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INTRODUCTION 
ADVANCED MATHEMATICAL THINKING 

Reflection on the work at the conference 
Roza Leikin, Israel, Claire Cazes, France,  

Joanna Mamona-Dawns, Greece, Paul Vanderlind, Sweden 

AGENDA 
In 1988 D. Tall argued that "Advanced Mathematical Thinking" (AMT) can be 
interpreted in at least two distinct ways as thinking related to advanced mathematics, 
or as advanced forms of mathematical thinking. Following this distinction, we 
suggested to the participants to take part in the discussion in two interrelated 
perspectives: 
According to mathematically-centered perspective we planned to consider AM-T as 
being related to mathematical content and concepts at the following levels:  upper 
secondary level, tertiary educational level, the transition stages between and within 
the two secondary and tertiary levels. The research presented in this category 
included (but was not bounded to) conceptual attainment, proof techniques, problem-
solving, instructional techniques and processes of abstraction.  
According to thinking-centered perspective we suggest to address A-MT through 
focusing on students with high intellectual potential in mathematics (e.g., 
mathematically gifted students). The research in this perspective can, for example, 
ask how these students differ in their actions from other students of the same age 
group. In this perspective we can address such characteristics of mathematical 
thinking as creativity, reasoning in a critical mode, persistence and motivation. 
In this perspective, we planned to encourage participants to attain their attention on 
individual and group differences related to advanced mathematical contents. We shell 
note that thinking-related perspective was less enlightened in the contributions and 
during the work at the conference. 
The group was focused on original research mainly of the first perspective. 
Contributors adopted different the research paradigms, theoretical frameworks and 
research methodologies. Contributors addressed a variety of issues in the field of 
AMT, amongst the following themes:    
A.  Learning processes associated with development of AMT 
B.  Problem-solving, conjecturing, defining, proving and exemplifying at the 

advanced level 
C.  Effective instructional settings, teaching approaches and curriculum design at the 

advanced level. 
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Setting 
All the participants of WG-12 were divided in three small groups according to the 
abovementioned themes (Croups A, B and C). Participants of Groups A, B and C 
prepared main questions for the discussion in Groups B, C, and A correspondingly. 
Of these questions, participants in each small group chose questions that they 
considered as most important and interesting for the discussion. Bellow we present 
our reflection on the outcomes of our work at the conference.   

FOCAL TOPICS 
Learning processes associated with development of AMT 
Discussion on this topic was coordinated by Claire Cazes. The participants of the 
small group focused their discussion on Learning processes associated with 
development of AMT, students' difficulties, concept image-concept definition on 
advanced level. This group included the following contributions:  Theoretical model 
for visual-spatial thinking (by Conceição Costa and her collegues), Secondary-
tertiary transition and students’ difficulties: the example of duality (presented by 
Martine De Vleeschouwer), Learning advanced mathematical concepts: the concept 
of limit (António Domingos), Conceptual change and connections in analysis 
(Kristina Juter), Using the onto-semiotic approach to identify and analyze 
mathematical meaning in a multivariate context (presented by Miguel R. Wilhelmi et 
al.), Derivatives and applications: Development of ONE student’s understanding 
(Gerrit Roorda et al.), and Finding the shortest path on a spherical surface: 
“Academics” and “Reactors” in a mathematics dialogue (Maria Kaisari and Tasos 
Patronis). 
The most intriguing distinction between the papers in this group was connected to the 
conceptual frameworks chosen by the authors for their studies. These frameworks 
related to AMT include different basic concepts. Thus, among other questions, 
formulated by group C, members of group A chose to focus on the following 
questions: 

• How could you compare the meanings of the basic concepts in the theoretical 
frameworks addressed in different papers? How are they different? How are 
they similar or interchangeable?” 

Group A found that the complexity of the topic that concerning in the diversity of the 
approaches and diversity of the frameworks that were raised. Figure 1 demonstrated 
main points addressed in this discussion: 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2239



  

 
 

Figure 1: Complexity of the topics 
Based on the papers of the participants of group A, the members presented the 
following theoretical frameworks: Antonio Domingos discussed Tall and Vinner 
(1981) concept-image, concept definition framework as the central framework for 
research on AMT. Additionally he presented Tall's view on the development of 
mathematical understanding through embodied, symbolic and axiomatic worlds (Tall, 
2006a, b).  
Gerrit Roorda stressed the better mathematical understanding might be reflected by 
more and better connections between representations, within representations, between 
applications and mathematics (for elaboration see Roorda, et al. in the proceedings of 
CERME-6). Conceição Costa framed her framework based on the views on cognitive 
processes, embodiment, sociocultural perspectives, and theoretical perspectives on 
teaching and learning geometry. She presented her own framework developed 
through studying visual reasoning (see figure 2, for elaboration see Conceição et al. 
in the proceedings of CERME-6). 

 
Figure 2:  Costa (2008) –AMT and visual reasoning 
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Martine De Vleeschouwer presented Chevallard's Institutional point of view as the 
main theoretical framework that allows exploring advances mathematical thinking. 
This framework focuses on four main components: Type of tasks, Technique, 
Technology, and Theory. Milguel R. Wilhelmi presented Epistemic Configuration 
that they developed for the development of didactical situations of different kinds and 
the analysis of AMT developed in these situations. Definitions, procedures and 
propositions in this framework are the "the rules of the game", argumentation and 
justification are integral characteristics of the situations associated with AMT (see 
Fugure 3). 

 
Figure 3: Epistemic Configuration 

Claire Cazes summarized this discussion and outlined further directions to be 
addressed in future research. She stressed the need in finding connections between 
five theoretical frameworks used in different studies (see Figure 4). She also pointed 
out the need (a) to specify why each approach is useful for study AMT, (b) to make 
“cross analysis " by working by pairs and  analyse the same data with two different 
frameworks. Then the following questions are important and interesting for the future 
exploration: Do we focus on the same points?  Are the results: opposite, additional, 
identical? 

  
Figure 4: Theoretical frameworks observed in the Group. 
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Problem-solving, conjecturing, defining, proving and exemplifying at the 
advanced level. 
This theme was coordinated by Joanna Mamona-Downs. The group participants 
based their discussion on the following contributions: Number theory in the national 
compulsory examination at the end of the French secondary level: between 
organising and operative dimensions (Véronique Battie), Defining, proving and 
modelling: a background for the advanced mathematical thinking (García M., V. 
Sánchez, and I. Escudero), Necessary realignments from mental argumentation to 
proof presentation (Joanna Mamona-Downs and Martin Downs), An introduction to 
defining processes (Cécile Ouvrier-Buffet), Problem posing by novice and experts: 
Comparison between students and teachers (Cristian Voica and Ildikó Pelczer), and 
Advanced Mathematical Knowledge: How is it used in teaching? (Rina Zazkis, Roza 
Leikin). 
The group chose to focus on the questions:  

• What are the relationships between problem solving, conjecturing, defining 
and proving? 

• What is the effective use of problem solving?  
• How to help students in justifying formal proof?  

The group decided that features of Problem Solving depend on the level of problem 
solver, the place in a course, the context and other factors. Problem Solving Features 
depend on the problem solving aspects the solver is engaged in: (a) formulating 
questions (b) engaging in a proof process or in a modeling process, (c) making 
mistakes, (d) expecting posing more questions, (e) communicating with other persons 
while solving or redefining the problem, (f) communicating about results. 
Veronique Battie performed her research in the number theory. She focused on two 
following dimensions and the relationships between them: The Organizing dimension 
concerns the mathematician’s "aim" (i.e., his or her "program", explicit or not); 
induction, reduction ad absurdum (minimality condition); Reduction to the study of a 
finite number of cases; Factorial ring’s method; Local-global principle. The 
Operative dimension relates to those treatments operated on objects and developed 
for implementing the different steps of the aim, forms of representation of objects, 
algebraic manipulations, using key theorems, distinguishing divisibility order and 
standard order.  
Cristian Voica presented distinctions in problem posing activities for teachers and 
students. He argued that teachers' views on problem posing are influenced by the 
curricula and the exams subjects, guided by pedagogical goals and by attention to the 
formulation of the problem. Students are interested in extra-curricular contexts and 
solution techniques, see problem posing as a self-referenced activity, and (many of 
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them) generate problems with an unclear statement, or does not choose a good 
question. 
Cecile Ouvrier-Buffet explored defining processes. Her design of a didactical 
situation is aimed to make students acquire the fundamental skills involved in 
defining, modelling and proving, at various levels of knowledge; to work in discrete 
mathematics but also in linear algebra because similar concepts are involved in this 
situation; and to have a mathematical experience and to raise mathematical 
questionings. While she chooses an epistemological approach to data analysis, she 
considers defining processes as a tool for characterizing mathematical concept. 
All the participants shared concerns regarding connections between school and 
University mathematics. They observed the gap between the teaching approaches, the 
requirement for rigor mathematics and the role of defining and proving in learning 
process in these two contexts. Zazkis and Leikin pointed out that school teachers' 
conceptions of advanced mathematics and its' role in school mathematical curriculum 
reflect this gap. They argued that mathematics teacher preparation should explicitly 
introduce connections between school and tertiary mathematics.  
Effective instructional settings, teaching approaches and curriculum design at 
the advanced level 
Group C, coordinated by Isabelle Bloch, discussed Effective instructional settings, 
teaching approaches and curriculum design at the advanced level Urging calculus 
students to be active learners: what works and what doesn't (Buma Abramovitz, 
Miryam Berezina, Boris Koichu, and Ludmila Shvartsman), From numbers to limits: 
situations as a way to a process of abstraction (Isabelle Bloch and Imène Ghedamsi), 
From historical analysis to classroom work: function variation and long-term 
development of functional thinking (Renaud Chorlay), Experimental and 
mathematical control in mathematics (Nicolas Giroud), Introduction of the notions of 
limit and derivative of a function at a point (Ján Gunčaga), Advanced mathematical 
thinking and the learning of numerical analysis in a context of investigation activities 
(poster presented by Ana Henriques), Factors influencing teacher’s design of 
assessment material at tertiary level (Marie-Pierre Lebaud), Design of a system of 
teaching elements of group theory (Ildar Safuanov). 
This group chose to focus on the following points 
• Importance for the students to be active learners when they study AM. 
• Making abstraction accessible (“Abstract” and “formal” are not the same). 
• Minding the secondary – tertiary gap. 
The group argued that generally speaking they look for more opportunities for high 
school students to be engaged in high-level abstracting and proving, and for 
university students to be engaged in activities elaborating the meaning of (abstract) 
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concepts they study. It implies the necessity for gradual change in didactical 
contracts, both in secondary and university education 
Buma Abramivich with colleagues reported an on-going design experiment in the 
context of a compulsory calculus course for engineering students. The purpose of the 
experiment was to explore the feasibility of incorporating ideas of active learning in 
the course and evaluate its effects on the students' knowledge and attitudes. Two one-
semester long iterations of the experiment involved comparison between the 
experimental group and two control groups. The (preliminary) results showed that 
active learning can have a positive effect on the students' grades on condition that the 
students are urged to invest considerable time in independent study. They presented 
two episodes from different settings and concluded that the answer to their research 
question appears to be more complex than expected (see for elaboration Abramovich 
et al.). 
Isabelle Bloch discussed ways of designing a milieu that helps students constructing   
mathematical meaning. She argued that when they enter the University, students have 
a weak conception of real numbers; they do not assign an appropriate meaning to 2 , 
or π, or to variables and parameters. This prevents them to have a control about 
formal proofs in the field of calculus. She presents some situations to improve 
students' real numbers understanding, situations that must lead them to experiment 
with approximations and to seize the link between real numbers and limits. They can 
revisit the theorems they were taught and experience their necessity to work about 
unknown mathematical objects (see Bloch in this proceedings).   
Nicolas Giroud focused on mathematical games as an effective didactical tool for 
development AMT. He presented a problem which can put students in the role of a 
mathematical researcher and so, let them work on mathematical thinking and problem 
solving. Especially, in this problem students have to validate by themselves their 
results and monitor their actions. His purpose was centered on how students validate 
their mathematical results. His paper is related to learning processes associated with 
the development of advanced mathematical thinking and problem-solving, 
conjecturing, defining, proving and exemplifying. 
Renaud Chorlay presented work on mathematical understanding in function theory. 
Based on a historical study of the differentiation of viewpoints on functions in 19th 
century involving both elementary and non-elementary mathematics he formulated a 
series of hypotheses as to the long-term development of functional thinking, 
throughout upper-secondary and tertiary education. The research started testing 
empirically three main aspects, focusing on the notion of functional variation: 
(1) “ghost curriculum” hypothesis; (2) didactical engineering for the formal 
introduction of the definition; (3) assessment of long-term development of cognitive 
versatility. 
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CONCLUDING REMARK 
Very naturally all the three groups admitted the gap between school and tertiary 
mathematics. Rina Zazkis managed a special discussion on the way of bridging 
school and university mathematics. Most of the examples provided by the 
participants were extracurricular tasks from the university courses that in the 
presenter's opinion may be used in school as well. However the question of the 
integration of AM-T in school teaching and learning remains open.  
A-MT is another issue that needs further attention of the educational community. 
This perspective was less addressed and requires investigations associated with 
AMT. It may be suggested as one of the topics for the discussion at the future 
meetings of AMT group. 
Chevallard, Y. (2005). Steps towards a new epistemology in mathematics education. Opening 

conference at CERME4, Sant Feliu de Guixols (Spain), February 2005. 
Tall, D. O. & Vinner, S. (1981) Concept image and concept definition in mathematics, with special 

reference to limits and continuity, Educational Studies in Mathematics, 12, 151-169. 
Tall , D. O. (1988). The Nature of Advanced Mathematical Thinking, Papers of the Working Group 

of AMT at the International Conference for the Psychology of Mathematics Education. 
Tall, D. O. (2006). Developing a Theory of Mathematical Growth. International Reviews on 

Mathematical Education (ZDM). 39, 145-154. 
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A THEORETICAL MODEL FOR VISUAL-SPATIAL THINKING 

Conceição Costa, José Manuel Matos, and Jaime Carvalho e Silva 

Escola Superior de Educação de Coimbra, Universidade Nova de Lisboa, 
Universidade de Coimbra 

This paper presents part of a study (Costa, 2005) intending to create, explore and 
refine a theoretical model for visual-spatial thinking that includes three visual-spatial 
thinking modes along with the thinking processes associated to them. This paper will 
focus on the final theoretical model. 

Many researchers have emphasized the value of the visualization and the visual 
reasoning in the mathematics learning (Bishop, 1989; Presmeg, 1989, Zimmerman & 
Cunningham, 1991). In the literature we find terms such as visualization, visual 
thinking, visual reasoning, spatial reasoning, spatial thinking to name mental acts 
combining visual, spatial, and visual-spatial thinking. The visual reasoning often 
parallels visualization (Hershkowitz, Parzysz & Dormolen, 1996) and visualization 
itself has different definitions according to the context of mathematics education, 
mathematics, or psychology. The terms, spatial thinking or spatial reasoning appear 
frequently tied to spatial abilities (Clausen-May e Smith, 1998). Dreyfus (1991) 
included visualization as a component of representation crucial in AMT. 

This paper presents part of a research (Costa, 2005) intending to create, explore and 
refine a theoretical model for visual-spatial thinking, thus deepening meaning of a 
thinking-centered perspective on AMT. This research was developed through a three-
stage process. Firstly, an initial model for visual-spatial thinking, condensed from 
relevant literature, was developed; secondly, this initial model was confronted with 
data from an empirical study; finally, the initial model was refined. The methodology 
for the empirical study was qualitative, integrating video registrations of individual 
answers and tasks performed in classroom activity. These episodes were analyzed and 
a constant comparison approach was used to fine-tune the initial model. The refined 
version of the model was elaborated and evaluated according to the standards for 
judging theories, models and results proposed by Schoenfeld (2002). 

This paper will focus on the final theoretical model. The theoretical framework took 
into account research in the areas of cognitive processes in mathematics education, 
embodiment in mathematics, a perspective on learning with emphasis on the social 
construction of knowledge and on semiotic mediation, theoretical perspectives on the 
teaching and learning of geometric concept. 

A THEORETICAL VISUAL-SPATIAL THINKING MODEL 

The final model for understanding the visual-spatial thinking differentiates four 
distinct modes of thinking: the visual-spatial thinking resulting from perception 
(VTP) — intellectual operations on sensory, perceptual and memory material —; the 
visual-spatial thinking resulting from mental manipulation of images (VTMI) — 
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intellectual operations related to the manipulation and the transformation of images 
—; the visual-spatial thinking resulting from the mental construction of relationships 
among images (VTR) — intellectual operations related to the mental construction of 
relationships among images, the comparison of ideas, concepts and model—; the 
visual-spatial thinking connected with transmission-communication and 
representation, that is to say, connected with the exteriorization of the thinking (VTE) 
— intellectual operations related to the representation, translation and communication 
of ideas, concepts and methods. 
 

Visual-spatial thinking modes Definition 

Visual-spatial thinking resulting 
from perception (VTP). 

Intellectual operations on sensory, 
perceptual and memory material. 

Visual-spatial thinking resulting 
from mental manipulation of 
images (VTMI). 

Intellectual operations related to the 
manipulation and the transformation of 
images. 

Visual-spatial thinking resulting 
from the mental construction of 
relationships among images 
(VTR). 

Intellectual operations related to the 
mental construction of relationships 
among images, the comparison of ideas, 
concepts and models. 

Visual-spatial thinking resulting 
from the exteriorization of 
thinking (VTE). 

Intellectual operations related to the 
representation, translation and 
communication of ideas, concepts and 
methods. 

TABLE I. Visual-spatial thinking modes and respective definitions. 

In the next sections, we will discuss each mode and characterize the associated 
mental processes. 

VISUAL-SPATIAL THINKING RESULTING FROM PERCEPTION 

The visual-spatial thinking mode resulting from perception (VTP) is the nearest to 
sensations, that is to say, to the electric impulses that arrive at the brain. Its 
intellectual operations occur on sensory, perceptual and memory material. It is 
constructed from sensory stimulus and takes advantage of information gained from 
experience. This thinking mode involves experiences of mental concentration, of 
control, and observation. The observation experiences involve perception and 
interpretation, depend on past experience, memory, motivation, emotions, attention, 
the individual neuronal mechanisms, previous knowledge, verbalizations, and cultural 
aspects and so, what we saw depends on our relationship to the situation. The 
sociocultural factors, from which the perception depends on, are not less importance 
and they regulate how the members of a culture see. 
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This mode uses concrete images and memory images (Brown & Presmeg, 1993). 
Concrete images may be thought of as “a picture in the mind”, and are not the same 
for all persons; memory images are produced when images of experience are brought 
up again. These are representations of visual information connected to the perception 
of movement, for example, the images remaining immediately after we visually check 
for in-coming vehicles, before crossing the street. 

Mental processes of this mode 

Thinking processes involved in this visual-spatial thinking mode are:  primary 
intuitions; intuitive inference; visual construction; representation again and image 
evaluation; visual recognition; objects and models identifications, formation of a  
“gestalt”, global apprehension of a geometrical configuration; perceptual abstraction 
and abstraction connected with recognition; and generation of concepts. 

The first mental processes associated with the VTP mode are intuitions. Using the 
terminology of Fischbein (1987), we include in this mode the primary intuitions, — 
cognitive acquisitions that develop in individuals independently of any systematic 
instruction as an effect of personal experience. The primary intuitions are connected, 
for instance, with space representation related to body movement, and to images as 
models. Images may inject properties and relationships in the process of concepts 
construction that do not belong to the conceptual structure (points as spots, lines as 
bands). It also includes intuitive inferences, which are shown, for example, when a 
child sees a ball, runs after it according to the ball’s position and adapts his reactions 
to the ball’s movements. The child not only sees the ball moving, but also expects 
that it goes on moving, existing and preserving its shape and properties. 

Visual construction is a mental process, which is present in this mode and may be 
illustrated, for instance, when alterations of distance or size “are seen” in optic 
illusions (even though the mind knows the perception is illusory), or when we 
perceive the fluctuations of the figure-ground in ambiguous designs. 

The mental process of evaluating an image consists in representing again the image 
and this act of re-presentation is complex and subtle (Wheatley, 1998). These re-
presented images are not immutable, because they may undergo change over time. In 
many cases the re-presented image may have been modified or it might be a 
prototype, which is then transformed, based on the demands of the context. The 
nature of the re-presentation is greatly influenced by the intentions of the individual 
and in many cases the re-presented image may come again more elaborated. 

The information that comes through our eyes is involved in visual perception 
containing two phases (Gal & Linchevski, 2002), the visual information processing 
phase which consists in registering the sensory information, and the visual pattern 
recognition phase, which involves the interpretation of the identified shapes and 
objects. In the first stage of visual perception, shapes and objects are extracted from 
the visual scene. To form the object we need to know “what goes with what” and they 
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are organized into groups similar to the gestalt principles. In the second phase of 
visual perception, shapes and objects are recognised. Recognition is the result of 
feature analysis, in which the object is segmented into a set of sub-objects, as the 
output of early visual processing of the first phase. Each sub-object is classified, and 
when the pieces out of which the object is composed and their configuration are 
determined, the object is recognized as a pattern composed of these pieces. The 
cognitive processes designated by visual recognitions, objects and models 
identifications, formation of a gestalt, global apprehension of a geometrical 
configuration belong to the second phase of visual perception while the remainder are 
included in the first phase of visual perception. 

Although abstraction is more developed in the others thinking modes, it shows in 
VTP as a basic perceptual procedure — when we isolate (identify) something from 
the visual scene —, or in the recognition of a familiar structure in a given situation. 
Generation of concepts is done when the recognition of relations and idea emerge. 

VISUAL-SPATIAL THINKING RESULTING FROM MENTAL 
MANIPULATION OF IMAGES 

Visual-spatial thinking mode resulting from mental manipulation of images (VTMI) 
embraces different levels of imagery processing, mainly to foresee the result of 
transforming an image and envision the trajectory of that same transformation. We 
will include in this thinking mode the dynamic imagery and the pattern imagery 
proposed by Brown and Presmeg (1993). Dynamic imagery involves the ability to 
move or to transform a concrete visual image and pattern imagery is a highly abstract 
form of imagery where concrete details are rejected and pure relationships are 
depicted in a visual-spatial scheme. Owens (without date) using the conceptual frame 
of Presmeg, showed a kindergarten child extending a square using pieces of bread to 
make a “skinny” rectangle. This child also used dynamic imagery foreseeing 
(mentally) the result of the transformation a square into a rectangle before executing 
(physically) this same transformation. According to Owens (1994) the dynamic 
imagery was the means by which the child was linking her images for the concepts of 
squares and rectangles. Another child, for instance, makes the medium triangle with 
the small triangles in the tangram puzzle (Owens, without date). This child also used 
a patterned imagery because she can see a certain configuration, structure (triangle) as 
a composition of other structures. 

The VTMI mode incorporates the transformational reasoning referring to the 
foresight and mental transformations of objects, postulated by Simon (1996). Simon 
assumes, more than the inductive and deductive reasoning used in the comprehension 
and validation of mathematics ideas, a third type of reasoning, transformational 
reasoning, is defined as 

“The mental or physical enactment of an operation or set of operations on an object or set 
of objects that allows one to envision the transformations that these objects undergo and 
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the sets of results of these operations. Central to transformational reasoning is the ability 
to consider, not a static state, but a dynamic process by which a new state or a continuum 
of states are generated” (p. 201). 

This transformational reasoning is supported by transformational reproductive images 
or by antecipatory images. Reproductive images evoke objects or events already 
known and anticipatory images represent, through figural imagination, events 
(movements or transformations, for example) that have not previously been 
perceived. In either case, someone is able to visualize the transformation resulting 
from an operation; however, transformational reasoning is not restricted to mental 
imaging of transformations. A physical enactment may be used to examine the results 
of a transformation. For example, a student who is exploring the validity of the 
statement, “If you know the perimeter of a rectangle, you know its area”, might work 
with a loop of string observing what happens to the area as she makes the rectangle 
longer and thinner. But in order for the student to model this problem it is required a 
mental anticipation, that is, he must know, before handling the string, how to model 
the rectangles and use the string to observe the results of the operation (Simon, 1996). 
In both transformational reasoning and VTMI mode, mental operations or 
transformations on objects may be made and mentally envisioned as well their 
results. 

Mental processes of this mode 

The following mental processes are associated with this visual-spatial thinking mode: 
secondary intuitions and anticipatory intuitions; unitizing; mental transformations; 
reflective abstraction, constructive generalization; synthesizing; spatial structure; 
coordination; and visual construction. 

The intuitions associated to VTMI, following the Fischbein´s terminology, are of two 
types: secondary intuitions and anticipatory intuitions. The secondary intuitions are 
affirmative intuitions that represent a stable cognitive attitude with regard to a more 
general, common, situation. The secondary intuitions are developed as the result of a 
systematic intellectual formation and they are interpretations of various facts taken as 
assured. Integration into dynamic and perceptively rich situations, as for instance, the 
use of a microworld, seems to enrich the acquisition of intuitions. Particularly 
secondary intuitions may be acquired (Fischbein, 1987). 

Anticipatory intuitions also characterize this visual-spatial thinking mode. These 
intuitions do not simply establish a (apparently) given fact. They appear as a 
discovery, a preliminary solution to a problem, and the sudden resolution of a 
previous endeavour. Moreover, one may assume that anticipatory intuitions are 
inspired, directed, stimulated or blocked by existing affirmative intuitions. The 
anticipatory intuitions may be the effect of a creative activity in mathematics, of a 
constructive process in which inductive procedures, analogies and plausible guesses 
play a fundamental role (Fischbein, 1987). 
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Unitizing, which consists in the mental operation of constructing, creating and 
coordinating abstracts mathematical units, identified as a base for much mathematical 
activity in both geometric and numeral settings, are present in VTMI. 

The term mental transformation is used to refer a type of process which involve the 
change of a mental representation in one of two aspects or in a composition of the 
two: to dislocate, that is to say, to change the position and to transform, where there is 
only a change of shape. These two aspects are related to each other and there is only a 
difference of complexity between displacements and transformations. In particular, to 
change the shape of an object may consist in dislocating the parts. Reciprocally, when 
we dislocate an object without changing its shape, this may dislocate en reference to 
another and changing the configuration of the whole.  

Gusev and Safuanov revealed three types of operating with images (in order of their 
increasing complexity): transformations resulting in the change of a spatial position 
of an image (1st type); transformations changing the structure of an image (2nd type); 
long and repeated performance of transformations of first two types (3rd type). 

This thinking mode is characterized by a particular type of abstraction, the reflective 
abstraction — essentially the construction by the subject of mental objects and of 
mental actions on these objects. The subject, in order to understand, deal with, 
organize, or make sense out of a perceived problem situation or to know a 
mathematic concept, uses schemes that invoke a more or less coherent collection of 
objects and processes. Understanding the trajectory as a coordination of successive 
displacements to form a continuous whole is an example of reflective abstraction in 
children thinking (Dubinsky, 1991). The pseudo-empirical abstraction (in the Piaget 
sense) as a sub-variety of the reflective abstraction is present in this visual-spatial 
thinking mode, focused on children actions and the properties of the actions and it 
appears from their successive coordinations.  

Constructive generalization creates new forms, new contents, that is to say, a new 
structural organization. The mental process synthesizing that means to combine or 
compose parts in such way that they form a whole, an entity, is a basic prerequisite to 
the abstraction. The spatial structuring is the mental act of constructing an 
organization or form for an object or set of objects. It determines an object’s nature or 
shape by identifying its spatial components, combining components into spatial 
composites and establishing interrelationships between and among components and 
composites (Battista, 2003). 

A fundamental cognitive process to the understanding of the reasoning in this 
thinking mode VTMI is the coordination which involves diverse aspects, one of them 
is that indicated by Battista (2003, p. 79) “it arranges abstracted items in proper 
position relative to each other and relative to the wholes to which they belong”. 
Another aspect of the coordination is related with the ability of using structures 
(references systems) as a way to organize the thinking. So, for instance, a student 
adopts structures of references to codify the spatial positions of the objects that may 
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come to be defined: references systems centred in himself, references systems centred 
in the objects or in external structures which are or provided by the spatial structure 
or they are imposed mentally by the space (environment). 

The visual construction process included in this visual-spatial thinking mode is 
related with making or modifying a spatial structure in such way that it meets certain 
predetermined geometric criteria. The visual construction comprises abilities such as 
the anticipation and the logic organization. 

VISUAL-SPATIAL THINKING RESULTING FROM THE MENTAL 
CONSTRUCTION OF RELATIONSHIPS BETWEEN IMAGES 

The intellectual operations of the visual-spatial thinking mode resulting from the 
mental construction of relationships between images (VTR) are related to the mental 
construction of relationships between images, the comparison of ideas, concepts and 
models. 

Mental processes of this mode 

We consider that the visual-spatial thinking resulting from the mental construction of 
relationships between images, mode VTR, may be associated to the following 
thinking processes: anticipatory intuitions; discovery of relationships between 
images, properties and facts; comparisons; synthesis; reflective abstraction; 
metacognition. The metacognition process is fundamentally understood as a 
regulation of cognition which includes the planning before beginning to solve the 
problem and the continuous evaluation while solving the problem. 

VISUAL-SPATIAL THINKING RESULTING FROM THE 
EXTERIORIZATION OF THINKING 

The visual-spatial thinking mode resulting from the exteriorization of thinking (VTE) 
is connected to the process by which mental representations are materialized, to the 
communication and the dissemination of ideas, to the construction of argumentation, 
to the description of the mental dynamics and to the support of conceptualizing 
abstract entities. The VTE mode has a nature different from the other thinking modes 
because is like the conveyor of those thinking modes. The VTE mode is a cognitive 
space of action, representation, construction and communication and as a whole may 
integrate components such the body, the physic world and the culture. This mode 
allows us to infer the imagery and the mental dynamics of students and to understand 
how they perform mathematical tasks. 

For communicating their mental representations, the students may construct patterns, 
drawings, figures, and graphics, musical and rhythmic productions, to use gestures 
(corporal language, facial expression), actions, verbal descriptions (spoken or 
written), mathematic representations, etc. The VTE thinking mode relies 
fundamentally on verbal and gestured, visual language and it requires the use of 
concrete, memory, dynamic, pattern images and also kinaesthetic images (Brown & 
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Presmeg, 1993) which involve muscular activity of some type (the muscular activity 
may be limited to the use of hands and fingers). 

Mental processes of this mode 

The mental processes associated to the visual-spatial thinking mode resulting from 
the exteriorization of thinking are: representations; translation; description of the 
mental dynamics through verbalization and gestures; construction of argumentation, 
of conjectures; and the use of analogies. The concept of representation is essential to 
understanding constructive processes in learning and doing of mathematics and, 
roughly speaking, an external representation is a configuration of some kind that 
represents something in a special manner. For instance a word may represent an 
object of the real life, a numeral may represent the cardinal of a set, or even the same 
numeral may represent a position in a numeric line. The representations do not occur 
in isolation and usually they belong to highly structured systems, either personal and 
idiosyncratic or cultural and conventional (Goldin & Kaput, 1996). Among the 
external representations we find external physic embodiments, structured external 
physical situations or a set of situations which may be mathematically described or 
seen as embodying a mathematic idea; linguistic expressions, verbal or syntactic and 
formal mathematic constructions. 

The representation of visual-spatial information used by the student is going to 
depend on the context where the problem is posed. The same task may require from 
the student different spatial abilities or different levels of abstraction. This 
representation may be a concrete image or a diagram or a concept representation: the 
reflection around a line, or the pattern construction or a tessellation. 

Translation is a process that is intimately related to the conversion among 
representations. For example, the conversion of what is given of symbolic form in 
information given by figures or passing a problem from natural language or graphic 
form to some other form. 

The description of the mental dynamic designates mental images evidenced in oral 
language, actions or gestures and in metaphoric expressions. Gesture is used to refer 
to any of a variety of movements, we want to identify mainly movements of hands, 
non-conventional gestures (gesticulations and language-like gestures) that accompany 
the speech with which they form an integrated whole. The description of the mental 
dynamic is going to be designated by factual if the objects of description are 
geometric objects and by analytical if the objects of description are geometric 
properties. 

Analogies or metaphoric expressions are appealing modes of externalizing visual-
spatial thinking, particularly ways of mathematic communication and of building of 
meaning. Two objects, two systems are said to be analogical if, on the basis of a 
certain partial similarity, one feels entitled to assume that the respective entities are 
similar in other respects as well. The difference between analogy and trivial similarity 
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is that analogy justifies plausible inferences. So analogies imply similarity of 
structure (Fischbein, 1987). The visual-spatial thinking mode VTR may involve the 
use of analogies, which may conduct to new images, to new models or to draw 
comparisons, transformations and discoveries of relationships between images. Gusev 
and Safuanov (2003) say that the new images processed under the influence of some 
associations and analogies emerge frequently with unexpected qualities, creative 
imagination and they are the result basically operating the second and third type of 
transformations (behind explained). The visual-spatial thinking mode VTE is the 
conductor of those analogies, is linked to the externalization through the language, 
actions and gestures or through a distributed blend of perceptual sources coming from 
the screen and the gestures, if the student has not yet a language to describe and to 
theorize the events, appropriately. 
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SECONDARY-TERTIARY TRANSITION AND STUDENTS’ 
DIFFICULTIES:  

THE EXAMPLE OF DUALITY 

Martine De Vleeschouwer 

Unité de support didactique, University of Namur (FUNDP) – Belgium 
 

Abstract : We are presenting a study about duality and its learning in linear algebra. 
We have elaborated a device of follow-up of knowledge and difficulties of students 
enrolled in first-year university mathematics or physics programs, concerning this 
theme. We are presenting the results of this device categorizing students’ difficulties. 
We present moreover a perspective on transition allowing us to interpret  students’ 
difficulties in duality  in terms of transition. 
 
Key-words :  linear algebra, duality, tertiary level, institutional transition 

1. INTRODUCTION AND THEORETICAL FRAMEWORKS 
The study presented here focuses on the teaching of duality at university. This work 
is thus naturally related with WG12 theme “Advanced mathematical 
thinking (AMT)” of CERME6, and is more precisely connected with the sub-theme 
“Effective instructional settings, teaching approaches and curriculum design at the 
advanced level”. 

Duality is taught in most countries only at tertiary level, and is even more ‘advanced’ 
than elementary linear algebra. One aspect of our contribution is to precise possible 
meanings of ‘advanced’, in order to enlighten students’ difficulties, a necessary step 
before proposing a teaching design.   

From an epistemological point of view, duality takes a central place in linear algebra. 
Indeed, the notion of rank, essential in linear algebra, has first emerged in what 
Dorier terms the dual aspect, meaning the smallest number of linearly independent 
equations (Dorier 1993, p. 159).   

Even if since the mid-eighties didactical works are interested in linear algebra, they 
mostly concern elementary notions of this part of mathematics (Dorier 2000, 
Trigueros & Oktac 2005,…).  

However, when the duality is studied as an object (Douady 1987) in a course of linear 
algebra in first year of university, we notice that the students are confronted with 
numerous difficulties. Our main objective is to understand the origin of these 
difficulties, and to be able, in a later work, to propose adapted teaching devices.  

In our work, we try, in a first step, to identify different kinds of difficulties, according 
to mathematical content that can be problematic, and after to interpret these 
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difficulties from an institutional point of view. So we try to answer the following 
questions : 

- What are the difficulties tied to duality itself, those that are linked more 
generally to linear algebra, or also to other connected contents? 

- How can we interpret these difficulties, which hypotheses can we do about 
their causes ? 

Our work, beyond duality, also has for objective to enlighten the specific difficulties 
of novice university students. These difficulties have already been the object of 
numerous works (Artigue 2004, Gueudet 2008). Here we adopt an institutional point 
of view (Chevallard 2005). The difficulties don’t only result from the fact that new 
knowledge is met. They can be caused by the fact that the same knowledge will be 
differently approached in the secondary school institution and in the undergraduate 
institution. So a same type of tasks can be associated with a new technique, to solve 
the corresponding exercises ; a same technique will be differently justified… So, in 
our research, we use the « praxeology » notion, also named « mathematical 
organization », introduced by Chevallard (2002). He defines a punctual mathematical 
organization as an union of two blocks [Π / Λ], each one containing two parts. The 
first block, Π = [T / τ], named « practico-technical » block, is made of a type of tasks 
T and a technique τ allowed to realize tasks related to type T. The second block, Λ = 
[θ / Θ], named « technologico-theoretical », is made of a technology θ, which is a 
discourse justifying the technique τ, and a theory Θ justifying the technology θ. A 
complete mathematical organization is then an organization that we can note [Π / Λ] 
or [T / τ / θ / Θ].  

Let us illustrate these concepts by an example. Suppose we propose to a student to 
solve the following exercice: « Compute the dual basis of the canonical basis of  

4
�  ». We can say that this exercise is related with the type of task T « given a n-(sub-
)vector space E and one of its bases, to determine the dual basis of the given basis ». 
A technic τ associated with this type of tasks T consists in solving n systems (i = 

1,…,n) of n equations in n unknowns ( ipα ): 
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of the j th vector of the given basis. This technic τ is justified by a discourse, called 
technology θ : « To find the dual basis, firstly define the general expression of any 

linear form y in the given space : 
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vector x in E. Then solve n systems of n equations in n unknowns : 
, 1,..., : ( )i j iji j n y x δ∀ = =  where jx  are the vectors of the basis given in the type of task ». 

This technology θ is justified by the theory 1 : « Given E an n-vector space, and { } 1
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n

i i
y

=
 of the dual space E’ so that 
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, 1,..., : ( )i j iji j n y x δ∀ = = . The defined basis { } 1

n

i i
y

=
 is also called the dual basis associated 

with a basis of the primal space E ». 
 

We also use a framework proposed by Winsløw (2008), especially focused on 
“concrete-abstract” transition issues, and drawing on praxeologies. Winsløw 
considers that when a student arrives in an undergraduate institution, he/she is 
confronted with two types of transition. The first type of transition origins in the 
secondary school’s teaching, where almost only the block « practico-technic » 
intervenes. The first transition that a student meets changing institution, is that at  
university, the « technologico-theoric » block is also present, completing the 
mathematical organizations. But a second transition appears when the recently 
introduced elements of « technologico-theoretical » block also become objects that 
the students have to manipulate, constituting then the « practico-technic » block of 
new mathematical organizations. We will explain why the learning of duality in 
linear algebra at university depends of this second type of transition. 

In this article we present the analysis of responses to a survey that has been proposed 
to students enrolled in first year university mathematics or physics programs in the 
University of Namur (Belgium) concerning duality. In a first step (part 2), we 
describe the survey. Then in part 3 we present the analysis of the survey’s results. 

2. DESCRIPTION OF THE SURVEY 
In (DeVleeschouwer 2008), we describe how the teaching of the duality in linear 
algebra is structured, focusing on the concepts of dual (as vector space), linear form, 
dual basis, annihilator and transposed transformation. Through the analysis of various 
textbooks (books and course notes), we have analysed the duality as an object 
(Douady 1987) of teaching in the university institution. We also studied the different 
aims of the tool function of the duality : we distinguished the analogy-tool, the 
resolution-tool, the illustration-tool, the definition-tool and the demonstration-tool for 
duality. 

Thanks to these analyses we have designed a survey addressed to students enrolled in 
first year of university, meeting the teaching of duality in linear algebra. This survey, 
which focuses on the duality in its ‘object’ aspect (Douady 1987), is based on the 
elements identified in the analysis of textbooks, and will enable us to precise the 
difficulties faced by the students. 

This survey contains two parts : 

- The first one is constituted of a questionnaire. 37 students enrolled in the first 
year of mathematics or physics programs at the University of Namur answered 
to this (written) questionnaire (February 2008). The students had two hours to 
answer it. Some interviews allowed to highlight the answers brought to the 
questionnaire for 16 of these students (May 2008).  
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- The second part of the survey is a group work. 23 students enrolled in the first 
year of mathematics programs took part of this group work. The students, 
divided in four groups of 5 or 6, had 5 weeks to return a written report about 
the asked work. It was recommended then to consult an assistant during the 
two first weeks of their work ; and an interview (varying from 30 to 90 
minutes) was mandatory when giving the written report (March 2008). 

Before the survey, the students have already seen, in the theoretical course and in the 
exercises, the vector spaces (algebraic structures, linear dependence and dimension, 
sub-vector spaces) ; the linear applications, the associated matrices; the linear forms, 
and also the dual space (and bases) and the reflexivity; the linear and transpose 
transformations. The theoretical course had already approached determinants 
(without exercises).  

We have to precise that in the secondary school Belgian pupils have only approached 
the vector’s notion at the geometric level (Hillel 2000, p.193). The notion of 
transpose was only presented to the pupils of the secondary school who specialize in 
mathematics, principally when approaching the definition of the inverse matrix (using 
the transpose of the cofactors matrix). 

2.1. THE QUESTIONNAIRE 

The questionnaire (appendix 1) comprises two parts, each one composed by the same 
questions but contextualized in different frames. The two chosen frames are the 
vector space IR 4; and the frame of matrices with real coefficients, particularized to 2 
by 2 matrices ( 2 2xM ).  

The different types of tasks (Chevallard 2005) associated with the exercises proposed 
in the questionnaire are described in (De Vleeschouwer 2008). We only propose here 
a short description of types of tasks present in the questionnaire : 

- « Example of linear form », noted T_Exemp_FL : given a (sub-)vector space, give 
an example or counter-example of a linear form. 

- « General expression of a linear form »,noted T_ExpGen_FL : given a (sub-)vector 
space, describe a general expression of a linear form defined on the studied space. 

- « Primal and dual basis », noted T_Base_P&D : given a n-(sub-)vector space and a 
set of n vectors of the considered vector space, determine if this set  is a basis of the 
vector space and if it is, to find the dual basis. 

For the rest of or study, we had to subdivide the type of tasks T_Base_P&D into sub-
types of tasks : 

- « Primal basis », noted ST_Base_P : given a n-(sub-)vector space and a set of 
n vectors of the considered vector space, determine if this set is a basis of the 
vector space . 

- « Dual basis », noted ST_Base_D : given a n-(sub-)vector space and a set of n 
vectors of the considered vector space, determine its dual basis. 
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- « Coordinates functions », noted T_FctCoor : given a basis and its dual basis, 
determining the coordinates of a vector from the primal vector space. 

- « Definition of the transpose transformation», noted T_Def_TTransp : given a 
linear transformation defined on a (sub-)vector space, to define its transpose 
transformation. 

2.2. THE GROUP WORK 

The group work (GW) is composed of several parts, that we will not present in details 
in this article. The two first parts of the GW are corresponding to the questionnaire. 
What follows complements then the questionnaire, notably : 

- asking for the relation between the two parts of the questionnaire ; 

- taking the same plan that the two parts of the questionnaire, but in the algebraic 
theoretical frame because « il s’agit de proposer des apprentissages qui portent sur 
divers cadres à propos d’une même connaissance »1 [Robert 1998, p.155]. Knowing 
that « ce n’est pas toujours le travail dans un cadre général, formel, qui est le plus 
difficile »2 [Robert 1998, p.151], we adapt the common plan of the two parts of the 
questionnaire notably with bringing new types of tasks for the algebraic theoretical 
frame. For example, concerning the transpose : 

-  « Representation of the transpose », noted T_Repr_TTransp : explain, choosing 
one or several semiotic representation registers, what represents the transpose 
transformation. We want to know if the students think that the transpose 
transformation is defined on the dual space, or if they feel that the transpose 
transformation applied to a linear form is in fact the compound of the linear form 
and the initial transformation. 

-  « Properties of the transpose », noted T_Prop_TTrans : establish or prove 
transpose’s properties. Especially, we ask the students if it is possible to claim that 
( )t tf f= . They have then to justify their answer. That question allows us to 
investigate the students’ perception about the relation between the bidual and the 
primal and more especially about the canonic isomorphism between these two 
finite-dimensional spaces.  

3. RESULTS OF THE SURVEY 
The first observations of the analysis of the student’s answers to the survey lead us to 
perceive different natures of students’ difficulties when learning duality. Drawing on 
this analysis, and on our analysis of the way duality is structured in textbooks, and 
articulated with linear algebra (DeVleeschouwer 2008), we have chosen to classify 
the appeared difficulties in three main categories: difficulties tied to an insufficient 
mastery of elementary concepts of linear algebra, difficulties common to the 

                                                 
1 “ We have to propose learnings which concern diverse frames about the same knowledge.” 
2 “ It is not still the work in the general, formal frame, that is most difficult.” 
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elementary linear algebra and duality, and finally difficulties specific to duality. 
Naturally, intersections between these categories are possible. 

Some difficulties, obviously, are even more general : for example, we observed a 
confusion between a function f and the value of the function in an element of the 
departure’s space : f(x,y,z,t). Another well-known fact is that mathematical writing is 
not mastered by the students yet (obstacle of formalism, Dorier 2000). We don’t 
detail here these types of difficulties, preferring to focus on linear algebra. 

All the listed difficulties can be analyzed from an institutional point of view (the 
same object is differently considered in different institutions). In particular, we shall 
show (section 3.2) that the difficulties listed in the third category can be interpreted in 
term of second type of transition (Winsløw 2008). 

3.1. OBSERVATION AND CLASSIFICATION OF DIFFICULTIES IN 
DUALITY 

3.1.1. Insufficient mastery of elementary concepts of linear algebra 

By elementary concepts of linear algebra, we mean concepts considered as 
elementary with regard to the notion of duality which we study. 

Let us consider for example the notion of linear application or linear form. Indeed, 
only 62% of the students who answered to the questionnaire give a correct example 
of linear form within the frame of IR 4. This rate decreases to 27% in the matrix frame. 

The students also have difficulties to build examples of vector spaces. They propose 
for example the set of polynomials of degree 3; or still the set of polynomials of 
degree superior or equal to 3. Asking the students to design for examples, is frequent 
at the university, and hardly present at secondary school; it is thus difficult for novice 
students (Praslon 2000). 

We can also notice that generally speaking, the students prefer to work within the 
frame of IR 4 rather than within the frame of matrices. The exercises corresponding to 
the various types of tasks are also better solved there. The vector space of the 2x2 
matrices is not familiar to the students. In the University institution, it is necessary to 
consider objects recently defined in linear algebra as familiar objects on which and 
from which we are going to work. For example the fact that the object matrix can be 
considered as an element of a vector space, that’s to say a vector. We can thus 
consider the coordinates of a matrix, or define linear applications acting on matrices. 

Being able to change frames is important for the learning of a notion. In the case of 
duality this requires in particular the knowledge of several vector spaces. 

3.1.2. Difficulties common to linear algebra and duality 

We also observe difficulties common to elementary linear algebra and to duality, for 
example the confusion between a vector and its coordinates. This confusion, well 
known in linear algebra (Dorier 1997), becomes crucial when learning duality. 
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Within the framework of 4-tuples, we could say that the confusion between vectors 
and coordinates is natural or unnoticed. We can think that it is one of the reasons for 
which the students privilege this frame in the questionnaire. We notice that the 
students tend to work with the coordinates of objects (vectors, matrices, linear forms) 
and not with objects in themselves. So, it is frequent to see appearing in the answers 
the equality between the i th linear form of dual basis (often noted yi by the students) 
and the 4-tuple taking back its coordinates in the canonic base (that the students 
nevertheless learnt to note [yi]

e’ ). 

Another problem that we identified is the fact that the students prefer to present the 
solution of an exercise as an element of the vector space being of use as frame to the 
task (IR 4 or 2 2xM ). So, during the resolution of exercises corresponding to the type of 
task T_FctCoor, concerning the computation of the coordinates of an element 
(quadruplet or matrix) of the considered vector space, it is frequent to see students 
presenting calculated or deducted coordinates (in the second part of the questionnaire 
by analogy with regard to the first part) as a 4-tuple or as a matrix.  

So, the only student having correctly solved the exercise corresponding to the type of 
task T_TTransp within the framework of 4-tuples ends then his answer by identifying 

( )tf y  with a 4-uplet containing his coordinates in the canonic dual basis, without 
mentioning however these are coordinates in this basis. In the matrix frame, this 
student presents the transpose in the form of matrix. 

3.1.3. Difficulties directly related with duality 

We can also classify difficulties directly related with duality, often connected with 
the very abstract character of the involved objects. It will lead us naturally to the 
following section dealing with the “concrete-abstract” transition (Winsløw 2008). 

The definition of the transpose transformation can illustrate our comments because it 
is about a transformation defined on a vector space which elements are linear forms. 

So, during the resolution of an exercise corresponding to the type of tasks 
T_Def_TTransp, within the frame of 4-uplets, three students mix up the transpose 
transformation with the inverse transformation. They have a general idea of a 
“reverse” process, associated both with inverse and with transpose. We also can 
notice, within the frame of IR 4, that some students don’t even try to work with the 
given transformation : they only give the theoretical definition of the transpose or 
another explanation onto what they think the transpose should be, without trying 
however to resolve effectively the proposed task. For these students, the transpose is 
only a part of the abstract world, and they don’t manage to mobilize it in a 
contextualised frame. 

Within the frame of the 2x2 matrices, we find almost the same proportion of students 
working with the given transformation among the students trying to solve the 
question corresponding to the type of tasks T_Def_TTransp. But in this frame, the 
answers are more varied because the students associate the proposed type of task with 
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a notion approached on the institution secondary school in Belgium : the transpose 
matrix. For example, to resolve an exercise depending from the type of tasks 
T_Def_TTransp in the matrix frame, some students simply take back the matrix 
which is given to them in the statement and transpose it. The notion of matrix 
dominates on the notion of application when the term “transpose” is used. 

3.2. « CONCRETE-ABSTRACT » TRANSITION 

The difficulties directly related to duality presented in the previous section can be 
interpreted in terms of "concrete-abstract" transition (Winsløw 2008), which 
corresponds to the second type of transition described in the section 1. According to 
Winsløw, in the secondary school institution, it is essentially the "practico-technical" 
block of the mathematical organizations that is worked. This coincides with what we 
can notice when we analyze the answers of the students who were asked to say, in the 
work group, if there is, according to them, a link between the first two parts (IR 4 
frame and matrix frame). The students concentrate themselves on the practico-
technical part of mathematical organizations described by Chevallard (2005), and 
generally let down the technologico-theoretical block. Indeed, students answer that 
“both exercises represent the same transformations in two very similar vector spaces” 
and that “the question 2 is exactly the same than the question 1, there is only their 
representation which changes”. By using the term “similar”, the students do not 
identify the vector spaces, but indeed elements constituting the vectors of each of 
these two spaces. The students notice that only the “representation changes”. We can 
suppose that by writing it, the students think of applying identical techniques 
(computation of dual basis,…) to the various proposed statements. Always 
concerning the link between both parts of the questionnaire, the other students say, in 
the end, that "we find the same solutions". They fall again into the practico-technical 
block : according to them, the numerical values appearing in the solution are the most 
important. They do not mention the isomorphism used to justify this practice. 

