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This paper talk about a problem which can put students in the role of a mathematical 
researcher and so, let them work on mathematical thinking and problem solving. 
Especially, in this problem students have to validate by themselves their results and 
monitor their actions. The purpose is centred on how students validate their 
mathematical results. I also present the first results of my experimentations.  So, this 
paper is related to learning processes associated with the development of advanced 
mathematical thinking and problem-solving, conjecturing, defining, proving and 
exemplifying. 

BACKGROUND 

The maths à modeler team (www.mathsamodeler.net) is developing a type of problem 
for the classroom called RSC [1] (Grenier & Payan, 1998, 2002 ; Godot, 2005 ; 
Ouvrier-Buffet, 2006). The aim of a RSC is to put students in the role of a 
mathematical researcher. Grenier and Payan (2002) define a RSC as a problem which 
is close to a research one and, often, only a partially solved problem. The statement is 
an easy understandable question which is situated on the outside of formal 
mathematics. Initial strategies exist, there are no specific pre-requisites. Necessary 
school knowledge is, as much as possible, the most elementary and reduced. But,  
many strategies to put forward the research and many developments are possible for 
the activity and for the mathematical notions. Furthermore, a solved question, very 
often, postponed to new questions. 

A RSC seems very interesting for gifted students because it is a challenging problem 
where they can find new results and be confronted with uncertainly and doubt. 
However, a RSC was not developed to be used only by gifted students, a RSC is for 
all the students and the goal of a RSC is not only to challenge students but, firstly, to 
make them work on mathematical thinking and especially “transversal knowledges 
and skills” which means: Experimenting, Conjecturing, Modelling, Proving, 
Defining...  

So, in a RSC, students are confronted with an open-field where they have to make 
their own investigations and validate by themselves their results and actions. They 
have also to manage their research, for example by trying to solve sub-problems or  
easier ones instead of the initial problem. Moreover, it can also be a way for students 
to develop their problem solving skills as it can be considered as a “non-routine” 
problem.  

In French handbooks, it seems that problems do not give the responsibility of the 
validity of their results to the students. Whereas, it is important for students to be 
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confronted with uncertainly and doubt in mathematical problems because first, they 
have to control their results to be sure that they are true. Second, they have to 
convince themselves and their colleagues that their results are true. So, even if they 
do not give a mathematical proof, they enter in a phase of argumentation which can 
let them give mathematical arguments like counter-examples. Third, they have to 
monitor more carefully their actions as they do not know a solution or a plan to solve 
the problem. 

So, a RSC is a type of problem which can give responsibility to the students. But a 
RSC can also let students work on definition (Ouvrier-Buffet, 2006), modelling 
(Grenier & Payan, 1998), experimental approach (Giroud, 2007) and more generally 
on transversal knowledges and skills. 

In this paper, I present a RSC,  the game of obstruction, which is a discrete 
mathematics optimization problem. This problem is only partially solved. I propose 
this problem for 2 reasons: let students work on mathematical thinking and problem 
solving, and in his quality of very challenging problem.  

I give a mathematical and didactic analyses of the problem. I also propose results of 
my experimentations that will be centred on how students control their mathematical 
results,  especially with these types of control: 

Different types of results control in mathematics 

The experimental control: Dahan (2005) claims that there exists 2 types of 
experimentations in mathematics: generative experimentations, which are 
experimentations that we carry out to generate facts when we have no idea of the 
result ; and checking experimentations that we carry out to check  an hypothesis [2] 
or a conjecture. So, the checking experimentation can be a way to control the results. 
But unfortunately, even if a result is experimentally checked as true a lot of time, it 
can be false. In mathematics, we need a proof. However, we can use the experimental 
validation before going to the proof stage to convince ourselves that the result is true.  

For example, if we do not know whether the Goldblach conjecture: all even number 
superior to 2 can be written as the sum of two prime numbers, is true, we can control 
this proposition by carrying out checking experimentations on 2, 4, 6, 8, 1284... And 
as we seen that each times it works, it can convince us that the conjecture is true. 

The mathematical control: the mathematical control is what we call proof. We can 
not have a “better” control. 

