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INTRODUCTION TO CERME 6  
BY BARBARA JAWORSKI PRESIDENT OF ERME  

EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS 
EDUCATION 

 

CERME is the two-yearly congress of ERME, the European Society for Research in 
Mathematics Education. CERME 6 marks more than a decade of ERME and it is 
important to recognise the achievements of the society over this time. 
In May 1997, a group of 16 scholars from different European countries met in 
Osnabrück, Germany, for three days to discuss the formation of a European society in 
mathematics education. In true European spirit, we decided that we wanted a society 
which would bring together researchers from across Europe, particularly including 
colleagues from Eastern Europe, fostering communication, cooperation and 
collaboration. We wanted a conference that would explicitly provide such 
opportunity. We wanted especially to encourage and contribute to the education of 
young researchers. Thus ERME was born and began to take shape.  
We decided on a two-yearly conference, or congress as it later became known, and the 
name CERME emerged – Congress of the European Society for Research in 
Mathematics Education. CERME should have a group structure in which researchers 
would have sufficient time to really get to know each other, share and discuss their 
research and engage in deep scholarly debate. The first CERME was planned for 
February 1999, at Osnabrück. The Program Committee took very seriously the aims 
for the conference expressed at the 1997 meeting. Seven working groups were 
planned and 12 hours were provided for work in a group. To avoid most of the 
conference time being taken up by paper presentation, it was decided there would be 
no oral presentations at the conference. Papers would be presented in written form 
before the conference with sufficient time for group participants to read the papers. 
The 12 hours would be spent discussing the papers and working on themes and issues 
suggested by the papers and the group leaders. Over the succeeding years, a group led 
by Konrad Krainer (Austria) and Paolo Boero (Italy) developed a plan and style for a 
YERME summer school (YESS). The first summer school was held in Klagenfurt, 
Austria in August 2002. Like CERME, the summer school was based around groups, 
working on papers submitted by the young researchers, each with an international 
“expert” as leader.  
The pattern of CERME and YERME has developed so they take place in alternative 
years, the group structure being developed and carried forwards from one to the next. 
We had CERME 2 in Marianske Lazne, Czech Republic in 2001; CERME 3 in 
Bellaria, Italy in 2003; and YESS 2 in Podebrady, Czech Republic in 2004. CERME 
4 took place in Saint Feliu, Spain in February, 2005 and YESS 3 in Jyväskylä, 
Finland in August 2006. CERME 5 was held in Cyprus in February 2007, and YESS 
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4 in Trabzon, Turkey in August, 2008. CERME 6 will take place in Lyon, France in 
2009 and YESS 5 in Palermo, Italy in 2010. People came from these events speaking 
of inspirational experiences. It seemed clear that the events generated something that 
we came to call the CERME Spirit. Based fundamentally on the three Cs, 
communication, cooperation and collaboration, the CERME Spirit was about the 
inspiration that derives from serious scholarly tackling of ideas and concepts in key 
areas and of mathematics education research with colleagues from multiple nations, 
facilitated by the group design of the events.  
However, the group design was not without its critics. Some critics felt constrained 
by the requirement to spend a conference, largely, in just one group. Some felt that a 
conference ought to offer a greater variety of opportunity to participants. Participants 
should be free to choose where to be at any time. However, the group work at 
CERME or YESS would be seriously disrupted if participants were to hop from 
group to group, not engaging seriously with the work in any one. Some suggested 
that perhaps planning could allow participants to take part in two groups, so that 
engagement in both could be serious. Such ideas have been considered by the ERME 
Board and Programme Committees but so far we have remained faithful to the initial 
conception. Many participants have said in evaluation of the events that the 
opportunity to spend serious time in one group allowed them to really get to know 
researchers from other countries, and that this contributed significantly to the depth of 
thinking that was possible.  
We want to encourage wider participation to ongoing activity in our Society, with 
more nations contributing to hosting events and a secure financial platform for 
continuing our inclusive communication, cooperation and collaboration within 
Europe. Further details of ERME can be found at the following site: 
http://ermeweb.free.fr/  
 

Barbara Jaworski – President of ERME 

GENERAL INTRODUCTION

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6>



 

 
XXI

 

PRESENTATION OF CERME 6 BY FERDINANDO ARZARELLO,  
CHAIR OF THE SCIENTIFIC INTERNATIONAL COMMITTEE 

 
As pointed out in the document written by our President, CERME is a Congress 
designed to foster a communicative spirit in European mathematics education 
according to the three Cs of ERME: communication, cooperation and collaboration. It 
deliberately moves away from research presentations by individuals towards 
collaborative group work. Its main feature is a number (15) of thematic groups whose 
members have worked together in a common research area.  
In addition to the working group sessions, there was:  

• Two plenary lectures and a panel;  

• Two parallel 1 hour sessions where the participants had the opportunity of 
debating with the plenarists;  

• A poster session;  

• Final parallel sessions (repeated twice), where each group has presented its work 
to the interested participants; 

• Policy and purpose sessions to negotiate the work and directions of ERME. 
The philosophy of our Congress is based on the following two issues:  

i. We need to know more about the research which has been done and 
is ongoing, and the research groups and research interests in different 
European countries; 

ii. We need to provide opportunities for cooperation in research areas 
and for inter-European collaboration between researchers in joint 
research projects. 

 
In organising this Conference we considered both the ERME spirit and the 
observations from the questionnaires filled by the participants, which mainly 
concerned the plenary events. Consequently, the following structure was planned:  

• Two plenary lectures of 75 minutes; each plenarist had a reactor: they had 60 
minutes for their two presentations, and then there was 15 minutes for questions 
from the floor. Moreover the interested people had the opportunity to meet the 
plenarists in an informal meeting in another day.  

• An other event is the special 2 hour plenary of the last day, which had three 
participants: the aim was to discuss a topic emerging from previous CERMEs, 
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analysing it from different standpoints and to give people the possibility of a 
wide debate. 

 
The structure of the Working Groups was essentially the same: each group had more 
of 12 hours for discussing its topic. In the final Sunday session each group have 
presented the results of its work in two consecutive one hour slots, according to the 
model experienced in CERME 5, which had received the approval of the participants.    
 
I think that all of us had a very exciting week, plenty of interesting scientific and 
social opportunities. In particular I underline the lecture of Prof. E. Ghys ⎯ 
http://www.dimensions-math.org ⎯ and the discussion on a Project of a European 
Journal of Mathematical Education.  
 
I wish to thank the local organisers, and particularly Viviane Durand-Guerrier, for the 
enormous work they have done to make possible the realisation of this Conference. 
 

Ferdinando Arzarello – Chair of the scientific international committee 
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QUALITY AND INCLUSION IN CERME 6: A PROPOSED 
REVIEW 

 
The European Society for Research in Mathematics Education (ERME), and its 
principal activities CERME (2-yearly Congress of ERME) and YERME (meetings of 
Young researchers in ERME) are committed to the three Cs: Communication, 
Cooperation and Collaboration in research in mathematics education. Over the years 
in which ERME has existed, the community has developed what has become known 
as “The CERME Spirit”. These words capture a practical manifestation of the 
objectives expressed in the three Cs. The phrase refers to an inclusivity of working in 
which people genuinely work together, in which all are welcome, and in which 
members work hard to ensure that all can take a full part in activity. A major factor 
and issue – that of the language of our work – has been addressed seriously; different 
groups devising their own approaches to their working language. 
However, these things are not straightforward and issues arise as soon as we 
construct practical situations. The main example of this concerns the scientific quality 
of our work in mathematics education research. Of course we aspire to a high quality 
of scientific work, just as we aspire to operate in fully inclusive ways. Ideally we 
should like there to be compatibility between the two. But what does or can this look 
like in practice? 
These issues face group leaders as soon as they set out to construct a programme of 
work for their group, starting with a call for papers. Responding to this call, we see 
that many papers are now received for all groups. This suggests that researchers in 
our field want to be part of CERME and offer their work to colleagues in CERME. 
From an inclusive point of view, all papers should be welcome and all those wishing 
to participate should have a place. However, from a scientific point of view, papers 
should be reviewed according to scientific criteria, those that are of a suitable 
scientific quality (according to the group leaders) should be accepted and others 
rejected. In practice this means that authors of rejected papers may not be able to 
attend the congress since funding depends on an accepted paper. The practice seems 
to go against principles of inclusion. 
The ERME Board, and Programme Committees of CERME conferences have been 
aware of these issues and have addressed them by creating a two stage review 
process. For presentation of papers at the congress, a much more open attitude should 
be taken to the criteria, aiming to include as many participants as possible. At this 
stage, feedback to prospective participants should detail what is required for a paper 
to be acceptable for the scientific proceedings following the congress. Papers not 
meeting these requirements would not be accepted for the proceedings. Of course, it 
is then up to the group leaders to determine how to make the necessary decisions: 
what is acceptable for presentation, and what are the more strict criteria for 
publication? They also have to decide how to conduct the work of the group in an 
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inclusive way.  Similarly those organising YERME events have to decide how to 
ensure both quality and inclusion in practice. 
Our sixth CERME achieved, it therefore feels like a time to review these issues and 
procedures. For this purpose, a small group of interested members of ERME has 
agreed to survey participants in CERME 6 and seek views on the processes and 
issues that are involved. We have included an opportunity to comment in the 
evaluation questionnaire for CERME 6 and possibility to send us a personal 
communication (written) to express your views in more detail. We have also asked 
group leaders, present and past, to tell us how they have made decisions and what 
difficulties if any there have been.   
As a result of analysing the information received we hope to write a paper for a 
scientific edited book on the topic of inclusion and quality. Such a paper could also 
act as a basis for future policy in ERME, CERME and YERME. 

Barbara Jaworski,  
Ferdinando Arzarello 

M. Alessandra Marriotti 
Constantinos Christou 

Joao Pedro da Ponte 
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SCIENTIFIC PROGRAM 
 

CERME 6 PLENARY CONFERENCES 
Jan 28, 15:30 - 16:45 
Luis Radford, Université Laurentienne, Ontario, Canada. 
SIGNS, GESTURES, MEANINGS: ALGEBRAIC THINKING FROM A 
CULTURAL SEMIOTIC PERSPECTIVE. 
Reactor: Heinz Steinbring (Duisburg-Essen University) 
Summary. In this presentation I will deal with the ontogenesis of algebraic thinking. 
Drawing on a cultural semiotic perspective, informed by current anthropological and 
embodied theories of knowing and learning, in the first part of my talk I will 
comment on the shortcomings of traditional mental approaches to cognition. In tune 
with contemporary research in neuroscience, cultural psychology, and semiotics, I 
will contend that we are better off conceiving of thinking as a sensuous and sign-
mediated activity embodied in the corporeality of actions, gestures, and artifacts. In 
the second part of my talk, I will argue that algebraic thinking can be characterized in 
accordance with the semiotic means to which the students resort in order to express 
and deal with algebraic generality. I will draw upon results obtained in the course of a 
10-year longitudinal classroom research project to offer examples of students’ forms 
of algebraic thinking. Two of the most elementary forms of algebraic thinking 
identified in our research are characterized by their contextual and embodied nature; 
they rely extensively upon rhythm and perceptual and deictic (linguistic and gestural) 
mechanisms of meaning production. Furthermore, keeping in line with the situated 
nature of the students’ mathematical experience, signs here usually designate their 
objects in an indexical manner. These elementary forms of algebraic thinking differ 
from the traditional one—based on the standard alphanumeric symbolism—in that 
the latter relies on sign distinctions of a morphological kind. Here signs cease to 
designate objects in the usual indexical sense to give rise to symbolic processes of 
recognition and manipulation governed by sign shape. 
The aforementioned conception of thinking in general and the ensuing distinction of 
forms of algebraic thinking shed some light on the kind of abstraction that is entailed 
by the use of standard algebraic symbolism. They intimate some of the conceptual 
shifts that the students have to make in order to gain fluency in a cultural 
sophisticated form of mathematical thinking. Voice, gesture, and rhythm fade away. 
Embodied and contextual ways of signifying are then replaced with a perceptual 
activity where differences and similarities are a matter of morphology, and where 
meaning becomes relational. 
 
Jan 29, 9:15 - 10:30 
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Paola Valero, Aalborg University, Denmark. 
ATTENDING TO SOCIAL CHANGES IN EUROPE: CHALLENGES FOR 
MATHEMATICS EDUCATION RESEARCH IN THE 21ST CENTURY  
Reactor: Margarida Alexandra da Piedade Silva Cesar (Lisbon University) 
Summary. Based on an analysis of mathematics education research as an academic 
field and on current social, political and economic transformations in many European 
countries, I would argue for the need to rethink and enlarge definitions and views of 
mathematics education as a scientific field of study in order to provide better 
understandings and alternatives for practice in the teaching and learning of 
mathematics today. I will explore the notion of the “network of mathematics 
education practices” as a complex, multi-layered space of social practice where the 
meanings of the teaching and learning of mathematics are constituted. I will illustrate 
the potentiality of this notion to envision possible research paths in the field. I will 
illustrate these with the research that my colleagues and I have been carrying on 
multicultural classrooms in Denmark; as well as will offer examples of other research 
studies in Europe and other parts of the world where I see that the discipline is 
gaining newer insights that could allow attending to the social changes and 
challenges of the 21st century. 
 
Feb 1st, 11:00 – 13:00 
SPECIAL PLENARY: WAYS OF WORKING WITH DIFFERENT 
THEORETICAL APPROACHES IN MATHEMATICS EDUCATION 
RESEARCH 
Speakers: Angelika Bikner-Ahsbahs, Bremen University, Germany 
 John Monaghan, University of Leeds, United Kingdom 
Chair: Tommy Dreyfus, Tel Aviv University, Israel 
Structure : This plenary activity is planned to last 2 hours and will comprise five 
parts 
Introduction (T. Dreyfus, 5 min) 
Networking of theories – why and how? (A. Bikner-Ahsbahs, 25 min + 5 min for 
clarifications)  
Taking the appropriate parts from a variety of theories (J. Monaghan, 25 min + 5 min 
for clarifications) 
Questions to the floor (T. Dreyfus, 10 min) 
Questions and contributions from the audience with reactions from the speakers 
(45 min) 
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Background. The development and elaboration of theoretical constructs that allow 
research in mathematics education to progress has long been a focus of mathematics 
education researchers in Europe. This focus has found its expression in many 
CERME working groups: some are focused around a specific theoretical approach 
and others allow researchers from different theoretical traditions and backgrounds to 
meet and discuss. More specifically, relationships between theories have been made 
the explicit focus of attention of the theory working group that started at CERME 4 in 
2005. The present plenary activity inserts itself in this line of work of CERME, and 
aims to broaden the discussion about relationships between theories to include 
members of all CERME working groups.  
Abstract by Angelika Bikner-Ahsbahs: Networking of theories – why and how? 
Research in mathematics education addresses teaching and learning of mathematics 
in a wide sense. For example, theories about learning fractions may tell a lot of 
different things about learning fractions. Some of them are about mistakes and why 
some mistakes are stable. Others may tell us about how students can be motivated to 
learn fractions. There are theories about how fraction concepts can be built best, 
which students’ imaginations accompany learning fractions and what abstraction 
processes can be observed. In addition, we have to distinguish between theories for 
gifted students and theories for students with special needs, etc.  
These considerations already show that research objects within mathematics 
education are complex. This complexity has led to a large variety of theoretical 
approaches. Every successful new theoretical view broadens or deepens insight in a 
phenomenon, hence, enriches our knowledge about the phenomenon. Therefore, it 
seems necessary to regard the large diversity of theories as richness. However, the 
rich diversity of theoretical approaches engenders problems of understanding and 
communicating. Sometimes we find the same terms meaning different things, for 
example the different concepts of abstraction, mathematising and constructing. 
However, we also find different words for the same or similar meanings, for example 
reification and constructing can both mean building a new knowledge entity.  
Hence, a large diversity of theories can be regarded as richness but it also causes 
difficulties for researchers to understand each other and for teachers and teacher 
trainers to make use of research results in an adequate way. These problems raise the 
following questions: How could researchers gainfully frame the use of the diversity 
of theoretical approaches? What kind of benefit can be gained through such frames? 
How can theories be made more useful for practitioners?  
In the plenary talk, networking of theories is proposed to be a fruitful approach to 
frame the diversity of theories or theoretical approaches. It has been practiced and 
reflected on since 2005 (CERME4) within a group of researchers networking their 
theories. This work has already shown that networking of theories means more than 
creating a consistent frame to investigate a research question it is a systematic way of 
theory development. In the plenary talk, an example is used to clarify the meaning 
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and to describe some benefit of it for the research and the practice of teaching and 
learning mathematics.  
Abstract by John Monaghan: Taking the appropriate parts from a variety of theories. 
I will argue the case for ‘taking the appropriate parts from a variety of theories 
according to needs of the research’ rather than trying to ‘merge theories’. One part of 
my argument is who I and, if I may extend this, who most CERME participants are – 
working mathematics education researchers. Mathematics education research is 
demanding and does not (except for a few gifted individuals) allow researchers to 
become specialist philosophers, psychologists and /or sociologists; but we may find it 
useful to use the ideas of philosophers, psychologists and /or sociologists. Another 
part of my argument will concern theoretical frameworks within mathematics 
education and I will argue for caution with regard to attempts to merge such theories. 
These theories have, in general, distinct historical roots, developed in academic 
communities which have appropriated constructs in specific ways and the ‘grain 
sizes’ of their analyses often differ. Attempting to merge whole theories, as opposed 
to appropriating constructs, comes with a real danger of creating an ill-formed hybrid. 
So will I argue that mathematics education researchers should ‘pick a little bit from 
this theory and a little bit from that theory’? Well, yes, I will … but with caution! I 
will argue that the ‘bits we pick’ depend on the situation, the specific focus of the 
research in which we are engaged, and the consistency of ‘bits we pick’. 
I have avoided referring to specific theories in this abstract but I will detail theories in 
my talk and I will also use research studies as cases to exemplify my arguments. 

 
  

WORKING GROUPS 
 
15 working groups: 7 sessions, 1 or 2 per day, duration 1h30 or 2h 
Final group reports: Sunday Feb 1st, 8:30 - 10:30 
Poster Session: Thursday Jan. 29 17:15 - 18:30  

N.B. The posters remain during the all congress in the hall of the THEMIS. 
During the poster session, the authors were present. 

 
 
Group 1: Affect and mathematical thinking - This includes the role of beliefs, 
emotions, and other affective factors 
Markku Hannula, Finland (Chair); Tine Wedege, Norway; Marilena Pantziara, 
Cyprus. 
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Group 2: Argumentation and proof - This includes epistemological and 
historical studies, learning issues and classroom situations 
Maria Alessandra Mariotti, Italy (Chair); Patrick Gibel, France; Leonor Camargo, 
Colombia; Kristina Reiss, Germany. 
 
Group 3: Stochastic thinking - This includes epistemological and educational 
issues, pupils cognitive processes and difficulties, and curriculum issues 
Andreas Eichler, Germany (Chair); Maria Gabriella Ottaviani, Italy; Dave Pratt, 
United kingdom; Floriane Wozniak, France. 
 
Group 4: Algebraic thinking - This includes epistemological and educational 
issues, pupils cognitive processes and difficulties, and curriculum issues 
Chair: Giorgio Bagni, Italy (Chair); Janet Ainley, United Kingdom; Lisa Hefendehl-
Hebeker, Germany; Jean–Baptiste Lagrange, France. 
 
Group 5: Geometrical thinking - This includes epistemological and educational 
issues, pupils cognitive processes and difficulties, and curriculum issues 
Alain Kuzniak, France (Chair); Iliada Elia, Cyprus; Mathias Hattermann Germany; 
Filip Roubicek, Czech Republic. 
 
Group 6: Mathematics and language - This includes semiotics and 
communication in classrooms, social processes in learning and teaching 
mathematics 
Candia Morgan, United Kingdom (Chair); Marie-Thérèse Farrugia (Malta); Marei 
Fetzer (Germany); Alain Mercier, France. 
 
Group 7: Technologies and resources in mathematical education - This includes 
teaching and learning environments 
Ghislaine Gueudet, France (Chair); Rosa Maria Bottino, Italy; Stephen Hegedus, 
United States of America; Hans-Georg Weigand, Germany. 
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Group 8: Cultural diversity and mathematics education - This includes students' 
diverse backgrounds and identities, social and cultural processes involved, 
political issues in the educational and school policies. 
Chair: Guida de Abreu, United Kingdom (Chair); Nuria Gorgorio, Spain; Sarah 
Crafter, United Kingdom. 
 
Group 9: Different theoretical perspectives / approaches in research in 
mathematics education - This includes ways of linking theory and practice and 
paradigms of research in ME. 
Susanne Prediger, Germany (Chair); Marianna Bosch, Spain; Ivy Kidron, Israel; John 
Monaghan, United kingdom; Gérard Sensevy, France. 
 
Group 10: From a study of teaching practices to issues in teacher education - 
This includes teachers’ beliefs and the role of the teacher in the classroom, as 
well as strategies for teacher education and links between: theory and practice, 
research and teaching and teacher education, collaborative research. 
Chair: Leonor Santos (Portugal) José Carrillo, Spain; Alena Hospesova, Czech 
Republic; Maha Abboud-Blanchard, France. 
 
Group 11: Applications and modelling - This includes theoretical and empirical-
based reflections on: the modelling process and necessary competencies, 
adequate applications and modelling examples, epistemological and curricular 
aspects, beliefs and attitudes, assessment and the role of technology. 
Morten Blomhoej, Denmark (Chair); Susana Carreira, Portugal; Katja Maass, 
Germany; Geoff Wake, United Kingdom.  
 
Group 12: Advanced mathematical thinking - This includes conceptual 
attainment, proof techniques, problem-solving, processes of abstraction, at the 
upper secondary and tertiary educational level. 
Roza Leikin, Israel (Chair); Claire Cazes, France; Joanna Mamona-Downs, Greece; 
Paul Vanderlind, Sweden. 
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Group 13: Comparative Studies in Mathematics Education - It includes 
questions surrounding mathematics teaching and learning in the classroom, 
learners’ and teachers’ experiences and identities, and policy issues in different 
cultures and/or countries. 
Eva Jablonka, Sweden (Chair); Paul Andrews, United Kingdom; Birgit Pepin, United 
kingdom; Pasi Reinikainen, Finland. 
 
Group 14: Early Years Mathematics . This Working Group deals with the 
research domain of mathematics learning and mathematics education in the 
early years, age 3 to 7- In the last decades the interest in this topic has increased 
immensely. 
Götz Krummheuer, Germany (Chair); Patti Barber, United Kingdom; Demetra Pitta-
Pantazi, Cyprus; Ewa Swoboda, Poland. 
 
Group 15: Theory and research on the role of history in Mathematics Education 
- The integration of history of mathematics in mathematics education is a 
subject which has received increasing attention during the last decades. 
Chair: Fulvia Furinghetti , Italy (Chair);  Jean-Luc Dorier, France; Uffe Thomas 
Jankvist, Denmark; Costantinos Tzanakis, Greece. 
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YERME - YOUNG ERME 

YERME is an organization aiming at creating collaboration and mutual support 
among young researchers of different countries in the field of mathematics education. 
The two main activities of YERME are: 
1. YESS – YERME Summer Schools 
The aims of the Summer Schools are: 

• To let people from different countries meet and establish a friendly and 
cooperative style of work in mathematics education research; 

• To let people compare and integrate their preparation in mathematics 
education research in a peer discussion climate with the help of highly 
qualified and differently oriented experts; 

• To let people present their research ideas, theoretical difficulties, 
methodological problems, and preliminary research results, in order to get 
suggestions (from other participants and experts) about possible 
developments, different perspectives, etc. and open the way to possible 
connections with nearby research projects and co-operation with researchers 
in other countries. 