In the University institution, the technologico-theoretical block takes more 
importance. It is a first transition. Some students already adapted to this evolution. To 
illustrate our comments, let us turn to the exercises corresponding to the types of 
tasks T_Exemp_FL and T_ExpGen_FL. Even if these exercises did not a priori 
require any justification, a student justifies explicitly the fact that the supplied 
example is a form and also that the linearity is verified. 

A second transition appears when elements constituting the technologico-theoretical 
block of a mathematical organization become elements on which calculations will be 
made and in which techniques are going to be applied. These elements constitute then 
the practico-technical block of new mathematical organizations. It is what happens 
when we work with the duality as an object : linear forms are considered as vectors 
because the set of linear forms is a vector space. The theories developed on the dual 
justify techniques applied to the linear forms. But when we consider the transpose 
transformation, the dual shifts from the technologico-theoretical block of a previous 
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mathematical organization to integrate the practico-technical block of a new 
mathematical organization, because the dual is then considered as the departure space 
of the transpose transformation. According to Winsløw, this second transition is even 
more difficult than the first one. Indeed, concerning the type of tasks T_Def_TTransp 
for example, we observe that the students have difficulties to define correctly the 
departure space of the transpose transformation. 

However, when we ask the students, in the group work, if we can assert that ( )t tf f= , 
we notice that the question is very well answered by all groups. To solve a task of the 
type T_Prop_TTrans presented in an algebraic theoretical frame, the students choose, 
rightly, the technologico-theoretical block. For the transpose of the transpose, the 
students agree spontaneously to look for the solution in the theory. Sometimes, to 
make the link between the theory and the examples is more difficult than to stay in 
the theory. 

4. CONCLUSIONS, DISCUSSION AND PERSPECTIVES 
We classified the difficulties observed in the students’ answers in three principal 
categories: the difficulties tied to an insufficient mastery of elementary concepts of 
linear algebra, those common to the elementary linear algebra and duality, and finally 
those specific to duality. We have seen, particularly, that the movement from 
elementary linear algebra to duality can be interpreted as a transition, according to 
Winsløw’s meaning (2008). This confirms that transitions exist beyond the precise 
moment of the university’s entry.  

So, proposing a teaching device which searches to improve the learning of duality, 
asks to sit solid bases of linear algebra, and to devote specific attention to very 
abstract concepts as the transpose; but also to think about transition between 
elementary linear algebra and duality. 

We will use these facts to propose an experimental teaching of duality in first year of 
university, in a further stage of our work. 
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APPENDIX 1 : Questionnaire 
To answer the questions below, you may use as you prefer, the formal mathematical language, the 
French language, graphics or drawings,… 
1. Consider the vector space, built on the field of reals. 

a. Give an example on a linear form defined on IR 4. 
b. Give the general expression of a linear form defined on IR 4. 
c. Given 1 (1,2,0,4)x = , 2 (2,0, 1,2)x = − , 3 (1,0,0, 1)x = − , 4 (2,0,0,3)x = ; 

given { }1 2 3 4, , ,X x x x x= . Is the set X  a  base of  IR 4? 

If yes, determine its dual basis. 
d. If the set  { }1 2 3 4, , ,X x x x x=  defined above is a basis and  if you were able to compute its dual 

basis, what could be the coordinates of the vector (15,8,10,5) in the basis X ? Please explain 
your solution. 

e. Given the linear transformation  f : IR 4 → IR 4 so that ( , , , ) (2 ,2 , , 3 )f x y z t x t y z x y t z= − − − − − . 
How will you define the transpose transformation ? 

2. Consider the vector space 2 2xM , the vector space of 2 lines, 2 columns matrices, with real 
coefficients, built on the field of reals. 
a. Give an example of linear form defined on2 2xM . 
b. Give the general expression of a linear form defined on 2 2xM . 

c. Given 1

1 0

2 4
M

 
=  
 

, 2

2 1

0 2
M

− 
=  
 

, 3

1 0

0 1
M

 
=  − 

, 4

2 0

0 3
M

 
=  
 

 ; 

given { }1 2 3 4, , ,X M M M M= . 

Is the set X  a basis of 2 2xM  ?  If yes, determine its dual basis. 
d. If the set { }1 2 3 4, , ,X M M M M=  defined above is a base and you had computed the dual 

base, what could be the coordinates of the matrix 
30 20

16 10

 
 
 

 into the base X  ? Please explain 

your solution. 

e. Given the linear transformation  2 2 2 2: x xf →M M  so that 
2

2 3

a c a d a b d
f

b d b c c

− − −   
=   − −   

.  

How will you define the transpose transformation ? 
 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2265



  

LEARNING ADVANCED MATHEMATICAL CONCEPTS: THE 
CONCEPT OF LIMIT 

António Domingos 

Departement of  Mathematics 

Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa 

amdd@fct.unl.pt 

 

This paper looks for the difficulties of the students of tertiary educational level in the 
understanding of the mathematical concepts. Based on the Advanced Mathematical 
Thinking (AMT) notion and some cognitive theories about the construction of the 
concepts, it is intended to characterize the understanding of the concept of limit 
revealed by students in the beginning of tertiary educational level. Using the notion 
of concept definition and concept image, the theory of the reification and the 
proceptual nature of the concepts we try to identify these difficulties in students at a 
course of first year in Calculus. More specifically the main research question is to 
characterize understandings of advanced mathematical concepts at the beginning of 
tertiary education. A discussion of a mathematical-centred perspective of AMT is 
undertaken. The methodology used is of qualitative nature involving a teaching 
experiment. We conclude that it is possible to define three levels of concept image, 
incipient concept image, instrumental concept image and relational concept image 
that represent a progression in the level of understanding of the concept in study. 
These levels are based on objects, processes, properties, translation between 
representations and proceptual thinking that these students use when they intend to 
explain the concept. 

CHARACTERISTICS OF ADVANCED MATHEMATICAL THINKING 
The development of the mathematical thinking of students since the elementary level 
until the tertiary level or has been considered an important theme of study.  David 
Tall and Tommy Dreyfus have written about these problems showing some of their 
essential characteristics in concrete situations. Tall (1995, 2004, 2007) characterizes 
the evolution of three worlds of mathematics under a perspective that shows the 
cognitive growth of the mathematical thinking. The conceptual-embodied world, 
based on perception of and reflection on properties of objects, the proceptual-
symbolic world that grows out of the embodied world through action and 
symbolization into thinkable concepts, developing symbols that may be used as 
procepts, and the axiomatic-formal world that is based on formal definitions and 
proof. 

The perceived objects are first seen like visual-spatial structures. When these 
structures are analyzed and their properties tested, these objects are described 
verbally and submitted to a classification (first in collections, later in hierarchies). 
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his corresponds to the beginning of a verbal deduction related to the properties and 
to a systematic development of a verbal demonstration.  

Actions on the objects, for example, to count, lead to a type of different development. 
The process of counting is developed using numerical words and symbols that will be 
conceptualized as number concepts. These actions become symbolized as processes 
that later are encapsulated in procepts. This type of development that begins with 
Arithmetic, develops into Algebra and then in Advanced Algebra. In this approach, 
Tall (1995) makes a distinction between elementary and advanced mathematics, 
considering that the transition for the advanced mathematics occurs on the level of 
Euclidean demonstration and Advanced Algebra. This characterization, that places 
advanced mathematical thinking on the level of formal geometry, of the formal 
analysis and formal algebra supported by the formal definitions and logic supports 
the development of a creative thought and the investigation.  

The distinction between the two ways of thinking is blurred in Dreyfus (1991) when 
he considers that it is possible to think on topics of advanced mathematics using an 
elementary form. He distinguishes between these two types of thinking by 
performing on the complexity which. He considers that them is not prefunded 
distinction between many of the processes that are used in the elementary and 
advanced mathematical thinking. However advanced mathematics is essentially based 
in the abstractions of definition and deduction. 

The processes that Dreyfus considers in the two types of thought are the processes of 
abstraction and representation, and the main difference is marked by the complexity 
that is demanded in each one. The processes involved in the representation are the 
process of representation beyond itself, the change of representations and the 
translation between them and modelling. The processes involved in the abstraction 
are generalization and synthesis. Dreyfus (1991) considers that, through 
representation and abstraction, we can move between one level of detail to another 
one and based on this movement we can manage the increasing complexity in the 
passage from a way of thought to the other. This vision of the Advanced 
Mathematical Thinking seems to be more useful for the study of the mathematical 
concepts because it places the emphasis in the complexity of these concepts and not 
in the level of formalization needed to develop understanding. 

COGNITIVE THEORIES ON THE CONSTRUCTION OF THE 
MATHEMATICAL CONCEPTS 
This study intends to identify the difficulties felt by the students in the understanding 
of complex mathematical concepts. We will briefly discuss the theories about concept 
definition and concept image, theory of reification and the proceptual thinking, where 
the symbols have an essential role. 
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Concept definition and concept image 
The formation of the concepts is the one of the topics of main importance in the 
psychology of the learning. According to Vinner (1983) there were two main 
difficulties to deal with this question: one is linked with the notion of the concept 
itself and another with the determination of when the concept is correctly formed in 
the mind of somebody. A model of this cognitive process was based on the notions of 
concept image and concept definition. The concept image is something not verbal 
associated in our mind to the name of the concept. It can be used to describe the 
cognitive structure associated to the concept, that includes all mental images, all 
properties and all processes that may be associated to him. For concept definition it 
was understood the verbal definition that explains the concept in an exact mode and 
in a not circular manner (Tall and Vinner, 1981; Vinner, 1983, 1991). This vision of 
the concept definition seems to be based on the teaching of the mathematical 
concepts at the end of secondary education and in tertiary education, where is 
possible to present a formal mathematical definition for the concept. It is this 
definition that is reported by Vinner as being part of the concept definition, being all 
the other representations associated to the concept included in the concept image. 
This form of thinking seems to induce that the mind and the brain can be separate. 
However for Tall (2008) the mind is thought as the way in which the brain works and 
consequently it is an indivisible part of the structure of the brain. Thus, instead of a 
separation between concept definition and concept image, Tall considers that the 
concept definition is no more than one part of the total concept image that exists in 
our mind. For him, the concept image describes the total cognitive structure that is 
associated with the concept, this formularization is very close to that detailed above, 
while the concept definition acquires a statute that is not only linked to the formal 
definition such as it is conceived by the mathematicians. It is this conception that is 
followed in the development of the present study. 

Theory of reification 
Making the analysis of different representations and mathematical definitions we can 
conclude that the abstract concepts can be conceived of two different forms:  
structurally, as objects, and operationally, as processes (Sfard, 1987, 1991, 1992; 
Sfard and Linchevki, 1994). These two views seem to be incompatible, but they are 
complementary. It is possible to show that learning processes can be explained based 
in an interrelation between operational and structural conceptions of the same 
concepts. Based on historical examples and in light of some cognitive theories Sfard 
shows that the operational conception is usually the first step in the acquisition of 
new mathematical concepts. Through the analysis of stages of the formation of the 
concepts, she concludes that the transition from the operational mode to the abstract 
objects is a long and difficult process composed by the phases of interiorization, 
condensation, and reification. In the interiorization phase the individual makes 
familiar itself to the processes that eventually give origin to a new concept. The phase 
of condensation is a period of compression of long sequences of operations in more 
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easy manipulated. This phase is real while the new entity remains firmly linked to the 
process. But when the person will be able to conceive the notion as a finished object 
we can say that the concept was reified. The reification refers to the sudden capacity 
to see something familiar in a totally new form. The individual suddenly sees a new 
mathematical entity as a complete and autonomous object endowing with meaning. 
Thus, while interiorization and condensation are gradual and involve quantitative 
changes, the reification is an instantaneous jump: the process solidifies in one object, 
in a static structure. The new entity is quickly disconnected from the process that 
gave origin to it and starts to acquire its meaning by the fact it belongs to one 
definitive category. This state is also the point where the interiorization of concepts 
of higher level starts. 

Proceptual thinking 
Another perspective on the construction of the mathematical knowledge is proposed 
by David Tall (1995) and is based on the form as the human being, based in activities 
that interact with the environment, develop sufficiently subtle abstract concepts. The 
appearance of the Symbolic Mathematics has special relevance here. Given the nature 
of this type of conceptual development, symbols have an essential role, joining 
thinking the symbol as a concept or as a process. This allows us to think about 
symbols as manipulable entities to make mathematics. Gray and Tall (1994) consider 
thus that the ambiguity of the symbolism expressed in the flexible duality between 
process and concept is not completely used if the distinction between both remains in 
the mind. It is necessary a cognitive combination of process and concept with its own 
terminology. Consequently, the authors appeal to the term procept to mention the set 
of concept and process represented by the same symbol. An elementary procept will 
therefore be an amalgam of three components: a process that produces an 
mathematical object and a symbol that represents at the same time the process and 
object. To explain the performance in the mathematical processes Gray and Tall 
(1994) leave of the nature of the mathematical activities where the terms procedure, 
process and procept represent a sequence in the development of the concepts more 
and more sophisticated. 

The proceptual thinking can be characterized by the ability to compress phases in the 
manipulation of the symbols, where they are seen as objects that can be decomposed 
and be recombined in a flexible way. This kind of thinking plays an essential role in 
the understanding of the mathematical concepts being the symbolism and its 
ambiguity the privileged vehicle for the development of this thought. 

METHODOLOGY OF THE STUDY 
This study is based on a qualitative methodology supported by observation of lessons. 
A design akin to a teaching experiment, involving semi-structured interviews, where 
students are invited to solve mathematical problems related to the tasks developed in 
classes followed-up by a discussion of their procedures, was used. 
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The study was performed at an institution of tertiary education of the region of 
Lisbon, where engineering courses are taught. The participants belonged to the course 
of Mathematics, Engineering Electrotechnic and Computers and Teaching of Natural 
Sciences. All the students attend during a semester the discipline of Mathematical 
Analysis I. The education process was developed around theoretical and practical 
lessons, where the concepts were essentially introduced based on their formal 
definition, which was later worked in the practical lessons based on the resolution of 
exercises. The lessons where were observed by the investigator, having in the end of 
the semester lead interviews semi-structured to some of the students. Based on the 
interviews, in the comments of the lessons and documents produced by the students, 
we made an analysis of content and three levels of concept image of the students 
were identified: incipient concept image, instrumental concept image and relational 
concept image. The establishment of these levels is elaborated on the basis of the 
objects, processes, translation between representations, properties and proceptual 
thinking that the pupils reveal when answers to the cognitive tasks that are placed to 
it. The case of the limit concept and examples of each one of the levels of the concept 
image are now presented. 

IMAGES OF THE CONCEPT OF LIMIT 
During the teaching process, the concept of limit was introduced on the basis of the 
following definition: 

"Let’s f:  D ⊂R →R and a an adherent point to the domain of f. One says that b is limit 
of f in the point a (or when x tends for a), and it is written bxf

ax
=

→
)(lim , if    

δεεδ <−⇒<−∧∈>∃>∀ |)(|||:00 bxfaxDx .  

The data presented below was part of a more general study (Domingos, 2003). 

In the task placed to the students in the interview situation we made an approach that 
we can consider with characteristics of an 
teaching experiment. We started with an 
concrete example, the expression 

2
1

1
lim

2

1
=









−
−

→ x

x
x

 and graphical representation 

of the function 








−
−
1

12

x

x  (figure 1), so that the 

students could give a geometric 
interpretation that allowed them to support 
the symbolic translation of this concept. It 
is presented below a detailed 
characterization of each one of the concept 
images founded. 

 
Figure1. Graph of the function 1

12

−
−

x
x   presented 

to the students (it has a "hole" in the graph 
in the point of absciss 1) 
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Incipient concept image 

When Mariana is asked to explain the meaning of the expression 2
1

1
lim

2

1
=









−
−

→ x

x
x

, she 

says:  

Mariana – Then, aaa… When the x tends… when the x tends to 1… the function comes 
closer to the image, of its image that is two… It is approaching 2…  

She considers that the value of the limit is the image of 1. For such she relates the 
proximity of the images of the point 2 when x approaches 1. When the graph of the 
function (figure 1) is showed and she is asked for to explain the same situation based 
on it, she use the notion of proximity cited previously in terms of intervals: 

Mariana – Then, aaa… In a small interval near of the 1, to the left [points to the graph] 
comes close to the 2. And on the right also it comes close to the 2. 

Inv. – Therefore, you consider an interval here [indicated a neighbourhood of the 1, in the 
horizontal axis] and what happens here? [indicated a neighbourhood of the 2, in the 
vertical axis]… It has that to be always very close… 

Mariana – Of the 2. In a neighbourhood ε . 

 Inv. – (…) Therefore, what you says is: when the x is in the neighbourhood of the 1… 
the images … 

Mariana – Are in the neighbourhood of the 2. 

She makes use of to the lateral limits to explain her notion of limit considering 
separately a neighbourhood to the left of 1 and another one to the right of 1, but 
without having the concern to define also a neighbourhood in terms of the images. 
When the interviewer points to a singular interval at the neighbourhood of 1, she 
mentions the existence of a neighbourhood of 2 with ray ε . Using only the resources 
of the language of the neighbourhoods she does not provide the symbolic translation 
of any part of the definition. Them the interviewer supplied the formal description of 
this example as it might have occurred class (figure 2). 

δεεδ <−⇒<−∧∈>∃>∀ |2)(||1|:00 xfxDx  

Figure 2. Symbolic representation of the expression ( )1
1

1

2

lim −
−

→ x
x

x
= 2 presented to students. 

When she was asked to explain the meaning of |x-1|< ε  in terms of neighbourhoods, 
Mariana did not provide any intended translation between the two representations:  

Mariana – This [|x-1|< ε ] is the neighborhood of the 1… Of ray 1. Not? …  

Her conception of neighbourhood seems to be based essentially on a relation of 
proximity in geometric terms but for which she does not provide a symbolic 
representation. She does not provide the translation between the different 
representations that are presented to her, showing some difficulty in following the 
suggestions made by the interviewer.  
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Mariana presents thus a concept image of limit essentially based on a geometric 
interpretation from which she retains a dynamic relation between objects and images. 
This does not allow her to attribute meaning to the symbolic definition where some of 
the most elementary procedures are translated by symbols. 

Instrumental concept image 

For José the explanation of the expression 2
1

1
lim

2

1
=









−
−

→ x

x
x

 his based on a graphical 

representation, even when such representations are not present. When mentioning the 
previous expression he detaches what happens in the vertical axis "is that the function 
is come close to the 2… of the YYs ". He relates what happens with the images in the 
vertical axis and when confronted with the graph of figure 1, finishes by saying: 

José – When we approach here in the axis of the XXs for 1, of the two sides… It is going 
to tend for 2, in the axis of the YYs. It’s approaching the 2. 

José shows the processes that underlie the relation between the objects and the 
images. He also shows that he sees as a dynamic relationship. 

When asked to establish the symbolic representation of limit he says he cannot do it, 
but provides the translation of some of the processes that he described previously. 
Thus when he refers to the fact that the x approaches 1 he suggests that it can be 
represented by "1 minus x less than anything" and as the x approaches the right and 
the left he considers that it can use the module and writes |1-x|. He even considers 
that this module must be smaller than a very small value, he does not use any symbol 
to represent it and when the investigator suggests that he can be ε , he does not know 
how to write this symbol. In the same way he establishes what happens in the 
neighbourhood of the limit. Using the module symbol he writes |2- f(x)| considering 
that also it can be minor that ε . He uses the same symbol ε  in both cases, not 
because he is convinced that both must be equal, but because he does not remember 
of another different symbol. When the investigator tries to explain that this parameter 
cannot be the same, he usesα , and writes |2-f (x)|< α . When asked to describe the 
role of quantifiers José imagines that the universal quantifier is applied toε . It seems 
that he considers that any object has an image and therefore the universal quantifier 
would be related to the objects. Finally, he writes a symbolic definition (figure 3), 
showing some difficulty in drawing the symbols of the quantifiers, and was not able 
to explain their role in the definition. 

 

Figure 3. José’s symbolic representation of ( ) 2lim 1
1

1

2

=−
−

→ x
x

x
. 

José’s concept image of limit it can thus be characterized by incorporating a complete 
graphical component that allows him to relate the objects and the images 
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dynamically. Based in this component he symbolically translates some parts of the 
concept, namely what happens in the neighbourhood of the point for which the 
function tends and on the limit point. However he is not able to give meaning to the 
quantifiers as well as identifying the symbols that represent them. 

Relational concept image 

 To Sofia the explanation of the expression 2
1

1
lim

2

1
=









−
−

→ x

x
x

 is based in a graphical 

sketch (figure 4): 

 

 

 

 

 

 

 

 

 

 Sofia – Then we are saying that when the x, that is… If here we will have the 1. We are 
to say here in this in case that, when the x is to tend for 1. 

Inv. – Hum, hum. 

Sofia – For different values of 1, I think that is different, yes because this never can… the 
images is to approach it… (…) of 2. Therefore the function, here is the point of the 
function or … 

Sofia starts to explain her notion of limit using a system of axis, without representing 
the function graphically. She uses it to describe the fact that x tends to 1 and the 
images tends to the value of the limit, 2. This representation caused some 
apprehension to her because she needs to materialize the image of the 1in the sketch. 
She finishes her concluding that this point does not belong to the domain, and then 
she needs to consider that it should tend for different values of point itself. Based on 
this boarding she establishes the symbolic definition: 

Sofia – I think that it is thus. For all the positive delta, exists one epsilon positive, such 
that the x belongs to R except the 1… And… x aaa… x-1 has that to be minor that 
epsilon, and there that is … f(x) minus 2, module, minor that delta.  

[She writes the expression of figure 5] 

Figure 4. Graphical sketch that translate 
the notion of limit of Sofia. 
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Figure 5. Sofia’s symbolic writing of ( ) 2lim 1
1

1

2

=−
−

→ x
x

x
. 

In this way Sofia translates symbolically the limit under study. It seems that she did 
not memorize the definition, because when she establishes the role of the parameters 
ε  andδ , she draws them in the graph of figure 1, representing the ray of the 
neighbourhoods centred in the points of abscissa 1 and ordinate 2 respectively. It is in 
the role of the quantifiers that inhabits the main difficulty, over all when she intends 
to explain how they influence the reach of the definition.  

Sofia’s concept image of limit seems to be the result of the coordination of the some 
underlying processes, through which she relates the different representations of the 
concept, conferring to them some generality, with exception to the role played for the 
quantifiers. 

CONCLUSIONS 
Based on cognitive theories of the learning and in the notion of advanced 
mathematical thinking it is possible to identify the complexity involved in the 
understanding of these concepts. In the cases studied, the analysis of the answers of 
students allowed us to verify a satisfactory verbal performance of the concept. 
However, when translating this verbal ability into a symbolic representation, 
performance decreases significantly as anticipated. The key findings of this study, 
however, lie on the distinction among three levels of concept image, namely: a) an 
incipient concept image, translating verbally only some parts of the symbolic 
definition; b) an instrumental concept image, making the symbolic translation of 
some parts of the concept; and c) a relational concept image that is translated into the 
capacity to represent the concept symbolically. These findings are relevant to AMT in 
the sense that they characterize complex concept images with greater accuracy. 
Further studies must deepen these distinctions. 
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CONCEPTUAL CHANGE AND CONNECTIONS IN ANALYSIS  

Kristina Juter 

Kristianstad University College and Växjö University, Sweden 

The paper presents a work in progress which is part of a larger study. Students 
learning analysis was investigated with the aim to find out how their concept images 
changed from the beginning of an analysis course to a year after the course. Their 
links between concepts were studied after the year had passed. The influence of the 
students’ pre-knowledge was durable and sometimes prevented students from making 
connections or abstractions.    

Key-words: Mathematics, analysis, university students, concept development, 
concept image. 

INTRODUCTION 

Mathematical analysis comprises several challenging concepts to link together. 
Conceptions change as they are evoked. The changes may be irrelevant to the over all 
conception, for example just another experience of a routine operation, or they can 
have an important impact on related concepts if, for example, a misconception is 
revealed and rectified. Conceptions that are not evoked may also change over time. 
The changes, if not sturdily enough integrated to prior knowledge or used, sometimes 
revert to former constellations as if they never occurred (Smith, diSessa & Rochelle, 
1993). The present study deals with changes over time as three students were asked to 
explain their conceptions of functions, limits, derivatives, integrals and continuity 
before a course and then again a year after. 

    The research questions posed are: What relevant pre-knowledge do students have 
at the start of a basic analysis course? How have the conceptions changed a year after 
the analysis course? How do the students connect different concepts in analysis a year 
after the analysis course?  

DEVELOPMENT OF CONCEPT IMAGES 

A concept image (Tall & Vinner, 1981) encompasses representations of concepts and 
processes learned or just briefly perceived arranged in mental networks. Impressions 
from instructions, discussions, solving tasks and reading, which all lead to 
mathematical thinking, have an impact on the development of the concept image. 
Tall’s (2004) three worlds of mathematics depict a development from just perceiving 
a concept through actions to formal comprehension of the concept. The first world is 
called the embodied world and here individuals use their physical perceptions of the 
real world to perform mental experiments to create conceptions of mathematical 
concepts. Intuitive representations naturally develop here from the lack of stringency. 
The second world is called the proceptual world. Here individuals start with 
procedural actions on mental conceptions from the first world, as counting, which by 
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using symbols become encapsulated as concepts. The third world is called the formal 
world and here properties are expressed with formal definitions and axiomatic 
theories comprising formal proofs and deductions. Individuals go between the worlds 
as their needs and experiences change and mental representations of concepts are 
formed and altered in the concept images.  

    Understanding a concept means that an individual is able to connect that certain 
concept to his or her concept image in a significant way (Hiebert & Lefevre, 1986) 
which is different from just being able to perform a particular operation. Pinto and 
Tall (2001) described two ways of understanding a concept, trough formal or natural 
learning. A formal learner uses definitions and symbols as a ground, whereas natural 
learners logically construct new knowledge from their concept images. The former 
has, if successful, a neat structure to build on, but, if not, a meaningless mass of 
symbols. The latter may have problems to formalise the knowledge from their 
concept images as there is a risk of problems to separate formal representations from 
their own, perhaps intuitive or naive, images. One benefit from natural learning is the 
logical understanding of concepts’ relatedness that comes from reconstruction.  

    New concepts are sometimes introduced intuitively, perhaps with an image, which 
lays the ground for more strict representations later on as the learner is able to link the 
intuitive representation to a stricter one or a complete one. Images of concepts can 
however work in a way opposed to the intended as Aspinwall, Shaw and Presmeg 
(1997) found in their case study on mental imagery. A person’s concept image can 
confuse, rather than ease making sense of concepts and links between them, if it does 
not cohere with formal concept definitions, i.e. definitions of mathematical concepts 
generally used in the mathematics society.     

    Research expose students’ struggle to link intuitive representations to formal 
representations (e.g. Cornu, 1991; Juter, 2006; Sirotic & Zazkis, 2007; Williams, 
1991). Sirotic and Zazkis claimed that underdeveloped intuitions often are due to 
flaws in formal knowledge and an absence of algorithmic experience. Links between 
intuitions, formal knowledge and algorithms are necessary for anyone to understand 
the topic at hand. Functions, limits, derivatives, integrals and continuity are tightly 
linked together in an analysis course. All topics comprise studies of functions. 
Derivatives and integrals are defined by limits of different kinds (limits of difference 
quotients and sums of infinitely thin rods respectively). Derivatives and integrals 
have a quality of being each others inverses with the possible exception of constants. 
Continuity is closely linked to limits by their definitions, and also to derivatives since 
differentiability is a stricter condition than continuity of the function’s smoothness. 
Merenluoto and Lehtinen (2004) studied students’ conceptual changes at upper 
secondary school. The concepts density, limit and continuity were studied in 
connection to number. The students showed almost no links relating the different 
concepts. The endurance of prior knowledge was one reason for the students’ disjoint 
concept images. Hähkiöniemi (2006) investigated students learning the derivative and 
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concluded that students had difficulties to link their procedural conceptions to formal 
mathematics. A similar result was drawn from a study on students learning limits of 
functions (Juter, 2006) where students’ intuitive perceptions often were incompatible 
with the formal concept image leaving the students with two incoherent 
representations, one for theory and one for problem solving. Students’ struggle with 
separated concept images from disability to formalise the intuitive representations 
and the lack of links to other concepts causes the feeling of a threshold for the 
students to surmount. Viholainen (2006) has also presented results of students’ 
difficulties to use concepts in the embodied world in a constructive correct manner 
when they worked with continuity and differentiability. This means that some 
students have an intuitive sometimes procedural conception of the concepts and need 
guidance to take the next step to formalise their knowledge. 

THREE STUDENTS’ CONCEPTIONS  

The students investigated were enrolled in an analysis course. The part presented here 
is part of a larger study of students’ pre-knowledge and their knowledge at times after 
analysis courses in mathematics teacher education (Juter, in press). The students were 
aged 19 years or older. Three students were selected in a group of 15 for further 
investigations, based on their results on the exam and on their responses to initial 
queries, so that there was an average achieving student, one higher achieving and one 
lower achieving student. The course was part of their teacher education programme, 
but it was also given outside the program. All students had, at least, had an 
introduction to the concepts studied in this article at upper secondary school.  

    The course was given fulltime over ten weeks. The students had two lectures (40 
minutes each) and two sessions for problem solving (40 minutes each) twice every 
week which gives a total of 80 lessons and problem solving sessions. The syllabus of 
the course included limits of functions, continuity, derivatives, and integrals (i.e. the 
topics studied in this paper) with derivatives and integrals as main parts of the course. 
Differential equations, parametric equations, polar coordinates and infinite sequences 
and series (Taylor and Maclaurin series) were also taught. The students worked in 
groups with tasks between the scheduled sessions. The tasks were designed to help 
the students understand definitions and theorems, e.g. the intermediate value theorem 
and the limit definition: A  is called the limit of )(xf  as ax→ , if for every 0>ε  there 
exists a 0>δ  such that ε<− Axf )(  for every x  in the domain with  δ<−< ax0 .  

    On their first session of the course the students filled out a questionnaire where 
they were asked to describe the concepts and also to write what the concepts are used 
for. The concepts in the tasks were not specified other than functions, limits, 
derivatives, integrals and continuity. The reason for this open approach was to 
prevent the students from becoming restrained with other formulations than their 
own. The aim was to keep the students from writing what they thought was expected 
of them and in stead let them explain in their own words.  
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    One year after the course, the three selected students were interviewed. They got 
the same questionnaire about functions, limits, derivatives, integrals and continuity as 
before the course. In addition, four graphs were presented for the students to 
determine differentiability, integrability, limits and continuity at all points. At the end 
of the interview they got a table with words or phrases listed in connection to the 
concepts studied. The words were selected from the students’ prior descriptions in the 
questionnaire and from formulations in the textbooks used in the course and lectures. 
The aim was to evoke different characteristics in the students’ concept images of the 
different concepts and from that see how they linked them together.  

    The design with only a questionnaire at the beginning of the course and interviews 
after means that there is much more information about the students’ concept images 
after the course leaving the results somewhat unbalanced. The questionnaire was used 
for selecting students to interviews as well as revealing their conceptions of the 
concepts and it was not possible to conduct interviews with all students to make such 
a selection.  

    Pseudonym names, Alex, Ian and Kitty, are used to retain anonymity for the 
students. The sample selection was done based on their questionnaire responses to 
become as representative as possible of the group. Kitty was achieving a bit higher 
than average students scoring the highest mark, VG (passed with honours), on the 
exam, Ian was a typical average student awarded the mark G and Alex achieved 
somewhat lower as he did not pass on the first try, but got a G (passed) on the second.  

Students’ conceptual change over a year 

The results are presented in tables 1 to 3 which show the students’ individual 
responses, before and a year after the course, to the five tasks: Describe the concept 
of function/limit/derivative/integral/continuity in your own words.  

 

 

Table 1. Alex’s responses to the five tasks before and one year after the course 

Alex Before the course A year after the course 

Function A function is an approximation 
like an equation with the 
difference that you can picture a 
function on a graph. 

mkxy +=  is a function for me, 
you use x and y. You can draw 
a graph on it. 

Limit A limit is what the word “says”, a 
limitation so you know for 
example within what values to 
stay. 

When you press these [the end 
points of an interval on the y-
axis close to the function] 
together as much as possible 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2279



  

you get a limit. 

Derivative You can describe a derivative as a 
means to “simplify” equations. It 
is something you do to get other 
functions in a graph. 

You change the function […] 
you can get more information 
from the function, you see the 
function differently. 

Integral The opposite to derivative. Is used 
as derivative but in reversed 
meaning. 

You change a function, get 
different information. 

Continuity It [the function] behaves the same 
way all the time. There are no 
“surprises” in the graph. 

A continuous function […] 
changes in a re-occurring 
pattern all the time. [Linear 
and sine functions are given as 
examples] 

 

Alex’s perceptions from before the course endured the course and a year after for the 
concepts function, derivative and integral. A severe misconception is clear from his 
descriptions of derivative and integral as he saw them as means to simplify or change 
functions. He was unable to explain the concepts in more detail. The changes he 
made on limits remained for the year with an emphasis on the limit definition and the 
illustration used in the course literature and in the lectures. Illustrations worked in a 
fruitful manner as the image had become a constructive part of his concept image. He 
was not able to present a formal definition of any of the concepts. 

Table 2. Ian’s responses to the five tasks before and one year after the course 

Ian Before the course A year after the course 

Function A sequence of events presented 
by a formula or a coordinate 
system.  

A sequence of events but on 
paper in a graph so to say […] 
or a system, a coordination 
[changed later to coordinate] 
system. 

Limit Limits are either maximum or 
minimum values in the function 

There are several kinds of 
limits […] maximum and 
minimum values […] average 
value of the curve. 

Derivative The derivative of a function is 
used to show what values are 
maximum and minimum. 

If you take the derivative of 
something, you get for 
example velocity and 
acceleration and so, but I do 
not remember. 
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Integral - You go in the opposite 
direction [to derivative]. In 
stead of acceleration to 
velocity you take velocity to 
acceleration. 

Continuity It [the function] moves the same 
way all the time, for example the 
sine curve. 

It was this funny thing […] it 
did not have an infinite value. 
The curve may not shoot off 
upwards or downwards […] it 
often becomes a gap in the 
curve but then it may shoot 
straight up or something. […] 
If it is continuous then it is 
whole. 

 

Ian used similar descriptions before and after the year on the concepts of function and 
limit. He perceived a function both as a process, a sequence, and an object, the 
coordinate system, at both times. Limits, integrals (after the year) and derivatives 
were process oriented in their descriptions with an emphasis on applications. 
Continuity was first seen as a process, i.e. as a function that moves the same way. A 
year later, his description focused the graph as an entity with the feature of being 
whole. Before the course, he had no description of integral despite his experiences 
from upper secondary school.  

He was unable to give any formal definition for the concepts. 

 

Table 3. Kitty’s responses to the five tasks before and one year after the course 

Kitty Before the course A year after the course 

Function A function is a constructed series 
of events. 

Numbers and an x to 
determine. A graph. 

Limit A limit is something you calculate 
as something tends to for example 
zero or infinity. 

A graph […] closing in on a 
value but it never gets there. 

Derivative You derive a function and get for 
example zero values. 

Area under a graph. [first but 
after some thought about 
integrals changed to:] A 
measure on how fast 
something accelerates. 
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Integral Reversed derivative where you 
calculate the area under a function 
on a certain interval. 

Area under a graph divided in 
small rectangles depending on 
how accurate you are. 

Continuity When there are no gaps in the 
graph and there is only one x-
value per y-value. 

If you go from one value to 
another there can not be any 
gaps in it. 

 

Kitty had a conception of functions similar to Ian’s before the course as a series of 
events, but she changed it to a view of the objects used when working with functions.  
On limits, she went from calculating to the limiting process, with the not so unusual 
misinterpretation that limits are unattainable (e.g. Cornu, 1991; Juter, 2006; Williams, 
1991). There was obvious development in Kitty’s concept image that remained for 
the year on derivative and integral. She presented no formal definition though. 

    Kitty had some confusion of her conceptions during the interview but she was 
often able to alter her concept image when needed. One example is concerning 
continuity and derivatives when she had answered the question about continuity in 
table 3: 

Kitty:  And then there was something about not having any edges.  

Interviewer:  Peaks and so you mean? 

Kitty:  Yes … or perhaps it was continuous then too, but there were something 
about those peaks anyway.  

Interviewer:  Yes. 

Kitty:  Maybe that you could not take the derivative on those peaks or something 
like that … no I might be thinking incorrectly.  

[The interview goes on and four graphs are presented where Kitty shall determine 
differentiability, integrability, continuity and limits. One has a peak.] 

Kitty:  If you derive, to determine how the other curve [the derivative] shall look, 
are you not supposed to draw those lines to see? [She shows a tangent line 
with her finger] 

Interviewer:  Mm. 

Kitty:  And that is impossible at the peak there because then you do not know if it, 
because it is pointy, you do not know what slope it has.  

Kitty worked with her existing knowledge and found out the logical and correct 
properties. This way of reasoning was typical for her during the interview.   

Networks of concepts 

The students connected different concepts and processes together with relevant links, 
i.e. links that are correctly justified and true as well as irrelevant or untrue links. 
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Typical examples of relevant and true links were, for example, Alex’s link between 
difference and limit in the sense that the difference is between the borders in the 
interval ε<− Axf )(  from the limit definition. Kitty connected change to derivative as 

she said: “Derivative […] is a measure of change […] how the velocity change, kind 
of, and then you draw it”. Ian, slightly vaguely, linked sums and integrals and 
explained: “If you calculate the area under the curve you get a sum”. Ian had a 
revelation when he tried to explain the connection between limits and continuity:  

Ian:  A graph can be continuous, that is what you mean? 

Interviewer:  Mm. 

Ian:  But it can at the same time be a straight line or go straight up. 

Interviewer:  Mm. 

Ian:  And then there is no limit on it so … yes there is an outer limit … but then 
there is a limit. Yes, then we take continuity on it [marks the box linking 
limits and continuity at the paper]. 

Ian managed to reason with himself to make sense of the relation between the 
concepts, similarly to Kitty’s strategy.  

    The patterns of links were different for the students. Alex had, by far, the highest 
number of links between concepts but if the selection was restricted to relevant links 
Kitty had the most links. She also had irrelevant or wrong links, but only few. Alex 
had several links to continuity, none of then relevant whereas Ian and Kitty only had 
a few each where Kitty had one and Ian three relevant links. Derivatives and integrals 
mere the two topics with the highest rate of links as could be expected from the 
syllabus. 

CONCLUSIONS 

The students had pre-knowledge of various characters when they came to the course 
as tables 1 to 3 show. Some pre-conceptions endured the course and a year, for 
example Alex’s unfortunate perceptions of derivative and integral as means to change 
functions and Ian’s more practical view of functions. Kitty’s concept image of 
integrals was partly the same but a development of further understanding had 
occurred (table 3). Building up concepts this way is stable since no changes of prior 
knowledge are required, there is only a phase of adding new knowledge strongly 
linked to the former. 

    A drawback of pre-conceptions is when they are wrong and remain, despite 
teaching and own work within a course stating the opposite of the pre-conceptions 
(Smith, diSessa & Rochelle, 1993). Alex’s interpretations of derivatives and integrals 
are obvious examples of such wrongly established conceptions. A conception that has 
been there for some time is not easily changed since it also demands changes in the 
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nearby parts of the concept image. Another reason to retain familiar conceptions is 
the comfort and security of the known that may not be readily surrendered. 

    Mental representations naturally connect to pictures, self constructed or otherwise, 
supporting understanding. All three students mentioned graphs. Ian, for example, 
described continuity as from a picture at the latter data collection. Kitty mixed up 
derivatives with integrals as she stated that the derivative is the area under the graph. 
When she, shortly after, was describing integrals she was able to make sense of her 
pictures of ‘areas under graphs’ and she went back to rethink derivatives. In Alex’s 
case of limits after the year the picture is easily recognised from lectures in the 
course. He had used the picture to strengthen his concept image in a, for him, useful 
manner. Pictures can however, as afore mentioned (Aspinwall, Shaw & Presmeg, 
1997), cause confusion rather than insight. The same picture as Alex used give many 
students the impression that limits actually are the limits of the intervals from the 
absolute values in the limit definition mentioned before (Juter, 2006).  

    The lack of connections between limits and continuity and other concepts is clear 
and consistent with Merenluoto and Lehtinen’s (2004) results. The present study 
explicitly investigates the links between further concepts which gives a fuller image 
of the scarcity of appropriate links. The students’ naive or wrong pre-knowledge was 
not easily changed with the effect that they were held back from reaching Tall’s 
formal world (2004). Understanding these concepts is not the same as being able to 
formally express them. Students also need to have a strong and rich foundation 
tightly linked to the formal expressions which has been proven to be difficult 
(Hähkiöniemi, 2006; Juter, 2006; Viholainen, 2006). Kitty had a functional 
foundation to formalise and she showed evidence to be on her way to reach the 
formal world. Ian had less such evidence and Alex essentially none. The students in 
the study are future upper secondary school teachers in mathematics and their 
mathematical understanding need to be rich and well connected in order for them to 
be able to perform their profession satisfactorily. 
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The main objective of this paper was to apply the onto-semiotic approach to analyze 
the mathematical concept of different coordinate systems, as well as some situations 
and university students’ actions related to these coordinate systems. The 
identification of mathematical objects that emerge from the operative and discursive 
systems of practices, and a first intent to describe an epistemic network that relates 
these operative and discursive systems was carried out. Multivariate calculus 
students’ responses to questions involving single and multivariate functions in polar, 
cylindrical and spherical coordinates were used to classify semiotic functions that 
relate the different mathematical objects.  

Introduction 

This study, in particular, embraces the aspect of thinking related to advanced 
mathematics. Mathematics education literature concerning university level 
mathematics, such as multivariable calculus, is relatively sparse.  Yet it cannot be 
taken for granted that mathematical understanding at this level is unproblematic: the 
data from research such as that represented in this paper makes this clear.   

The subject of curvilinear coordinates in the context of advanced mathematics 
requires transiting between the different coordinate systems (change of basis in the 
language of linear algebra) within a framework of flexible mathematical thinking.  
The achievement of conceptual clarity, while important is itself, is required in the 
context of applications in different areas (physics, geography, engineering) where a 
total lack of homogeneity in terms of notation, especially notorious when comparing 
calculus textbooks with those of other sciences, is presented (Dray & Manoge, 2002). 

The issue of transiting between different coordinate systems, as well as the notion of 
dimension in its algebraic and geometric representations, are significant within 
undergraduate mathematics.  Deep demands are made in both conceptual and 
application fields with respect to understanding and competence.  

“The move into more advanced algebra (such as vectors in three and higher 
dimensions) involves such things as the vector product which violates the 
commutative law of multiplication, or the idea of four or more dimensions, 
which overstretches and even severs the visual link between equations and 
imaginable geometry.” (Tall, 1995). 

      On the other hand, argument is made for the onto-semiotic approach as 
representing a distinct difference from approaches seen as situated within paradigms 
of mathematical theories represented by set theory and classical logic. This opens the 
door to a possible modelling of the communication of advanced mathematics as a 
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semiotic system.  The concept of semiotic function is addressed and related 
substantively to linguistic, symbolic and gestural expressions documented in 
situations that involve demanding mathematical connections.      

Different Coordinate Systems 

The mathematical notion of different coordinate systems is introduced formally at a 
precalculus level, with the polar system as the first topological and algebraic 
example. The emphasis is placed on the geometrical (topological) representation, and 
transformations between systems are introduced as formulas, under the notion of 
equality ( 2 2cos ,x r r x yθ= = + , etc.). The polar system is usually revisited as part of 
the calculus sequence; in single variable calculus, the formula for integration in the 
polar context is covered, as a means to calculate area. In multivariate calculus, work 
with polar coordinates, and transformations in general, is performed in the context of 
multivariable functions. It is in calculus applications that the different systems 
become more than geometrical representations of curves.  

The different systems, which are related to each other by transformations, are meant 
to be dealt with through the algebraic and analytic theory of functions, although the 
geometric representation will still play a large role in the didactic process. As has 
been established (Montiel, Vidakovic & Kabael, 2008), the geometric representations 
need to be dealt with very carefully. For example, it was reported that techniques 
such as the vertical line test, used to determine if a relation is a function in the 
rectangular context, were transferred automatically to the polar context. Hence the 
circle in the single variable polar context, whose algebraic formula r = a certainly 
represents a function of the angle θ (the constant function), when θ is defined as the 
independent variable and r as the dependent variable, was often not identified as a 
function because, in the Cartesian system, it doesn’t pass the vertical line test.  

The graphs are symbolic representations of the process with their own 
grammar and their own semantics. It is for this reason that their interpretation 
is not unproblematic (Noss, Bakker, Hoyles & Kent, 2007, 381). 

When multivariate functions are introduced in the rectangular context, in particular 
functions with domain some subset of R2 or R3 and range some subset of R, the 
institutional expectation is that the student will “generalize” the definition of 
function. The assumption is that students have flexible mathematical thinking, that is, 
that they are capable of transiting in a routine manner between the different meaning 
of a mathematical notion, accepting the restrictions and possibilities in different 
contexts (Wilhelmi, Godino & Lacasta, 2007a, 2007b).  

Research on the epistemology and didactics in general of multivariate calculus is 
virtually non-existent, and it is for this reason that no real literature review is given 
on the subject. It is a “new territory” that is being charted in this respect. Nonetheless, 
it is in the multivariate calculus course where students, many for the first time, are 
expected to deal with space on a geometric and algebraic level after years of single 
variable functions and the Cartesian plane. They must define multivariable and vector 
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functions, deal with hyperspace (triple integrals), find that certain geometrical axioms 
for the plane do not hold over (lines cannot only intersect or be parallel, they can also 
be skew), and work with functions in different coordinate systems. Students must 
learn operations that are dimension-specific (such as the cross product) and make 
generalizations which require flexible mathematical thinking.  These are just some of 
the aspects which make multivariate calculus a rich subject for many of the research 
questions that arise when trying to analyze the epistemology, as well as the didactical 
processes, in the transition to higher mathematics.  

On the other hand, multivariate calculus in itself, with its applications, is an important 
subject for science (physics, chemistry and biology), engineering, computer science, 
actuarial sciences, and economics students. For this reason, it is important to analyze 
the contexts and metaphors used in its introduction and development, because 
generally there aren’t evident translations between college and workplace 
mathematics (Williams & Wake, 2007). 

Conceptual Framework 

Clarifying the meaning of mathematical objects is a priority area for research in 
Mathematics Education (Godino & Batanero, 1997). In this paper, a mathematical 
object is: “anything that can be used, suggested or pointed to when doing, 
communicating or learning mathematics.” The onto-semiotic approach considers six 
primary entities which are (Godino, Batanero & Roa, 2005, 5): (1) language (terms, 
expressions, notations, graphics); (2) situations (problems, extra or intra-
mathematical applications, etc.); (3) subjects’ actions when solving mathematical 
tasks (operations, algorithms, techniques); (4) concepts, given by their definitions or 
descriptions (number, point, straight line, mean, function, etc.); (5) properties or 
attributes, which usually are given as statements or propositions; and, finally, (6) 
arguments used to validate and explain the propositions (deductive, inductive, etc.).  

The following dual dimensions are considered when analyzing mathematical objects 
(Godino et al., 2005, 5): (1) personal / institutional; (2) ostensive / non-ostensive. (3) 
example / type; (4) elemental / systemic; and (5) expression / content.  

The present study carries out analysis with this classification, and relies on the 
reader’s intuition and previous knowledge to understand how they are used in the 
context. The emphasis on mathematical objects in the present study is represented by 
the words of Harel (2006) when referring to Schoenfeld:  

A key term in Schoenfeld’s statement is mathematics. It is the mathematics, its 
unique constructs, its history, and its epistemology that makes mathematics 
education a discipline in its own right. (p. 61) 

The situating of onto-semiotic approach within the domain of theories such as 
category theory, and non-bivalent logic is much more than a mere academic exercise. 
In the ICMI study Mathematics Education as a Research Domain: A Search for 
Identity, Sfard (1997) stated that: 
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Our ultimate objective is the enhancement of learning mathematics…Therefore 
we are faced with the crucial question what is knowledge and, in particular, 
what is mathematical knowledge for us? Here we find ourselves caught 
between two incompatible paradigms: the paradigm of human sciences… and 
the paradigm of mathematics. These two are completely different: whereas 
mathematics is a bastion of objectivity, of clear distinction between TRUE and 
FALSE… there is nothing like that for us. (p. 14)  

It is clear that the possibility of situating research in mathematics education within 
the paradigm of mathematical theories other than set theory and classical logic was 
not contemplated in the previous quote.   

The onto-semiotic approach to knowledge proposes five levels of analysis for 
instruction processes (Font & Contreras, 2008; Font, Godino, & Contreras, 2008; 
Font, Godino & D’Amore 2007; Godino, Bencomo, Font & Wilhelmi, 2006; Godino, 
Contreras & Font, 2006; Godino, Font & Wilhemi, 2006): 

1) Analysis of types of problems and systems of practices; 
2) Elaboration of configurations of mathematical objects and processes; 
3) Analysis of didactical trajectories and interactions; 
4) Identification of systems of norms and metanorms; 
5) Evaluation of the didactical suitability of study processes. 

The present study concentrates on the first level, while touching on the second as 
well. The same empirical basis, with the same notions, processes and mathematical 
meanings will be used in future studies to develop the second and third aspects. 

Context, Methodology and Instrument 

The context of the present study is multivariate calculus as the final course of a three 
course calculus sequence, taught at a large public research university in the southern 
United States. Six students were interviewed, in groups of three, and the interviews 
were video-recorded. The students were first given four questions in a questionnaire 
(figure 1), on which they wrote down their responses, and they were then asked to 
explain them. In this paper, we analyze exclusively the first question because of 
limited space. In the figure 2, a semblance of the answers that were expected from the 
students by the researchers is given, as well as selected student work.   

For each question, the students were chosen in a different order, but it was inevitable 
that who spoke first would influence, in some way, the other two. They were asked to 
explain verbally on an individual basis, but group discussion was encouraged when it 
presented itself. It should be noted that these students participated after taking their 
final exam, so they had completed the course. The students were assured that their 
professor would not have access to the video-recordings until after the final grades 
had been submitted.  
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Question 1. Are the given graphs functions in the single variable set up of polar coordinates, when  
 is considered a function of  ( ( ))?r rθ ρ θ=  

 Circle your choice and explain the reason. 
Function r = 2 r = cos(4θ) 3/πθ =  

Graphs 

   

Answer 
YES  NO 
Explanation: … 

YES  NO 
Explanation: … 

YES           NO 
Explanation: …  

Question 2. Shade the region and set up how would you calculate the area enclosed by: outside r = 
2, but inside r = 4 sin(θ); Use DOUBLE integration. [DO NOT CALCUALTE THE INTEGRAL.] 

