
recent contextual approach to scientific understanding (De Regt & Dieks, 2005) I 
will try to see how an historical analysis of the formulation of a particular theorem 
could help to clarify the role of understanding and visualizability in mathematical 
explanation. My test case will be Euler’s theorem for the existence of an 
instantaneous axis of rotation in rigid body kinematics. In particular, I will argue 
that the specific concept of vector space, defining a new standard of intelligibility, 
offers a good perspective in order to underline the dynamical character of 
mathematical explanation and its essential role in mathematical education.  
  
1. INTRODUCTION 
Different authors agree that the problematic of explanation is deeply connected to the 
debate about the nature of understanding in science. At the moment the major 
accounts of scientific explanation such as the Unificationistic (Friedman, 1974; 
Kitcher, 1981, 1989), the Causal (Salmon, 1984), the Pragmatic (Van Fraassen 1980; 
Acrhinstein, 1983) do not offer a satisfactory definition of understanding within their 
theories. While the authors and the supporters of those theories affirm that their 
particular accounts of explanation provide understanding, the notion of understanding 
remains still vague and is the cause of a series of controversies between philosophers 
of science. It seems quite plausible that a good explanation in science must provide 
understanding. But what is understanding? Is it really this “aha!” experience we are 
confronted with after some cognitive experience? And how can a good explanation 
provide understanding? 
In this paper I will focus on the very specific notion of mathematical explanation, and 
in particular on the notion of mathematical explanation in physics. As clearly 
expressed by Mancosu in his studies on mathematical explanation (Mancosu 2005, 
2008), we can have two different senses mathematical explanation:  

In the first sense “mathematical explanation” refers to explanations in the natural or 
social sciences where various mathematical facts play an essential role in the explanation 
provided. The second sense is that of explanation within mathematics itself (Mancosu, 
2008, p. 184). 
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Naturally, as pointed out by Shapiro (2000), mathematical explanation as intended in 
the first sense is connected to the more general problematic concerning the 
application of mathematics to reality and opens the mysterious problem of the 
“unreasonable effectiveness of mathematics in the natural sciences” (Wigner, 1967). 
However, leaving apart mysteries and ontological questions, many authors agree that 
it is possible to have a better comprehension of mathematical explanation of physical 
phenomena (MEPP) [1] starting from general discussions of scientific explanation 
and introducing an historical perspective (Tappenden, 2005; Kitcher, 1989). In this 
paper I will follow this line, getting my hands dirty via a bottom-up approach that 
starts from the mathematics itself. I will compare two different formulations of 
Euler’s theorem for the existence of an instantaneous axis of rotation in rigid body 
kinematics and I will try to discuss the concepts of understanding and visualizability 
under the light of dynamical MEPP. I assume as a starting point that in both the 
formulations the mathematical machinery has an essential role: they represent two 
mathematical explanations of the same physical fact. Naturally, in such a contextual 
analysis, the arena of mathematical education is of primary importance and I will 
offer a perspective in order to work in this direction. 
In a recent series of papers De Regt and Trout have discussed the notion of 
understanding in science (De Regt, 2001, 2004, 2005; Trout, 2002, 2005). My point 
will be that, contrary to Trout’s idea that is impossible to give an objective epistemic 
role to understanding (Trout, 2002), some interesting ideas of De Regt’s account 
could be utilized in order to study the role of visualizability and understanding in 
mathematical explanations. I hope this study will make clear that MEPPs have a 
dynamical character, and in some case the role of understanding in them could be 
studied if we have at disposition conceptual tools like visualizability. After all, a 
number of new studies and a sort of “renaissance in visualization” (Mancosu, 2005, 
p. 13) have emerged during the last years in philosophy of mathematics and cognitive 
sciences. The impetus in this sense has been given for the most part by the rise of 
visualization techniques in computer science, from which has clearly emerged the 
heuristic and pedagogical value of visual thinking [2]. Naturally, I stress again, my 
analysis implicitly focus on the importance of mathematical activity and education. 
Explaining a physical fact via mathematics in order to make it understandable is a 
mathematical practice, and first of all a pedagogical practice. In particular, if I 
assume with De Regt and Dieks (2005) that understanding transcends the domain of 
individual psychology and is relative to scientific communities in a specific historical 
period (they call it the “meso-level in science”), the importance of the acquisition of 
skills should be take into account in a more complete analysis. As remarked by 
Jeremy Avigad (2008) in his discussion of the notion of understanding in 
mathematical proofs:  

We look to mathematics for understanding, we value theoretical developments for 
improving our understanding, and we design our pedagogy to convey understanding to 
students. Our mathematical practices are routinely evaluated in such terms. It is therefore 
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reasonable to ask just what understanding amounts to (Avigad, 2008, p. 449. My 
emphasis). 