YESS1 took place in Klagenfurt, Austria, 2002; YESS2 at Podebrady, Czech 
Republic, 2004; YESS3 at Jyväskylä, Finland, 2006 and YESS4 at Trabzon, Turkey, 
2008. 
YESS5 will take place in Italy (August 2010). Ph.D., Master and post-graduate 
students and other people entering Mathematics Education research are invited to 
take part in YESS summer schools. 
2. YERME day 
The YERME-day takes place the day before CERME. The spirit is the same as 
YESS. Young European researchers take part in Discussion Groups and Working 
Groups. The topics of these groups are close to young researchers' interests. This kind 
of organization allows European students to meet and start to build links between 
different countries. They also have the opportunity to work with experts in the 
research education field. The program of the YERME-Day 2009 (January, 27th and 
28th) is available on the YERME Website http://yerme.eu . 
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CERME 6 – PLENARY 1 
Signs, gestures, meanings: 

Algebraic thinking from a cultural semiotic perspective 
 
Luis Radford, Université Laurentienne, Ontario, Canada 
 
Reactor: Heinz Steinbring (Duisburg-Essen University) 
 
Summary. In this presentation I will deal with the ontogenesis of algebraic thinking. 
Drawing on a cultural semiotic perspective, informed by current anthropological and 
embodied theories of knowing and learning, in the first part of my talk I will 
comment on the shortcomings of traditional mental approaches to cognition. In tune 
with contemporary research in neuroscience, cultural psychology, and semiotics, I 
will contend that we are better off conceiving of thinking as a sensuous and sign-
mediated activity embodied in the corporeality of actions, gestures, and artifacts. In 
the second part of my talk, I will argue that algebraic thinking can be characterized in 
accordance with the semiotic means to which the students resort in order to express 
and deal with algebraic generality. I will draw upon results obtained in the course of a 
10-year longitudinal classroom research project to offer examples of students’ forms 
of algebraic thinking. Two of the most elementary forms of algebraic thinking 
identified in our research are characterized by their contextual and embodied nature; 
they rely extensively upon rhythm and perceptual and deictic (linguistic and gestural) 
mechanisms of meaning production. Furthermore, keeping in line with the situated 
nature of the students’ mathematical experience, signs here usually designate their 
objects in an indexical manner. These elementary forms of algebraic thinking differ 
from the traditional one—based on the standard alphanumeric symbolism—in that 
the latter relies on sign distinctions of a morphological kind. Here signs cease to 
designate objects in the usual indexical sense to give rise to symbolic processes of 
recognition and manipulation governed by sign shape. 
 
The aforementioned conception of thinking in general and the ensuing distinction of 
forms of algebraic thinking shed some light on the kind of abstraction that is entailed 
by the use of standard algebraic symbolism. They intimate some of the conceptual 
shifts that the students have to make in order to gain fluency in a cultural 
sophisticated form of mathematical thinking. Voice, gesture, and rhythm fade away. 
Embodied and contextual ways of signifying are then replaced with a perceptual 
activity where differences and similarities are a matter of morphology, and where 
meaning becomes relational. 
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SIGNS, GESTURES, MEANINGS: 
ALGEBRAIC THINKING FROM A CULTURAL SEMIOTIC 

PERSPECTIVE 
Luis Radford  

Université Laurentienne, Ontario, Canada 
À la mémoire de Georges Glaeser 

INTRODUCTION 
To deal with algebraic thinking in a plenary session is a bit risky. Unavoidably, it conveys 
the feeling of something déjà vu—something that has been said again and again. Indeed, 
since the 1980s algebraic thinking has been one of the most researched areas in 
mathematics education. And this is so not by chance. Among the branches of mathematics 
that students have to learn in school, there is none more frightening than algebra. Many 
students in our teachers’ training program at Laurentian University confess that everything 
was going well until they met algebra in Junior High School. As they admit, suddenly they 
found themselves in front of an abstract symbolic language, the meaning of which they 
could not grasp—a kind of hieroglyphic language that, to their dismay, has become like 
the Esperanto of modern sciences. 
And it is the investigation of the students’ legendary difficulties in understanding algebra 
and the search for new ways to teach this subject that has kept many researchers busy for 
the past three decades. The question, hence, is whether or not there is really something 
new to say about algebraic thinking. It looks like there is not much left to be said about it. 
This impression would only be strengthened if you were to do a Google search. We did 
one at the end of November 2008, in our preparation for this talk, and our “algebraic 
thinking” search returned almost 176,000 hits. However, as you go through the entries, 
you realize that the content does not tell you much about algebraic thinking. The content is 
rather about items usually included in school algebra curricula. The least that can be said is 
that the term “algebraic thinking” has become a catch-all phrase. This may be a token of 
the fact that to deal with algebraic thinking is not a simple matter. It supposes that you 
have some sort of theory about thinking or at least a clear idea of what you mean by 
thinking in general. Let us pause for a moment: What do you take “thinking” to mean? 
As psychologists, philosophers, anthropologists and others are willing to acknowledge, 
there is no simple and direct answer to this question. As odd as it may seem, thinking is 
something that we continuously do. Thinking is as ubiquitous as breathing. Yet, we still do 
not know how we think! Commenting on the elusiveness of thinking, Dan Rappaport said: 
“The knowledge that thinking has conquered for humanity is vast, yet our knowledge of 
thinking is scant. It might seem that thinking eludes its own searching eye.” (Rappaport, 
1951; quoted in Benson, 1994, p. 13). Western idealist and rationalist epistemologies have 
conveyed the idea that thinking is something immaterial, something purely mental, 
bodiless. The influence of Plato’s epistemology on our understanding of thinking is 
perhaps greater than we are usually aware (Radford, Edwards, Arzarello, 2009). 
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In this article, I introduce a typology of forms of algebraic thinking based on their level of 
generality. The typology rests on a theoretical approach that capitalizes on the results of 
the 1990s algebra research agenda and supplements it by incorporating a semiotic 
theoretical platform. Signs lose the representational and ancillary status with which they 
are usually endowed in classical cognitive theories in order to become the material 
counterpart of thought. This semiotic platform opens up new possibilities for 
understanding algebraic signs and formulas in a nonconventional manner. Traditionally, 
letters and signs for operations (like “+”, “x”, etc.) have been considered the algebraic 
signs of school algebra. Alphanumeric symbolism has indeed been regarded as the 
semiotic system of algebra par excellence. Yet, from a semiotic perspective, signs can also 
be something very different. Words or gestures, for instance, are signs on their own —
semiotically speaking, they could be as genuine algebraic signs as letters. Of course, as I 
will argue later in more detail, this does not mean that they are equivalent or that we can 
simply substitute the ones for the others. What makes semiotic systems unique and 
unsubstitutable is their mode of signifying. There are things that we can signify and intend 
through certain signs, and things that we cannot. Try to put Pablo Neruda’s famous poem 
“Canción Desesperada” [“Desperate Song”] in an algebraic formula, and you will see how 
hopeless the task is. 
In the first part of this article, I argue that the mathematical situation at hand and the 
embodied and other semiotic resources that are mobilized to tackle it in analytic ways 
characterize the form and generality of the algebraic thinking that is thus elicited. My 
claim is based not only on semiotic considerations but also on new theories of cognition 
that stress the fundamental role of the context, the body and the senses in the way in which 
we come to know. In the second part, I present some concrete examples through which the 
typology of forms of algebraic thinking is illustrated. 
THE 1990s ALGEBRA RESEARCH AGENDA 
During the discussions held in the 1980s and 1990s, either in the PME Algebra Working 
Groups or in other similar research meetings (Bednarz, Kieran, & Lee, 1996; Sutherland, 
Rojano, Bell, & Lins, 2001), it was impossible to agree upon a minimal set of 
characteristics of algebraic thinking. There was, however, a more or less general consensus 
concerning two aspects. Algebra deals with objects of an indeterminate nature, such as 
unknowns, variables, and parameters. Furthermore, in algebra, such objects are dealt with 
in an analytic manner. What this means is that in algebra, you calculate with indeterminate 
quantities (i.e. you add, subtract, divide, etc. unknowns and parameters) as if you knew 
them, as if they were specific numbers (see, e.g., Kieran 1989; 1990; Filloy & Rojano, 
1984a, 1989; Cortes, Vergnaud, & Kavafian, 1990; for some epistemological analysis, see 
Filloy & Rojano, 1984b; Puig, 2004; Radford & Puig, 2007; Serfati, 1999). 
Of course, one way or another, algebraic objects have to be designated. The general 
tendency in the 1990s was to associate school algebra and algebraic thinking with the use 
of letters. Even if at the time the idea was not universally shared (Linchevski, 1995; 
Balacheff, 2001), it nonetheless prevailed and is still very strong in current research on the 
teaching and learning of algebra. Although I do believe that it is impossible to practice 
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abstract algebra (e.g., Galois Theory) without some sort of sophisticated notations, I do not 
think that algebra and algebraic thinking can be reduced to the use of letters. As John 
Mason pointed out some years ago, “the manipulation of symbols is only a small part of 
what algebra is really about” (1990, p. 5). Letters indeed have never been either a 
necessary or a sufficient condition for thinking algebraically. For instance, in his Elements, 
Euclid used letters without thinking algebraically. Conversely, Chinese and Babylonian 
mathematicians thought algebraically without using letters (Radford, 2006). 
What I am suggesting here is hence this: algebra is about dealing with indeterminacy in 
analytic ways. But instead of giving alphanumeric symbolism the exclusive right to 
designate and express indeterminacy I am claiming that there is a plurality of semiotic 
forms to accomplish it. This is true of the practices of elementary algebra and of advanced 
algebra as well —even if in the latter, alphanumeric symbolism becomes more salient. 
But before I go further, let me reassure you that my idea is not to challenge the power of 
symbolic algebra. Rather, I am trying to convince you that it is worthwhile to entertain the 
idea that there are many semiotic ways (other than, and along with, the symbolic one) in 
which to express the algebraic idea of unknown, variable, parameter, etc. I deem this point 
important for mathematics education for the following reason. Ontogenetically speaking, 
there is room for a large conceptual zone where students can start thinking algebraically 
even if they are not yet resorting (or at least not to a great extent) to alphanumeric signs. 
This zone, which we may term the zone of emergence of algebraic thinking, has remained 
largely ignored, as a result of our obsession with recognizing the algebraic in the symbolic 
only. 
SENSUOUS COGNITION 
My claim about a diversity of semiotic forms for dealing with algebraic indeterminacy 
rests on a perspective on thinking that is squarely at odds with the mental conception of 
thinking that informed most of the 1990s research on mathematics education. Within this 
mental conception of thinking signs were often considered “symptoms” of mental activity 
—hence the distinction between internal and external representations. Drawing on 
Vygotskian psychology, from the semiotic-cultural perspective advocated here, the 
question of the relationship between signs and thought is thematized in a different way. 
First, signs are considered in a broad sense, as something encompassing written as well as 
oral linguistic terms, mathematical symbols, gestures, etc. (Arzarello, 2006; Ernest, 2008; 
Radford, 2002a). Second, signs are not considered as mere indicators of mental activity. In 
contrast, signs are considered as constitutive parts of thinking. In more precise terms, 
within this semiotic-cultural perspective, thinking is considered a sensuous and sign-
mediated reflective activity embodied in the corporeality of actions, gestures, and 
artifacts. 
The adjective sensuous refers to a conception of thinking that is inextricably related to the 
role that the human senses play in it. Thinking is a versatile and sophisticated form of 
sensuous action where the various senses collaborate in the course of a multi-sensorial 
experience of the world (Radford, 2009a). This multi-sensory characteristic of cognition 
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has been emphasized by philosophers like Arnold Gehlen (1988) and Maurice Merleau-
Ponty (1945) and at its heart is the idea of the important role that the body plays in the way 
we come to conceptualize things. As Gallese and Lakoff recently contended,  
the sensory-motor system not only provides structure to conceptual content, but also characterizes 
the semantic content of concepts in terms of the way that we function with our bodies in the 
world (Gallese and Lakoff, 2005, pp. 455–456). 

In tune with such views, some researchers in our field are paying attention to the embodied 
nature of mathematical cognition. This is the case with Ferdinando Arzarello and the 
Torino Team in Italy, Rafael Núñez and Laurie Edwards in the USA, Michael Roth and 
the CHAT group in Canada, the Uniban research team in Brazil, etc. To mention a brief 
example, the Uniban research team in Brazil is investigating the role of gestures in blind 
children. Here gestures and tactility come to play a crucial role in understanding 
mathematical concepts (Figure 1).  
Of course, tactility and other sensorial mediated processes are also important in non-
impaired children. Ricardo Nemirovsky has suggested that instead of being mere mental 
processes, understanding and imagination of mathematical concepts are literally embedded 
in perceptuo-motor action: the “understanding of a mathematical concept spans diverse 
perceptuo-motor activities” (Nemirovsky, 2003, I -108), so that in this regard, 
“understanding is … interwoven with motor action” (Nemirovsky, 2003, I-107). 

 
Figure 1. Exploring area, from research conducted by 
Solange Ali Fernandes and Lulu Healy with blind 
children (Ali Fernandes, 2008).  

However, thinking encompasses still much more than that. Thinking is an activity that, 
although performed by an “I” and the “I’s body”, is ubiquitously drawing on culture’s kit 
of patterns of meaning-making as well as on historically constituted concepts of an ethical, 
political, scientific, and aesthetic nature. Thinking is bound to the context and the culture 
in which it takes place. This is why it is more accurate to say that thinking in general, and 
algebraic thinking in particular, is a body-sign-tool mediated cognitive historical praxis. 
LEARNING AS OBJECTIFICATION 
From an educational perspective, the main question is: How do the students acquire 
fluency in such cognitive cultural historical praxes? How do they become acquainted with 
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the historically constituted forms of action, reflection and reasoning that those praxes 
convey? Since mathematical forms of reasoning have been forged and refined through 
centuries of cognitive activity, they are far from trivial for the students. It is the historical 
density of such praxes, sedimented now in compact, systemic, and highly abstract 
formulations, that is the basis of what Vygotsky intended with his famous distinction 
between “quotidian” and “scientific” concepts —regardless of how unfortunate 
Vygotsky’s choice of terms was. 
Reflective acquaintance with cognitive historical praxes and their concomitant forms of 
action and reasoning is what learning consists of. And, as I submitted elsewhere (Radford, 
2008a), it can be theorized as processes of objectification, that is, those social processes 
through which the students grasp the cultural logic with which the objects of knowledge 
have been endowed and become conversant with the historically constituted forms of 
action and thinking.  
Working within this theoretical framework, where semiotics, culture and history are 
driving principles, in recent years my collaborators and I have been busy in implementing 
classroom holistic activities that can offer the students a possibility to reflect algebraically 
and to get acquainted with some basic ideas of algebra in different contexts —equations, 
pattern generalization and, recently, graph interpretation (Radford, 2000, 2002b, 2003, 
2009a; 2009b; Radford, Bardini & Sabena, 2007). Our goal has been to try to understand 
what I previously referred to as the zone of emergence of algebraic thinking and forms of 
algebraic thinking elicited by our activities. 
Let me pause this theoretical discussion here and turn now to some short examples that 
come from our first longitudinal research project—a project that we conducted from 1998 
to 2003 and during which we accompanied four classes of students as they went from 
Grade 8 to Grade 12, i.e., until the completion of high school. The examples will, I hope, 
give an idea of our approach and the kind of analysis we conducted. 
SOME CLASSROOM RESULTS 
The students’ first contact with algebraic symbolism occurred when they were in Grade 8. 
In Grade 9 we decided to start with an activity that was intended as a means to revisit the 
concepts learned in the previous year. In the introductory part of the activity, the students, 
working in groups of three, had to draw Figure 4 and Figure 5 of the sequence shown in 
Figure I and to find out the number of circles in Figures 10 and 1001. In the second part of 
the activity, the students were asked to write a message to a student of another Grade 9 
class indicating how to find out the number of circles in any figure (“figure quelconque”, 
in the original French), and then to write an algebraic formula for the number of circles in 
Figure n. 

                                                 
1Figures identified with Roman numbers (e.g., Figure II) refer to objects in the article, whereas figures identified with Indo-
Arabic numbers (e.g., Figure 2) refer to elements of a pattern in the classroom activity given to the students. 
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Figure I. The sequence of the introductory pattern generalization activity in Grade 9. 

Factual Algebraic Thinking 
Usually, the students start counting the number of circles in Figures 1, 2, and 3, and realize 
that, in sequences like the one shown in Figure I, the number of circles increases by the 
same number each time. However, as the students quickly notice, this recursive 
relationship between consecutive figures is not really a practical way to answer the 
question about “big” figures, like Figure 100.  
In one of the groups (formed by Jimmy, Dan, and Frank), working on the sequence shown 
in Figure I, the students imagined the figures as divided into two rows: 

1. Dan: (Referring to Figure 1) Well… (pointing to the top row) 2 on top; there, there is 3 
on the bottom… 

2. Jimmy: [Figure] 2, there are 3; [Figure] 3, there are 4. 
3. Dan: wait a minute. Ok (he makes a series of gestures as he speaks; see four of the six 

gestures in Figure II), Figure 1, 2 on top. Figure 2, 3 on top. Figure 3, 4. Figure 4, 5.  
4. Jimmy: Figure 10, it will be 11… 
5. Dan: … 11 on top, and 12 on the bottom. 
6. Jimmy: All the time it will be one more in the air. 
7. Frank: [Figure] 100? 101, 102… 
8. Dan: 203. 

  
“Figure 1 2 on top” 

  
“Figure 2 3 on top” 

Figure II. Dan makes a sequence of pointing gestures coordinated with words in a first 
process of objectification (reconstruction from the video data).  

 
As the students’ dialogue suggests, the generalization was accomplished in two steps. 
In the first step (lines 1-3), the students conceived of the figures as divided into two lines, 
and, drawing on perceptual observations made on the first three given figures, they were 
able to objectify a regularity: a relationship between the number of the figure and the 
number of circles in its rows.  
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The grasping of the regularity is not enough, however, to ensure the generalization. The 
regularity has to be generalized. And this is what the students accomplished in the 
following lines where they came up with a formula to find the number of circles in Figures 
10 and 100. Indeed: 

 In lines 4 and 5 the observed regularity of perceptually available figures was 
generalized to Figure 10, a figure that is not in the students’ perceptual field. 

 Line 6 contains a partial linguistic formulation of the general structure of the 
figures, as perceived by the students: “All the time there will be one in the air”, 
i.e., for all figures of the sequence, there is always one unmatched circle on the 
bottom row. 

 In line 7, Frank resorted to the objectified pattern structure in order to calculate 
the number of circles in Figure 100. 

The students are equipped now with a formula to answer questions about Figure 1000, 
Figure 1 000 000, or whatever particular figure you may have in mind. 
Now, I am talking about a formula, yet there are no letters! That’s true. The algebraic 
formula consists, rather, in a piece of embodied action. We can call it —borrowing an 
expression from Vergnaud (1996) and changing it slightly— an in-action-formula.  
A “formula” of this concrete form of algebraic thinking can better be understood as an 
embodied predicate with a tacit variable: indeterminacy does not reach the level of 
discourse. It is present through the appearance of some of its instances (“1”, “2”, 3”, “4”, 
“5”, “10”, “100”). It remains an empty space to be filled up by the eventual uttering of 
particular terms. We call this type of situated and concrete form of algebraic thinking that 
operates at the level of particular number or facts factual2. 
Despite its apparently concrete nature, factual algebraic thinking is not a simple form of 
mathematical reflection. On the contrary, it rests on highly evolved mechanisms of 
perception and a sophisticated rhythmic coordination of gestures, words, and symbols. The 
grasping of the regularity and the imagining of the figures in the course of the 
generalization results from, and remains anchored in, a profound sensuous mediated 
process— showing thereby the multi-modal nature of factual algebraic thinking3. 
Let us turn now to the second part of the Grade 9 activity. 
Contextual Algebraic Thinking 
In the introduction I suggested that the mathematical task at hand and the social sign-
mediated processes of perception and generalization can inform us of the form and 
generality of the algebraic thinking that is thus elicited. What kind of algebraic thinking 
will now be generated? The task requires that the students go beyond particular figures and 

                                                 
2 The adjective factual stresses the idea that this generalization occurs within an elementary layer of 
generality—one in which the universe of discourse does not go beyond particular figures, like Figure 1000, 
Figure 3245, and so on. 
3 In our current research with Grade 2 students these mechanisms of rhythmic coordination are also present, but 
they do not reach the subtle sensorial synchrony that we observe in older students as those reported here. 
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deal with a new object: a general figure. Indeterminacy must now become part of explicit 
discourse. Our question is: How will the students build the formula? In the absence of 
gestures and rhythm, to which linguistic mechanisms will the students resort?  
In fact, in being asked to write a message, the students were invited to enter into a deeper 
level of objectification than the one of action and perception characteristic of factual 
algebraic thinking. Writing makes one render explicit things that may have remained on 
what neuropsychologists call the area of proto-attention, or what Husserl used to call the 
horizon of intentions (Husserl, 1954).  
In Grade 8, writing a message that involves this new object “general figure” proved to be 
very difficult. As we reported in previous work (see, e.g., Radford, 2000), the students 
often used particular figures (like Figure 12) as examples to convey a generic idea or used 
particular figures in a metaphorical sense to talk about the still unutterable generality 
(Radford, 2002a). Sometimes the message was not complete. Here is an example: “You 
add 1 [circle] on the top and 1 on the bottom.” 
In Grade 9, the students felt much more comfortable with this level of generality. The 
following message is paradigmatic of what the students wrote: "You have to add one more 
circle than the number of the figure in the top row, and add one more circle than the top 
row to the one on the bottom." 
Of course, this procedural sentence can be seen as a formula. But it is very different from 
the one discussed in the previous section. Here, rhythm and gestures have been replaced 
by key descriptive terms—“top,” “bottom.” These terms are what linguists call spatial 
deictics, that is to say, words with which we describe, in a contextual way, objects in 
space. The indeterminate object variable is now explicitly mentioned through the term 
“number of the figure.” However, although different from factual algebraic thinking both 
in terms of the way indeterminacy is handled and the semiotic means which the students 
think, the new form of algebraic thinking is still contextual and “perspectival” in that it is 
based on a particular way of regarding something4. The algebraic formula is indeed a 
description of the general term, as it was to be drawn or imagined. This is why we term 
this form of algebraic thinking contextual. Here is another Grade 9 example: “# of the 
figure + 1 for the top row and the # of the figure + 2 for the bottom. Add the two for the 
total.” 
Let us turn now to the last part of the Grade 9 activity. 
Standard algebraic thinking 
Expressing the formula in algebraic standard symbolism was much more difficult than 
expressing it in words, both in Grades 8 and 9, although, of course, there was some 
progress from one year to the next. The results mentioned in the previous section shed 
some light on the nature of these difficulties: previously, the students could resort to a 
range of semiotic resources, like pointing and iconic gestures, deictics, adverbs, etc. Those 

                                                 
4 It still supposes a spatially situated relationship between the individual and the object of knowledge that gives 
sense to expressions like “top” and “bottom”. 
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rich semiotic ressources do not have a place in the alphanumeric based algebraic formulas. 
In short, there is a drastic change in the mode of designation of the objects of discourse.  
How then to designate the number of circles in a figure, in the highly condensed semiotic 
system of alphanumeric signs? From an ontogenetic viewpoint, direct “translation” is not 
something on which we can count, as we cannot count on direct translation from our 
native language to a new one we are just starting to learn. Direct translation presupposes 
that you already know the target language. In the case of the standard alphanumeric 
algebraic language, the situation is even worse, as this language is not even “natural.” Our 
standard algebraic language is artificial. Historical analysis shows that its construction was 
preceded by a good deal of efforts that ended up in dead ends and failures (Høyrup, 2008; 
Serfati, 2006).  
In Grade 8, the students often resorted to particular examples. Thus, dealing with the 
sequence shown in Figure III, Dan and his group (in Grade 8, the group was formed by 
Dan, Frank and Sara), illustrated the formula through the case of Figure 100: 

1. Dan: You add 3 on top, and 1 at the bottom. 
2. Sara: That’s true if you go by the [form of the] figure. 
3. Dan:  You add 3 on top, and 1 at the bottom. Let’s say that n equals 100.  It 

would be 100… you add 1, it would be 101 [on the bottom row]… 
4. Frank: (Interrupting) and 103 [on the top row]. 

