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This paper contains the results of a pedagogical research devoted to the 
understanding of   the notions of finite limit and derivative of a function at a point. In 
case of teaching limits, the effort spent by a teacher is not effective because for 
students the notion of a limit is very formal. This claim is supported by our 
pedagogical research using graphs of functions. We present also a concept of 
differentiable functions and derivatives. The notion of a differentiable function  f  at a 
point  x  is based on the existence of a function  φ  such that  f(x+ u) – f(x) = φ(u)u  
for all u  from some neighborhood of  0 and  φ  is continuous at  0. We show 
applications of this concept to teaching basic calculus. 

INTRODUCTION 

At present, the notions of limit and derivative of a function at a point is taught 
according to the Slovak curriculum in the last year of secondary school. In future, 
according to a new curriculum, this part of mathematics will be taught only at 
universities. In this article we will present some results of our pedagogical 
experiment with students at secondary school and university students - future 
teachers. We carried out the experiment at St Andrew secondary school in 
Ružomberok during the school year in the regular class according to official 
curriculum. Analogously, we carried out our experimental teaching of calculus to 
freshmen at the Pedagogical Faculty of Catholic University in Ružomberok during 
the regular calculus tutorial classes.   

We base our didactical approach on the calculus teaching concept by Professor Igor 
Kluvánek. He was a well-known Slovak-Australian mathematician. He prepared a 
new course of mathematical analysis during his 23-rd year stay at the Flinders 
University in Adelaide, South Australia. Even though Kluvánek was a renowned 
researcher, an essential attribute of his lectures was his effort to present the calculus 
to students in a clear and simple way. 

THEORETICAL BACKROUND 

In the field of Mathematics Education there is abundant literature discussing the 
problems of teaching and learning limit and derivative of a function at a point. The 
notions of limit and derivative are taught at Slovak secondary schools in the (senior) 
last year. In a Slovak textbook Hecht (2000) the notion of derivative is introduced in 
several parallel ways. One of them is via the tangent of a function at a point. This 
approach is according to Hecht static and it is based on finding of the tangent with the 
help of secant, which has two common points with the graph of the function. The first 
is the point of tangency and the second point is “in the limit movement” to the to 
point of tangency. Hecht (2000) at this point introduced also the notion of the 
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functional limit. According to Tall & Vinner (1981) the limit of the function is often 
considered as a dynamic process, where x approaches a, causing f(x) to get close to c. 
Conceptually, the differentiation may include a mental picture of a chord tending to 
tangent and also of the instantaneous velocity. The intuitive approach prior to the 
definition is often so strong that the feeling of the students is a dynamic one: 

as x approaches a, so f(x) approaches L 

with definite feeling of motion.  

Kluvánek (1991) in his concept of calculus teaching used the notion of continuity as 
a  base notion. Kluvánek proposed to teach first the notion of continuity and with this 
notion he defines the notion of limit: 

„It is not suitable to teach first the notion of limit of continuous variable and after 
this to define the continuity. Logically, it doesn’t matter what of notions is first. 
However, there exists from pedagogical point of view a great difference.  Each 
experienced teacher underlines that the limit of the function is not the value of the 
function at this point. The reason for this teacher’s activity is: The teacher will not 
have problems by explaining the notion of continuity. The students cannot 
differentiate limit of the function at a point and study continuity of the function at a 
point.”   

In case of teaching limits, the effort spent by a teacher is not effective because for 
students the notion of a limit is very formal. At this stage of teaching calculus, a 
teacher does not have big chances to use the notion of a limit as a prime notion of 
calculus. The next advantage of the continuity is the number of quantifiers. The 
definition of the limit of the function at a point can be written in the form: 

A number k is said to be a limit of the function f  at a point x if for every real number 
ε > 0 there exists a number δ > 0  such that for every x satisfying the inequality         
0 <  | x – a |  < δ we have  | f(x) – k |  < ε. 

This definition has four quantifiers and the definition of continuity has three 
quantifiers:  

A function f is continuous at a point a if for every real number ε > 0 there exists a 
number δ > 0 such that for every x  satisfying the inequality 0 < | x – a |  < δ  we have 
| f(x) – f(a)|  < ε. 

Kluvánek comes on and shows the following formal definition of continuity:  

A function f is continuous at a point a, if for every neighbourhood V of the point   f(a) 
there exists a  neighbourhood U of the point a such that for every  x ∈ U we have  
f(x) ∈ V.  

This definition is possible to formulate with two quantifiers: 

A function f is continuous at a point a if for every neighbourhood V of the point  f(a) 
there exists a  neighbourhood U of the point a such that  f(U) = { f(x): x ∈ U}  ⊆ V. 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2417



Now suppose we are given a function defined at every point of a neighbourhood of a 
point a with the possible exception of the point a itself. We may try to find a number 
k such that, if it is declared to be the value of the given function at a, then the 
function becomes continuous at a. Such a number k is then called the limit of the 
given function at the point a. Let us state the definition of limit more clearly and 
precisely. 

