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The paper discusses how and in what sense history and original sources can be used 
as a means for the learning of mathematics without distorting or trivializing history. 
It will be argued that this can be pursued by adopting a multiple-perspective 
approach to the history of the practice of mathematics within a competency based 
mathematics education. To provide some empirical evidence, a student project work 
on physics’ influence on the development of differential equations will be analysed 
for its potential learning outcomes with respect to developing students’ historical 
insights and mathematical competence.  

INTRODUCTION 
Fried (2001) argues that when history is used to teach mathematics the teacher must 

either (1) remain true to one’s commitment to modern mathematics and modern 
techniques and risk being Whiggish, […] or, at best, trivializing history, or (2) take a 
genuinely historical approach to the history of mathematics and risk spending time on 
things irrelevant to the mathematics one has to teach. (Fried, 2001, p. 398). 

Whig history refers to a reading of the past in which one tries to find the present.  
The purpose of the present paper is to argue that this dilemma can be resolved by 
adopting (1) a competency based view of mathematics education, and (2) a multiple-
perspective approach to the history of the practice of mathematics. Hereby, a 
genuinely historical approach to the history of mathematics can be taken, in which 
the study of original sources is also relevant to the mathematics one has to teach. To 
present some empirical evidence for this claim a student directed project work on the 
influence of physics on the development of differential equations will be analysed. 
The project belongs to a cohort of mathematics projects made over the past 30 years 
by students at Roskilde University, Denmark. Only one project is analysed in the 
present paper, but the reflections and discussions brought forward are based on 
knowledge about and experiences from supervising many of those projects. 
First, mathematical competence and the role of history in a competency based 
mathematics education are presented. Second, a multiple-perspective approach to a 
history of the practice of mathematics will be introduced. Third, the chosen project 
work will be analysed and discussed with respect to specific potentials for the 
learning of differential equations within the proposed methodology. Finally, the paper 
ends with some conclusions and critical remarks.  
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MATHEMATICAL COMPETENCE AND THE ROLE OF HISTORY 
In the Danish KOM-project (2000-2002) mathematics education is described in terms 
of mathematical competence. In this context mathematical competence means the 
ability to act appropriately in response to mathematical challenges of given situations. 
It can be spanned by eight main competencies (Niss, 2004). Half of them involves 
asking and answering questions in and with mathematics: (1) to master modes of 
mathematical thinking; to be able to formulate and solve problems in and with 
mathematics, i.e. (2) problem solving and (3) modelling competency, resp.; (4) to be 
able to reason mathematically. The other half concerns language and tools in 
mathematics: (5) to be able to handle different representations of mathematical 
entities; (6) to be able to handle symbols and formalism in mathematics; (7) to be able 
to communicate in, with, and about mathematics; (8) to be able to handle tools and 
aids of mathematics. In the discussion below, the possible learning outcomes of 
reading sources will be analysed with respect to these competencies. 
History of mathematics is not one of the main competencies, but is included in the 
KOM-project as one of three kinds of overview and judgement regarding 
mathematics as a discipline. The first concerns actual applications of mathematics in 
other areas, the second, historical development of mathematics in culture and 
societies, and the third, the nature of mathematics as a discipline (Niss, 2004).  
The KOM-understanding of the role of history in mathematics education has the 
honesty to history as an intrinsic part. In Danish secondary school this understanding 
of history is included in the curriculum (Jankvist, forthcoming). The objective of the 
present paper is to discuss in what sense such an understanding of history can be 
implemented in situations where the curriculum does not include history and does not 
assign time to teach history. Under such circumstances, history of mathematics is 
most likely going to play no role at all in the learning and teaching of mathematics 
unless it can also be used as a means to learn and teach subjects in the syllabus. 