So mathematical education is directly linked to the concepts of understanding, 
mathematical explanation and to the intelligibility standard of visualizability. In this 
direction: transitions in the formulation of Euler’s theorem in mathematical (and 
physical) textbooks could be very helpful in order to study mathematical explanation 
in our sense and the variation of “what is considered more understandable” from a 
pedagogical point of view.  
In the next Section I will briefly give an outline of the theorem and the two different 
mathematical explanations for the physical phenomenon. In Section 3 I will claim 
that MEPPs in this particular case have dynamical character, while in Section 4 I will 
focus on visualizability, understanding and on the particular role of vector space 
theory. I will defend the epistemic relevance of a contextual notion of understanding 
and I will put in evidence a shift in the notion of visualizability for this particular case 
of explanation. The final section will contain my conclusions and some 
epistemological and educational perspective. 
 
2. EULER’S THEOREM 
2.1 Euler’s Original mathematical formulation in E177 
Euler's contributions to mechanics are numerous and of primary importance. Between 
them, the remarkable fact that Euler was the first to prove the existence of an 
instantaneous axis of rotation in the kinematics of rigid body motion. He obtained the 
result of the instantaneous axis of rotation for the first time in his paper E177 
Decouverte d’un nouveau principe de Mecanique. In this work Euler utilizes previous 
results in order to study the general motion of a rigid body with a fixed point and 
deduce the changes in the position and the velocity distribution from the given forces 
acting on the body [3]. His enterprise in the dynamics of rigid body motion in space 
was stimulated by the problem of the rotation of the Earth around its axis (as to 
explain the precession of equinoxes). The introduction of the perpendicular 
rectangular frame of reference permits Euler to apply Newton's second law separately 
with respect to each of the coordinates. This was brought about by a kinematical 
result: the instantaneous axis of rotation.  
In the section Détermination du mouvement en général, dont un corps solide est 
susceptible, pendent que son centre de gravité demeure en repos, in order to study the 
velocity distribution, Euler introduces a cartesian system fixed in absolute space and 
assumes that a point Z of the body with coordinates x, y, z has velocities P, Q, R in 
the direction of the axis. The components of the velocity P, Q, R are functions of x, y, 
z. Euler's final purpose is to found those functions. He considers another point z 
“infiniment proche du précédent Z”, of coordinates x + dx, y + dy, z + dz and 
velocities P + dP, Q + dQ, R + dR. After a mixed geometrical-analytical procedure 
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Euler is able to state that there are points, which have coordinates (Cu, -Bu, Au), that 
do not move during time dt. In other words, those points are on a straight line through 
the origin, which is called the instantaneous axis of rotation [4]. 

... tous les points du corps, qui sont contenus dans ces formules x=Cu, y=-Bu, z=Au 
demeureront en repos pendant le tems dt. Or tous ces points se trouvent dans une ligne 
droite, qui passe par le centre de gravité O; donc cette ligne droite demeurant immobile 
sera l'axe de rotation, autour duquel le corps tourne dans le présent instant (Euler, 1750. 
p. 95). 

Euler also added a geometrical proof of the existence of the instantaneous axis of 
rotation, discussing the infinitesimal motion of a spherical surface with a fixed point. 
The geometrical argument provided by Euler legitimates his analytical argument and 
holds not only for the instantaneous case but also for the discrete case. 
 