It is essential to have a proof to name a fact theorem, for example the Goldblach 
conjecture is true for all even number higher than 2 and lower than 4*1014 (Richstein, 
2000) but we can not call it theorem because we do not have a proof for all even 
numbers.  

We have also others types of control, for example if an analogue problem is known to 
be true. 
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But here, the 2 types of control that I will consider are the experimental and 
mathematical control. 

These 2 kinds of control,  mathematical and experimental, do not contradict each 
other.  Considering Polya's distinction between plausible and demonstrative 
reasoning (1990), it appears that the experimental control is part of the plausible 
reasoning whereas the mathematical control is part of the demonstrative reasoning. 
And as Polya (1990) claimed: 

Let me observe that they do not contradict each other; on the contrary, they complete 
each other.  

Indeed, in mathematics both are useful, we can use the experimental control to 
estimate the plausibility of a result and we need the mathematical control to be 
completely sure. 

Now, I present the theoretical framework that I use to make my analysis. 

THEORETICAL FRAMEWORK 

I recall briefly what is a didactic variable. For Brousseau (2004), a didactic variable 
of a problem P is a variable which can change  the solving strategies of P and which 
can be used by the teacher. So, by using the didactic variable the teacher can change 
the knowledge in game in P for the students.  

I also use the notion of research variable (Grenier & Payan, 2002 ; Godot, 2005). A 
research variable of a problem P is a variable of P which is fixed by the students. The 
didactic choice for the teacher is to choose which variables of P will be used as 
research variables. This choice is made by considering the questions, conjectures, 
proofs that these variables could generate.  In a RSC, there are research variables as it 
can let students manage their research.  

The notion of didactic contract (Brousseau, 2004) is also used. The didactic contract 
corresponds with the implicit relations between the students and the teacher. An 
example in French classrooms is when students learn the factorization of 
polynomials, when the teacher asks a student to factorize 4X2+4X+1, the answer that 
the teacher wishes is (2X+1)2 not a factorization like 4*(X2+X+1/4) which is, even, a 
right factorization but not a factorization in irreducible polynomials which is 
implicitly asked. 

And to analysis the experimentations, I use the framework developed by Schoenfeld 
(2006) to analysis mathematical problem solving behaviour: 

the key elements of the theory are: 

− knowledge; 

− goals; 

− beliefs; 
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− decision-Making. 

The basic idea is that an individual enters any problem solving situation with 
particular knowledge, goals, and beliefs. The individual may be given a problem to 
solve – but [...] what happens is that the individual establishes a goal or set of goals – 
these being the problems the individual sets out to solve. The individual's beliefs 
serve both to shape the choice of goals and to activate the individual's knowledge – 
with some knowledge seeming more relevant, appropriate, or likely lead to success. 
The individual makes a plan and begins to implement it. As he or she does, the 
context changes: with progress some goals are met and other take their place. With 
the lack of progress, a review may suggest a re-examination of the plan and/or re-
prioritization of goals. [...] This cycle continues until there is (perceived) success, or 
the problem solving attempt is abandoned or called to a halt. 

THE GAME OF OBSTRUCTION 

The situation was suggested by Sylvain Gravier. In order to present the problem we 
will need some useful definitions. A (n, c)-card game 
(or for short card game) is a set of cards having n lines, 
each of which contains a color in {1, …, c}.  

Given a (n, c)-card game, the color of the ith line of a 
card C will be denoted by Ci. A bad line in a set of 3 
cards C, C’ and C” is a line i for which either (Ci = 
C’ i = C”i) or (Ci ≠ C’i ≠ C”i and Ci ≠ C”i).  

An obstruction is a set of 3 cards such that all lines  

are bad.  