Question 3. In rectangular coordinates the coordinate surfaces: x = x0, y = y0, z = z0 are three 
planes.  

(a) In cylindrical coordinates, what are the three surfaces described by the equations: r = 
r0, θ = θ0, z = z0? Sketch. 

(b) In spherical coordinates, what are the three surfaces described by the equations: ρ 
=ρ0, θ = θ0, z = z0? Sketch. 

Question 4. What are the names of the following surfaces that are expressed as the polar functions: 
(a) . Sketch the surface. Find the volume of the solid by triple integration (use 

cylindrical coordinates) when  Does your answer coincide with the formula for 
the volume of this solid (if you happen to remember)?  

(b) . Sketch the surface. Find the volume of the solid by triple integration. 

Figure 1. Questionnaire 

The nature of this study does not require the reader to have detailed information on 
each of the students, as the focus is upon the mathematical objects and not on the 
cognitive processes of the participants. Another article, with a more cognitive focus, 
will be developed with this same data, as the onto-semiotic approach can be used as a 
framework in theories of learning and teaching mathematics (communication), as 
well as the epistemology and nature of mathematical objects. 

The first question was in three parts, and was identical to the question presented to 
second course calculus students (calculus of a single variable) and reported upon in 
Montiel, Vidakovic and Kabael (2008). The objective was to determine if the 
students could distinguish when a relation between r and θ was a function or not, 
taking θ as the independent variable and r as the dependent variable. This is not a 
trivial question, as the geometric representation of the constant function in polar 
coordinates, r = a, is a circle, which is not a function in rectangular coordinates, as 
was reported in the previous study. 
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The generic definition of function, which we can paraphrase as ‘a 
transformation in which to every input there corresponds only one output’, 
seems to often be lost amongst the different representations students are 
exposed to, without recognizing any implicit hierarchy. (p. 18) 

For this reason, in the previous study the vertical line test, valid for the rectangular 
system but not for the polar coordinate system, was used as a criterion to say, 
mistakenly, that r = a was not a function. This same question was now asked to 
students who had completed a multivariate calculus course, and who were expected 
to know how to identify and “do calculus” with not only single variable functions, but 
multivariable functions as well, in rectangular, cylindrical and spherical systems. It 
was of interest to analyze the answers and explanations to question 1 with this new 
student sample.  

Analysis Using the Onto-Semiotic Approach 

The plan will be to go through the question; as there are six subjects and two groups, 
S1, S2 and S3 will represent the participants in the first group, and S4, S5 and S6 the 
participants in the second interview session. Usually the two sessions will not be 
differentiated as emphasis will be placed on the questions themselves and the 
mathematical content. There are also written answers which will be referred to at 
times.  

The essence of the first question is the fact that the exact same geometrical 
representation, a circle, which is not considered a function in rectangular coordinates, 
is in fact a function in the polar coordinate system. Language seen as a mathematical 
object, one of the primary entities, and understood as terms, expressions, notations 
and graphics, and semiotic functions that map language (expression) to content 
(meaning), play an important role here. For example, S2 specifically mentioned that 
the vertical line test could not be used, making it understood that the “definition of a 
function by the vertical line test” was not valid in polar coordinates, because in polar 
coordinates “anything goes”. What is inside the quotations, of course, are personal 
objects in a very colloquial language, although from the institutional point of view 
the answer is correct, given that she circled “yes” for “a” and “b”, and “no” for “c”. 
However, as can be seen in Appendix, her explanation differs from the usual 
institutional expression.  

In figure 2, it can be appreciated that S3 gave as his explanation “for every θ there is 
only one r”, using the concept (definition) and properties of function in its 
underlying, structural meaning, which does not rely on a particular coordinate 
system, as well as employing impeccable institutional expression. S4 related the two 
systems by saying that “in the rectangular system there is one y for eachx , so here 
there is one  r for eachθ ”, while S1 used the radial line test to justify the equation as 
representing a function; the radial line test had been briefly mentioned in class.  

The concept (definition) of function, as seen from the onto-semiotic approach 
(Wilhelmi et al, 2007a), can be understood in different mathematical contexts, such 
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as topological, algebraic or analytical. Furthermore, when the concept of function is 
first introduced, usually at the secondary algebra level, it is not possible to embrace 
all the systems of practices, so even when the underlying structural definition is given 
(“for every element in the domain, there corresponds one and only one element in the 
codomain”, or, “for every input there is only one output”), what often remains in 
students’ minds (Montiel et al., 2008) is the geometric language with the vertical line 
test, as different coordinate systems are not included. Even though polar coordinates 
are introduced at the precalculus level, their geometric representations are usually 
presented in textbooks as exotic curves (lemnicate, etc.), not as functions.  

Expected answer. 

(a) Answer:  YES   NO.            Explanation:  For every element θ  in the 
domain, there corresponds one, and only one, element in the codomain. For every 
input θ, there corresponds one, and only one, output.  

(b) Answer:  YES   NO.            Explanation: Same as in part (a).  

(c)  Answer:  YES   NO.            Explanation:  For π/3 there are infinite 
values (more than one) of r. 

Answer from S2. 

(a)  

 

(b) 

  

Answer from S3. 

(a) 

 

(b) 

 

                                                                              

(c) 

 

(c) 

 

Figure 2. Expected answers and actual student answers 
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The elementary-systemic dichotomy also is applicable here, because all the different 
coordinate systems, including the general “curvilinear” coordinates, and the 
transformations between them together with the determinant of the Jacobian matrix, 
form a compound object, that is, a system. The actual curve in a particular system, as 
graphical language, would be an example of an elementary - or unitary- object. At the 
same time, the ostensive/non-ostensive duality is also relevant, as the graphical 
representations and the set up of double and triple integrals in different systems lead 
up to the mathematical concept of changing variables in multiple integration. 

On the other hand, it is interesting to observe that in this study the students had no 
problem with realizing that θ  was changing, although the point on the graph 
appeared to be in the same place. That is, that a point with polar coordinates, say, 

)2,4( π  was different from the points )23,4(),25,4( ππ −  and so on. They also 
recognized θ  and r as independent and dependent variables, even though the pairing 
(r, θ) often creates confusion, as it is reversed when compared to the convention in 
the rectangular system, where the independent variable is the first component and the 
dependent variable is the second component ((x, y)). In these cases students portrayed 
much more adhesion to the following mathematical norm: “the determination of an 
ordered pair consists of knowledge about the elements, the order in which they 
should be expressed and the meaning of each component”, as compared to the single 
variable calculus students faced with the same problem (Montiel et al, 2008).  

Many standard calculus textbooks do not help in clarifying the concept of function in 
polar coordinates. Varberg and Purcell (2006) state that:  

…There is a phenomenon in the polar system that did not occur in the 
Cartesian system. Each point has many sets of polar coordinates due to the fact 
that the angles θ +2πn, n = 0, ±1, ±2…, have the same terminal sides. For 
example, the point with polar coordinates )2,4( π  also has coordinates 

)25,4( π , )29,4( π , )23,4( π− , and so on (p. 572). 

However, we ask, if there is a switch from Cartesian to polar coordinates, is the 
element )2,4( π  really the same as )29,4( π ?   

It should be pointed out that, this “phenomenon” comes about because a point in 
polar coordinates is being identified with an equivalence class. That is, a point ( , )r θ  
is equivalent to another point (r,θ’) if θ’ = θ  ± 2π. In other words, it is presupposed 
that the dual dimensions example/type and expression/content should be avoided, as 
they constitute an unnecessary difficulty. However, this “simplification” can limit 
students’ access to the overall institutional meaning.  

In Salas, Hille and Etgen (2007, 479), it is also stated “Polar coordinates are not 
unique. Many pairs (r,θ’) can represent the same point”. On page 492, the problem is 
avoided by strictly stating the domain of the variable θ as limited to (0, 2π). There is 
no mention of the radial line test in any of these texts. 

When the geometric language, and the system of practices developed around it, are 
not taken specifically into account, the elementary algebraic entity, in the example 
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above, is a perfectly defined function r(θ) = 4, with no restriction on the domain. If 
the formal structure of the object “function” must be coherent in all coordinate 
systems, then the fact that the point is “apparently” the same does not make for sound 
mathematics. If “for every input there is only one output” captures this underlying 
structure, then the textbooks might need to take this into account.  

Conclusion 

Different coordinate systems, apart from their intrinsic mathematical interest, are 
used in many types of applications in science and engineering. The main objective of 
this paper was to apply aspects of the onto-semiotic approach, especially those related 
to the notion of meaning and mathematical objects to different coordinate systems. In 
the process, the systems of operative and discursive practices associated with this 
mathematical concept were identified. As previous research, within any framework, 
on this mathematical concept, and on multivariate functions in analysis in general, is 
practically non-existent, a much more sophisticated description of an epistemic 
network for this subject is a goal that we hope to reach in the near future. The 
transformation of expressions to content through semiotic functions, and the 
identification of chains of signifiers and meanings, could be accomplished because of 
the rich layering and complexity of the mathematical concept at hand.  

“The notion of meaning, in spite of its complexity, is essential in the foundation and 
orientation of mathematics education research” (Godino et al., 2005).   

It is essential to organize what must be known in order to do mathematics. This 
knowledge includes, and even privileges, mathematical concepts, and it is the search 
for meaning and knowledge representation that has stimulated the development of the 
mathematical ontology. However, the onto-semiotic approach gives us a framework 
to analyze, as mathematical objects, all that is involved in the communication of 
mathematical ideas as well, drawing on a wealth of instruments developed in the 
study of semiotics. It is hoped that this attempt to apply this ontology and these 
instruments to a mathematical concept that involves so many subsystems, provides an 
example of the kinds of studies that can and should be undertaken. Further studies on 
this particular mathematical concept can only clarify aspects of the knowledge 
needed in the communication and understanding of it.  

References 

Dray, T. & Manogue, C. (2002). Conventions for spherical coordinates. Retrieved on 
December 10, from :  

 http://www.math.oregonstate.edu/bridge/papers/spherical.pdf 
Font, V., Contreras, A. (2008). The problem of the particular and its relation to the general 

in mathematics education. Educational Studies in Mathematics 69(1), 33–52. 
Font, V., Godino, J. D., Contreras, A. (2008). From representations to onto-semiotic 

configurations in analysing the mathematics teaching and learning processes. En L. 
Radford, G. Schubring and F. Seeger (Eds.), Semiotics in Math Education: 
Epistemology, Historicity, and Culture. The Netherlands: Sense Publishers. 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2294



 

Font V., Godino J., D’Amore B. (2007). An onto-semiotic approach to represent-tations in 
mathematics education. For the Learning of Mathematics, 27, 2-14. 

Godino, J., Batanero, C. (1997). Clarifying the Meaning of Mathematical Objects as a 
Priority Area for Research in Mathematics Education. In A. Sierpinska and J. 
Kilpatrick (Eds), Mathematics Education as a Research Domain: a Search for 
Identity, An ICMI Study Book 1, The Netherlands: Kluwer Academic Publishers. 

Godino, J., Batanero C., Roa, R (2005) ‘An onto-semiotic analysis o combinatorial 
problems and the solving processes by university students’, Educational Studies in 
Mathematics, 60, 3-36. 

Godino J. D., Bencomo D., Font V. & Wilhelmi M. R. (2006). Análisis y valoración de la 
idoneidad didáctica de procesos de estudio de las matemáticas. Paradigma, XXVII  (2), 
221–252. 

Godino, J. D., Contreras, A., Font, V. (2006). Análisis de procesos de instrucción basado en 
el enfoque ontológico-semiótico de la cognición matemática. Recherches en 
Didactiques des Mathematiques, 26 (1), 39-88. 

Godino, J. D., Font, V., Wilhelmi, M. R. (2006), Análisis ontosemiótico de una lección 
sobre la suma y la resta. Revista Latinoamericana de Investigación en Matemática 
Educativa, Special Issue on Semiotics, Culture and Mathematical Thinking, 131–155. 

Harel, G. (2006). Mathematics education research, its nature, and its purpose: a discussion 
of Lester’s Paper, ZDM Mathematics Education, 38, 58–62. 

Montiel, M., Vidakovic, D. & Kabael, T. (2008).  Relationship between students’ 
understanding of functions in Cartesian and polar coordinate systems. Investigations in 
Mathematics Learning, 1(2), 52–70. 

Noss R., Bakker A., Hoyles C., Kent P. (2007) Situating graphs as workplace knowledge. 
Educational Studies in Mathematics 65(3), 367–384. 

Salas, S.  Hille, E., Etgen, G. (2007), Calculus one and several variables, USA: John Wiley 
& Sons. 

Sfard, A. (1997). What is the specific object of study in mathematics education? (working 
group 1). In A. Sierpinska and J. Kilpatrick (Eds), Mathematics Education as a 
Research Domain: a Search for Identity, ICMI Study Book 1, The Netherlands: 
Kluwer Academic Publishers. 

Tall, D. (July 1995). Cognitive Growth in Elementary and Advanced Mathematical 
Thinking.Proceedings of PME, Recife, Brazil (Vol I, pp. 161–175).  

Varberg, D., Purcell, E. (2006). Calculus, USA: Prentice-Hall. 
Wilhelmi, M. R., Godino, J., Lacasta, E. (2007a). Configuraciones epstémicas asociadas a la 

noción de igualdad de números reales. Recherches en Didactique des Mathématiques, 
27(1), 77–120. 

Wilhelmi, M. R., Godino, J., Lacasta, E. (2007b). Didactic effectiveness of mathematical 
definitions the case of the absolute value. International Electronic Journal of 
Mathematics Education, 2(2), 72-90. [http://www.iejme.com/] 

Williams J. & Wake G. (2007). Metaphors and models in translation between college and 
workplace mathematics.  Educational Studies in Mathematics 64(3), 345–371. 

 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2295



  

DERIVATIVES AND APPLICATIONS; 

DEVELOPMENT  OF ONE STUDENT’S UNDERSTANDING 
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This paper reports on a longitudinal observation study characterising student’s 
development in their understanding of derivatives. Through the Dutch context-based 
curriculum, students learn this concept in relation to applications. In our study, we 
assess student’s understanding. We used a framework for data analysis, which 
focuses on representations and their connections as part of understanding deriva-
tives, and it includes applications as well. We followed students from grade 10 to 
grade 12, and in these years we administered four task-based interviews. In this 
paper we report on the development of one ‘average’ student Otto. His growth 
consists of an increasing variety of relations, both between and within represen-
tations and also between a physical application and mathematical representations. 
We also find continuity in his preferences for and avoidances of certain relations.  

 

Keywords: Derivative, applications, procedural and conceptual knowledge, process-
object pairs, case study. 

INTRODUCTION 

In the Dutch mathematics curriculum for secondary schools, the role of applications 
increased over the past 15 years. When the concept of the derivative is taught in 
grades 10-12, most textbooks provide students with opportunities to learn the concept 
in different contexts. Often an introduction in grade 10 starts with contexts related to 
velocity, steepness of graphs and, for example, increasing or decreasing temperatures. 
Textbooks provide tasks on the average rate of change, average velocity and the slope 
of a secant. The step towards instantaneous rate of change is kept intuitive, as most 
textbooks avoid the use of the formal limit definition, or only mention it on one page 
without using the notation with a ‘limit’. Also in the conceptual extension of the 
derivative in grades 11 and 12, most chapters contain applications.  

During their school time, students construct their knowledge of different concepts. 
One of these concepts is the derivative, which is not only a multifaceted mathematical 
concept, it also has relations to other school subjects. Knowledge of the derivative 
may support the learning of physics and economics, but physics teachers complain 
that students cannot apply what they have learned in their mathematics classes (e.g. 
Basson, 2002). In our research, we investigate which aspects of the concept 
derivative are becoming available to students, and whether and how students can 
relate the concept between different subjects such as mathematics, physics and 
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economics. Our aim is to describe and analyse the development of students’ 
understanding of derivatives, not just as a mathematical concept in itself, but as a 
mathematical concept in relation to applications. 

THEORETICAL BACKGROUND 

Understanding the concept of the derivative 

It is complex to determine to what extent a student understands the concept of 
derivative. Many publications on understanding concepts use words such as scheme, 
structure, connections and relations. Anderson and Krathwohl (2001) define 
conceptual knowledge as: the interrelationship between the basic elements within a 
larger structure that enables them to function together. Thus, they perceive it as more 
complex and organized forms of knowledge. Procedural knowledge is defined as: 
methods of inquiry and criteria for using skills, algorithms, techniques and methods. 
Hiebert and Carpenter (1992) describe understanding in terms of the way, in which 
information is represented and structured. The degree of understanding depends on 
the number and strengths of connections between facts, representations, procedures or 
ideas. Connections can have different characteristics. In our analysis of students’ 
connections, we identify procedural and conceptual knowledge. To describe a 
student’s understanding of the derivative in relation to applications, we describe the 
connections made by a student (Roorda, Vos & Goedhart, 2007), distinguishing: 
(i) Connections between mathematical representations,  
(ii) Connections within mathematical representations and  
(iii) Connections between an application and mathematical representations. 
We will explore these three types of connections further. 

Connections between representations 

Hähkiöniemi (2006) discusses different viewpoints on representations. According to 
him, the traditional view on representations is that a representation is conceived as 
something that stands for something else, and representations are divided into 
external and internal ones (cf. Janvier, 1987). In his study Hähkiöniemi defines a 
representation broader as: 

“.. a tool to think of something, which is constructed through the use of the tool; a 
representation had the potential to stand for something else but this is not necessary. 
A representation consists of external and internal sides which are equally important 
and do not necessarily stand for each other but are inseparable.” (p. 39)  

As such, a gesture by a hand in the air can be a representation of a tangent. Without 
ignoring the existence of internal representations, we will follow the more traditional 
view, because external representations can be observed and they can be considered as 
external indicators of someone’s internal representations. In different research the 
following representations are distinguished: formula, graph, table, words, physical 
background, gestures (Asiala, Cotrill, Dubinsky & Swingendorf, 1997; Hähkiöniemi, 
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2006; Kendal & Stacey, 2003; Kindt, 1979; Zandieh, 2000). Kendal and Stacey 
(2003) look especially at three mathematical representations: formula, graph and 
table. Students can talk about derivatives from a formulae viewpoint (such as rate of 
change), from a graphical viewpoint (slope), or from a numerical viewpoint (such as 
average increase). 

Connections between representations and the ability to switch between these are 
important features for solving tasks (Dreyfus, 1991; Hiebert & Carpenter, 1992). 
Hähkiöniemi (2006) states that conceptual knowledge often refers to the making of 
connections from one representation to another. However, we will show in this paper 
that a connection between two representations can also have a more procedural 
character. 

Connections within representations 

As mentioned above, not only connections between representations but also within 
one representation are important (Dreyfus, 1991). For the derivative, Kindt (1979) 
distinguishes four levels within each representation. For example, in the formulae 
representation the four levels are: function, difference quotient, differential quotient 
and derivative, in the graphical representation: graph, slope of a chord, slope of the 
tangent and graph of the derivative. Zandieh (2000) indicates the steps between these 
four levels as process-object pairs, since each level can be viewed both as dynamic 
process and as static object. To illustrate the idea of process-object pairs we look at 
the second level of the formulae representation, the difference quotient. A difference 
quotient :y x∆ ∆  is a division, which can be viewed as a process: divide a difference 

in y by a difference in x. The outcome of this division, denoted by y
x

∆

∆
, is a value 

which can be seen as an object. Likewise, in the graphical representation: the division 
of two lengths is the process, which results in an object, the slope of a chord.  

Zandieh (2000) explains why the differential quotient and the derivative function 
both also can be viewed as process-object pairs. In the difference quotient a limiting 
process is involved, and ‘the derivative acts as a process of passing through 
(possibly) infinitely many input values and for each determining an output value 
given by the limit of the difference quotient at a point.’ 

When a student makes connections between levels within a representation, 
Hähkiöniemi claims this to be mostly procedural. However, these connections can 
also be conceptual, for example in a graphical explanation of the limiting process.  

Connections between applications and mathematics 

The mathematical concept ‘derivative’ has relations with different applications. 
Thurston (1994) describes different ways of understanding derivatives. One way is to 
understand derivatives in terms of the instantaneous speed of f(t) when t is time. Also, 
derivatives are used in physics lessons for concepts such as velocity, acceleration or 
radioactive decay, and in economics lessons for calculating maximum profits of 
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marginal costs and revenues. Zandieh (2000) included a column physical into her 
framework. She argued that the context of motion serves as a model for the 
derivative. This extension can be made to other applications of the derivative as well. 

Our research question in terms of the described framework is: what are characteristics 
of a student’s development with respect to connections made between and within 
representations, and between applications and mathematical representations? 

METHODOLOGICAL DESIGN 

To study the development of students’ understanding, we designed a longitudinal 
multiple case study with twelve students. Between April 2006 and December 2007, 
approximately every six month a task-based interview was conducted, yielding four 
interviews of 75 minutes with each student. In the interviews, we used think-aloud 
and stimulated recall techniques. The interviews were videotaped and transcribed. 

The first interview was held before students were introduced to the theory of 
derivatives. Between the second and the last interviews, derivatives were a re-
occurring topic in mathematics lessons. For this paper, we report on interview 2 (I-2) 
in November 2006 and interview 4 (I-4) in November 2007, because these contained 
the same five tasks, enabling us to compare in time. We will report on the work of 
one student, Otto. By zooming in on the work of one student, we can look more 
precisely at the solution strategies and statements of this student. We selected an 
average student with a positive attitude. 

All tasks in the test dealt with the concept of derivative, but this was not explicitly 
mentioned. The tasks were designed to give students many opportunities to show 
their understanding of derivatives in different representations and applications. We 
describe three exemplary tasks, named Emptying a Barrel, Petrol and Ball.  

Barrel: A barrel is emptied through a hole in the bottom (Figure 1). 
For the volume of the liquid in the barrel, the formula 

21
6010(2 )= −V t  and its graph are presented. The question is to 

calculate the out-flow velocity at 40t = .  

Petrol (Kaiser-Messmer, 1986): In a car an installation measures the 
petrol consumption related to the distance driven. The amount of 
petrol, used by a car, depends on the travelled distance. The task includes a graph and 
a table. ( )V a  is the petrol consumption after a km. The question is to interpret 

( ) ( )V a h V a

h

+ −
 (h is a value, which you can choose). 

Ball: A ball falls from a height of 90 cm. A table, a graph and the formula for the 
height 2( ) 0,9 4,9h t t= −  are presented. The question is to calculate the velocity at a 
certain point. 

Figure 1 
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Our analytic framework (presented in Roorda et al. 2007) contains elements of earlier 
frameworks of Zandieh (2000), Kindt (1979) and Kendal & Stacey (2003) In one 
dimension we have three mathematical representations: (a) formulae, (b) graphical; 
(c) numerical. In the other dimension we have the three object-process layers as 
connections between the four levels. See Table 1. 

Table 1: Representations and levels of the concept derivative 

 Formulae Graphical Numerical 

Level 1 F1: f : function G1: graph N1: table 

Level 2 F2: 
f

x

∆

∆
 difference quotient G2: average slope  N2:average increase 

Level 3 F3: 
d

d

f

x
 differential quotient G3: slope of a tangent 

 

N3:instantaneous rate of change 

Level 4 F4 : f ′ derivative G4: graph of derivative N4: table with rates of change 

To solve an application problem, students can choose which mathematical 
representation can be helpful. In this way, they make a connection between an 
application and a mathematical representation. In the table below, different non-
mathematical representations are displayed, matching the format of the table above. 

Table 2: Different applications 

 
General application Economics Physics: velocity Physics: acceleration 

Level 1 
S1: ( )A p : A depends 
on p 

E1: TK total costs Pa1: ( )s t  
displacement 

Pb1: ( )v t velocity 

 

Level 2 S2: 
p

A

∆

∆
 average 

change of A 

E2: 
[ ]TC

q

∆

∆
 average 

increase of costs 

Pa2: 
s

t

∆

∆
 average 

velocity  

Pb2: 
v

t

∆

∆
 average 

acceleration 

Level 3 S3: 
dp

dA
 instantaneous 

rate of change 

E3: 
[ ]d TC

dq
 marginal 

costs  

Pa3: 
ds

dt
instantaneous  

velocity 

Pb3: 
dv

dt
 for t a=   

instantaneous acc. 

Level 4 
S4: A’(p) derivative E4: MC marginal 

costs 
Pa4: ( )v t  velocity Pb4: ( )a t acceleration 

The difference with earlier frameworks is that we operationalise understanding of the 
concept of the derivative through the connections between representations, within 
representations and between representations and applications. In our analysis, we use 
arrows (as connectors) to visualize the connections in the scheme above. During the 
problem solving process a student may switch, for example, from a function (F1) to 
the derivative function (F4), yielding the code F1→F4. Another difference is the role 
of applications: these are not only viewed of as a support for understanding 
mathematics, but also as a part of other school subjects. When, for example in an 
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economic problem, a student focused on the graph, drew a tangent line, and 
calculated the slope, without economic interpretation, we will denote this as: 
E1→G1→G3. However, when a student solves a problem by calculating marginal 
costs, without mentioning relations with functions, graphs or table, we will denote 
this as E1→E4→E3. 

RESULTS 

In this section, the analysis and coding of students’ strategies in terms of our 
framework is illustrated by looking at the task Barrel. In Table 3 we summarise 
Otto’s work on this task during I-2 and I-4. 

Table 3: Otto’s typical statements and activities; Associated codes for Otto’s 
connections; task Barrel  

Interview 2 (I-2) Interview 4 (I-4) 

Otto: I have to calculate the velocity at that 
point [plots the graph and uses the option 
‘Tangent’ of his graphing calculator. In the 
window of the calculator the tangent appears 
and the formula y = −0,4428191485x+35,49..] 

Otto goes on to say: I think I have to different-
tiate, I get the formula of the tangent by 
differentiating. He calculates the derivative, 
without using the chain rule, fills in 40t = , 
makes a calculation error, writes down 

(40) 493,333V ′ = − . 

To check his answer, Otto tries to calculate the 
average out-flow velocity of the tank over the 

whole period, by a self-made rule:
2

begin end+
 

Otto calculates the derivative with some errors: 
(40) 59,8V ′ = . He discovers a miscalculation, 

corrects his answer into −555,56 litre per 
minute. To check his answer, Otto draws a 
tangent into the graph of the task and calculates 

35 0

80

y

x

∆ −
=

∆
 = 437,5 l/m. He says: This is a bit 

imprecise. I think it is possible. […] you can 
check with a graphical calculator by drawing a 
tangent. 

Otto plots the graph and the tangent: [O writes 
down: GR→ tangent(40)→-0,444x+35,56] 

He writes down 444,4 l/min. He thinks he 
made a miscalculation in the derivative. 

Connections interview 2 
S1→F1→G1→G3: use of formula; plots the 
graph; plots tangent 
S1→F1→F4→F3→S3:derivative (with error); 
derivative at t = 40; back to application 

Connections interview 4 
S1→F1→F4→F3→S3: formula; derivative 
(with error); fills in t = 40; back to application 
S1→G1→G3→S3: graph; tangent; application 

F2→G2 slope of tangent with y

x

∆

∆
  

F1→G1→G3→S3 graph, tangent; application 

Some observations: Otto used in I-2 and I-4 similar solution methods, such as 
differentiating the formula and plotting the tangent. Differences are also visible, for 
example in I-4 Otto checked his solution additionally by drawing the tangent on 
paper. Also, the connection between applications and mathematics G3→S3 was 
added, because Otto interpreted the slope of the tangent in terms of the application.  
In table 4 the same overview is given for the tasks Ball and Petrol. We will analyse 
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the data of these three tasks by examining the connections between representations, 
within representations and between application and mathematical representations. 

Connections between representations 

In I-2 the connection F1→G1 is frequently observed. In the tasks, Otto used the given 
formula as a starting point to plot a graph on his graphical calculator. Only one time 
we saw Otto make a table with his graphing calculator. Throughout I-2, Otto made a 
connection between derivative and tangent (F3/F4 →G3), but he could not explain 
this relation precisely. He said, for example: When you differentiate you get the 
formula of the tangent (see Table 3) and: to approximate the tangent, you use the 

formula 
( ) ( )V a h V a

h

+ −
 (see Table 4). 

Table 4: Otto’s typical statements and activities; Associated codes; tasks Ball and 
Petrol 

Interview 2 Interview 4 
Otto reads the task Ball and says: I think I have 
to use a derivative. He calculates the derivative 
but he fills in t = 2,4 instead of t = 0,24. 
Then he says: When you differentiate you get the 
formula for the tangent, and that corresponds to 
the velocity, I think. 
On his graphing calculator he plots a graph and a 
tangent but after a long silence he states: I don’t 
get any wiser from this. 
 
 
 
 
Connections: Pa1→F1→F4→F3 formula; 
derivative; fills in a wrong value for t. 
F1→G1 →G3 graph; tangent 

Otto thinks he can calculate the velocity of the 
ball by the formula txv ∆= . He calculates the 
average velocity over de first 0,24 seconds. 
This is followed by some confusion because 
Otto thinks the ball also moves horizontally. 
When de interviewer asks him to check his 
answer, Otto calculates the derivative. This 
answer is better, according to him, because in it 
he recognizes the derivative 9,8 as the gravity 
acceleration. He also says: I could draw a 
tangent and calculate the slope of it. At last Otto 
mentions a method with kinetic energy, but for 
that he needs the mass of the ball. 
Connections:Pa1→F1→F4→F3→Pa3: formula;  
derivative; fills in a value for t; velocity 
G1→G3 slope of tangent 

Statements of Otto in the task Petrol 
It’s the oil consumption at that point. 
On a small interval it becomes precise. 
On a small part you can approximate the 
tangent. 
Differentiating is for the formula of the tangent. 
It is a specific value for the tangent 
How many liters per kilometer he uses (F2→S2) 
 
 

Statements of Otto in the task Petrol 
It is the approximation on a certain point;  
It is a certain slope, when you take a small h you 
calculate exactly the slope at a certain point 
(F3→G3; F2→F3); 
You get the consumption very precisely; 
When h is larger it is the average consumption 
over a certain distance. (F2→S2); 
It is a formula to calculate the consumption over 
a certain period of time. 

Compared to I-2, in I-4 we observed more relations between representations, also at 
different levels of the concept. Otto more often used the given graph to solve the task. 
In I-4 Otto stated that the value of the derivative equals the slope of the tangent. He 
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also made a connection between the formula of the difference quotient and the slope 
of a secant. He never used the numerical representation. 

Connections within representations 

Both in I-2 and I-4, we often coded the connection between levels F1→F4→F3 and 
G1→G3. These two connection strings (calculating a derivative and plotting a 
tangent) were standard procedures for Otto, displaying a strong procedural 
understanding, but in I-2 Otto cannot yet explain this relation accurately. 

In the tasks Barrel and Ball, Otto never mentioned the difference quotient at a small 
interval or slope of a secant; the tasks obviously did not activate his potential 
knowledge of the limiting process of the derivative (connections within level 2 and 3) 
although the task Petrol gave ample opportunities to reason about the impact of a 
larger or smaller h. In both interviews, Otto was unable to explain the formula 
precisely, but in I-4 Otto made more correct statements than in I-2 (see table 4). As 
we see in I-4, Otto tried to explain the limiting process, but even in I-4 his 
formulations are not very accurate. 

Connections between applications and representations 

In I-2 Otto connected derivative, tangent and velocity, when saying: “When you 
differentiate you get the formula of the tangent, and that corresponds to the velocity, I 
think.”  Nevertheless, Otto did not accurately put these concepts together. In I-4 Otto 
mentioned and used more relations between formula/graph and applications. He 
interpreted the tangent-formula correctly to find the velocity of the ball, and in the 
Petrol-task the link between the mathematical notation and the application is 
correctly described by Otto. 

In I-2 Otto did not connect mathematical and physical methods (such as using the 
formula v a t= ⋅ ). A year later, in I-4 Otto made a few remarks, in which he 
connected mathematics and physics. For example, Otto noticed that in the derivative 

( ) 9,8h t t′ = −  the value 9,8 is the acceleration of gravity, and he mentioned a 
calculation method using kinetic energy. In I-4 Otto stated (in another task): “the 
derivative is the formula for the velocity, and the second derivative is for distance 
moved [..] Once, my math teacher gave this as notes.” This is an incorrect 
formulation, because Otto meant ‘acceleration’ instead of ‘distance moved’. 

CONCLUSIONS AND DISCUSSION 

This study uses a case study methodology, the focus of the data analysis is on the 
student as an individual. From individual results we can not prove any 
generalizations, which is clearly a limitation of this paper, but we can find 
counterexamples and existence proofs.  

In this paper, we reported on Otto’s development in understanding the derivative. 
Compared with I-2, we measured in I-4 an increased number of connections, both 
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between and within representations. Connections made in I-2 reoccurred in I-4. 
Otto’s preference for the graphical and the formulae representation was continued in 
I-4 and also his avoidances of the numerical representation. The preference for 
graphical representation corresponds to research by Zandieh (2000), who observed 
that six out of nine students prefer the graphical representation in tasks and 
explanations about derivatives. In the case of Otto, we saw that this preference 
prevailed throughout the learning process.  

In I-2 at several occasions, Otto equalled the derivative to the tangent, instead of ‘the 
slope of the tangent’. This was not a slip of the tongue, because Otto repeatedly 
displayed an incorrect idea about the connection between ‘tangent’ and ‘derivative’. 
This phenomenon is also reported by Asiala et al.(1997) and Zandieh (2006). In 
addition to the research of Zandieh, we see that Otto’s misstatements hinder him 
during problemsolving. A year later in I-4, Otto knows that the derivative yields the 
slope of the tangent, so his understanding of the formula of a tangent is corrected. 

Basson (2002) reported that physics teachers frequently complain that students 
cannot use what they have learned in their mathematics classes. In the case of an 
average student such as Otto, we observe indeed difficulties to connect mathematics 
and physics correctly. Although there is some progress in the accuracy of statements, 
for example in recognizing the gravity acceleration, the use of the rule ‘derivative is 
velocity’, his understanding of these connections stays weak.  

Otto improved his procedural knowledge. Although he often uses the same 
procedures, especially plotting the graph (F1→G1), plotting a tangent (G1→G3), or 
calculating a derivative at a point (F1→F4→F3), he seems to be more certain of his 
work and he is more sure about the connections between the different procedures. On 
the other hand, a recurring feature with Otto was that he sometimes chose an incorrect 
method, for example in the task Ball, in which he calculates in I-4 an average velocity 
instead of an instantaneous velocity, without any corrections on his work. 

Between I-2 and I-4, his conceptual knowledge increased. In I-4 Otto could explain 
relations between mathematics and physics to a certain extent, the connection 
between tangents and the derivative function improved and he connected more 
frequently to the levels 2 and 3 of the derivative. On the other hand, the connections 
made were not verbally well explained and some possible connections were not 
mentioned. So his conceptual knowledge increased, but nevertheless remained weak. 

We have used a framework for analysing students’ understanding of the derivative in 
application problems. The resulting arrow-schemes describe students’ strategies in a 
structured way by indicating patterns between cells of the table (see table 1). This 
facilitates the interpretation of students’ statements and operations. Our framework 
also gives a clear description of transitions between applications and mathematical 
representations, which students make during problem solving. We added notes on 
procedural and conceptual knowledge displayed by the students. A challenge remains 
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to use students’ misstatements, which are presently not described although these can 
be indicators of students’ understanding. 
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FINDING THE SHORTEST PATH ON A SPHERICAL SURFACE: 
“ACADEMICS” AND “REACTORS” IN A MATHEMATICS 

DIALOGUE   
 

Maria Kaisari and Tasos Patronis 
University of Patras, Department of Mathematics. 

 
The geometry of the surface of the Earth (considered as spherical) can serve as a 
thematic approach to Non-Euclidean Geometries. A group of mathematics students at 
the University of Patras, Greece, was asked to find the shortest path on a spherical 
surface. Advanced Mathematics provides different aspects of students’ mathematical 
thinking. In this paper we focus on a dialectic of two types of students’ attitude, which 
we call “academics” and “reactors”, and we analyze students’ dialogue according 
to a theoretical framework consisting in three main frames of understanding 
mathematical meaning.     
Keywords: Thematic approach, project method, academics, reactors. 

INTRODUCTION AND THEORETICAL FRAMEWORK  

   As a well-known research team at the Freudenthal Institute has shown, Spherical 
Geometry can give opportunities to students for exciting “mathematical adventures” 
(van den Brink 1993; 1994; 1995). Van den Brink’s descriptions of designing and 
carrying out a series of lessons on spherical geometry for high school students are 
convincing enough (however see Patronis, 1994, for students’ difficulty to accept the 
ideas of non-Euclidean Geometry). In particular, an intuitive, non-analytical mode of 
presentation and discussion in the classroom seems to be very satisfactory at this 
level: perhaps this is the most natural way to link this geometry with everyday 
problems of location, orientation and related cultural practices. 

 Project method, discussed in the context of Critical Mathematical Education (see 
Skovsmose, 1994a; Nielsen, Patronis, & Skovmose, 1999), involves the selection of 
themes of general or special interest. For us, a thematic approach to non-Euclidean 
Geometry involves a choice of a main theme according to the following criteria. First, 
this theme should be formulated in a language familiar to students and create a link 
between Elementary and Higher Geometry. On the other hand, the same theme might 
represent some critical conflicts in the History of Mathematics and function as an 
epistemological “dialogue” between different conceptions and views. The geometry 
of the Surface of the Earth (taken as spherical) was taken as such a theme of more 
general interest, which was used as a starting point in our project and provided 
opportunities for the formulation of more special tasks. 

One of the most significant tasks in the Freudenthal Institute experience mentioned 
above was to determine the path of shortest length between two places on the surface 
of the Earth. The present paper describes and analyses a mathematics dialogue 
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between university students on the same task. This dialogue is part of a long-term 
project in the Mathematics Department of Patras University, during two academic 
semesters, with a group of students of 3rd or 4th year. The paper focus on a dialectic of 
two types of participants’ attitudes in this experience. The first type of attitude 
corresponds to the role of an «academic» and consists in students’ tendency to choose 
coherent theoretical models or methods for solving the given tasks. The second type 
of attitude corresponds to the role of a «reactor» and amounts to exercise control, or 
“improve” academics’ proposals. The first type corresponds more or less, to a 
formalist’s view and the second may include various reactions to formalism (Davis& 
Hersh 1981 ch.1, Tall 1991 p.5). Thus we decided to focus on these two attitudes, as 
the analogues of formalist and non-formalist views of mathematics in students.  We 
shall describe the dialectic of the attitudes of academics and reactors in terms of a 
framework of understanding mathematical meaning, which follows.  

 According to Sierpinska (1994, p.22-24) meaning and understanding are related in 
several ways. One of these, which we follow here, is typical in Philosophical 
Hermeneutics: understanding is an interpretation (of a text, or an action) according to 
a network of already existing “horizons” of sense or meaning (see also Pietersma 
1973 for “horizon” as implicit context in phenomenology). Thus we are going to 
analyze our empirical data according to a theoretical framework involving three main 
frames (or “horizons”) of understanding mathematical meaning namely: i) 
mathematical meaning as related to students’ common background, ii) mathematical 
meaning as specialized theoretical knowledge, and iii) mathematical meaning as 
pragmatic meaning. 

I. Mathematical meaning as related to students’ common background 
The first main frame of understanding mathematical meaning in our framework 
consists, roughly speaking, in what almost all students «carry with them» from school 
mathematics or first year calculus and analytic geometry. Mathematical terms in this 
frame may have an intuitive as well as a formal meaning. The mathematical language 
used is mixed and some times ambiguous (as e.g. it is the case with the word “curve” 
in school mathematics). The influence of this frame of understanding meaning is very 
strong may become an «obstacle» in the construction of new mathematical 
knowledge (Brown et al 2005).   

II. Mathematical meaning as specialized theoretical knowledge 
The second main frame of understanding mathematical meaning is typical in 
specialized university programs in Mathematics, at an advanced undergraduate or a 
postgraduate level. Examples of this frame of understanding mathematical meaning 
are offered by advanced courses of Algebra, Topology, and Differential Geometry (or 
Geometry of Manifolds). Mathematical terms in this frame are coherently and 
formally defined (usually by means an axiomatic system) and proofs are given 
independently of common sense (Tall 1991).                     
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III.  Mathematical meaning as (socially negotiated) pragmatic meaning 
As the third main frame we consider pragmatic meaning: the meaning of a sentence 
or a word is determined by its use in real life situations or in given practices. An 
important example in this frame of understanding mathematical meaning is offered 
by the case of practitioners in the field of navigation and cartography during 16th 
century (Schemmel 2008 p.15-23). In some classroom situations we can also consider 
this kind of meaning as socially negotiated meaning. It has been observed that in 
interactive situations negotiation of meaning involves attempts of the participants to 
develop, not only their mathematical understanding, but also their understanding of 
each other (Cobb, 1986, p.7).     

PARTICIPANTS AND COLLECTION OF DATA 

During the first semester of the year 2003-2004, all mathematics students at Patras 
University, attending a course titled “Contemporary view of Elementary 
Mathematics”1, were informed about the project «Geometry of the Spherical Surface» 
and were invited to participate.  Eleven students responded. Five of them, who were 
particularly involved in the project, formed the final group of participants. Only one 
of the participants was a girl (Electra2), who worked together with one of the boys 
(Orestes), while the rest worked alone. Orestes, Electra and Paris were students of the 
third year and Achilles was at the last (fourth) academic year. An exceptional case is 
Agamemnon, who was not normally attending this course but participated by pure 
interest.  

 A narrative text was given to the participant students adapting Jules Verne’s novel 
“Un capitaine de 15 ans” (in Greek translation). After reading this text we had a 
discussion with the students in the classroom, which led to the formulation of the task 
examined in the present paper:  

Which is the shortest path between two points on the surface of the Earth (considered 
as spherical) and why? 

During of the project we collected data by personal interviews (formal or informal), 
by recording classroom meetings and by gathering students’ essays or intermediate 
writings in incomplete form.   

ANALYSIS  

As we already announced, we are going to analyze students’ dialogue and some of 
their essays by using the   crucial distinction between academics and reactors.   
 
 Academics 

 
As we already said, this type of attitude characterizes the students who use 
conventional and/or coherent methods or higher mathematics to solve a problem. 
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Mathematical knowledge used may have different origins, but usually academics use 
school or first year university mathematics. This choice corresponds to the first frame 
of understanding mathematical meaning. More specifically, academics may try to use 
elementary mathematics in order to solve an advanced mathematical problem. On the 
other hand, students of the same type of attitude may follow the second frame of 
understanding mathematical meaning. According to this frame students use advanced 
mathematical knowledge from university courses in order to solve (advanced) 
mathematical problems. They may also use knowledge even from postgraduate 
courses, producing formal proofs without originality and intuitive understanding. A 
general characteristic of academics is that they can only act in a single frame (first or 
second) and not in many frames at the same time. They seem to have a difficulty to 
change frames of meaning.     
  
Our first case, representing academics following the first frame of understanding 
mathematical meaning, is Agamemnon. On the other hand Achilles represents 
academics at the second frame of understanding meaning. As we shall see, Achilles 
uses advanced mathematical tools from differential geometry in order to prove that 
great circles are geodesic lines on a spherical surface. Here are some extracts from his 
presentation in the classroom. 
 

Achilles: We are going to define a very important concept, the concept of geodesic 
curvature. The definition is singk k θ=  (Where k is the curvature of a space 

curve). According to Darboux formulas we have 

                                       

  (1)

  (2)

  (3)

g g n

n g g

g
g g

dt
k n k N

ds

dN
k t n

ds
dn

k t N
ds

τ

τ

= +

= − −

= − +

r
rr

r
r r

r
rr

 

                       Forming the scalar product of the first member of (3) with  t
r
 we have   

                                           ,      (4)g
g

dn
k t

ds
= −

r
r

 

                       …I suppose we don’t need this formula but the equivalent one: 

                                            ,      (5)g g

dt
k n

ds
=

r
r

. 

The participant observer intervenes and asks why (4) and (5) are equivalent. After 
some thought, Achilles says that formula (5) results from (1) by scalar multiplication 
with gn

r . 

   Meanwhile, Agamemnon writes his own answer to the participant observer’s 
question:  
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                  , 0 , , 0 , ,a b a b a b a b a b′ ′ ′ ′= ⇒ + = ⇒ = −   

 (Agamemnon means that a, b can be any vector functions( ) ( ),a t b t
rr .) 

Achilles continues by proving that a curve γ is a geodesic on a surface if and only if 

0 0n N= ±
rr . He concludes that great circles are geodesic for the surface of the sphere.  

  This proof involves concepts from the postgraduate course “Geometry I”, taught at 
the first year of the postgraduate program of the department of Mathematics. Achilles 
ignores the formulation in the given context (as we described in section 2) and 
focuses at the mathematical task. This choice to use differential geometry is not 
accidental. At the end of his presentation he said that this solution is the better and the 
prettier one because, given a curve on a surface we must use Curve Theory and 
Surface Theory. It is also interest to compare the reactions of Achilles and 
Agamemnon to the participant’s observer question: Achilles acts in the second frame 
of understanding and gives an answer by using again advanced mathematical tools. 
On the other hand Agamemnon acts in the first frame of understanding meaning and 
using elementary mathematics gives an answer that is in fact a new proposition (a 
lemma).                         
Agamemnon’s project is quite different and uses a notation of his own.  
 

Agamemnon:       We define a function 

                               
(((( ]]]] (((( ]]]]

(((( ))))

: 0,2 0,

              

R

R

R R

x x

µ π

µ

→→→→

→→→→
  

 where (((( ))))R xµ  is the length of the smaller arc corresponding to the     

spherical chord x. 
Let   1 2, , ,  be n 3nA A A εΣK ∈ ≥∈ ≥∈ ≥∈ ≥  points on the spherical surface. We can 

prove that…I will first write and then explain: 
                               (((( )))) (((( ))))1 0R i i R kA A A Aµ µΣ ++++

≥≥≥≥       (1) 

 
Agamemnon proves inequality (1) (a generalization of the well known Triangle 
Inequality for Spherical Triangles) using mathematical induction.  
 

Let a curve in three dimensional space, with ends A, B. We try to 
approximate the length of this curve with polygonal lines. 

                                
                                                           Fig. 1  
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Agamemnon tries to approximate a curve on a spherical surface by arcs of great 
circles:  

Let now be 
�

µ
ΑΒ

 the length of the great circle that passes through A, B and 

γµ  the length of an arbitrary line connecting A, B. We are going to prove 

that
� γµ µ
ΑΒ
≤ . We approach γµ  with spherical broken lines… If we assume 

that 
� γµ µ
ΑΒ
>  then, by using (2) for a suitable choice of points ix  on the 

spherical surface we have: 
                            (((( ))))1R i iA Aγµ µ εΣ ++++

− <− <− <− < , a contradiction with (1). 

 
Although Agamemnon promises that he will explain his choices, in fact he is not in a 
position to do this, and his peers cannot follow his thought. 
As we already said, Agamemnon acts in the first frame of understanding 
mathematical meaning. His proof is characteristic of this frame following a similar 
idea with that of the proof concerning plane curves. We find essentially the same 
proof in Lyusternik (1976) but in a more intuitive formulation, without using formal 
mathematical notation. Agamemnon was not aware of this proof since he used school 
and first year geometry textbooks in Greek. The notation he used is a creation of his 
own, expressing his formal kind of thinking. Contrary to Achilles he is interested in 
creating a new proof, and despite his difficulties he never consults the University 
Library.          
 
Reactors 

 
The second type of students’ attitude expresses itself in the form of, either a 
disagreement, or a proposal of “simplification” or “improvement”. Students of this 
type of attitude can act in at least two frames of understanding mathematical meaning 
at the same time. Moreover, a frame of meaning particularly use by reactors it is the 
third one. Pragmatic meaning is provided by the scene of action and transforms the 
first frame of mathematical meaning in a non-conventional way. Some of these 
students act within the given social context and are mainly inspired by it. Thus not 
only they react to academics’ proposals, but they also try to introduce a different way 
of thinking.  
 
Before their final presentation, students interchanged opinions. Agamemnon tries to 
communicate with others students by expounding his thought. In this phase Orestes 
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reacts to him by proposing a “simpler” solution by using orthogonal projection and 
Orestes himself interacts with Paris. 
 

Agamemnon: Consider a curve on the spherical surface and a sequence of points on this 
curve. For any two points we consider the smaller arc of a great circle… I 
thing we can call these lines spherical broken lines. 

 
  

Agamemnon draws Figure 1 and Orestes reacts as follows: 
 

Orestes: Let us draw the perpendiculars from the end points of these arcs to the 
chord AB, and compare, for example, chord AM with segment AH. Since 
AM is the hypotenuse of the triangle AHM, it is be greater than AH. 
Similarly MN is greater than ME=HZ Continuing in the same way we find 
that the sum of all those chords is greater than the chord AB. Now we wish 
to find a relation between chords and arcs.  

                                                                                                  
At this point the participant observer asks Orestes where all those chords (arcs and 
perpendiculars) lie on. Orestes knows that they lie on different planes. Paris shows 
with his hands a warped triangle. Orestes makes Fig.2 and continues: 
 

Orestes: The only thing that matters is the length. That the hypotenuse is greater than 
perpendicular… 

                           
 

                                                                 Fig.2 
Paris has a difficulty to imagine the figure in 3D-space: 
 

    Paris:      From what Orestes said, I though that we could project the figure in the 
plane… like Mercator projection. Then we could work in the plane…that 
will be easier. 

Achilles: This projection must be isometric and Mercator’s projection I do not think 
is going to help. 

     Paris:   If we project small areas from a part of the Earth. 
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Achilles: For large areas France will be came equal to North America.  

     Paris:  We can make divisions as we do in integrals …I’ ill thing about that. 

    
As we see here, both academics and reactors act and react to each other. 
Agamemnon tries to expose his thought and Orestes responses by trying to “simplify” 
his attempt. It is difficult, however, to communicate their ideas each other in a way to 
understand each other. Although Orestes responses to Agamemnon, it is obvious that 
he cannot follow his thought. Moreover Orestes is not concerned about the context 
when he says that the only thing that matters is the “length” and seems to ignore that 
he is working on a spherical surface. Paris reacts to Orestes and proposes a projection 
on the plane. Achilles reacts to Paris by disputing the suitability of this proposal.                     
 