A MULITPLE PERSPECTIVE APPROACH TO HISTORY OF MATH 
How can we understand and investigate mathematics as a historical product? One 
way is to think of mathematics as a human activity and of mathematical knowledge 
as created by mathematicians. This has been the foundation for many recent studies 
in the history of the practice of mathematics (Epple, 2000), (Kjeldsen et al., 2004).  
To study the history of the practice of mathematics involves asking why 
mathematicians situated in a certain society, and/or intellectual context at a particular 
time, decided to introduce specific definitions and concepts, to study the problems 
they did, in the way they did it. In this line of thinking, mathematics is viewed as a 
cultural and social phenomenon, despite its universal character. Studying the history 
of mathematics then also involves searching for explanations for historical processes 
of change, such as changes in our perception of mathematics, our understanding of 
mathematical notions, and our idea of what counts as a valid argument. 
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A way of answering such questions is to adopt a multiple perspective approach 
(Jensen, 2003) to history where episodes of mathematical activities are analysed from 
multiple points of observations (Kjeldsen, forthcoming). The perspectives can be of 
different kinds and the mathematics can be looked upon from different angles, such 
as sub-disciplines, techniques of proofs, applications, philosophical positions, other 
scientific disciplines, institutions, personal networks, beliefs, and so forth.  
How can this approach be brought into play to ensure the honesty to history, in a 
teaching situation where the teacher wants to use history as a means for students to 
learn a specific mathematical topic or concept? It can be implemented on a small 
scale, by having students read pieces of original mathematical texts focusing on 
perspectives that address research approaches or the nature and function of specific 
mathematical entities (problems, concepts, methods, arguments), in order to uncover, 
discuss, and reflect upon the differences between how these approaches and entities 
are presented in their text book and the former way of conceiving and using them. In 
such teaching settings, the students have to read the mathematical content of the 
original text as historians, using the “tools” of historians, and answering historians’ 
questions about the mathematics. For such tools, see e.g. (Kjeldsen, 2009). 
Through activities where students work with historical texts guided by historical 
questions, connections between the students’ historical experiences of the involved 
mathematics and their experiences from having been taught the text book’s version, 
can be created in the learning process. When students read historical texts from the 
perspectives of the nature and function of specific mathematical entities, they can be 
challenged to use other aspects of their mathematical conceptions in new situations. 
So, it is of didactical interest to analyse historical episodes of mathematical research 
with respect to their potential to challenge students’ mathematical conceptions. 

A HISTORY PROJECT: PHYSICS AND DIFFERENTIAL EQUATIONS 
In the following, the student directed project work will be analysed with respect to 
how and in what sense the students’ work with original sources provided potentials 
for the learning of differential equations – without losing sight of history.  
The educational context: problem oriented student directed project work 
The project report on physics influence on the development of differential equations 
was written by five students enrolled in the mathematics programme at Roskilde 
University (RUC). All programmes at RUC are organised such that in each semester 
the students spent half of their time working in groups on a problem oriented, student 
directed project supervised by a professor. The projects are not described by a 
traditional curriculum, but are constrained by a theme (Blomhøj & Kjeldsen, 2009).  
The requirement for this project was that the students should work with a problem 
that deals with the nature of mathematics and its “architecture” as a scientific subject 
such as its concepts, methods, theories, foundation etc., in such a way that the status 
of mathematics, its historical development, or its place in society gets illuminated. 
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Among the cohort of project reports, constrained by these objectives, this particular 
project was chosen, because the students happened to investigate differential 
equations, which are included in the core curriculum of advanced high school 
mathematics and mathematics and science studies in universities. Hence, the project 
work could be analyzed with respect to the issues addressed in the present paper. 
Analysis of the project work: learning outcomes and the competencies  
The students formulated the following problems for their project: 

How did physics influence the development of differential equations? Was it as problem 
generator? Did physics play a role in the formulation of the equations? Did physics play a 
role in the way the equations were solved? (Paraphrased from (Nielsen et. al., 2005, p.8)). 