 
Figure III. One of the sequences the students investigated in 
Grade 8. 

 
In other cases, the students often resorted to formulas that, superficially, look to be 
algebraic, in particular because they contain letters. Thus, in the sequence shown in Figure 
III, several students in Grade 8 produced the formula 42 +×n . However, despite its 
appearance, the formula is not algebraic. It was instead obtained by trial and error. Dan 
and his group first tried 12 +×n , then 22 +×n , etc. until they obtained 42 +×n , which 
seemed to work in the few cases in which they tested it. This procedure is not based on an 
analytic way of thinking about indeterminate quantities — the chief characteristic of 
algebraic thinking. This procedure does not even reach the sophistication of pre-algebraic 
arithmetic methods such as “false position.” It is rather a kind of arithmetic naïve 
induction5. 
To counter these inductive arithmetic procedures, in the designing of the classroom 
activity, we added a question in which the students were asked to provide a formula for the 

                                                 
5 I do not have the space here to go into the details of the delicate distinction between algebraic and arithmetic 
formulas. For a detailed discussion, see (Radford, 2006, 2008). 
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number of circles on the top row of Figure n, followed by the question of finding a 
formula for the total of circles in Figure n. Establishing a functional relationship between 
the number of the figure and the number of circles on top of the figure proved very 
difficult. Dan and his group suggested using two letters: 
Dan:  (Noticing that each figure has two more circles than the previous one) It’s plus 2 [to obtain 
the number of circles in the next figure], plus 2 [to obtain the number of circles in the next 
figure], plus 2…Unless we put 2 letters… What we would do is … the top row would be n, and 
the top row would be like b. After that, you do n + b + 2. 

In this case, the letters n and b do not designate the number of circles in the top and bottom 
rows of Figure n. Actually, the number of the figure is not even taken into account. The 
formula, rather, expresses a vague recursive relationship.  
Another Grade 8 group suggested the “cascading formula” shown in Figure IV.  
 

 
Figure IV. A Grade 8 student’s formula using two letters.  

 
The first line corresponds to the number of circles on the bottom row. The result is called 
“w”. This is expressed in the second line, where it is also said that you still have to add 2 
to get the number of circles on the top row. This last number is called “x”, as indicated in 
the third line of the formula. Finally, in the last line, the students are saying that you still 
have to add the numbers represented by “w” and “x” to obtain the total of circles in Figure 
n. Not bad, although still a bit far away from the standard way to write formulas within the 
alphanumeric semiotic system of algebra. Not bad, even if the use of several letters and 
their inter-connected meanings is not fully clear for the students. As one of the students 
from this group said to the other two members, “You mix me up with all your letters!” 
The first example (Dan’s) is interesting in that it shows that, although these students were 
able to produce an inductive formula that looked like an algebraic one (i.e., “nx2+4”), they 
did not produce the expected algebraic formula “n+3” for the top row of Figure n —even 
if the formula “nx2+4” seems much more complex. The complexity of the formulas cannot 
be judged by the number of involved terms only; the complexity of the formula should 
also be judged in terms of the mode of designation of the objects of discourse. 
The second example is interesting in that it unveils some of the tremendous difficulties 
that the students have to face when using letters to intend to say what they perfectly know 
how to express in natural language. This problem is much more complex than a simple 
translation. As Glaeser remarked, the need to give an immediate meaning to every 
intermediate result has to be refrained (1999, p. 154). Meaning, indeed, has to be put in 
abeyance. 
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In Grade 9 we still found some formulas that resembled the formulas produced in Grade 8. 
But more typical of Grade 9 were the formulas shown in Figure V (these formulas 
correspond to the sequence shown in Figure I). 
 

  
Figure V. Left, the formula produced by Dan’s group in Grade 
9. Right, a variant of it produced by another Grade 9 group. 

 
Although much better than the formulas found in Grade 8, the signs in these formulas still 
keep the embodied and perspectival experience of the objectification process. We easily 
recognize in the term “n+1” the reference to the top row, as we recognize in the term 
“n+2” the reference to the bottom row. In Dan’s group, for instance, this embodied manner 
of symbolizing was made very clear: 

1. Dan: No, no, well, it’s that… n + 1 is the top row… 
2. Frank: (Interrupting) Yes, I know.  
3. Dan : n + 2 is the bottom row.  

As is clear from Figure V, the students add brackets to carefully distinguish between the 
rows. This is why, I want to suggest, the formula is an icon, a kind of geometric 
description of the figure. In other terms, the formula is not an abstract symbolic 
calculating artifact but rather a story that narrates, in a highly condensed manner, the 
students’ mathematical experience. In other words, the formula is a narrative. And it is the 
narrative dimension of the students’ iconic formulas that very often makes it possible to 
infer from the formula the sequence to which it corresponds (see figure VI).  
That which previously was distinguished through pointing gestures and linguistic deictics 
is now distinguished through the effect of signs and brackets. It is precisely this 
“perspectival” nature of the formula that leads many students to argue that brackets cannot 
be removed. Otherwise, they argue, it would be impossible to know what the terms of the 
formula mean. Yet, this is precisely what constitutes the force of algebra—the detachment 
from the context in order to signify things in an abstract way. The mode of designation has 
to move to a different layer where signs borrow their meaning not from the things they 
denote but from the relational way they mean within the context of other signs. 
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         Figure 1  Figure 2           Figure 3 

Figure VI. Formulas as narratives. Instead of decontextualized calculations, the formulas 
narrate the manner in which calculations have to be carried out in close relationship to the 
geometry of the figures and position of their parts. 

 
The narrative meaning of iconic symbolic formulas became even clearer when a fifth class 
was added to our project. As our project progressed, other teachers became interested in it 
and, to the extent that we could, we included new classes. The fifth class regrouped Grade 
8 students who were recognized as having difficulties in following the rhythm of “regular” 
math classes. Dealing with the pattern shown in Figure VII (left) one group of students 
produced the formula shown in Figure VII (right). 
 

 
Figure VII. Left, a toothpick sequence. Right, an algebraic symbolic formula 
that includes its diagrammatic “user guide” or mode d’emploi. 

 
The formula does not have the usual linear organization of standard algebraic formulas. 
Rather, signs signify in a spatial manner: as the students explained to us, the top “R” 
means that there are as many toothpicks on the top of the figure as the number of the 
figure. The “R” placed on the bottom of the formula means that there are as many 
toothpicks on the bottom of the figure as the number of the figure. The lateral “R” means 
that there are as many vertical toothpicks on the top of the figure as the number of the 
figure, but not really. There is an extra toothpick to be accounted for, placed at the right 
end, signified by the lateral sign “1.” The “+” signs mean that you have to add all of those 
things. 
FROM ICONIC FORMULAS TO SYMBOLIC ONES 
One of the important didactic problems is to implement classroom activities that will allow 
the students to endow their formulas with new abstract meanings. In more precise terms, 
the problem is to transform the iconic meaning of formulas into something that no longer 
designates concrete objects. For instance, the formula )2()1( +++ nn  mentioned previously 
(Figure V), has to be seen in a new light. The narrative dimension of formulas has to 
collapse (Radford, 2002c). The embodied meaning of the formulas does not disappear. It 
rather gives rise to a more abstract one. Thus, in addition to signifying the sum of circles in 
the top and bottom rows, the terms of the formula have to be considered in relation to the 
signs that they contain. Resemblances and differences—these key aspects of signification 
in general (Radford, 2008b)— must no longer be exclusively based on spatial and 
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contextual considerations (such as “top” and “bottom”). In the new form of signifying, 
there is a shift in focus: attention has to be directed now to morphological differences, i.e., 
differences in terms of letters versus numbers. In short, meaning must become relational. 
The search for the pedagogical actions allowing the students to objectify this abstract form 
of signifying became one of our goals, both from a theoretical and a practical viewpoint. 
Our strategy was based on comparing and simplifying formulas. Here is an example that 
deals with the sequence of squares shown in Figure VII.  
 
The previous day, the students produced several formulas. At the beginning of the class, 
the teacher asked for some examples. The students mentioned two, that were written as 

13 +⋅r  and 2)1( ⋅++ rr , where r stands for the rank or number of the figure. 

1. Teacher: I would like to compare these formulas and to see where they come 
from. Brian, do you want to explain the first formula to us? 

2. Brian: (Going to the blackboard). Ok, yesterday we saw that the first figure only 
has 1 toothpick at the bottom (he points to the bottom of Figure 1 on the 
blackboard) and the second figure, there were 2, third figure, there were 3. So, we 
added the bottom and the top, and then we saw that, in the first term, there were 2 
[vertical toothpicks] (points to the vertical toothpicks of Figure 1) and Figure 2  
has 3 (points to the vertical toothpicks of Figure 2) therefore, it’s always [the rank 
or number of the figure] plus 1. So we did the bottom plus the top plus the rank 
plus 1. And then we saw that… Well, we discussed a lot, and we saw that … it 
was the rank, rank times 3 (points towards the first term of the formula) because 
it has the bottom, the top and the vertical. There was, there was, plus [one]… 

3. Teacher: So you say that this (pointing to the bottom row of the first square and 
colouring it with blue chalk; see Figure VIII, pic. 1) is one r; this is another r 
(pointing to the top row of the first square and colouring it with blue chalk; see 
pic. 2); and this is the third r (pointing to the left vertical side of the first square 
and colouring it with blue chalk; see pic. 3) and there remains another one 
[toothpick] (pointing to the second vertical line of the first square; pic. 4). So, 
(pointing to the formula) r times 3… I have three r here (pointing successively to 
the coloured sides of the first square) plus another one in each term (pointing the 
uncoloured right vertical side of the first square). (Then, the teacher repeated the 
same set of sequence of pointing gestures on Figure 2, see Figure VIII, pics. 5-8). 
This is the explanation of the formula. Now, Ron, would you please explain the 
second formula? 
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Figure VIII. Pictures 1-4 (top) show the teacher’s effort to relate the terms of the 
formula 13 +⋅r  to the various parts of Figure 1. Pictures 5-8 (bottom) shows the 
same effort but this time the focus is on Figure 2. The teachers makes apparent for 
the students the new way of signifying through a subtle coordination of gestures, 
words, drawings and coloured segments. 

 
Ron went to the blackboard and explained the various elements of 2)1( ⋅++ rr . After that, 
the teacher encouraged a discussion about the formulas. Sandra—a student sitting at the 
end of the classroom— argued that both equations work but the first one was simpler. The 
teacher summarized the difference as follows: 

1. Teacher: the difference is that here (pointing to the formula 13 +⋅r ) we put together the 
terms that were the same and we simplified. Since I am calculating the total number of 
toothpicks, I can put all together (while talking, she emphasized the words “same”, 
“simplified” and “total”).  It is exactly this that the first formula does. (Smiling to the 
class, she says) I think that you are ready for the next activity. 

The previous formula 13 +⋅r  looks much like Dan’s formula 42 +×n  discussed earlier. 
Yet, the difference is considerable. Brian’s formula was not produced by trial and error. It 
was the result of an algebraic generalizing process where general functional relationships 
were first identified (e.g., the number of toothpicks on top vis-à-vis the rank or number of 
the figure), then simplified. As Brian put it, “… it was the rank, rank times 3 because it 
has the bottom, the top and the vertical.” The teacher capitalized on Brian’s idea and, 
through a feast of clear and consecutive gestures that echoed Brian’s timid gestures, 
coloured parts of the first two figures to make clear for all the students the relationship 
between the spatial-geometric parts of the terms and their corresponding rank (Figure VIII, 
pic. 1-8). After showing each one of the tree r on Figure 1, she linked the first part of the 
formula ( 3⋅r ) to the three parts she had just coloured. She said: “r times 3… I have three r 
here,” followed by the crucial remark that there is still “another one in each term” (which 
corresponds to the constant term of the formula). Her coordinated gestures and words 
related very well the spatial elements of the figures with the corresponding parts of the 
formula. The idea of putting together the toothpicks on the bottom, the top and the vertical 
ones, led to adding the number of the figure several times. 
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That day, after the general discussion, the students dealt with a sequence of houses (Figure 
IX). The students identified the relationship between clue elements of the figures and their 
rank or number: 

1. Raymond: the number of toothpicks in the roof is twice the number of the figure. For 
the walls [which included the floor], it is twice, and another wall  … 

2. Joyce: (Interrupting) to close the space… 
3. Raymond: So, the formula is rank times 4 plus 1. 

 

 

 

 
 

Figure IX. Left, a toothpick sequence of houses. Right, one of the students’ formulas.
 
In so doing, the students entered into a new form of algebraic understanding and moved 
into a deep region of the zone of emergence of algebraic thinking. They moved from a 
referential understanding of signs (signs as referring to particular objects, like the number 
of toothpicks in the roof) to a morphological one —the beginning perhaps of what Kieran 
(1990) Kirshner (2001), Hoch & Dreyfus (2006) and others have called the structural 
dimension of algebra. 
It is clear that the symbolic formula is no longer just iconic. Iconicity is still present, but it 
has receded to make room for a more concise and abstract form of signification. Naturally, 
the students have yet to undergo a supplementary lengthy process of objectification to 
become fluent with the modern form of symbolic algebraic thinking, where symbolic 
calculations are carried out through formal considerations only. For this to occur, new 
objects like 2x  and xx +2  will have to enter the universe of discourse and acquire a 
detached existence. It is not vain to recall here that this process was not easily achieved in 
the history of algebra. Thus, to distinguish magnitudes, Vieta—one of the founders of our 
modern algebraic symbolism—was still in the 16th century talking about “length”, “plane”, 
“solid”, etc.. Our modern way of referring to the now abstract monomials of algebra still 
reminds us of their embedded concrete beginnings. Indeed, monomials such as 2x  or 3x  
read as “x square”, “x cube”. Our modern language hangs behind the relics of its past 
revealing thereby the monomials’ original geometric-spatial origin. 
Synthesis and Concluding Remarks 
In this article, drawing on recent conceptions of thinking offered by anthropology, 
semiotics and neurosciences, I suggested that thinking is a complex form of reflection 
mediated by the senses, the body, signs and artifacts. In this view, thinking is not a kind of 
Cartesian mental activity monitored by a homunculus residing somewhere in a black box 
of ideas and representations. As the Russian philosopher Elvald Ilyekov put it, “Thinking 
is not the product of an action but the action itself” (Ilyenkov, 1977, p. 35). To a large 
extent, thinking is indeed a material process. But thinking is also more than the processes 
that a sensing body can produce. Thinking is something that is intrinsically historical and 
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cultural, and the proof is that had we happened to live in Babylonian times, we would 
have found ourselves with body and brain structures and anatomies indistinguishable from 
the ones we have today. Yet, we would have been thinking mathematically, aesthetically, 
politically, etc. in a very different way. It is this distinctive historical and cultural trait of 
thinking that I want to convey when I say that thinking in general and algebraic thinking in 
particular is a body-sign-tool mediated cultural historical praxis. 
The historical nature of cultural praxes has, as a corollary, the non-transparency of the 
forms of action, reflection and reasoning they convey. To become fluent in those praxes, 
we have to undergo lengthy processes of objectification. The creation of the conditions for 
those processes to occur is an educational problem. In the approach expounded here, the 
basic premise is that algebraic thinking cannot be confined to activities mediated by the 
standard alphanumeric semiotic system of algebra. From a semiotic viewpoint, there are 
several ways in which to analytically reason through, and to reason on, indeterminate 
quantities. More importantly, the mathematical situation and the semiotic resources that 
are mobilized to tackle it in analytic ways characterize the form and generality of the 
algebraic thinking that is thus elicited. Focusing on the context of pattern generalization, I 
suggested a classification of three forms of algebraic thinking —factual, contextual, and 
symbolic. As with most classifications, the borders of those categories are not necessarily 
well defined. Furthermore, those forms of thinking do not necessarily exclude each other. 
A student, for instance, can very well combine factual and symbolic forms of thinking. 
The typology is rather an attempt at understanding the processes that the students undergo 
in their contact with the forms of action, reflection and reasoning conveyed by the 
historically constituted praxis of school algebra. 
The classroom data presented here offers a glimpse of the ontogenetic journey of our 
students on their route to algebraic thinking. It stresses some of the challenges that they 
had to overcome when passing from factual to contextual to symbolic thinking. It stresses 
in particular the changes to be accomplished in modes of signification. While in factual 
thinking, indeterminacy remains implicit and gestures, words, and rhythm constitute the 
semiotic substance of the students’ in-action-formulas, in contextual algebraic thinking 
indeterminacy becomes an explicit object of discourse. Gestures and rhythm are replaced 
by linguistic deictics, adverbs, etc. Formulas are expressed in a perceptual and 
“perspectival” manner based on key terms like “top”, “bottom”, etc. Formulas, in short, 
are based on a particular way of seeing the sequence at hand.  
Our discussion about symbolic algebraic thinking sheds some light on the meaning with 
which the students endow their first alphanumeric formulas. Instead of being an abstract 
calculating device, formulas often appear as vivid narratives. They are icons in that they 
offer a kind of spatial description of the figure and the actions to be carried out. What I 
called the “collapse of narratives” appears as an important step towards more 
encompassing ways of algebraic signification. The constitution of meaning after such a 
collapse deserves more research (see also Barallobres, 2007). While Russell (1976) 
considered the formal manipulations of signs as empty descriptions of reality, Husserl 
stressed the fact that such a manipulation of signs requires a shift of intention: the focus 
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becomes the signs themselves, but not as signs per se. And he insisted that the abstract 
manipulation of signs is supported by new meanings arising from rules resembling the 
rules of a game (Husserl 1970), which led him to talk about signs having a game 
signification. 
The classroom example discussed in the last section shows how the teacher, through a 
complex coordination of gestures, alphanumeric formulas, and words, capitalized on the 
formula of one of the groups to make apparent for the whole class the idea of 
simplification of formulas. It was a first step, and certainly an important one in the 
students’ ontogenetic journey.  
Although I limited my account to the first two years of the 5-year journey, I hope that such 
an account is enough to get an idea of the students’ struggles and progresses towards 
increasingly more encompassing forms of algebraic thinking. 
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CERME 6 – PLENARY 2 
Mathematics education as a network of social practices 
 
Paola Valero, Aalborg University, Denmark. 
Reactor: Margarida Alexandra da Piedade Silva Cesar (Lisbon University) 
Summary. Based on an analysis of mathematics education research as an academic 
field and on current social, political and economic transformations in many European 
countries, I would argue for the need to rethink and enlarge definitions and views of 
mathematics education as a scientific field of study in order to provide better 
understandings and alternatives for practice in the teaching and learning of 
mathematics today. I will explore the notion of the “network of mathematics 
education practices” as a complex, multi-layered space of social practice where the 
meanings of the teaching and learning of mathematics are constituted. I will illustrate 
the potentiality of this notion to envision possible research paths in the field. I will 
illustrate these with the research that my colleagues and I have been carrying on 
multicultural classrooms in Denmark; as well as will offer examples of other research 
studies in Europe and other parts of the world where I see that the discipline is 
gaining newer insights that could allow attending to the social changes and 
challenges of the 21st century. 
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MATHEMATICS EDUCATION AS  
A NETWORK OF SOCIAL PRACTICES  

Paola Valero 
Aalborg University 

As academic fields advance, reflexivity on its own results and processes becomes a 
centre of attention and of disciplined inquiry. The growing amount of published 
papers and conference activities considering mathematics education, its theories, 
methods and results exemplify the need researchers have to make sense of the 
practice in which they are involved. Such type of reflexivity has always been a 
central part of my interest, probably due to the fact that my background in the social 
sciences has led me to constantly formulate questions about the type of insights on 
educational practices that mathematics education research offers in relation to the 
realities of schools and mathematics classrooms. Developing awareness on the 
research perspective that I adopt has, therefore, been as central to me as generating 
particular understandings and interpretations of the practices of teaching and learning 
in mathematics classrooms. 
In this paper I focus on the issue of how to conceive of mathematics education as a 
field of research. This implies, on the one hand, examining definitions of the field as 
they appear in existing literature, and, on the other hand, articulating alternative 
views and languages to talk about the field. My intention is to provide a ground for 
discussing the research practices in which we engage and to which we devote a great 
deal of our effort and commitment. In my examination of this issue, I will contend 
that in the historical development of what we may identify as the field of 
mathematics education research, particular dominant definitions about the field of 
educational practices of mathematics teaching and learning have emerged. Such 
definitions of the educational practices have defined what the legitimate objects of 
study of the field of research are, and with that encompassing theories and 
methodologies to research the field of educational practices. As research advances, 
however, the definition of the field of research emerging from research practices is 
being pushed to its limits. I argue that the time has come to open possibilities of 
defining both research practices and educational practices in a way that allows 
tackling in serious, rigorous and systematic ways the social, cultural and political 
complexity of mathematics education in our contemporary societies. Opening the 
scope of the field does not represent a threat to the identity of the field, but rather an 
opportunity to engage with the enormous challenges that mathematics education 
practices pose to all their participants. 
I start by a conceptual clarification of the language that I choose to address this issue, 
which entails a presentation of the underpinning ideas of my theoretical perspective. I 
clarify the notions of mathematics education as a field of educational practices and as 
a field of research practices. The distinction is useful in addressing the way in which 
these realms constitute each other, and of how different meanings have been ascribed 
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to them particularly from the second half of the 20th century when the international 
field of mathematics education research has been more visible and identifiable. I then 
move to argue that dominant definitions of the field of research and its corresponding 
views of its object of study are insufficient in tackling in a comprehensive manner the 
impact of larger contextual factors on the teaching and learning of mathematics. 
While research results continue to point to the influence of the “context” on actual 
possibilities to an effective improvement of the teaching and learning of mathematics, 
the field of research misses the development of scientific strategies to deal with both 
the understanding of those influences and the devising of strategies to deal with them 
in practice. As a response to this shortcoming, I play with the idea of defining 
mathematics education as a field of research which studies the complexities of the 
network of mathematics education practices. I define three different types of research 
moves or strategies that are necessary to deepening the understanding of the practices 
of teaching and learning of mathematics. I finalize by exemplifying these research 
moves with projects carried out by a growing number of mathematics educators 
around the world. 
 