In a later essay Paris presented three different plans of proof, neither of which was 
complete. In one of these plans he formulated the following lemma, which is typical 
of the first frame of understanding mathematical meaning:   

                                                                        
 Let (K,R) be a great circle on a spherical surface and (K΄, Ŕ ) a small circle so that the 
chords AB and A΄Β΄ are equals (Fig.3). Then the arc of the small circle is longer than the 
arc of the great circle with the same chord because the small circle has a greater curvature.   

                            
                                                        Fig.3 
In another plan, Paris introduces a system of parallel circles (similar to that used for 
the Globe) and tries to combine the first and second frame, by using chords instead of 
corresponding circular arcs.  
We could say that Paris acts in first but also in the third frame of understanding 
mathematical meaning since the globe but also the planar projections have central 
position in his attempts.   
 
Finally, some of the reactors act in the third frame by “transferring” knowledge from 
navigation practices to the given problem, without any further elaboration. For 
example Orestes (in his final essay) uses the globe in order to describe the concepts 
of loxodrome and orthodrome.    
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                                                         Fig. 4 

 Orestes finally chooses the method of “logistic orthodrome”, in which middle points 
must be found between A and B (Fig.4). He describes this method without using any 
projection, working this time on the spherical surface of the Earth.  
    

 FURTHER DISCUSSION AND PERSPECTIVES  

The three frames of understanding mathematical meaning, which we used in our 
analysis, may be helpful into some more general perspectives, which perhaps are 
already present in our experience but are not yet thoroughly studied in this context. 
One of these perspectives comprises argumentation and proving processes at the 
tertiary level of geometry teaching. In this direction the frames introduced here may 
by seen as different frames of arguing and proving or of understanding proofs. As an 
example of a proof in the first frame we may consider the elementary mathematical 
proof of the fact that great circles are geodesic lines on a spherical surface, which we 
find in Lyusternik (1976; p.30-35). An example of a proof in the second frame is the 
proof of the same fact in the context of Differential Geometry (followed by Achilles 
in our experience - for a complete proof see Spivac 1979). Again Lyusternik (1976) 
offers us an example of (pragmatic) argumentation in the third frame in p.49-51, of 
his book by which he establishes Bernoulli’s theorem: For an elastic thread q 
stretched on surface S to be in a state of equilibrium it is necessary that at any point 
of q, the principal normal of q coincides with the normal to the surface S (i.e. q is 
stretched along a geodesic of S).  

It seems difficult, in general, to combine any two of the above three frames of 
understanding mathematical meaning (and proof). As we have already said, 
academics act either in the first or in the second frame, being almost unable to 
combine frames. This combination provides a link between Elementary and 
Advanced Mathematics that is essential in Tertiary Mathematics Education. On the 
other hand, reactors can combine the two first frames (students’ common background 
and pragmatic meaning), while there is no combination of the second with the third 
frame, which shows a need for enrichment of the scheme academic/reactor with 
more special categories of attitudes. Here a question arises for further theoretical and 
empirical study, namely how can old textbooks of mathematics or other related 
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historical sources be used in teaching to provide a “dialogue” between various 
epistemological perspectives.                   
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NUMBER THEORY IN THE NATIONAL COMPULSORY 
EXAMINA TION AT THE END OF THE FRENCH SECONDARY 

LEVEL: BETWEEN ORGANISING AND OPERATIVE 
DIMENSIONS 

Véronique BATTIE 

University of Lyon, University Lyon 1, EA4148 LEPS, France 

In our researches in didactic of number theory, we are especially interested in 
proving in the secondary-tertiary transition. In this paper, we focus on the 
“baccalauréat”, the national examination that pupils have to take at the end of 
French secondary level. In reasoning in number theory, we distinguish two 
complementary dimensions, namely the organising one and the operative one, and 
this distinction permits to situate the autonomy devolved to learners in number theory 
problems such as baccalauréat’s exercises. We have analysed 38 exercises, from 
1999 to 2008, and we present the results obtained giving emblematic examples. 

INTRODUCTION  

At the end of French secondary level (Grade 12), there is a national compulsory 
examination called baccalauréat and the mathematics test includes three to five 
exercises (each one out of 3 to 10 points). In French Grade 12, there is an optional 
mathematics course in geometry and number theory and the test for candidates who 
have attended this optional course differs from that for others candidates by one 
exercise (out of 5 points); this exercise includes or not number theory. In our 
researches in didactic of number theory, we are especially interested in the 
secondary-tertiary transition1, so especially interested in the baccalauréat which 
plays a crucial role in this transition. Within didactic researches related to secondary-
tertiary transition (Gueudet, 2008), we propose to study some of the ruptures at stake 
in terms of autonomy devolved to Grade 12-pupils and students. In this paper, we 
focus on characterizing this autonomy in baccalauréat’s exercises using the 
distinction that we make in the reasoning in number theory between the organising 
dimension and the operative dimension (Battie, 2007). 

We distinguish two complementary dimensions. The organising dimension concerns 
the mathematician’s « aim » (i.e. his or her « program », explicit or not). For 
example, besides usual figures of mathematical reasoning, especially reductio ad 
absurdum, we identify in organising dimension induction (and other forms of 
exploitation in reasoning of the well-ordering ≤ of the natural numbers), reduction to 

                                           
1 In secondary-tertiary transition, number theory is primarily concerned with structures and properties of the integers 

(i.e. Elementary number theory). For a detailed consideration of various facets falling under the rubric of number 

theory, see Campbell and Zazkis, 2002. 
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the study of finite number of cases (separating cases and exhaustive search2), factorial 
ring’s method and local-global principle3. The operative dimension relates to those 
treatments operated on objects and developed for implementing the different steps of 
the program. For instance, we identify forms of representation chosen for the objects, 
the use of key theorems, algebraic manipulations and all treatments related to the 
articulation between divisibility order (the ring Z) and standard order ≤ (the well-
ordered set N). Among the numerous didactic researches on mathematical reasoning 
and proving (International Newsletter on the Teaching and Learning of Mathematical 
Proof and, especially for Number theory, see (Zazkis & Campbell, 2002 & 2006)), 
we can put into perspective our distinction between organising dimension and 
operative dimension (in the reasoning in number theory) with the “structuring 
mathematical proofs” of Leron (1983). As we showed (Battie, 2007), an analogy is a 
priori possible, but only on certain types of proofs. According to us, the theoretical 
approach of Leron is primarily a hierarchical organization of mathematical sub-
results necessary to demonstrate the main result, independently of the specificity of 
mathematical domains at stake. As far as we know, Leron’s point of view does not 
permit access that gives our analysis in terms of organising and operative dimensions, 
namely the different nature of mathematical work according to whether a dimension 
or another and, so essential, interactions that take place between this two dimensions. 

In this paper, we present the results obtained analyzing 38 baccalauréat’s exercises, 
from 1999 to 2008, in terms of organising and operative dimensions. In the first part, 
we study the period from the reintroduction of number theory in French secondary 
level (1998) to the change of the curriculum in 2002 (addition of congruences). In the 
second part, we focus on the next period, from 2002 to 2008. 

NUMBER THEORY IN BACCALAUREAT’S EXERCISES FROM 1999 TO 
2002 

After 15 years of absence, number theory reappeared in 1998 in French secondary 
level, first in Grade 12 as an optional course (with geometry). From 1998 to 2002, 

                                           
2 For example, an exhaustive search to find the divisors of a natural number n is to enumerate all integers from 1 to n, 

and check whether each of them divides n without remainder. We talk about strict exhaustive search when there is not a 

limitation phase of possible candidates (for the solution) before checking whether each candidate satisfies the problem's 

statement. 

3 An elementary example is given in (Harary, 2006): Proposition. Let m be an integer checking m = 4r(8s + 7), r and s 

integers > 0. Then the equation x2+y2+z2 = m has no rational solution. Demonstration. If there was a rational solution, 

there would be an non-trivial integer solution (in “hunting” denominators) for the equation (8s+7)t2=x2+y2+z2. Even if it 

means to divide x, y, z, t by the same number, then we can assume they are relatively prime. Then we look at the 

equation modulo 4: in Z/4Z, the squares are 0 and 1; and t can not be even otherwise x²+y²+ z² would be divisible by 4 

implying that x, y, z are all even, contradicts the hypothesis. But if t is odd, then (8s+7) t² is congruent to -1 modulo 8 

and x²+ y² + z² too, which is impossible because the squares of  Z/8Z are 0, 1, 4. 
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Number theory curriculum as an option comprised: divisibility, Euclidian division, 
Euclid’s algorithm, integers relatively prime, prime numbers, existence and 
uniqueness of prime factorization, least common multiple (LCM), Bézout’s identity 
and Gauss’ theorem4. In one of our researches (Battie, 2003), we tried to find all 
baccalauréat’s exercises related to the optional course in number theory (and 
geometry) in French education centers in the world. From 1999 (in 1998 there was 
only geometry exercises) to 2002, within the 40 exercises we found, 20 concern 
exclusively number theory, 10 are mixed (number theory and geometry) and 10 
concern exclusively geometry. We analysed therefore 30 baccalauréat’s exercises5. 
In this ecological study, after grouping together exercises related to the same 
mathematical problems, the objectif is to assess the richness of what is "alive" in 
these exercises and to situate the autonomy devolved to pupils in terms of organising 
and operative dimensions. What are the results of this study?  

The identification of mathematical problems involved in these 30 baccalauréat’s 
exercises highlights a real diversity through the existence of three possible groups6 : a 
first one defined by solving Diophantine equations (18 exercises), a second group 
defined by divisibility (21 exercises) and a third one characterized by exogenous 
questions compared to the first two groups (3 exercises associated with at least one of 
the first two groups). However, refining the analysis, we observe that all exercises are 
constructed from a relatively small number of types of tasks. This is primarily solving 
in Z Diophantine equations ax + by = c (gcd (a,b) divide c) in the first group of 
exercises (we’ll note T afterwards) and, for the second group, proving that a number 
is divisible by another one or determining gcd of two numbers. 

The analysis of first group’s exercises confirms the emblematic character of T: we 
identify T in 16 of the 30 exercises. There is three cases related to its role in each 
exercise: T, as an object, is essential in the exercise and comes with direct 
applications (8 exercises), T occupies a central place and comes others problems (3 
exercises), T is an essential tool to solve a problem outside number theory (5 
exercises). The autonomy devolved to pupils to realize T is almost complete, at the 
organising dimension and at the operative dimension, undoubtedly because of routine 
characteristic. Indications for the organising dimension, according to the technique 
taught in Grade 12, appear through cutting the resolution in two questions: a first 

                                           
4 If an integer divides the product of two other integers, and the first and second integers are coprime, then the first 

integer divides the third integer. 

5 France (june 2002, 2001, 1999, september 2002, 2001), Asia (june 2002, 2000, 1999), North America (june 2002, 

2001, 1999), South America (november 2001), Foreign centers group 1 (june 2002, 2001, 1999), Pondicherry (may 

2001, 1999, june 2002, 2000), La Réunion (june 2000), Guadeloupe – Guyana – Martinique (june 2001, 2000, 1999, 

september 2001), Polynesia (june 2002, 2001, 2000, 1999), New Caledonia (november 2001, march 2001). 

6 It’s not a classification: an exercise can be associated to several groups.  
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question about existence of a solution and another one about obtaining all solutions 
from this solution (linearity phenomena); the set of solutions is given only in one 
exercise. The treatment of the logical equivalence at stake is under the responsibility 
of pupils in almost all exercises. At the operative dimension, Bézout’s identity and 
Gauss’ theorem, both emblematic of Grade 12 curriculum, are respectively the 
operative key for finding a particular solution and to obtain all solutions from this 
particular solution. We identify four types of exercises for the first step (finding a 
particular solution): 4 exercises with only checking whether a given candidate 
satisfies the equation, one exercise where an obvious solution is requested, 5 
exercises where using Euclid's algorithm is recommended more or less directly and 5 
exercises without indication. Note that a justification for such a solution is at stake in 
a third of exercises; Bézout’s identity is expected. For the second step (obtaining all 
solutions from the particular solution), the operative dimension is entirely under 
responsibility of pupils (except for one exercise). Despite the important role of T, 
both qualitatively and quantitatively, this type of tasks is not completely 
standardized: we highlight levers chosen by baccalauréat’s authors to go beyond its 
routine. Generally, such an extension is achieved by reducing the resolution to N or 
to a finite Z-subset (12 exercises on the 16 at stake) and is often “dressing” the 
problem which naturally leads to this reduction (geometry (9 exercises), astronomy (2 
exercises), context of "life" (1 exercise)). The organising dimension favoured by the 
authors is one whose aim is using Z-resolution. This dimension is clarified in 5 
exercises (through the phrase "Deduce" or "application"); these include especially 
those where the set of solutions is infinite. When the set of solutions is finite and 
when the resolution is in a finite Z-subset, there is no explicit indication and we 
identify an opening in terms of autonomy devolved to pupils at the organising 
dimension; this is the example of [Polynesia, June 2001]: 

1. Let x and y be integers and (E) be the equation 91x + l0y = 1.  

a) Give the statement of a theorem to justify the existence of a solution of the equation 
(E). 

b) Determine a particular solution of (E) and deduce a particular solution of the equation 
(E’) 91x + l0y = 412. 

c) Solve (E’). 

2. Prove that the integers An
 = 32n – 1, with n a non-zero natural number, are divisible by 

8 (one of the possible methods is an induction).  

3. Let (E’’) be the equation A3x + A2y = 3 296. 

a) Determine the ordered pairs of integers (x, y) solutions of the equation (E”). 

b) Prove that an ordered pair of natural numbers is a solution of (E”). Determine it. 
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We can analyze the issue 3. by identifying Z-resolution and N-resolution as two 
separate problems, i.e. without giving to Z-resolution the status of under problem in 
issue 3.b. This is a N-resolution of (E’’) according to this aim:  

91x + l0y  =  412 

91x = 2 (206 – 5y) 

Necessarily 2 divide x by using Gauss’ theorem. x and y are natural numbers so  

91x ≤ 412 and then x ∈{2; 4}. Only x = 2 is ok (y = 23). 

The specificity of possible solutions is exploited in operative work to reduce the 
research by containing the set of solutions: the organising dimension is an exhaustive 
search with limitation phase. The uniqueness of the solution announced, we can also 
choose a strict exhaustive search. However, it seems unlikely that a student does not 
use the Z-resolution, in particular because of the didactic contract. We have an 
exception, [France, June 2002], related to levers chosen by baccalauréat’s authors to 
go beyond the routine characteristic of T:  

1. Let (E) be the equation 6x + 7y = 57 in unknown x and y integers. 

a) Determine an ordered pair (u, v) of integers checking 6u + 7v = 1. Deduce a particular 
solution (x0, y0) of the equation (E). 

b) Determine the ordered pairs of integers, solutions of the equation (E). 

2. Let ),,,( kjiO
rrr

 be an orthonormal space’s basis and let’s call (P) the plane defined by 
the equation 6x + 7y + 8z = 57.  

Prove that only one of the points of (P) contained in the plane ),,( jiO
rr

 has got 
coordinates in N, the set of natural numbers.  

3. Let M(x, y, z) be a point of the plane (P), x, y and z natural numbers.  

a) Prove that y is an odd number.  

b) y = 2p + 1 with p a natural number. Prove that the remainder of the Euclidian division  

of p + z by 3 is 1.  

c) p + z = 3q + 1 with q a natural number. Prove that x, p and q check x + p + 4q = 7. By 
deduction, prove that q is equal to 0 or equal to 1.  

d) Deduce the coordinates of all points of (P) whose coordinates are natural numbers. 

In this exercise, the routine characteristic of T is broken by its extension through an 
original (related to Grade 12 teaching culture) type of problems: the N-resolution of 
Diophantine equations ax + by + cz = d (a, b and c relatively prime). A characteristic 
of the organising dimension behind the exercise’s statement is that it does not use the 
Z-resolution, breaking with the conception of other exercises. The organising 
dimension is an exhaustive search with limitation phase, and in this case, autonomy 
devolved to pupils is very small (throughout the limitation phase). However, 
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confirming the analysis of other exercises, the (phase of) strict exhaustive search and 
the logical equivalence at stake is under responsibility of pupils.  

In the second group of exercises around the concept of divisibility, we find all main 
operative dimensions used in our epistemological analysis: forms of representation 
chosen for the objects, the use of key theorems, algebraic manipulations and all 
treatments related to the articulation between divisibility order (the ring Proceedings 
of the 28th International Conference for the Psychology of Mathematics Education.) 
and standard order ≤ (the well-ordered set N). The autonomy devolved to pupils at 
operative dimension is very variable, unlike T which it is almost complete. This 
variability is a function of the complexity of operative treatments to be developed. 
For example, we find the extreme case where nothing is provided to pupils when he 
can use Bézout’s identity to show that two numbers are relatively prime and, 
conversely, we have 2 exercises where an algebraic identity, operative key expected, 
is given to show a divisibility relation. Regarding the organising dimension, the 
algorithmic approach of strict exhaustive search is most relevant to resolve many 
issues of divisibility. Using induction is explicitly expected 5 times in 3 exercises 
(this organising dimension is also explicit in one of the first group but in a geometry 
issue). We identify several times reasoning by separating cases. The autonomy 
devolved to pupils is defined as follows: for reasoning by separating cases there are 
the two extreme positions (autonomy empty or not) and, for the strict exhaustive 
search and induction, autonomy is complete. We suppose that the existence of 
substantial autonomy devolved to pupils demonstrates that organising dimensions at 
stake are not considered as problematic by the educational institution, as the case of 
logical equivalence.  

According to us, exploitation of the potentialities highlighted in baccalauréat’s 
exercises is poor because the conception of this examination is strongly governed by 
the will assess pupils on emblematic and routine Grade-12 tasks. In addition, we 
believe that the authors seek a compromise between assess pupils on different things 
to "cover" maximum the curriculum (one of the recommendations for authors) and 
build up a coherent mathematical point of view. It seems that the aspect "patchwork" 
of certain exercises, especially those attached to the third group, reflects this 
institutional constraint. 

Now, we’re going to study the 2002 change of curriculum limiting us to national 
baccalauréat’s exercises: how the new curriculum alter the conception of the this 
examination? Especially for the autonomy devolved to pupils: is it situate as the same 
way than before 2002 (2002 exercises included)? 

NUMBER THEORY IN BACCALAUREAT’S EXERCISES FROM 2003 TO 
2008 

At the start of the 2002 academic year, Grade 12 number theory curriculum has been 
modified with the addition of congruences (without the algebraic structures are 
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clarified). We are interested here in baccalauréat’s exercices given in France since 
the curriculum’s change so from June 2003 to June 2008. Within the 11 exercises at 
stake, 5 concern exclusively number theory, 3 are mixed (number theory and 
geometry) and 3 concern exclusively geometry; we find significantly same 
proportions than in the 40 exercises mentioned in the first part of this paper. We now 
focus on the 8 exercises with number theory issues (note that exercise of September 
2005 is a QCM, a new form of assessment for this examination).  

Resuming the three groups of exercises defined in the first part: 3 exercises (June 
2008, September 2005 and 2006) can be associated to the T’ group and only one 
exercise (June 2004) in the second group (concept of divisibility), without 
congruences are mentioned, and the two types of tasks that we have identified are 
represented in this exercise. For these 4 exercises, conclusions of an analysis in terms 
of organising and operative dimensions are the same as before 2003 (except in the 
case of QCM where no indication is given, except from the data sets of potential 
solutions). Closely associated with the second group, a third one is possible from 
congruences and 5 exercises can be linked (June 2006, 2003, September 2007, 2005, 
2003). Now, we focus on this third new group. 

The main types of tasks encountered in this third group are calculating in Z/nZ and 
solving congruences equations, particularly in relation to the field structure of Z/pZ 
(p prime), both without the algebraic structure is clarified. With one exception (June 
2003), congruences have only the status of object (not a tool) in exercises. The 
introduction of congruences enriches potentialities of the curriculum in terms of 
operative dimension and specifically in terms of forms of representation chosen for 
the objects. In an interactive way, this enrichment could be extended in terms of 
organising dimension with the local-global principle announced in the introduction, 
but we only identify the strict exhaustive search associated with the direct work in 
Z/nZ. As in the first part, we find that this organising dimension is under the 
responsibility of pupils in baccalauréat’s exercises. We have the example of the issue 
3.a. of the exercise of June 2003: 

[…] 

3. a) Prove that the equation x² ≡ 3[7], in unknown x an integer, has no solution. 

b) Prove the following property:  

for all integers a and b, if 7 divides a²+b², then 7 divides a and 7 divides b. 

4. a) Let a, b and c non-zero integers. Prove the following property: 

If the point A (a, b, c) is a point of the cone Γ [equation y²+z²=7x²], then a, b and c are 
divisible by 7. 

b) Deduce that the only point of Γ whose coordinates are integers is the vertex of this 
cone. 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2322



  

Emphasize the unusual nature of this issue in a exercise in all issues, except this one, 
are unified by a unique mathematical problem (research of points of a cone with N-
coordinates). According to us, this unusual characteristic refers to the institutional 
constraint mentioned in the first part, so to emblematic characteristic of this type of 
tasks entirely under the responsibility of pupils. Beyond the desire to assess pupils in 
relation to a emblematic type of tasks, we are assuming that this issue 3.a, by the 
effect of didactic contract, is an operative indication for the issue 3.b, namely using 
congruences (modulo 7) to study divisibility by 7. 

Finally, we zoom on the June 2006 exercise:  

Part A  

1) Enunciate Bézout’s identity and Gauss’ theorem.  

2) Demonstrate Gauss’ theorem using Bézout’s identity.  

Part B 

The purpose is to solve in Z the system (S)   

1) Prove that exists an ordered pair of integers (u,v) such that 19u + 12v = 1 (in this 
question it’s not required to give an example of such an ordered pair). Check that for 
such an ordered pair N = 13×12v + 6×9u is a solution of (S). 

2) a) Let 0n be a solution of (S). Check that the system (S) is equivalent to 

b) Prove that the system    is equivalent to ( )1912mod  0 ×≡ nn . 

3) a) Find a ordered pair ( )vu,  solution of the equation 11219 =+ vu  and calculate the 
corresponding value of N. 

b) Determine the set of solutions of (S) (it’s possible using question 2)b). 

This problem is a particular case of Chinese remainder theorem. To prove this 
theorem, the main organising dimension refers to an equivalence that can be 
interpreted in terms of existence and uniqueness of a solution of the system or in 
terms of surjective and injective function which is, in this case, a ring’s isomorphism  
(let m1, m2 be coprime integers, for all x, element of Z, the application at stake, from 
Z/m1m2 to Z/m1× Z/m2, associates to each element x mod (m1m2) the sequence of x 
mod m1 and x mod m2). For the operative dimension, the key to prove the existence 
of a solution is Bézout’s identity (m1 and m2 are relatively prime); this is precisely 
the subject of Question 1. To prove the uniqueness of such a solution, the essential 
operative element is the result stating that if an integer is divisible by m1 and m2 then 
it is divisible by the product m1m2 and this can be achieved here as a consequence of 
Gauss’ theorem (but also via the concept of LCM); this is the subject of Question 2b. 
In this exercise, we find again the importance of Bézout’s identity and Gauss’ 
theorem in the operative dimension underlying baccalauréat’s exercises; both are in 
Part A, a course issue, and using them in the resolution of the problem (Part B) is 
under the responsibility of pupils. For the organising dimension, many indications are 
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given; it is not a problem associated with a routine type of tasks of Grade 12. Indeed, 
breaking with what is proposed in this exercise, a change of objects in the operative 
dimension (equivalent transformation of the system (S) into the equation 12v-19u = 
7) offers the possibility of a new organising dimension via the emergence of the type 
of tasks T.  

CONCLUSION  

An analysis in terms of organising and operative dimensions permits to situate the 
autonomy devolved to pupils in number theory baccalauréat’s exercises. This 
autonomy is mainly located at the operative dimension. The organising dimension is 
under pupils’ responsibility only for routine tasks as resolution of Diophantine 
equations ax+by=c (gcd (a,b) divide c), and when it considered as non-problematic 
by the institution, such as the treatment of logical equivalences, or strict exhaustive 
search much more important since the introduction of congruences in 2002 in Grade 
12 number theory curriculum. In Grade 12-University transition, we observe a 
transfer of the autonomy devolved to learners in proving tasks (proposal contribution 
for the ICMI Study 19 “Proof and proving in mathematics education”7): breaking 
with the culture of Grade 12-teaching, the skills related to organising dimension 
become important at the University. According to us, this transfer is one of the 
sources of difficulties encountered by students arriving at University to prove in 
number theory: except for routine tasks, their control of organising level is very too 
low. 
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This paper is a part of the large study that explores what 16-18 year old students 
have learnt with respect to defining, proving and modelling, considered as 
metaconcepts that constitute a background to the advanced mathematical thinking. In 
particular, we focus on the characterization of students’ justifications and its 
persistence (or not) when making decisions related to tasks that involve those 
metaconcepts. Through the study, we have identified different types of considerations 
that underlie students’ justifications. Our results have shown how students that 
maintain different types of considerations do not react in the same way to the same 
mathematical situations. 

Key words: students’ understanding, students’ justifications, defining, proving, 
modelling 

INTRODUCTION 

The mathematical background of first year university students is an issue of concern 
and debate in our country. Throughout the last years, university mathematics teachers 
have been observing in the first year students a lack of understanding of basic 
mathematical ideas, which affects in a significant way the access to the mathematical 
advanced thinking. In order to improve this situation, some Spanish universities are 
offering courses of basic mathematics to students who want to access scientific and 
technological degrees. In this context, the highest grade (16-18 year-old students) of 
Secondary Education in Spain requires special interest. This grade is a non-
compulsory level and its duration is two academic years. Among their aims is its 
importance as preparatory stage, which should guarantee the bases for tertiary 
studies. 

Our study seeks to explore the understanding of students of the 16-18 level with 
respect to three metaconcepts that we consider fundamental in mathematics and 
didactics of mathematics: defining, proving and modelling. We consider them 
metaconcepts, due to their complex, multidimensional and universal configuration, 
admitting that each of them includes several aspects of very different complexity. In 
addition, we assume that they are key elements in the construction of the 
mathematical knowledge, and we decide to approach them jointly, since they 
contribute in different and interrelated ways to the above mentioned construction, and 
therefore to the students' learning process. 
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We want to emphasize that, at least in Spain, those metaconcepts are not explicitly 
mentioned in the school curriculum, but students approach them in an indirect way, 
through other mathematics curricular topics. 

CONCEPTUAL FRAMEWORK 

We think that the acquisition of intellectual skills is closely linked to sociocultural 
context (Brown, Collins & Duguid, 1989; Lave & Wenger, 1991). From this basic 
assumption, we approach students’ understanding related to metaconcepts through: 

- the use they make of the metaconcepts when they solve tasks in which the 
mathematical objects are those metaconcepts (metaconcepts are involved), and  

- the justifications that they provide about their decision-making.  

From a theoretical point of view, we needed to select some elements that allowed us 
accessing to that ‘use’ and those justifications. 

With respect to the use, in an initial phase of our research we selected some elements 
that were considered the ‘variables’ of our study: 

- identification variables, considered the characteristics that allow for a clear 
identification of metaconcept, and  

- differentiation variables: role, representing different facets of the metaconcepts, and 
type, establishing differences inside them, including different systems of 
representation.  

We think these variables are ‘aspects’ that can represent or describe in some way the 
metaconcepts and, furthermore, the relationship between the student and those 
aspects can inform us about his/her understanding of those metaconcepts. 

These variables were specified for each metaconcept. 

The variables in the case of defining. We considered “defining”, among other 
characteristics, as prescribing the meaning of a word or phrase in a very specific form 
in terms of a list of properties that have to be all real ones. This prescription had 
characteristics that could be imperative (not contradictory, not ambiguous, and 
invariant under the change of representation, hierarchic nature) or optional (for 
example, minimality) (van Dormolen & Zaslavsky, 2003; Zaslavsky & Shir, 2005). 

With respect to the differentiation variables, we selected the four roles mentioned by 
Zaslavsky & Shir (2005), which included: introducing the objects of a theory and 
capturing the essence of a concept by conveying its characterizing properties, 
constituting fundamental components for concept formation, establishing the 
foundation for proofs and creating uniformity in the meaning of concepts. In addition, 
we contemplated two types of definitions. Procedural type refers to what different 
authors consider definitions for genesis (Borasi, 1991; Pimm, 1993), which included 
what has to be done to obtain the mathematical defined object. Structural type 
referred to a common property of the object that is defined, or of the elements that 
constitute the object.  
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The variables in the case of proving. The contributions of different authors 
(Balacheff, 1987; Moore 1994; Hanna, 2000; Healy & Hoyles, 2000; Knuth, 2002; 
Weber, 2002) led us to include among the characteristics of proving the existence of 
both a premise / terms of reference / proposition and a sequence of logical inferences, 
which are accepted as valid characteristics by the mathematical community in the 
sense of ‘not erroneous’. 

Moreover, we took into account the five roles proposed by Knuth (2002). This 
author, on the basis of several roles identified by previous authors and proposed in 
terms of the discipline of mathematics, which he considered to be useful for thinking 
about proof in school mathematics, suggested the following roles: 

 “to verify that a statement is true, to explain why a statement is true, to communicate 
mathematical knowledge, to discover or create new mathematics, or to systematize 
statements into an axiomatic system” (Knuth, 2002, p.63).  

In addition, we identified three types: pragmatic proof, intellectual proof and formal 
proof. Pragmatic proof is restricted by the singularity of the event. That is, it fails in 
accepting the generic character and, in occasions, it depends on a contingent material 
that can be imprecise or depending on local particularities. Intellectual proof requires 
the linguistic expression of mathematical objects that intervene and of their mutual 
relationships. Lastly, formal proof makes use of some rules and conventions, 
universally accepted as valid by the mathematical community (Balacheff, 1987; 
García & Llinares, 2001). 

The variables in the case of modelling. Mathematical modelling was characterized as 
a translation of a real-world problem into mathematics, working the mathematics, and 
translating the results back into the real-world context (Gravemeijer, 2004). Among 
the different roles, we included solving word problems and engaging in applied 
problem solving, posing and solving open-ended questions, creating refining and 
validating models, designing and conducting simulations, and mathematising 
situations. We selected two types: ‘model of’ and ‘model for’. ‘Model of’ deals with 
a model of specific situations. ‘Model for’, deals with a model for situations of the 
same type (Cobb, 2002; Lesh & Doerr, 2003; Lesh & Harel, 2003). 

With respect to the students’ justifications, they have been considered in mathematics 
education from very different context and points of view (Yackel, 2001; Harel & 
Sowder, 1998). In particular, in our case they were analyzed according to the two 
main types of considerations identified by Zaslavsky and colleagues (Shir & 
Zaslavsky, 2002; Zaslavsky & Shir, 2005). Mathematical considerations included 
principally arguments in which mathematical concepts and relationships are involved. 
Communicative considerations were mainly based on ideas as clarity and 
comprehensibility, among others.  

The part of the large study reported here focuses on the characterization of students’ 
justifications and its persistence (or not) when making decisions related to tasks that 
involve the different metaconcepts. 
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METHOD 

Participants 

Ninety-eight students (aged 16-18 years) participated in this part of the study. They 
belonged to three different Secondary schools (A, T and C in the text) of three 
different towns, with no special characteristics in relation to their socio-cultural 
context. The role of teachers and schools was not considered in the part of research 
reported here.  

Data collection 

Our data source included questionnaires and semi-structured interviews for teachers 
and students. Considering the aims of this part of research, we focus on the results of 
students’ questionnaire, we will detail only this research instrument. 

The questionnaire consisted of an initial presentation followed by three parts (one for 
each metaconcept). These parts had in general lines the same structure. They included 
two types of statements to access to different aspects related to the way in which the 
students had constructed the different metaconcepts, so that they allowed gathering a 
variety of points of view (Healy & Hoyles, 2000). 

In the first type of statements, students were asked to provide descriptions on every 
metaconcept, expressing in their own words the associated meaning, and including an 
example that they were considering more suitable. 

The second type of statements presented different possibilities for each metaconcept 
according to the type and role (differentiation variables). These statements were 
related to two mathematical topics. They included three correct/incorrect expressions 
for each topic. The mathematical topics belonged to different mathematical domains 
(Algebra, Analysis and Geometry), and were practically extracted from the textbooks 
used at school. For example, with respect to the metaconcept defining, we selected 
three definitions of perpendicular bisector (mediatrix) and three of the greatest 
common divisor (they are not included due to the limitation in extension of this 
paper). The students had to indicate whether or not these definitions were correct, 
which one they preferred and which one they thought their teacher would prefer, 
giving reasons for each of their answers. 

The initial version of the questionnaire thus obtained was then sent to five expert 
secondary teachers, who were asked to comment on the general structure of the set of 
statements, and to give comments and suggestions about specific items. Their 
comments were used to modify the formulation of almost every statement. 

Next, the revised version of the questionnaire was piloted. For this purpose, a sample 
of 26 secondary students was chosen. These students belonged to one of the 
secondary schools that participated in our study, but they were not included in the 
final sample. According to the analysis of their answers, some items were 
subsequently deleted from the questionnaire, because the original formulation was 
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ambiguous or unclear, or not provided important information. The final version of the 
questionnaire was administered to the 98 students. 

Data analysis 

The data in this part of the study consisted of individual students’ written responses 
to the different items of the questionnaire. From a qualitative / interpretive approach, 
in a first step we followed an inductive and iterative process in which every response 
was divided in units of analysis. In a second step, these units were categorized 
depending on the type of considerations (mathematical or communicative) identified 
in the justifications. We exclusively considered the questionnaires belonging to 
students that had answered all the items. Because of that, only 67 were selected.  

RESULTS 

This section reports and discusses the results of the study and is organized around the 
two aforementioned research questions: the characterization of students’ justifications 
and its persistence (or not) when they make decisions related to tasks that involve the 
different metaconcepts. 

In the justifications provided by our students, we have found the two main types of 
considerations identified for Zaslavsky and colleagues (Shir & Zaslavsky, 2002; 
Zaslavsky & Shir, 2005). In addition, we have found some considerations on the 
basis on institutional-cultural aspects. This type of considerations was based in the 
context provided by schools that includes teachers, curriculum, principals and so on. 
The students identified as A217 and T17 (the first letter identifies the school, the 
following number the course (1 or 2) and, finally, the last numbers indicate the 
student) were representatives of this type of considerations: 

Student A217:  [I chose this…] because teachers explained it this way and this is how    
they taught me this topic    

Student T17:   Because that is how we were taught this topic at primary school and I 
have got used to it …..   

With respect to the persistence of the students’ justifications through the different 
metaconcepts, we have been able to identify: 

- seventeen students that always followed considerations communicative or 
mathematical, independently of the considered metaconcept;  

- six students that always combined mathematical and communicative 
(mathematical/commnicative) considerations, independently of the considered 
metaconcept; 

- thirty-one students varied their considerations depending on the metaconcept. These 
considerations could be mathematical, communicative, institutional/cultural or they 
combined these types the considerations; 

and  
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- thirteen students that used different considerations depending on the different 
statements in each metaconcept; in this case, we were not able to identify the type of 
consideration and they were not considered here. 

In relation to the 17 students that maintained a common consideration, we show in 
the Table 1 the types of considerations identified and the corresponding students:  

Types of 
considerations 

Students 

Communicative A15,A16,A28,A213,A216,C16,C19,C120,C135 

Mathematical A25,T13,T14,T113,T114,T21,T25,C127 

 Table 1: Students that maintained communicative or mathematical considerations 

The nine students situated in a communicative perspective considered their own 
person as the ‘centre’ of the considerations. The following excerpt is representative of 
this: 

Student A16:   I like statement 1 because it seems to be the easiest one for me 

In general, communicative students’ decisions were related with ideas as clarity, 
comprehensibility and so on. They saw mathematics and teacher (considered as a 
vehicle of communication between student/mathematics) from a very personal point 
of view. 

In the case of the eight students situated in a mathematical perspective, their 
considerations were related to the use of mathematical expressions, lack of accuracy 
and so on. The following excerpt exemplifies this aspect: 

Student A25:  Statement 1 is not correct because it tells you what normally happens 
… in the majority of cases is the greatest number… but it doesn’t not 
always have to be this way … it is incomplete …. 

These students were able to consider separately the mathematical aspects from the 
personal aspects. 

In addition, communicative students made a weak distinction of the identification 
variables (characteristics that allow the identification of a metaconcept). In relation to 
students situated in mathematical considerations, we can say that the majority of 
these students identified the incorrect expressions of the three metaconcepts, although 
they showed different degrees of accuracy in their mathematical arguments for 
justifying their decisions. The percentage of communicative students that were able 
to decide whether or not a statement on the different metaconcepts was correct was 
less than 40% in all cases. This percentage increased up to a 90% in the case of 
students that adopt mathematical considerations.  

In particular, in the case of defining, 7 out of 9 communicative students chose both 
for teacher and students the same definition of mediatrix and the greatest common 
divisor, independently of characteristics, role and type and representation system. The 
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communicative students did not see these characteristics as relevant because the 
centre was his/her own person. This result was also found in proving, with a slight 
difference between topics (7 of 9 and 6 of 9 in each case), and in modelling. This 
result differed in the case of mathematical students, who did not show a clear 
coincidence. 

With respect to the thirty-one students who adopted different justifications depending 
on the metaconcept, the three main types of considerations (communicative, 
mathematical and institutional-cultural) were combined in some cases. We were able 
to identify several types of mixed considerations (communicative/ institutional-
cultural, communicative /mathematical, mathematical/ institutional-cultural). We 
show in the Table 2 the students that were situated in each consideration.  
 

 Proving Defining Modelling 
Communicative considerations/mathematical considerations 

in each metaconcept 
A210  A215,  A217 A210,  A215 

T11, T15 T112 T17, T112 

 
 
Communicative 
 C12, C116, C119 

C122, C123, C132 
C138, C139 

 C119, C122, C123 
C134, C138 
 

 A211 A29, A211 

T18, T19, T112 
T22,T23,T29, 
T210 

T12, T28, T119 
 

T11, T18, T19 
T115, T119 
T22,T23,T28,T29 

 
 
Mathematical 
 

C137  C116, C139 C129 

Mixed considerations in each metaconcept 
A217  A217 
T17   

Communicative
/Institutional-
cultural C129 C119, C123,C134  

A29, A211, A215 A29, A210  
T12, T115, T119 
T28 
 

T11, T17, T18, 
T19, T115 
T22, T29, T210 

T12 
T210 
 

 
 
Communicative
/Mathematical 
 C134  C12, C122, C129,  

C132, C137, C138 
C12, C116,  
C132, C137, C139 

Mathematical/  
Institutional-
cultural     

T118 
 

T15, T23, T118 
 

T15, T118 

Table 2: Students that varied their considerations depending on the metaconcept 
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As we can see in the Table 2, globally considered there were not significant 
differences between the number of communicative or mathematical considerations 
(23 and 26 respectively). The communicative/mathematical considerations (C/M) 
prevailed, being the most common in the three metaconcepts. Communicative 
considerations had a significant presence in proving and modelling with respect to 
defining.  

In addition, 6 students (A14, A19, A21, C110, C126, and C130) maintained 
communicative/mathematical considerations in all metaconcepts. These students used 
communicative considerations when the focus of their justification was the 
relationship between the metaconcept and themselves; when the relationship was 
between metaconcepts and the teacher, the type of consideration was mathematical. 
We can say that in these cases those considerations were associated with the 
‘character’ (student or teacher).  

It is worth to point out to the great number of students that belong to the Secondary 
School T and who were situated in mathematical considerations. Although the 
reasons provided by the teachers in the large research have been very useful in 
explaining, from their point of view, some of the differences between the different 
Secondary Schools, as we mentioned above this is not the aim of the part the research 
reported here. 

CONCLUSIONS 

Our study examines three metaconcepts that we consider basic in the construction of 
students’ mathematical knowledge. The findings suggest that the type of research 
instrument we designed has proven to be a valuable research tool in the identification 
of students’ justifications.  

Students’ communicative and mathematical considerations proposed by authors as 
Shir & Zaslavsky (2002) for defining have been enlarged in the case of other 
metaconcepts as proving and modelling. In addition, the presence of institutional-
cultural considerations showed in the other kind of justifications, which indicate the 
importance of the aspects linked to school context, that are considered as a ‘source’ 
for the justifications. Moreover, we were able to see the presence of mixed 
considerations (Communicative/institutional-cultural, communicative/ mathematical, 
and so on).  

Our results have shown the students that justify their decisions on the basis of 
mathematical or communicative considerations do not react in the same way to the 
same mathematical situations. In particular, we have been able to see the difficulties 
communicative students have in making decisions both on distinguishing the 
characteristics of metaconcepts and on differentiating between the teacher and 
themselves, showing that their decisions are related to personal aspects. For 
mathematics teachers this fact implies the importance of considering the existence of 
students whose analytical tools are based on communicative aspects and the 
difficulties that means in helping them to construct other types of reasoning. 
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With respect to the findings related to the students that varied their type of 
considerations depending on the metaconcepts, they inform us about the necessity of 
going deep into the relationships among the motives that students have to link a 
specific type of considerations to a specific metaconcept. In some way, these 
relationships could inform us about some characteristics of students’ understanding. 

Finally, although it has not been considered in this paper, the differences among 
secondary schools that we have identified in our findings lead us to the need to 
incorporate in the design of future research some instruments that allow us to answer 
the following question: up to which point is the adoption of any determined 
consideration influenced by the specific education (training) of a secondary school 
and particularly by secondary school teachers?  As researchers, we need to deepen 
the characteristics of the relationships between students and teachers in a specific 
secondary school that might encourage a determinate type of considerations.  

NOTES 

The research reported here was supported by a grant from the Spanish Ministerio de Educación y 
Ciencia (SEJ2005-01283/EDUC), and partly financed by FEDER funds. 
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NECESSARY REALIGNMENTS FROM MENTAL 
ARGUMENTATION TO PROOF PRESENTATION  

Joanna Mamona-Downs   Martin Downs 
University of Patras - Greece 

 
This paper deals with students' difficulties in transforming mental argumentation into 
proof presentation.  A teaching / research tool is put forward, where the statement of 
a task is accompanied by a given written piece of argumentation suggesting a way to 
resolve the task intuitively.  The student must convert this into an acceptable 
mathematical form.  Three illustrative examples are given.   

Key words: mental argumentation; proof presentation; mathematical language; 
refinement of expression; transparency.  

 

INTRODUCTION 

It has been noted in several papers (eg. Gusman, 2002; Moore, 1994) that in certain 
circumstances students can 'see' a proof but they cannot express their intuitive ideas 
in terms of mathematical language.  The students use representations that are or have 
become over time divorced from the mathematical frameworks that allow explicit 
tools of exact analysis.  Thus an impasse occurs. 

On the other hand, the usual style of presentation of proof can seem 'monolithic'.  It 
denies in most cases not only a history of aborted attempts, but also it does not 
communicate essential conceptual and cognitive input that supported the initial 
formation of the proof.  In this respect, reading a proof has a facet that has to be 
deciphered.  When assessing proofs we should not be only concerned in investigating 
the 'mechanics' that explain how a given proof succeeds in what it was meant to 
achieve.  We also should be concerned with the creative processes involved in 
producing the 'mechanics' in the first place.   

Hence, the circumstance where a student can discern an argument informally but 
cannot express it in a ratified mathematical format is exacerbated by the fact that past 
exposure to proof presentation hardly is supportive.  A possible remedial measure 
might be to seek for a radical change in how proofs are written, to better reflect the 
cognitive input that otherwise would be repressed.  However in the next section we 
will argue that there are compelling reasons to retain the traditional styling of proof 
presentation.  Taking this in mind, if students are to develop the skills to convert 
mental argumentation into mathematical frameworks allowing deductive reasoning, 
channels have to be found to help the students to achieve this.  In this paper, we put 
forward such a channel. 
In particular, we consider the situation where a student is given not only a task, but 
also has an informal description how to deal with the task. The description can be 
self, peer, or teacher generated.  The job of the teacher is to guide the student to 
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transform the information that is provided into a strict proof.  This is envisaged as a 
sustained teaching practice, which hopefully would encourage student emulation in 
their independent work.  The education researcher also has a role.  Beyond 
investigating which kinds of guidance given by the teacher will be the most effective, 
the researcher would be interested in identifying specific types of discrepancies that 
can occur between informal and formal reasoning, and their effect in cognitive terms.   

The main body of this largely theoretical paper will comprise a discussion of three 
worked examples.  These worked examples follow a certain format of design.  We 
envisage that this format could be consistently adopted as a research tool for an 
educational program of a larger scale.  For each example, its content will be carefully 
separated between the 'givens' and the 'material to be produced'.  The 'givens' have 
two components; the first is a task or a proposition, the second is a mental argument 
that addresses it informally. The material to be produced will include a 'rigorous' 
solution or proof influenced by the given mental argument.  In addition, in order to 
ease the transition to the proof, the material to be produced may further involve the 
formation of an enhanced version of the initial informal argument.  

The examples are chosen to illustrate how the identification of structural properties in 
the informal argumentation can lead to an entry point into a mathematical framework, 
and ways that proof presentation may seem not to respect the informal line of 
thought.  The approach taken here would be most pertinent to the upper-secondary 
and tertiary levels, as it is at these levels that the insistence of proof production 
becomes more poignant.     

We acknowledge some points in our undertaking might deny some important aspects 
in combining intuitive and formal sources in the doing of mathematics.  For example, 
ideally the students themselves could be constructing their own representations and 
mental argumentation.  Representations and mental argumentation made by peers or 
the teacher may not be comprehended by the students.  Further, often it is the case 
that mental argumentation and the thinking consonant to mathematical frameworks 
might evolve mutually.  These points might suggest that what we are endeavouring to 
do in this paper has its limitations.  However, we do believe that the direction we take 
constitutes an important device for analysing the learning and teaching of 
mathematical modelling, and the potential difficulties that are involved.   

 

MENTAL ARGUMENTATION AND PROOF; HOW DO THEY DIFFER? 

It has often been observed both by mathematicians and educators that the proofs 
published in mathematical journals are far from being completely rigorous 
(e.g.,Thurston, 1995; Hanna & Jahnke, 1996).  This has prompted some educators to 
view proof mostly in terms of conviction. However, in certain circumstances even a 
highly naive argument can be so compelling that any reasonable person would be 
'convinced' of the proposed conclusion.  The problem is that however 'obvious' or 
'transparent' an intuitive argument is, there might not be a way to directly reduce it to 
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fundamental principles.  The point is not so much about conviction, but how we can 
clarify the bases of the reasoning employed.  The notion of a 'mathematical warrant' 
(Rodd, 2000) addresses the issue of justifying the grounds that support students' 
belief in the truth of a mathematical proposition.  Still, in how this term is employed 
suggests a certain primacy to 'embodied processes' over any mathematical setting 
demanding deductive argumentation.  

This primacy might be challenged by some.  For example, the construction of a proof 
can be regarded as an activity to make argumentation more precise.  From this 
viewpoint, proof refines any intuitively based argument.  Perhaps a more balanced 
stance to take is that it is artificial to try to distinguish informal thinking from formal 
thinking.  Thurston talks about a mathematical language (replacing the 'myth' of 
complete rigour).  As in any language, there is ample space to express ideas in casual, 
incomplete, or inexact formulations.  However mathematical language is strongly 
rooted to a vocabulary referring directly to defined mathematical entities, and its 
expression is conditioned by respecting previously ascertained properties.  Drawing a 
sharp characterisation of this language might be a difficult undertaking, though 
preliminary remarks are made in Downs & Mamona -Downs (2005).  Assertions 
made by Thurston are that it is very difficult for students to become fluent in the 
mathematical language, but ultimately it is in this medium that mathematical thought 
evolves. 

In the introduction we employed the term 'mental argumentation'.  What place does 
this have in our discussion above?  From our perspective, mental argumentation rests 
on collating sources of intuitive knowledge.  One character of intuitive knowledge is 
that, cognitively, it deals with self-evident statements.  Unlike perception, intuitive 
knowledge exceeds the given facts (see Fischbein, 1987).  Also, it is accumulative; it 
depends on past assimilation of conceptual matter.  The collation involved in mental 
argumentation can be made either at the level of instinct or at the level of insight.  
Both rely on a certain degree of vagueness (see Rowland, 2000, for the importance of 
vagueness in the doing of mathematics).  Mental argumentation should convince the 
practitioner but not necessarily others; the practitioner would be aware that someone 
else might demand a warrant.  Mental argumentation can lie either inside or outside 
the mathematical language.  Which of the two depends on whether the collation of 
intuitive knowledge is guided by mathematical insight rather than instinct.  Indeed if 
the argument is based on instinct, there is a lack of self-awareness of the sources 
drawn on in making the reasoning, including mathematical backing. 

Harel, Selden & Selden (2007) have put forward a framework for the production of 
proof by distinguishing a 'problem - oriented' part and a 'formal - rhetorical' part.  
(The word rhetorical here serves to point out that what is accepted as formal proof 
can include some standard linguistic devices beyond strict logic).  We suggest that 
mental argumentation stresses the 'problem - oriented' part; the 'formal - rhetorical' 
part is as yet opaque, and it is drawn on only when it is required to bolster the 
intuitive line of thought.  A 'naturalistic' proof is obtained by respecting the original 
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problem solving aspects, but fills the 'gaps' in the reasoning by explicitly bringing in 
mathematical sources permitting tight deduction.  A 'naturalistic' proof should be 
explanatory; Hanna & Jahnke (1996) suggest that proof that explains is preferable to 
proof that does not.  However 'naturalistic' proofs are not always feasible; in the 
process of converting the original mental argumentation into a framework allowing 
deductive argument, certain mathematical constructs have to be made to 
accommodate the intuition, but in doing this there might well be clashes in cognition 
that cannot be side-stepped.  Because of this, formal proof presentation often does not 
seem to communicate the thinking processes that first motivated its formulation.  
However, the formal presentation is not simply a contrived imposition, stipulating 
that your argument has to be validated by a vague standard of rigour.  It is something 
that is encompassed in the mathematical language.  In that context, the original 
thinking processes should be retrievable.  Hence, we have a duality between the 
problem-solving element needed in forming a proof and that needed in reading a 
proof (see Mamona-Downs and Downs, 2005).  

A teaching/research practise similar to that proposed in the introduction is forwarded 
by Zazkis (2000). It deals with relatively simple examples that only involve 
translation from mental argumentation to naturalistic proof.  

                                                                                                                                                 

THREE ILLUSTRATING EXAMPLES 

In this section we write down and discuss three tasks and proposed solutions.  The 
purpose is to illustrate some cognitive issues concerning the conversion of mental 
argumentation into proof presentation.  In considering just three tasks, our exposition 
will bring up only a sample of the points that potentially can be made; we believe that 
many other points and elaborations can be drawn in the future. 