Definition 1.  Given a function f, a point a and a number k, let F be the function such 
that 

1. F(x) = f(x), for every x ≠ a in the domain of the function f; and 

2. F(a) = k. 

The limit (left limit, right limit) of a function f at a point a is the number k such that 
the function F, defined by the requirements 1 and 2 is continuous (left-continuous, 
right-continuous, respectively) at a. 

Similarly as in the case of limits, Kluvánek (1991) introduces the differentiation 
of a function at a point via continuity:   

Definition 2. Let f  be a function defined in some neighbourhood of a point x. A 
function f is said to be differentiable at a point x if there exists a function ϕ, 
continuous at 0, such that  for every u in a neighbourhood of  0 we have f(x+u) – f(x) 
= ϕ(u)u . The value ϕ (0) is called the derivative of  f at the point x.  

Kluvánek shows also more practical interpretations of this definition. If the 
function  f(x)  is interpreted as the law of motion of a particle on a straight-line, then x 
and x+u represent instants of time and the values f(x) and f(x+u) the corresponding 
positions of the particle. The difference f(x+u) – f(x)  is the displacement of the 
particle during the time-interval between the instants x and x+u. The particle moves 
at a constant velocity given by the function  ϕ(u). The velocity is the rate of 
displacement. 

Let  f(x)  be the costs of producing x units of the given commodity,  f  is the costs 
function of this commodity and  ϕ(u)  is the marginal costs.  

Let  f(x)  be the amount of heat needed to raise the temperature of a unit mass of 
the substance from 0 to x (measured in degrees). Then ϕ(u)  is the amount of heat 
needed to raise the temperature of a unit mass of the substance by one degree; ϕ(u) is 
the specific heat of the substance. 

Temperature extensibility can be approximated by linear function l=l 0(1+α∆t) . 
The value of the function φ(u)=l0α  describes the change of longitude of a solid 
according to the unit change of temperature. 

These definitions 1 and 2 of the limit and derivative of the function we use in our 
experimental teaching.  
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In Kluvánek`s opinion, more proofs in calculus can be carried out easier and he 
criticised the proof in the course of pure mathematics in Hardy (1995), because 
Hardy used the limits instead of continuity. 

Theorem. If a function f is differentiable at a point x and a function g is 
differentiable at he point y = f(x), then the composite function h = gf is differentiable 
at the point x and h´(x) = g (́y) f ´(x). 

Proof. Since f is differentiable at x, there exists a function ϕ continuous at 0 such that 
ϕ(0) = f ´(x) and  f(x+u) – f(x) = ϕ(u)u  for all u in a neighbourhood of 0. Since g is 
differentiable at y, there exists a function ψ continuous at 0 such that ψ(0) = g  ́ (y) 
and  g(x+v) – g(x) = ψ(v)v, for all v in a neighbourhood of 0. 

Hence, 

h(x+u) – h(x) = g(f(x+u)) – g(f(x)) =  

= g(f(x) + (f(x+u) – f(x))) – g(f(x)) = g (f(x) + ϕ(u)u) – g ( f(x)) =   

= ψ (ϕ(u)u) ϕ(u)u   

for every u in a neighbourhood of 0. 

Let χ (u) = ψ(ϕ(u)u)ϕ(u) for every u such that ϕ(u)u belongs to the domain of the 
function ψ. By properties of continuous functions, the function χ is continuous at 0 
and our calculation shows that h(x+u) – h(x) = χ (u)u for every u in a neighbourhood 
of 0. Hence, the function h is differentiable at x and 

 h (́x) = χ (0) =ψ (0) ϕ(0) =  g (́y) f ´(x)   

Kronfellner (1998) proposed to integrate history of mathematics in the teaching 
process. This is possible also in case of a derivative. Kronfellner (2007) used the next 
example of the derivative of x3 according to Isaac Newton (1643 – 1627) from his 
“Quadrature of Curves”: 

“In the same time that x, by growing becomes x + o, the power x3 becomes (x+o)3, or  

x3 + 3x2o + 3xo2 + o3 

and the growth or increments  

(x + o) – x = o and (x + o)3 – x3 = (x3 + 3x2o + 3xo2 + o3) – x3 = 3x2o + 3xo2 + o3 

are to each other as 

1 to 3x2 + 3xo + o2 

Now let the increments vanish, and their “last proportion” will be 1 to 3x2, whence 
the rate of change of x3 with respect to x is 3x2.”     