ANALYSING THE FIELD THROUGH ITS DISCOURSES 
The increasing attention given to reflexivity in mathematics education research 
invites to discussions of how and why theories, methods and discourses in research 
are simultaneously constructed and get reproduced. In his paper during the ICMI 
study on what is mathematics education and what are its results, Ernest (1998) had 
identified the need for mathematics education research to address not only the 
primary objects of the field (the practices of teaching and learning mathematics), but 
also the secondary objects of the field (i.e., the products and processes of research 
practices). The growing emphasis on the effects of language and its connection to 
practices within the social sciences —known as the social turn— has influenced the 
way mathematics education researchers think about the field. Thus, it appears 
increasingly important to pay attention to the discourses that mathematics education 
research constructs about itself and the contributions and limitations of these 
constructions. By discourses here I understand the ways of naming and phrasing the 
ideas, values and norms that emerge from the constant and complex interactions 
among human beings while engaged in social practices. Researchers in academic 
fields construct particular discourses about their objects of study and their overall 
activity. Such discourses constitute systems of reason that regulate what is possible to 
think and do in a given field (Popkewitz, 2004). Thus, discourses generate both a 
space of possibilities as well as of limitations of what we can imagine as alternatives 
to existing orders. 
Mathematics education as a field of research is not an exception. As researchers 
engage in studying the field, they not only define what characterizes legitimate 
practices of mathematics education. They also define the ways in which it is valid and 
legitimate to research those practices. I have elsewhere engaged in examinations of 
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the discourses generated in and by the field of mathematics education research, such 
as the idea of mathematics education being “powerful” (Christensen et al., 2008), the 
conceptions of students as mathematics learners (Valero, 2004a), and the concept of 
learners’ identity in mathematics (Stentoft & Valero, in press). In this paper I turn to 
the discourses of the field about itself. My analysis is based on a study of a variety of 
texts addressing mathematics education research as a field of study, such as, for 
example, the work of Jeremy Kilpatrick (e.g., 1992, 2006, 2008; Silver & Kilpatrick, 
1994), books addressing the issue (e.g., Menghini, Furinghetti, Giacardi, & Arzarello, 
2008; Sierpinska & Kilpatrick, 1998) and recent handbooks (e.g., English, 2008; 
Lester, 2007). Drawing on elements of critical discourse analysis (Fairclough, 1995), 
I focus on the dominant ways of talking that emerge from the texts as they address 
what mathematics education practices and mathematics education research are about. 
The references in my analysis serve as illustrations of the characteristics of the 
discourses that I am identifying. 
 
EXAMINING “MATHEMATICS EDUCATION” 
The use of the term “mathematics education” in English is ambiguous. Among 
others, Ernest (1998, p. 72) has argued that the term refers to “both a practice (or 
rather a set of practices) and a field of knowledge”. The term names the set of 
practices of mathematical teaching and learning, carried out mainly by practicing 
teachers and students, in a variety of formal and informal contexts, and where 
mathematical thinking and communication occurs. The term also refers to the set of 
practices, carried out mainly by researchers hired at colleges of education and 
universities, that study teaching and learning practices. A first thing to notice about 
the two meanings is that each one of them is addressing a field of practice. The 
former refers to the field of educational practices; the latter refers to the field of 
research practices. As fields of practice, each one of them has particular embodied, 
routinized activities, artifacts, ideas, values and forms of communication. They are 
distinct practices, though with intersections of practitioners (most often than not, 
researchers are themselves teachers and teachers are also researchers), interests, 
concerns and discourses. However, the two fields of practice are not identical. It is 
not my intention to go deeper into the characterization of these two fields of practice 
here. Suffice to say that their separateness or connection is a matter of concern for 
many practitioners located in each one of the fields (e.g., Ruthven & Goodchild, 
2008; Sfard, 2005). 
My intention with distinguishing the two fields here has to do with the relationship 
between the two, not in terms of how the field of research practice should illuminate 
and improve the field of educational practice; but rather in terms of how the 
definitions constructed for each of them are mutually constitutive. Let me explain, 
starting with a basic assumption. A theoretical perspective and an object of study are 
mutually constituted. It is not possible to talk about an object of study without a set of 
assumptions and language that recognizes and phrases a happening or a social event, 
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and makes it focus of attention. If this is the case, then we can think about the 
relationship between what is taken to be mathematics education as a field of 
educational practice and mathematics education as a field of research practice. My 
contention here is that through the development of the field of research practice, 
definitions of the field of educational practice have emerged. 
Looking back at the history of the field of research practice through a general study 
of the different trends that have emerged in literature, as well as an examination of 
texts addressing the history of mathematics education research, there seems to 
emerge a common narrative about the origins of research. The interest of 
mathematicians and educators engaged in the teaching of the subject at different 
levels, particularly in relationship to teacher education, was a seed for paying 
systematic attention to mathematics in a learning and teaching environment 
(Kilpatrick, 2006). “The problems of practice” that is, the set of concerns for the 
predicaments of teachers’ instruction and students’ learning of mathematical topics, 
as formulated by Silver and Herbst (2007), have become the cornerstone of the 
research endeavor. The problems of practice have become the natural object of study 
of the field of research. They have also determined the ultimate goal of research, 
which is contributing to the improvement of practice. Many people defend these ideas 
as the essence of mathematics education research; the ideas are a central part of how 
many researchers define the object and aims of study (e.g., Hart, 1998). These ideas 
are seen by many in opposition to the idea that mathematics education research is 
growing as an academic field in itself, with a theoretical and methodological 
development that not always connects so closely with teaching and learning practices. 
There are also many scholars who acknowledge and actually try to understand not 
only the findings, but also the theoretical, methodological constructions of the field 
(e.g., Silver & Herbst, 2007). Of course, this debate is also fuelled by different 
agendas outside the field of study and the field of practice of mathematics education, 
such as the growing political demand for accountability of research funds and the 
focus on educational research to be the basis for evidence-based practice. 
Independently on which side personal intentions and commitments are, two points are 
evident here. First, there is nothing “natural” in the definitions given to the field of 
research practice. The discursive construction of the object of study and the aims of 
research in the field correspond with the practices of researchers both in national and 
international communities. We actually need to denaturalize what seems to be taken 
for granted in the way we researchers, collectively and as individuals, talk about the 
field and engage with the field. Following from this, the second point is that 
definitions of the field of study entail definitions of the educational practices that 
research studies. This implies that it is not possible to assume complete independence 
between the social practices of teaching and learning of mathematics, from the social 
practices of researching them. The discourses of the field of study construe 
frameworks for thinking, conceiving and therefore actually engaging in the 

PLENARY 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6>



 

 

 

LIX

educational practices (Popkewitz, 2004). The fields are distinct but discursively 
related. 
Digging deeper into how the educational practices are being defined by the research 
practices, it is evident that definitions are historical and also situated in particular 
geographical settings. They are also contingent upon theories adopted to account for 
the problems of practice. A proper account of the complexity of the definitions 
exceeds the scope of this paper. Nevertheless, I will point to some salient features of 
the way research has been defined in general international terms. Although for many 
researchers the history of mathematics education research is short —in relation to the 
history of, say, mathematics— it is possible to find shifts in the ways of phrasing the 
focus of both educational and research practices. Looking at the 100-year long history 
of the International Commission of Mathematical Instruction (ICMI) as one 
international organization that has had an important role to play in promoting 
mathematics education research, the initial focus of the meetings, discussions and 
concerns of interest in the educational practices was the mathematical content. In 
what Bass (2008) has named ICMI’s “Klein Era”, at the beginning of the 20th 
century, attention was paid to issues of content and little distinction existed in fact 
between the gatherings of ICMI and the general meetings of the International 
Mathematical Union, except for the fact that the mathematical topics addressed in 
ICMI were more elemental mathematics. Such observation resonates with 
Kilpatrick’s assertion that the work of the first mathematics educators at the end of 
the 18th and beginning of the 19th centuries had a strong focus on the mathematical 
contents, although few other topics were present as well such as the history of 
mathematics and teaching experiments (Kilpatrick, 2006). A graphic representation 
of the field of educational/research practice in this time could look like this: 
 
 
 
 

Figure 1: Mathematics at the centre of the field of practice and research 

 
The linkage to psychology as a support discipline has been important in the 
construction of an empirical investigative approach towards the problems of practice. 
With the strengthening of parts of psychology as an experimental science and with 
mathematics education becoming a field in universities, mathematics education 
research found theoretical and methodological approaches to the inquiry of teaching 
and learning problems in mathematics (Lerman, 2000). The influence of the 
European didactic traditions have also played a major role in defining that the focus 
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of research is placed in the didactic triad constituted by the relationships between 
mathematics, the teacher and the student. As the 20th century advanced and more 
research work in the area was produced, explorations of the didactic triad had been 
focused on each of its elements, on the relationships among them, and on the whole 
complexity at stake in it. Combined with a variety of theoretical approaches to deal 
with the specificities of each of the elements, the didactic triad has been a basic but 
powerful model behind a great deal of research in the field. Saying that the didactic 
triad has been a model behind research in mathematics education does not intend to 
oversimplify and dismiss the advances of the field in understanding the complexity of 
the relations at the interior of the triad. There are numerous examples of particular 
models that have shown such complexity (e.g., Balacheff & Kaput, 1996, for the case 
of the role of technology in mathematics learning). 
 

 

Figure 2: The didactic triad at the centre of the field of practice and research 

 
There are several points to notice in the research and discussions about the field of 
research adopting this model. A first issue is the issue of the mathematical specificity. 
Mathematics education research is defined as the discipline studying “the practice of 
mathematics teaching and learning at all levels in (and outside) the educational 
system in which it is embedded” (Sierpinska & Kilpatrick, 1998, p. 29). In this field, 
“[…] mathematics and its specificities are inherent in the research questions from the 
outset. One is looking at mathematics learning and one cannot ask these questions 
outside of mathematics.” (p. 26). Questions, problems, theories and methods not 
allowing for mathematical specificity tend to be considered irrelevant, and out of the 
scope of mathematics education research. Second, there also seems to be an 
underlying assumption about the decontextualization of the triad. The objects of 
research tend to be presented in terms of students’ learning of concepts (and most 
often students’ misunderstanding of them), and teachers’ instruction of mathematical 
concepts. They are text, the content, the centre. The con-text, that surrounding 
accompanying and constituting the text, does not fall inside the research gaze. 
Therefore, except for a brief mention to the characteristics of the people involved in a 
study, no more grounding and information is available about the context of a given 
phenomenon studied. If some context is mentioned, it is not taken significantly as 
part of the analysis. The assumption of decontextualization goes also hand in hand 
with the assumption of closure of the didactic triad. This means that research 
problems are both formulated within and accounted for in the didactic triad. The 
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practices of teaching and learning are somehow self-contained and self-explanatory. 
There are plenty of examples to find in research on geometrical thinking, 
argumentation and proof, etc. A review of, for example, the CERME proceedings on 
these topics will clearly show this tendency. 
As some researchers have started to consider classrooms dynamics, the classroom has 
appeared as a clear boundary around the triad, a clear, manageable context. One 
example of research contributing to the strong emergence of the classroom is the 
work of Cobb and collaborators during the 1990’s which lead to the notion of the 
socio-mathematical norms (e.g., Cobb, Wood, & Yackel, 1992) which explained 
students’ learning possibilities in terms of the continued interactions happening in the 
instructional practices in classrooms. In the case of Cobb and collaborators, the move 
from a social constructivist theory of learning to address mathematics education, to a 
socio-cultural theory of learning was one of the reasons for an enlarged 
understanding of the role of the social dynamics of the classroom in relation to 
individual learning. This seems to have been the case for many other researchers who 
started to focus on the situatedness of teaching and learning practices in classrooms 
and schools (e.g., Boaler, 1997). 

Figure 3: The didactic triad within the boundaries of the classroom 

 
Lerman (2000, 2006) has argued that researchers in mathematics education, 
influenced by the language turn in the social sciences, have adopted a variety of 
sociological and cultural-anthropological theories for the study of the teaching and 
learning of mathematics. The strong social turn in the field has meant the recognition 
of the embeddedness of mathematical thinking, learning and teaching in larger social, 
cultural, economic and political structures. Research with a concern for equitable 
access to mathematics is an example of how such recognition has been fundamental 
in the generation of new research areas. In many cases, there is an attempt to stick to 
the formulation of problems within the didactic triad, though, from a different 
theoretical position. For example, part1 of the work of Radford concerning semiotic, 
                                           
1 In few of his papers, Radford shows a broader analysis of the relation of mathematics and culture. 
For example, Radford and Empey (2007) present a study of social and mathematical practices 
outside the didactic triad. They show that “within a certain historical time period, mathematics –in 
its amplest sense […] accounts for the formation of new social sensibilities –both in terms of 
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embodied interpretations of students’ mathematical thinking give a cultural 
dimension to the issues of the didactic triad and show a connectedness of children’s 
thinking and school practices with other forms of practices outside schools and 
classrooms (Radford, 2008). In general, it is interesting to notice that, despite the 
adoption of theoretical frameworks that have an understanding of the social and 
cultural that goes beyond the limited understanding of “social” in terms of interaction 
among people present in interactionist theories associated with constructivism, the 
focus of attention of research remains being the classroom and, within it, the didactic 
triad. 
Some other types of research have also challenged the idea that the privileged site for 
research is the classroom. If mathematical thinking is a social and cultural activity it 
happens in other social spaces different from classrooms. The classical example of 
this broadening is the research by Nunes and collaborators (Nunes, Carraher, & 
Schliemann, 1993) which opened the space for investigations of the relationships 
between mathematics in school and out of school. The extensive research belonging 
to the ethnomathematical program has also explored mathematical practices in 
working and everyday life settings. Already at the beginning of the 1990’s Gómez, 
Perry and collaborators (e.g., Gómez & Perry, 1996; Perry, Valero, Castro, Gómez, & 
Agudelo, 1998) had studied mathematics teachers’ change and professional 
development within the complexity of the school organization. Such trend has also 
been explored by Cobb and collaborators (e.g., Cobb, McClain, Silva Lamberg, & 
Dean, 2003) in an attempt to connect classroom communities with their immediate 
organizational contexts. More recently attention has been paid to the school 
mathematical experiences of parents in relation to the school mathematics practices 
of students when coming to new countries and cultures (Civil, 2007). In general, 
there has been a growth in research that documents the relationship between factors 
outside of the classroom (in the context) and the state of affairs inside the classroom, 
in the didactic triad.  
 
 
 
 

 
 

Figure 4: The didactic triad in a context 

 

                                                                                                                                            
capacities to create new forms of understanding and novel forms of subjectivity” (p. 232). 
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In other words, the welcoming of socio-cultural theories to deal with the problems of 
practice has helped considering the context of those problems as a significant part of 
them. With such move the interpretations and understandings of the terms 
“mathematics” “teaching”, “learning”, and “thinking” are broadened and new 
phenomena, interactions and practices where mathematical elements are present start 
being included as legitimate objects of study. As an evidence of this we could look at 
different studies classifying the research published in different international journals 
and conference proceedings. All these studies assume that certain international 
journals actually represent the production in the field at any given time. Gómez 
(2000) argues that “mathematics education research production is centred mainly on 
cognitive problems and phenomena; that it has other minor areas of interest; and that 
it shows very little production on those themes related to the practices that influence 
somehow the teaching and learning of mathematics from the institutional or national 
point of view” (p. 2-3). In a review of literature focusing on how research addresses 
the significance of students’ social class for the learning of mathematics, Chassapis 
(2002) also argues that little and almost insignificant attention has been paid in 30 
years of research production to the issue of who are the mathematics learners and 
how the learners’ background influences mathematical learning. This lack of 
attention contributes to a lack of comprehension about the social, political and 
cultural complexity of mathematics education and the factors involved in it. Lerman, 
Tsatsaroni and Xu (2006; 2002) have also produced an overview of the theories used 
in mathematics education research in the period 1990-2001. Their data shows that 
although socio-cultural theories of different types had been more used in the field, the 
majority of theories used in published papers are traditional psychological and 
mathematical theories focusing on the learners, the mathematics and the teachers. 
Skovsmose and Valero (2008) have also classified publications with the purpose of 
showing how the field gives different meanings to the term “democratic access to 
powerful mathematical ideas”. The concentration of research on mathematical and 
psychological interpretations, focusing on the study of classroom practices led them 
to conclude that “it is highly problematic that dominant research trends in 
mathematics education operate within a limited scope of the space of investigating 
democratic access to powerful mathematical ideas. Such a paradigmatic limitation 
effectively obstructs the possibilities for mathematics education to face the paradoxes 
of the informational society”. Time has passed and, as Lerman and collaborators 
show, the adoption of socio-cultural theories enlarges and thereby a sensitivity to 
define research objects outside the didactic triad emerges. However, the majority of 
research published defines problems that deal with the central elements of the 
didactic triad, and from theoretical perspectives focused on mathematical cognition. 
A recent overview for the papers published in ESM, JRME, MERJ, FLM, ZDM and 
PME proceedings during the year of 20072 confirms the previous findings: 25% of 

                                           
2 I thank Alexandre Pais for his support doing this overview. 
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papers choose as a focus a mathematical notion in learning or teaching; 29% of the 
papers address issues of teachers’ dealing with mathematical contents and 31% 
choose the learners’ understanding or thinking of mathematical notions. The issue 
remaining is how does the field of research practice address the complexity of the 
field of educational practice beyond the didactic triad? 
 
OPENING UP THE CONTEXT OF THE DIDACTIC TRIAD 
Although the research gaze of the field of research practices seems to be enlarged, 
still many researchers express a concern with the issue of dealing with the “context”. 
Let us see at this in a more detailed way. In the first place it is important to discuss 
the notion of context and how the field of research defines and addresses it. In the 
section above I shortly defined context as the surroundings of an object –the “con” 
accompanying a “text”. As I argued before, research approaches focusing on the 
didactic triad tend to ignore context, since the focus of research is the “text”. In the 
type of research focusing on learning and thinking mathematically within the didactic 
triad, some understandings of “context” are present, although in the form of the 
context of the mathematical contents, problems or ideas that students and/or teachers 
deal with. This is what Wedege (1999, p. 206) calls the task-context. 
I also argued that socio-cultural theories in mathematics education have opened for 
considerations of the factors that affect a classroom situation. A situation-context, 
following Wedege’s formulations above has been evident in research literature, i.e., 
in research addressing the immediate context of teaching and learning in the 
classroom. But I also argued that context can be much more than the walls of the 
classroom. Concerning the conceptualizations of the notion of context in socio-
cultural theories, Abreu (2000) has discussed how different socio-cultural theoretical 
trends conceptualize context, and which implications such conceptualizations have 
for the study of mathematical thinking and learning. On the one hand, one can 
consider the micro-social and cultural contexts of mathematics teaching and learning 
by focusing on “the immediate interactional setting where face-to-face interactions 
take place” (p. 2). On the other hand, one could focus on the macro-social and 
cultural contexts which are the “non-immediate interactional settings loosely defined 
by other authors as ‘the broader socio-cultural systems’ […] or ‘broader sociocultural 
milieu’” (p. 2), which frame mathematical activity in any particular interactional 
setting. The interesting research endeavor, however, is how theories connect micro 
and macro contexts in a search for relationships between how individuals make sense 
of mathematical ideas in the complex field of activity within larger symbolic systems. 
For Abreu, the issue of the micro-macro relationship is not only a matter of how 
particular interactions with certain cultural tools mediate thinking, but also of how 
social valorizations of knowledge mediate individual positioning towards that 

PLENARY 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6>



 

 

 

LXV

knowledge in the creation of personal identities3. From these perspectives, context is 
not just like the “the bowl that contains the soup” or the “surroundings of a text”, but 
rather a constitutive element of the text itself. Text and context are dynamic; and they 
are dialectically constituted (McDermott, 1996). 
In the discussion by Abreu (2000), the distinction between micro and macro context 
opens up for a reflection on where, on the continuum between agent and structure, 
mathematics education research tends to focus its research gaze. If mathematics 
education research is seen as a social/human field of study, it cannot escape this 
reflection. The classical micro-macro debate in sociology addresses the issue of 
whether the social world is to be understood by studying individual and their 
interactions or by studying social structures. Each social discipline delimits the scope 
of the “social” in its objects of study in particular ways. Some types of areas refer to 
the “social” as a broad, all-embracing functioning of human action in whole cultures 
and civilizations (e.g., Beck, Giddens, & Lesh, 1994). Other kinds of sociological 
viewpoints related to disciplines such as psychology or economics, have defined the 
“social” as the realm of interaction among individuals. Mathematics education 
researchers, in the study of the social and human phenomena of mathematical 
thinking, learning, teaching and education, have taken a stance in this discussion 
implicitly (more often than not). Mathematics education research, as characterized 
previously with a focus on the didactic triad, has tended to focus so much in 
individual mathematical thinking, reasoning and cognition that the “social” 
dimension was almost non-existing. One example of this could be mathematics 
education as seen from a radical constructivist perspective centered on individual 
reorganizations of mathematical ideas. Social constructivism and related views of 
learning opened for a social dimension in terms of inter-personal interactions. It is 
only with certain recontextualizations of socio-cultural theories that the 
understandings of the social move beyond the individual and inter-individual level 
and, as Abreu says, push for the need of establishing a connection between micro and 
macro levels of the social. Nevertheless, studies in mathematics education from 
socio-cultural perspectives have also tended to focus on micro-contexts, probably 
because the dominance of discourses of the field of study with a centre on the 
didactic triad, and with a closeness to the “problems of practice” define the legitimate 
problem field in terms of micro-interactions and micro-contexts. The interesting 
question that emerges here is whether focusing on objects and problems in a micro-
sociological level is the only possibility for mathematics education research. I will 
return to this point. 
                                           
3 The research of Guida d’Abreu offers an interesting example of the different notions of context 
put in operation in research on mathematical practices. From her earlier research on Brazilian sugar 
cane farmers to her recent work on the valorizations of mathematics among immigrant children and 
parents in England (Abreu, 2007), it is possible to identify the differences in theoretical perspectives 
concerning how to deal with the significance of context in relation to mathematical practices. 
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Addressing context —and with it the many factors, actors, meanings and discourses 
that are difficult to grasp at a micro-social level but that researchers know have a 
great influence on the micro settings that we choose to research— is a difficult 
matter. In systematic readings of literature, researchers point to the need of research 
that actually deals with both the micro-complexity and the macro-complexity of 
mathematics education. I present here a selection of studies from different types of 
research and theoretical orientations that illustrate this concern. 
In the USA and dealing with the concern of how to expand massively the 
constructivist-inspired vision of school mathematics of the NCTM, Confrey (2000a, 
2000b) argued that it was necessary to expand constructivism from the level of a 
learning theory operating at individual or classroom level, to the level of a system. 
She urged for a view of research that could go beyond the micro-findings of research: 

[…R]esearch never anticipated all of the leaks in the bucket, nor did it bring strongly 
enough into relief the fact that the bucket is only a small part of a large system. It is 
undeniable that researchers identified critical issues […] Despite the importance of these 
results, changing any one of them alone was proving insufficient to fix the problems of 
mathematics and science. […] All of these changes require one to look more broadly, 
beyond the restricted focus of a research study. All of them require us to move beyond 
the level of the classroom, a move that occurs only rarely in educational research. 
(Confrey, 2000a, pp. 88-89) 

An examination of research and development initiatives in the USA to bring 
democratic access of students to the goods associated with high achievement in 
mathematics, Rousseau and Tate (2008, p. 315) conclude: 

The factors influencing democratic access in mathematics education are complex. If we 
look strictly at events as they occur in the classroom, without consideration of the 
complex forces that helped to shape those learning conditions, our understanding is only 
partial [and] the solutions to the problem [are] ineffectual. We must seek to reach a fuller 
understanding of the complex issues that shape access and opportunity to learn in 
mathematics so that, in turn, we can develop more effective strategies to ensure access 
and opportunity for all students. 

In the area of teacher education, studies on the professional development of 
mathematics teachers and on their learning have argued and shown the importance of 
broadening the understanding of what is at stake when professional teachers do their 
work and learn. Krainer has pointed to this systematically since the end of the 1990’s. 
More recently (2007, p. 2), he writes:  

It is important to take into account that teachers’ learning is a complex process and is to a 
large extent influenced by personal, social, organisational, cultural and political factors. 