2.2 A Modern formulation in Linear Algebra  
As originally proved by Euler, the theorem for rigid body motion states that: “The 
general displacement of a rigid body with one point fixed is a rotation about some 
axis”. The motion of a rigid system in modern mechanics is described specifying at 
each instant the position of the points of the body with reference to a system of axis. 
To every point we associate a vector which belongs to an euclidean 3-dimensional 
space. The orientation of the rigid body in motion can be described at any instant by 
an orthogonal transformation, the elements of which may be expressed in terms of 
some suitable set of parameters. With the progression of time the orientation will 
change and the matrix of the transformation will evolve continuously from the 
identity transformation A(0)=1 to the general matrix A(t). Here we assume that at 
time t = 0 the body axes (the axes fixes in the rigid body) are chosen coincident with 
the space axes (a system of axes parallel to the coordinate axes of external space). 
The assumption that the operation implied in the matrix A describing the physical 
motion of the rigid body is a rotation assures that one direction (the axis of rotation) 
remains unaffected in the operation and the same holds for the magnitude of the 
vectors. If we consider as the fixed point in the rotation the origin of the sets of axes 
(and not necessarily the center of mass of the object), the displacement of the rigid 
body involves no translation of the body axes and we can restate Euler's theorem in 
the following modern mathematical form: “Every matrix A in SO(3), with A different 
from I3, has an eigenvalue +1 with a 1-dimensional eigenspace” (Sernesi, 1993, p. 
305).  
A proof of the mathematical theorem in the form I have given involves the general 
concepts of matrix, vectors (in particular the more specialized concepts of eigenvalue 
and eigenvector), eigenspace, basis, orthogonality, bilinear forms (in particular the 
scalar product, which is a symmetric and non-degenerate bilinear form). All those 
concepts are included in linear algebra and their close interplay does not permit any 
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easy separate analysis of the elements which are found in the proof structure of such a 
theorem. Israel Klein pointed out this difficulty in his History of Abstract Algebra: 

Among the elementary concepts of linear algebra are linear equations, matrices, 
determinants, linear transformations, liner independence, dimension, bilinear forms, 
quadratic forms, and vector spaces. Since these concepts are closely interconnected, 
several usually appear in a given context (e.g. linear equations and matrices) and it is 
often impossible to disengage them (Klein, 2007, p. 79). 

The modern proof of the algebrical formulation is constructed into the general 
framework of linear algebra and the particular framework of euclidean 3-dimensional 
vector space R3. Clearly, the proof's outcome is to show the existence of the 
eigenvalue λ=1 [5]. If we do not consider the concept of group, and we focus on the 
general concept of vector space, we could analyse the explanatory structure and make 
some relevant remarks. 
 
3. SHIFT IN MATHEMATICAL EXPLANATION 
It is clear that Euler did not have at disposition the modern concept of vector and 
vector space. But, as we can see from his papers, he did have the basic idea of 
geometrical transformation (point-to-point association in space and not 
transformation from physical magnitude to geometrical magnitude), which was 
central to his analysis. Differently from Euler’s original argument, in which the 
mathematical explanation is given by a mixed geometrical-analytical argument by 
means of a geometrical space (and via a geometrical intuition [6]), the modern 
explanation of the existence of an instantaneous axis of rotation is given in the 
framework of linear algebra. Having the particular structure of euclidean 3-
dimensional vector space is essential to Euler's theorem as formulated in modern 
terms because only the mathematical properties of a real vector space equipped with 
scalar product permit to “map” the properties of the kinematical system (angles, 
distances, orthogonality condition) into the algebraic structure.  
In a recent paper Gingras (2001) has underlined how the shift in explanation and the 
“disparition of substances into the acid of mathematics” are an epistemic and an 
ontological effect of the process of mathematization started with Newton. As a 
consequence of an historical process concepts like determinant, matrix, orthogonality 
or transformation are today included in the mathematical apparatus of linear algebra 
and we could profit of their interplay without exit from this framework (i.e. the 
framework of abstract algebra). In other words: in the modern algebrical proof the 
geometrical part is already “included'” in the structure of vector space and we do not 
need a geometrical argument [7]. It is very interesting to observe that Peano himself, 
in his Analisi della teoria dei vettori, remarked: 

Thus the theory of vectors appears to be developed without presupposing any previous 
geometrical study. And since, by means of this theory, all of geometry can be treated, 
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there results thereby the theoretical possibility of substituting the theory of vectors for 
elementary geometry itself  (Peano, 1898, p. 513). 