Each example will be divided into three parts.  The 'givens' is the material that would 
be given to the student if a fieldwork were undertaken.  The 'material to be produced' 
always includes a form of a suitable proof presentation, but might also involve a 
middle step enhancing the original mental argumentation.  The 'material to be 
produced' is made in a putative spirit rather than regarding it as a 'model solution'.  
Finally, the 'comments' relate the cognitive factors extracted from the examples.  

   

Example 1 

Givens 

Task: Two persons, A and B, start a walk at the same time and place along a 
particular path of length d.  Person A walks at speed v1 for half of the time that A 
takes to complete the walk; after he walks at speed v2, where v2 <v1.  Person B walks 
at v1 for half of the distance, and after walks at v2.  Who finishes the walk first? 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2339



  

Mental argumentation: Person A covers more distance in the first half of the time 
when walking at v1 than the distance achieved in the second half of the time walking 
at v2 (as v1 >v2).  Thus A walks further than the half point in distance, i.e. d/2, at the 
faster speed v1, whereas person B walks only the half- distance at v1; hence A arrives 
first. 

Material to produce 

Proof presentation: Let d1 be the distance at which A changes speed.  Let t1, t2 be the 
time for A, B to complete the walk respectively.  Then  

 

Comments 

This example constitutes a relatively smooth transition from the mental 
argumentation to the proof presentation.  Even so, we envisage that many students 
might have problems in executing it.  Even the required assignation of symbols (d1, 
t1, t2) has a modest constructive element that should not be assumed easy for the 
students to adopt.  The thrust of the proof lies in the transformation of d/2 into (d1 - 
d/2)+(d- d1).  The motivation in doing this is (d1 - d/2) represents the distance that A 
walks at the highest speed v1 beyond B does; (d – d1) represents the distance for 
which both A and B walk at the lower speed v2. Hence one term pinpoints where the 
behaviour of A and B is different, the other where their behaviour is the same. This 
'move' might be difficult to make unless you have the support of the mental 
argumentation, so the student would have to have a tight grasp of how the intuitive 
reasoning is guiding the algebra.   

This task appears in Leikin & Levav-Waynberg (2007) in the context of connecting 
tasks.  Another approach different to the one above would be to take the strategy: 
explicitly determine the time that A and B take separately and then argue which time 
is the shorter.  However, there is not a sense here that a mental argumentation is 
playing a role; the task is immediately modelled into an algebraic context, and the 
argumentation is accomplished completely at this level.  This latter approach 
certainly provides more explicit information (beyond what was demanded), but lacks 
the transparency that the first provides. 
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Example 2 

Givens 

Task: Suppose that the real sequence (an) is convergent, and there is an infinite subset 
M of the set of natural numbers Ν and a real number t such that an=t whenever n∈M.  
Prove that the limit of (an) is t.   

Mental Argumentation: There is an 'infinite number of terms' that take the value t, so 
however far the sequence has progressed there must still be a term having the value t 
not reached as yet.  At the limit, the terms must be tending to the limiting value, but 
as far progressed the sequence is, t 'occurs', so the limiting value must be t. 

Material to produce 

Enhanced mental argumentation: Suppose that in fact it is not true that the limiting 
value is t.  Then the value must be a number l≠t.  There is an explicit number         
expressing the distance between l and t.  However progressed is the sequence, the 
value t 'occurs' and so there will always be terms that have a certain fixed distance 
from the limiting value.  This contradicts the idea that the sequence is tending to the 
limiting value.  Thus it cannot be true that l and t are different.   

Proof Presentation: Suppose that lim an=l and l≠t.  Let ε = (l -t)/2.  Then there is a 
natural number N such that for all n>N, an∈(l-ε, l+ε) and we have chosen ε such that 
t∉(l-ε, l+ε).   Now there are only a finite number of n∈Ν such that an∉(l-ε, l+ε).  This 
means that only a finite number of n∈Ν satisfy an=t.  This is a contradiction. 

Comments     

The first mental argument could persuade some students on reading it, but the basis 
of its acceptance rests on a degree of personal instinct that likely would not be shared 
by others.  An enhanced mental argument might arise as an attempt to remedy some 
of the shortcomings of the first; if the argument lacks concreteness when it is used to 
justify a proposal, you might be forced to consider the consequences if the proposal 
was not true.  These consequences might run contrary to the specifications of the task 
environment.  In this way, we believe that logical devices such as proof by 
contradiction can, up to a point, be naturally handled in the confines of mental 
argumentation. 

There remains a point of vagueness shared by both mental arguments, i.e. the claim 
'however the sequence has progressed there must still be a term having the value t not 
reached as yet'.  Likely the acceptance of this would depend much on the student 
having a suitable mental image of what an infinite sequence is.  Without this, a 
student might be doubtful about how the claim could be justified.   

For a justification, one has to refer to the mathematical definitions providing the 
means to decide on issues dealing with limits.  Much research has reported clashes of 
intuitive images with the dictates of the definition of the limit.  With this in mind, it is 
not surprising that some switches of focus have to be made to transform the mental 
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argumentation into a proof presentation, Mamona-Downs (2001).  What the 
definition provides is an 'ε-strip' around l that stipulates that however small ε is, there 
is a 'stage' of the sequence beyond which the values taken must be trapped in the 
strip.  (This makes use of imagery that is usually made available in the teaching 
process.)  By choosing ε small enough, we can arrange the ε-strip to 'avoid' the value 
of t if t≠l.  Then there are only a finite number of terms 'at the start of the sequence' 
that can possibly take the value of t, and we reach a contradiction. 

The switch then is that instead of employing the fact that there are infinitely many 
terms taking the value of t as a basis for argument, one employs the definition of the 
limit of a sequence as a basis for finding contrary evidence.  The character of the 
contradiction here is somehow different from the one found in the enhanced mental 
argument.  The difference could be expressed by comparing "if the result was not 
correct, then a condition is transgressed" with "a perceived property (tending to the 
limit) is contravened".   

Note that the negotiation of what direction the proof should follow is itself couched 
in casual terms.  This illustrates how mental argument can be a part of the 
mathematical language.  Even though the supporting mental argument guides the 
structure of the proof, the proof presentation does not acknowledge its role.  
Particularly stark is the setting, almost as a fiat, of the value of ε.  However, from our 
strategy making, the choice of ε is pre-motivated, and it could take any value in the 
interval (0, l-t).  A reader of the proof might not appreciate this.  Another feature of 
the proof presentation is the compression involved in the statement ' we have chosen 
ε such that t∉(l-ε, l+ε) '.  Set theoretically, a justification of it would take several 
lines.  But because the value of ε was picked especially to satisfy the property 
involved, these details can be safely suppressed.  In general, the transition from one 
line to another in a proof presentation often goes beyond deductive implication; it 
often 'hides' input from mental argumentation.  The skeletal form of the proof 
presentation has an advantage in that the 'gaps' that appear can be filled through 
insight, but if this fails one can always resort to the mathematical tools available to 
complete the minutiae synthetically.  This discussion throws a light on the respective 
roles of mental argumentation and proof presentation in the mathematical language.  

 

Example 3 

Givens 

Task: Let n be a natural number. Suppose that rn is the highest power of two dividing 

the factorial of 2
n
. Find rn.  

Mental argumentation: (Student produced) 
 "We know that from the numbers 1, 2, 3, …, 2 n, there are 2 n-1  
numbers which are divisible by 2.  We note that from the numbers 
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1, 2, 3, …, 2 n-1 , there are 2 n-2  numbers that are divisible by 2.  
We note that from the numbers 1, 2, 3, …, 2 n-2 , there are 2 n-3  
numbers that are divisible by 2.  Continuing to the end we have 
that 2 n! = 1.2.3…2 n is divisible by 2 raised to the power  

2n-1  +2 n-2  +2 n-3   +… +2 2 +2+1.  

This means that rn equals 2
n
 -1." 

Material to produce 

Proof production: Here there is a choice. One tack that can be taken is to conjecture 
that the result obtained is correct and then use induction. This is fairly easy to do, and 
it will be left to the reader. The other tack is to produce a proof not assuming the 
result. Such a proof might follow the lines as below:  

For each i = 1,…, n, let 

 Ai = {s ∈ N: s≤ 2
n
 and is a multiple of 2

i
} 

 Bi: = {t ∈  N: 2
i
 divides t and t/ 2

i
 is odd} 

 ai: = | Ai|,    bi:= | Bi| 

By construction, 

 

Comments 

In this example, contrary to the previous two, the mental argumentation was 
produced by two students (working together) whilst doing project work, and this 
constituted their final answer.  In a subsequent interview, it became clear that they 
did not consider their response to constitute a proof, however the terse manner of 
their exposition seems to be influenced by an image of a proof being minimally 
expressed.  In the interview the students were able to explain the origin of the stated 
lists of numbers, but only in informal terms.  It is significant that the students did not 
spot the induction option, as in other work they showed themselves adept in 
identifying and applying this general proof technique.  The impression was that they 
wanted a proof that reflects and respects the procedure for which they invested a lot 
to obtain the answer, rather than building up an argument employing the answer as a 
working conjecture.  Quite likely, if their presentation were shown to other students 

  

rn = ibi
i=1

n

∑ , ai = bi + bi+1 +K + bn and ai = 2n− i

Hence, for i ≠ n

ai = bi + ai+1 ⇒ bi = ai − ai+1

⇒ rn = n + i(
i=1

n−1

∑ ai − ai+1) = n− (n−1)+ ( (i − (i −1))
i=2

n−1

∑ ai ) + a1

=1+ ai
i=2

n−1

∑ + 2n−1 = 2i

i=1

n−1

∑ = 2n −1

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2343



  

to refine, those students would be more inclined to take the induction method.  This 
proposition illustrates that we should expect some differences in student behaviour 
when they are reacting to their own mental argumentation rather than that provided 
by others.   

The proof stated was achieved by the students with guidance of one of the authors 
during the follow-up interview.  The degree of guidance will not be described here; in 
accordance with the other two examples, the proof will be discussed hypothetically in 
terms of cognitive demands in producing it from the existing mental argumentation.  
First, notice that the proof involves the construction of families of sets.  Although the 
importance of sets (and functions) to the foundations of mathematics is usually 
emphasized in teaching at the tertiary level, generally students tend to be poorly 
equipped to design sets for specific purposes.  Returning to the example, the family 
of sets Ai reflects the process that is implied in the mental argumentation; had the two 
students based their argumentation on these sets, the exposition of the solving 
algorithm would have been clarified.  The family of sets Bi had the role to model the 
situation given by the task environment.  The Bi' s give the grounding, the Ai' s the 
calculating power.  Thus the Bi 's appear from theoretical considerations, and are 
related (in the form of their orders) to the Ai' s to realize the numeric expression 
sought.  In this way, the translation from the mental argumentation to a proof 
presentation needed the construction of sets together with a strategic understanding 
how these sets would avail what was desired.  We see then that proof production can 
involve significant problem solving aspects, as noted before. 

 

CONCLUSIONS 

There is plenty of evidence that students experience severe difficulties in the 
production of mathematical proofs.  A particularly frustrating circumstance for a 
student is when he/she can 'see' a reason why a mathematical proposition is true, but 
lacks the means to express it as an explicit argument in one form or another.  One 
problem is that students feel that the 'reason' has to be immediately couched in 
'rigorous' mathematical terms.  In fact, there is no harm in trying to write informal 
descriptions, which can be a first step in developing mental argumentation ultimately 
giving access to 'mathematization'.  The paper proposes a teaching / research tool 
designed to give students support in this process.  This tool provides, beyond the 
stated aim of the task, an informal account how the aim might be achieved.  This 
format has several advantages.  One is that it should help students to regard mental 
argumentation as being legitimate.  Second, mental argument comprises an 
environment that allows refinement of expression.  Third, mental argumentation is 
not just a way of negotiating an entry into established mathematical systems, but even 
the writing of proof presentation is highly dependent on it, though its influence is 
usually left implicit. 
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AN INTRODUCTION TO DEFINING PROCESSES 

Cécile Ouvrier-Buffet 

DIDIREM, Paris 7 – IUFM de Créteil, Paris 12  

Abstract. The aim of this paper is to bring some theoretical elements useful for the 
characterization of defining processes. A focus is made on a situation which engages 
students in the construction and the definition of concepts used in linear algebra 
(such as generator, independence). Such concepts have a reputation of being difficult 
to learn and to teach. The specificity of such a situation is that it comes from discrete 
mathematics and it allows a mathematical questioning and a mathematical 
experience. 

Key words: defining processes, concept image, discrete mathematics, linear algebra, 
(in)dependence, minimality, generator. 

INTRODUCTION 

The defining process represents a specific constant of the language and of the human 
thought. In mathematics, as well as in all the scientific fields, to define is intrinsically 
linked to the objects: the action of “defining” attests to the existence of new objects 
and gives them the status of “scientific objects”. In a formal theory, definitions seem 
to be undeniable, immutable and appear like definitive statements. Nevertheless, the 
forms, the status and the roles of definitions change notably, throughout the centuries 
(history of mathematics teaches us a lot), but also through teaching and learning 
processes. From one point of view among others, a definition can be a statement 
given in order to know what one talks about (such as Euclidian definitions which are 
declarative statements: everybody already knows what it refers to). A definition can 
also be the only way one can grasp a concept, at the beginning of a presentation. 
From another perspective, a search of a proof can make room for a new concept: that 
is the notion of proof-generated definitions introduced by Lakatos (1961, 1976). All 
these elements underline the gap between defining processes in real live mathematics 
where definitions come at the end of a research process and are generally intrinsically 
linked to a proof perspective and formal theories where definitions come at the 
beginning of a presentation. In fact, the way one considers definitions depends on the 
view one has about the mathematical experience, and then the view one has about 
“proof”. Formal and axiomatic mathematical presentations hide scientific concepts, 
their pertinence and their usefulness. That obviously explains why students have 
difficulty learning and understanding new concepts. Indeed, students must construct 
concepts from the definitions given at the start of a chapter where all concepts appear 
as divided into compartments. Moreover a formal definition is generally a minimal 
one because axiomatic theories should be nice with a small number of axioms and 
non-redundant definitions. Then, with a formal minimal definition, a student only has 
a view of a concept. But, when grasping a new concept, a student needs to have 
several properties of this concept, several representations, links with other concepts 
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and equivalences between different kinds of properties. Furthermore, a definition can 
become a proposition used in a proof in order to make an inference. That prevents 
students to distinguish clearly among axioms, theorems and definitions. 

In my opinion, the question of mathematical definitions is a crucial one in an 
advanced mathematical perspective. The existence of formal definitions and formal 
proofs marks Advanced Mathematical Thinking. It is taken into account by Tall and 
Vinner with the notions of concept definition and concept images. Students construct 
concept images to give meaning to formal mathematical concepts. Therefore, 
studying concept images represents one way of characterizing concept formation and 
a part of the students’ understanding of a concept, even if the students’ concepts 
images are not always easily accessible. I suggest focusing my paper in a 
mathematically-centered perspective as proposed in this working group, studying 
more specifically definitions in the general background of “Problem-solving, 
conjecturing, defining, proving and exemplifying at the advanced level”. Questioning 
the defining processes at stake in the work of real live mathematicians can bring 
answers to didactical research about concept formation. My approach is an 
epistemological one and tends to question the practice of mathematicians concerning 
definition construction processes. I intend to explore what a mathematical experience 
can be, focusing on defining processes, which are difficult to characterize meta-
processes. I will also propose the broad outlines of a framework useful for analyzing 
a situation for the transition stage between upper secondary level and university. 

KEY CONCEPTS FOR THINKING MATHEMATICAL GROWTH 
THROUGH DEFINING PROCESSES 

The work of Tall (2004) is ambitious and paramount. I have commented it (Ouvrier-
Buffet, 2006), taking into account the specific perspective of definitions, in the 
following way. Tall (2004, p. 287) gains “an overview of the full range of 
mathematical cognitive development” by scanning a whole range of theories. A 
global vision of mathematical growth then emerges, making room for three worlds of 
thinking: the “embodied world”, the “proceptual world” and the “formal world”. In 
this way, a more coherent view of cognitive development may be obtained. Endorsing 
this point of view, I will question the place of definitions in such a theory. “Formal 
definitions” admittedly belong to Tall’s “formal world”. What happened before the 
“smooth” definitions were arrived at? What were the heuristic processes involved? 
Although the apprehension of new mathematical concepts began in the “embodied 
world” through perception, I still assume that the “proceptual world” is not always 
adequate to characterize a concept which is being constructed. So how are we going 
to grasp the dialectic between concept formation and definition construction within 
this theoretical range? I think we can safely assume that there is another world, 
different from the “embodied”, “proceptual” and “formal” worlds, which is both 
transversal and complementary, fostering the characterisation of mathematical growth 
through definition construction processes in particular. I will not characterize such a 
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fourth world (because it is a transversal one to the previous three), but I will try to 
give key concepts for thinking mathematical growth (i.e. concept formation in my 
perspective) through defining processes. 

What does it “defining processes” mean? This wide question cannot be entirely dealt 
with in such a paper. Let me give some elements of my research perspective. 

The concept of “definition” can actually be approached in several ways because it is 
at the intersection of different fields. Studying “definitions” inevitably leads us to 
philosophical questions, joining the famous nominalism/essentialism debate, the 
problem of the existence of the objects one defines, and logic and linguistic 
considerations. Because a definition is a part of a theoretical system, the field of logic 
and meta-mathematics (how to build formal and axiomatized theories) should be 
explored but is not the purpose of this paper. 

The heuristic approach as proposed by Lakatos (1961, 1976), where a definition is an 
answer to a problem, and the concept formation approach, as proposed in different 
directions by Vygotsky and by Vinner for instance, represent my research interests. 
Vygotsky (1962), in the famous Chapter 6, underlines the structure of scientific 
concepts organized in systems (interdependence of concepts within networks) and the 
distance between the growth of scientific concepts and the growth of everyday and 
spontaneous concepts. But Vygotsky does not take into account the nature of the 
concepts. Vinner does. To map the concept formation implies to grasp students’ 
concepts images and the links which they are able to do with other knowledge. 

Let me now summarize two fundamental notions about definitions. Tall and Vinner 
made a distinction between the individual way of thinking of a concept and its formal 
definition, introducing the notions of concept image and concept definition. It allows 
to take into account mathematics as a mental activity and mathematics as a formal 
system. Then, practice of mathematicians and students’ cognitive products can be 
studied from that perspective. Moreover, I retain that Vinner emphasizes the 
importance of constructing definitions: “the ability to construct a formal definition is 
for us a possible indication of deep understanding” (Vinner, 1991, p. 79) and explains 
the “scaffolding metaphor” which presents the role of a definition as a moment of 
concept formation. Within his theoretical framework, Vinner suggests to expose a 
flaw in the students’ concept image of a mathematical concept, in order to induce 
students to enter into a process of reconstruction of the concept definition and 
proposes some interplay between definition and image. Vinner assumes that “to 
acquire a concept means to form a concept image for it (…) but the moment the 
image is formed, the definition becomes dispensable” (p. 69, ibid). I underline the 
first part of this quotation and the main interest of using concept image (and concept 
definition) as a theoretical tool to analyze dynamical defining processes. From a 
didactical perspective, the main question is the following: how can one make easier 
the construction of students’ concept image? And how can one use markers in order 
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to characterize such a process? The notion of concept image, according to Watson 
and Mason, is used: 

to encompass all the images, definitions, examples and counterexamples, associated 
links, and their interrelationships that are all held together in a structured way and 
constitute the learner's complex understanding of the concept (Watson & Mason, 2005, p. 
97). 

It is time to introduce Vergnaud’s idea of invariants which make the students’ action 
operational. Vergnaud (1996) distinguishes concepts-in-action and theorems-in-
action, in reference to the concepts and the theorems of mathematics. In particular, he 
defined concepts-in-action in the following way: 

Concepts-in-action are categories (objects, properties, relationships, transformations, 
processes, etc.) that enable the subject to cut the real world into distinct elements and 
aspects, and pick up the most adequate selection of information according to the situation 
and scheme involved (Vergnaud, 1996, p. 225). 

I extend these notions to definitions-in-action and properties-in-action in order to 
guide an analysis on the students’ invariants. 

My research about definitions had led me to also adopt an epistemological point of 
view, taking into account simultaneously logic, linguistic, axiomatic and heuristic 
approaches. Let me focus here on the Lakatosian heuristic point of view (and not on 
the formal aspect of the reconstruction of a theory), where definitions are temporary 
sentences and also at the dialectic interplay with proofs. Therefore, I use 
Lakatos’ categories of definitions, namely zero-definitions, emerging at the start of an 
investigation, and proof-generated definitions, directly linked to problem situations 
and attempts at proof. In the context of the immersion of a proof in a classification 
task (Euler’s formula and polyedra), Lakatos has showed that a definition is not only 
a tool for communication, but also a mathematical process taking part in the 
formation of concepts. In the example at hand, the aim consists in a characterization 
of markers in order to examine the concept formation process, and, in particular, to 
identify specific statements in the defining process. Let me underline that the kind of 
problem proposed by Lakatos can be inscribed in a problem-solving perspective 
because of the dialectic between the construction of a definition and the validity of a 
proof (involved in Euler’s formula). But the starting point is “only” a classification 
task. Such a situation can be kept in mind. We now have some cognitive and 
epistemological elements in order to try to grasp defining processes (namely concept 
image, definitions-in-action, zero-definitions and proof-generated definitions).  

SITUATIONS INVOLVING DEFINING PROCESSES 

Can we now imagine several kinds of situations involving defining processes? Of 
course, there is the case of the construction of a theory, when several theories are in 
competition (Popper, 1961). However, I will not develop this aspect, even if it plays a 
leading role in the defining processes (indeed definitions are chosen, reconstructed 
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etc. during axiomatization), because it is not a beginning from a didactical 
perspective when one wants students to be engaged in a process of knowledge 
construction. There are not a lot of propositions for constructing definitions and 
building new concepts in the relevant literature in mathematics education (I do not 
take into consideration the situations of reconstruction of definition of a known 
concept). My research is focused on the design and on the analysis of situations in 
which students are engaged in defining processes in order to build new concepts. I 
therefore had to work out a theoretical framework through epistemological, didactical 
and empirical research in order to characterize definitions construction processes 
(Ouvrier-Buffet, 2006). My experiments were conducted in discrete mathematics 
with the following concepts which are of different natures: trees (a known discrete 
concept, graspable in several ways), discrete straight lines (a concept which is still at 
work, for instance in the perspective of the design of a discrete geometry) and a wide 
study of properties of displacements on a regular grid. I have chosen to develop this 
last point for two reasons. Firstly, this kind of situation contributes to make students 
acquire the fundamental skills involved in defining, modelling and proving, at various 
levels of knowledge. A mathematical work on (“linear”) positive integer 
combinations of discrete displacements actually mobilizes skills such as defining, 
proving and building new concepts. Secondly, it leads us to work in discrete 
mathematics but also in linear algebra because similar concepts are involved in this 
situation. So we can focus on concepts which are known as difficult, at the university 
level, namely concepts of linear algebra. These concepts have the specificity of being 
inscribed in a very formalized theory, and historically, they have a unifying and 
generalizing power. They are well-known for being difficult to learn... and to teach.  

The challenge, from my point of view, is to find a “good” situation i.e.: 1) a situation 
which allows the construction of some concepts and leads students to explain and to 
explore a mathematical questioning and then, to have a mathematical experience; 2) a 
situation which does not generate well-known obstacles in teaching and learning 
linear algebra (and so which avoids the problems connected to the lack of practice in 
basic logic and set theory of students for instance and their difficulty connecting new 
concepts to previous knowledge etc.); 3) a situation which allows the construction of 
zero-definitions and the catalysis of proof-generated definitions, trying to instil a kind 
of concept images in particular (the study of Harel (1998) underlines that the students 
do not build effective concept images for the concepts of linear algebra, in particular 
for the notion of independence); 4) a situation which brings a kind of useful and 
dynamic representation of some concepts of linear algebra, avoiding the trap of using 
2D or 3D geometry: indeed, the attempts to connect linear algebra to 2D and 3D 
geometry in order to give an image of some concepts (linear (in)dependence in 
particular) have showed their limits (Hillel, 2000; Harel, 1990 & 1998 for instance). 
What a challenge… Is it really sensible? 
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A CASE STUDY: DISPLACEMENTS ON A REGULAR SQUARED GRID ( ����²) 

A situation in discrete mathematics  

Let G be a discrete regular grid. This grid can be squared or triangulated for instance. 
For the rest of this article, G is a squared regular grid. A “point” of the grid is a point 
at the intersection of the lines. Let A be a starting point. An elementary displacement 
is a vector with 4 positive integer coordinates (it can be described with the directions: 
up, down, left and right, for instance “2 squares right and 3 squares down). A 
displacement is a positive integer combination of k elementary displacements, written 
a1d1 + a2d2 + … + akdk (ai are natural numbers, 1 ≤ i ≤ k).  

The general problem is: let E be a set of k vectors with integer coordinates. 
Starting from a given point, which points of the grid can one reach using 
positive integer combinations of vectors of E? 

In vector space, the notions of generator and dependence are highly correlated. In a 
discrete situation, the lack of definitions of these notions may allow an activity of 
definition-construction. The situation above is decontextualized with regard to 
classical introduction of concepts in linear algebra. It is an open problem, which the 
students do not know. The concepts of generator, minimality but also (in)dependence 
and basis can be studied. I stress the fact that the linear algebra is not the model for 
the situation of displacements. Linear algebra brings well-known obstacles, in 
particular with its definitions and a unifying formalism. So this explains the necessity 
of a “decontextualization” in order to give an access to the mathematical problematic. 
This decontextualization in discrete mathematics allows a work on properties which 
are co-dependant in the continuous case. 

As seen in the mathematical study below, the situation suggests an activity on the 
definition of “different” paths, but also the definition of generator, minimality, 
density and “a little bit everywhere”. The students were induced to define besides 
being challenged to discover an answer to the “natural” questions: How can we reach 
each point of the regular grid? What does it mean? Does a minimal set of 
displacements exist in order to go everywhere? Furthermore, I assume that the notion 
of generator should come naturally and will lead students to the notions of 
(in)dependence and minimal generator (basis). 

The mathematical study in brief 

1) How to reach all the points of the grid? 

There exists a set of displacements which allows all the points of the grid to be 
reached. The four elementary displacements represented here obviously form one 
such set. Now, can we characterize all the sets of displacements which allow us to 
reach all the points of the grid? We have to work on two different properties 
simultaneously: 
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- the “density”: all the points of a zone of the grid are reached. 

- and “a little bit everywhere”: let P be a point of the grid. There exists a reached 
point, called A, “close to P”, i.e. such that the distance between A and P is bounded 
(for every P, independently of P). We will call this property “ALBE”. 

 

We can reach all the points of the grid when these two properties (“density” and 
“ALBE”) are satisfied simultaneously. These properties imply the definition of 
“generator set”. 

2) Reciprocal problem and minimality 

Let E be a set of elementary displacements. What points can one reach with E? When 
the set of reached points is characterized, a new question emerges: is it possible to 
remove an elementary displacement of E without changing the reached points? This 
is a question about the minimality of the E set. E is called minimal when removing 
one of its elementary displacements modifies the set of reached points. With this 
definition, how do we characterize a minimal set and a generator set of 
displacements? Furthermore, are the minimal and generator sets of displacements 
minimum too, i.e. do they have the same cardinality?  

3) Paths and different paths 

Let E be a set of k elementary displacements written as d1, d2, …, dk. What can we 
say about the paths from the fixed point A to the reached point B? A path from A to 
B is an integer combination of elementary displacements of E. A path can be 
described by a k-tuple (a1, a2, …, ak) where ai, for ki ≤≤1 , are the integer coefficients 
of this combination.  

Two paths from A to B are called different if and only if the k-tuples characterizing 
them are different. Note that the order of the elementary displacements does not 
interfere because of the commutativity of displacements. Then, we can form a 
question on the relationship between the number of the paths from A to B and the 
minimality of E: when there are (at most) two different paths, is it possible to remove 
an elementary displacement in E? The answer is ‘No’: the study of that is a difficult 
one, even if we limit the study to �. Here is a counter-example on the discrete line. 
Let E be a “displacement” composed by 2 squares to the right and 3 to the right, i.e. E 
is composed by the natural numbers 2 and 3, and we look at the numbers which can 
be generated by 2 and 3. With the displacements of E, we can reach 11 in two 
different ways: either with 4 × 2 + 1 × 3, or with 1 × 2 + 3 × 3. But we cannot remove 
2 or 3 from E otherwise 11 will not be reached. Then, E is generator and minimal for 
11. It can lead us to the famous Frobenius problem (Ramirez-Alphonsin, 2002).  

We notice that the existence of several paths does not necessarily imply the non-
minimality of E. Then we have to consider three kinds of E sets. 1) There is no 
uniqueness of the path for one point at least i.e. there exists at least one point which 
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can be reached with at least two different ways. This does not imply that E is non-
minimal. 2) Every point of the grid can be reached in at least two different ways. We 
call this property “redundant everywhere”. Thus, the E set is non-minimal: this is the 
case when an elementary displacement of E is an integer combination of other 
elements of E. 3) Every point of the grid can be reached in only one way (uniqueness 
of the path): we call this property “redundant nowhere”. The E set is clearly minimal.  

4) Discussion on the minimal generator sets of ���� and their cardinalities 

The minimal generator sets can have different cardinalities. For example, you can see 
below a minimal generator set with 4 elements and another one with 3 elements: with 
both of them you can go everywhere on the grid, that is to say “ALBE” and with 
“density”.  

 

       Card E = 4    Card E = 3 

We can succinctly study this specificity of the discrete case with the integers. 

In order to build a set of minimal generator elementary displacements on �, we have 
to use coprime numbers (i.e. gcd of them is equal to 1). Thus, the “density” property 
is true for natural integers (Bezout’s theorem). Some of these coprime numbers 
should be negative in order to go “a little bit everywhere” (a little bit to the right and 
a little bit to the left). For example, if we want to generate � with 4 integers, we build 
4 natural numbers which are coprime as a whole (for instance 2×3×7, 3×5×7, 2×3×5, 
2×5×7 i.e. 42, 105, 30 and 70). Then we can reach 1 (according to Bezout’s theorem) 
that is to say we can go with density on �. Now if we take one of these numbers as a 
negative one, we can go “a little bit everywhere” and we get: E = {42; 105; - 30; 70} 
is a generator of �. So we can build several sets of minimal generator displacements 
with different cardinalities. Another example: E = {1; -1} and F = {2 ; 3 ; -6} are 
generator and minimal, card(E) is 2 and card(F) is 3. 

Then, we have the following theorem:  

Theorem: there exists, in �, sets of minimal generator elementary 
displacements with k elements, k being as big as one wants. 

Therefore, the cardinality of sets of minimal generator elementary displacements of � 
is not an invariant feature. However, the study of the generation of integers has 
showed that this problem is mathematically closed for �. The reader can consult the 
wider and more complex NP-hard Frobenius Problem (Ramirez-Alphonsin, 2002).  

We will show that the problem is not mathematically closed in �², by proving that we 
can build minimal generator sets with as many elementary displacements as we want. 
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5) Construction of sets of minimal generator elementary displacements, in ����², with 
k elements 

We call Ek the set of all generator displacements with k elementary displacements. 
We want to generate all the points of the regular grid. A starting point is given. The 
study of the “generator” and “minimal” properties on a discrete grid is more complex 
than on �: that is the reason why the study of the first cases (homework for the 
reader) Ek, k = 2, …, 5, is necessary. It leads us to a theorem of existence.  

Theorem: there exist, in �², sets of minimal generator elementary 
displacements with k elements, k being as big as one wants.   

Indications for the proof: one constructs a set of horizontal minimal generator 
elementary displacements with (k-2) elements in order to generate � and then add 
two vertical elementary displacements in order to go everywhere by translation.  

But, k being given (as big as one wants), we do not know how to construct all the sets 
with k minimal generator elementary displacements. The next crucial question is: 
how to prove that a set of elementary displacements is generator or minimal? 

CONCLUSION: PRESENTATION OF SOME EXPERIMENTAL RESULTS 

I will present a complete analysis of students’ procedures during the Conference, 
exploring the concept formation and the perspectives that the situation of 
displacements offers to other fields of mathematics. But let me briefly outline some 
experimental results coming from an experiment with freshmen audiotaped recorded.  

The situation of displacements allows a work on mathematical objects 
(displacements, paths) graspable through a basic representation close to that of 
vectors. The main difficulty lies in the fact that properties have to be defined 
(generator, independence, redundancy, minimality). Indeed, the objects we work with 
do not need to be explicitly defined at first: we have to focus on properties, to 
characterize and to define them. These specificities of the situation of displacements 
partially explain why the students did not engage in characterizing mathematical 
properties. Indeed, only some zero-definitions were produced but they did not evolve 
into operational definitions. Nevertheless, a “natural” definition of “generator” (i.e. 
“to reach all the points of the grid”) has been produced and has been transformed into 
an operational property (“to generate four points or elementary displacements”). 
Furthermore, I have identified two definitions-in-action: one for “generator minimal” 
and one for “minimal set”. The presence of definitions-in-actions proves that students 
can not stand back from the manipulated objects: students stayed in the action, in the 
proposed configurations. Their process did not move to a generalization which would 
have allowed a mathematical evolution of zero-definitions or definitions-in-action. A 
plausible hypothesis is that this distance (between manipulation and formalization, 
formalization merely a first step, not a complete theorization) is too rarely 
approached in the teaching process. It goes along the lines of previous 
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epistemological and didactical results which conclude that formalism is a crucial 
obstacle in the teaching of linear algebra. 

The didactical analysis of the productions of the students is very difficult. In fact, the 
dialectic involving definition construction and concept formation is useful to 
understand the students’ procedures and their ability to define new concepts in order 
to solve a problem. To understand how concept formation works implies exploring 
the wide field of mathematical definitions considered as concepts holders. That will 
be discussed during the Conference. 
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Lately, problem posing gained terrain in mathematical education research due to its 
connection with mathematical understanding and thinking. Still, comparisons 
between novice’ and experts’ problem posing are still scarce. In this paper we 
compare students’ and teachers’ generated problems on three aspects: variety of 
problem types and of tasks, and quality of questions. We found that  teachers use 
their pedagogical knowledge to constrain problem types and tasks, and that teachers’ 
classroom experience shapes their view on difficulty. In conclusion, teachers are 
always guided by the audience they have in their mind in contrast with what can be 
observed at students. 

INTRODUCTION 

Research on problem posing can be structured along several lines. First, there is a 
research trend on relating problem posing to instruction: by which means a problem 
posing approach can be beneficial in the classroom. Studies that can be subscribed to 
this category look at the relation between problem posing and problem solving (in 
case of pre-service teachers – Crespo, 2003; in-service teachers – Chang, 2007; both 
– Silver et al., 1996; students – Imaoka, 2001), international comparisons (Cai, 1997) 
or problem posing and mathematical understanding, modelling and open ended 
problems (Lin, 2004; Pirie, 2002). Another line of research focuses on enhancing 
problem posing skills: in traditional (Yevdokimov, 2005) or by development of 
computational settings (de Corte et al., 2002). There are also a series of studies that 
relate problem posing to individual attitudes towards mathematics and affect (Akay & 
Boz, 2008). A fourth line of research connects problem posing to creativity and 
evaluates the posing process and results from creativity point of view (Silver, 1997). 
However, comparisons between novices (from some particular point of view) and 
experts are scarce and there is no commonly agreed framework that would allow this.  

One explanation to such a situation is the fact that mathematical problems need a rich 
characterization of them. However, such an inquiry leads to questions like: when a 
situation turns into a problem, what makes it to belong to a particular topic, which of 
the problems elements (like given, asked for) should be considered and which meta-
characteristics are important (like solvability, cognitive resources involved in 
                                           
1 The first author was partially supported by Grant CNCSIS ID-1903. 
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solution, etc.). In conclusion, researchers need to take into account the particular 
topic, beside general aspects, in order to define their evaluation criteria. 

In the present paper we intent to contribute on this line by proposing a framework for 
the evaluation of problems and apply it to compare problems posed by university 
students (pre-service teachers, considered as novice from the point of view of 
classroom teaching) and in-service teachers (considered as experts). The 
categorization into novice and expert is done on terms of pedagogical, mathematical 
knowledge and classroom teaching experience. 

METHODOLOGY 

In the present study, 88 persons from Romania (25 first year or second year 
mathematics students, 41 middle school teachers, and 22 high school teachers) 
completed a problem posing task. Students were of 18-20 years old and entered to 
university after completing an admission exam. Teachers had more that 5 years 
teaching experience. Participants were selected randomly, without any reference to 
their professional or scientific performance. None of them has been subject of 
training in problem posing, however it is possible that some of them would have 
experience in Olympiads as students or teachers.  

The participants had to generate three sequence problems (as home assignment task) 
such that to have an easy, one of average difficulty and a difficult problem. They had 
a week at their disposal to finish; at the end, they responded a questionnaire regarding 
their problem posing process. It was requested to hand in not only the final 
formulations, but also the scratch work. The questions were about the following 
aspects of the problem posing process: the existence of an initial idea (for each 
problem of different difficulty), change of the idea during generation, problem types 
from which to start the generation process, a theorem or generalization as from where 
to trigger the problem posing process and difficulty criteria they used.  

ANALYSIS OF THE POSED PROBLEMS 

It has to be mentioned, before the presentation of results, that we found two situations 
along with the expected one: first, not all participants posed problems for each 
difficulty level and, second, some of them, posed more than one problem for a 
specific difficulty level. The problems were analyzed from three perspectives: variety 
of problem types and of questions, and problem formulation . 

Problem - type analysis 

The problem typology for sequences was taken from Pelczer and Gamboa (2006). 
Theoretical problems are the ones in which there is no quantitatively specified 
sequence, but rather a generic sequence is specified as the mathematical object under 
inquiry. The term “contextual” was employed as in Borasi (1986), meaning the 
situation into which the problem is embedded. The rest of categories refer to the way 
in which the general term is specified. Table 1 contains the results concerning 
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problem types, in percent (E – easy, A – average, D - difficult). The total number of 
problems appears in the last line of this table.  

Table 1. Statistical results on problem types. For each problem type we specify, in 
parenthesis, as a triplet the number of problems posed by students, secondary and 
high school teachers. 

Students Secondary High school   

Problem types E A D E A D E A D 

Theoretical - - - - - - - - - 

Contextual (8,-,-) 12 12 10 - - - - - - 

Explicit (13,42,40) 28  4 5 41 38 27 73 67 43 

Implicit (15,6,1) 12 36 14 5 2 8 4 - - 

Linear Recurrence (27,4,5) 44 36 33 - 5 5 - 16 10  

 Non-linear Recurrence (8,3,3) 4 12 18 - 2 5 - - 14 

Enumeration  (2,37,5) - - 10 40 30 25 19 4 - 

Sum, Product (2,26,11) - - 10 14 23 30 4 13 33 

Total nr. of problems  25 25 21 41 40 36 22 22 21 

We can observe from table 1 that at students recurrence problems dominate; at high 
school teachers prevails the problem in which the general term is expressed explicitly 
by a formula and at secondary teachers the “enumeration” type (sequence specified 
by the enumeration of few initial terms) is the most frequent. The dominance of 
enumeration type at secondary teachers can be explained by the curricula: the accent 
is on identifying and formalizing the sequence’s patterns and moving between 
different representations of the sequences (geometric, analytic, formal and 
recurrence).  

The observation holds for high school teachers, too, with the remark that in their case 
there is an increase also in non-linear recurrence problems. In case of high school 
teachers, the dominance is one of the explicit problems – situation which, again, can 
be explained by the curricula. High school teachers concentrate on clarifying basic 
calculus concepts, like limit, convergence, monotony and for all these explicit 
problems are proper. As the difficulty of the problem has to increase, they move 
towards the types “sum” and “non-linear recurrence”. These problems, when 
analyzed, showed that teachers still focused on theorems and criteria present in 
textbooks (just as in case of easy problems with explicit general term), but asking for 
skillful application of them. By “skillful application” we mean that no advanced 
techniques are needed, but rather good knowledge of algebra (identities, inequalities) 
or typical examples and sequences (like in case of applying the majoring criteria). 
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This later is the main aspect that differentiate students’ and teachers’ problems. As it 
can be seen in the above table, students prefer implicit or recurrent definitions of the 
sequences. It is also interesting that many students pose “contextual problems”, that is 
problems in which sequences appear as a collateral issue: the main focus is on 
another mathematical object so that the problem can’t be seen as strictly relating to 
introductory analysis. 

These results suggest that students see problem posing as a self-referenced activity 
focused on problems and with no specific audience. Problem difficulty is judged 
based on the ability to solve the problem and use of techniques, meanwhile teachers 
build their problems with their students in their mind. When speaking about the 
problem posing process they mention that the addressee is their classroom and 
difficulty is judged based on curricular indications and classroom experience. The 
case of the (posed) difficult problems is interesting: where students ask for specific 
transformations (usually beyond the textbook’s reach) or use non-familiar contexts, 
teachers concentrate on situations about which they know that the application of the 
usual theorems can be problematic. Therefore, they prefer problem types (like non-
linear recurrence or explicit) that can be solved with text-book theorems and the 
difficulty relies in identifying the instances that satisfy the conditions of application. 
In these terms, teachers problem posing can be seen as a constraint based process, 
where constraints arise from their classroom experience.   

Questions’ analysis 

Some interesting conclusions about the posing process were reached by the analysis 
of the task specified by the problem, that is, by the analysis of the problems’ 
questions. We defined four principal categories. In the first category we included 
questions related to the verification of the concepts, that is the question refers to the 
statement of some definitions or theoretical results, recognition of some property, 
construction of examples or counter-examples. In the second category are the 
demonstration tasks, those that ask for justification (through mathematical reasoning) 
of some facts of algebraic or analytic nature. In these cases, the problem statement is 
imperative and the facts to be demonstrated are explicitly stated. A third category 
contains exploration tasks. These can ask for the verification, study or observation of 
a property, identification of a sequence’s pattern given by some terms and/or 
generation of following terms, discussions of the results on the value of parameters or 
different representations of a mathematical object. The questions from this category 
are characterized by doubt, meaning that a priori one can obtain several answers. The 
last category of questions – of computations – include tasks that ask for the 
application of some formula (in case when the expression of the general term is 
given), computation of the general term, of a limit, sum, or the determination of a 
parameter’s value such to have some conditions satisfied. 

In table 2 the statistical results are shown (in percentage for the questions types), for 
the four category of questions (tasks) and the three category of participants. The total 
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number of problems and questions appears at the end of the table and a ratio of 
question/problem is computed. 

Table 2. Statistical data on questions 

 Students Secondary High school  

 E A D E A D E A D 

Verification   - 3  3 - - - - - - 

Proof 29 26 23 22 22 27 3 11 24 

Exploration 10 20 23 35 26 20 48 22 30 

Computation 61 51 52 43 53 53 48 67 47 

#Questions 31 35 31 63 58 59 29 27 34 

#Problems 24 25 21 42 41 37 20 20 22 

Ratio 1.29 1.4 1.48 1.5 1.41 1.6 1.45 1.35 1.55 

The data from table 2 leads to some interesting conclusions. A first one is that none 
of the participant categories seems to be interested in problems that aim the 
verification of concept understanding. There are only two problems asking for 
construction of examples, but these are in a special context in which very complex 
properties are required. A possible explanation of such situation can be the fact that 
these types of questions are not very common in textbooks, evaluation exams, 
although probably they are quite common in everyday class activities. Still, teachers 
and students do not seem to give them importance as stand-alone problems. 

A second, surprising, conclusion is that high school teachers seem to be less 
interested in demonstrations and exploration in favour of computation, when 
compared with the other two participant category. More, high school teachers, tend to 
put problems of demonstration type more as difficult ones (24% in difficult against 
3% of easy problems). In the meantime, the distribution of demonstration type 
questions is more equilibrated in case of students and secondary school teachers. 
Such results can be related to the tendency toward an algorithmic training, as 
preparation for end school exams, observed in the Romanian education lately (Pelczer 
et al., 2008). 

We also identified a certain disposition of teachers (independently of the school level 
that teach) for questions that refer to passing sequences from one representation into 
another, aspects lacking from students’ problems. This suggest that teachers know 
and pay attention to the importance of multiple representations of a concept; passing 
a sequence between different representational forms has a high pedagogical value. It 
is interesting that teachers consider exploration as proper, mostly, for easy problems. 

As far the ratio between questions and problems is concerned, we see a small 
tendency of teachers to pose more questions than students. The tendency is even more 
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visible when we count all the questions (even those that are of the same type). Such 
situation is explained by the fact that teachers generate problems with an audience in 
their mind (their own class), an audience that is made up of problem solvers; 
therefore, their tendency for multiple questions reflects their way of acting in the 
class. We even found problems with more than 5 questions for it. In conclusion, we 
see that teachers create, through the posed problem, a context for learning in which, 
on the same problem statement multiple skills can be practiced.  

Problem formulation 

The first aspect refers to the adequacy of the question with the context of the problem 
and the difficulty level. In any context there are several questions that can be asked; 
the context with the question gives a particular instance. By considering that we are 
interested in classroom problem posing, we study these instances from the point of 
view of their pedagogical value (Baker, 1991). This attribution is subjective, based on 
the experience of the authors of the present article. Adequacy with the difficulty level 
refers to the correspondence between the attributed difficulty and the elements of the 
problem. In particular, it means to analyze the selection of the question (from a 
possible set of questions that can be formulated in that context) and whether there 
were better alternatives. Then, problems are analyzed from the point of view of well-
formulatedness: are all the elements necessary for solution mentioned in the problem? 
The last aspect refers to the solvability of the problem: can the problem be solved 
under the given specifications? 

As pedagogical value of the problems is concerned it can be told that there are some 
common goals between the three categories of participants, for example, the 
verification/ application of concepts of monotony, boundedness or convergence. 
However, there are two interesting results. First, no student posed a problem that 
would require the identification of the sequence’s pattern nor asked for exploration of 
different situations. Second, students tend to pose problems (especially, when it 
comes to difficult ones) that require the application of algorithms or techniques that 
are not in the textbook. This tendency is explained by their vision of difficult 
problem: one that is out of their own (or most students) reach. However, it is 
important to underline that such a perception goes beyond of difficulty appreciation; 
it reflects, partially, their view of a well-prepared student: one that has an extensive 
knowledge of algorithms and techniques.  

It has to be remarked that neither teachers pose problems that aim to check whether 
there is a deep understanding of the concepts involved with sequences. Above, we 
already described a possible explanation for this situation. Still, teachers tend to ask 
for exploration and their problems can be solved just by methods shown in the 
textbook. This aspect turns us back to the difficulty issue: students make more 
difficult problems by involving techniques that are beyond the textbook or by 
transforming the context of the problems, meanwhile teachers involve algebraic 
knowledge in the expression of the problem such to remain strictly related to the 
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topic. With regard to difficulty, students also have problems in finding the proper 
question in a context – the question that would turn a problem in a difficult one. 
Teachers’ problems are more typical, the questions  that could be asked in a specific 
situation (and the mathematical object on which focuses the question) are the 
standard ones, so they choose from a more restricted set of questions and are more 
familiar with the setting. Students, meanwhile, often create richer settings, but do not 
necessarily know how to choose a good question.  

In other situations, students do not formulate properly the question. We give two 
examples from students.  

Example 1.  Let ( )n na  be a sequence given by 1 1a = , 2 1a = , and 1 1sin( ) cos( )n n na a a
+ −
= + . 

Study if this sequence has a finite limit. 

Example 2. Let ( )n na  be the sequence defined by 1 12a = , 2 288a = , and 

1 124 144 , 2n n na a a n
+ −
= − ≥ . Calculate 

1

n

n k
k

b a
=

=∑  and examine the monotony 

and the convergence of the sequence ( )n nb . 

In the first example (Example 1, given as difficult problem), the student’s question 
(the “finite” word) suggest that he had not paid enough attention to the expression of 
the general term: the limit, if it exists, obviously it can’t be infinite. In the second 
example (given also as difficult problem), the second question refers to the monotony 
and convergence of a sequence defined from the previous one. Once the general term 

na  is determined, it is “obvious” the monotony and the divergence of the second 
sequence (its general terms is positive and major to 1).  

Our main conclusion to this first part of the analysis is that teachers’ problems are 
typical ones that require only textbook material for solving and have specific 
pedagogical goals; their approach is shaped by their classroom and teaching 
experience: they pose problems having a specific audience in their mind (their own 
classroom) and think of curriculum as the main guide for the type of knowledge that 
must be used.  

By well-formulated problem we mean a problem in which all the elements necessary 
for solution are given and there is no contradiction between the given elements. 
Textbooks, problem books always contain well-formulated problems, a situation 
which at its turn can lead to the case that students don’t know what it is and how they 
could check a problem from the point of view of formulation. Exactly this situation 
make well-formulatedness an important factor in the evaluation of the problem 
posing results.  

Solvability, another characteristic, refers to the possibility of finding a solution for 
the problem with a certain set of knowledge. As in the case of well-formulatedness, 
students experience in classroom is limited to solvable problems, which gives them a 
bias when it comes to evaluate the posed problem: often this aspect will not be 
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considered. However, it is true that students frequently do not know to decide 
whether a problem is not solvable or is just that they can’t solve it. Still, in the 
problem posing context it is natural to expect to pose problems that are solvable, even 
if not by the author of the problem. It also needs to be underlined that well-
formulatedness affects the solvability of the problem, therefore there will be always 
less solvable problems than well-formulated ones. 

In the analysis we carried out there were no cases of ill-formulated or non-solvable 
problems at teachers. However, at students this appears in few cases. Ill-formulated 
problems can be grouped as problems that have not enough elements in their 
statement (like “under formulated”) and ones that have contradictory information in 
their statement (in some cases, over-formulated). We consider two relevant examples. 

Example 3. Consider the following recurrence formula: 1 12n n na a a
+ −
= − . Calculate the 

general term na . 

Example 4.  If ( )n na  a sequence such that 
1

1n

n

a

a
−

>  and 
1

1n

n

a

a
+

> , decide if it is convergent. 

In example 3 we illustrate the case of under-specification: without specifying the first 
terms, the general term can’t be computed. Example 4 shows a case of contradictory 
information, that makes that the problem has no sense under the current specification.  

Why do teachers create well-defined and solvable problems? We argue that these 
problems can serve to reach the pedagogical goals they envision, and that they have 
the mathematical knowledge and teaching experience that allow them to verify their 
posed problems (or, from the beginning, to restrict themselves to problems that are 
“worthy” to be done). Whether teacher’s choice for well-defined problems is result of 
the use of textbooks and exams practices or, rather, it is a conscious decision remains 
a question on which we shall not delve in this paper. On the other hand, students 
often are not aware of this aspect or are not considering it when reviewing their own 
problems – a fact that can be (partly) explained by the fact that since they had no 
particular receiver in their mind during the generation they didn’t “looked” at the 
problem form the solvers’ point of view. 