Acknowledging the multiple influences in teachers’ learning, the third volume of the 
International Handbook of Mathematics Teacher Education (Krainer & Wood, 2007) 
is organized around chapter addressing teachers’ professional learning at individual, 
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team, community and network levels. The book as a whole illustrates research that 
moves beyond individual teachers and classrooms.  
The examples above represent few key studies of people who, in different research 
areas and during the last 10 years, have argued for a need to expand the scope of 
research of the field. If mathematics education research ought to tackle systematically 
not only the micro-contexts of mathematical teaching, learning and thinking, but also 
its macro-contexts and the relationship between the two types of contexts, it is 
evident that definitions of the field of study centered on the didactic triad and 
recognizing the existence of a context are not enough. I will now engage in exploring 
a proposal of what the field of research practices, and therefore, the field of 
educational practices could be thought of. 
 
MATHEMATICS EDUCATION AS A NETWORK OF SOCIAL PRACTICES 
Our understandings of mathematics education as a field of research practices need to 
be enlarged, and with that our understandings of the practices that are the objects of 
study of the research field. This idea has always been part of a concern that has 
emerged from my research experience in Colombia as part of the team of researchers 
called “una empresa docente” at the Universidad de los Andes in Bogotá, later on as 
part of my doctoral studies at the Danish University of Education in Denmark, and 
now as part of the research group in mathematics and science education at Aalborg 
University in Denmark.  
This idea has been developing since 1999 when, in the exploration of the relationship 
between mathematics education and democracy, I wrote: 

First, the justifications to connect mathematics education to democracy are not only 
found in the mathematical content, but also and mainly in the social and political factors 
that constitute the learning and teaching relationships in the classroom, in the school and 
in society. Second, and as a consequence of the latter, it is necessary to study the context 
of the practices and its components. By doing so, we could gain a better understanding of 
what mathematics education for democracy means in other instances where the social 
relationships that constitute and shape mathematics teaching and learning are built. Thus, 
a definition of the social practices of mathematics education should include not only all 
the institutionalized relationships among teachers, students and mathematics at the 
different levels of schooling, inside and outside the educational system, but also the 
activity of policy makers that at a national level deal with the design of curricular 
guidelines for the teaching of mathematics […]; the activity of writing mathematics 
textbooks […]; the complex relationships that configure the teaching of mathematics 
within the organizational structure of educational institutions […]; the spaces of teacher 
education both in its initial […] and further stages […]; as well as the configuration 
processes of social conceptions about the role of mathematics education in society […]. 
All these practices together should be potential and legitimate objects of study if we aim 

PLENARY 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6>



 

 

 

LXVIII

at understanding and, at the same time, promoting a mathematical education for 
democracy. (Valero, 1999, p. 21) 

My initial concern for the relationship between mathematics education and 
democracy within the framework of critical mathematics education proposed, among 
others, by Skovsmose (Skovsmose, 1994) has evolved to become a general concern 
for developing a socio-political approach to mathematics education. As I have argued 
elsewhere (Valero, 2004b, 2007), such an approach views mathematics education as 
social practices where power relationships among the participants in and the 
discourses emerging from the practices are an important constitutive dimension. In 
contrast to a socio-cultural perspective to read mathematics education where the issue 
of power is not dealt with explicitly or is hidden in the valorization of practices and 
meanings within semiotic systems, a socio-political approach privileges power. 
The concept of the network mathematics education practices has been under 
construction for a while and it has been named slightly different in my different 
writings (Valero, 2002, 2007, 2009). This paper has been an opportunity more to 
clarify the views, assumptions and analysis behind such notion. More than a finished 
concept, I see the concept as being still under construction. But what does this notion 
refer to? 
In the first place, if mathematics education practices are to be defined beyond the 
didactic triad and in relation to their broad context, it is necessary to define 
“mathematics education” not only in terms of the agents and phenomena strictly 
related to mathematical thinking, teaching and learning, but also in terms of the series 
of social practices that contribute giving meaning to the activity of people when 
thinking, learning and teaching mathematics, as well as when engaging in situation 
where mathematical elements are present. Thus, the meaning of mathematical 
thinking, teaching and learning is not exclusively related to the particular meaning of 
the mathematical content and concepts in learning and/or teaching situations4. 
Meaning is also related to the significance given to the mathematical rationality 
within a diverse series of social practices constituting educational practices in a given 
historical time. Behind this idea there is the clear recognition that what we understand 
by mathematics is far from being a unified body of knowledge determined by the 
practices of professional mathematicians, but rather a series of “knowledges” and 
“language games” bounded to a diversity of practices, all of which have a family 
resemblance. The recent work of Knijnik (2008) in ethnomathematics is useful here 
to discuss the issue of meaning and diversity of mathematics in relation to social 
practices. The work of Sfard (2009) in identifying the irresistible pervasiveness of 
numberese, the numerical discourses in our societies, is useful in understanding how 

                                           
4 Skovsmose (2005) has pointed to this idea in relation to the sense that students make of 
mathematical ideas. For him meaning is constructed in relation to the students’ foregrounds and the 
role that mathematics plays in how students perceive their future possibilities in life. 
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numerical discourses associated with the diversity of language games of mathematics 
in our society constitute ways of seeing the world. If mathematics-related language 
games are present in many spheres of practice, the meaning of them are also 
constituted in relation to those practices and their discursive elements. 
Second, which is the diversity of social practices where the meanings are constituted? 
Mathematics education as a field of educational practice can be defined as a series of 
social practices, carried out by different people in different sites, where the meaning 
of the teaching and learning of mathematics is constituted, in particular historical 
conditions. Those social practices are to be found not only in the classroom where 
teachers and students interact around mathematical content, but also in, for example: 

• family practices and parents’ demands to school (mathematics) 
• local community practices and their educational needs 
• international or national educational policymaking practices in mathematics, 

which structure and regulate the forms of valid knowledge, competences and 
achievement levels to be attained by students and teachers in mathematics 

• teacher education practices 
• textbook production practices 
• labour market practices and expectations on the mathematical qualifications of 

workers 
• mathematics education research practices 
• mathematics research practices 
• youth culture practices 
• mass media practices and the construction of public views and discourses of 

mathematics 
• practices of international comparisons of (mathematics) achievement 

Many other sites of practice could be mentioned and could be identified to be 
relevant at a given historical time. As an example, we could consider the role of the 
international comparative studies that, from the time of TIMMS in the middle of the 
1990’s have had a great influence in national policies, local curricular changes and 
teachers’ work. Particular meanings of what counts as mathematics education have 
been put forward through the impact that results of these comparisons have had on 
adjusting mathematics educational policies in many countries. The PISA studies have 
also brought with them definitions of mathematical competency that have been 
incorporated in several European countries. These definitions have framed what at 
this historical time policy makers, teachers and researchers understand by 
mathematical competence. The work of Jablonka (2009) evidencing this rationality is 
useful in seeing how the PISA rationality has permeated many other spheres of 
practice in mathematics education. Whether international comparisons will keep on 
having such a defining role in the network of mathematics education practices in the 
future depends on political and economic configurations of the discourses that will 
rule educational thinking in the years to come. As for mathematics education it is 
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clear that such an element has impacted in this historical time. The future also 
remains uncertain. 
By using the idea of a network —in contrast with the use of the concept of system— I 
want to convey the idea that these various sites of practice, their participants, 
organization, rules and discourses, are sometimes loosely and sometimes tightly 
coupled depending on particular historical circumstances. It is not possible to assume 
a particular general dynamic and development of the practices, except from the idea 
that many of them are implicated in the construction of the multiple meanings 
ascribed to mathematics education in a given time and location. In this sense, this 
notion is different from, for example, the vision proposed by Confrey (2000b) of a 
constructivist learning system. 
Figure 5 is an attempt to represent the network of social practices of mathematics 
education, as far as my two-dimensional expertise for this kind of drawings permits 
to grasp the idea. The “bubbles” represent a site of practice. Notice that some bubbles 
are empty. With this I want to convey the idea that many practices may be considered 
at a given time. The connecting lines may sometimes be weaker and some times be 
stronger. A better representation would be to imagine a 3-D constellation of bubbles 
that move, become bigger or smaller, and connecting in distinct ways at different 
times. 

 
Figure 5: A representation of the “Network of mathematics education practices” 

For me, defining mathematics education in terms of the network of mathematics 
education practices allows to evidence the cultural, social, economic, historical and 
political complexity of mathematics education. It also opens for envisioning a quite 
distinct field of research practices that, besides dealing with the objects and 
relationships that it has addressed until the moment, can engage in other types of 
research moves, with the double aim of generating deeper understandings and 
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interpretations of the field and of addressing the problems of practice of the multiple 
participants in this broader field. 
If the field of research deals with the study of the field of educational practices 
defined in terms of the network, then three issues become evident. Firstly, the field of 
research and any study within it can be defined in terms of the mathematical 
specificity of it. However, the mathematical specificity of mathematics education 
research cannot be defined mainly in terms of the particular mathematical content, 
notions or competencies being addressed in the research. Rather, it has to be defined 
in terms of the significance of the mathematics-related practices and rationalities for 
the construction of the meaning of such practice, or other related practices, among its 
participants. When discussing research the concern of some researchers with the 
mathematical specificity of a given project is often expressed though questions such 
as: “But… would it matter if one changed the word ‘mathematics’ for the word 
‘geography’ or ‘history’ in this project?” If we understand the mathematical 
specificity of mathematics education research in the broader terms proposed here, 
questions such as the one above will become completely irrelevant and would not be 
anymore a question to judge whether a research is a “proper” mathematics education 
research. If a research addresses in substantial ways the meaning and importance that 
different participants give to mathematics-related practices, or how mathematics-
related rationalities that have an impact on the way mathematics education discourses 
are formed, then a research could be part of the field of mathematics education. In 
other words, the mathematical specificity of the field is related more to the social 
valorization that mathematics-related practices have in the dominant cultural, social 
and political order, and not to an explicit mathematical content or knowledge being 
researched. Such valorization is associated to the status of the field as a 
power/knowledge, which allows participants in mathematical-related practices to gain 
a positioning in relation to other people. That we study mathematics-related practices 
and their relation to the meaning of mathematics education has therefore a social and 
political significance, even if there is no apparent mathematical content involved.  
Second, the study of any of the practices involved in the network has to acknowledge 
seriously contextualization. In contrast to the decontextualization that dominates in 
views of the field focusing on the didactic triad, researching the network of 
mathematics education practices invites to search for the intricate relationships 
between different sites of practice in constituting each other. The contextualization of 
mathematics education practices point to the contingency of practices and discourses 
when people engage in the task of giving meaning to mathematics-related ideas and 
practices in educational spheres or in any other sphere of human action5. 

                                           
5 For an example of a study exploring the significance of contingency and complexity when 
researching mathematics education practices see Stentoft (2009). 
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Third, the view of mathematics education as a network of social practices implies that 
research problems do not need to be defined nor addressed within the didactic triad in 
a closed manner, but rather they can be formulated and tackled in the openness of the 
sites of the network. While a closed view of the field of research and practice will 
tend to become internalistic and provide problems and explanations within the realm 
of the elements involved in the didactic triad, the network of mathematics education 
practices highlights that the problems researchers formulate and their interpretations 
are always fragmented and cover only one little part of the complexity of practice.  
The issue that I will engage with now is: how is it possible to do research in the 
“hyper-complexity” that the network of mathematics education suggests? 
 
RESEARCH MOVES IN THE NETWORK 
Whenever we do research, we perform a “move” or a strategy in the process of 
constructing knowledge about the objects involved in our study. It is obvious to say 
that these moves depend on theoretical and methodological frameworks, as well as on 
the traditions of the field of study. In mathematics education as a field of research 
practice focused mainly on the didactic triad, the most frequent research moves can 
be characterized as strategies addressing a very well defined research object, where 
the complexity of variables or factors considered is limited in order to make research 
projects manageable and realizable. The research move has been then a move towards 
an in-depth exploration of few factors and actors. The result of such move has been 
the production of a considerable amount of knowledge about how factors work in 
isolation, at the expense of how they interact together. Confrey’s quotation cited 
above pointed precisely to this characteristic of mathematics education research. 
Some people call this the “fragmentation” of the field, which could be solved by 
striving for unification of theories. Whether this unification is possible and desirable, 
and actually can contribute to address the fragmentation is an issue of debate in the 
community. I do not think that striving for unification is neither possible nor 
desirable. I agree with Lerman (2006) in the argument that the apparent 
“fragmentation” is a very condition of the endeavor of researching social and human 
processes such as mathematics education, at the historical time we are living now. 
Rather, I would argue that fragmentation emerging from research moves that try to 
cover the depth of defined problems needs to be complemented by different research 
moves that provide needed problematization and better insight into the social and 
political complexity of the multiple practices of mathematics education. In what 
follows, I will formulate three research moves —among many others one could think 
of— for researching the network of mathematics education practices. 
If mathematics education practices are seen as the network I proposed, the aim of the 
research field would be to provide insight into not only how each single node of the 
network operates constructing the meaning and significance of mathematics 
education, but also into how different nodes interconnect at particular historical 
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times. A research move aiming at covering the breadth of the social practices of 
mathematics education would then “slice” and define objects of study in a different 
manner. It would define problems in terms of the interrelationships of different nodes 
in the network.  
 

 
Figure 6: Defining research moves in the “Network of mathematics education 
practices” 

The highlighted areas in the diagram above illustrate possible ways of “slicing” the 
network in a research move trying to gain breadth in the research. The area 
highlighted in the right side of the diagram would correspond to a study of, for 
example, how international comparisons in mathematics have affected national policy 
making, school leadership and demand for change to mathematics teachers in schools 
at the level of staff organization. The highlighted area to the right could correspond to 
a study on teaching and learning cultures in the classroom in relation to youth culture 
and demands from the labor market. The study of Zevenbergen (2005) on 
“Millennial” young people’s numeracies at the workplace is close to such a kind of 
exploration of the network. 
Other examples of such a research move for breadth is Martin (2000) who examines 
how the systematic failure of Afro-American students in the USA is constituted in a 
multilayered space of individuals, schools, families and communities. He shows how 
the mathematical identities of the students in his study can only be seen and 
interpreted in this multiple, interconnected levels. The research of Alrø, Skovmose 
and Valero (2008) argue and document the need of expanding the lenses for 
researching learning possibilities and conflicts in multicultural mathematics 
classrooms by considering the interconnectedness of at least nine different settings  of 
practice: students’ foregrounds, students’ identity, teachers’ perspectives of and 
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priorities in mathematics teaching, classroom interaction, the mathematical content, 
friends’ priorities for participation in mathematics education, parents’ expectations of 
mathematics education, the tools and resources available and the public discourses on 
diversity and education. 
Another important strategy is moving back and forth along the continuum of agency 
and structure or, in other words, micro-social and macro-social units. One example of 
this type of move is the work of Gellert (2008), who in examining the issue of 
comparing and combining different theoretical frameworks, delineates a general 
methodology that, based on interactionist and structural theories, allows to interpret 
how the mathematics classroom discourses and practices are implicated in the re-
construction of social in(ex)clusion. Morgan (2009) also presents a study that, within 
the framework of critical discourse analysis, shows how the differential discourses of 
mathematical ability in curricular documents and textbooks targeted towards students 
with different attainment levels generate differential educational possibilities for 
different types of students. This study illustrates that ideas and discourses of 
individual mathematical ability are not only produced in the classroom, but are also 
produced in institutionalized practices at a level of structure that goes beyond the 
individual participants in mathematics education practices in classrooms. These two 
studies exemplify research moves, with their corresponding theoretical and 
methodological tools, that connect the micro and the macro contexts of mathematics 
education. 
Yet another strategy is moving along time to find the historical constitution of the 
meanings of mathematics education. Such a move evidences the contextualization of 
mathematics education practices in particular social configurations. Inspired on the 
archaeology and genealogy of practices and discourses suggested by Foucault, 
Knijnik and her collaborators have been recently exploring how different central 
ideas in the field of mathematics education have come to be created. One example is 
the research by Duarte (Duarte, 2008) on how the idea of the necessity and 
importance of connecting school mathematics and the world out of school —or the 
“real” world— has emerged in the particular case of Brazilian mathematics education 
discourses. The study digs in the history of education in Brazil and identifies the 
historical moment in which the conditions for the introduction of such idea took place 
at the beginning of the 20th century. At the same time, the process of 
recontextualization of the idea in relation to mathematics education is shown through 
an analysis of mathematics education journals and conference proceedings in recent 
times. Other studies (Knijnik, Wanderer, & Duarte, 2008) examine and problematize 
how other ideas such as the necessity of using concrete materials have become part of 
the dominant discourses of mathematics education. 
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TOWARDS THE FUTURE 
Mathematics education research has grown as a field of educational research. It has 
expanded in terms of the amount of results produced, the diversity of theoretical 
approaches and the richness of the problems addressed. Mathematics-related 
practices in schools and in different social spheres of action also become more and 
more evident to different participants in those practices. Whether mathematics 
education research has the potentiality for addressing in significant ways those 
practices and generating interesting insights about them, is a matter of how far 
researchers —as well as practitioners— want to engage in the exploration of the 
social, cultural, historical, political and even economic significance of them in the 
construction of society. 
Enlarging the scope of the field in terms of the network of mathematics education 
practices poses both intellectual and ethical challenges. Researching the network of 
mathematics education practices through, among others, the three types of research 
moves I suggested here demands much more collective effort, and much more 
sustained interdisciplinary collaboration with colleagues with expertise in other 
research fields. I am well aware that, given the tighter funding possibilities for 
mathematics education research at this moment and the increasing publication 
demands from university administration, constructing research agendas in this line is 
an ambitious task. Nevertheless I still think that more studies in this line will help the 
field gaining a richer insight and understanding into the functioning of mathematics 
education in society. Tackling the complexity of mathematical thinking, learning, 
teaching and rationality in our societies is definitely an intellectually sophisticated 
and demanding —as well as fascinating— endeavor. 
It is also an ethical challenge in that an honest concern with the betterment of 
practices —and with the many tortuous and disenfranchising school experiences of 
many children around the world— demands taking political risks that go beyond the 
known boundaries of established disciplines and fields of research. Moving the 
boundaries of a research field such as mathematics education is an ethical 
commitment with what our work as educators and researchers has to offer to our 
selves, our children and the generations to come. 
I hope that the complexity that suggests the network of mathematics education 
practices can question the very many comfortable, good and predictable research 
results that pullulate in the field, and open the space for a third epoch of research 
concerned and committed with the relationship between mathematics, education and 
society. As suggested by different participants in the ICMI Centenary symposium in 
Rome in March 2008 (i.e., Artigue, 2008; Blomhøj, 2008, p. 172; da Ponte, 2008, p. 
110; Povey & Zevenbergen, 2008, pp. 285-286) as an international community we 
have gained awareness of the complexity of mathematics education. The European 
community represented in CERME can certainly contribute in that direction. It is 
time to do it! 
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Basic Characteristics of Algebraic Thinking: 
›Signs as Descriptors‹ vs. ›Signs as Creators‹  

A reaction to the Plenary talk by Luis Radford: Signs, Gestures, Meanings: 
Algebraic Thinking from a Cultural Semiotic Perspective 

Heinz Steinbring, 
Universität Duisburg–Essen, Campus Essen 

 
“To talk about algebraic thinking is a bit risky” (Radford). But perhaps also (for the 
reactor): “To talk about a talk about algebraic thinking might be a bit risky.” 
To give a first impression I must confess that the plenary paper by Luis Radford 
offers a deep and broadened new view on: “Algebraic Thinking from a Cultural 
Semiotic Perspective”. 
The author puts a basic focus on the questions: What is thinking? – and – what 
especially is algebraic thinking? A first characterization of algebraic thinking is 
presented: “… algebraic thinking is about dealing with indeterminacy in analytic 
ways, … [and]: … There are other semiotic systems than the alphanumeric one to 
signify indeterminacy – natural language and diagrams, gestures, actions, and 
rhythm, …” (Radford).  
Why this conceptual and theoretical complexity? Is it a help or a hindrance for 
understanding algebraic mathematical thinking? Wouldn‘t it be much easier to simply 
state: Algebraic thinking and school algebra is essentially linked to the correct use of 
“letters”? (perhaps because such a view directly emphasizes school algebra and 
learning in everyday classrooms?) 
This multilayered and complex conceptual understanding of algebra and algebraic 
thinking can help: 
• to better understand and to reconstruct the broad spectrum of factors involved in 
students‘ ways of learning and understanding elementary algebra 
• to be aware of hidden difficulties that might depend on some elements of this 
spectrum of semiotic means (i.e. ›perception‹, as described in the plenary paper) 
The development and characterization of algebraic thinking in the broader “zone of 
emergence of algebraic thinking” is then related to three forms of generalizations: 
(Factual, Contextual, Icon Formulas – Symbolic Formulas) 
Factual 
• “In factual generalizations, a “formula” should better be understood as an embodied 

predicate …” 
• “… this generalization occurs within an elementary layer of generality – one in 

which the universe of discourse does not go beyond particular figures …” 
• “… the semiotic means refer to some given objects of reference …” (Radford).  

REACTIONS TO PLENARIES 1 AND 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6>



 

 
LXXXIII

 Contextual (“contextual generalization”): 
• “this generalization applies to non particular figures”  
• “… an explicit contextual description of the figure, supplemented sometimes by the 

actions that have to be carried out to find the total of circles in this unspecified 
figure…” (Radford). 

 Icon Formulas – Symbolic Formulas 
• “…endow […] formulas with new abstract meanings”  
• “… transform the iconic meaning of formulas into something that no longer 

designates concrete objects”  
• “… the terms of the formula have to be considered in relation to the signs that they 

contain …” 
• “Resemblances and differences … must no longer be based on spatial and 

embodied considerations but in morphological ones.” (Radford). 

These three “stages” carefully describe a challenging path of developing algebraic 
thinking as a body-sign-tool mediated cognitive historical praxis using different sorts 
of objects (concrete, non particular, general) to which body gestures, tools and signs 
refer to for developing algebraic thinking as a “body-sign-tool mediated cognitive 
historical praxis” (Radford). 

 
Fig. 1 Dot pattern and arithmetical formula (taken from Radford). 

This developmental process is accompanied – what was mentioned in the plenary –
 by an increase of interaction / communication between students and also their 
teacher. 
I would like to make two major comments on this developmental way to algebra and 
algebraic thinking: 
First Comment: The spectrum of semiotic means – body, gestures, actions, rhythm, 
artefacts, signs, symbols – is this meant as:  
• Tools for thinking and / or tools for communication? 
 “ … thinking is a complex form of reflection mediated by the senses, the body, 

signs and artifacts.” (Radford)  
“ … ways of thinking result not only from the engagement of the student with 

mathematical problems but also from the interaction between the students and 
teachers.” (Radford). 

It would be most interesting to understand in more concrete details the role of 
interaction in the development of thinking: 
• Could students' algebraic thinking be supported when they become aware of the 

body-sign-tool use of other students? 
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• Apprehending gestures, signs and artefacts explicitly also as means of 
communication, allows for investigating the development of students‘ thinking 
while s/he is trying to take over the perspective of another student – and that is 
important for students to make changes in the epistemological status of algebraic 
signs. 

Second Comment: School algebra and “letters”: body, gestures, actions, and rhythm, 
artefacts, signs, symbols: Are they tools of describing and / or tools of creating? 
• “…alphanumeric symbolism is not the only way to designate and express 

indeterminacy.”  
• “… my idea is not to challenge the power of symbolic algebra.” 
• “… there are many semiotic ways (other than, and along with, the symbolic one) in 

which to express the algebraic idea of unknown,…” (Radford). 

 
Fig 2. How are signs and objects related to eachother? 

“… the simple picture of an independent reality of objects providing a pre-existing 
field of referents for signs conceived after them, in a naming, pointing, ostending, or 
referring relation to them, cannot be sustained. … The result is a reversal of the 
original movement from object to sign. The signs of the system become creative and 
autonomous.” (Rotman 1987, 27/8).  