After having proved the dynamical character of mathematical explanation (i.g. the 
mathematics is essential to both the two explanations but it changes), in the following 
Section I will use De Regt & Dieks’s criteria for understanding and intelligibility in 
order to show how the theory of vector space offers a new conceptual tool of 
intelligibility and understanding. 
 
4. UNDERSTANDING AND VISUALIZABILITY IN MEPP. 
If I admit (and I do!) with De Regt & Dieks (2005) that visualizability constitutes a 
context-dependent standard of intelligibility, and only intelligible theories can 
provide an understanding of phenomena, then I can look at the shift between our two 
MEPPs in a more fruitful and interesting way. But, first of all, it is necessary to give a 
possible sense to the notions of visualizability, intelligibility and understanding. 
As showed by De Regt (2001) being a spacetime theory is a necessary but not 
sufficient condition for visualizability. It might be objected here that I deal with 
mathematical entities and the term “spacetime” is very dangerous and misleading. 
Fortunately, I am referring to MEPPs and for my particular test case the conditions of 
necessity and sufficiency for visualizability are both fulfilled (Euler’s geometrical 
framework and the framework of vector space theory both make the physical 
phenomenon visualizable in space -as a vector- at a particular time t, as could be seen 
from the diagrams we find in a common textbook of mechanics or mathematics). We 
can say that geometrical space in Euler and the modern concept of vector space map 
the physical space into a structure (a geometrical and a mathematical structure). In 
the case of vector space this mapping consists in an explicitly assumed isomorphism 
between the physical space and the 3-dimensional Euclidean space.  
De Regt & Dieks (2005) propose two criteria for understanding and intelligibility: 
CUP (Criterion for Understanding Phenomena) and CIT (Criterion for the 
Intelligibility of Theories). 

CUP: A Phenomenon P can be understood if a theory T of P exists that is intelligible (and 
meets the usual logical, methodological and empirical requirements). 

The necessary connection between visualizability and understanding is made by De 
Regt through the Criterion for the Intelligibility: 

CIT: A Scientific Theory T is intelligible for scientists (in context C) if they can 
recognize qualitatively characteristic consequences of T without performing exact 
calculations. 

In the previous Criterion I substitute “Mathematical Theorem” for “Scientific 
Theory” and I assume the applicability of the CIT in both cases (with some 
differences that should be discussed). But how do we “recognize qualitatively 
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characteristic consequences of T without performing exact calculations”? A possible 
answer: through conceptual tools. In a particular historical or methodological context 
we have at disposition some conceptual tools and visualizability could be one of them 
[8]. In other words: visualizability is a conceptual context-dependent tool, i. g. a 
conceptual contingent tool which depends from the skill of the scientific-
mathematical community and which is present during a precise historical period, and 
it could permit the intelligibility of a theory making possible the circumvention of the 
calculatory stage and the jump to the conclusion. So it is clear that also intelligibility 
is context-dependent. Naturally, as remarked by De Regt (2001), visualizability is not 
a necessary condition for intelligibility. Often other conceptual tools as abstract 
reasoning or familiarity could lead scientists and mathematicians to intelligibility as 
an immediate conclusion (see De Regt & Dieks, p. 156, for examples). Mathematical 
practice and theoretical physics are full of situations like this. 
In Euler the tool of visualization is perfectly applicable in the classical geometrical 
framework (I call it Euclidean Geometrical Theory): point-to-point association and 
geometrical considerations offer the idea (a visual idea) of what is happening to the 
mechanical system in motion. The instantaneous axis of rotation could always be 
visualized in spacetime, and its existence could be established through a geometrical-
intuitive reasoning [9]. In the modern explanation given in the framework of abstract 
algebra it might seem that this “chance” of intellegibility has been lost, but a deeper 
look shows that this is not completely true. The concept of 3-dimensional Euclidean 
vector space offers two new ways for obtaining the intelligibility (in line with CIT). 
Reading the modern formulation of Euler’s theorem a mathematician or a student 
could affirm “Yes, I see the eigenvalue +1”, just by looking at the formulation of the 
theorem in the matrix formalism. This is associated with the conceptual tool of 
familiarity, or abstract reasoning, and is related to a previous learning of matrix 
theory or other mathematical abilities. Instead of this approach, one can reach the 
same direct conclusion just by considering some general results in matrix theory and 
visualizing the eigenvector (the instantaneous axis) in the diagram [10]. The latter can 
be considered a new conceptual tool leading to the fulfilment of CIT. Naturally, the 
structure of nxn matrices with entries from R and the structure of homomorphisms of 
a 3-dimensional space (over R) into itself are isomorphic. From the last 
considerations is clear that visualizability still plays a very important role in 
understanding and in developing a fruitful strategy of mathematical education.  
 