Now the problem can be stated as follows: 

Given two integers n and c, find the largest (n, c)-
card game which does not contain an obstruction. (P1) 

Some examples: 

 

 

 

 

 

First, one can observe that: one may consider a card game for which all the cards are 
distinct. Indeed, given an obstruction-free card game of cardinality m for which all 
the cards are distinct, by duplicating each card, we obtain an obstruction free card 
game of cardinality 2m. Conversely, there are no 3 copies of the same card in an 
obstruction-free card game. 
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Figure 2: An obstruction 

Figure 3: A (3,4) card game 
containing an obstruction 

 
Figure 4: An obstruction-free 
(3,4) card game 
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According to that, we will now only consider card games for which all the cards are 
distinct. The cardinality of a largest (n, c)-card game with no duplicated cards will be 
denoted by Max(n, c).  

Mathematical analysis 

It is worth noticing that (P1) is still an unsolved problem so before trying to solve it 
one may study a weaker version: (P2) How can we build a set without obstruction 
?(P2) problem suggests determining an efficient method (algorithm) to check if a 
given set of cards contains an obstruction. I will denote this problem by (P3). 

Another way of simplification will be to fix n and/or c. To work on optimization 
problems, we need to consider the following problem: (P4) How can an upper bound 
be found? 

(P2) and (P4) split (P1) into the two aspects of an optimization problem: lower and 
upper bounds. 

Unfortunately, since (P1) is still not solved, we do not have yet a general strategy to 
solve (P4) efficiently. Mainly, a strategy (SP4) to answer (P4) is based on 
enumerating all possible obstruction-free card games. For a low value of n, an easy 
enumerating argument shows that theorem:  

Theorem 1: For any integer c ≥ 2, we have Max(1, c) = 2 and Max(2, c) = 4. 

Now, I present some strategies to solve our problems. First, concerning (P3), a 
“naïve” way would be to check all sets of 3 cards among a given card game. 
Nevertheless this strategy fails when the number of cards m is large since it requires 
O(m3) cases to be explored. Nevertheless, a strategy based on the structure of the 
given card game exists. For i in {1, …, c}, the i-block of a card game G is the subset 
C1, …, Ct of G such that C11 = … = Ct

1 = i.  

(SP3)  First check that each block does not contain an obstruction (you can apply this 
strategy recursively). Secondly, search obstructions that have at most one card per 

block. 

In general, this strategy is no more efficient than the “naïve” way. Nevertheless, it 
appears that for large obstruction free card game G, the colours are recursively and 
equitably distributed on each block, therefore (SP3) checks in O(Logc (m)3) steps that 
G has no obstruction.  

Another interest for using (SP3) is that it allows first results on Max(n, c) to be 
obtained. Indeed, consider an obstruction-free (n, c)-card game, then each block is at 
most Max(n-1, c) in size. Therefore Max(n, c) ≤ c.Max(n-1, c), which gives an 
answer to (P4). 

Moreover, from an obstruction free (n-1, c)-card game G of cardinality t, one can 
build an obstruction free (n, c)-card game of cardinality 2t. Indeed, for i=1, 2 , 
consider the obstruction free (n, c)-card games Gi obtained from G by adding a line to 
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each card and assigning color i to this new line. The set G’ = G1υG2 is an obstruction-
free (n, c)-card game of cardinality 2t, which gives an answer to (P2). 

                

 

 

 

 

  These two remarks lead to: 

Theorem 2: Given integers n and c ≥ 2, we have that:     
      2.Max(n-1, c) ≤ Max(n, c) ≤ c.Max(n-1, c).  

Observe that for c = 2, we get: Max(n, 2)=2n. Notice that this result can be proof 
without theorem 2 by giving an inductive proof. 

Nevertheless, when c ≥ 3, one can find obstruction-free card game of larger 
cardinality than 2.Max(n-1, c). To find such obstruction-free card game one can apply 
“greedy” strategies: 

(S1P2) Start from an obstruction free card game G (it can be empty) and add a card 
C such that GυC is still obstruction-free until there is no such card. 

(S2P2) Start from a card game G and while there is an obstruction in G, remove a 
card from this obstruction. 