Fig. 3 Different area formulas for different geometric shapes – signs describing objects.  
Let me illustrate this idea by using an elementary example from school geometry. 
Students are often used to understand the area formulas for different elementary 
geometric area shapes as separated and with out any conceptual connections (see 
Fig. 3). The ordinary understanding can be summarized as: Four different area 
formulas with signs describing “objects”! 
One Formula for all four areas (rectangle, triangle, parallelogram, trapezium) with 
signs creating mathematical objects defined by new relations – namely the height (h) 
and the midline (m) (Fig. 4).  

A = m · h 

 

b
a

A = aįb

c

h
A = cįh1

2

g

h
A = gįh

A = g1įg2įh
1
2

g1

g2

h
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Fig. 4 One area formula for different geometric are shapes – signs creating objects. 
The new – theoretical formula – uses signs to create new mathematical objects by the 
defining relations and conditions hidden in the concepts of height and of midline. 
I certainly can agree with the statement: “… letters have never been either a 
necessary or a sufficient condition for thinking algebraically.” (Radford), but when 
signs as descriptors change to signs as creators then they become indispensable –
 they do no longer refer to objects – but they now create objects. 
•  (School-) Algebra and algebraic thinking is not dependent on letters – when 

simply used as names for objects.  
•  Generic algebraic thinking and also developed school algebra needs letter-like 

semiotic inscriptions that exist and live autonomously within the operational 
mathematical structure.  

So one could critically comment on the important role signs play in mathematical 
constructions: “… what … teachers and students think they are doing – using 
algebraic symbols as a transparent medium for describing a world of presemiotic 
geometric pattern sequences – is semiotically alienated from what they are … doing 
– namely, creating that reality of geometric pattern sequences through the very 
language which claims to “describe” it.“ (Rotman 200, 36/7). [A quotation taken 
from Rotman (2000) and slightly modified to the development of algebraic thinking 
in schools.]  
The early development of algebraic thinking – described and elaborated by Radford – 
as a body-sign-tool mediated cognitive praxis: for the learning student it is firstly a 
“movement from object to sign” – with signs as descriptors. 
Here some thought provoking and research requiring questions could be posed for 
stimulating further careful scientific investigations in this interesting mathematics 
education research area:  
•  How a “reversal” – a movement from sign to object – could be realized? 
•  How is it possible that “the signs of the system become creative and autonomous” 

for the learning students later? 
•  What could be an adequate body-sign-tool mediated cognitive praxis for algebra 

with signs as creators? 
•  “The narrative has to collapse…” (Radford) for signs as descriptors. But what is 

the new narrative about for signs as creators? 
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• How is it possible to induct students into a creative and autonomous world of 
elementary algebra after they have gone their path from “objects” to “signs”? 

In this regard I completely agree with Luis Radford's statement: “Unfortunately, I do 
not have a cure for this problem – and I do not think that there is a royal road to 
… algebra.” 
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COMMENT TO PAOLA’S CONFERENCE:  
DIALOGISM IN ACTION 

Margarida César 
Universidade de Lisboa, Centro de Investigação em Educação da FCUL 

This is a reaction to Valero’s conference and paper (Valero, in press). These are the issues that 
stroke me while preparing the conference (with her) and later on while reading her paper: (1) how 
we use power and which voices are heard and which are silenced; (2) the role played by the 
implicit/explicit in meaning construction and in social participation, particularly in mathematics 
education practices; (3) the relations between theories and practices; (4) the impacts of 
mathematics education research on the construction of dialogical identities; (5) the contribution of 
mathematics education to an inclusive and intercultural education. 
 
CHALLENGING POWER IN MATHEMATICS EDUCATION 
While discussing with Paola how to organise our participation while preparing the 
conference, and then reading her paper, the first set of questions that I considered was 
related to the researchers’ decisions, namely those that are usually not explicit when 
the results are made public: 

• Theoretically, what do we emphasize? 
•  How do we choose the object of research? 
• What do we mean by participation? 

This first set of questions made me ask her why she had chosen the social practices to 
be part of her title and not the cultural practices and, at a broader scope, to reflect 
about why some of us put the focus on the political, while others put it in the social, 
in the cultural, or in the historical-cultural, just to mention a few possible ones. What 
I would like to stress is that even the choices we usually do not explain, like the titles, 
or the focus of our research, are shaped by many of the theoretical, epistemological 
and methodological choices we made. We are aware of many of them but probably 
many others need clarification, particularly when we reflect upon the consequences 
of those choices for those with whom we develop the research and those who 
participate in it (César 2009, in press). It includes reflecting about the researchers’ 
theoretical choices. For instance, what is the difference between using the construct 
didactic contract (Schubauer-Leoni, 1986; Schubauer-Leoni & Perret-Clermont, 
1997) or norms (Yackel & Cobb, 1996) to explain part of what is going on in a 
formal educational scenario such as the mathematics classes? And when we choose to 
implement and study cooperative work (Rogers, Reynolds, Davidson, & Thomas, 
2001) instead of collaborative work (César, 2009; César & Santos, 2006), or 
dialogical collaborative work (Elbers & de Haan, 2004; Renshaw, 2004)? Why do we 
decide to emphasize one of them instead of the other(s)? What are the consequences 
of these decisions for the research, including the participants who are not often aware 
of those decisions and seldom participate in them? 
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My point is that while deciding about issues like the theoretical background, the 
object of the study, the epistemological principles that shape these choices, or the 
methodological options we assume, we are already using our own lenses in order to 
illuminate a particular part of the problems we would like to study. Thus we are also 
shaping, up to a certain point, the answers we will get to the research questions. 
There is no such thing as neutral and entirely objective research when we are dealing 
with human beings and complex phenomena such as mathematics education. But, as 
Denzin (1998) underlines, we must be particularly clear and aware of the knowledge, 
experiences, values, beliefs that shape our decisions as researchers. This creates huge 
challenges to the scientific writing - inspired in the so-called exact sciences - but 
actually referring to quite different objects and contexts. Thus, it must be clear, 
rigorous, but it must include information about the researchers’ paths and choices. 
Researchers must be particularly attentive to the quality criteria in research. Not 
being able to be objective because we assume knowledge as situated (Lave & 
Wenger, 1991) should not be confused with lack of rigour or facilitation regarding 
the research procedures and choices (Hamido & César, 2009). Assuming the 
subjective nature of learning – and then, also of research – means being particularly 
careful while studying the context, the participants’ characteristics, the situations in 
order to produce thick and detailed descriptions, and interpretations that can be 
validated by the readers and by their peers (Denzin, 1998; Kumpulainen, Hmelo-
Silver, & César, 2009). This is important because, as Valero (in press) states, there 
are “(…) growing amounts of published papers” (p. 1) but this increasing number is 
not a guarantee of quality. 
This leads us to another issue: what is participation. Moreover, who is allowed to 
participate in research, in scientific events, as a plenary speaker, or in the different 
roles that research participants assume. Another issue is the degree of participation, 
i.e., for instance, when we describe the participants in a particular research, what does 
it really mean to be a participant? Do they participate in the research decisions? What 
does it mean to be an informed participant? And who decides about the children and 
youngsters participation: Their legal representatives (e.g. parents) or also themselves? 
In other words, how do we – researchers, academics, teacher/researchers – conceive 
mathematics education research? How do we put it into practice? Do we conceive it 
as a tool for learning (César, Bárrios, & Cristo, 2008; Bárrios, César & Cristo, 2009)? 
Do we conceive it as a mediator in the promotion of those children, youngsters and 
researchers’ development? (César, 2009, in press)? Or just as one of our many 
professional tasks that we should perform the best we can? 
From this first set of questions emerged a second set, related to the notion of voice 
(Bakhtin, 1929/1981) and empowerment (Apple, 1995): 

• What elements shape the voices that are heard and which are silenced? 
• Who are we empowering through the research we produce? And through 

the educational practices? 
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• What is the role of language, namely when we consider power issues and 
participation? 

Being a psychologist who studies children and youngsters categorised as presenting 
special educational needs (SEN), such as Deaf students, I became aware that despite 
the enormous amount of papers regarding mathematics education, some voices are 
still quite silenced. The Deaf community is just an example, as there is almost no 
research – and the one that exists is very hard to publish – about Deaf students 
learning mathematics, particularly in secondary schools or at the university. There are 
almost no studies relating the Braille and blind students mathematics learning 
interactive patterns, or relating the language Deaf people use (sign language) and the 
solving strategies to which they have easier access to while solving mathematics 
tasks (Borges, 2009; Santos & César, 2007). Valero (in press) refers to the “issue of 
mathematical specificity” (p. 6, italic in the original), but she uses this designation in 
a restrict sense. I would enlarge it and connect it with some of the characteristics that 
shape different needs and ways of mathematics learning, like the sensorial 
characteristics of Deaf or blind students, or some mathematical thinking that is 
shaped by participating in a different culture (César & Kumpulainen, 2009). This 
leads us to the need of equity, also stressed by Cobb and Hodge (2007). 
What I am arguing is that although realising that there is a great amount of papers 
published about mathematics education, some domains of research are almost not 
explored and this means silencing many of the children and youngsters that were 
supposed to learn mathematics and to have access to numeracy and literacy. Thus, 
through the research we produce – also through the one we do not allow to be 
produced, for instance because there is no financial support to develop it - we are 
empowering some people and excluding others, usually those who participate in 
minority cultures and communities, and whose language is more differentiated from 
the mainstream language, and then more demanding for researchers. This is done in 
explicit ways (e.g. verbal language) but also through implicit ways (e.g. non verbal 
language, ways of acting) that are more difficult to understand when you participate 
in cultures that are far-away from the mainstream one (César, 2009, in press). 
The role played by language in mathematics education and in mathematics research is 
also emphasised by the role played by English language in academics and 
researchers’ professional tasks and careers. Once the highly valued scientific journals 
are only in English – and we should remember that 20 years ago this was not the case 
-, and the same goes to the top valued scientific events, authors who are not fluent in 
English experience several forms of exclusion: they do not dare to submit their papers 
to journals and scientific events; even when they are able to find someone to translate 
their work then they are not able to communicate in an effective way with their peers 
during the events; and this leads to frustration and lack of equity. Thus, power and 
participation are distributed in ways that give a voice to some people and do not 
allow others to have one (Apple, 1995). This is illuminated by some narratives about 
schooling like the ones produced in a TV programme (France 3) I watched when I 
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arrived, quoted in French in honour of our French colleagues who organised 
CERME 6. This was a programme about people who became famous when they were 
grown up, but who had experienced so much underachievement that many of them 
dropped out of school and others had to repeat several grades. When each one of 
them explained his/her school path, Jean-Marie Rouart stated that:  “Le succès est un 
mystère. L’échec est un mystère. De quel côté on se trouve? J’ai toujours cru que je 
serai de ceux qui échouent.“ (Dumas, 2009). But he was not. He became a famous 
writer despite of being considered an underachieving student in languages and of the 
difficulties he experienced before accomplishing the bac (last year of secondary 
school, in France). Moreover, he was elected to the Académie Française on the 18th 
December 1997, one of the highest distinctions for a French writer.  
But I wonder if the research we produce is able to avoid the many forms of exclusion 
experienced by so many students in mathematics classes. Thus, when Valero (in 
press) states that “(…) we need to rethink and enlarge definitions and views of 
mathematics education as a scientific field of study in order to provide better 
understandings and alternatives for practice in the teaching and learning of 
mathematics” (p. 1), I certainly agree. But I would go further: in order to provide a 
more inclusive and intercultural mathematics education, inside and outside schools, 
and also to promote students’ cognitive, social and emotional development instead of 
creating barriers. I agree that an “(…) increasing attention was given to reflexivity in 
mathematics education” (Valero, in press, p. 2), that we moved from de-
contextualized studies into contextualized ones, and that we need a broader notion of 
interactive interplay (César, 2009, in press) – that Valero (in press) designates as a 
network of social practices - but this can co-exist with giving voice/power to some 
and silencing others. If this is done in a very subtle way, it can be very dangerous. 
The example of Deaf students learning mathematics in mainstream schools and the 
lack of preparation teachers get during pre-service education to teach these students 
illuminates that. It also illuminates the gap between policy documents and 
researchers’ discourse and practices, illustrating the need to create bridges between 
theories and practices, between academics and researchers, teachers and 
teachers/researchers. But also between researchers and participants that should not be 
seen as merely objects of research but as living human beings who are affected by the 
research decisions and designs we use. 
Thus, I miss some points in Valero’s (in press) analysis in order to complete the 
picture of moving from the didactic triad into more dialectic and dynamic forms of 
communication: the notion of dialogism (Marková, 2005; Renshaw, 2004); of 
interactive interplay (César, 2009); and of the regulatory dynamics of participation 
(César, in press). Assuming, as Sfard (2008) puts it, that learning - and thinking - is 
communicating, these are essential constructs. In order to study and understand the 
relations between some of the elements of the network of mathematics education 
practices we need to be able to illuminate the processes underneath the interactive 
interplays between them. For instance, if we study the relations between a particular 
school, families, students, staff, the community and the school leadership, we need to 
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value the variety of cultures in which each individual participates. To achieve an in-
depth understanding of mathematics learning, knowing the cultural background of 
students is not enough. One needs to conceive identities as dialogical, to understand 
the different and often conflictive I-positioning that can be assumed in different 
situations (Hermans, 1996, 2001), scenarios and contexts, and how they shape 
mathematics learning, mathematical thinking and mathematical performances. These 
are complex studies that need to be longitudinal and/or to have long follow ups that 
allow for a broader comprehension of the impacts of mathematical learning. This 
leads us to a last set of questions:  

• How can mathematics education (research) contribute to the construction of 
dialogical identities? 

• How can research and the teaching practices in mathematics education 
contribute to a quality education and to equity in the access of the cultural 
mathematical tools? 

• How can theories, practices and research in the mathematics education 
domain contribute to an inclusive and intercultural education, instead of 
contributing to exclusion? 

These are essential issues namely because mathematics is often associated with 
underachievement, negative social representations, frustration, and seen as a selective 
subject (César & Kumpulainen, 2009). Some research illuminates that it can be seen 
differently and that students, families, poor-literate adults, and, more important, all 
human beings, can experience mathematics education in a different way. But this 
depends on how those who have more power in this domain will use it. 
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WAYS OF WORKING WITH DIFFERENT THEORETICAL 
APPROACHES IN MATHEMATICS EDUCATION RESEARCH 

AN INTRODUCTION 
Tommy Dreyfus 

Tel Aviv University 
The development and elaboration of theoretical constructs that allow research in 
mathematics education to progress has long been a focus of mathematics education 
researchers in Europe. This focus has found its expression in many CERME working 
groups: some are focused around a specific theoretical approach and others allow 
researchers from different theoretical traditions and backgrounds to meet and discuss. 
For example, the working group on Argumentation and Proof at the present (CERME 
6) conference has reported on passionate discussions about different theories and 
their relationships (Mariotti, 2009). More specifically, relationships between theories 
have been made the explicit focus of attention of the theory working group that 
started at CERME 4 in 2005. This group has been reconvened at CERME 5 as well as 
at CERME 6; this year, we discussed fifteen papers, twelve of which make use of at 
least two theories and deal with how or why they can be connected in some way (see 
the part on Working Group 9 on Different Theoretical Perspectives in Research in 
Mathematics Education in these proceedings). The plenary activity from which this 
report emanated inserts itself in this line of work of CERME; one of its aims was to 
broaden the discussion about relationships between theories to include members of all 
CERME working groups. 
The undertaking of mathematics education is very complex; this complexity is well 
expressed, for example, in Paola Valero’s diagram (Valero, 2009).  It is not without 
reason that the field has developed from having a curricular focus via a cognitive 
focus in various directions including philosophical, socio-cognitive, anthropological, 
ethnographic, and other perspectives, all the while producing home-grown theories to 
deal with all these aspects – and I am not even trying to distinguish between 
paradigms, theories, theoretical frameworks etc. For example, Realistic Mathematics 
Education has variously been characterized (including by people from the 
Freudenthal Institute) as a theory for mathematics education, as an instructional 
design theory or simply a philosophy for mathematics education.  
When one reads a journal like Educational Studies in Mathematics, it seems at times 
that every paper presents a new combination of existing theories, a new theory, or at 
least a development of an existing theory. This raises the question how to look at and 
deal with the diversity of existing theories in mathematics education. Does this 
diversity express richness or does it express lack of focus (Steen, 1999) or even 
arbitrariness?  
The question is made all the more urgent and difficult since theories come in different 
‘shapes’ and ‘sizes’ and have different functions. Some concern the micro-genetic 
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analysis of a learning processes in a classroom on a time scale of seconds, others the 
development of an individual student over months (or even years) and still others the 
momentary functioning of entire education systems. The ‘mesh sizes’ of theories thus 
range from the individual student via groups, classes, and schools to entire 
educational systems; and time scales under consideration range from seconds to 
years. Nevertheless, in the end they all deal with the same fundamental issue: How 
can students learn mathematics (better)? 
However, even for (roughly) the same type of issue and scale, several theories with 
possibly different outlooks may exist; take for example the role of the social aspects 
in learning processes at the scale of a lesson: Is the social unimportant since deep 
mathematics is learned mainly when individual students are thinking by themselves, 
is the social the very vehicle of learning, or is it something in between, part of the 
context of learning (see Kidron, Lenfant, Bikner-Ahsbahs, Artigue, & Dreyfus, 
2008)? Such a fundamental difference is likely to express itself in terms of different 
theoretical notions and hence different means and ways to analyze data. 
Quite a lot of work has been done and published over the past ten years by people 
aware of the issues raised by the existence and use of many different theoretical 
frameworks, and trying to ‘do something about them’. Approaches have been very 
diverse. A few group studies have been published, in which researchers have worked 
on a common set of data, each researcher illuminating these same data from a 
different perspective such as a recent special issue on Affect in Mathematics 
Education (Zan, Brown, Evans, & Hannula, 2006). While this constitutes an 
interesting learning experience for the researchers as well as for the readers, it does 
not help us make progress toward connecting between the theories. We should be 
more ambitious. Nobody is probably aiming at a grand unified theory (see, e.g., 
Grand Unified Theory, 2009) as are theoretical physicists - this may be impossible 
altogether in the social sciences, and even if it is possible, mathematics education 
certainly has not reached this stage. We cannot even expect our community to 
converge to a set of common basic notions because the very idea of common basic 
notions negates the option of a variety of analytic approaches, and such a variety is 
needed in order to understand the complex multi-scale phenomena we are dealing 
with.  
But we do need to make efforts to realize to what extent we are doing similar things 
in different languages and to what extent we use the same language to do different 
things. And once we realize that, we may want to establish connections, eliminate 
redundancies and distinguish what can and needs to be distinguished. Even more 
importantly, we want to find points of contact between theories that are dealing with 
different but related areas and find a language to talk about such theories together, to 
link between them in ways that are robust in the sense that they can be used by other 
researchers. These issues are very complex because theoretical frameworks are 
culturally situated – we have long known this from the difficulties many of us have to 
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connect to and deeply appropriate the Theory of Didactic Situation (Brousseau, 1997) 
that has emanated from the French cultural background and grown in the environment 
of mathematics education in France. A recent issue of ZDM - The International 
Journal on Mathematics Education (Prediger, Arzarello, Bosch, & Lenfant, 2008) 
emanating from the CERME meeting at Larnaca offers a number of concrete case 
studies for how different research teams dealt with the fact that several theories were 
relevant for their study. There exist also examples from outside CERME, for example 
an attempt to coordinate argumentation theory and Realistic Mathematics Education 
to provide a microanalysis of a whole-class discussion (Whitenack & Knipping, 
2002).  
In the following two papers, two researchers experienced in consciously using, 
combining, comparing and contrasting several theoretical frameworks in the same 
study, will present different and possibly complementary approaches to such an 
undertaking. Angelika Bikner-Ahsbahs has taken the initiative of creating and 
coordinating a group of researchers who continue the work taking place at the 
CERME conferences also in-between conferences. She has coined the term 
networking theories to describe her view of how theories can be linked.  John 
Monaghan presents a point of view formed outside of the CERME theory working 
group, on the basis of his research; this research has led him, for example, to refine 
the theory of abstraction in context, which has enabled him to take a step of 
integrating work on instrumentation with a dialectical, situated view of processes of 
abstraction; he has also recently connected the purely cognitive ideas of concept 
image and concept definition with a social view of learning mathematics. In his 
paper, he stresses the role of the person of the researcher when selecting (parts of) 
theories to network with; these two papers will be followed by some excerpts of the 
discussion that followed the presentations.  
Brousseau (1997). Theory of Didactical Situations in Mathematics. Norwell, MA: 

Kluwer Academic. 
Grand Unified Theory (2006). In Encyclopaedia Britannica. Retrieved April 28, 

2009, from http://www.britannica.com/EBchecked/topic/614522/unified-field-
theory 

Kidron, I., Lenfant, A., Bikner-Ahsbahs, A., Artigue, M., & Dreyfus, T. (2008). 
Toward networking three theoretical approaches: the case of social interactions. 
Zentralblatt für Didaktik der Mathematik - The International Journal on 
Mathematics Education 40 (2), 247-264. 

Mariotti, M.A. (2009). Report from the Working Group 2 on Argumentation and 
Proof. These proceedings. 

Prediger, S., Arzarello, F., Bosch, M., & Lenfant, A. (Eds.) (2008). Special Issue on 
Comparing, combining, coordinating-networking strategies for connecting 
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NETWORKING OF THEORIES: WHY AND HOW? 
Angelika Bikner-Ahsbahs 

Universität Bremen 
This contribution presents a short overview of the current discussion about a meta- 
theoretical standpoint of working with theories: the networking of theories as a 
practice of research. It explains some principles on which this kind of research 
practice is based. Based on a methodological frame, an example is worked out 
showing how the networking of theories can lead to deepening insight into a problem 
and to methodologically reflecting the process of connecting theories.  
 
During the last four years a new kind of research practice has been investigated: the 
networking of theories (Bikner-Ahsbahs & Prediger, 2006; Prediger, Arzarello, 
Bosch & Lenfant, 2008; Prediger, Bikner-Ahsbahs & Arzarello, 2008). What does 
this mean? Networking of theories is regarded as a systematic way of linking theories 
(Bikner-Ahsbahs & Prediger, 2009). Linking theories is not a new idea. Within 
conceptual frameworks (Eisenhart, 1991) different theoretical approaches are used to 
build a consistent frame for research. In the case of design research, Cobb (2007) 
argues for connecting theories as a kind of “bricolage” in order to capitalize on 
different views. In addition, triangulation has developed as a kind of evaluation 
criterion for qualitative research (Schoenfeld, 2002; Denzin, 1989).  
A lot of scholars in the community of mathematics educators have already 
triangulated different theoretical perspectives in their research projects to enhance 
insight. However, the networking of theories means more than that, it means going 
beyond triangulation and developing methodological tools for systematically 
connecting theories, theoretical approaches and theory use. To be a bit more precise, I 
will describe the networking of theories as a process of 

• analyzing the same phenomenon in mathematics education from different 
theoretical perspectives or within different theories,  

• reflecting the use of these different theories,  
• respecting the identity of each theory,  
• exhausting the possibilities for linking them, and 
• linking them 

Meanwhile some research has been executed which has led to the development of 
strategies, methods and techniques for the networking of theories and to some 
insights about the benefit that can be reached this way (Prediger et al., 2008). An 
interesting example is shown by Kidron (2008). Based on data she explains in detail 
why more than one theory is needed to understand limit concepts. She networks three 
theories analyzing the discrete continuous interplay of limits and shows how these 
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three theories - the concept of procept, the instrumentation approach, and the theory 
of abstraction in context -  provide complementary insights and, hence, deepens 
understanding of limit concepts like the definition of the derivative. This way, Kidron 
is also able to show strengths, weaknesses and the limitations of the three theories. 
On a product level, the networking of theories might lead to types of networked 
theories. However, since only first steps have been made in this direction, e.g. at 
CERME 4, 5, and 6 and elsewhere (ZDM 40 (2) for an overview), it is not yet clear, 
how these products might look. As Radford (2008) stated, the kinds of products will 
depend on the aims of networking, for instance, developing the identity of theories, 
experiencing the limits of linking theories, developing new methodological tools and 
new kinds of questions etc. One current result of this effort is a landscape of 
networking strategies that was worked out on the base of the contributions to the 
theory working group of CERME 5 (Prediger, Bikner-Ahsbahs & Arzarello, 2008).   

