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This paper reports on a longitudinal observation study characterising student’s 
development in their understanding of derivatives. Through the Dutch context-based 
curriculum, students learn this concept in relation to applications. In our study, we 
assess student’s understanding. We used a framework for data analysis, which 
focuses on representations and their connections as part of understanding deriva-
tives, and it includes applications as well. We followed students from grade 10 to 
grade 12, and in these years we administered four task-based interviews. In this 
paper we report on the development of one ‘average’ student Otto. His growth 
consists of an increasing variety of relations, both between and within represen-
tations and also between a physical application and mathematical representations. 
We also find continuity in his preferences for and avoidances of certain relations.  
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INTRODUCTION 

In the Dutch mathematics curriculum for secondary schools, the role of applications 
increased over the past 15 years. When the concept of the derivative is taught in 
grades 10-12, most textbooks provide students with opportunities to learn the concept 
in different contexts. Often an introduction in grade 10 starts with contexts related to 
velocity, steepness of graphs and, for example, increasing or decreasing temperatures. 
Textbooks provide tasks on the average rate of change, average velocity and the slope 
of a secant. The step towards instantaneous rate of change is kept intuitive, as most 
textbooks avoid the use of the formal limit definition, or only mention it on one page 
without using the notation with a ‘limit’. Also in the conceptual extension of the 
derivative in grades 11 and 12, most chapters contain applications.  

During their school time, students construct their knowledge of different concepts. 
One of these concepts is the derivative, which is not only a multifaceted mathematical 
concept, it also has relations to other school subjects. Knowledge of the derivative 
may support the learning of physics and economics, but physics teachers complain 
that students cannot apply what they have learned in their mathematics classes (e.g. 
Basson, 2002). In our research, we investigate which aspects of the concept 
derivative are becoming available to students, and whether and how students can 
relate the concept between different subjects such as mathematics, physics and 
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economics. Our aim is to describe and analyse the development of students’ 
understanding of derivatives, not just as a mathematical concept in itself, but as a 
mathematical concept in relation to applications. 

THEORETICAL BACKGROUND 

Understanding the concept of the derivative 

It is complex to determine to what extent a student understands the concept of 
derivative. Many publications on understanding concepts use words such as scheme, 
structure, connections and relations. Anderson and Krathwohl (2001) define 
conceptual knowledge as: the interrelationship between the basic elements within a 
larger structure that enables them to function together. Thus, they perceive it as more 
complex and organized forms of knowledge. Procedural knowledge is defined as: 
methods of inquiry and criteria for using skills, algorithms, techniques and methods. 
Hiebert and Carpenter (1992) describe understanding in terms of the way, in which 
information is represented and structured. The degree of understanding depends on 
the number and strengths of connections between facts, representations, procedures or 
ideas. Connections can have different characteristics. In our analysis of students’ 
connections, we identify procedural and conceptual knowledge. To describe a 
student’s understanding of the derivative in relation to applications, we describe the 
connections made by a student (Roorda, Vos & Goedhart, 2007), distinguishing: 
(i) Connections between mathematical representations,  
(ii) Connections within mathematical representations and  
(iii) Connections between an application and mathematical representations. 
We will explore these three types of connections further. 

Connections between representations 

Hähkiöniemi (2006) discusses different viewpoints on representations. According to 
him, the traditional view on representations is that a representation is conceived as 
something that stands for something else, and representations are divided into 
external and internal ones (cf. Janvier, 1987). In his study Hähkiöniemi defines a 
representation broader as: 

“.. a tool to think of something, which is constructed through the use of the tool; a 
representation had the potential to stand for something else but this is not necessary. 
A representation consists of external and internal sides which are equally important 
and do not necessarily stand for each other but are inseparable.” (p. 39)  

As such, a gesture by a hand in the air can be a representation of a tangent. Without 
ignoring the existence of internal representations, we will follow the more traditional 
view, because external representations can be observed and they can be considered as 
external indicators of someone’s internal representations. In different research the 
following representations are distinguished: formula, graph, table, words, physical 
background, gestures (Asiala, Cotrill, Dubinsky & Swingendorf, 1997; Hähkiöniemi, 
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2006; Kendal & Stacey, 2003; Kindt, 1979; Zandieh, 2000). Kendal and Stacey 
(2003) look especially at three mathematical representations: formula, graph and 
table. Students can talk about derivatives from a formulae viewpoint (such as rate of 
change), from a graphical viewpoint (slope), or from a numerical viewpoint (such as 
average increase). 