As overall conclusion, we can say that differences between teachers’ and students’ 
generated problems can be identified at every level (problem types; questions types; 
meta-characteristics of the problems – well-formulatedness, solvability and 
adequacy) and the differences can be explained by teacher’s classroom and 
pedagogical experience, on one hand, and mathematical knowledge, on other hand. 

CONCLUSIONS 

The analysis of the posed problems leads to the conclusion that there is a specific trait 
for each participant group. This can be underlined by different ways. 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2363



  

In the first place, teachers (secondary and high school) seem to be strongly influenced 
in the choosing of the problem type and question formulation by the curriculum and 
the subject usually given at final exams (mostly national scale examinations). High 
school teachers seem to concentrate on the development of computing abilities, 
meanwhile secondary teachers pay equal attention to demonstrations, exploration and 
calculations. Students seem to be interested in extra-curricular contexts and solution 
techniques. We explain this situation by the fact that teachers have permanently an 
audience in their mind at the moment of generation and they employ their 
pedagogical and mathematical knowledge such to adapt the problems to an 
envisioned concrete classroom situation (known from their classroom experience). 

The explanation is congruent with the next conclusion, too. Teachers seem to be 
guided by diverse pedagogical goals and take into consideration their class when 
adapting the difficulty level. On contrary, students see problem posing as a self-
referenced activity focused on the problems with no specific audience. There are two 
further arguments in this line. On one hand, a teacher starts, in general, from a 
specific idea of problem generation and formulates (in average) more tasks (or 
questions). On other hand, teachers pay much more attention to the formulation of the 
problem, in comparison with students: many of students’ generated problems have an 
unclear statement or the proposed solutions are erroneous which very rarely occurs at 
teachers.   

The analysis we carried out has several benefits. First, sheds light on what students 
and teachers do perceive as important in teaching, evaluating and knowing about 
sequences. Second, the analyses proves interesting for pre-service teacher education. 
Some time after beginning their careers as teachers, these students will start to choose 
or pose the problems with a focus on their audience, but maybe it would be beneficial 
to explicitly train them, before getting into the classroom, to think on meta-
characteristics of the problems and to identify and use techniques that help building 
them. We consider that our conclusions are in favour of using a problem posing 
approach or training in pre-service teacher education. 
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ADVANCED MATHEMATICAL KNOWLEDGE:  

HOW I S IT USED IN TEACHING? 

Rina Zazkis, Simon Fraser University, Canada 

Roza Leikin, University of Haifa, Israel 

 

For the purpose of the study reported here we define Advanced Mathematical 
Knowledge (AMK) as knowledge of the subject matter acquired during 
undergraduate studies at colleges or universities. We examine the responses of 
secondary school teachers about the ways in which they implement their AMK in 
teaching. We find an apparent confusion between what teachers perceive as difficult 
or challenging for their students and what is ‘advanced’ according to our working 
definition. We conclude with a call for a more articulated relationship between AMK 
and mathematical knowledge for teaching.  

 

Research reported here is the beginning of our journey aimed at identifying explicit 
relationships between school mathematics and university mathematics, as perceived 
by secondary school teachers. We first describe the relationship (or lack thereof) 
between teachers’ knowledge of mathematics and the achievements of their students, 
which led researchers to posit a need for ‘specialized’ mathematical knowledge for 
teaching. Then we describe different kinds of teachers’ knowledge and provide a 
working definition of advanced mathematical knowledge (AMK) and its relation to 
advanced mathematical thinking (AMT). Acknowledging the existing gap between 
secondary and undergraduate mathematics we illustrate suggestions for reducing this 
gap. We then describe the views of several secondary school mathematics teachers 
about their usage of AMK in their teacher practice.  

SUBJECT MATTER KNOWLEDGE AND TEACHING 

While teaching is unimaginable without teachers knowing the subject matter, it is 
unclear how “knowledge for teaching” can be measured. The most used measure, the 
number of mathematics courses taken by a teacher, did not lead to conclusive results. 
Begle (1979) found that students’ mathematical performance was not related neither 
to the number of university courses their teachers had taken, nor to teachers’ 
achievement in these courses. However, Monk (1994) found a minor increase in 
secondary students’ achievement associated with the number of college courses in 
mathematics taken by mathematics teachers. Further, “researchers at the National 
Centre for research on teacher education found that teachers who majored in the 
subject they were teaching often were not more able than other teachers to explain 
fundamental concepts in their discipline” (NCRTE, 1991, quoted in CBMS, 2001, p. 
121). 
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More recent studies recognized the inherent complexities with these kind of results, 
mainly that the degree held and number of courses taken by a teacher are not 
appropriate measures of mathematical knowledge. Following a comprehensive 
literature review, Hill, Rowan and Ball (2005) concluded that measuring teacher’s 
mathematical knowledge more directly – by looking at scores on certification exams 
or exam items related to a specific topic – generally revealed a positive effect of 
teachers’ knowledge on their students’ achievement.  

Struggling with the question of what kind(s) of teachers’ knowledge benefit teaching 
and learning, researchers realized that mathematics knowledge for teaching (Ball, 
Hill & Bass, 2005) may be a special ‘register’ of knowledge, a special combination of 
content and pedagogy, that relies on deep understanding of the subject and awareness 
of obstacles to learning. This specialized knowledge has received some attention at 
the elementary level (e.g., Ma, 1999), and it has been shown that such specialized 
knowledge for teaching was significantly related to students’ achievement at 
elementary grades (Hill, Rowan & Ball, 2005). However, the issue has yet to be 
explored in detail at the secondary level. We believe that achieving this specialized 
knowledge for teaching at the secondary level is impossible without sufficient 
exposure to advanced mathematical content. 

TEACHERS’ KNOWLEDGE 

Epistemological analysis of teachers’ knowledge reveals significant complexities in 
its structure (e.g., Scheffler, 1965; Shulman, 1986; Wilson, Shulman, & Richert, 
1987). Addressing these complexities and combining different approaches to the 
classification of knowledge, Leikin (2006) identified three dimensions of teachers’ 
knowledge, as follows: 

Kinds of teachers’ knowledge: based on Shulman’s (1986) classification where 
subject-matter knowledge comprises teachers’ knowledge of mathematics, 
pedagogical content knowledge includes knowledge of how students approach 
mathematical tasks, as well as knowledge of learning setting; and curricular content 
knowledge includes knowledge of types of curricula and knowledge of different 
approaches to teaching mathematics.  

Sources of teachers’ knowledge: based on Kennedy’s (2002) distinction, systematic 
knowledge is acquired mainly through studies of mathematics and pedagogy in 
colleges and universities, craft knowledge is largely developed through classroom 
experiences, whereas prescriptive knowledge is acquired through institutional 
policies.  

Forms of knowledge: based on Atkinson and Claxton (2000) and Fischbein (1984) 
distinction, intuitive knowledge determines teacher actions that cannot be 
premeditated, and formal knowledge is mostly connected to planned teachers’ 
actions. 
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In these terms, we investigate connections between teachers’ systematic formal 
subject matter knowledge, within and beyond the secondary curriculum, and its 
possible transformation into their pedagogical content knowledge or mathematical 
knowledge for teaching.  

ADVANCED MATHEMATICAL KNOWLEDGE 

We study teachers’ advanced mathematical knowledge (AMK) rather than advanced 
mathematical thinking (AMT). We define AMK as systematic formal mathematical 
knowledge beyond secondary mathematics curriculum, likely acquired during 
undergraduate studies. We acknowledge that existence of different curricula makes 
this definition time and place dependent, however, sufficient similarities among the 
curricula make it useful for our pursuits.   

Coordinators of the WG-12 at CERME-6 suggested two interrelated perspectives on 
AMT: According to mathematically-centred perspective AM-T is related to 
mathematical content and concepts approached at the upper secondary and tertiary 
levels. According to thinking-centred relativistic perspective A-MT is addressed 
through focusing on students with high intellectual potential in mathematics. 

This study is performed within the context of mathematically-centred perspective on 
AMT. The notion of AMT is receiving continuous attention in mathematics 
education. The seminal volume Advanced Mathematical Thinking edited by David 
Tall (1991) was a landmark that positioned AMT as an area of research in 
mathematics education. It also intensified conversations on what constitutes AMT, 
and how it can be identified and supported. Tall (1991) characterised AMT as a 
transition “from describing to defining, from convincing to proving in a logical 
manner based on definitions” (p. 20). Tall also suggested that advanced mathematical 
thinking must begin in early elementary school and should not be postponed until 
postsecondary studies.  

The difference in perspective on what constitutes AMT shifted the focus, or at least 
the description of the research area, from AMT to tertiary mathematics (Selden & 
Selden, 2005). As such, our definition of advanced mathematical knowledge (AMK) 
accords with this shift: AMK is knowledge related to topics in tertiary mathematics.  

There are significant gaps between secondary school mathematics and tertiary 
mathematics. The discontinuity of experience appears not only at the level of 
presentation of mathematical content and lack of readiness for challenges but also in 
unresponsive styles of teaching and assessment (Goulding, Hatch & Rodd, 2003). 
These gaps have two significant outcomes relevant to mathematics education: (1) 
students, even those identified in school as high-achieving students, experience 
unexpected difficulties in entry-level undergraduate mathematics courses, and (2) 
many teachers perceive their undergraduate studies of mathematics as having little 
relevance to their teaching practice. The latter issue is of our interest in this paper. 
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Our goal is to examine teachers’ ideas of how AMK is implemented, both actually 
and potentially, in teaching secondary mathematics. 

PROCEDURE 

The study included two stages. 

At the first stage we interviewed several secondary school teachers. During the 
interviews the teachers were asked to reflect on their teaching and to share 
experiences in which they used their advanced mathematical knowledge. Following 
the difficulty our interviewees had responding on the spot, and because of the 
vagueness of some responses, we designed and implemented a formal written 
questionnaire that attempted to elicit specific and detailed responses.  

At the second stage 18 in-service mathematics teachers were asked to complete the 
written questionnaire. It included the following questions:  

1. To what extent are you using AMK in your school teaching? 

2. Provide 3 examples of mathematical topics from the curriculum in which, in your 
opinion, AMK is essential for teachers. In each topic specify the usage of AMK. 

3. Provide 3 examples from your personal experience of a teaching situation (such as 
classroom interaction, preparing a lesson, checking students’ work, etc.) in which 
you used AMK. Provide detailed description of each case.   

4. Provide 3 examples of mathematical problems or tasks from the school curriculum 
in which AMK is necessary or useful for a teacher. In each case describe the usage 
of AMK.   

The time for completing the questionnaire was not limited and the teachers could 
consult any resources they found appropriate. The questions were preceded with a 
definition of AMK, consistent with our above working definition:  

In this questionnaire we refer to knowledge acquired in Mathematics courses taken as 
part of a degree from a university or college as “Advanced Mathematical Knowledge”  

In the context of CERME WG12 – Advanced mathematical thinking – we report on 
the results from secondary-school mathematics teachers only (n=6). 

RESULTS 

Most participants in our study, in responding to Question #1, acknowledged the 
importance of AMK in secondary teaching.  They indicated that they are or have been 
using AMK in preparation for teaching, in supporting students’ solutions and in 
generating pedagogical examples. However, exemplifying such usage with detailed 
descriptions proved to be more challenging.  

In responding to Question #2, most topics that participants mentioned related to 
Calculus. Teachers mentioned definition and usage of derivative, limits, and 
asymptotes. These topics further featured in teachers’ examples provided in response 
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to questions #3 and #4.  This is hardly surprising, as the topics of Calculus are the last 
ones taught in high schools for a selected population of students and are usually the 
first ones encountered in undergraduate studies of mathematics. Of note is a response 
of one participant, Gal, who acknowledged his explicit attempt to avoid Calculus 
related topics, as those examples were in his opinion “obvious, taken for granted”. 
His three examples of topics included geometrical representation of equations and 
inequalities, normal distribution and linear programming. We appreciate his attempt 
to avoid the ‘obvious’, but we also note that his first example is not really 
‘advanced’, and the other two examples mentioned topics that were introduced to the 
Israeli curriculum relatively recently.  Though Gal was exposed to these topics at the 
university, they would not be considered ‘advanced’, according to our definition, to a 
recent high school graduate.  

In teachers’ oral responses, and on written responses to Question #3 and #4 we 
identified the following themes (1) connection to the history of mathematics, (2) 
meta-mathematical issues, (by “meta-mathematical” we mean cross-subject themes, 
such as definition, proof, example, counterexample, language, elegance of a solution, 
etc.) and (3) mathematical content. Within issues related to mathematical content we 
further differentiated between responses that identified mathematical tasks or 
situations clearly related to AMK, responses that mentioned ‘extra-curricular’ tasks 
with solutions requiring AMK, and descriptions of complicated tasks or problems 
with solutions based on the mathematical content from the school curriculum, rather 
than AMK.    

In what follows we exemplify each theme with illustrative examples.  

Connection to history  

Tanya noted that she learned in a university that logarithms were invented 
independently from the exponential function. As such, while the local curriculum 
introduces logarithms as the “inverse” of exponential notation, she introduces 
logarithms consistent with their historical development, building a relation between 
geometric and arithmetic sequences.  

Greg noted that he learned in a university course about the Pythagoreans and their 
decision to keep secret their discovery of irrational numbers. He often uses this story 
to motivate students when he teaches the topic of irrational numbers.  

We note that though both experiences exemplify pedagogical content knowledge and 
describe valuable teaching situations, they do not really rely on advanced 
mathematical content.  

Meta-mathematical issues 

Proof: Paul noted in his interview that he finally understood the meaning of 
mathematical proof after failing a first course in analysis. He claimed this made a 
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profound impact on how he teaches ‘proof,’ but he was not able to articulate this 
claim with any examples. 

Language: Nadia stated that undergraduate mathematics made her very sensitive to 
mathematical language, and this influences her teaching in not allowing students to 
use sloppy expressions. As an example, she shared a recent exchange in which a 
student said, “these angles make 180” and she asked him to rephrase, aiming for an 
expression like “the sum of the measures of these angles is 180 degrees”. 

Precision and Aesthetics: Donna wrote: “The importance of mathematical discourse 
connected in my mind to my studies in the university. I pay attention to the 
preciseness of mathematical language used in my classroom and explain to my 
students differences in the precise and imprecise mathematical formulations. I also 
am aware of the aesthetics that exists in mathematics and try to bring to my 
classroom examples of beautiful solutions and encourage students finding beautiful 
solutions”. 

Many responses focused on meta-mathematical content and referred to appreciations 
of meaning or of elegance, understanding versus procedural fluency. This tendency 
identifies a clear connection between AMT and AMK.  

Mathematical content 

Examples related to school curriculum and AMK 

In her interview Rachel described that when working with low achieving students on 
solving a system of two linear equations, she wanted the results to be integers. To 
achieve this, without building the equations by substituting the solutions, she relied 
on her knowledge of determinant and inverse matrix algebra, acquired in a linear 
algebra course. She showed that when the determinant is 1 or (-1) the values of 
unknowns are integers. She exemplified this using the parametric form of equations:  

If ax+ by =c and dx + ey = f, then x = (ec-fb)/(ae-bd) and y = (fa-cd)/(ae-bd) 
As such, in building equations she chose det [ ] = ae-bd = ± 1. 

Pat recalled that when the task was to find the coordinates for the vertex of a 
parabola, Grade 11 students, not exposed to Calculus, had to find the roots of the 
related polynomial, where the midpoint between the roots was the x-coordinate, and 
then use the equation for a parabola to find the y-coordinate. She could quickly check 
their solution using Calculus, finding the derivative and, with the help of derivative, 
finding the extremum point.  

The task Michelle chose was to prove that 2n ≥ n for all n , by induction or in any 
other way. Usually in the framework of school mathematical curriculum students 
learn proofs by induction without formal learning of Peano Axioms. Michelle’s 
solution included use of this axiom. Michelle provided a precise solution of the task 
(that we do not display herein) and then wrote: 
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Peano axiom (In each subset of natural numbers there is a minimal element) serves as 
basic assumption for the set of Natural numbers. The other one is the axiom of induction. 
This topic belongs to the Number Theory. Use of Peano axiom makes solutions shorter 
many times and makes solutions possible at all.  

In these three examples we identify three different ways in which AMK can be 
implemented: Rachel described a situation of creating a task for her students, in 
which she applied her knowledge of Linear Algebra. Pat mentioned a teaching 
situation in which she was able to check students’ solution rather ‘fast’ using her 
knowledge of Calculus. Michelle’s example included a specific task from Grade 12 
curriculum, for which she was able to produce a proof using her AMK of Number 
Theory, in addition to the ‘standard’ proof expected in school.  

Whereas our request, both in the interviews and in the written questionnaire, invited 
respondents to draw connections between their AMK and teaching or curriculum, in 
many cases it either received no attention or was misinterpreted in two different 
ways: examples of AMK without relation to teaching or school curriculum, and 
teaching/curriculum related examples without AMK.  

Examples related to AMK beyond school curriculum 

Searching for tasks that require AMK or are related to AMK, some teachers provided 
examples of tasks that are out of the scope of the secondary mathematical curriculum, 
in its most advanced stream. For example Kevin’s task was “Find ∫ dxxex ”. His 

solution included integration by parts which exemplifies his AMK, but does not 
attend to the request to provide examples related to teaching situation from personal 
experience or tasks related to school curriculum.  

Donna’s example also relied on content beyond school curriculum:  

Given a sequence of numbers an =
5n− 3
2n+1

 , prove that for this sequence 2
3
≤an≤ 2

1
2
 for 

any n. In the proof provided in her written work she relied on the calculation of a 
limit , a notion that is not explored in the current curriculum. As in the example 
provided by Kevin, her choice demonstrated her AMK, but did not attend to teaching 
or curriculum.  

Examples of curricular mathematical content without AMK    

Ivan suggested the following tasks:  

1. Given two points A(7,5) and B(3,1). Write the equation of a circle with diameter 
AB   

2. Let us take for example the rational function 
342

2

+−

−
=

xx

x
y and go through the 

steps: (a) What is the range and the domain of the function? (b) What are the 
asymptotes? (c) What are the extremum points? (d) Sketch the graph. 
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Both examples provided by Ivan belong to the high school curriculum and are not 
explored further in undergraduate mathematics courses. In a classroom conversation 
with peers Ivan noted that these tasks were difficult for his students and thus were 
considered as related to AMK.  We note that while exploring a rational function and 
sketching its graph is not an easy assignment, it is not beyond the reach of a student 
who learned this topic within the school curriculum.  

Comments on teachers’ examples 

An appropriate response to our request, both in interviews and in a written 
questionnaire, is an example of knowledge that a teacher would possess and use in an 
instructional situation, but to which a good student would not have an access, within 
the considered curriculum. As mentioned above, responses provided by Rachel, Pat 
and Michelle – that we judge as ‘appropriate’ – exemplify implementation of 
teachers’ knowledge beyond the specific curriculum content presented to their 
students, but which is applicable in a teaching situation. Kevin and Donna attend to 
AMK, but ignore curriculum, while Ivan attends to curriculum, conflating AMK with 
“what students find difficult”. As such, we consider their examples as ‘inappropriate’. 
However, based on the available data it is impossible to determine whether the 
examples these teachers provided result from their inability to exemplify what was 
requested, or from their misinterpretation of our request. 

We would like to note that Questions #3 and #4 of the questionnaire were designed in 
order to avoid vague general claims that we encountered in the interviews and 
anticipated in participants’ responses to Questions #1 and #2.  That is why in creating 
the questionnaire we explicitly asked participants to exemplify specific problems, and 
to determine a connection between the presented situation or task and the AMK. 
However, in 18 situations and 19 task examples generated by 6 secondary-school 
teachers in their written responses, only 5 situations and 8 task examples were 
formulated concretely and accompanied by solutions. The other 13 situations and 11 
tasks suggested by the teachers provided only an outline for the mathematical 
content.    

Further, among the written responses, Michelle’s was the only one that explained 
explicitly the relationship between the tasks and problems that she generated and 
AMK. Her ability to connect the content learned in school with the content learned in 
the university is an important feature of her mathematical awareness. Further 
research, based on a combination of written responses with follow up clinical 
interviews, is necessary to determine whether this ability is a rare gift of only a few 
teachers or whether specific prompting is needed to bring this ability to surface.  

CONCLUSION 

While undergraduate content requirements for secondary teachers exist almost 
everywhere, it has not been investigated how mathematical knowledge acquired at the 
undergraduate level – referred to here as AMK, “advanced mathematical knowledge” 
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– is manifested in teaching practice. In this paper we report on our first steps in this 
investigation.  

The results of our preliminary exploration indicate that teachers tend conflate the 
usage of AMK in teaching practice with either demonstrating their AMK in general 
or with attending to curricular content that is perceived as difficult. Given the small 
size of both groups of participants we focused on identifying repeating themes in 
their responses, rather than providing precise account of occurrences. Further 
research will determine to what extent the identified themes persist within a larger 
and more diverse population.  

Our study calls for identifying explicit connections between AMK and mathematics 
taught in school. An explicit awareness of these connections and an extended 
repertoire of examples will inform the instructional design in teacher education.  
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URGING CALCULUS STUDENTS TO BE ACTIVE LEARNERS: 
WHAT WO RKS AND WHAT DOESN'T  

Buma Abramovitz*, Miryam Berezina*, Boris Koichu** , Ludmila Shvartsman* 
*Ort Braude College, Karmiel, Israel 

** Technion – Israel Institute of Technology 

We report an on-going design experiment in the context of a compulsory calculus 
course for engineering students. The purpose of the experiment was to explore the 
feasibility of incorporating ideas of active learning in the course and evaluate its 
effects on the students' knowledge and attitudes. Two one-semester long iterations of 
the experiment involved comparison between the experimental group and two control 
groups. The data were collected from observations, research diary, course exams, 
attitude questionnaire and two additional questionnaires designed to explore patterns 
of students' learning behaviors. The (preliminary) results show that active learning 
can have a positive effect on the students' grades on condition that the students are 
urged to invest considerable time in independent study. 

Key words: active learning, achievements, attitudes, calculus, design experiment    

THEORETICAL BACKGROUND 

Research on undergraduate mathematics education convincingly argues that active 
learning is more beneficial for students than learning in traditional mode (e.g., 
Artigue, Batanero & Kent, 2007). Following Sfard (1998), we refer here to active 
learning as learning through participation based on engaging in problem solving and 
collaborative activities, and to traditional learning – as learning through acquisition 
based on listening to a teacher exposing theoretical material or demonstrating 
problem-solving approaches. We learn from the research literature that active 
learning can help either in developing positive attitude to mathematics (e.g., Tall & 
Yusof, 1999) or in improving students' grades in undergraduate calculus, algebra and 
statistics courses (e.g., Burmeister, Kenney & Nice, 1996).  

Teaching in accordance with the principles of active learning is not an easy 
endeavour. There is a growing body of research that explores pitfalls of active 
learning, either from academic staff' or students' perspectives. For instance, Pundak & 
Rozner (2008) reviewed the reasons why academic staff frequently resists innovative 
teaching and suggest that adopting by the lecturers and TAs active learning paradigm 
heavily depends on: 

...(1) teaching staff readiness to seriously learn the theoretical background of active 
learning, (2) the development of an appropriate local model, customized to the beliefs of 
academic staff; (3) teacher expertise in information technologies, and (4) the teachers' 
design of creative solutions to problems that arose during their teaching" (p. 152).  
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Solow (1995), cited in Roth-McDuffie, McGinnis & Graeber (2000), found that 
active learning oriented faculty were anxious about resistance and negative reaction 
from their students who did not want their teachers "to shake their comfortable 
relationship with math, no matter how distasteful that relationship may be" (p. 226). In 
summary, existing students' and teachers' beliefs and perceptions about mathematics 
teaching and learning are pointed out as the major barriers to spreading active 
learning methods (e.g., Roth-McDuffie, McGinnis & Graeber, 2000). 

Are there more barriers? Apparently, yes, and it seems reasonable that some of them 
are embedded in the current educational system. For instance, the aforementioned 
study of Yusof & Tall (1999) reported success in implementation of active learning in 
a problem solving course with a flexible syllabus, in which some topics could 
apparently be omitted, and the released time could be used for learning in more depth 
the remaining topics. Such flexibility is rarely allowed. In another aforementioned 
study reporting success, by Burmeister, Kenney & Nice (1996), the students were 
provided practically unlimited assistance, and, even more importantly, they were 
ready to accept it. Again, such a situation is rather a lucky exception from what is 
observed in many colleges and universities.  

We found rather a surprising lack of research that takes into account the apparent 
tension between what active learners are expected to do and what they can do, given 
the entire burden of college study.  Our on-going study contributes to addressing this 
lacuna. In this paper, we describe an experiment aimed at incorporating active 
learning in a compulsory calculus course for engineering students and focus on the 
following questions:    

1. How do engineering students cope, in terms of time and effort, with 
requirements of calculus course, in which tutorials and assignments are 
organized to promote active learning?  

2. How does the promotion of active learning, under given constraints, affect the 
students' grades and attitudes towards the subject? 

METHOD 

The research setting 

The experiment is conducted at ORT Braude Engineering College, in the contest of a 
multi-variable calculus course given for second-semester undergraduate students. The 
syllabus of the course consists of the following topics: vector-valued functions, 
differentiation of scalar functions, maxima and minima, double and triple integrals, 
integrals over paths and surfaces, the integral theorems of vector analysis and 
applications. The course is compulsory for the students; its syllabus is compulsory for 
the teachers. The students take the course in continuation of a one variable calculus 
course. We will refer to the first-semester course as CAL1, and to the second-
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semester course as CAL2. CAL2 is taught 6 hours a week: four hours of lectures in 
groups of 40-60 students and two hours of tutorials in groups of 20-30 students.   

The study design 

The study was initially designed as a one-semester quasi-experiment with a control 
group (Cook & Campbell, 1979). It then evolved into a design experiment (Cobb, 
2000; Cobb et al., 2003) of several one-semester long iterations. This paper is written 
after the second iteration and before the third one. The purpose of a quasi-experiment 
was to find out the effect of implementation of active learning ideas, in terms of the 
course grades. The need in continuation of the study in the form of design experiment 
emerged from the lack of satisfaction from the results of the first semester and from 
our thinking how to refine the teaching and to capture various effects of active 
learning. For these reasons we decided to keep comparing the experimental group 
(G1) and the control groups (G2 and G3) within every iteration.  

Participants 

Overall numbers of students (NS) in G1, G2 and G3 groups and the numbers of 
tutorial classes to which each group was divided (NTC) are given in Table 1. The 
groups G1 and G2 consisted of all second-semester students of the Department of 
Software Engineering. At the beginning of every semester, the students were given 
brief information about two different styles of tutorials, active and traditional. Based 
on this information, some students chose to join G1, and the rest – G2. Group G3 
consisted of all the students of the Department of Electrical and Electronic 
Engineering. They were not given the choice and were taught in a traditional mode 
(see Theoretical Background section). 

G1 G2 G3  

NTC NS NTC NS NTC NS 

Iteration 1 1 25 2 40 3 62 

Iteration 2 1 20 2 46 4 94 

Table 1: The sample    

Groups G1and G2 were taught by Ludmila Shvartsman, one of the authors of this 
paper, who conducted both lectures and tutorials. Group G3 was taught by a team of 
lecturers and TAs, including another author of this paper, Buma Abramovitz. All the 
lecturers and TAs involved in the experiment were of comparable teaching 
experience and of similar level of teaching achievements. Specifically, their past 
students, on average, achieved similar grades in the course and gave similar feedback. 

The mathematical content of the lectures, as well as the problems and exercises given 
to the students in the tutorials, were the same in all the groups. All the students had 
access to the same theoretical materials and examples published at the course website. 
Also, the students were given the same midterm and final exams. The difference 
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between G1 and the rest of the groups was in the styles of conducting tutorials and in 
the use of homework assignments, as will be described below.  

The research tools 

The experiment is described in detail in the research diary written by Ludmila. It 
includes descriptions of and reflections on all tutorials in G1, a protocol of a lesson in 
G2 compared with a lesson in G1 based on the same problems, and protocols of more 
than 10 meetings of the research team. One lesson in G1 was videotaped. The 
information about teaching in G3 was collected from Buma who taught there and 
from many meetings and conversations with the other lecturers and TAs of G3. We 
also developed and run a student questionnaire in all the groups. We call it Tutorial 
Styles Questionnaire (TSQ). The questions concerned the students' opinions about 
tutorials and patterns of their participation in the tutorials. The questionnaire was 
validated in 8 interviews with G1 students at the end of the first iteration.   

During the first and the second iterations, G1 students' final grades in CAL2 and 
CAL1 were compared with grades of G2 and G3 students. The variance in CAL2 
final grades was explained using stepwise multiple regression analysis, in which 
CAL1 grades and the variables indicating to which group a student belonged served 
as independent variables. 

After the first iteration we developed and implemented two additional multiple-
choice questionnaires. The first one concerns the students' attitudes to multi-variable 
calculus and solving problems. It is adapted from Yusof and Tall (1999). We call it 
Attitudes Questionnaire (ATQ). The second one was developed to estimate effort that 
students invest, or can invest, in studying the course before and after the lessons. We 
call it Effort Distribution Questionnaire (EDQ). 

RESULTS AND ANALYSIS 

Iteration 1 

During the first semester active learning in the experimental group was promoted, but 
not urged. The G1 students were required to read relevant theoretical material and to 
approach problems, published on the course website, before every tutorial lesson. The 
solutions were also published. In addition, all the students were invited to get help 
from Ludmila during her office hours. The tutorials' content and conduct were built 
on the assumption that the students would come to the lesson being familiar with the 
basic problems.  

During the lessons, the students were given more advanced problems than those 
published on the web. The students were given some time to think and discuss these 
problems in small groups, and then their ideas were presented to the whole class. 
Finally, the solutions emerged from these discussions and presentations. The teacher 
acted more as a mediator of the discussions than as an authority providing the 
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solutions. The G1 classroom supported such interactive and collaborative activities 
(see Pundak & Rozner, 2008, for a detailed description of this special classroom).  

All G1, G2 and G3 students were given an optional once-a-week Webassign home-
works of 4-5 exercises, the answers to which were to be submitted and checked 
electronically (see www.webassign.net for details). G1 students in pairs were also 
offered an opportunity to solve additional, more challenging, homeworks. These 
homeworks were commented and graded by the teacher every week. The purpose of 
these additional homeworks was to further promote interactive and cooperative 
learning. We call the former type of homework Webassign homeworks, and the latter 
one – Commented homeworks. Both types of homeworks could be resubmitted for 
one time to improve the grades.  

The components of final course grades are presented in Table 2.   

Group Final exam  Midterm exam 
Webassign 
homeworks 

Commented 
homeworks 

G1 70% 20% 5% 5% 

G2, G3 70% 20% 10%  

Table 2: The structure of final grades in the first semester 

Midterm exams, Webassign homeworks and Commented homeworks were optional, 
that is, it was up to the students to include or not the homework grades into a final 
course grade. The final grade of the students who did not take part in midterm exam 
and/or did not submit homeworks was fully determined by the final exam.  

The reality appeared to be more complicated than our expectations. Most of G1 
students appreciated the new for them style of the tutorials, but only about half of the 
group actually followed the requirements (it was evident from TSQ, the diary and the 
interviews). We observed that some G1 students indeed came prepared for the 
tutorials, and others did not. Some were engaged in cooperative problem solving, and 
some remained the consumers of the solutions demonstrated by others. Some students 
had benefited from the feedback on the homeworks, and others had ignored them.  

Ludmila became more satisfied with the conduct of the tutorials and the students' 
collaboration at the second half of the semester. Generally speaking, the desired style 
of the tutorials has been finally achieved in G1, and it indeed was different from the 
traditional style in G2 and G3. This was evident from the comparative analysis of two 
lesson protocols and TSQ. However, the desired change in out-of-class study was not 
achieved. In particular, G1 students devoted less time to homework than it was 
expected: from 30 to 60 min instead of 2 hours a week. G3 students, on average, also 
invested in the homeworks from 30 to 60 min a week, and G2 students – less than 30 
minutes.     
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Comparative analysis of the final course grades was also not in favour of G1. The 
mean and SDs were: 63.9 (19.5), 66.0 (22.7) and 76.0 (15.9) for G1, G2 and G3, 
respectively. A stepwise multiple regression analysis revealed that belonging to G3 
was beneficial even after neutralizing the fact that, on average, CAL1 grades in G3 
were higher than in G1 and G2 (72.15 (11.98) in G3, 70.32 (12) in G1, and 69.72 
(12.34) in G2). Let us remind that G1 and G2 were taught by the same teacher, and 
G3 was taught by other teachers.     

At the end of the semester, we summarized the findings and designed the second 
iteration. We decided: 

- To urge students to work more out of the class by changing the structure of the 
course final grade. 

- To control more aspects of the experiment. In particular, we decided to 
measure the students' attitudes towards the subjects (see the Research Tools 
section).  

- To check feasibility of the requirements to learn actively by taking into 
consideration the students' overall burden of study.    

 Iteration 2 

The second iteration was started six month after finishing the first one. The in-
between time was used for validating TSQ, developing EDQ, piloting new elements 
of teaching and refining the evaluation tools.    
First, challenging preparatory problems were published on the web without solutions. 
These problems were discussed at the beginning of each tutorial during 10-15 min. 
The rest of the lesson was conducted as in the first iteration.   
Second, Webassign homeworks that included technical exercises were cancelled for 
all the students. The Commented homeworks became compulsory for G1 students, 
and remained optional for G2 and G3 students.  
Third, a new compulsory test was offered in addition to an optional midterm exam 
and a compulsory final exam. This test was composed from two out of about 150 
preparatory problems and the problems that appeared in the Commented homeworks; 
we call it Homework test. All the students were aware of its structure and the source 
from which the tasks were to be chosen. The components of a final grade of the 
course are presented in Table 3.   
 

Group Final exam Midterm exam Homework test 
Commented 
homeworks 

G1 65% 20% 10% 5% 

G2, G3 65% 20% 15%  

Table 3: The structure of final grades in the second semester 

For those students, who decided not to take the midterm exam, the weight of the final 
exam was 85%. 
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These changes worked as follows. At the beginning of the semester, about three 
quarters of G1 students were ready for the tutorials and actively participated in the 
discussions. Less than half of the students remained active learners in the middle of 
the semester. They explained that they merely did not have enough time to properly 
prepare themselves for the tutorials, so we decided to try something else. Ludmila 
started asking different pairs of students to take a lead during the lesson. Naturally, 
the leading students had to invest more time in preparations. This made the lessons 
more interesting and, in a way, showed the rest of the class that they can do the same.  

As in the first iteration, TSQ results enlightened the difference between tutorial styles 
in G1 and the other two groups, however, the levels of satisfaction of G1, G2 and G3 
students from the tutorials were about the same. The attitudes towards the subject, in 
terms of ATQ, were also not different in all the groups.  

EDQ data showed that G1 students devoted more time to out-of-class study than G2 
and G3 students (on average, 6.24 (2.43) hours in G1 vs. 4.98 (1.75) hours in G2 and 
G3 a week, t=1.97, df=41, p<0.05); about 60% of the time was devoted to doing the 
homework in G1, and 47% - in G2 and G3. Note that, according to our estimation, an 
average student needs about 8 hours a week to fully cope with the requirements. EDQ 
also showed that G1 students studied systematically during the semester, whereas G2 
and G3 students increased the time of independent study towards the end of the 
semester.  

In addition, the students were asked in EDQ: "Given the general load of your study 
and time constraints that you have, which minimal grade in CAL2 course would you 
accept as satisfying?" and then "How much additional time are you ready to invest 
per week in study in order to obtain a 10% higher grade than that you have indicated 
in the previous question?" Surprisingly, the responses of G1, G2 and G3 students to 
these questions were very close. We interpret this finding as follows. First, learning 
motivation of G1 students was not significantly higher than that of G2 and G3 
students. Second, the expectation that an average student should invest about 8 hours 
a week in out-of-class study was not beyond of what the students said they could do 
(on average, the students of all the groups were ready to invest 4 additional hours).     

This time G1 students did better than their peers in terms of the course final grades. 
The mean and SDs were: 71.5 (16.3), 52.4 (26.6) and 65.2 (26.7) for G1, G2 and G3, 
respectively. A significant regression equation showed that belonging to G1 was 
beneficial in comparison with belonging to either G2  or G3, even after neutralizing 
the differences in CAL1 grades (71.6 (12.7) in G1, 64.4 (9.2) in G2, and 73.8 (11.4) 
in G3).  

Thus, we can report success, in terms of course grades, of an experimental style of 
conducting tutorials. However, the students' attitudes to the subject did not change 
and remained relatively low. It should also be noted that our expectations about the 
students learning behaviors were only partially fulfilled. Specifically, we succeeded 
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more in urging the students to do their after-the-lesson homeworks than in convincing 
them to solve recommended problems before the tutorials. 

We are going to deal with these issues in the future iteration(s). In particular, we 
consider publishing more problems on the course website before the lesson, and 
asking students to choose which problems they are interested to discuss during the 
lesson. We hope that the students will take more responsibility for their learning 
outcomes (cf. Brousseau, 1997). This may encourage them to invest more time in 
preparation for the tutorials and have more influence on the content of the course. In 
turn, this may affect their attitudes to the subject.  

DISCUSSION AND CONCLUSIONS 

The main lesson that we have learned from the first two iterations of the experiment 
can be put in words of Latterell (2008): "Students do what is expedient, and not 
necessarily what professors think they should" (p. 12). So, for us, the crucial issue was 
how to make active learning of calculus expedient for the students. The first iteration 
of the experiment showed that conducting tutorials in interactive and cooperative 
mode is not sufficient in order to obtain traceable improvements in the students' 
achievements and attitudes. It has become evident that fulfillment of our expectations 
requires changes also in the students' learning behaviors out of class, and that these 
requirements should be supported by appropriate modification of the structure of a 
course grade. This idea was realized during the second iteration and appeared 
feasible, in terms of time and effort, for the students. The second iteration resulted in 
significant advantage of the experimental group in comparison with two control 
groups. Is the observed effect due to incorporated innovations? We believe that it is, 
for the following reasons:  

- The experimental group did better not only in comparison with G2 control group, 
taught by the same teacher, but also in comparison with G3 control group taught 
by the others. The teachers were aware of competitive nature of the experiment. 
They all were of comparable experience and past achievements in teaching, so it 
is unlikely that the observed advantage of the experimental group can be just 
attributed to the differences in the teachers' professionalism or enthusiasm. 

- The mathematical content of the course was exactly the same in all three groups. 

- We admit that random assignment of students to the experimental and control 
groups would be preferable. Even though it could not be realized under the 
conditions embedded in practice of college education, the achieved effect cannot 
be attributed just to the differences in students' learning motivation or 
mathematical background. This claim is supported by EDQ data and by the 
regression analysis. Note that our way of dealing with the issue of non-random 
assignment is in line with what is done in some other studies (cf. Schwingendorf, 
McCabe & Kuhn, 2000). 
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We are aware, of course, that the reported effect may be due to some combination of 
the aforementioned factors or to some uncontrolled in our experiment ones. This adds 
us motivation to keep running the experiment. Currently, we see the process of 
educating undergraduate students to learn actively as a multi-stage enterprise, in 
which many factors are involved. Some of them, for instance, beliefs of students and 
teachers, are extensively explored (Pundak & Rozner, 2008; Roth-McDuffie, 
McGinnis & Graeber, 2000). Others only recently deserved attention of the 
mathematics education research community.  

The distinction that Harel (2008) made between intellectual and psychological needs 
involved in learning mathematics is particularly relevant to discussion of our 
findings. The intellectual needs, such as the need to construct new knowledge in 
response to a perturbing problem that otherwise cannot be solved, are in the focus of 
contemporary mathematics education research. Psychological needs, such as the need 
to be competent and secure in relationships with others, frequently remain peripheral. 
However, the latter needs are crucially important in our and our students' real lives 
and must be taken in consideration when one requires his or her students to be active 
learners, and thus, to put more time and effort in study. As a matter of fact, one 
difference between the first and the second iteration of our experiment can be 
explained in these terms: the first iteration was focused on intellectual needs of the 
students, whereas the second one was organized so that the students could be more 
successful when conforming to the requirements of active learning. In a way, this 
distinction calls for balance between active and traditional learning modes, as 
suggested by some theorists (e.g., Sfard, 1998) and practitioners (e.g., Tucker, 1999) 
since the active learning mode relies mostly on the students' intellectual needs, and 
the traditional mode – on their psychological needs.  

The last comment is about content dependency of the presented findings. Because of 
our intention to outline a long study in a brief paper, examples of calculus problems 
from the tutorials and examples from the questionnaires are not included. It may 
create an impression that the reported findings are not exclusive for the chosen 
mathematical context. Perhaps, they are not indeed. We hope to discuss this topic in 
the oral presentation and in the future publications.   
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FROM NUMBERS TO LIMITS: SITUATIONS AS A WAY TO A 
PROCESS OF ABSTRACTION 

Isabelle Bloch Université Bordeaux IV, IUFM d'Aquitaine 

Imène Ghedamsi, Université de Tunis 

Abstract: When they enter the University, students have a weak conception of real 

numbers; they do not assign the right meaning to a writing as 2 , or π, but neither x 
or parameters. This prevents them to have a control about formal proofs in the field 
of calculus. We present some situations to improve students' real numbers 
understanding; these situations must lead them to experiment approximations and to 
seize the link between real numbers and limits. They can revisit the theorems they 
were taught and experience their necessity to work about unknown mathematical 
objects.   

SIGNS AND SITUATIONS IN THE PROCESS OF TEACHING CALCULUS 

Noticing that mathematical work in the field of Calculus is usually very difficult for 
even good students when they are entering the French University, we have studied the 
transition between the secondary mathematical organisation in teaching (pre)calculus, 
and the University one. Our questions address the problem of the links that can be 
built between the intuitive approaches of Upper Secondary School and the formal one 
that is predominant in University. This research led us not only to analyse students' 
productions in the field of calculus, but to try to design situations to make them do 
the required step between the two levels of conceptualisation.  

The theoretical frame we use is due to Brousseau, for the Theory of Didactical 
Situations (TDS), and C.S. Peirce for its semiotic part.  

According to Saenz-Ludlow (2006), "For Peirce, thought, sign, communication, and 
meaning-making are inherently connected. (…) Private meanings will be continuously 
modified and refined eventually to converge towards those conventional meanings already 
established in the community. (…) "… A whole sign is triadic and constituted by an 
object, a 'material sign' (representamen), and an interpretant, the latter being an 
identity that can put the sign in relation with something – the object. A very 
important dimension in Peirce's semiotics is that interpretation is a process: it evolves 
through/by new signs, in a chain of interpretation and signs. The interpretant – the 
sign agent, utterer, mediator – modifies the sign according to his/her own 
interpretation. This dynamics of signs' production and interpretation plays a 
fundamental role in mathematics where a first signification has always to be re-
arranged, re-thought, to fit with new and more complex objects.  

Peirce – who was himself a mathematician – organised signs in different categories; 
briefly said, signs are triadic but they are also of three different kinds. We will 
strongly sum up the complex system of Peirce's classification (ten categories, 
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depending on the nature of each component of the sign, representamen, object, 
interpretant: see Everaert-Desmedt, 1990; Saenz-Ludlow, 2006) by saying that we 
will call an icon a sign referring to the object as itself – like a red object refers to a 
feeling of red. An index is a sign that refers to an object as a proposition: 'this apple is 
red'. A symbol is a sign that contains a rule. In mathematics all signs are symbols to 
be interpreted as arguments, though they are not exactly of the same complexity; and 
so are the language arguments we use in mathematics for communication, reasoning, 
teaching and learning. The semiotic theory will help us to identify the kind of sign 
produced in teaching-learning interactions, and the appropriateness (with regard to 
the situation) of how students interpret the given signs. Then we use the theory of 
didactical situations to build situations appropriate to knowledge.  

Signs and situations 

Mathematics aims at definition of ‘useful’ properties that can help to solve a problem 
or to better understand the nature of concepts. A strong characteristic of these 
properties is their invariance: they apply to wide fields of objects – numbers, 
functions, geometrical objects, and so on. This implies the necessity of flexibility of 
mathematical signs and significations. To grasp the generality and invariance of 
properties, students have to do many comparisons – and mathematical actions – 
between different objects in different notational systems. While the choice of 
pertinent symbols and different classes of mathematical objects is necessary to reach 
this aim, it is not sufficient. To produce knowledge, the situation in which students 
are immersed is essential. By ‘situation’, we mean the type of problems students are 
led to solve and the milieu with which they interact. Brousseau's Theory of Didactical 
Situations (Brousseau 1997) claims that to make mathematical signs ‘full of sense’ – 
which means that signs have a chance to be related to conceptual mathematics objects 
– it is necessary to organise situations that allow the students to engage with 
validation, that is, to work with mathematical formulation and statements. In Bloch 
(2003), we explained how we build situations where the aimed knowledge appears as 
a condition to be satisfied in a problem. In Bloch (2007b) we illustrated how such a 
situation – the Pythagoras's lotto – could be carried on to restore the meaning of 
multiplication in specialised classes.  

In the present paper, we first explain how students' difficulties can be lightened by 
using Peirce's system and how this system helps us to identify the needs of the 
subsequent teaching; then we present three situations that were experimented with 
students of first year of University. We try to make it clear how these situations could 
lead students from a rather iconic or indexical point of view about numbers and limits 
to the aptitude to an argumentation.  

FROM LIMIT ALGEBRA TO FORMAL PROOF  

In our main studies we chose the concept of limit because it is the first analytic 
concept students meet, and it is possible to build a very rich and contrasted corpus of 
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tasks about limits, from the Premiere and Terminal – in upper secondary school for 
scientific students in France – to the first year of University.  

At the entrance to the University, almost all exercises carry the structural conception 
of the notion of limit. These exercises are based on general conjectures; their 
resolution requires a perfect adaptation of students to the formal definition of the 
limit, whereas at the high school, the limit notion is conceived as a process. Its 
representations appear to be more susceptible of operational interpretations. In a 
previous study (Bloch & Ghedamsi, 2004) we proposed to identify didactical 
variables that are pertinent to characterise the extent of the rupture. These variables 
are the degree of formalisation in the domain of the analysis; the setting of validation, 
the limit algebra or the analysis one, the degree of generalisation; the number of new 
notions introduced in the limit environment; the type of tasks (heuristic or graphic or 
algorithmic); the choice of techniques, the degree of autonomy solicited; the mode of 
intervention of the notion, process status or object one; the type of conversion 
between the semiotic representation settings.   

The identification of these variables allows us to detect global ruptures at the passage 
from the secondary teaching institution to the superior one. At each level, the values 
given to these didactic variables are seen as mutually exclusive. We can observe that 
almost all the variables change, and that the rate of change is considerable. Students 
are confronted with a global revolution in the required work and of their means of 
work. By this conceptual "jump" students are supposed to (Peirce's levels are in 
italic): 

� Work with general notations (x, f…) and no more with specific numbers or well 
known functions: overtake the indexical idea of numbers and functions to assume 
a symbolic one; 

� Be able to achieve reasoning on generic mathematical objects: produce signs as 
right symbols and arguments; 

� Know calculus theorems and how they can be useful: link taught arguments and 
personal ones;  

� Deduce specific properties from general reasoning about sequences, functions, 
limits:  go back from a general argument to an index. 

And then:  
� Achieve reification about the concept of limit; 
� Gain the unifying formalism (definition with ε, N ), and by this way generalise the 

notion of limit and be able to use formal tools to prove.  

NUMBERS AS TOOLS TO DO CALCULUS 

The use of formal tools includes the manipulation of 'generic numbers', written x: 
teachers at University usually do not even notice that this could be a problem. For 
instance, these exercises are considered as rather plain:  

Find the limit in 0 of: x → x×sin(1/x)  
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Solve an equation as f(x) = x (with the limit of a sequence)  

Find the limit of a sequence with a parameter in the function, as (xn): x0 = 1 and  

xn+1 = a sinxn +b  

However, in our studies we can notice that even good students at University have an 
uneasy use of real numbers' notation, and not only with an x, but also with a number 

as 2  or π. This difficulty prevents them to be able to assign the right meaning to a 
letter in a mathematical writing, as a sinxn +b. The status of a, b, x, n is not clear for 
them. The number π, for instance, is seen as a 'notation' – that is, an icon or an index 
in Peirce's system – but not really a number because numbers are 'well known' – for 
students the common model of numbers is a rational number, or even better an 
integer. In a previous study (Bloch & al. 2008) we noticed that the field of numbers 
students met at secondary school was very narrow: the main reason is that when a 
new notion is introduced, teachers present it with familiar numbers to avoid an 
increase of difficulties. It follows that students meet occasionally some irrational 
numbers when they are told these numbers exist, but they never use them to calculate 
on vectors, functions, limits, derivatives…  

Signs as ∃, ∀, or even parentheses are not well understood; students often say they 
are in a mathematical sentence to indicate something about the variables, but they do 
not know exactly what; they do not know either why they should be in an order more 
than in another (Chellougui, 2007). These signs are clearly iconic for them.  

As we intended to build situations about the concept of limit, we thought it necessary 
to reintroduce a work about numbers; students need numbers to experiment and prove 
and it is not possible they master formalism about numbers if they do not know what 
numbers are.  

As said in Bloch & Schneider, 2004:  

Building situations for learning the concept of limit must then take into account the kind 
of semiotic representatives that is used; and we must not forget that a proper 
mathematical knowledge, especially including proof, is built only if the selected semiotic 
representatives and the milieu allow adequate reasoning, and if students can seize these 
tools of control.  

We observe then that in the work about limits students cannot seize the numerical 
tools of control. For this reason we planned to build situations about the concept of 
limit, those situations including a students' work about approximations, nature of 
numbers – rational, irrational, and transcendent (even if the question is obviously not 
to prove the transcendence at this level). We have experienced these situations with 
classes of students – two classes for the von Koch snowflake, one for each of the two 
others. This is a clinical experiment; we do not talk here of the reproducibility, but 
the thorough a priori analysis that is performed for each situation guaranties the 
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experimental reproducibility. Of course the actual one depends on the conditions in 
each class and it could not be else. Séances were videotaped or registered.  

THREE SITUATIONS ON LIMITS  

1. The Von Koch snowflake 

This situation takes place with scientific students, 17 years old. The aim is to study a 
shape – a fractal – which perimeter is infinite as the area is finite: this dialectic 
between two types of limits aims at making them build reasoning to decide on which 
condition a limit can be infinite or finite. A first experiment is to be done with a 
pocket calculator; students can then make a conjecture about the perimeter and the 
area (see annex for the schemas).  