On the one hand, these are fully legitimate research questions within history of 
mathematics. They address issues about an episode in the history of mathematics seen 
from the perspective of how another scientific discipline influenced mathematicians’ 
formulation of problems as well as the methods they used to solve the problems. On 
the other hand, these questions can only be answered by analysing the details of 
original sources that deal with this particular episode in the history of mathematics, 
studying how the differential equations were derived from the problems under 
investigation, how the equations were formulated, why they were formulated in that 
particular way, how they were solved and with which methods – issues which are 
also relevant for the learning and understanding of the subject of differential 
equations. Based on readings of three original sources from the 1690s, the students 
discussed these issues within the broader social and cultural context of the involved 
mathematicians, critically evaluating their own conclusions within the standards for 
research in history of mathematics. Hence, in this way of working with history in 
mathematics education history is neither Whiggish nor trivialized.   
I will discuss three instances where the students – qua the historical work – were 
forced into discussions in which they came to reflect on issues that enhanced their 
understanding of certain aspects of differential equations in particular and of 
mathematics in general. The discussion will end with a short presentation of some of 
the learning outcomes with regard to the eight main mathematical competencies. 
1: Johann’s differential equation of the catenary problem. The catenary problem 
is to describe the curve formed by a flexible chain hanging freely between two points. 
The students read the solution that Johann Bernoulli presented in his lectures on 
integral calculus to the Marquis de l’Hôpital, supported by English translations of 
extracts (Bos, 1975). Bernoulli formulated five hypotheses about the physical system 
that, as he claimed, follow easily from static. For the students, of which none studied 
physics, to derive these assumptions was the first mathematical challenge in reading 
Bernoulli’s text: “we had to derive most of them ourselves. We use 18 pages to 
explain what Johann Bernoulli stated on a single page” (Nielsen et. al., 2005, 19). 
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Below is one of the extract of Bernoulli’s text (Bos, 1975, 36) that the students read. 
As can be seen from the text, Bernoulli used the five hypotheses to describe the 
catenary and the infinitesimals dx and dy of the curve geometrically and derived an 
equation between the differentials. The figure was produced by the students and is 
similar to a figure in Bernoulli’s lecture, except from the sine-cosine circle. 
 
 
 
 
 
 
 
 
 
In their report, the students went through Bernoulli’s text and filled in all the 
arguments. They were not familiar with this way of setting up differential equations 
from scratch so to speak, so the mathematization of the physical system was a major 
challenge for which they needed to consult some textbooks on static and to combine 
the physics with mathematical results about triangles and the sine-cosine relations. 
Bernoulli’s arguments do not meet modern standards of rigour and that created 
cognitive hurdles for the students. Didactical, it is important to identify such hurdles 
because they create situations where the students, during their struggle with 
understanding the mathematical content of the original text, can be challenged to 
reflect upon the differences between our modern understanding and the one presented 
in the source, thereby enhancing their own understanding of the concept of, in this 
case, differential equations and the mathematical techniques and concepts 
underneath. A concrete example of this is Bernoulli’s use of the infinitesimal triangle. 
In the text above he used similar triangles, to argue that s:a = dx:dy but, as the 
students pointed out in their report, a does not lie on the tangent but on the catenary. 
Bernoulli also used the infinitesimal triangle later in the lecture, when he 
reformulated the differential equation derived above, using that 22 dydxds += . Again 
– as pointed out by the students – ds is a part of the catenary, not the hypotenuse of a 
right angled triangle. 
This mixed use of geometrical arguments and infinitesimals in deriving and 
reformulating the differential equation was very different from the students’ text book 
experiences of differential equations. The fact that Bernoulli’s method worked in this 
particular case, despite its lack of rigour, provoked a discussion among the students 
and their supervisor (the author) about Bernoulli’s use of the infinitesimal triangle 
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and his use of the infinitesimals, dx and dy, as actual infinitely small quantities. This 
made the students focus more systematically on the differences between now and 
then, questioning, at first, why we need to define a differential quotient as the limit 
(in case it exists) of difference quotients, then analysing the situation again to 
understand why Bernoulli’s method worked fine for the catenary,  and trying to 
picture situations where it would go wrong. This is an incidence where connections 
were created between the students’ historical experiences and their experiences from 
modern mathematics which challenged them to examine their own understanding of 
the involved concepts. Through these discussions, the students built up intuition 
about infinitesimals and awareness about the reasons behind the construction of our 
modern concepts. Major differences were the lack, in the seventeenth century, of the 
concept of a function, of a limit, and the formalised concept of continuity. In this 
project work the historical texts provided a framework for discussions among the 
students and with their supervising professor, about what constitute the concept of a 
differential equation, and how we can read meaning into it. Through these 
discussions, which were triggered by the historical texts, the students came to reflect 
upon the concept of a differential quotient and the meaning of a differential equation 
on a structural level that went beyond mere calculations and operational 
understanding of the concepts. This is an example of what Jahnke et. al (2000) calls a  
reorientation effect of studying original sources.  
2: Johann’s solution of the catenary differential equation. Through some further 
manipulations Bernoulli reached the following formulation of the equation for the 
catenary axxadxdy 2

2
+=  which he used to construct the curve geometrically. This 

puzzled the students and initiated discussions about, what it means to be a solution to 
a differential equation. 
 