Connections between representations and the ability to switch between these are 
important features for solving tasks (Dreyfus, 1991; Hiebert & Carpenter, 1992). 
Hähkiöniemi (2006) states that conceptual knowledge often refers to the making of 
connections from one representation to another. However, we will show in this paper 
that a connection between two representations can also have a more procedural 
character. 

Connections within representations 

As mentioned above, not only connections between representations but also within 
one representation are important (Dreyfus, 1991). For the derivative, Kindt (1979) 
distinguishes four levels within each representation. For example, in the formulae 
representation the four levels are: function, difference quotient, differential quotient 
and derivative, in the graphical representation: graph, slope of a chord, slope of the 
tangent and graph of the derivative. Zandieh (2000) indicates the steps between these 
four levels as process-object pairs, since each level can be viewed both as dynamic 
process and as static object. To illustrate the idea of process-object pairs we look at 
the second level of the formulae representation, the difference quotient. A difference 
quotient :y x∆ ∆  is a division, which can be viewed as a process: divide a difference 

in y by a difference in x. The outcome of this division, denoted by y
x

∆

∆
, is a value 

which can be seen as an object. Likewise, in the graphical representation: the division 
of two lengths is the process, which results in an object, the slope of a chord.  

Zandieh (2000) explains why the differential quotient and the derivative function 
both also can be viewed as process-object pairs. In the difference quotient a limiting 
process is involved, and ‘the derivative acts as a process of passing through 
(possibly) infinitely many input values and for each determining an output value 
given by the limit of the difference quotient at a point.’ 

When a student makes connections between levels within a representation, 
Hähkiöniemi claims this to be mostly procedural. However, these connections can 
also be conceptual, for example in a graphical explanation of the limiting process.  

Connections between applications and mathematics 

The mathematical concept ‘derivative’ has relations with different applications. 
Thurston (1994) describes different ways of understanding derivatives. One way is to 
understand derivatives in terms of the instantaneous speed of f(t) when t is time. Also, 
derivatives are used in physics lessons for concepts such as velocity, acceleration or 
radioactive decay, and in economics lessons for calculating maximum profits of 
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marginal costs and revenues. Zandieh (2000) included a column physical into her 
framework. She argued that the context of motion serves as a model for the 
derivative. This extension can be made to other applications of the derivative as well. 

Our research question in terms of the described framework is: what are characteristics 
of a student’s development with respect to connections made between and within 
representations, and between applications and mathematical representations? 

METHODOLOGICAL DESIGN 

To study the development of students’ understanding, we designed a longitudinal 
multiple case study with twelve students. Between April 2006 and December 2007, 
approximately every six month a task-based interview was conducted, yielding four 
interviews of 75 minutes with each student. In the interviews, we used think-aloud 
and stimulated recall techniques. The interviews were videotaped and transcribed. 

The first interview was held before students were introduced to the theory of 
derivatives. Between the second and the last interviews, derivatives were a re-
occurring topic in mathematics lessons. For this paper, we report on interview 2 (I-2) 
in November 2006 and interview 4 (I-4) in November 2007, because these contained 
the same five tasks, enabling us to compare in time. We will report on the work of 
one student, Otto. By zooming in on the work of one student, we can look more 
precisely at the solution strategies and statements of this student. We selected an 
average student with a positive attitude. 

All tasks in the test dealt with the concept of derivative, but this was not explicitly 
mentioned. The tasks were designed to give students many opportunities to show 
their understanding of derivatives in different representations and applications. We 
describe three exemplary tasks, named Emptying a Barrel, Petrol and Ball.  

Barrel: A barrel is emptied through a hole in the bottom (Figure 1). 
For the volume of the liquid in the barrel, the formula 

21
6010(2 )= −V t  and its graph are presented. The question is to 

calculate the out-flow velocity at 40t = .  

Petrol (Kaiser-Messmer, 1986): In a car an installation measures the 
petrol consumption related to the distance driven. The amount of 
petrol, used by a car, depends on the travelled distance. The task includes a graph and 
a table. ( )V a  is the petrol consumption after a km. The question is to interpret 

( ) ( )V a h V a

h

+ −
 (h is a value, which you can choose). 

Ball: A ball falls from a height of 90 cm. A table, a graph and the formula for the 
height 2( ) 0,9 4,9h t t= −  are presented. The question is to calculate the velocity at a 
certain point. 