Popp (1999) presented Fermat`s method of searching of extremes. This method is 
based on the fact that the difference between functional values f(x) and f(x + h) is 
small, because the number h is “near to zero”. We apply this to the quadratic function 
f(x) = ax2 + bx + c: 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2419



                                 f (x) ≈ f (x + h)  

ax2 + bx + c ≈ a(x + h) 2 + b(x + h) + c 

           ax2 + bx ≈ ax2 + 2ahx + ah2 + bx + bh  

    0  ≈ 2ahx + ah2 + bh  

         0  ≈ 2ax + ah + b 

Now if h = 0, then  0 = 2ax + b and 
a

b
x

2
−= . 

If we will find the derivative of a function f by this method, we can use the 
interpretation of derivative as a slope of the tangent of the function f. For this reason 
we use the function g(x) = f(x) – sx. Now we calculate the derivative of the function 
f(x) = x2. In this case g(x) = x2 – sx. We use now similar algorithm than by quadratic 
function: 

                         g (x) ≈ g (x + h)  

                x2 – sx ≈ (x + h) 2 – s.(x + h)  

                      x2 – sx ≈ x2 + 2hx + h2 – sx – sh  

                   0  ≈ 2hx + h2 – sh  

                 0  ≈ 2x + h – s 

Now if h = 0, then  0 = 2x – s and 
2

s
x =  or s = 2x. This result is very similar to y´=2x. 

The problem of Fermat`s method is that it is partially not correct. The number h is 
used in different senses. First, it is the finite number which we use for division. After 
the division we suppose h = 0. Popp expect that this problem solved in the history of 
mathematics Gottfried Wilhelm Leibniz, but the complex solution is provided by the 
nonstandard calculus. 

EXPERIMENTAL TEACHING 

Barbé J., et al. (2005) described two basic didactical aspects of teaching limits. The 
first is algebra of limits. It assumes the existence of the limit of a function and poses 
the problem of how to determine its value – how to calculate it – for a given family of 
functions. This aspect prevails in Slovakia. Unfortunately a lot of students calculate 
the limits mechanically without understanding.  

The second aspect topology of limits emerges from questioning the nature of “limit of 
a function” as a mathematical object and aims to address the problem of the existence 
of limit with respect to different kind of functions. This aspect is seldom used in 
Slovakia. Similar situation is also when teaching of derivatives.    

We carried out an experimental teaching devoted to understanding by students the 
notions of finite limit and derivative of a function at a point. We will stress to 
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students not to calculate the limits and derivatives mechanically. We stress to 
students the existence and non-existence of limits and derivatives. We use in our 
experimental teaching the calculus concept developed by Professor Igor Kluvánek. 
Our experimental group consisted of 27 students of the St Andrew secondary school 
in Ružomberok.  

The goal of the research was also to analyze the students’ mistakes and to find their 
roots. The problems we have solved with students are usually not contained in typical 
mathematical textbooks. In this article we describe qualitative research using excerpts 
from student answers in the framework of field notes method.  

The notion of the limit we introduced by the definition 1 via continuity of the 
function at a point. We used this definition for the examples, which we solved with 
students using graphs. For this approach we have been inspired by Habre & Abboud 
(2005). They show that the students have a better capability of handling the 
difficulties with derivatives, if they assimilated the notion of derivative visually.    

Dominik: =+
→

)32(lim
3

x
x

           D( f ) = R        




=

≠+
=

.3for

,3for32
)(

xL

xx
xF  

Teacher: Sketch the graph of the function F for x ≠ 3. 

(Dominik sketched the graph, see Figure 1)  

Teacher: What we have to do in order that 
this function becomes to be continuous? 

Miroslava: We fill the circle. 

Teacher: Which functional value at the point 
3 do we use? What does it mean for the limit 
of the function at the point 3? 

Dominik: 9 and so  =+
→

)32(lim
3

x
x

9.  
Figure 1 

 

Erika:  =
−→ 3

1
lim

3 xx
  







=

≠
−=

.3for

,3for
3

1
)(

xL

x
xxF        

 Teacher: Is it possible to find the value F(3) 
so that this function becomes to be 
continuous? 

More students from the class: It’s impossible. 

Teacher: What does it mean for the limit of 
the function at the point 3?  

Erika: It doesn’t exist.  
Figure 2 
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In the similar way the students calculate with the help of graph the limit 

3

542
lim

3

3 −
−

→ x

x
x

. After this example the students calculate the limits without graphs and 

this teaching unit we ended by the following example: 

Example 1. Which of the following functions has limit at the point 1? Describe your 
argumentation. 