The formula for the perimeter is Pn = P0×(4/3)n  so lim
n →+∞

Pn= +∞

 
It will be proved with the Euler's inequality (1+a)n > 1+na. We observe that half of 
the students think that the perimeter is finite, and half of them think that it is not: so it 
is not evident. 

The area is An = A0 + 
5

3A0 [1 + (
9

4 )n] so  A∞= Anlim
n →+∞

=8
5

A0

 

Notice that if we start from a equilateral triangle of side a , A0 = a 3 /4, so it is 
irrational. It is an important value of a didactical variable, because it prevents 
students to try to 'catch' the limit with decimals: they have to carry out a reasoning to 
know if the area is infinite or not. To prove the result it is possible to introduce the 

logarithm function and show that (
9

4 )n , which is the functional term in this formula, 

tends to zero: it can be made smaller than every 10-p, for any value of p: 

n log (
9

4 ) < log10-p gives n > -p/ log
9

4  because, of course, log
9

4  <0.  

According to their first opinion, half of the students think that the area is infinite, one 
of them saying: "Anyway the area does the same as the perimeter". We also observe 
that the symbol of a function incorporated in the area formula is not seen by a lot of 
students. They have to work a long time before some of them become able to identify 
this symbol. The other ones seem to think the formula as a whole, a kind of icon of 
function. Sequences acquire a clearer meaning of "a way to attain a number", but the 
link between a sequence and its limit is however still indexical: they appear to be 
disconnected in a way. It's just that the sequence refers to the limit.   

All this work eventually leads students to reasoning about sequences, functions, ways 
of experimenting and proving. It is a real entrance into the way of reasoning in 
Calculus, but it does not make students necessarily link their knowledge about IR and 
the limits. This is why we tried to build and experiment the two other situations. 
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2. The Euclidean algorithm of 2  

In her thesis, I.Ghedamsi (Ghedamsi, 2008) makes students – in a course of first year 
at University – experiment the construction of a sequence of rational numbers tending 
to an irrational number d , where d is an integer, d≥2; d is not a square number as  d-

1 is. For instance, the antiphérèse of 2  leads to a development of 2  in a sequence 
of unlimited continued fractions, the condition to get a finite development being that 
the number would be rational.  

We assume that ( ) 1
d

d
− =

+
α

α
 allows to give a development of √d in a sequence of 

unlimited continued fractions, 1
d=  + 

1
2

1
2

2 +etc.

α
α +

α +
α

 ; 

and the sequence converging to 2  is given by : u0 = 1 and un+1 = 1 + 
nu+2

1  

And finally:  

2

31 1

2

1 1 1 1
2=1 + 1 + 1 + 1 + 

1 r 1 1
2 22

r 1r r 22
1r 2+

1
2+

1
2+

2+etc.

= = =
+ ++

++

 

 

…where r1, r2…are the remainders 
that appear in a geometric way in the 
following rectangle triangle: 

  

 

 

 

 

 

The work on the sequence leads students to realize that they can find a 'good' 

approximation of 2 , as good as they decide. Students' work can lean on the 
geometric illustration, which gives a reality to the number. Students say that before, 

they thought 2  was a kind of 'notation' – an icon – and now they realize that it is a 
real number, in both meanings! Notice that at the same time they have enhanced their 
calculation ability on sequences and they become able to make a link between 
mathematics theorems (existence of a limit) and an already known number. They also 
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conceive now what it means that Q is dense in IR. We observe that they become able 
to really link the existence of a number and the sequence that 'gives' the number.  

Nevertheless, they now just consider numbers as 2 , which is not sufficient to get 
into the idea of numbers that cannot be 'seen' or 'calculated'. This is why another 
situation is necessary: it must compel students to cope with numbers we reach only 
through the use of mathematical theorems as the nested intervals theorem, the limited 
development of a function, or the Newton's method to find a fixed point. Of course 
this progression is also a mathematical one, from algebraic numbers to other 
irrational ones. It is also a semiotic process from numbers as writings and theorems as 
abstract rules to numbers as mathematical objects and theorems as useful statements 
to work about these objects, theorems as tools of the mathematical work. Theorems 
become arguments to do the work.  

3. The fixed point of cosine 

The cosine function is continuous in [-1,1] and maps it into [-1, 1], and thus must 
have a fixed point. This is clear when examining a sketched graph of the cosine 
function; the fixed point occurs where the cosine curve y = cos(x) intersects the line y 
= x. Numerically, the fixed point is approximately x = 0.73908513321516 (thus x = 
cos(x)); but students cannot have an spontaneous idea of this value.  

The aim is to make students work about a number they do not know, and cannot 
'represent' except in a graphical way – but the curve of cosine is not a calculator. We 
do not describe the situation here (for details see Ghedamsi 2008), we just say that the 
problem is to compare two approximation methods to reach the fixed point: 
dichotomy and the Newton method.  

Students are really surprised not to 'find' the number, as can be seen below: 

"S1: u3 = cosu2 and u2 = cosu1 and… we have to choose an u0… 
S2: u0 is in the interval (0,1)… 
S1: but finally… it's the same! We cannot find the exact value??? 
S3: even with good software?!! As for e… (the basis of exponential function).  
Teacher: How does software proceed to calculate a number? 
S1: I think they use sequences and calculate how many terms they need… 
S2: It means that the fixed point of cosine has no exact value… it exists because we find a 
sequence… 

Teacher: Is it the same with 2 ? 
S3: 2  has an exact value because its square is 2 
Teacher: and how do we call a number like this? It is transcendental. And what do you 
propose to calculate this number?  
S1: We could use sub-sequences… " (Then students work about adjacent sequences) 
 

We observe that the progression of the situations leads to cope first with an idea of 
limit , the fact that we need theoretical tools to attest that a sequence has got a finite or 
infinite limit; then they work about density of Q in IR; and finally they are led to use 
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theorems they were taught to become able to speak of a number "that cannot be seen". 
The meaning of these theorems appears: the function of Analysis theorems is to allow 
the work on unknown objects, but it supposes that we can make a verification that 
theorems fit to find the unknown number.  

Then this last situation compels students to become aware that the conditions of a 
theorem are of some interest and that they cannot neglect them.   

CONCLUSION 

Situations based upon a numerical heuristic work confirm to be efficient to engage 
students into a proof process. We noticed that they had to become able to achieve 
reasoning on generic mathematical objects: situations aim at doing a connection 
between their previous numerical knowledge and the notion of real number, which 
must be linked with the use of theorems.  

In order to link heuristic and formal work, situations were organized in three steps: 1) 
first meetings with the tools of calculus; 2) an investigation about algebraic well 
recognised numbers that allow to experiment and give examples or counter examples; 
3) finally a situation that needs the use of theoretical means.  

We can conclude that:  

- The use of approximations allows identifying mathematical objects which 
existence is only formal; it is a work about mathematical symbols – arguments 
and no more kinds of indexes of a knowledge.  

- Situations organize comings and goings between intuitions and formalism; 

- Situations were built with the concern of a balance between the values of the 
macro-didactic variables: more or less formalisation, generalisation; limit 
algebra or the use of theorems.  

We can attest that the work in these situations creates an epistemological change in 
students' conceptions. They are made able to consider real numbers with their true 
nature, that is, conceptual objects in relation with other coherent objects in a 
mathematical theory. They eventually accede to the argumental nature of 
mathematical objects and do not see them anymore as icons drawn by the teacher.  
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ANNEX 

The Von Koch snowflake, F1 to F4 

 

F1

F3
F

4

F2

 
 

What are the perimeter and area of F∞ , the final fractal?  
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FROM HISTORICAL ANALYSIS TO CLASSROOM WORK:  

FUNCTIO N VARIATION AND LONG-TERM DEVELOPMENT OF 
FUNCTIONAL THINKING 

Renaud Chorlay 

R.E.H.S.E.I.S. (UMR 7596 C.N.R.S. – Université Paris 7) 

I.R.E.M. Université Paris 7 

 

ABSTRACT : We present the outline and first elements of the second phase of our 
work on mathematical understanding in function theory. The now completed first 
phase consisted in a historical study of the differentiation of viewpoints on functions 
in 19th century elementary and non-elementary mathematics. This work led us to 
formulate a series of hypotheses as to the long-term development of functional 
thinking, throughout upper-secondary and tertiary education. We plan to empirically 
investigate three main aspects, centring on the notion of functional variation : (1) 
“ghost curriculum” hypothesis; (2) didactical engineering for the formal 
introduction of the definition (3) assessment of long-term development of cognitive 
versatility.  

Key-words: functional thinking, concept-definition, cognitive versatility, AMT, 
historical development of mathematics. 

NON-STANDARD QUESTIONS EMERGING FROM HISTORICAL STUDY 

In 2006, the history of mathematics group of the Paris 7 Institute for Research on 
Mathematics Education (IREM1) completed a study on the “multiplicity of 
viewpoints”, with funding from the French Institute for Research on Pedagogy 
(INRP). The challenge was to combine historical and didactical investigations, and 
the main results were published in (Chorlay 2007(a)) and (Chorlay & Michel-Pajus 
2008). On the basis of this theoretical work, we engaged in 2007 in a second research 
phase which involves field-work and deals with issues of AMT2 and teaching of 
mathematical analysis at both upper-secondary and tertiary levels. 

The first phase started when we became aware of possible interactions between 
historical and didactical work : on the one hand, R. Chorlay was engaged in a 
dissertation of the historical emergence of the concepts of “local” and “global” 
(Chorlay 2007(b)); on the other hand, didactical work was being conducted on similar 
issues with regard to teaching at upper-secondary (Maschietto 2002) or tertiary levels 
(Praslon 1994, 2000), under the supervision of Pr. Artigue and Pr. Rogalski. We 

                                           
1 http://iremp7.math.jussieu.fr/groupesdetravail/math.html 

2 (Tall 1991) and (Artigue, Batanero & Kent 2007). 
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engaged in a historical study, centred of 19th century elementary and non-elementary 
mathematical analysis, so as to gain insight into the explicit emergence and 
differentiation of the four “viewpoints” which didactical work on mathematical 
analysis had distinguished : point-wise, infinitesimal, local and global.  

Our work centred on the history of several hot-spots where the viewpoints interact 
strongly : definition of “maximum”, use of the two-place “ function f is [property] on 
[domain]” syntagm, proofs of the mean value theorem, proofs of the theorem linking 
the variation of f and the sign of its derivative, proof (if any) of the existence theorem 
for implicit functions. The interactions with typically AMT issues occurred at four 
different levels : (1) in terms of mathematical concepts : function concept3, real 
numbers, limits and continuity4, proofs in calculus, use of quantifiers; (2) in terms of 
curriculum, we focused on typically higher-education maths topics and transition 
from secondary to tertiary education stakes; (3) we centred on issues of cognitive 
flexibility 5, in particular the ability to change viewpoints, levels of abstraction, 
theoretical frames, and semiotic registers6 in an autonomous manner; (4) the explicit 
use of meta-level terms to describe abstract viewpoints (such as “local” or “global”) 
raise many questions in terms of transmission (implicit/explicit classroom use, 
transmission by definitions or by paradigmatic examples) and efficient use (effective 
problem solving or proof design based on meta-level knowledge)7. 

This work left us with a few unexpected and unanswered questions, though. The 
historical work on the notion of function, maximum or domain showed us that some 
of the aspects that we thought would be the least problematic evolved at a different 
pace from that of apparently more sophisticated ones. To be more specific : notions 
of domain, maximum, and function variation seem to be of a rather elementary 
nature. In the French curriculum they are the first notions to be taught (in the first 
year of upper-secondary education) when the notion of function is first introduced, 
one year before students begin calculus. From a didactical viewpoint, these notions 
depend only on the point-wise and global viewpoints; they are compatible with a 
mere proceptual view of functions. Thus we were puzzled by the discovery that the 
notion of variation, for instance, only came to be defined8 in Osgood’s 1906 course 
on mathematical analysis (Osgood 1906). The characteristics of this non-elementary 
textbook are analysed in (Chorlay 2007(b), chapter 7) : it helps document the strict 
co-emergence of (1) the notion of domain in elementary analysis, (2) the explicit use 

                                           
3 (Vollrath 1989), (Artigue 1991), (Dubinsky & Harel 1992), Carlson’s paper in (Dubinsky and Kaput 1998), or for 
more recent developments (Stölting 2008). 
4 (Tall & Vinner 1981), (Cornu 1991). 
5 (Robert & Schwartzenberger 1991), see also Robert’s and Rogalski’s papers in (DIDIREM 2002). 
6 See Duval’s paper in (DIDIREM 2002) 
7 See Robert’s and Artigue’s papers in (Baron & Robert 1993). 
8 To the best of our knowledge, that is.  
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of “local” and “global” as meta-level descriptive terms, and  (3) the point-wise 
definition of formerly undefined functional properties, such as variation. The not-so-
elementary epistemological nature of these notions is also documented in Poincaré’s 
work : he listed them among “qualitative” properties of function which, he claimed in 
1881, form a new and difficult field of inquiry (Poincaré 1881); needless to say 
Poincaré’s notion of “qualitative” study encompasses more than intuitive or graphical 
aspects. 

It turned out that these unexpected historical facts echoed teaching problems which 
we had experienced over the years, as teachers of mathematics (at upper-secondary 
and tertiary levels) and pre-service or in-service teacher trainers. I engaged in a new 
study, centring on the (elementary ?) notion of function variation, with a few 
epistemologically founded hypotheses on its role in the long-term maturing of 
functional thinking. Small-scale empirical study conducted in 2007-2008 helped me 
specify the lines of inquiry; larger scale empirical study is now to consider. I would 
like to present here three related aspects of this work. 

THE “GHOST CURRICULUM” HYPOTHESIS 

Let us present some elements of the French syllabus for upper-secondary students 
who major in science. For our purpose, it is interesting to separate notions in two 
families, depending on whether they use “elementary” or “sophisticated” concepts9 : 

For the sake of brevity we only presented in this table the list of notions, but it is 
absolutely necessary to complement it by an analysis of their ecology, an analysis for 
which the tools from Chevallard’s praxeology theory (task / technique / technology / 
theory) seem to us to be the relevant ones (Chevallard 1999). At university level, 
students usually start with a big recap of all they (are supposed to) know, with formal 
definitions and proofs of everything; then they move on to typically higher-education 
topics : Taylor series, Fourier series, differential equations etc.  

Our hypotheses are : 

� An analysis of tasks can show that, at high-school level, there is actually very little 
interplay between the two columns. 

� The poor cognitive integration of the “basic” point-wise aspects of the 
“elementary” column (in particular : domain and variation) may be rather 
harmless at high-school level but turns into a obstacle (of mixed epistemological 
and didactical nature) in the secondary-tertiary transition. Empirical evidence is 
already available in (Praslon 2000). 

                                           
9 For the sake of clarity : though we want to question  the “elementary” nature of some concept (or, more precisely, 
conceptual elements of a body of knowledge), we will not choose the easy way out by saying “in the end, every 
mathematical concept is sophisticated and thorny” … end of the story. The question of function variation is interesting 
because there are good reasons to consider it to be elementary (point-wise, proceptual etc.). 
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� The case of function variation is a typical case in which an element of the concept 
image10 is integrated early on and proves remarkably stable over the years, but the 
formal definition hardly plays any part11. 

Year “elementary” “sophisticated” 

1  

age 15/16 

Basic notions/vocabulary about 
functions : function as abstract 
mapping, domain, graph, maximum 
and minimum, variation. Properties  
of basic functions :  

x a ax+b, x2, 1/x. 

 

2 

age 16/17 

Composition of functions; theorem 
on the variation of composite 
functions. 

Definition of the derivative, of 
tangents. Theorem (without proof) 
linking the variation of f and the 
sign of f ′. Limits : intuitive notion 
for functions, formal notion for 
sequences. Sines and Cosines as 
functions. 

3  

age 17/18 

 Limits : formal definition for 
functions; definition of continuity. 
Exp and Ln functions. 

Integral calculus (based on a semi-
intuitive definition of the integral). 

Completeness of the set of real 
numbers; proof of intermediate 
value theorem. 

 

To be more specific, French students are taught the following definition : function 
f, defined over interval I, is an increasing (resp. decreasing) function over 
subinterval J if, for any two elements a, b of J, a ≤ b implies f(a) ≤ f(b) (resp. f(a) 
≥ f(b)); “increasing” means order preserving, “decreasing” means order reversing. 
Our hypothesis as to the poor integration of the concept definition in the concept 
image is twofold : 

� Poor integration of the definition, even in the long term. We have two ways to 
test this empirically. The obvious one is to ask students (from high-school 2nd 

                                           
10 We consider the notion of variation to be an element of the function concept. 

11 See, for instance, Vinner’s paper in (Tall 1991); or, for recent work on definitions (Ouvrier-Buffet 2007) 
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year to University 3rd year) to define “increasing function”. We will also test 
students’ ability to recognise and name the concept they’re working with; in 
particular, at the end of an exercise in which, in several steps, it is established 
that inequalities of the a≤b type imply inequalities of the f(a)≤f(b) type, 
students will be asked to sum up in words what they have just proved. 

� Easy integration in the concept image, from the outset. For instance, we would 
like to asses to what extent 1st year high-school students succeed when faced 
with the following task : given the graph of a function, compare f(1) and 
f(1,0001). This is a slightly unusual question (compare f(1) and f(2) would be a 
standard question), which reflects the intuitive perception of order preservation 
or reversing. Our hypothesis is that a high proportion of students do well when 
asked this question even before the formal definition is given, and that the 
proportion doesn’t change dramatically after the definition is given. This 
would mean that the fact that “variation has to do with order” is a strong 
cognitive root, but that it is not accepted as a definition. We have historical 
evidence in 19th century analysis that it can be considered obvious that 
variation has consequences in terms of order, without it being defined in terms 
of order (or defined at all, for that matter). 

From the theoretical viewpoint, this work should contribute to the general reflection 
on the role of visual imagery in the building of formal concepts12. 

It is this large set of hypotheses, regarding both sets of tasks (and their evolution in 
upper-secondary and tertiary education) and issues of cognitive integration (or lack 
thereof) that we label the “ghost curriculum” hypothesis. 

DIDACTICAL ENGINEERING 

Our historical work on the 19th century allowed us to document a great variety of 
ways of expressing and dealing with function variation. We selected three of them on 
which to base didactical engineering for the introduction of the definition in the 1st 
year of high-school. All three rest on the “cognitive root” hypothesis, that is : it can 
be made intuitively clear to most students that variation (a word which they manage 
to use properly in semi-concrete or graphical contexts) “has something to do with 
order”. 

Definition A : the official definition in the French curriculum (see above). 

Though this definition relies only on the point-wise viewpoint and is consonant with 
a purely proceptual view of functions, the (somewhat hypocritically !) hidden double 
universal quantification is certainly a major obstacle. The other two definitions that 

                                           
12 See, in particular (Pinto & Tall 2002), where the understanding of quantifiers is also discusses. It should be noted 

that, with its two existential quantifiers, the definition of functional variation has different mathematical and cognitive 

properties from that of limit. 
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we’re coming up with have to satisfy two criteria : (a) try to avoid this quantification 
problem (b) be equivalent to definition A (which is, eventually, what students are to 
learn). 

Definition B : “function f is an increasing function over interval J” means : 
whenever a list of numbers from J can be ordered x1 ≤ x2 ≤ x3 … ≤ xn, then the 
images are similarly ordered : f(x1) ≤ f(x2) ≤ f(x3) … ≤f(xn). 

This definition clearly satisfies criterion (b), but it seems to be even harder to 
swallow in terms of quantification ! This may be true from a technical point of view 
but we have reasons to think it is not from a cognitive point of view. For one thing, it 
echoes ordering tasks which are familiar to students (as from primary school), thus 
adding the new abstract notion to the list of methods for ordering numbers. We have 
deeper epistemological reasons to support our claim, though. Definition A 
fundamentally rests on the idea that a function is a map between sets, variation 
properties being properties of maps between ordered sets. There are ways to teach the 
notion of abstract map (e.g. potatoes and arrows) but these are not taught in the 
current curriculum. Studying 19th century mathematics showed us how professional 
mathematicians used efficiently other function concepts than the map-concept. In 
what we described as a World of Quantity model (Chorlay 2007(a), 2008), the basic 
notions are not “set” and “map” but “variable quantity” and “dependence between 
two quantities”. To make a long story short, a single quantity can “vary”, and two 
dependent quantities x and y have dependent variations. This different conceptual 
frame leads to different definitions and different proof-styles; it also rest heavily on a 
specific semiotic register (DIDIREM 2002) which we called the “narrative style”. 
Our definition B was suggested by both this theoretical frame and semiotic register, 
thus resting to some extent on the idea of a variable quantity which we feel the long 
x1 ≤ x2 ≤ x3 … ≤ xn chain expresses in a discrete fashion : it should smooth out the 
transition from the purely intuitive grasp of (continuous) variation of a single quantity 
to the purely discrete mapping-between-ordered-sets formulation of definition A 
(which expresses no idea of “variation” whatsoever). The extent to which definition 
B really reflects what is found in the 19th century is a deep question, but  we have no 
time to go into that here. Let us move to  

Definition C : “f is increasing on interval [a,b]” means that for every number c 
between a and b, f(c) is the maximum of f on interval [a,c]. 

Again, this definition satisfies criterion (b) (a two-line proof based on transitivity of 
order does the trick); it satisfies criterion (a) since we are down to one universal 
quantifier instead of two : it can thus help us asses to what extent the double 
quantification of definition A is a specific obstacle. The cognitive root this time is not 
that of “continuously variable single quantity” but that of maximum, which is part of 
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the official curriculum13. Actually we worked out this definition on the basis of 
Cauchy’s conception of function variation14. 

We should start testing teaching scenarios based on definitions B and C as steps 
towards definition A with 1st year high-school students next academic year, though 
we still have engineering work to do. 

LONG-TERM ASSESMENT OF COGNITIVE VERSATILITY  

This work on definitions, their formulation and their integration in the concept image, 
is not the only relevant aspect; understanding, remembering and identifying (whether 
proactively or retroactively) a definition are not the only necessary skills for a 
versatile thinker : devising counter-examples for incorrect assertions, recognising and 
proving the equivalence of different formulations of the same concept, understanding 
complex proofs, devising simple proofs … are also essential skills, especially in the 
transition from secondary to tertiary education. We have several leads regarding these 
aspects, some of which we started testing in 2007-2008. Let us mention three. 

The first two rest on a list of pairs of statements, from which we give three examples 
here : f is a function which is defined over [0,1] 

 True False 

If f increases on [0,1] then f(0) ≤ f(1)   

If f(0) ≤ f(1) then f increases on [0,1]   

 

 True False 

If f increases on [0,1], then f(x) decreases as x decreases   

If f(x) decreases as x decreases, then f increases on [0,1]   

 

 True False 

If f increases on [0,1] then, for any two distinct numbers a and b 

(between 0 and 1), 
ab

afbf

−

− )()(  is positive 

  

Reciprocal of  the former   

 

                                           
13 However, this formulation might cause cognitive dissonance : students usually come across maxima which are also 

local maxima, what is not the case in this definition. 

14 See (Cauchy 1823), p.37. Cauchy’s viewpoint was local, but we opted for a global formulation. 
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We have a list of 12 such pairs in which levels of abstraction, cognitive roots, and 
semiotic registers vary. This pool of (pairs of) statements can be used in at least two 
different ways. We used it last year to ask 2nd year high-school students to devise 
graphical counter-examples when they deemed the statement to be false. This work 
on graphical counter-examples is interesting since it promotes a deeper understanding 
of the concept without trying students’ ability to devise formal written arguments 
using quantifiers (and negations of implications, and the like). In contrast, we will use 
some of these pairs (or definitions A, B and C) with more advanced students in order 
to asses their ability to devise written formal arguments for the statements they deem 
to be true : these should be tested with senior high-school students, undergraduate 
university students, and pre-service maths teachers. Using the same pool of 
statements at different levels in upper-secondary and tertiary education should help us 
gain insight into stages of cognitive maturity. 

The third lead concerns the proof of the following theorem : Let f be a differentiable 
function, defined on interval I; if f ′ is positive on I then f increases on I. The proof 
which is usually taught at university level first appeared in the 1850s15 but we 
documented many other “proofs” in the 19th century, most of which are flawed. We 
were quite fascinated though by Cauchy’s proof, which is not flawed yet differs 
significantly from our standard proof, both in proof-pattern and view of function 
variation. What field-work is to be based on this material is yet to be determined. 

CONCLUSION 

We presented the outline of a new research project which, to some extent, is the 
sequel of a former historical and epistemological work16. We identified a series of 
questions which directly bear on issues of teaching and learning at upper-secondary 
and tertiary levels; they naturally fit within the research field on AMT in terms of 
maths topics (mathematical analysis) and didactical issues (cognitive versatility, 
proof, concept image / concept definition dialectics). The specific topic of function 
variation is but a tool to assess the conditions for successful learning of function 
theory, conditions which we assume partially rest on the understanding of seemingly 
elementary (point-wise, procept-compatible) notions. Exciting field work is now 
ahead of us. 
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EXPERIMENTAL AND MATHEMATICAL CONTROL IN 
MATHEMATICS 

Giroud Nicolas 

Maths à Modeler team,  Fourier Institute, University of Grenoble 1, France 

This paper talk about a problem which can put students in the role of a mathematical 
researcher and so, let them work on mathematical thinking and problem solving. 
Especially, in this problem students have to validate by themselves their results and 
monitor their actions. The purpose is centred on how students validate their 
mathematical results. I also present the first results of my experimentations.  So, this 
paper is related to learning processes associated with the development of advanced 
mathematical thinking and problem-solving, conjecturing, defining, proving and 
exemplifying. 

BACKGROUND 

The maths à modeler team (www.mathsamodeler.net) is developing a type of problem 
for the classroom called RSC [1] (Grenier & Payan, 1998, 2002 ; Godot, 2005 ; 
Ouvrier-Buffet, 2006). The aim of a RSC is to put students in the role of a 
mathematical researcher. Grenier and Payan (2002) define a RSC as a problem which 
is close to a research one and, often, only a partially solved problem. The statement is 
an easy understandable question which is situated on the outside of formal 
mathematics. Initial strategies exist, there are no specific pre-requisites. Necessary 
school knowledge is, as much as possible, the most elementary and reduced. But,  
many strategies to put forward the research and many developments are possible for 
the activity and for the mathematical notions. Furthermore, a solved question, very 
often, postponed to new questions. 

A RSC seems very interesting for gifted students because it is a challenging problem 
where they can find new results and be confronted with uncertainly and doubt. 
However, a RSC was not developed to be used only by gifted students, a RSC is for 
all the students and the goal of a RSC is not only to challenge students but, firstly, to 
make them work on mathematical thinking and especially “transversal knowledges 
and skills” which means: Experimenting, Conjecturing, Modelling, Proving, 
Defining...  

So, in a RSC, students are confronted with an open-field where they have to make 
their own investigations and validate by themselves their results and actions. They 
have also to manage their research, for example by trying to solve sub-problems or  
easier ones instead of the initial problem. Moreover, it can also be a way for students 
to develop their problem solving skills as it can be considered as a “non-routine” 
problem.  

In French handbooks, it seems that problems do not give the responsibility of the 
validity of their results to the students. Whereas, it is important for students to be 
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confronted with uncertainly and doubt in mathematical problems because first, they 
have to control their results to be sure that they are true. Second, they have to 
convince themselves and their colleagues that their results are true. So, even if they 
do not give a mathematical proof, they enter in a phase of argumentation which can 
let them give mathematical arguments like counter-examples. Third, they have to 
monitor more carefully their actions as they do not know a solution or a plan to solve 
the problem. 

So, a RSC is a type of problem which can give responsibility to the students. But a 
RSC can also let students work on definition (Ouvrier-Buffet, 2006), modelling 
(Grenier & Payan, 1998), experimental approach (Giroud, 2007) and more generally 
on transversal knowledges and skills. 

In this paper, I present a RSC,  the game of obstruction, which is a discrete 
mathematics optimization problem. This problem is only partially solved. I propose 
this problem for 2 reasons: let students work on mathematical thinking and problem 
solving, and in his quality of very challenging problem.  

I give a mathematical and didactic analyses of the problem. I also propose results of 
my experimentations that will be centred on how students control their mathematical 
results,  especially with these types of control: 

Different types of results control in mathematics 

The experimental control: Dahan (2005) claims that there exists 2 types of 
experimentations in mathematics: generative experimentations, which are 
experimentations that we carry out to generate facts when we have no idea of the 
result ; and checking experimentations that we carry out to check  an hypothesis [2] 
or a conjecture. So, the checking experimentation can be a way to control the results. 
But unfortunately, even if a result is experimentally checked as true a lot of time, it 
can be false. In mathematics, we need a proof. However, we can use the experimental 
validation before going to the proof stage to convince ourselves that the result is true.  

For example, if we do not know whether the Goldblach conjecture: all even number 
superior to 2 can be written as the sum of two prime numbers, is true, we can control 
this proposition by carrying out checking experimentations on 2, 4, 6, 8, 1284... And 
as we seen that each times it works, it can convince us that the conjecture is true. 

The mathematical control: the mathematical control is what we call proof. We can 
not have a “better” control. 

It is essential to have a proof to name a fact theorem, for example the Goldblach 
conjecture is true for all even number higher than 2 and lower than 4*1014 (Richstein, 
2000) but we can not call it theorem because we do not have a proof for all even 
numbers.  

We have also others types of control, for example if an analogue problem is known to 
be true. 
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But here, the 2 types of control that I will consider are the experimental and 
mathematical control. 

These 2 kinds of control,  mathematical and experimental, do not contradict each 
other.  Considering Polya's distinction between plausible and demonstrative 
reasoning (1990), it appears that the experimental control is part of the plausible 
reasoning whereas the mathematical control is part of the demonstrative reasoning. 
And as Polya (1990) claimed: 

Let me observe that they do not contradict each other; on the contrary, they complete 
each other.  

Indeed, in mathematics both are useful, we can use the experimental control to 
estimate the plausibility of a result and we need the mathematical control to be 
completely sure. 

Now, I present the theoretical framework that I use to make my analysis. 

THEORETICAL FRAMEWORK 

I recall briefly what is a didactic variable. For Brousseau (2004), a didactic variable 
of a problem P is a variable which can change  the solving strategies of P and which 
can be used by the teacher. So, by using the didactic variable the teacher can change 
the knowledge in game in P for the students.  

I also use the notion of research variable (Grenier & Payan, 2002 ; Godot, 2005). A 
research variable of a problem P is a variable of P which is fixed by the students. The 
didactic choice for the teacher is to choose which variables of P will be used as 
research variables. This choice is made by considering the questions, conjectures, 
proofs that these variables could generate.  In a RSC, there are research variables as it 
can let students manage their research.  

The notion of didactic contract (Brousseau, 2004) is also used. The didactic contract 
corresponds with the implicit relations between the students and the teacher. An 
example in French classrooms is when students learn the factorization of 
polynomials, when the teacher asks a student to factorize 4X2+4X+1, the answer that 
the teacher wishes is (2X+1)2 not a factorization like 4*(X2+X+1/4) which is, even, a 
right factorization but not a factorization in irreducible polynomials which is 
implicitly asked. 

And to analysis the experimentations, I use the framework developed by Schoenfeld 
(2006) to analysis mathematical problem solving behaviour: 

the key elements of the theory are: 

− knowledge; 

− goals; 

− beliefs; 
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− decision-Making. 

The basic idea is that an individual enters any problem solving situation with 
particular knowledge, goals, and beliefs. The individual may be given a problem to 
solve – but [...] what happens is that the individual establishes a goal or set of goals – 
these being the problems the individual sets out to solve. The individual's beliefs 
serve both to shape the choice of goals and to activate the individual's knowledge – 
with some knowledge seeming more relevant, appropriate, or likely lead to success. 
The individual makes a plan and begins to implement it. As he or she does, the 
context changes: with progress some goals are met and other take their place. With 
the lack of progress, a review may suggest a re-examination of the plan and/or re-
prioritization of goals. [...] This cycle continues until there is (perceived) success, or 
the problem solving attempt is abandoned or called to a halt. 

THE GAME OF OBSTRUCTION 

The situation was suggested by Sylvain Gravier. In order to present the problem we 
will need some useful definitions. A (n, c)-card game 
(or for short card game) is a set of cards having n lines, 
each of which contains a color in {1, …, c}.  

Given a (n, c)-card game, the color of the ith line of a 
card C will be denoted by Ci. A bad line in a set of 3 
cards C, C’ and C” is a line i for which either (Ci = 
C’ i = C” i) or (Ci ≠ C’i ≠ C”i and Ci ≠ C” i).  

An obstruction is a set of 3 cards such that all lines  

are bad.  

Now the problem can be stated as follows: 

Given two integers n and c, find the largest (n, c)-
card game which does not contain an obstruction. (P1) 

Some examples: 

 

 

 

 

 

First, one can observe that: one may consider a card game for which all the cards are 
distinct. Indeed, given an obstruction-free card game of cardinality m for which all 
the cards are distinct, by duplicating each card, we obtain an obstruction free card 
game of cardinality 2m. Conversely, there are no 3 copies of the same card in an 
obstruction-free card game. 
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Figure 1: A (3,3) card 
game 
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Figure 2: An obstruction 

Figure 3: A (3,4) card game 
containing an obstruction 

 
Figure 4: An obstruction-free 
(3,4) card game 
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According to that, we will now only consider card games for which all the cards are 
distinct. The cardinality of a largest (n, c)-card game with no duplicated cards will be 
denoted by Max(n, c).  

Mathematical analysis 

It is worth noticing that (P1) is still an unsolved problem so before trying to solve it 
one may study a weaker version: (P2) How can we build a set without obstruction 
?(P2) problem suggests determining an efficient method (algorithm) to check if a 
given set of cards contains an obstruction. I will denote this problem by (P3). 

Another way of simplification will be to fix n and/or c. To work on optimization 
problems, we need to consider the following problem: (P4) How can an upper bound 
be found? 

(P2) and (P4) split (P1) into the two aspects of an optimization problem: lower and 
upper bounds. 

Unfortunately, since (P1) is still not solved, we do not have yet a general strategy to 
solve (P4) efficiently. Mainly, a strategy (SP4) to answer (P4) is based on 
enumerating all possible obstruction-free card games. For a low value of n, an easy 
enumerating argument shows that theorem:  

Theorem 1: For any integer c ≥ 2, we have Max(1, c) = 2 and Max(2, c) = 4. 

Now, I present some strategies to solve our problems. First, concerning (P3), a 
“naïve” way would be to check all sets of 3 cards among a given card game. 
Nevertheless this strategy fails when the number of cards m is large since it requires 
O(m3) cases to be explored. Nevertheless, a strategy based on the structure of the 
given card game exists. For i in {1, …, c}, the i-block of a card game G is the subset 
C1, …, Ct of G such that C11 = … = Ct

1 = i.  

(SP3)  First check that each block does not contain an obstruction (you can apply this 
strategy recursively). Secondly, search obstructions that have at most one card per 

block. 

In general, this strategy is no more efficient than the “naïve” way. Nevertheless, it 
appears that for large obstruction free card game G, the colours are recursively and 
equitably distributed on each block, therefore (SP3) checks in O(Logc (m)3) steps that 
G has no obstruction.  

Another interest for using (SP3) is that it allows first results on Max(n, c) to be 
obtained. Indeed, consider an obstruction-free (n, c)-card game, then each block is at 
most Max(n-1, c) in size. Therefore Max(n, c) ≤ c.Max(n-1, c), which gives an 
answer to (P4). 

Moreover, from an obstruction free (n-1, c)-card game G of cardinality t, one can 
build an obstruction free (n, c)-card game of cardinality 2t. Indeed, for i=1, 2 , 
consider the obstruction free (n, c)-card games Gi obtained from G by adding a line to 
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each card and assigning color i to this new line. The set G’ = G1υG2 is an obstruction-
free (n, c)-card game of cardinality 2t, which gives an answer to (P2). 

                

 

 

 

 

  These two remarks lead to: 

Theorem 2: Given integers n and c ≥ 2, we have that:     
      2.Max(n-1, c) ≤ Max(n, c) ≤ c.Max(n-1, c).  

Observe that for c = 2, we get: Max(n, 2)=2n. Notice that this result can be proof 
without theorem 2 by giving an inductive proof. 

Nevertheless, when c ≥ 3, one can find obstruction-free card game of larger 
cardinality than 2.Max(n-1, c). To find such obstruction-free card game one can apply 
“greedy” strategies: 

(S1P2) Start from an obstruction free card game G (it can be empty) and add a card 
C such that GυC is still obstruction-free until there is no such card. 

(S2P2) Start from a card game G and while there is an obstruction in G, remove a 
card from this obstruction. 

Observe that these two strategies give Max(n, 2) since there is no obstruction in a (n, 
2)-card game. In general, an obstruction-free maximal card game G is built (i.e. for 
every card C not in G, GυC contains an obstruction). It is worth noticing that (SP3) 
produces also obstruction-free maximal card game G, but this requires additional 
arguments. If one chooses an appropriate order for eliminating cards one can find an 
optimum of (P1) using (S1P2) or (S2P2). Of course, finding such an order remains an 
open problem. Nevertheless, when n is ‘large’, one may use a suitable order which 
ensures that one considers all possible cards ; for instance the lexicographic ordering. 
Unfortunately, even when n=3, the lexicographic ordering gives a maximal 
obstruction free (3, 3)-card game of cardinality 8. However, by applying (S1P2) or 
(S2P2) with other orderings, one can find an obstruction free (3, 3)-card game of 
cardinality 9 (> 2.Max(2, 3)). Similarly, one can exhibit an obstruction free (4, 3)-
card game of cardinality 20. 

Moreover, by applying a (SP4) strategy one can prove:  

Theorem 3: Max(3, 3)=9 and Max(4,3)=20. 

Didactic analysis 

I decided to use n  the number of lines and c the number of colours as research 
variables (Grenier & Payan, 2002 ; Godot, 2005).  Since they can lead to new 
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Figure 5: An example of the inductive construction based on SP3 
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questions like: what is the link between a n-line game and a n+1-line game ? Trying 
to solve this question would provide an inductive construction of obstruction free 
card games which can be seen as an inductive proof.  Moreover, it can let students 
generalize some results, especially with 2-colours. So, students can use these 
variables to manage their research. 

There exists a more general problem than (P1), in which the size of an obstruction is 
a variable of the problem, but here, I decided to use it as a didactic variable by fixing 
its value to 3. I choose a size of 3 because for 1 or 2, the situation is very easy. It 
becomes sufficiently complex from 3.  

Through mathematical analysis one can determine the following knowledge involved 
in solving (P1): 

• The definition of an obstruction requires the understanding of logic 
quantifiers. 

• (S1P2) and (S2P2) suggest using an algorithmic approach to solving (P2) 
using eliminating  ordering (for example lexicographic ordering). Moreover, 
since these strategies build a maximal obstruction-free card game, one can 
discuss local /global maximum. Therefore, these strategies will produce 
solutions which can be conjectured as optimal. 

• (SP3)  allows a card game to be modelled which can be reinvested to 
(partially) solve (P2) and (P4) as shown in proof of Theorem 3. Moreover, 
(SP3) applied on (P2) gives an inductive construction of obstruction-free (n, 
c)-card game based on two copies of an obstruction-free (n-1, c)-card game. 

• (SP4) is an enumerating approach for solving (P4). To reduce the number of 
cases to be considered it will be convenient to use variables for the 
enumerating. 

• The distinction between problems (P2) and (P4) is related to lower and upper 
bounds on an optimization problem (P1) which is closely related to necessary 
and sufficient conditions.  

• Solving (P1) with c = 2 provides all possible 2n cards in a card game on n lines 
to be counted. 

OUR EXPERIMENTATIONS 

Two experiments were carried out, one with a “seconde” (tenth grade) class, E1, and 
another with a “première scientifique” (eleventh grade) class, E2. Pupils worked in 
groups of 3-4. In each class, we let them search for 2 hours. The E1 experiment was 
carried out before the E2 one. We filmed one group in each experiment. 

The problem was presented orally with examples on the blackboard. We gave to them 
some material with which they can experiment. In E1, we gave plain circles of 4 
different colours and in E2, we added n-line cards with no colours and n=1, 2, 3, 4. 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2412



  

But in both experiments the problem is posed generally as (P1), we did not ask 
students to only use the number of colours or the number of lines that is given 
materially.  

Results of experimentations 

First, my analyses are focused on how one group of the tenth grade class tried to 
solve (P3), that is to say, how they control the presence of an obstruction in a card 
game.  

They started by building an obstruction free card game with 3 lines and 4 colours  
with the additive strategy (S1P2). They built a card game G1 of cardinality 4 and then 
they added a card C. Then they searched obstructions in G1υC by trying to check 
“randomly” all triple of cards. They did not find any obstructions but they were not 
sure to have tested all triple. Here, the knowledge of how to find all triple is missing. 
Then, they formulated this question (P3a): How can we know if all triples of cards 
were checked ? They tried to answer (P3a) during one minute but they did not find a 
solution. After that, they concluded that they checked all triples of G1υC although 
they did not.  Thus, they decided to give (P1) a higher priority than (P5). Seeing that 
they could not solve (P5) quickly and believing that their experimental control based 
on “checked all triples” is sufficiently efficient, they decided to rely on the 
experimental control.  

During all the session they relied on the experimental validation for the obstruction's 
property although, I showed them obstructions in their card games. They did not 
decide to re-examine their plan by searching an other strategy to solve (P3) than 
“check all triples”. Despite that, they observed that this strategy is too difficult to do 
and that the experimental control based on this strategy was not efficient.  

So, it seems they gave (P3) a lower priority than (P1). It joins Schoenfeld (1992) 
observations that students are more concerned about the initial problem than to sub-
problems, although sub-problems can be key elements. And here, (P3) is key element 
to make progress on (P1). The group said 11 times that a card game was obstruction-
free and it was true only once.  

In the two experimentations, none of the group seemed to search an efficient method 
to answer (P3), they only used strategies based on “checked all triples”, although 
many of them were confronted to (P3). So it seems that students decided to rely on 
the experimental validation and not on the mathematical validation for the obstruction 
free property. An interpretation could be that students did not find a solution so they 
decided to rely on the experimental control to progress in (P1). However,  for the 
group above, it seems, as they only search for one minute, that they decided to not 
spend too much time on (P5). So, they did not recognize the role of (P5) and (P3) for 
solving (P1). 

Summarize of the experimentations: 
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It appears that the use of material during experiments E1 and E2 led pupils to carry 
out their own experiments in mathematics. Students started to manipulate and carry 
out experimentations to solve (P3) and (P2). Even if (P3) was identified, they stayed 
in the experimental control. Consequently, there were some group which did not 
obtain results on 3 lines. But, they made hypotheses or conjectures that they checked 
with experiments like “this card game is maximum”, “by using this strategy, we build 
an obstruction free card game” or  “with only 2 colours on  each card, there are no 
obstructions”, which allowed them to find counter-examples. Here, students are 
responsible of deciding the validity of their propositions. But for one group, it was 
not the case, they made an experimental control of the obstruction free property of 
their card game and after called us to validate their results. They did not take the 
responsibility of the result's validity. There was a problem in the didactic contract. 

They proved Max(n, 2) for n=1, 2 and 3. But only one group generalized this result 
and this group made the 2 experimentations.  

They used at most 4 colours and did not try to generalize with more. Moreover, they 
tried to use all the colours. Here, we can see a consequence of the didactic contract:  
use all that is given and not more. So, the didactic contract has to be changed to let 
students manage their research. 

The concept of variable useful in an enumerating strategy like (SP4) was not 
discussed. Similarly no good eliminating ordering was proposed by the pupils ; they 
remained in a ‘naïve’ strategy. 

BRIEF CONCLUSION 

This situation was experimented with “ordinary” students and show that this problem 
can let students take the role of a mathematical researcher. Although they did not use 
the variables of the problem to try to solve easier sub-problems, they carried out 
experiments to try to answer their own questions, formulated conjectures and made 
proofs. Moreover, it seems, as in Schoenfeld (1992) studies,  that contrary to an 
expert they have some difficulties to identify one of the key element to solve (P1) ;  
although they identified (P3), they relied on the experimental control.  

Students did not work on all knowledges identified in the didactic analysis, especially 
the concept of variable which is a powerful abstract concept. We tested this situation 
on a longer time (18 sessions during one year). In this context, strategies (SP3) and 
(SP4) were developed and their corresponding results were obtained.  

NOTES 

1.  RSC: Research Situation for the Classroom. 

2. Here the definition of hypothesis used is: a proposition that we enunciate without opinion. It is 
not the same as the usual definition of a mathematical hypothesis,  
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3. In France, seconde corresponds at a tenth grade class, it is a general section. Première 
scientifique corresponds to a eleventh grade class and it is the scientific section. 
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INTRODUCTION OF THE NOTIONS OF LIMIT AND 
DERIVATIVE OF A FUNCTION AT A POINT 

Ján Gunčaga 

Catholic University in Ružomberok, Slovakia 

This paper contains the results of a pedagogical research devoted to the 
understanding of   the notions of finite limit and derivative of a function at a point. In 
case of teaching limits, the effort spent by a teacher is not effective because for 
students the notion of a limit is very formal. This claim is supported by our 
pedagogical research using graphs of functions. We present also a concept of 
differentiable functions and derivatives. The notion of a differentiable function  f  at a 
point  x  is based on the existence of a function  φ  such that  f(x+ u) – f(x) = φ(u)u  
for all u  from some neighborhood of  0 and  φ  is continuous at  0. We show 
applications of this concept to teaching basic calculus. 

INTRODUCTION 

At present, the notions of limit and derivative of a function at a point is taught 
according to the Slovak curriculum in the last year of secondary school. In future, 
according to a new curriculum, this part of mathematics will be taught only at 
universities. In this article we will present some results of our pedagogical 
experiment with students at secondary school and university students - future 
teachers. We carried out the experiment at St Andrew secondary school in 
Ružomberok during the school year in the regular class according to official 
curriculum. Analogously, we carried out our experimental teaching of calculus to 
freshmen at the Pedagogical Faculty of Catholic University in Ružomberok during 
the regular calculus tutorial classes.   

We base our didactical approach on the calculus teaching concept by Professor Igor 
Kluvánek. He was a well-known Slovak-Australian mathematician. He prepared a 
new course of mathematical analysis during his 23-rd year stay at the Flinders 
University in Adelaide, South Australia. Even though Kluvánek was a renowned 
researcher, an essential attribute of his lectures was his effort to present the calculus 
to students in a clear and simple way. 

THEORETICAL BACKROUND 

In the field of Mathematics Education there is abundant literature discussing the 
problems of teaching and learning limit and derivative of a function at a point. The 
notions of limit and derivative are taught at Slovak secondary schools in the (senior) 
last year. In a Slovak textbook Hecht (2000) the notion of derivative is introduced in 
several parallel ways. One of them is via the tangent of a function at a point. This 
approach is according to Hecht static and it is based on finding of the tangent with the 
help of secant, which has two common points with the graph of the function. The first 
is the point of tangency and the second point is “in the limit movement” to the to 
point of tangency. Hecht (2000) at this point introduced also the notion of the 
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functional limit. According to Tall & Vinner (1981) the limit of the function is often 
considered as a dynamic process, where x approaches a, causing f(x) to get close to c. 
Conceptually, the differentiation may include a mental picture of a chord tending to 
tangent and also of the instantaneous velocity. The intuitive approach prior to the 
definition is often so strong that the feeling of the students is a dynamic one: 

as x approaches a, so f(x) approaches L 

with definite feeling of motion.  

Kluvánek (1991) in his concept of calculus teaching used the notion of continuity as 
a  base notion. Kluvánek proposed to teach first the notion of continuity and with this 
notion he defines the notion of limit: 

„It is not suitable to teach first the notion of limit of continuous variable and after 
this to define the continuity. Logically, it doesn’t matter what of notions is first. 
However, there exists from pedagogical point of view a great difference.  Each 
experienced teacher underlines that the limit of the function is not the value of the 
function at this point. The reason for this teacher’s activity is: The teacher will not 
have problems by explaining the notion of continuity. The students cannot 
differentiate limit of the function at a point and study continuity of the function at a 
point.”   

In case of teaching limits, the effort spent by a teacher is not effective because for 
students the notion of a limit is very formal. At this stage of teaching calculus, a 
teacher does not have big chances to use the notion of a limit as a prime notion of 
calculus. The next advantage of the continuity is the number of quantifiers. The 
definition of the limit of the function at a point can be written in the form: 

A number k is said to be a limit of the function f  at a point x if for every real number 
ε > 0 there exists a number δ > 0  such that for every x satisfying the inequality         
0 <  | x – a |  < δ we have  | f(x) – k |  < ε. 

This definition has four quantifiers and the definition of continuity has three 
quantifiers:  

A function f is continuous at a point a if for every real number ε > 0 there exists a 
number δ > 0 such that for every x  satisfying the inequality 0 < | x – a |  < δ  we have 
| f(x) – f(a)|  < ε. 

Kluvánek comes on and shows the following formal definition of continuity:  

A function f is continuous at a point a, if for every neighbourhood V of the point   f(a) 
there exists a  neighbourhood U of the point a such that for every  x ∈ U we have  
f(x) ∈ V.  

This definition is possible to formulate with two quantifiers: 

A function f is continuous at a point a if for every neighbourhood V of the point  f(a) 
there exists a  neighbourhood U of the point a such that  f(U) = { f(x): x ∈ U}  ⊆ V. 
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Now suppose we are given a function defined at every point of a neighbourhood of a 
point a with the possible exception of the point a itself. We may try to find a number 
k such that, if it is declared to be the value of the given function at a, then the 
function becomes continuous at a. Such a number k is then called the limit of the 
given function at the point a. Let us state the definition of limit more clearly and 
precisely. 

Definition 1.  Given a function f, a point a and a number k, let F be the function such 
that 

1. F(x) = f(x), for every x ≠ a in the domain of the function f; and 

2. F(a) = k. 

The limit (left limit, right limit) of a function f at a point a is the number k such that 
the function F, defined by the requirements 1 and 2 is continuous (left-continuous, 
right-continuous, respectively) at a. 

Similarly as in the case of limits, Kluvánek (1991) introduces the differentiation 
of a function at a point via continuity:   

Definition 2. Let f  be a function defined in some neighbourhood of a point x. A 
function f is said to be differentiable at a point x if there exists a function ϕ, 
continuous at 0, such that  for every u in a neighbourhood of  0 we have f(x+u) – f(x) 
= ϕ(u)u . The value ϕ (0) is called the derivative of  f at the point x.  