Figure 1 
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Our analytic framework (presented in Roorda et al. 2007) contains elements of earlier 
frameworks of Zandieh (2000), Kindt (1979) and Kendal & Stacey (2003) In one 
dimension we have three mathematical representations: (a) formulae, (b) graphical; 
(c) numerical. In the other dimension we have the three object-process layers as 
connections between the four levels. See Table 1. 

Table 1: Representations and levels of the concept derivative 

 Formulae Graphical Numerical 

Level 1 F1: f : function G1: graph N1: table 

Level 2 F2: 
f

x

∆

∆
 difference quotient G2: average slope  N2:average increase 

Level 3 F3: 
d

d

f

x
 differential quotient G3: slope of a tangent 

 

N3:instantaneous rate of change 

Level 4 F4 : f ′ derivative G4: graph of derivative N4: table with rates of change 

To solve an application problem, students can choose which mathematical 
representation can be helpful. In this way, they make a connection between an 
application and a mathematical representation. In the table below, different non-
mathematical representations are displayed, matching the format of the table above. 

Table 2: Different applications 

 
General application Economics Physics: velocity Physics: acceleration 

Level 1 
S1: ( )A p : A depends 
on p 

E1: TK total costs Pa1: ( )s t  
displacement 

Pb1: ( )v t velocity 

 

Level 2 S2: 
p

A

∆

∆
 average 

change of A 

E2: 
[ ]TC

q

∆

∆
 average 

increase of costs 

Pa2: 
s

t

∆

∆
 average 

velocity  

Pb2: 
v

t

∆

∆
 average 

acceleration 

Level 3 S3: 
dp

dA
 instantaneous 

rate of change 

E3: 
[ ]d TC

dq
 marginal 

costs  

Pa3: 
ds

dt
instantaneous  

velocity 

Pb3: 
dv

dt
 for t a=   

instantaneous acc. 

Level 4 
S4: A’(p) derivative E4: MC marginal 

costs 
Pa4: ( )v t  velocity Pb4: ( )a t acceleration 

The difference with earlier frameworks is that we operationalise understanding of the 
concept of the derivative through the connections between representations, within 
representations and between representations and applications. In our analysis, we use 
arrows (as connectors) to visualize the connections in the scheme above. During the 
problem solving process a student may switch, for example, from a function (F1) to 
the derivative function (F4), yielding the code F1→F4. Another difference is the role 
of applications: these are not only viewed of as a support for understanding 
mathematics, but also as a part of other school subjects. When, for example in an 
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economic problem, a student focused on the graph, drew a tangent line, and 
calculated the slope, without economic interpretation, we will denote this as: 
E1→G1→G3. However, when a student solves a problem by calculating marginal 
costs, without mentioning relations with functions, graphs or table, we will denote 
this as E1→E4→E3. 

RESULTS 

In this section, the analysis and coding of students’ strategies in terms of our 
framework is illustrated by looking at the task Barrel. In Table 3 we summarise 
Otto’s work on this task during I-2 and I-4. 

Table 3: Otto’s typical statements and activities; Associated codes for Otto’s 
connections; task Barrel  

Interview 2 (I-2) Interview 4 (I-4) 

Otto: I have to calculate the velocity at that 
point [plots the graph and uses the option 
‘Tangent’ of his graphing calculator. In the 
window of the calculator the tangent appears 
and the formula y = −0,4428191485x+35,49..] 

Otto goes on to say: I think I have to different-
tiate, I get the formula of the tangent by 
differentiating. He calculates the derivative, 
without using the chain rule, fills in 40t = , 
makes a calculation error, writes down 

(40) 493,333V ′ = − . 

To check his answer, Otto tries to calculate the 
average out-flow velocity of the tank over the 

whole period, by a self-made rule:
2

begin end+
 

Otto calculates the derivative with some errors: 
(40) 59,8V ′ = . He discovers a miscalculation, 

corrects his answer into −555,56 litre per 
minute. To check his answer, Otto draws a 
tangent into the graph of the task and calculates 

35 0

80

y

x

∆ −
=

∆
 = 437,5 l/m. He says: This is a bit 

imprecise. I think it is possible. […] you can 
check with a graphical calculator by drawing a 
tangent. 

Otto plots the graph and the tangent: [O writes 
down: GR→ tangent(40)→-0,444x+35,56] 

He writes down 444,4 l/min. He thinks he 
made a miscalculation in the derivative. 