 
 
 
As can be seen from the above extract (Bos, 1975, 41), Bernoulli interpreted the 
integral geometrically, as the area below a curve. The students added an illustration 
of this in their figure, as can be seen above, with the two shadowed areas which are 
not present in Bernoulli’s figure. This way of solving the equation by constructing the 
curve forced the students into discussions about conceptual aspects of solutions to 
differential equations. It made them articulate what constitute a solution in our 
modern understanding, an articulation that does not automatically manifest itself from 
solving differential equation exercises from modern textbooks. In order to follow 
Bernoulli’s construction, the students were challenged to think about and use 
integration differently than they would normally do when solving differential 
equations analytically. They were also forced to use the properties of the curve 
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represented geometrically which they felt as a challenge. They were used to using the 
direct relationship between the analytical expression of a function and the coordinate 
system, to produce a graph. Here they went “the other way” and had to think of the 
curve as being represented by its graph instead of its analytical expression. 
Historically, they realised that what is understood by a solution to a differential 
equation has changed in the course of time. 
3: Different solution methods of the brachistochrone problem. The brachisto-
chrone problem is to describe the curve of fastest descent between two points for a 
point only influenced by gravity. Jacob and Johann Bernoulli published different 
solution methods to the problem in 1697. Johann Bernoulli interpreted the point as a 
light particle moving from one point to another. By using Fermat’s principle of 
refraction, he derived an equation for the brachistochrone, i.e. the cycloid, involving 
the infinitesimals dx and dy. Jacob Bernoulli considered the problem as an extremum 
problem using that, since the brachistochrone gives the minimum in time, an 
infinitesimal change in the curve will not increase the time. 
The differences between Johann’s and Jacob’s solution of the brachistochrone 
illustrated for the students the power of mathematics. Johann’s solution was tied to 
the physical conditions of the problem and could not be generalised beyond the actual 
situation, whereas Jacob’s solution was independent of the physical situation and 
could be used on different kinds of extremum problems. Through the historical texts 
on the solution of the brachistochrone, the students experienced the characteristics of 
the nature of mathematics that makes it possible to generalise solution methods of 
particular problems. Thereby, they were able to understand why Jacob’s method 
could generate new kinds of questions that eventually led to a new research area in 
mathematics, the calculus of variations, and why Johann’s could not. For a didactical 
perspective on the brachistochrone problem see Chabert (1997).  
Development of mathematical competencies. In the discussions above of episodes 
where the students through their work with the original sources used other aspects of 
their mathematical conceptions in new situations and discussions, some learning 
potentials regarding differential equations and the mathematical concepts underneath 
have already been emphasised, especially in the discussion of the students’ work with 
Johann Bernoulli’s text on the catenary. A more systematic analysis of the students’ 
report with respect to the KOM-report showed that the students, in their work with 
the historical texts, were challenged within seven of the eight main competencies. 
The students’ awareness of the special nature of mathematical thinking (1) was 
especially enhanced in their comparison of Johann’s and Jakob’s solutions of the 
brachistochrone as discussed above. The students’ problem solving (2) skills were 
trained extensively and in different areas of mathematics. As mentioned in the 
discussion of their work with Johann’s solution of the catenary problem, the students’ 
had to fill in a lot of gaps in order to understand Johann’s results. Each of these gaps 
required that the students derived intermediate results on their own about similar 
triangles using trigonometry, and solved mathematization problems. Through their 
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work with understanding the Bernoulli brothers’ mathematization of the physical 
problems, parts of the students’ modelling competency (3) were developed. The 
competency to reason (4) in mathematics was developed in all those parts of the 
project work where the students tried to make sense of the original sources by means 
of their own mathematical training and knowledge. (5) Representations: As 
exemplified in the discussion of the students’ work with Bernoulli’s construction of 
the solution to the differential equation of the catenary, the students were challenged 
so work with a representation of the solution to the differential equation that is 
different from the analytical representation given in modern textbooks. In the report, 
the students also solved the differential equation analytically and compared the 
analytical representation with Bernoulli’s geometrical one. During their 
mathematization of the five hypotheses from static that Bernoulli took for granted, 
the students were trained both in working with different representations and in using 
the mathematical language of symbols and formalism (6). This competency was 
especially developed in the students’ work with the two original sources on the 
brachistochrone problem in their struggle to understand Johann’s mathematization of 
the path of the light particle and Jakob’s use of the minimising property of the 
brachistochrone. The writing of the report (90 pages) in which the students, through a 
thorough presentation and analysis of the original sources, answered their problems 
for their project work within the historical context, developed their competency to 
communicate (7) in, with, and about mathematics in ways that go far beyond what 
normal exercises in solving differential equations requires. The competency to handle 
tools and aids (8) was not represented.  