Observe that these two strategies give Max(n, 2) since there is no obstruction in a (n, 
2)-card game. In general, an obstruction-free maximal card game G is built (i.e. for 
every card C not in G, GυC contains an obstruction). It is worth noticing that (SP3) 
produces also obstruction-free maximal card game G, but this requires additional 
arguments. If one chooses an appropriate order for eliminating cards one can find an 
optimum of (P1) using (S1P2) or (S2P2). Of course, finding such an order remains an 
open problem. Nevertheless, when n is ‘large’, one may use a suitable order which 
ensures that one considers all possible cards ; for instance the lexicographic ordering. 
Unfortunately, even when n=3, the lexicographic ordering gives a maximal 
obstruction free (3, 3)-card game of cardinality 8. However, by applying (S1P2) or 
(S2P2) with other orderings, one can find an obstruction free (3, 3)-card game of 
cardinality 9 (> 2.Max(2, 3)). Similarly, one can exhibit an obstruction free (4, 3)-
card game of cardinality 20. 

Moreover, by applying a (SP4) strategy one can prove:  

Theorem 3: Max(3, 3)=9 and Max(4,3)=20. 

Didactic analysis 

I decided to use n  the number of lines and c the number of colours as research 
variables (Grenier & Payan, 2002 ; Godot, 2005).  Since they can lead to new 
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Figure 5: An example of the inductive construction based on SP3 
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questions like: what is the link between a n-line game and a n+1-line game ? Trying 
to solve this question would provide an inductive construction of obstruction free 
card games which can be seen as an inductive proof.  Moreover, it can let students 
generalize some results, especially with 2-colours. So, students can use these 
variables to manage their research. 

There exists a more general problem than (P1), in which the size of an obstruction is 
a variable of the problem, but here, I decided to use it as a didactic variable by fixing 
its value to 3. I choose a size of 3 because for 1 or 2, the situation is very easy. It 
becomes sufficiently complex from 3.  

Through mathematical analysis one can determine the following knowledge involved 
in solving (P1): 

• The definition of an obstruction requires the understanding of logic 
quantifiers. 

• (S1P2) and (S2P2) suggest using an algorithmic approach to solving (P2) 
using eliminating  ordering (for example lexicographic ordering). Moreover, 
since these strategies build a maximal obstruction-free card game, one can 
discuss local /global maximum. Therefore, these strategies will produce 
solutions which can be conjectured as optimal. 

• (SP3)  allows a card game to be modelled which can be reinvested to 
(partially) solve (P2) and (P4) as shown in proof of Theorem 3. Moreover, 
(SP3) applied on (P2) gives an inductive construction of obstruction-free (n, 
c)-card game based on two copies of an obstruction-free (n-1, c)-card game. 

• (SP4) is an enumerating approach for solving (P4). To reduce the number of 
cases to be considered it will be convenient to use variables for the 
enumerating. 

• The distinction between problems (P2) and (P4) is related to lower and upper 
bounds on an optimization problem (P1) which is closely related to necessary 
and sufficient conditions.  

• Solving (P1) with c = 2 provides all possible 2n cards in a card game on n lines 
to be counted. 

OUR EXPERIMENTATIONS 

Two experiments were carried out, one with a “seconde” (tenth grade) class, E1, and 
another with a “première scientifique” (eleventh grade) class, E2. Pupils worked in 
groups of 3-4. In each class, we let them search for 2 hours. The E1 experiment was 
carried out before the E2 one. We filmed one group in each experiment. 

The problem was presented orally with examples on the blackboard. We gave to them 
some material with which they can experiment. In E1, we gave plain circles of 4 
different colours and in E2, we added n-line cards with no colours and n=1, 2, 3, 4. 
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But in both experiments the problem is posed generally as (P1), we did not ask 
students to only use the number of colours or the number of lines that is given 
materially.  

Results of experimentations 

First, my analyses are focused on how one group of the tenth grade class tried to 
solve (P3), that is to say, how they control the presence of an obstruction in a card 
game.  