Connections interview 2 
S1→F1→G1→G3: use of formula; plots the 
graph; plots tangent 
S1→F1→F4→F3→S3:derivative (with error); 
derivative at t = 40; back to application 

Connections interview 4 
S1→F1→F4→F3→S3: formula; derivative 
(with error); fills in t = 40; back to application 
S1→G1→G3→S3: graph; tangent; application 

F2→G2 slope of tangent with y
x

∆

∆
  

F1→G1→G3→S3 graph, tangent; application 

Some observations: Otto used in I-2 and I-4 similar solution methods, such as 
differentiating the formula and plotting the tangent. Differences are also visible, for 
example in I-4 Otto checked his solution additionally by drawing the tangent on 
paper. Also, the connection between applications and mathematics G3→S3 was 
added, because Otto interpreted the slope of the tangent in terms of the application.  
In table 4 the same overview is given for the tasks Ball and Petrol. We will analyse 
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the data of these three tasks by examining the connections between representations, 
within representations and between application and mathematical representations. 

Connections between representations 

In I-2 the connection F1→G1 is frequently observed. In the tasks, Otto used the given 
formula as a starting point to plot a graph on his graphical calculator. Only one time 
we saw Otto make a table with his graphing calculator. Throughout I-2, Otto made a 
connection between derivative and tangent (F3/F4 →G3), but he could not explain 
this relation precisely. He said, for example: When you differentiate you get the 
formula of the tangent (see Table 3) and: to approximate the tangent, you use the 

formula 
( ) ( )V a h V a

h

+ −
 (see Table 4). 

Table 4: Otto’s typical statements and activities; Associated codes; tasks Ball and 
Petrol 

Interview 2 Interview 4 
Otto reads the task Ball and says: I think I have 
to use a derivative. He calculates the derivative 
but he fills in t = 2,4 instead of t = 0,24. 
Then he says: When you differentiate you get the 
formula for the tangent, and that corresponds to 
the velocity, I think. 
On his graphing calculator he plots a graph and a 
tangent but after a long silence he states: I don’t 
get any wiser from this. 
 
 
 
 
Connections: Pa1→F1→F4→F3 formula; 
derivative; fills in a wrong value for t. 
F1→G1 →G3 graph; tangent 

Otto thinks he can calculate the velocity of the 
ball by the formula txv ∆= . He calculates the 
average velocity over de first 0,24 seconds. 
This is followed by some confusion because 
Otto thinks the ball also moves horizontally. 
When de interviewer asks him to check his 
answer, Otto calculates the derivative. This 
answer is better, according to him, because in it 
he recognizes the derivative 9,8 as the gravity 
acceleration. He also says: I could draw a 
tangent and calculate the slope of it. At last Otto 
mentions a method with kinetic energy, but for 
that he needs the mass of the ball. 
Connections:Pa1→F1→F4→F3→Pa3: formula;  
derivative; fills in a value for t; velocity 
G1→G3 slope of tangent 

Statements of Otto in the task Petrol 
It’s the oil consumption at that point. 
On a small interval it becomes precise. 
On a small part you can approximate the 
tangent. 
Differentiating is for the formula of the tangent. 
It is a specific value for the tangent 
How many liters per kilometer he uses (F2→S2) 
 
 

Statements of Otto in the task Petrol 
It is the approximation on a certain point;  
It is a certain slope, when you take a small h you 
calculate exactly the slope at a certain point 
(F3→G3; F2→F3); 
You get the consumption very precisely; 
When h is larger it is the average consumption 
over a certain distance. (F2→S2); 
It is a formula to calculate the consumption over 
a certain period of time. 

Compared to I-2, in I-4 we observed more relations between representations, also at 
different levels of the concept. Otto more often used the given graph to solve the task. 
In I-4 Otto stated that the value of the derivative equals the slope of the tangent. He 
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also made a connection between the formula of the difference quotient and the slope 
of a secant. He never used the numerical representation. 

Connections within representations 

Both in I-2 and I-4, we often coded the connection between levels F1→F4→F3 and 
G1→G3. These two connection strings (calculating a derivative and plotting a 
tangent) were standard procedures for Otto, displaying a strong procedural 
understanding, but in I-2 Otto cannot yet explain this relation accurately. 

In the tasks Barrel and Ball, Otto never mentioned the difference quotient at a small 
interval or slope of a secant; the tasks obviously did not activate his potential 
knowledge of the limiting process of the derivative (connections within level 2 and 3) 
although the task Petrol gave ample opportunities to reason about the impact of a 
larger or smaller h. In both interviews, Otto was unable to explain the formula 
precisely, but in I-4 Otto made more correct statements than in I-2 (see table 4). As 
we see in I-4, Otto tried to explain the limiting process, but even in I-4 his 
formulations are not very accurate. 