Kluvánek shows also more practical interpretations of this definition. If the 
function  f(x)  is interpreted as the law of motion of a particle on a straight-line, then x 
and x+u represent instants of time and the values f(x) and f(x+u) the corresponding 
positions of the particle. The difference f(x+u) – f(x)  is the displacement of the 
particle during the time-interval between the instants x and x+u. The particle moves 
at a constant velocity given by the function  ϕ(u). The velocity is the rate of 
displacement. 

Let  f(x)  be the costs of producing x units of the given commodity,  f  is the costs 
function of this commodity and  ϕ(u)  is the marginal costs.  

Let  f(x)  be the amount of heat needed to raise the temperature of a unit mass of 
the substance from 0 to x (measured in degrees). Then ϕ(u)  is the amount of heat 
needed to raise the temperature of a unit mass of the substance by one degree; ϕ(u) is 
the specific heat of the substance. 

Temperature extensibility can be approximated by linear function l=l 0(1+α∆t) . 
The value of the function φ(u)=l0α  describes the change of longitude of a solid 
according to the unit change of temperature. 

These definitions 1 and 2 of the limit and derivative of the function we use in our 
experimental teaching.  

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2418



In Kluvánek`s opinion, more proofs in calculus can be carried out easier and he 
criticised the proof in the course of pure mathematics in Hardy (1995), because 
Hardy used the limits instead of continuity. 

Theorem. If a function f is differentiable at a point x and a function g is 
differentiable at he point y = f(x), then the composite function h = gf is differentiable 
at the point x and h´(x) = g (́y) f ´(x). 

Proof. Since f is differentiable at x, there exists a function ϕ continuous at 0 such that 
ϕ(0) = f ´(x) and  f(x+u) – f(x) = ϕ(u)u  for all u in a neighbourhood of 0. Since g is 
differentiable at y, there exists a function ψ continuous at 0 such that ψ(0) = g  ́ (y) 
and  g(x+v) – g(x) = ψ(v)v, for all v in a neighbourhood of 0. 

Hence, 

h(x+u) – h(x) = g(f(x+u)) – g(f(x)) =  

= g(f(x) + (f(x+u) – f(x))) – g(f(x)) = g (f(x) + ϕ(u)u) – g ( f(x)) =   

= ψ (ϕ(u)u) ϕ(u)u   

for every u in a neighbourhood of 0. 

Let χ (u) = ψ(ϕ(u)u)ϕ(u) for every u such that ϕ(u)u belongs to the domain of the 
function ψ. By properties of continuous functions, the function χ is continuous at 0 
and our calculation shows that h(x+u) – h(x) = χ (u)u for every u in a neighbourhood 
of 0. Hence, the function h is differentiable at x and 

 h (́x) = χ (0) =ψ (0) ϕ(0) =  g (́y) f ´(x)   

Kronfellner (1998) proposed to integrate history of mathematics in the teaching 
process. This is possible also in case of a derivative. Kronfellner (2007) used the next 
example of the derivative of x3 according to Isaac Newton (1643 – 1627) from his 
“Quadrature of Curves”: 

“In the same time that x, by growing becomes x + o, the power x3 becomes (x+o)3, or  

x3 + 3x2o + 3xo2 + o3 

and the growth or increments  

(x + o) – x = o and (x + o)3 – x3 = (x3 + 3x2o + 3xo2 + o3) – x3 = 3x2o + 3xo2 + o3 

are to each other as 

1 to 3x2 + 3xo + o2 

Now let the increments vanish, and their “last proportion” will be 1 to 3x2, whence 
the rate of change of x3 with respect to x is 3x2.”     

Popp (1999) presented Fermat`s method of searching of extremes. This method is 
based on the fact that the difference between functional values f(x) and f(x + h) is 
small, because the number h is “near to zero”. We apply this to the quadratic function 
f(x) = ax2 + bx + c: 
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                                 f (x) ≈ f (x + h)  

ax2 + bx + c ≈ a(x + h) 2 + b(x + h) + c 

           ax2 + bx ≈ ax2 + 2ahx + ah2 + bx + bh  

    0  ≈ 2ahx + ah2 + bh  

         0  ≈ 2ax + ah + b 

Now if h = 0, then  0 = 2ax + b and 
a

b
x

2
−= . 

If we will find the derivative of a function f by this method, we can use the 
interpretation of derivative as a slope of the tangent of the function f. For this reason 
we use the function g(x) = f(x) – sx. Now we calculate the derivative of the function 
f(x) = x2. In this case g(x) = x2 – sx. We use now similar algorithm than by quadratic 
function: 

                         g (x) ≈ g (x + h)  

                x2 – sx ≈ (x + h) 2 – s.(x + h)  

                      x2 – sx ≈ x2 + 2hx + h2 – sx – sh  

                   0  ≈ 2hx + h2 – sh  

                 0  ≈ 2x + h – s 

Now if h = 0, then  0 = 2x – s and 
2

s
x =  or s = 2x. This result is very similar to y´=2x. 

The problem of Fermat`s method is that it is partially not correct. The number h is 
used in different senses. First, it is the finite number which we use for division. After 
the division we suppose h = 0. Popp expect that this problem solved in the history of 
mathematics Gottfried Wilhelm Leibniz, but the complex solution is provided by the 
nonstandard calculus. 

EXPERIMENTAL TEACHING 

Barbé J., et al. (2005) described two basic didactical aspects of teaching limits. The 
first is algebra of limits. It assumes the existence of the limit of a function and poses 
the problem of how to determine its value – how to calculate it – for a given family of 
functions. This aspect prevails in Slovakia. Unfortunately a lot of students calculate 
the limits mechanically without understanding.  

The second aspect topology of limits emerges from questioning the nature of “limit of 
a function” as a mathematical object and aims to address the problem of the existence 
of limit with respect to different kind of functions. This aspect is seldom used in 
Slovakia. Similar situation is also when teaching of derivatives.    

We carried out an experimental teaching devoted to understanding by students the 
notions of finite limit and derivative of a function at a point. We will stress to 
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students not to calculate the limits and derivatives mechanically. We stress to 
students the existence and non-existence of limits and derivatives. We use in our 
experimental teaching the calculus concept developed by Professor Igor Kluvánek. 
Our experimental group consisted of 27 students of the St Andrew secondary school 
in Ružomberok.  

The goal of the research was also to analyze the students’ mistakes and to find their 
roots. The problems we have solved with students are usually not contained in typical 
mathematical textbooks. In this article we describe qualitative research using excerpts 
from student answers in the framework of field notes method.  

The notion of the limit we introduced by the definition 1 via continuity of the 
function at a point. We used this definition for the examples, which we solved with 
students using graphs. For this approach we have been inspired by Habre & Abboud 
(2005). They show that the students have a better capability of handling the 
difficulties with derivatives, if they assimilated the notion of derivative visually.    

Dominik: =+
→

)32(lim
3

x
x

           D( f ) = R        




=

≠+
=

.3for

,3for32
)(

xL

xx
xF  

Teacher: Sketch the graph of the function F for x ≠ 3. 

(Dominik sketched the graph, see Figure 1)  

Teacher: What we have to do in order that 
this function becomes to be continuous? 

Miroslava: We fill the circle. 

Teacher: Which functional value at the point 
3 do we use? What does it mean for the limit 
of the function at the point 3? 

Dominik: 9 and so  =+
→

)32(lim
3

x
x

9.  
Figure 1 

 

Erika:  =
−→ 3

1
lim

3 xx
  







=

≠
−=

.3for

,3for
3

1
)(

xL

x
xxF        

 Teacher: Is it possible to find the value F(3) 
so that this function becomes to be 
continuous? 

More students from the class: It’s impossible. 

Teacher: What does it mean for the limit of 
the function at the point 3?  

Erika: It doesn’t exist.  
Figure 2 
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In the similar way the students calculate with the help of graph the limit 

3

542
lim

3

3 −
−

→ x

x
x

. After this example the students calculate the limits without graphs and 

this teaching unit we ended by the following example: 

Example 1. Which of the following functions has limit at the point 1? Describe your 
argumentation. 

 
Figure 3 

Every student made some mistakes. One half of them wrote, that the function in a) 
has limit. In b) only 3 students did so. It was difficult for students to understand that 
if the function is not continuous at one point and has some functional value at this 
point, then this function can have a different limit at this point. Three quarters of 
students wrote the correct answer that the function in c) does not have a limit.  One 
student wrote that the function in d) has a limit because this function is defined at the 
point 1. Similar mistake committed 20 percent of students in e). In f) and g) 25 
percent of students wrote that these functions are continuous at the point 1 and wrote 
nothing about the limit. The function in h) was difficult for three quarters of students. 
They wrote that this function hasn’t a limit at the point 1, one student wrote that this 
function is not continuous at the point 1. 

Similar conception to build a notion in calculus teaching via continuity was used 
when we introduced the derivative of the function at a point. The function              

ϕ(u) 
u

xfuxf )()( −+
=  from Definition 3 was replaced by the function of the slope 

of chord given by formula 
ax

afxf
xs af −

−
=

)()(
)(, . We illustrate our procedure in next 

example. 
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Teacher: Calculate the derivation of the function y = x2 at the point 1 from the definition! 

Robert: 2xy = , 1=a .  






=

≠
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−

=
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1

1
)(

2
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xsf  

Teacher: Do you know to describe the graph 
of the function 1+= xy ? 

Robert: The line.  

Teacher: More precisely. 

Robert: The straight line. 

Teacher: What is it possible to add so that the 
previous function becomes continuous? 

 
Figure 4 

Miroslava: We have to fill the circle. 

Teacher: How? 

Ivan: By number 2. 

Teacher: What does it mean for the value of derivation of the function y = x2 at the point 
1? 

Robert: It is equal to 2. 

Teacher: We considered functions with derivation at every point of the domain. Now, we 
are going to deal with functions having no derivation at least at one point. 

Pavol: f ´ (2) = | x – 2|  f ´ (2) = ?              

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Teacher: Is it possible to extend the function (to 
define its value at 2) so that it becomes 
continuous? 

Lukáš, Lucia: No, it isn’t. 

Teacher: What does it mean for the derivation 
at the point 2? 

Pavol: It doesn’t exist. 

 
Figure 5 

We worked now with derivative of polynomial functions and after we give the 
students following example: 
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Example 2. Which function      of 
the next functions (see Figure 6) 
has the property  f ´ (3) = 2? 

Only 15 percent of student 
correctly solved this example. 
The correct answer in a) had 90 
percent of students, but incorrect 
answer in b) had 60 percent and 
incorrect answer in d) had 40 
percent of students.  The correct 
answer f) had 25 percent of 
students. Nobody had incorrect 
answers c) and e). 

 
Figure 6 

CONCLUSIONS 

At the end we borrow few lines from Kluvánek (1991): 

“If the reader does not value mathematics and mathematical analysis more than a 
comfortable feeling that the way calculus is taught at his and other famous 
universities is essentially all right, then for him the present paper does not have much 
to say.” 

We feel that the quality and the amount of intellectual activities needed to 
transform the mathematics understood (limit and derivation of a function at a point) 
into the mathematics suitable for teaching should never be undervalued. The effort 
needed to understand mathematical knowledge matches the effort to invent it. If one 
wants to write a good mathematics textbook, he has to carry out a mathematical 
research in the usual sense of the word. In our paper we wanted to follow the idea 
cited above. From the historical point of view very similar approaches is possible to 
find by Karl Weierstrass (1815 – 1897), because in his lectures of 1859/60 gave 
Introduction to analysis.   

We believe that practically there is not sufficient effort to understand problems 
related to the existence of a limit and a derivation of a function at a point. Our 
approach makes teaching basic notions and solving problems easier. Students are able 
to solve most of problems applying the before mentioned method. 

The exploitation of graphs provides opportunity to solve and calculate limits and 
derivations of a function at a point without mechanical calculations. Graphs of 
functions not only provide easy specification of the value of limit and derivation of a 
function at a point, but they lead to visual understanding of its nonexistence, too.  

We are agree with results in Tall D. et al. (2001) in the sense that teaching limits and 
derivatives should be done in the wider context of learning mathematics through 
arithmetic, algebra, calculus and beyond. We show that it is possible to build the 
notions not mechanically, but with understanding. In our experimental teaching we 
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also carried out an output test which shows that the visual representation of limits and 
derivative helps students to solve the examples devoted to understanding the notions 
in question (especially existence and non-existence of limits and derivative).    

Visual representation of calculus notions is important in the international studies such 
PISA and TIMSS. Interesting research about using graphs in the teaching process can 
be found in Cooley, Baker, & Trigueros (2003).  

Remark: Supported by grants MVTS ČR/Poľ/PdgFKU/08 and 141967-LLP-1-2008-
GR-COMENIUS-CMP PREDIL  
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FACTORS INFLUENCING TEACHER’S DESIGN OF 
ASSESSMENT MATERIAL AT TERTIARY LEVEL 

Marie-Pierre Lebaud 

UFR mathématiques, Université de Rennes 1, France 

We study the process of design of examination papers in the first year of French 
university and identify some institutional constraints and some teachers' beliefs that 
influence this process. 

Keywords: university expectations, teacher’s collective work, documentary genesis, 
assessment material 

INTRODUCTION 

Numerous research works considered the difficulties met by the universities' first-
year students. These works identify various reasons for those difficulties, offer 
various interpretations and develop various means of didactic action. The attention of 
researchers was initially centred on the new knowledge met and was then devoted to 
the new reference consisting in the practices of the expert mathematicians.  It 
eventually moved upon new institutional expectations (see for a synthesis Gueudet on 
2008). It led in particular to observe that students' private work is focused on learning 
how to mimic techniques, whereas teachers expect that students develop a real 
mathematical autonomy (Lithner 2003, Castela 2004). 

The researchers who made those reports highlighted a difference between teachers' 
expectations and institutional expectations, the latter being particularly visible 
through the exam subjects. Those would in fact be organized around the mimicking 
of methods studied during the tutorials. As teachers of the tutorial write the 
examination texts, the latter would choose to question students on simple contents, 
such as exercises similar to those studied and corrected in class, notably to avoid a 
too important failure. Yet, the impact of evaluations on the work of students is very 
important (Romainville 2002). Besides many innovative teaching designs propose 
new assessment modes, such as group projects with oral examinations (Grønbæk and 
Winsløw 2006). 

Here we do not wish to suggest an innovation, but simply to investigate whether 
examinations are really related to the mimic of methods. In the case of a positive 
response, we try to understand why university teachers propose such evaluations. 
This preliminary study will allow us to propose other modes of assessments. 

This paper is directly related to the themes of CERME 6 group 12, adopting a 
mathematics-centered perspective about the teaching at tertiary level, and considering 
the important part of effective teaching settings constituted by assessments.  

The development of an examination text is a documentary work, implying various 
resources, generally carried out in a collaborative way by a team of teachers. The 
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documentary approach of didactics (Gueudet and Trouche in press) showed that such 
a work was influenced by beliefs, expectations, etc., of teachers, and that documents 
resulting from this work influenced in return these beliefs (Cooney 1999). This 
process of both development of documents (here of examination texts) and evolution 
of teachers' beliefs depends strongly on the institutional context. The institution 
indeed influences its actors through a system of conditions and constraints which can 
be very general or related to precise contents (Chevallard 2002) and which shape the 
knowledge within the institution. 

Considering this point of view, we chose to study a first-year mathematics course in a 
French university, for which we followed the development processes of the 
examination texts. In section II, we present this tutorial and our methodology. We 
noted that the assessment relates only to the mimics of techniques. Thus, our central 
question here is the following one: 

Which institutional conditions and constraints and which beliefs of the teachers 
control the choices carried out during the development of the examination papers? 

We give some elements of answer by analyzing in section III the institutional 
constraints, conditions, and beliefs of teachers who lead to the choice of a specific 
exercise. In section IV, we illustrate the consequences of these constraints through the 
successive evolutions of the statement of a given exercise, and also show the 
phenomena of inertia related to the manner in which the examination papers are 
developed. 

Finally, we conclude by evoking possible clues for an improvement of the assessment 
practices that could foster the students' mathematical activity. 

CONTEXT AND METHODOLOGY OF THE STUDY 

We study more particularly a mathematics course from the first semester in a French 
university. This course is devoted to students graduating in physics. 

During the first semester, students follow six courses, only one being in mathematics.  
Our choice came from the author's involvement in the course. We initially thought 
that the context (teaching mathematics to Physics students) could lead to exercises 
coming from physics situations in the examination papers. We quickly noted that it 
occurred neither in the tests, nor in the sheets of exercises. We will not improve this 
question here. 

To help with the secondary-tertiary transition, this course - like all those of the first 
semester - is organized in small groups of about thirty students (five groups), each 
group having a unique mathematics teacher.  The course is 4 hours a week over 12 
weeks. To ensure coherence between the various groups, a blow-by-blow program 
(the topics studied are specified, as well as the time that should be devoted to them) is 
given to each teacher and the sheets of exercises are the same for every group. Both 
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program and sheets of exercises come from the background of the teachers involved 
in this course during the two previous years. 

The contents were chosen according to the mathematical tools necessary in the other 
courses: complex numbers, study of functions, Riemann integrals, first and second 
order linear differential equations. It thus contains secondary level knowledge in each 
of the first three topics, with each time a deepening and new knowledge: nth roots of a 
complex number, inverse of trigonometrical functions, change of variables in an 
integral... All these topics are introduced to solve some kinds of differential 
equations. 

The assessment consists of two one hour-long exams at the end of week 5 and of 
week 9 and of a two hours-long final one at week 12 (just after the end of teaching). 

The mark of a student is the maximum mark between the final exam and a weighted 
average of the three tests (1/4 for each one hour exam, 1/2 for the last one). Indeed 
this topic should deserve a specific study and we will not study it in this article. 
Students who don’t succeed have a resit, but we focused on the three tests that gave 
the first final mark. 

The development's work of examination texts is shared out at the beginning of the 
course among the teachers: the first exam (CC1) was entrusted to Omar and Georges, 
the second one (CC2) to Omar and Thierry while the final examination paper (E) was 
prepared by Marc (responsible for this course), Thierry, Georges and Marie-Pierre 
(author of this paper). In the three cases, the appointed teachers initially worked 
together before proposing an almost finished text to the other ones.  

The data were gathered through interviews (appendix A) of teachers involved in a 
same exam, initially before the development work to question them about their 
intentions, then to discuss their choices afterwards. We paid attention on the 
following points: coordination between the teachers and supports used for the 
development of the text, choices for the contents of this one and objectives that 
guided these choices. 

We now will present the analysis of the gathered elements. 

CONSTRAINTS AND BELIEFS: REASONS FOR IMPLEMENTATION OF 
METHODS 

The examination texts given since September 2004 (i.e. during 4 academic years) are 
mainly composed of exercises aiming to the use of methods learned during this 
course. In this section we detail various aspects of this choice, and the reasons for it, 
by illustrating our point with an exercise, which seemed to us emblematic. 

Texts of assessment: agglomerates of short exercises 

Each examination paper is made up of a list of short exercises: it never relates to one 
or two long problems. Various reasons lead to this choice. First, the duration of 
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exams (1 h or 2 h) is limited (the mathematics exam of the French end of secondary 
school certificate for scientific students, "Baccalauréat S", lasts 4 hours). This 
duration is an institutional constraint of general level; in particular, the 3 hours 
examinations were gradually removed at the University of Rennes 1 in order to make 
possible two examinations in the same half-day: it optimizes the occupancy of the 
rooms of examination and the working time of the university porters. This 
optimization is crucial because of the increase in the number of exams. Indeed, it is 
observed "the bursting of the academic year in semesters and the courses in units of 
teaching involved an increase of the number of evaluations" (Gauthier & al 2007) 

Beyond this time constraint, a big factor emerges from our interviews, factor which 
deals with the objectives that the teachers assign to assessment, and thus of what we 
name under the generic term of belief: an evaluation must include all the parts of the 
previous program, particularity that we will name the belief of exhaustiveness. Omar 
stresses that an assessment must make it possible for the student to have a diagnosis 
of his knowledge: any gap could then be filled before the following tutorial. This 
diagnosis must thus be complete. This argument is not valid any more for the final 
examination; however, Marc regards as very important the fact that the examination 
paper covers all the contents, on the one hand to force the students to revise 
everything, and on the other hand "to draw a distinction between those who have been 
working enough and those who have not". However, the content of this course is divided 
in five chapters: this is also an institutional constraint, which relates more directly to 
the mathematical contents and which we name constraint of the knowledge 
organization. Now, the final examination paper generally consists of five exercises 
(or four exercises, with one in two sections) 

Moreover, assessment never consists in long problems because of the importance 
attached to the success rate:  teachers fear a "snowball effect" (Omar) of a mistake 
because of linked questions. We will return now to this fundamental factor. 

Exercises of detailed implementation of methods 

Let us consider the following exercise, resulting from the final examination paper 
(December 2007): 

1. Determinate the square roots of 3+4i. 

2. Solve, in C, the equation z2 +3iz-3-i=0. 

We want to underline some important points about this exercise. It applies the method 
of resolution of quadratic equations with complex coefficients, method learned during 
the tutorial. The intermediate calculation of square roots is the subject of the first 
question. Thus the student can check the result in question 2), since they have to find 
the value given into 1) (it is a typical effect of contract didactic, Brousseau 1997). In 
addition, all the numerical values are whole numbers, never exceeding two digits, 
which allows the student to check very easily, and even allows a relatively effective 
method by trial and error in question 1. 
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However, this exercise is emblematic of such assessment. The same kind of exercise 
is found in each subject of the first exam and of the last one for the 4 last years.  

The use of whole numbers is an institutional constraint specific to mathematics in the 
first year at the University of Rennes 1: the constraint of ban on calculators. This 
constraint is associated with the teachers' beliefs of the need for the students to 
understand calculations that a software can carry out automatically: this topic requires 
a specific study, which we will not undertake here. 

The primary reason that explains the choice of such an exercise is the objective of a 
sufficient success rate. This clearly appears in the exchanges of emails, when this 
exercise is proposed, following remarks on the fact that “it misses complex numbers” 
(Georges); “one could have put a short exercise, but easy, on the complexes” (Thierry). 
Marc then suggests the exercise saying: “It should easily improve their marks. What do 
you think about it?” The other teachers approve: "this exercise seems very fine to me" 
writes Georges. "I agree with Georges, as that will increase the chances of the students" 
Thierry adds. In his interview, Marc recognizes that question 2 could have been only 
asked, but, according to him, question 1 ensures that the intermediate stages will be 
visible in the writing of the students, thus making it possible “to give points”. 

The constraint of success rate is crucial in the choices of examination papers on all 
school levels, but perhaps even more in universities in scientific studies, victim of 
disaffection. The average mark for a given course cannot be under 10.  This exercise 
provides any student who attended the course with 2 valuable points. The degree of 
freedom left to teachers for the development of the assessment is restricted by these 
constraints and beliefs. This, however, is not enough to explain the astonishing 
similarity of the examination papers year after year. 

RULES IN ACTION: GENESIS OF AN EXERCISE 

We saw in previous section some very strong constraints and beliefs: time constraint; 
belief of exhaustiveness associated with the constraint with the knowledge 
organization; constraint/belief of ban on calculators; constraint/belief of success rate. 
We will now see their influence upon the development of one of the exercises of the 
second exam. 

Work in each group of the appointed teachers always started by the choice of the 
contents to evaluate. These contents are divided into exercises, and each teacher then 
assumes the wording of some of these exercises. 

During their first meeting, Omar and Thierry identify four contents of knowledge to 
be evaluated in the second examination: integration with, on the one hand its 
definition and on the other hand calculations, then two topics on functions. The 
exercise that we will study was relating to the definition of the Riemann integrals, i.e. 
by the integral of step functions. Omar was in charge of its drafting. 
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A non-standard exercise is proposed 

The first text proposed by Omar is given in appendix B. The announced objective 
was the approximation of ln(2) by integrals of step functions "In the first questions, the 
objective is to make them calculate the integral of step functions, then, in the last one, to see 
that it is convergent, therefore to make them apply what they learned". Omar is a young 
teacher (PhD student): he proposes a relatively non-standard exercise. 

He wanted to give sense to the calculations usually requested from the students by 
showing that these calculations yield the approximation of ln(2). 

Omar submits this exercise to Thierry thinking it is too long (time constraint) and that 
the only first three questions will be kept. The exercise looking indeed too long to 
Thierry, he decides, after having spoken about it with Marc, to remove the last two 
questions "it is a little long, it is necessary to remove the question which embarrasses more 
the students, therefore n ". One thus finds the constraint of success rate to which one 
could add a belief of the teachers that calculation with parameters are too difficult for 
students. We will not speak about this didactic difficulty, which does not enter within 
the framework of our study. 

Change of aim 

Thierry will not be satisfied with the simple shortening. He will return it strongly 
modified to the great distress of Omar: the idea of approximation (chosen to give 
sense to calculations) completely disappeared. There remains only the calculation of 
integrals of step functions. The values remain the same ones with two exceptions: the 
value of f on the interval ] 4/3,5/3 [ became negative and f takes a different value in 
point 4/3. This second change is, according to Thierry, “to see whether the students 
understood that integration is independent of the choice of the value in a point”. The 
change of sign allows the calculation of the integral of f, then of its absolute value. 
The set aim is, always according to Thierry, to evaluate a usual error: “there are people 
who are also mistaken, [thinking that] the absolute value of the integral is the integral of the 
absolute value”. 

In both cases, the aim is not to check the understanding of the implementation of a 
method, but rather of mathematical concepts. In the first case, the question illustrates 
a concept, whereas, in the second one, it illustrates some properties of this concept. 

This exercise is also non-standard in the choice of the numerical values. If the choice 
of these values had a mathematical reason at the beginning (approximation of the 
function 1/x), they were kept in the final version, in spite of a relative opposition of 
the other teachers. Marc will ask for example: "do you really want all those 1/3...?" He 
will add, at the end of the module, that: “the colleagues for the second control were a 
littl e creative, which resulted in the average not being good”. One finds again the 
constraint of success rate, here joined however with the belief that to propose non-
standard exercises (that is to say exercises not present in the sheets of exercises) will 
not answer the institutional constraint of success rate. However here, this exercise, 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2431



  

that Marc qualifies the “creative one”, did not induce a specific failure of the students 
contrary to the opinion that he expresses. 

There thus still exists a certain degree of freedom in the design of the subjects, but it 
seems to be exploited only by young teachers (Thierry has been teaching only for 4 
years). It would be interesting to follow their later evolution. 

The effect of documentary geneses 

Our observations show that the documentary geneses constitute an important factor of 
inertia. All the teachers consulted past papers: either for the contents of the exercises 
by changing only some values, or in the structure of the evaluation with the choice of 
the exercises' number and of the selected topics. "The reasons for which I thought of 
making 4 [exercises], it is that the last time, they were 4” tells us Omar who will 
recognize: “I nevertheless looked at past papers” and “I looked at the exercises' sheets to 
give exercises which are not completely new”. Marc will be more positive on this point: 
“ the exam is rather standard; examination papers always have 5 exercises out of the 5 
topics. […] I asked people to send exercises on the 5 topics”. Past papers are distributed 
to students before each exam and are corrected during the course. Students 
interpreted thus these texts as matching to the didactic expectations of the teachers. 

The teachers looked at these former subjects in their development of a new 
examination paper because they made it possible to obtain the average expected by 
the institution. “The average [with CC2] was not good and so I absolutely wanted to make 
again a [standard] subject” will acknowledge Marc 

Which didactic actions can one consider following this study? We give hints in the 
conclusion below. 

CONCLUSION AND PROSPECTS 

Our study deals with the teachers' activity, and more precisely with a part of this 
activity which goes on apart from the class. It must not be forgotten that the students 
and their learning constitute the central objective of our work.  We stressed the 
importance of the questions of didactic contract in the teachers' choices of 
assessment. However the didactic contract involves teachers as well as students, and 
fixes the responsibilities for each one concerning the knowledge. The past papers 
constitute for the student a central reference, determining the institution expectations. 
Exam texts are composed of short exercises, consisting most of the time of the 
implementation of techniques: thus the private student's work turns naturally to the 
mimics of techniques.  

Beyond this consequence on students' work, one observes an influence of the 
assessment on the teaching contents, and on the evolutions of these year after year. 
This extract of Marc's interview seems extremely significant to us in this respect: 

“The more I teach this course, the more I… for example last year [...] I defined the integral 
[...] This year I said: listen, it has something to see with the area [...] if I teach that still 2,3 
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years I do not know what will remain. I make really more and more recipes by requiring 
nevertheless more rigor than in the physics tutorials.” 

“According to you, what leads you to teach more recipes? ” 

“The level of the students and the expectations of the students.” 

Marc gives us the worrying description of a teaching emptied little by little of its 
contents, because of the “level of the students” (perceptible by their marks) and their 
expectations; however these expectations are largely determined by the didactic 
contract, and thus by the examination texts. 

Thus to leave the present situation, to escape in particular inertia related to the 
documentary geneses, seems to us a real need. 

To master methods is important in mathematics. Part of the assessment could be 
officially turned towards this objective. It would even be possible to make pass such 
an exam on computer by using e-exercise bases (such as WIMS, Cazes et al. 2007). 
Indeed, the implementation of methods is hardly the requirement object of wording: 
assignments were not corrected. 

An exam on computer, directly providing a mark, could make it possible to free up 
time for another mode of assessment, based on a real problem solving, and to give 
place to a written work. Must this work have a time limit; must it be completed by an 
oral examination? The precise organization has to be specified. 

In addition, in particular for a course involved in the mathematical tools for physics, 
the use of a calculator seems absolutely necessary to us. Indeed, the use of whole 
numerical values is clearly out of touch with the physical situations. Our study shows 
that a change of assessment, and even a joint change of the pedagogic resources and 
practices, are essential if the mathematics teaching at University must contribute to 
the increasing of students' mathematical autonomy. 

The context of our work was a course for Physics students: what about assessment in 
the case of Mathematics students? We conjecture a similar development - testing 
rather methods - but a precise study has to be done. 
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APPENDIX A 

Questionnaire before the development of the examination paper (written 
answers) 

1. What coordination is planed between the teachers dealing with the conception of 
the examination paper (meetings, mail exchange...)? 

2. What coordination is planed with the other teachers of the tutorials (contents of 
the assessment, proof reading...)? 

3. Which resources do you expect to use (exercises books, past papers of this tutorial 
or of another one...)? 

4. Which a priori shapes do you think to give to this exam (exercises, problems, 
multiple-choice questionnaire)? Why? 

5. What do you want to assess in this exam? 

Questionnaire after the test (interview guide) 

1. Presentation of the teacher and his teaching experiences. 

2. Looking back on the first questionnaire: Has the conception of the examination 
paper happened as expected? Otherwise, what have been the changes, and why? 
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3. Analysis of the examination paper, exercise by exercise. Details of choices and 
expectations. As far as the intermediate exams are concerned: which exploitation 
during the next tutorials? 

4. In general about the reasons for the choices made in the conception of an 
examination paper in this course: 

• To give something close to exercises made in the tutorial 
• To give something which allows to adapt the teaching according to the 

results of the test 
• To test all the studied contents 
• To test the most important points (which one ?) 
• To test what will be useful for the following tutorial 
• To respect the time-frame 
• To give a subject quick to correct 

APPENDIX B 
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DESIGN OF A SYSTEM OF TEACHING ELEMENTS OF GROUP 
THEORY 

Ildar Safuanov 
Moscow City Pedagogical university 

 
In order to teach on the basis of the genetic approach, one should undertake an 

analysis consisting of the following two stages: 1) a genetic elaboration of the subject 
matter and 2) an analysis of the arrangement of contents including a consideration of 
various ways of representing it and its effect on students. The genetic elaboration of subject 
matter consists in the analysis of the subject from four points of view: historical, logical, 
psychological and socio-cultural. Also important is the epistemological analysis of the 
subject. We describe here the design of the system of study of the concepts of group theory. 
 
Keywords: tertiary mathematics education, teacher education, group theory, genetic 
approach, genetic teaching. 

1. INTRODUCTION. 
In this paper, we describe the design of the system of teaching of the concepts of 
group theory using the genetic approach. Recently, teaching of group theory was 
discussed in the number of papers, and modern textbooks on the subject appeared, 
see, e.g., Armstrong (1988), Burn (1985), Burn (1996), Dubinsky, Dautermann,  
Leron & Zazkis (1994), Dubinsky & Leron (1994), Leron & Dubinsky (1995), Zazkis 
& Dubinsky (1996). 
However, in the textbooks created by M. Armstrong and R.Burn, only geometrical 
sources of group theory are emphasized and used for motivating the learning. Articles 
are mainly restricted to using constructivist teaching or APOS theory (Dubinsky & 
McDonald, 2001). 
Our approach based on the genetic principle combines historical and epistemological 
elaboration of the subject matter with psychological and socio-cultural aspects and 
allows to construct effective system of teaching the subject.  
In preparation of the system of teaching, we also use the principles of concentrism 
and of multiple effect (Safuanov, 1999). 
The principle of concentrism requires the following means in teaching a subject: the 
preparation and, in particular, the anticipation; the repetition on the higher or deeper 
level and the increase; the fundamentality (the deep and strong study of the carefully 
selected foundations of a discipline). 
The principle of multiple effect (on students) states that the essential educational 
result can be achieved not with the help of one means, but many, directed to one and 
the same purpose. For example, the following means of expressiveness may be used 
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in teaching undergraduate mathematics: the variation, splitting (subject matter into 
smaller pieces), the contrast. 

2. SYSTEM OF TEACHING BASED ON THE GENETIC APPROACH 
In (Safuanov, 2005) the genetic approach in the teaching of a mathematical discipline 
(a section of a mathematical course, an important concept, or a system of concepts) is 
described. Its implementation requires two parts: 1) a preliminary analysis of the 
arrangement of the content and of methods of teaching and 2) the design of the 
process of teaching. 
The preliminary analysis consists of two stages: 1) the genetic elaboration of the 
subject matter and 2) the analysis of the arrangement of contents, the possible ways 
of representation, and the effect on students. The genetic elaboration of the subject 
matter, in turn, consists of the analysis of the subject from four points of view:  
historical;  
logical;  
psychological;   
socio-cultural.  
The purpose of the historical analysis is twofold: 1) to reveal paths of the origin of 
scientific knowledge that underlie the educational material and 2) to find out what 
problems generated the need for that knowledge and what were the real obstacles in 
the process of the construction of the knowledge. 
For the construction of the system of genetic teaching, it is very important to develop 
problem situations on the basis of historical and epistemological analysis of a subject. 
The major aspect of the logical organization of educational material consists in 
organizing a material in such way that allows the necessity of the construction and of 
the development of theoretical concepts and ideas to be revealed.  
The psychological analysis includes the determination of the experience and the level 
of thinking abilities of the students (whether they can learn concepts, ideas and 
constructions of the appropriate level of abstraction); and the possible difficulties 
caused by beliefs of the students about mathematical activities. The analysis also has 
the purpose of planning a structure of the students’ activities related to mastering 
concepts, ideas, and algorithms, of planning their actions and operations, and also of 
finding out the necessary transformations of objects of study.  
One more purpose of the psychological analysis of the subject matter is finding out 
ways to develop the motivation for learning. 
The socio-cultural analysis allows us to establish connections of the subject with the 
natural sciences, engineering, with economical problems, with elements of culture, 
history and public life; to reveal, whenever possible, non-mathematical roots of 
mathematical knowledge and paths of its application outside mathematics. 
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During the second part of the analysis, considering the succession of study, it is 
necessary, in accordance with the principle of concentrism, to find out, on the one 
hand, which concepts and ideas studied before should be repeated, deepened and 
included in new connections during the given stage, and, on the other hand, which 
elements studied at the given stage, anticipate important concepts and ideas, which 
will be studied more deeply later. 
The principle of multiple effect on students requires also the search for the 
possibilities of multiple representation of concepts under the study, possibilities of 
using three modes of transmission of information (active, iconic and verbal-
symbolical) and other means of effect on students (the style of the discourse, 
emotional issues, elements of unexpectedness and humor). 
After two stages of analysis, it is necessary to implement the design of the process of 
study of the educational material. We divide the process of study into four stages.  
1) Construction of a problem situation. In genetic teaching, we search for the most 
natural paths of the genesis of processes of thinking and cognition. 
2) Statement of new naturally arising questions 
3) Logical organization of educational material 
4) Development of applications and algorithms. 
According to principles described above, we present here the design of a system for 
the teaching of the concepts of group theory. 

3. THE PRELIMINARY ANALYSIS.  
1) Genetic development of a material.  
a) Historical analysis. 
F.Klein, who had brought in the essential contribution to the development of the 
group theory due to “Erlangen program” of the study of geometry through the study 
of groups of geometrical transformations, argued that “the concept of a group was 
originally developed in the theory of algebraic equations” (Klein, 1989, p. 372). 
Thus, groups, in his opinion, have arisen as groups of permutations. However, such 
fundamental concept as a group had also other roots in mathematics. As indicated in 
“The Mathematical encyclopedic dictionary” (1988, p. 167), sources of the concept 
of a group are in the theory of solving algebraic equations as well as in geometry, 
where groups of geometrical transformations have been investigated since the middle 
of the 19-th century by A. Cayley, and in number theory, where in 1761 L.Euler “in 
essence used congruences and partitions into congruence classes, that in the group-
theoretic language means decomposition of a group into cosets of a subgroup” (ibid.). 
However, abstract groups were introduced by S.Lie only at the end of the 19-th 
century.  
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The main conclusion from this historical analysis is that the theory of groups has 
grown out of the development of many diverse ideas and constructions in 
mathematics and serves to the generalization and more effective theoretical 
consideration of these ideas and constructions. 
b) Logical and epistemological analysis.  
For the introduction of the concept of a group, the preliminary knowledge of a lot of 
set-theoretical and logical concepts and constructions is necessary which can be seen 
from the detailed logical and epistemological analysis of the homomorphism theorem 
(Safuanov, 2005. p. 260). In turn, the group-theoretical concepts are used in the 
subsequent sections. Abelian groups are used in the definition of vector spaces, rings, 
ideals and fields. The cosets of a subgroup and quotient groups are used in the 
definition of cosets of ideals and quotient rings. The groups are used also in 
geometry, in the study of groups of linear, affine and projective transformations. At 
last, groups will further occur in useful for the future teachers special courses on 
Galois theory, on geometry of Lobachevsky etc. 
From the point of view of epistemology, groups serve for the organization of ideas 
connected to permutations, bijections and symmetries, therefore, examples connected 
to these ideas will serve to the good formation of the concept of a group in students’ 
minds.  
c) Psychological analysis. 
School graduates are not actually prepared for mastering such abstract concept as a 
group. They can not operate with general concepts of algebraic operations and even 
with mappings. Therefore, in particular, they can not freely investigate geometrical 
transformations and their compositions. 
On the initial stage, in our view, it is inexpedient to motivate the introduction of the 
concept of a group by examples of sets of transformations (for example, translations 
or rotations), because, as the experience of teaching geometry to the first year 
students of pedagogical universities shows, the geometrical imagination of many 
students (and spatial imagination in general) is very poorly developed. One more 
serious complication is bad understanding of quantifiers. On the initial stage the 
weaker students perceive quantifiers formally, poorly understanding and confusing 
their sense; they try to learn formulas with quantifiers by rote, confuse the 
arrangement of quantifiers in the formulas. As a result, the sense of the definition of a 
group becomes deformed, when the students try  to reproduce the definition: it turns 
out, for example, that for any element of a group there is a distinct neutral element or, 
on the contrary, for all elements of group there is a common inverse. For the 
elimination of these difficulties it is necessary to offer the students special exercises, 
performance of which would reveal the role of the arrangement of quantifiers. 
As the majority of the school graduates perceive mathematics mainly as actions with 
numbers, it is necessary to use these representations at the initial stage of the 
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construction of group-theoretical concepts. Besides, the school graduates remember 
such rules as associativity and commutativity of addition and multiplication, and 
these properties anticipate associativity and commutativity of group-theoretical 
operations. 
According to the activity approach (Leontyev, 1981, p. 527-529), in order to operate 
with group-theoretical concepts (for example, groups, subgroups, cosets), it is 
necessary that intellectual operations (say, finding out the structure of a group, 
construction of cosets of a subgroup etc.) were carried out at first as actions, i.e. as 
purposeful procedures. It accords also to Ed Dubinsky’s APOS (action - process - 
object – scheme) theory of the learning of concepts. Therefore it is necessary to plan 
skills which should be acquired by students at intermediate stages of learning group-
theoretical concepts. It is necessary to design actions, which should precede 
mastering these skills. For example, before the study of the general way of 
construction of cosets (as results  of the “multiplication” of the entire subgroup to an 
element of a group), the students should get experience of construction of concrete 
cosets of finite and infinite subgroups. 
One more remark of the psychological character. It is well-known that the concept of 
a group isomorphism is narrower than the concept of a homomorphism and, 
moreover, in some sense more difficult, as it includes rather complex requirement of 
the bijectivity of a mapping. However, the teaching experience shows that, 
nevertheless, at the initial stage it is expedient to acquaint the students only with the 
concept of an isomorphism, as it is easier to be interpreted as the “similarity” of 
groups in some sense (for example, the similarity of the multiplication tables of finite 
groups); it is easier and more natural also to consider various examples of 
isomorphisms than those of homomorphisms.  
d) Analysis from the point of view of possible applications. 
The concept of a group since several decades became rather popular part of the 
cultural property of mankind. For example, the psychologist J.Piaget tried to use this 
concept for theoretical study of the psychological theory; the experts in the quantum 
mechanics believed that the group theory can be used for solving any problem. The 
group theory turned out to be extremely useful in the search of elementary particles 
and in the study of the structure of chemical molecules. Of great interest are the 
consideration of symmetry groups of geometrical figures and the use of groups for 
the research of patterns. Good examples of the applications of the group theory are 
the investigation of the “Fifteen puzzle” and graceful group-theoretical proofs of 
number-numerical theorems of L.Euler and P. Fermat. 
2) Analysis from the point of view of the arrangement of a subject matter, of the 
opportunities of use of various means of representation of objects, concepts and 
ideas and of the influence on students. 
Using results of the genetic elaboration, it is possible to offer the following version of 
the arrangement of a subject matter and of the use of means of influence. 
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As the theory of groups has grown out of generalizations of diverse ideas and 
constructions, we offer also to use some lines leading to group-theoretical concepts 
from the different perspectives: numbers, cosets, bijective transformations and 
permutations. 
In accordance with the official abstract algebra syllabus, we devote to the study of 
groups several (four) stages at different places of curriculum, and such arrangement 
allows to effectively use elements required by principles of concentrism and multiple 
effect. As a result, students cumulatively acquire the necessary knowledge and skills, 
not losing their interest and motivation to the learning from the beginning to the end 
of the study of group theory. 
The first stage: already at the introductory lecture it is possible to suggest to the 
students to consider systems of integers under the addition and non-zero rational 
numbers under the multiplication, to recollect properties of these arithmetic actions. 
It is expedient to help the students to reveal the properties of associativity, of the 
existence of neutral and inverse elements in the system of integers,  and the students 
will be able to reveal independently by analogy the same properties in the system of 
non--zero rational numbers. Further it is necessary to try to lead the students to the 
idea that it would be useful to study properties of arithmetic actions based on the 
revealed fundamental properties and abstracting from the concrete number systems 
considered above. Here is “the moment of truth” (Safuanov, 2005) where axioms of 
group should be formulated. Note that the moment of truth is similar to the act of 
reflective abstraction (as the interior co-ordination of operations of the subject in a 
scheme) in the theory of Piaget (Dubinsky, 1991), and also to a moment of reification 
(Sfard, 1991). Such organization of teaching may be difficult and not always 
completely possible. Therefore, sometimes the appropriate help of the teacher may be 
useful. 
In the ideal case, students should do it independently. Nevertheless, most likely, on 
this stage the teacher will have to formulate axioms of group himself or to offer the 
students to find the definition in a textbook.  
At this first acquaintance the concept of a group will not be quite strict, as it will be 
based only on students’ intuitive representations about binary algebraic operations 
(“actions on elements of sets”), and the possibility of non-commutativity of an 
operation is not emphasized at all. In effect, this preliminary concept serves only as 
the anticipation of more detailed acquaintance at the following stages.  
The second stage: after the consideration of the addition of cosets and the addition 
tables for small modules (for example, 2, 3, 4), it is possible to raise the question 
about the performance of  addition in a set of cosets modulo arbitrary n>1. Properties 
will be similar to properties of the addition of numbers. The students can guess the 
fulfillment of laws of associativity and commutativity, the existence of neutral and 
inverse elements, and even in some extent to participate in proving these properties. 
After that it is possible to introduce a stricter definition of a group, beginning with the 
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definition of ordered pairs and binary algebraic operations (as the rules putting in 
correspondence to every ordered pair of elements of a given set a certain element of 
the same set - at this stage students are not yet familiar with the concept of a  direct 
product of sets). Here it should be underlined that the considered groups of cosets 
under the addition, as well as groups of integers under the addition, are Abelian 
(commutative), though there are also examples of non-commutative groups. 
The third stage: preliminary, but already quite strict statement of elements of the 
theory of groups after the consideration of elements of the theory of sets, direct 
products, mappings, including bijective ones, and permutations. At this stage all 
formal definitions of concepts necessary for the strict introduction of group-
theoretical concepts are available as well as sufficient amount of motivating and 
illustrating properties and examples. At this stage, after the introduction of the formal 
definition of a group and proof of the elementary properties, it is expedient to 
consider symmetry groups of geometrical figures. It is useful also for the 
maintenance of interest to the theory of groups and for the accumulation of the 
necessary amount of interesting and useful examples for the illustration of further 
constructions. Just at this stage the examples of non-commutative groups (symmetry 
groups and groups of permutations) are considered. 
At this stage the concepts of a subgroup and isomorphism of groups should be strictly 
introduced, but in detail they should not be studied yet: they only anticipate 
systematic study of group-theoretical concepts and constructions at later stages, after 
studying linear algebra. 
The group-theoretical knowledge acquired at the third stage, is used at the 
construction of concepts of rings, fields (in particular, of the field of complex 
numbers) and vector spaces. 
The fourth stage: systematic study of elements of the theory of groups (including 
generalized associativity, cosets, normal subgroups, Lagrange’s and homomorphism 
theorems). This knowledge already is sufficient for further study of quotient rings, 
Galois theory etc. 
As to means of influence on students, in the teaching of elements of the theory of 
groups it is possible to use various evident ways of representation of a subject matter, 
considering, for example, permutations, symmetry of geometrical figures, 
geometrical transformations. Among ways of representation of groups it is possible to 
employ, in case of finite groups, lists of elements, multiplication tables etc. Among 
other means of influence one can mention the contrast (examples of groups versus 
semigroups which are not groups, normal subgroups versus subgroups that are not 
normal), variation (Abelian and non-Abelian groups, additive and multiplicative ones 
etc.). 
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3. DESIGN OF THE PROCESS OF STUDY OF GROUP-THEORETICAL 
CONCEPTS. 
In the designing process of teaching we take into account all the results of the 
preliminary analysis, and thus the task of designing becomes considerably facilitated. 
Note that after designing and checking the intended system of study of a theme in 
practice, using a feedback, results of the control and assessment, it is necessary to 
bring in corrective amendments, sometimes essential, to the designed system. So, for 
the study of the theory of groups we at the third stage (after studying permutations) at 
first intended to prove the generalized associativity. However, the experience has 
shown that this rather short inductive proof nevertheless requires from students the 
well-developed logic reasoning and inordinately large efforts for mastering. 
Therefore, we have transferred this proof to the last, fourth stage devoted to 
systematic study of algebraic systems. 
1) Construction of a problem situation. 
As is already shown, for the successful construction of a problem situation it is 
necessary to organize it (including new questions, naturally arising from it) so that in 
a certain time there would occur the “moment of truth” when the students 
independently or with the minimal help of the teacher would open for the new 
concept for themselves. 
For the first time such moment of truth arises already during the introductory lecture, 
when the preliminary version of the concept of a group arises as a generalization of 
properties of arithmetic actions in sets of integers (addition) and non-zero rational 
numbers (multiplication). At further stages this preliminary version of the definition 
forms the basis for the motivation of the consideration of the concept of a group, 
basis for its stricter study. So, for example, studying properties of the addition of 
cosets or multiplication of bijections of a set, permutations of a finite set, symmetries 
of a geometrical figure, the students already can find out that each time they deal with 
groups – and thus new moments of truth arise. 
2) Statement of new naturally arising questions.   
For example, when constructing a problem situation at the third stage (when passing 
to types and elementary properties of groups), one can use questions of the following 
kind: whether are groups under consideration commutative? Whether there exists an 
infinite non-commutative group? Is the neutral element of a group unique? For a 
given element of a group, is an inverse element unique? Is it possible to solve 
equations in groups? At the fourth stage (systematic study of more complicated 
group-theoretical concepts) the questions are pertinent: do the right and left cosets 
coincide? Do cosets of a normal subgroup form a group under  multiplication? etc. 
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3) Conceptual and structural analysis and logical organization of educational 
material. 
Conceptual and structural analysis and logical organization of group-theoretical 
concepts is rather complicated, as is seen, e.g., from the genetic decomposition of the 
homomorphism theorem (Safuanov, 2005. p. 260). This process is not 
straightforward, but rather long and, moreover, often occurs in several stages divided 
in time. From group axioms the properties of groups are deduced, and at final stages 
of study of groups a number of rather difficult theorems is proved. 
4) Development of applications and algorithms. 
Despite the importance of the theory of groups, its applications are too non-trivial: so 
in an obligatory course it is problematic to consider such major applications, as the 
Galois theory or, say, geometrical applications, which are more appropriate for 
considering in detail in a geometry course. Nevertheless, it is important to consider 
such simple and interesting examples of applications as the fifteen puzzle, group-
theoretical proofs of number-theoretical theorems of L.Euler and P.Fermat, symmetry 
groups of geometrical figures etc.  
The students also should learn such procedures as construction of the multiplication 
table of a finite group, finding cosets of a normal subgroup (i.e. construction of a 
quotient group) etc.  
Concerning the development of cognitive strategies note that, according to the 
genetic approach, it is important to teach the students to construct analytical proofs, i. 
e. such ones that start from the statement that must be proved, and include the search 
of the facts necessary for the proof of the final statement. Then one searches how to 
find these necessary facts etc. It resembles going from the end of the proof to the 
beginning (in computer science such approach is referred to as “backtracking”) (see  
Goodman&Hidetniemi, 1977). The theory of groups gives such opportunities.  

4. IMPLEMENTATION. 
This system of teahing was successfully implemented in practical teaching at the 
pedagogical universities of Ufa and Naberezhnye Chelny for two decades. The 
students studying abstract algebra course by this system constantly show much better 
achievements and, most important, more positive attitude and interest to the subject 
than students studying the discipline by  traditional deductive and “definition – 
theorem – example – exercise” approach.  
Of course, the genetic approach can be applied for teaching other mathematical topics 
and mathematical disciplines. 
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