5. CONCLUSIONS AND PERSPECTIVES 
MEPPs are context-dependent and have dynamical character. In particular, via a 
contextual approach to understanding, it is possible to recognize that the framework 
of linear algebra has defined new standards (or tools) for intelligibility which 
legitimate an explanation as “a good explanation” (an explanation which produces 
understanding). The understanding in this context is a payoff that directly comes from 
the availability of those conceptual tools. As I have showed, in the modern 
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formulation the understanding of the mathematical explanation for the existence of an 
instantaneous axis of rotation is obtained through a double route (visualization and 
abstract reasoning). I claim that this result might be very helpful in mathematical 
education and could offer a possible answer to Avigad’s question “How do we design 
our pedagogy to convey understanding to students?” for the specific case discussed. 
A new interesting direction, as showed by Marcus Giaquinto in his studies on the 
epistemic function of visualization in mathematics (Giaquinto, 2005), could emerge 
from an analysis of visualization as a powerful educational tool in the context of 
discovery [11]. 
A better comprehension of mathematical explanation could profit from the historical 
study of the interplay between the proof structure of the theorem and the system of 
concepts that characterizes the explanatory structure. If a change in one of them 
influences the other, it could be interesting to study different formulations of Euler’s 
theorem in textbooks in order to see how the mathematical explanation has been 
offered during this period and how it has changed in mathematical education. 
Naturally, the epistemological analysis of this paper opens the way to the more 
general question of how introduce proofs in classrooms and how concepts like 
explanation, understanding and visualizability should be taken into account in 
mathematical education. 
 
NOTES 
1. For shortness, from now on, I will refer to Mathematical Explanation of Physical Phenomena 
with the term MEPP. 

2. For a panoramic of this field and the very interesting discussion of this point, including how 
computer graphics has helped to recognize mathematical structures such as Julia sets which would 
have been impossible to recognize analytically, see Mancosu (2005). 

3. For a more precise reconstruction of Euler’s argument in Euler (1750) see the paper “What we 
can learn about mathematical explanations from the history of mathematics” I’ve presented at 
Novembertagung Conference, in Denmark, 5-9 November 2008.  

4. Euler does not use the word “instantaneous axis”. He refers to it simply as “axe de rotation”. 

5. For a proof of the theorem see Sernesi (1993, p. 306). 

6. The importance of the geometrical intuition in Euler emerges from the geometrical proofs he 
adds after his analytical arguments. The geometrical argument defines and legitimates the analytical 
procedure and is essential to the mathematical explanation of the existence of the axis. 

7. Vector spaces firstly appear in their axiomatic form in Peano (1888). 

8. Evidently, the intelligibility standard or tool of “casual connection” is of no interest in our 
discussion. 

9. See Euler’s geometrical argument or a modern geometrical argument (Whittaker, 1904, p. 2). 
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10. Here I am not claiming that the geometrical interpretation of matrices and eigenvectors is 
intrinsic in their definitions. I am assuming that under a particular “reading” (in our case Euler’s 
theorem in kinematics of rigid body motion), a subset of vectors of the vector space considered (the 
subset containing the instantaneous axis) has a geometrical representation in a diagram at time t (or 
a representation in a computer graphic simulation). A very good example of a case in which a 
precise situation is visualizable in the context of Vector Space Theory has been given by Artin 
(1957) and is discussed in Tappenden (2005). 

11. For simple and interesting cases in which a case of visualization could provide the discovery of 
a theorem see Giaquinto (2005) or, in a different flavour, the famous Lakatos (1978).   
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