 
Figure 3 

Every student made some mistakes. One half of them wrote, that the function in a) 
has limit. In b) only 3 students did so. It was difficult for students to understand that 
if the function is not continuous at one point and has some functional value at this 
point, then this function can have a different limit at this point. Three quarters of 
students wrote the correct answer that the function in c) does not have a limit.  One 
student wrote that the function in d) has a limit because this function is defined at the 
point 1. Similar mistake committed 20 percent of students in e). In f) and g) 25 
percent of students wrote that these functions are continuous at the point 1 and wrote 
nothing about the limit. The function in h) was difficult for three quarters of students. 
They wrote that this function hasn’t a limit at the point 1, one student wrote that this 
function is not continuous at the point 1. 

Similar conception to build a notion in calculus teaching via continuity was used 
when we introduced the derivative of the function at a point. The function              

ϕ(u) 
u

xfuxf )()( −+
=  from Definition 3 was replaced by the function of the slope 

of chord given by formula 
ax

afxf
xs af −

−
=

)()(
)(, . We illustrate our procedure in next 

example. 
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Teacher: Calculate the derivation of the function y = x2 at the point 1 from the definition! 

Robert: 2xy = , 1=a .  
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x
x

x
xsf  1

1
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1
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+−
=

−
−
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x
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≠+
=

.1

,11
)(1, xk
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Teacher: Do you know to describe the graph 
of the function 1+= xy ? 

Robert: The line.  

Teacher: More precisely. 

Robert: The straight line. 

Teacher: What is it possible to add so that the 
previous function becomes continuous? 

 
Figure 4 

Miroslava: We have to fill the circle. 

Teacher: How? 

Ivan: By number 2. 

Teacher: What does it mean for the value of derivation of the function y = x2 at the point 
1? 

Robert: It is equal to 2. 

Teacher: We considered functions with derivation at every point of the domain. Now, we 
are going to deal with functions having no derivation at least at one point. 

Pavol: f ´ (2) = | x – 2|  f ´ (2) = ?              
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−
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2
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Teacher: Is it possible to extend the function (to 
define its value at 2) so that it becomes 
continuous? 

Lukáš, Lucia: No, it isn’t. 

Teacher: What does it mean for the derivation 
at the point 2? 

Pavol: It doesn’t exist. 

 
Figure 5 

We worked now with derivative of polynomial functions and after we give the 
students following example: 
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Example 2. Which function      of 
the next functions (see Figure 6) 
has the property  f ´ (3) = 2? 

Only 15 percent of student 
correctly solved this example. 
The correct answer in a) had 90 
percent of students, but incorrect 
answer in b) had 60 percent and 
incorrect answer in d) had 40 
percent of students.  The correct 
answer f) had 25 percent of 
students. Nobody had incorrect 
answers c) and e). 

 
Figure 6 

CONCLUSIONS 

At the end we borrow few lines from Kluvánek (1991): 

“If the reader does not value mathematics and mathematical analysis more than a 
comfortable feeling that the way calculus is taught at his and other famous 
universities is essentially all right, then for him the present paper does not have much 
to say.” 

We feel that the quality and the amount of intellectual activities needed to 
transform the mathematics understood (limit and derivation of a function at a point) 
into the mathematics suitable for teaching should never be undervalued. The effort 
needed to understand mathematical knowledge matches the effort to invent it. If one 
wants to write a good mathematics textbook, he has to carry out a mathematical 
research in the usual sense of the word. In our paper we wanted to follow the idea 
cited above. From the historical point of view very similar approaches is possible to 
find by Karl Weierstrass (1815 – 1897), because in his lectures of 1859/60 gave 
Introduction to analysis.   

We believe that practically there is not sufficient effort to understand problems 
related to the existence of a limit and a derivation of a function at a point. Our 
approach makes teaching basic notions and solving problems easier. Students are able 
to solve most of problems applying the before mentioned method. 

The exploitation of graphs provides opportunity to solve and calculate limits and 
derivations of a function at a point without mechanical calculations. Graphs of 
functions not only provide easy specification of the value of limit and derivation of a 
function at a point, but they lead to visual understanding of its nonexistence, too.  

We are agree with results in Tall D. et al. (2001) in the sense that teaching limits and 
derivatives should be done in the wider context of learning mathematics through 
arithmetic, algebra, calculus and beyond. We show that it is possible to build the 
notions not mechanically, but with understanding. In our experimental teaching we 
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also carried out an output test which shows that the visual representation of limits and 
derivative helps students to solve the examples devoted to understanding the notions 
in question (especially existence and non-existence of limits and derivative).    

Visual representation of calculus notions is important in the international studies such 
PISA and TIMSS. Interesting research about using graphs in the teaching process can 
be found in Cooley, Baker, & Trigueros (2003).  

Remark: Supported by grants MVTS ČR/Poľ/PdgFKU/08 and 141967-LLP-1-2008-
GR-COMENIUS-CMP PREDIL  
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