Connections between applications and representations 

In I-2 Otto connected derivative, tangent and velocity, when saying: “When you 
differentiate you get the formula of the tangent, and that corresponds to the velocity, I 
think.”  Nevertheless, Otto did not accurately put these concepts together. In I-4 Otto 
mentioned and used more relations between formula/graph and applications. He 
interpreted the tangent-formula correctly to find the velocity of the ball, and in the 
Petrol-task the link between the mathematical notation and the application is 
correctly described by Otto. 

In I-2 Otto did not connect mathematical and physical methods (such as using the 
formula v a t= ⋅ ). A year later, in I-4 Otto made a few remarks, in which he 
connected mathematics and physics. For example, Otto noticed that in the derivative 

( ) 9,8h t t′ = −  the value 9,8 is the acceleration of gravity, and he mentioned a 
calculation method using kinetic energy. In I-4 Otto stated (in another task): “the 
derivative is the formula for the velocity, and the second derivative is for distance 
moved [..] Once, my math teacher gave this as notes.” This is an incorrect 
formulation, because Otto meant ‘acceleration’ instead of ‘distance moved’. 

CONCLUSIONS AND DISCUSSION 

This study uses a case study methodology, the focus of the data analysis is on the 
student as an individual. From individual results we can not prove any 
generalizations, which is clearly a limitation of this paper, but we can find 
counterexamples and existence proofs.  

In this paper, we reported on Otto’s development in understanding the derivative. 
Compared with I-2, we measured in I-4 an increased number of connections, both 
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between and within representations. Connections made in I-2 reoccurred in I-4. 
Otto’s preference for the graphical and the formulae representation was continued in 
I-4 and also his avoidances of the numerical representation. The preference for 
graphical representation corresponds to research by Zandieh (2000), who observed 
that six out of nine students prefer the graphical representation in tasks and 
explanations about derivatives. In the case of Otto, we saw that this preference 
prevailed throughout the learning process.  

In I-2 at several occasions, Otto equalled the derivative to the tangent, instead of ‘the 
slope of the tangent’. This was not a slip of the tongue, because Otto repeatedly 
displayed an incorrect idea about the connection between ‘tangent’ and ‘derivative’. 
This phenomenon is also reported by Asiala et al.(1997) and Zandieh (2006). In 
addition to the research of Zandieh, we see that Otto’s misstatements hinder him 
during problemsolving. A year later in I-4, Otto knows that the derivative yields the 
slope of the tangent, so his understanding of the formula of a tangent is corrected. 

Basson (2002) reported that physics teachers frequently complain that students 
cannot use what they have learned in their mathematics classes. In the case of an 
average student such as Otto, we observe indeed difficulties to connect mathematics 
and physics correctly. Although there is some progress in the accuracy of statements, 
for example in recognizing the gravity acceleration, the use of the rule ‘derivative is 
velocity’, his understanding of these connections stays weak.  

Otto improved his procedural knowledge. Although he often uses the same 
procedures, especially plotting the graph (F1→G1), plotting a tangent (G1→G3), or 
calculating a derivative at a point (F1→F4→F3), he seems to be more certain of his 
work and he is more sure about the connections between the different procedures. On 
the other hand, a recurring feature with Otto was that he sometimes chose an incorrect 
method, for example in the task Ball, in which he calculates in I-4 an average velocity 
instead of an instantaneous velocity, without any corrections on his work. 

Between I-2 and I-4, his conceptual knowledge increased. In I-4 Otto could explain 
relations between mathematics and physics to a certain extent, the connection 
between tangents and the derivative function improved and he connected more 
frequently to the levels 2 and 3 of the derivative. On the other hand, the connections 
made were not verbally well explained and some possible connections were not 
mentioned. So his conceptual knowledge increased, but nevertheless remained weak. 

We have used a framework for analysing students’ understanding of the derivative in 
application problems. The resulting arrow-schemes describe students’ strategies in a 
structured way by indicating patterns between cells of the table (see table 1). This 
facilitates the interpretation of students’ statements and operations. Our framework 
also gives a clear description of transitions between applications and mathematical 
representations, which students make during problem solving. We added notes on 
procedural and conceptual knowledge displayed by the students. A challenge remains 
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to use students’ misstatements, which are presently not described although these can 
be indicators of students’ understanding. 
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