They started by building an obstruction free card game with 3 lines and 4 colours  
with the additive strategy (S1P2). They built a card game G1 of cardinality 4 and then 
they added a card C. Then they searched obstructions in G1υC by trying to check 
“randomly” all triple of cards. They did not find any obstructions but they were not 
sure to have tested all triple. Here, the knowledge of how to find all triple is missing. 
Then, they formulated this question (P3a): How can we know if all triples of cards 
were checked ? They tried to answer (P3a) during one minute but they did not find a 
solution. After that, they concluded that they checked all triples of G1υC although 
they did not.  Thus, they decided to give (P1) a higher priority than (P5). Seeing that 
they could not solve (P5) quickly and believing that their experimental control based 
on “checked all triples” is sufficiently efficient, they decided to rely on the 
experimental control.  

During all the session they relied on the experimental validation for the obstruction's 
property although, I showed them obstructions in their card games. They did not 
decide to re-examine their plan by searching an other strategy to solve (P3) than 
“check all triples”. Despite that, they observed that this strategy is too difficult to do 
and that the experimental control based on this strategy was not efficient.  

So, it seems they gave (P3) a lower priority than (P1). It joins Schoenfeld (1992) 
observations that students are more concerned about the initial problem than to sub-
problems, although sub-problems can be key elements. And here, (P3) is key element 
to make progress on (P1). The group said 11 times that a card game was obstruction-
free and it was true only once.  

In the two experimentations, none of the group seemed to search an efficient method 
to answer (P3), they only used strategies based on “checked all triples”, although 
many of them were confronted to (P3). So it seems that students decided to rely on 
the experimental validation and not on the mathematical validation for the obstruction 
free property. An interpretation could be that students did not find a solution so they 
decided to rely on the experimental control to progress in (P1). However,  for the 
group above, it seems, as they only search for one minute, that they decided to not 
spend too much time on (P5). So, they did not recognize the role of (P5) and (P3) for 
solving (P1). 

Summarize of the experimentations: 
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It appears that the use of material during experiments E1 and E2 led pupils to carry 
out their own experiments in mathematics. Students started to manipulate and carry 
out experimentations to solve (P3) and (P2). Even if (P3) was identified, they stayed 
in the experimental control. Consequently, there were some group which did not 
obtain results on 3 lines. But, they made hypotheses or conjectures that they checked 
with experiments like “this card game is maximum”, “by using this strategy, we build 
an obstruction free card game” or  “with only 2 colours on  each card, there are no 
obstructions”, which allowed them to find counter-examples. Here, students are 
responsible of deciding the validity of their propositions. But for one group, it was 
not the case, they made an experimental control of the obstruction free property of 
their card game and after called us to validate their results. They did not take the 
responsibility of the result's validity. There was a problem in the didactic contract. 

They proved Max(n, 2) for n=1, 2 and 3. But only one group generalized this result 
and this group made the 2 experimentations.  

They used at most 4 colours and did not try to generalize with more. Moreover, they 
tried to use all the colours. Here, we can see a consequence of the didactic contract:  
use all that is given and not more. So, the didactic contract has to be changed to let 
students manage their research. 

The concept of variable useful in an enumerating strategy like (SP4) was not 
discussed. Similarly no good eliminating ordering was proposed by the pupils ; they 
remained in a ‘naïve’ strategy. 

BRIEF CONCLUSION 

This situation was experimented with “ordinary” students and show that this problem 
can let students take the role of a mathematical researcher. Although they did not use 
the variables of the problem to try to solve easier sub-problems, they carried out 
experiments to try to answer their own questions, formulated conjectures and made 
proofs. Moreover, it seems, as in Schoenfeld (1992) studies,  that contrary to an 
expert they have some difficulties to identify one of the key element to solve (P1) ;  
although they identified (P3), they relied on the experimental control.  

Students did not work on all knowledges identified in the didactic analysis, especially 
the concept of variable which is a powerful abstract concept. We tested this situation 
on a longer time (18 sessions during one year). In this context, strategies (SP3) and 
(SP4) were developed and their corresponding results were obtained.  

NOTES 

1.  RSC: Research Situation for the Classroom. 

2. Here the definition of hypothesis used is: a proposition that we enunciate without opinion. It is 
not the same as the usual definition of a mathematical hypothesis,  
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3. In France, seconde corresponds at a tenth grade class, it is a general section. Première 
scientifique corresponds to a eleventh grade class and it is the scientific section. 
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