SOME CONCLUSIONS AND CRITICAL REMARKS 
Based on their studies of the original sources and relevant secondary literature, the 
students concluded that physics did function as problem generator in the early history 
of the development of differential equations and played a decisive role in the 
derivations of the equations describing the catenary and the brachistocrone. They 
further concluded that physics played a significant role for Johann’s solutions of both 
the catenary and the brachistochrone problem, but not for Jacob’s solution of the 
brachistochrone problem. Jacob’s arguments were not linked to the physical system; 
hence his method could be transferred to other problems of that type. This became the 
beginning of the calculus of variations. The students did not move beyond this in 
their project, but it is interesting to notice that the calculus of variation later became 
central in physics, providing an important feedback in the opposite direction. 
The analysis of the chosen project has shown that, if we adopt a competency based 
view of mathematics education and evaluate learning outcomes not with reference to 
standard procedures and lists of concepts and results, but with respect to how and 
which mathematical competencies, the students have been challenged to invoke, and 
thereby develop, and if we let the students work with the history of the practice of 
mathematics studied from specific perspective(s) that address(es) significant issues 
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regarding the mathematics in question, then history can be used as a means to teach 
and learn core curriculum subjects without losing sight of history. 
The above claims are further supported through analyses of other historically oriented 
mathematics projects that have been performed by students at RUC. A project on the 
history of mathematical biology, where the students read an original source of 
Nicholas Rashevsky on a mathematical model for cell division is treated in (Kjeldsen 
& Blomhøj, 2009) and analysed with respect to learning outcomes regarding deriving 
and understanding the general differential equation of diffusion, the students’ 
understanding of the integral concept, and development of the students’ modelling 
competency. Other examples of projects with substantial learning outcomes of core 
mathematics, in university mathematics education, are “Paradoxes in set theory and 
Zermelo’s III axiom”, “What mathematics and physics did for vector calculus”, 
“Generalisations in the theory of integration”, “Infinity and “integration” in 
Antiquity”, “Bolzano and Cauchy: a history of mathematics project”, “The real 
numbers: constructions in the 1870s”, and “D’Alembert and the fundamental theorem 
of algebra”. In the present paper focus has been on how history can be used for the 
learning of core curriculum mathematics without trivializing it or using a whiggish 
approach to history. The learning outcome of the above history projects can also be 
analysed with respect to Mathematical awareness, as explained by Tzanakis and 
Arcavi (2000), which includes aspects related to the intrinsic and the extrinsic nature 
of mathematical activity. These projects can then also be seen as empirical evidence 
for some of the possibilities history offers as referred to by Tzanakis and Arcavi 
(2000, 211). With respect to the KOM-report these aspects relate to the three kinds of 
overview and judgement.  
It can be raised as a critic that only certain perspectives of the history are considered, 
and that e.g. to gain insights into historical processes of change, episodes from 
different time periods need to be studied. In the above project work, the students did 
not experience the historical process of change, but they did experience that the 
understanding of the involved mathematics in the 17th century was different from our 
understanding. The students did not solve a huge amount of differential equations, 
and they did not learn to distinguish between different types of differential equations. 
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