Figure 1: Networking strategies (Prediger et al., 2008) 

This landscape represents a continuum of strategies for relating theories and 
theoretical approaches to each other including the extreme poles of non-relation 
between theories on the one hand and unifying them globally on the other. The term 
connecting theories means all kinds of building theory relations whereas networking 
strategies exclude the extreme poles. This landscape is ordered in complementary 
pairs of strategies according to their potential for integration. An example below will 
illuminate some of these strategies. 
The idea of the networking of theories is based on some principles, the principle of 

1. regarding the diversity of theories as a form of scientific richness, 
2. acknowledging the specificity of  theories, 
3. looking for the connectivity of theories and research results, 
4. developing theory and theory use to inform practice. 

The first two principles acknowledge the diversity of theories in the field of 
mathematics education and accept diversity as a resource for scientific progress 
(Bikner-Ahsbahs & Prediger 2009). The third principle assumes that research in 
mathematics education produces much more connectivity than is visible at first sight. 
Related to different viewpoints, the networking of theories provides the opportunity 
to make these implicit aspects more explicit. The different ways of connecting 
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theories presented at the theory Working Group 9 at CERME 6 illustrate the value 
and variability of the third principle. The fourth principle does not necessarily need to 
be shared by all the researchers in our field; however, it helps to keep research about 
the networking of theories grounded in practical problems producing concepts with 
an empirical load that is not empty (Jungwirth, 2009). 
We are all busy doing research within and about mathematics education. If research 
demands the use of different theories we should use them being aware that this has to 
be justified somehow. But why is it necessary to engage in a meta-theoretical 
discourse about theory use? Why do we need to reflect about linking theories? 

1.  WHY DO WE NEED THE NETWORKING OF THEORIES? 
In order to inform practice, theories facing specific practical problems are needed. 
Therefore a variety of theories of middle range scope, so-called foreground theories 
(Mason & Waywood, 1996), have been developed, for instance different theories 
about abstraction (Mitchelmore & White, 2007). Furthermore, the objects of 
mathematics education research can be viewed from different theoretical 
perspectives, e.g. cognitive, semiotic, social, …. Thus, a variety of research 
perspectives and various theories have been used leading to theory development in 
different directions. Researchers normally know what their theory is about but often 
the theories’ limitations remain implicit. Limitations of theories can be experienced 
through the failure to apply them. A systematic way to provoke these experiences is 
critique. It can lead to a change of view (Steinbring, 2008) but also to the 
development of theories in that concepts and their limitations become more precise, 
additional concepts are constructed or the theories’ parts become interconnected more 
deeply. Therefore, the diversity of theories can be regarded as a resource for and a 
consequence of critique (see also Lerman, 2006) and is scientifically necessary.  
However, the diversity of theories has also caused problems (Prediger, Bikner-
Ahsbahs & Arzarello, 2008), for instance a language problem and a connectivity 
problem. The first problem arises whenever researchers from different theoretical 
traditions try to talk to each other, since different theories might use the same words 
in different ways (e.g. social interaction in different tradition, see for example Kidron 
et al., 2006) or different theories use different words for the same or very similar 
phenomena (for example interest-dense situation and a-didactic situation, see Kidron 
et al., 2006).  The connectivity problem is related to the question of how research 
results from different theoretical traditions can be connected to understand and solve 
practical problems.  
So we need scientific ways of dealing with the diversity of theories that encounter 
these problems. The idea of the networking of theories might be a promising concept 
for this task which has the potential to induce the development of a common language 
among different research traditions and to investigate the ways in which theories and 
research results can be linked.  
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I will now present an example that shows how these goals can partly be achieved. 

2. HOW CAN THEORIES BE NETWORKED? 
In order to connect theories, a framework is needed that allows building relations 
among them. Radford assumes a semiosphere that comprises the collection of the 
semiotic parts of the different theoretical cultures within mathematics education 
(Radford, 2008). He explains that a semiosphere is  

“an uneven multi-cultural space of meaning-making processes and understandings 
generated by individuals as they come to know and interact with each other.” 
(Radford, 2008, p. 318) 

Theories within this semiosphere can be described as triplets (P, M, Q) that establish 
languages and allow the building of relationships between them. In these triplets, P 
represents the system of principles, M is a sign for a system of methodologies that 
can be connected to these principles in an appropriate way, and Q represents a set of 
paradigmatic questions related to P and M. A connection between two theories 
establishes a specific relation that depends on the theories’ structures and the goal of 
this connection.  
Using this frame, I will present an example of the networking of two theories 
illuminating the benefit of critique for developing insight into a problem. 
Methodological reflections will uncover five steps through which the process of 
networking has passed. This example refers to a data set that was used by Arzarello 
and Sabena (Arzarello, Bikner-Ahsbahs & Sabena, 2009). I will use it to explicitly 
show benefits and limits of networking practices. 
An episode about the growth of the exponential function 

Two students of grade 10 are working in a pair on an 
exploratory activity on the exponential function and its 
growth. They use Cabri Geomètre to explore the graph’s 
tangents. In this situation the teacher asks the students: 
What happens to the exponential function for very big x. 
The transcript shows the dialogue among the students G, C 
and the teacher. 
Now I would like to invite the reader to participate in a 
short exercise using just a few pictures.  
Figure 2 shows the computer screen the students observe. 

Figure 3 presents two pairs of pictures. The left pair shows the student’s gestures 
accompanying his utterances: his left hand goes up. The right pair illustrates the 
teacher’s gestures accompanying his utterances: he crosses two fingers going to the 
right. 
 

Figure 2  
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Figure 3: The student’s gestures (left pair of pictures) and the teacher’s gestures (right 
pair of pictures) 

Please imagine for a moment what the teacher and the student are talking about. How 
does the student answer the question about the growth of the exponential function for 
very big x and how does the teacher react? – The student describes his perception of 
the screen meaning that the graph seems to approximate a vertical straight line. The 
teacher wants to show that this is wrong because every vertical straight line would be 
passed by the graph.  
We now consider the beginning of the discussion. 

1 G: but always for a very big this straight line (pointing at the screen), when 
they meet each others, there it is again…that is it approximates 
the, the function very well, because…  

2 T: what straight line, sorry? 
3 G: this … (pointing at the screen) this, for x very, very big 

With broken language the student tells something about the growth of the exponential 
function for big x. This broken language is an indicator for thinking aloud. Saying 
“sorry” the teacher interrupts the student’s train of thought indicating that this 
question is important. However, the student does not answer the question. Instead, he 
defends the choice of the term “vertical straight line”. The student reacts to the so-
called illocutionary level (telling something through saying something) of the 
teacher’s question. Illocutionarily, the teacher’s disruption is an indicator that there is 
something wrong with the vertical straight line while on the locutionary level (what is 
said) the teacher wants to know what vertical straight line G refers to.  
During the following dialogue the student and the teacher talk about the function’s 
growth, but, illocutionarily they negotiate about whose train of thought will be 
followed. The student begins to become involved repeatedly but is disrupted every 
time. In the end the teacher wins.   
We now have a look at the last utterances. 

14 T: eh, this is what seems to you by looking at; but you have here x = 100 billion, is 
this barrier overcome sooner or later, or not?  

15 G: yes  
16 T: in the moment it (the vertical straight line) is overcome, this x 100 billion, how 

many x do you have at your disposal, after 100 billion? 
17    G: infinite 
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18 T: infinite… and how much can you go ahead after 100 billion? 
19 G: infinite (points) 

We see: The teacher is involved in arguing and the student’s involvement is reduced 
to one (or two) word sentences (for a more detailed analysis of this episode see 
Arzarello, Bikner-Ahsbahs & Sabena, 2009). 
A case of networking  
Two theories were used to understand the episode above (for a short introduction: 
Arzarello et al., 2009b); a theory about the emergence of interest-dense situations and 
a theoretical approach about how a semiotic game between the teacher and the 
students shape the transition of mathematical knowledge.  
The perspective of interest-dense situations 
The first analysis is done from the view of the theory of the emergence of interest-
dense situations. This theory – regarded as a triplet – is based on the following 
principles, methodology and questions: 

• P1: Mathematical knowledge is socially constructed through interpretations of 
the others’ utterances (see as well: Kidron et al., 2008). 

• P2: The object of research is “meaning-making” within the process of social 
interaction. 

• P3: In an interest-dense situation successful learning takes place as learners are 
deeply involved in the activity of social interactions constructing mathematical 
meanings in a deepening way. In these situations learning with interest is 
supported. 

• P4: If the teacher focuses on the students’ train of thought the emergence of an 
interest-dense situation is supported, if the teacher pushes the student to follow 
the teacher’s train of thought the emergence of an interest-dense situation is 
hindered. 

• M: Main part of the methodology is speech analysis on three levels. On the 
locutionary level an interlocutor says something; on the illocutionary level he 
tells something by saying something; on the perlocutionary level the intentions 
and the impact are taken into account. 

The analysis is executed according to three questions: 

• Q1: Did an interest-dense situation emerge?  

• Q2: What conditions fostered or hindered it?  

• Q3: How was mathematical knowledge constructed? 
From the perspective of the emergence of an interest-dense situation the dialogues do 
not lead to increasing student involvement. Locutionarily (what is said) the student 
and the teacher negotiated the growth of the exponential function for very big x. 
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Illocutionarily (telling something through what was said) the student and the teacher 
struggle whose train of thought is followed. In some instances the teacher starts to 
focus on the student’s thinking process but changes his argumentation immediately 
according to his own train of thought, namely to work out a “proof of contradiction”: 
Given a vertical straight line –seen as a asymptote- this line would be passed by the 
graph of the exponential function. The degree of the student’s involvement decreases 
while the teacher follows his own ideas, although the teacher tries to connect them 
with the student’s utterances. Several times, an interest-dense situation is about to 
emerge, but this process is interrupted by the teacher’s behaviour forcing the student 
to follow the teacher’s train of thought. The construction of mathematical knowledge 
is carried out by the teacher; the contribution of the student is very low. 
The semiotic bundle approach (Arzarello, 2006; Arzarello et al., 2009a) 

• P1: Mathematics is transferred through a semiotic game with the help of the 
teacher.  

• P2: The object of research is the semiotic game and its semiotic bundle. 

• P3: Successful learning is interiorisation of mathematics by the help of the 
semiotic game.  

• M: Analysis of the semiotic game according to the use of the semiotic bundle 
meaning the interplay of speech, gesture, representations and the transition of 
sign use. 

• Q1: How was the mathematical content transferred through the semiotic game?  

• Q2: Did the teacher tune speech and gestures with the student’s ones?  
From the semiotic bundle approach the semiotic game seems to be successful: The 
teacher takes over the student’s words, using more precise explanations or following 
the students’ ideas for a while. He points to the computer screen showing what is 
wrong in the way of the student’s perception. He underpins his explanation and the 
proof of contradiction using gestures and tunes his words with those from the student. 
As far as the teacher is concerned, the semiotic game seems to be fruitful. From the 
perspective of the teacher’s options to engage in the semiotic game he has done a lot 
of things to successfully transfer the mathematical content to the student. The student 
seems to be convinced, since, in the end, he correctly answers the teacher’s questions. 
The networking of the theories 
At first glance, these results seem to be contradictory. Each theory serves as a 
resource for criticizing the other. After the networking process we found that the 
results are complementary since we could add an aspect that provided the integration 
of the different results: The teacher tries to tune his words with those from the 
student; but the gestures show that the epistemological views of the teacher and the 
student are different and they do not converge. The student uses his perception and 
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extrapolates the growth of the graph of the exponential function for very big x: the 
function seems to grow like a vertical straight line. The teacher’s view is theoretical 
requiring potential infinity. Neither the teacher nor the student is able to bridge this 
gap. 
Some methodological reflections  
The contradictory results were a reason for us to meet and refresh our analysis. 
During this process five steps emerged: 

1. Re-analysis: Analysing the data together again from both perspectives made our 
theories mutually more understandable. 

2. Comparing and contrasting: As we contrasted and compared our theories we 
began to juxtapose some principles and methodologies. For example: our views 
on theory require different uses of the data. 

3. Establishing a common ground: From the perspective of interest-dense-
situations I could explain how the emergence of an interest-dense situation was 
hindered, but I could not explain why hindrance occurred. We agreed that the 
semiotic game was not successful as shown from the other theoretical 
perspective. The question was: why? 

4. Complementary analysis: A hypothesis occurred as we looked at the semiotic 
game, the gestures and the speech complementarily: The student’s 
epistemological resource was his perception of the computer screen: he 
extrapolated the growth of the exponential function for very big x. The teacher’s 
epistemological resource was theoretical. This caused a gap that could not be 
bridged. 

5. Establishing an inclusive methodology: We used the three levels of speech in a 
complementary way for the analysis of gestures and utterances and re-analysed 
the data carefully. Again we reconstructed the gap between the epistemological 
resources that could not be bridged through the semiotic game as it was 
executed. 

Conclusions 
Did we move forward? Well – yes, we did. The starting point was the contradiction 
of our results that served as a resource for critique and a challenge for the networking 
of our theoretical backgrounds. We developed a common methodology including 
gesture analysis and the levels of speech into one analysis. We have gained a 
methodological overlap but we do not know yet whether our views will converge. If 
we do not dig too deep we can say we followed the same question: How is 
mathematical knowledge gained? However, this question is still understood a bit 
differently because our principles and paradigmatic questions remained the same. In 
the end, we deepened our insights and widened our theoretical perspectives. This was 
possible because the grain sizes of analysis were similar and the theories’ principles 
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were close enough to include the epistemological resource as a matter for 
explanation.  
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PEOPLE AND THEORIES  
John Monaghan 

University of Leeds 
People are an essential consideration in networking theories. The dialectical 
relationship between people and theories is dynamic with regard to development. It is 
important to consider why people want to develop theories, their motive(s), and how 
they apply theories, their interpretation(s). Ascriptions of agency to theories, as ways 
of producing understandings or actions, need to be tempered by considerations of 
agency on the part of researchers applying theories. The appropriation of a theory by 
a person starts (and may end) with constructs from the theory.  
 
I saw my role in this CERME plenary as that of reactor to Angelika’s contribution. 
My first reaction is I think what Angelika is doing is very interesting. Indeed, 
“interesting” may be too weak a word as networking local theories is something that I 
expect to rise to prominence in mathematics education research in the near future. 
Angelika, Tommy, Ferdinando and I agreed at the outset that the CERME plenary 
should generate debate. With “debate” in mind I wanted a theme to my reaction that 
was honest (I did not want to generate debate by simply saying the converse of what 
Angelika was saying) but addressed issues that Angelika did not address and I 
focused on people because people network theories. 
This paper follows my talk very closely and is in three parts. In the first part I argue 
that theories cannot be separated from the people theorising. In the second part I look 
at researchers’ motives for adopting/creating theories and their interpretations of data. 
In the third part I argue that in practice researchers often appropriate parts of theories. 
I preface these three parts with some preliminary remarks. 

PRELIMINARY REMARKS 
I am not sure, in general terms, what a theory is. I am aware of discussions in 
mathematics education and in the social sciences of discussions of this issue. 
Prediger, Bikner-Ahsbahs & Arzarello (2008) consider the variety of theories in 
mathematics education research and conclude that ‘We can distinguish theories 
according to the structure of their concepts and relationships’ (ibid., p.168). A recent 
consideration of this issue in the wider social sciences is Ostrom (2005) who 
considers the difference between frameworks, theories and models with regard to her 
research interest, institutional analysis. Acknowledging that these terms ‘are all used 
almost interchangeably by diverse social scientists’ (ibid., p.27) she goes on to 
differentiate them according to their function in analysis: frameworks help to identify 
elements; theories help to specify relevant components for specific questions; models 
clarify assumptions regarding variables. These authors provide cogent considerations 
but I am still not sure what a theory is; but I know one when it is presented to me, e.g. 
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the Theory of Didactical Situations in Mathematics (TDS; Brousseau, 1997). So I will 
speak of theories with regard to the theories I am aware of that are referred to in 
mathematics education research. 
Mathematics education researchers employ what might be called “out-of-
mathematics-education theories” as well as those created within mathematics 
education. There are, I feel, problems for mathematics education researchers in both 
of these kinds of theories. The majority of us in mathematics education research are 
not experts in out-of-mathematics-education theories; most of us do not have a 
critical insight into all of their ramifications due to a lack of immersion in the 
academic literatures of philosophy, psychology, sociology etc. Out-of-mathematics-
education theories can also miss fine mathematics detail (people interacting with 
mathematical relationships) that we are so very interested in. Mathematics education 
theories, on the other hand, can miss the big picture; the sites (classroom, workplace) 
of most mathematics education research are but a part of the lives of the participants.  

THEORIES CANNOT BE SEPARATED FROM THE PEOPLE THEORISING 
I present seven statements under this theme. 
1 Theories do not exist without people 
A theory without someone to interpret the theory is only words (and maybe symbols). 
A theory accordingly can be considered as a pair, (theory, person). For any given 
theory and n people there will be n such pairs. Some pairs will be almost identical, 
some will differ greatly; any given pair will depend on the interpretation of the theory 
by the person in the pair. 
2 Theories develop and people develop them 
(theory, person) pairs are dynamic, they change/develop. It is a bit sad if this does not 
happen! People develop in their understanding of a theory and through scholarships 
and research they develop theories. It can also be the case that a person appropriates 
particular development in the history of a theory, e.g. I am influenced by Davydov’s 
(1990/72) mid 20th century use of activity theory but activity theory has developed in 
numerous ways since his time. 
3 People hold implicit and explicit theories  
I have heard it said that people can only see via a theory and that people adopt 
theories. I think both claims, without further explanation, are rubbish. We “see” via 
the artefacts (including implicit and explicit theories) available to us in our 
phylogenic and ontogenic development (Wartofsky, 1973). The word “adopt” is too 
passive. I think there is, to draw a close analogy with Guin & Trouche’s (1999) 
‘instrumental genesis’, a theoretical genesis in which people with initial ideas (I_I) 
interact with a theory (T), the person with I_I and T reviews experiences and, if T is 
convincing for that person, then (T′, P) develops. NB This account is certainly too 
simple but suffices, for my purposes, as an initial hypothesis. 
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4 Many people subscribe to more than one theory 
Theory_1 informs us on … and Theory_2 informs us on … With regard to person-
theory pairs we do not just have (T1, P) and (T2, P) but (some combination of T1 and 
T2, P). Maybe this is where networking theories becomes really important. 
5 A continuum with regard to theory expertise 
At one extreme there are leading theorists; at the other extreme there are those who 
do not appear to understand a theory; and there are many intermediate positions. In 
France there is a maximal element in the pair (TDS, Brousseau) but I believe that it is 
intellectually dangerous to grant absolute authority to leading theorists. 
6 Mathematics education researchers network and partially absorb others’ ideas 
We (mathematics education researchers) read but we also talk – to people. I was 
introduced to the anthropological theory of didactics (ATD; Chevallard, 1999) by 
talking to J-b Lagrange. I did eventually read the paper but my understanding of the 
theory was through my conversations with J-b Lagrange and his research. 
1-7 Theories arise in communities and cultures 
As academic we may aspire to objectivity but we cannot escape cultural and 
community influences in our work. The plenary debate took place in France and I 
have alluded to ATD and TDS above in homage to mathematics education theories 
from France. I referred to J-b Lagrange introducing me to ATD above but our 
relationships with this theory will be distinct simply because J-b Lagrange is a French 
mathematics educator and his, and not my, identity is partially shaped in relation to 
this French theory. 
A different example is provided by Nkhoma (2002), a black South African 
mathematics educator. This paper comments on attempts to import learner-centred 
instruction from the USA into Black SA classrooms: 

It is not beneficial to stereotype classrooms practices into, simply, teacher-centred 
therefore bad, and learner-centred therefore good ... rich experiences can be provided 
in practices that appear teacher-centred. (p.112) 

In reading Nkhoma’s paper it is difficult not to feel his anger at the importation of a 
“foreign” theory. 

MOTIVES AND INTERPRETATIONS 
I now look deeper into people and theories and examine researchers’ motives for 
adopting/creating theories and their interpretations of data within theoretical 
frameworks. 
To examine motives I consider a paper by Kieran & Drijvers (2006) and a response to 
this paper by Monaghan & Ozmantar (2007). Kieran & Drijvers worked in a form of 
ATD with they call “task-technique-theory” (TTT). It is a long and interesting paper 
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on the interplay between computer algebra systems (CAS) techniques and by-hand 
techniques. The students were working on factorisations of xn-1, and the CAS 
required specific values for n and did not give the classic factorisation every time. 
They state: 

According to the TTT … a student’s mathematical theorizing is deemed to be 
intertwined with the techniques … tasks … we distinguish the following three 
theoretical elements. 

1. Patterns in the factors of xn −1: Seeing a general form and expressing it 
symbolically  

2. Complete factorization: Developing awareness of the role played by the exponent in 
xn − 1 … 

3. Proving: Theorizing more deeply on the factorization of xn − 1 (pp.242-243) 

We viewed this with regard to Hershkowitz, Schwarz & Dreyfus’s (2001) abstraction 
in context (AiC) recognising and building-with actions. Students’ prior work had 
involved factorising binomial expressions with regard to the difference of squares and 
sums and differences of cubes. They recognise that expressions of the form x5-1 can 
be factored and build-with this knowledge artefact to produce factorisations 

)1)(1(1 2345 ++++−=− xxxxxx .  

We also viewed it via Davydov’s ascent to the concrete (an inspiration for AiC) 
whereby an abstraction progresses from an initial entity to a consistent final form. 
This progression depends on the  

disclosure of contradictions between the aspects of a relationship that is established in 
an initial abstraction ... It is of theoretical importance to find and designate these 
contradictions. (p.291) 

One student says, with regard to x135 – 1, ‘how are we supposed to know if it’s valid 
or not?’ – the initial abstraction is fragile and limited to specific whole number 
exponents. The teacher introduced xn – 1 and this required a vertical reorganisation of 
their knowledge. Student work shortly after includes recognising and building-with 
but on a higher vertical level than when the exponents were specific whole numbers. 
Later in the Kieran & Drijvers paper we see students grappling with contradictions 
created from attempts to reconcile paper-and-pencil and CAS techniques and how 
this attempt at reconciliation led to synthesis and further insights.  

The difference-of-squares ‘proof’, for example, with its accompanying treatment of 
the case xn/2 +1, for odd values of n/2, helped to extend even further the thinking of 
students in the class. The xn – 1 conjecture, which had issued from the earlier work of 
some students with the factoring of x10 − 1, helped others to integrate their ideas about 
odd, even, and prime exponents - theoretical ideas that had been generated in 
interaction with various CAS and paper-and-pencil techniques ... (p.253) 
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We also viewed Noss & Hoyles’ (1996) situated abstraction and webbing as closely 
related to Davydov’s ascent to the concrete 

learning as the construction of a web of connections – between classes of problems, 
mathematical objects and relationships, ‘real’ entities and personal-specific experiences. 
(p. 105) 

We are certainly networking theories (though in a different sense to how Angelika 
networks theories) but we also attend to differences arising from our ascribed 
personal motives of the theorist to theorise. Minimal ascriptions of motive are: 
• Kieran & Drijvers – to understand the interplay of machine and by-hand 

techniques; 
• Davydov – to develop theory to aid instructional design; 
• Noss & Hoyles – to account for mathematical meaning making and the structuring 

of mathematical activities; 
• Hershkowitz et al. - dissatisfaction with empirical theories of abstraction re 

students’ actual development. 
I now briefly consider interpretation. Angelika talks about a case where two theories 
are successfully networked. In CERME 6 Working Group 9 “Different theoretical 
perspectives and approaches in research: Strategies and difficulties when connecting 
theories” some papers focused on difficulties in networking theories. This is not new, 
six years ago Even & Schwarz (2003, p.283) commented ‘We exemplify how 
analyses of a lesson by using two different theoretical perspectives lead to different 
interpretations …’ I have no problem with this but question whether different 
interpretations are only the result of different theoretical perspectives. Research is 
often a team effort. Have you ever disagreed with a colleague during data analysis? I 
have and the outcome is usually compromise or an impasse. I think this tends not to 
get reported in papers. This is a further refinement to my point 1 ‘any given pair will 
depend on the interpretation of the theory by the person in the pair’ but with regard to 
the interpretation of data via the theoretical perspective. Is at least one interpretation 
wrong? 

ISSUES, CONSTRUCTS AND CONSISTENCY 
In this final section I consider the extent to which theories lead research, theories and 
constructs and consistency issues. This section expands on my “motive” 
considerations above in that people often turn to/develop theories in order to address 
issues that they regard as important. But often it is parts of theories that they 
appropriate and this can lead to potential consistency problems. 
Radford (2008, p.320) states that ‘a theory can be seen as a way of producing 
understandings and ways of actions based on’ a system of basic principles, a 
methodology and a set of paradigmatic research questions.  I take partial issue with 
this, as a generality. I consider issues and specific research projects. 
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In my experience there are fundamental issues that mathematics education 
researchers return many times over their working lives. In my case one of these is the 
link between school mathematics and out-of-school mathematics. I have grappled 
with this over many decades. Research questions, methodologies and principles have 
come and gone but the issue remains. The construct “transfer” often arises in 
discussions of this issue for something akin to transfer is central in linking school to 
out-of-school maths. Personally I hate the term and largely agree with the old Lave 
(1988) critique but the issue haunts me and I am prepared to consider any theory that 
will further my understanding of this issue. 
I now consider research projects with regard to theories. These generally have a 
shorter time scale than “issues”. I, like most CERME delegates, write formal 
proposals with a theoretical framework, research questions and methodology. Almost 
every time, however, I develop in the process. I encounter unexpected phenomena 
(and revise the research questions) or experience problems in data analysis (and 
revise the methodology) or develop the theoretical framework. My point is that 
sometimes theories lead research, sometimes they do not; and, whatever the case, 
researcher development is in the dialectic mix. I now consider constructs. 
A construct may be regarded as a proper part of a theory, e.g. didactical contract in 
TDS. I think people often appropriate a construct of a theory without appropriating 
the whole theory. I further think that if a person appropriates a theory, then they 
appropriate constructs of that theory prior to appropriating the theory. I included ‘I 
think’ in the previous two sentences because I base these remarks on my reflections 
of my own development; with regard to my point on “theoretical genesis” in (3) 
above I am not aware of research that traces the genesis of theory acquisition amongst 
academics but such research would be relevant to my reflections. 
As an instance of construct appropriation in my own development I return to my 
comments above that J-b Lagrange introduced me to ATD. This is true, he did 
introduce me to ATD, but what I initially appropriated was the ‘task-technique’ part 
of ATD (and this focus as the only part of ATD I made sense of lasted several years). 
This focus was, I am sure, due to my prior experience. I had long experience of 
working with students and with teachers on using ICT-mathematics tools and the 
term “technique” in my country’s everyday mathematics-education-speech refers to 
value-free manipulation. To view, as Lagrange’s exposition of ATD does, techniques 
as not only being not value-free but techniques having both epistemic and pragmatic 
values and being viewed with respect to tasks was, quite frankly, a huge revelation 
and very relevant to my ICT work. Monaghan (2000) provides published evidence of 
this narrow focus. Perhaps it was due to the big impact this construct had on my 
thinking that appropriating other aspects of ATD took me a longer period of time. 
I do not think the above (ATD, me) is an isolated example. I think the theory-person 
development is similar to that which I outline in (3) above: a person with a theoretical 
approach (T, P) interact with a construct C, the person with theoretical approach and 
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construct reviews experiences and, if C is convincing for that person, then (T+C, P) 
develops. As with my comments in (3) this is almost certainly simplistic. 
As I prepared for the CERME plenary I kept returning to T and C, in (T+C, P), with 
the thought that T and C must, in some sense, be consistent. I tried to formulate 
consistency criteria but failed, my attempts to frame consistency criteria ended with 
grand but empty phrases. This failure may be a personal failure but it may be that 
there is not a suitable meta-language in which to couch consistency criteria for non-
specific theories and if this is the case, then perhaps we just need to resolve 
consistency tensions in our own research in case and theory specific ways. 
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DISCUSSION 
The discussion was opened and guided by the following questions: 

• How can we link our theories to the mathematical background? Is this necessary?  

• Why should we care about theories as an object of research? Working with 
theories and constructing theories within mathematics education is our job. It is 
not our job to investigate the epistemological processes within ME themselves. 
We have enough problems to work on if we restrict ourselves to the teaching and 
learning of mathematics. 

• What does consistency mean? Taking bits and pieces from different theories 
includes the danger to merge inconsistent parts. Does consistency depend on the 
grain size? How can we link different grain sizes?  

The following comments, relating to the above questions, were made by members of 
the audience and the presenters: 
Concerning the link to mathematics, on the one hand, the experience of participants 
in the Advanced Mathematical Thinking group of CERME is that linking the theories 
to mathematical content domains is crucial, especially crucial when trying to network 
with mathematicians. On the other hand, most mathematicians hesitate to go into 
didactical theories, and those who do sometimes point out difficulties of 
communication (Quinn, 2008). 
Concerning the importance of reflecting at the meta-level how we work with more 
than one theory, other working groups than those mentioned above also reported that 
they were coming up against this issue; specifically, the working groups on Affect, on 
Mathematics and Language, on Early Years Mathematics, and on Comparative 
Studies were mentioned. In addition, two comments were made, namely that 
networking will never end since theories are dynamic entities, and that the important 
aspect of John Monaghan’s presentation is the human one, never mind whether 
individual or social. However, the characteristic trait of this part of the discussion was 
that contributors tended to ask questions rather than make comments; these questions 
included: 

• Isn’t our research necessarily linked to what happens outside of the discipline 
since the research needs are defined by politicians, funding agencies, and 
teachers?  

• How do we deal with theories that we adopt from other disciplines such as 
psychology, epistemology, or even medical science? In particular, how do we 
integrate mathematics (or at least a mathematical view) into these theories? How 
do we integrate theories from other disciplines into the area of mathematics 
education? 
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• To what extent do home-grown theories integrate, adopt or adapt elements from 
general (outside) theories? 

• How would one distinguish local from global combining of theories? 

• Shouldn’t networking efforts also include cases where the researchers attempting 
to connect do not start from a specific phenomenon? 

• Why not using the useful (but relative) distinction between background and 
foreground theories? 

• Would it promote networking to start by comparing metaphors? 
Concerning the issue of consistency, participants commented that criteria for 
consistency might better be found outside our community, that it might be preferable 
to use the term ‘compatibility’ rather than ‘consistency’, that the distinction between 
‘theories of’ and ‘theories for’ could be useful, that looking at complementary 
phenomena could be a starting point for networking theories – a point already made 
by Steiner (1985), and that the main reason for connecting theories might be the 
complementarity of their aims, which is important by itself and might make their 
convergence rather less important. 
While it is far from clear whether our community has already made substantial 
progress in its attempts to find ways of working with different theories in 
mathematics education research, this plenary session has made it amply clear that the 
issue of how to work with different theories is deep, that it occupies a central position 
for a large number of researchers and plays a important role in the discussions of a 
majority of the CERME working groups. It is therefore recommended that CERME 
continue its support of efforts to make progress on this issue and to discuss scientific 
ways of dealing with the diversity of theories in a manner that is comprehensive and 
includes researchers from different areas and backgrounds within mathematics 
education. 
Quinn, F. (2008). Communication between the mathematics and mathematics 
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INTRODUCTION 
MULTIMETHOD APPROACHES TO THE MULTIDIMENSIONAL 

AFFECT IN MATHEMATICS EDUCATION 
 

Markku S. Hannula, (chair), University of Turku, Finland 
Marilena Pantziara, University of Cyprus 

Kjersti Wæge, Norwegian University of Science and Technology, Norway 
Wolfgang Schlöglmann, Universität Linz, Austria 

 
The first working group on affect was organized in CERME 3 in 2003. This was the 
fourth affect working group and like the previous three, it was an energizing and 
inspiring event. We had 18 participants and 17 papers were submitted to our working 
group. One of the papers was cancelled, and the peer review process led to rejection of 
one paper before the conference. Several papers were revised and all except one of 
these were accepted for publication in the proceedings, leading to 14 published papers. 
Early in the conference, Di Martino reminded us of why this field of study is 
important. He made reference to several mathematics education researchers who have 
emphasized the role of affect in our efforts to understand human behaviour in 
mathematical thinking and learning. One of the quotes he shared with us was the 
following: 
“…researchers who are interested in human performance need to go beyond the 
purely cognitive if their theories and investigations are to be important for problem 
solving in classrooms” McLeod (1992). 
Numerous research studies carried out more recently in mathematics education 
emphasize in similar fashion the importance, hence relevance of affective factors in 
interpreting students mathematics performance, behaviour and difficulties in 
mathematics (e.g. Philippou & Christou, 2002, Young, 1997). In the papers accepted 
for the proceedings you will find 14 interesting perspectives into the complex world of 
affect, emotions, motivation and humour in mathematical thinking and learning. 
The participants in this Working Group considered it important to report also the way 
of organized our sessions. The dilemma is to focus discussion in a way that it relates 
to the papers that each participant is familiar with, but so that it also is able to go 
beyond presentation of papers. First of all, we were fortunate to have a more or less 
optimal group size that allowed rich discussions where each participant was able to 
contribute.  The authors of the accepted papers were asked to prepare in advance one 
or two slides based on their paper on each of the following topics: 

◦ Theoretical framework 
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◦ Methodology 

◦ Key findings 

◦ Implications for teaching 

◦ Implications for further research 
Slides were collected and organised according to themes at the beginning of the 
conference. In the sessions each slide was briefly presented by the respective author, 
which (usually) initiated a discussion. When the momentum of the discussion was 
used out, the next presenter took the stage. 
This way of organizing allowed each participant to have his or her main ideas in the 
focus of attention. Moreover, this allowed discussion to focus on topics and supported 
referring to ideas from previous presentations. 

THEORETICAL FRAMEWORKS 
The group had very intensive discussion on the topic of theoretical frameworks. A 
helpful framework to structure discussion was the figure from CERME5 summary 
presentation (Figure 1). 

Socio-historical context

Classroom context

Student/teacher

Cognition

AffectMotivation

Math knowledge 
and strategies for 
learning/teaching

Metacognition

goals

Metamotivation

emotion

Belief system
Meta-emotion/affect

attitude
needs

 
Figure 1. An overall framework for affective constructs within mathematics education 
research (Hannula, Op ’t Eynde, Schlöglmann & Wedege, 2007, p. 204) 
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The proposed model is based on the socio-constructivist perspective on learning and it 
is characterized both by its focus on the situatedness of learning (classroom and socio-
historical context) and by the recognition of the close interactions between 
(meta)cognitive, motivational and affective factors in students’ learning (Op ’t Eynde 
et al., 2006). 
One of the issues that has been discussed in previous CERME-meetings and that was 
revisited again was the definition of beliefs (Di Martino; Liljedahl; Osterholm). This 
is an issue, where Furinghetti & Pehkonen (2002) concluded that there can not be a 
single definition for beliefs that is appropriate for all purposes. 
We revisited the characterization by McLeod (1992), where affective domain is 
divided into emotions, attitudes and beliefs. There was an agreement that beliefs are 
different from the other concepts in that it is possible to consider their truth value, 
whereas emotions and attitudes are subjective by their nature. The paper by Österholm 
led us to discuss the distinction between beliefs and knowledge. Our preliminary 
conclusion at the conference was that the difference lies in knowledge being 
determined socially and beliefs being the individual aspect of knowledge (cf. 
Furinghetti & Pehkonen, 2002).  
Self-efficacy issues were also presented in the group (Sofokleous and Gagatsis). We 
discussed Bandura’s framework of self-efficacy, which has not been integrated into 
belief systems framework. Instead, self-efficacy beliefs seem to have remained a 
relatively independent framework with some connections to both belief theories and 
motivation theories.  
Epistemological beliefs of mathematics was another framework of interest (Liljedahl). 
The differentiation between system, toolbox and process view of mathematics has 
long history from Dionne (1984); Ernest (1991); and Törner and Grigutsch (1994). 
Morover, there was lively discussions about the generation of mathematical beliefs 
(Hannula). 
Another concept which we discussed thoroughly was motivation. We recognized that 
motivation has two dimensions that require attention, namely the quality and the 
intensity of motivation. The different approaches used in the conference papers 
(Athanasiou, Pantziara, Wæge) include theory, personal Investment theory, 
Achievement goal theory and Self Determination Theory of needs and goals. 
Regarding the generation of motivation, needs, competence based variables, social, 
demographic and neurophysiological predispositions were recognized (Schlöglmann). 
As new theoretical approaches to affect we were introduced to the concepts personal 
meaning (Vollstedt), humor (Shmakov & Hannula) and teachers’ emotional 
knowledge (Lavy & Shiriki). In the discussion it was argued that it might be more 
appropriate to call the last of these emotional skills. It was reminded that one issue in 
earlier CERME affect groups had been the need to develop a more coherent language 
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and/or conceptual system for research on affect. Therefore the group concluded that 
these new concepts must be related to the existing ones in the domain. 
RESEARCH QUESTIONS  
The variety of the research questions presented in our group made the use of various 
research methods (qualitative and quantitative) necessary.  
In particular three main themes of research questions were presented, with the first 
one referring to beliefs: 

 The origin of the beliefs. Are all beliefs constructed in the same way or are 
some beliefs socially constructed while some others are mainly individual? 
(Hannula) 

 Changing beliefs as changing perspective. (Liljedahl) 
 “Maths and me”: software analysis of narrative data about attitude towards 

math. (Di Martino) 
 Students’ beliefs about the use of representations in the learning of fractions. 

(Gagatsis, Panaoura, Deliyianni & Elia) 
 The relation between self-efficacy beliefs and students’ achievement. 

(Sophocleous & Gagatsis) 
The second theme referred to motivation aspects: 

 Students’ motivation for learning mathematics in terms of needs and goals. 
(Wæge) 

 Identification of students’ inner characteristics that may develop students’ 
motivation. (Panaoura, Demetriou & Gagatsis) 

 Social variables (teachers’ practices) that may develop students’ motivation. 
(Panziara & Philippou) 

 The effects of changes in the perceived classroom social culture on motivation 
in mathematics across transitions. (Athanasiou & Philippou) 

A third theme covered the new approaches to affect: 
 The kind of personal meaning that students relate with mathematics education. 

Comparison between German and Hong Kong. (Vollstedt) 
 Emotional knowledge of mathematics teachers. (Lavy & Shiriki) 
 Humour as a means to make mathematics enjoyable. (Shmakov & Hannula) 

The discussion on research methods showed several studies to have advanced beyond 
simple correlation and descriptive studies (Pantziara & Philippou). Some use a 
systemic approach and study several different aspects in connection with each other 
(e.g. Hannula; Panaoura et al.). There are also studies that use methods that allow 
examining changes in beliefs and motivation (Athanasiou and Philippou). 
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DISCUSSION AND CHALLENGES 
One apparent main focus for research and practice in this domain has been to develop 
richer theoretical frameworks using aspects and develop better concepts and 
instruments, preferably combining qualitative and quantitative methods. The 
frameworks should recognize the close relation between beliefs, motivation and 
competence. Another, related focus has been the relations between different constructs 
in the affective domain and their connection to other areas in the realm of mathematics 
education. A third focus identified was change in beliefs and motivation; how it can 
happen and how to initiate change. 
One specific issue we discussed was the different understandings of the stability of 
affective constructs. The first aspect here is to distinguish between affective state and 
affective trait. The second aspect to notice is affects resistance to change. The third 
aspect of stability is the robustness of affective constructs. The fourth aspect is the 
relative stability of affect, which means the tendency of people to keep the same order 
even if their affect might be changed. 
When looking into the future, we recognized some promising approaches. In 
mathematics education affect has typically been approached through psychology. 
Looking at affect as biological or social phenomenon might open up new insight. 
With regard to research on emotions, there is need to move beyond simplistic 
positive/negative view of emotions and distinguish different types of negative 
emotions (fear, dislike, sadness, anger) and positive emotions (joy, serenity). We also 
realized that most research on affective processes has focused on intensive emotions 
or non-routine mathematical activities. Therefore, it might be interesting to explore 
students’ affect when they experience routine mathematics. Moreover, the research on 
affect could be extended to various contexts in mathematics, such as vocational 
education and mathematics at work. 
CLOSING REMARKS 
In each CERME the effort is denoted to identify some emerging or significant themes 
that might reflect the field in general, not restricted to the studies presented in the 
conference. The enrichment of the theoretical framework by clarifying specific 
constructs related to affect and by introducing new approaches has continued.  Besides 
the illumination of relations among the various affective constructs (e.g. students’ and 
teachers’ beliefs, students’ achievement goals, students’ motivation) and other 
variables in the mathematics education domain (e.g. students’ competence, teachers’ 
practices, and teachers’ knowledge) had been proceeded. The clarification of the 
terminology used in affect together with the new perspectives of stability of affective 
constructs develop this research domain. Due to the multidimensional face of the 
variables involved in the affective domain, the multi-method approach is becoming 
indispensable in the identification of relations among this area of research. 
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There is still much to be clarified and revealed in the realm of Affect in Mathematics 
Education. Therefore we go on and look ahead to the next affect working group at 
CERME 7. 
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THE EFFECT OF ACHIEVEMENT, GENDER AND CLASSROOM 
CONTEXT ON UPPER SECONDARY STUDENTS' 

MATHEMATICAL BELIEFS 
Markku S. Hannula 

University of Turku, Finland 

The influence of achievement, gender and classroom context on students' 
mathematical beliefs were analysed from survey data from 1436 Finnish upper 
secondary school students. The results indicate that students of the same class tend to 
have similar effort, enjoyment of mathematics and evaluation of teacher. Students' 
mathematical confidence is influenced by gender while their perception of their 
competence mainly relates to their achievement in mathematics. 
Keywords: beliefs, gender, secondary school, multilevel analysis 
INTRODUCTION 
Mathematical beliefs are on the one hand considered as individual constructs that are 
generated by individual experiences. On the other hand, beliefs are considered to be 
constructed socially, in a shared social context of a classroom. Which is more 
important? Are all beliefs constructed in the same way or are some beliefs socially 
constructed while some others are purely individual? 
In Finnish research on affect in mathematics education the focus has clearly been on 
the level of human psychology, and only a few studies have explored also the social 
level (Hannula, 2007). One reason for this is most likely that differences between 
schools and geographic regions are low and the social variables have generally less 
pronounced effect on achievement in mathematics in Finland than in most other 
countries (OECD-PISA, 2004). Finland is also culturally rather homogeneous. Hence, 
it is not surprising that comparative studies between different groups of students 
within Finland have not been popular, gender being an exception to the rule. One 
study on regional effects indicated that students in capital province choose advanced 
syllabus more often than students in another province (Nevanlinna, 1998). This 
indicates that geographical differences in mathematics related beliefs may exist. 
A general international trend has been that gender differences in mathematics 
achievement are disappearing. Gender differences in overall achievement of 15-year 
olds have disappeared also in Finland, but robust gender differences still exist in their 
affect towards mathematics (Hannula, Juuti & Ahtee, 2007). When attitude towards 
mathematics has been constructed as a single variable, studies generally have found 
boys to hold a more positive attitude towards mathematics (e.g. Saranen 1992). 
However, when different dimensions of attitude have been separated, interesting 
variations have been found. For example, all studies have not found gender 
differences in 'liking of mathematics' (Kangasniemi, 1989). Gender difference has 
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been clearer in how difficult mathematics is seen (Kangasniemi, 1989) and quite 
robust in students' self-confidence in mathematics (Hannula & Malmivuori, 1997; 
Kangasniemi, 1989; Hannula, Maijala, Pehkonen & Nurmi, 2005). Class-level factors 
are seen to influence students' self-confidence, and these seem to be more relevant to 
girls' than to boys' self-confidence (Hannula & Malmivuori 1997). 
Although Finland scored to the top in PISA achievement scores, Finland was also 
characterised by less favourable results on the affective measures. Finnish students 
lack interest and enjoyment in mathematics, they have below average self-efficacy, 
and low level of control strategies. As a more positive result, levels of anxiety were 
also low. In Finland affect was an important predictor of achievement. Mathematical 
self-concept was the strongest predictor of mathematics performance, and this 
correlation was strongest among countries in the study. The study also revealed that 
gender differences favouring males in affect were larger in Finland than in OECD on 
average. (OECD-PISA, 2004) 
In a study of elementary and secondary teachers' beliefs Pekka Kupari identified two 
types of mathematics teachers, traditional and innovative teachers. The traditional 
teacher emphasises basic teaching techniques and extensive drill, while the 
innovative teacher emphasises student thinking and deeper learning. (Kupari, 1996)  
Moreover, Riitta Soro (2002) found out in her study that most mathematics teachers 
held different beliefs about students based on student's gender. Girls were seen to 
employ inferior cognitive skills and succeed because of their diligence, while boys 
were seen to be talented in mathematics but lacking in effort. However, there were 
also teachers who did not hold such gendered beliefs. 
As there are quite different teachers, one would expect this to have an effect on 
beliefs of their students. If this is the case, then we are likely to find significant 
amount of variation of students' beliefs to be attributable to the class they study in. 
Moreover, this variation might be different for male and female students.  
In this report we shall explore more deeply which aspects of mathematical beliefs are 
most affected by shared classroom context or gender, and which seem to be 
individual constructs, for which gender and class are poor predictors of the belief. 

THEORETICAL FRAMEWORK 
In the literature, beliefs have been described as a messy construct (Pajares, 1992). 
There are many variations for characterisations of belief concept (Furinghetti & 
Pehkonen, 2002). In this article we consider mathematical beliefs as "an individual's 
understandings and feelings that shape the ways that the individual conceptualizes 
and engages in mathematical behavior" (Schoenfeld 1992, 358).  Op 't Eynde, De 
Corte and Verschaffel (2002) provide a framework of students' mathematics-related 
beliefs. Constitutive dimensions are object (mathematics education), self, and context 
(class), which further lead to several sub-categories:  
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1) Mathematics education (mathematics as subject, mathematical learning and 
problem solving, mathematics teaching in general),  
2) Self (self-efficacy, control, task-value, goal-orientation), and  
3) The social context (social and socio-mathematical norms in the class,). With regard 
to the social context, Op 't Eynde & DeCorte (2004) found out later that the role and 
functioning of one's teacher are an important subcategory of it. 
In an earlier study (Rösken, Hannula, Pehkonen, Kaasila and Laine, 2007), we have 
explored the structure of mathematical beliefs among upper secondary school 
students. Our studies confirmed partially the aspects of mathematical beliefs that Op 
‘t Eynde and his colleagues had suggested. 
It is generally assumed that there is a link between teachers’ and their students’ affect 
towards mathematics (e.g. Cockroft, 1982). However, few studies seem to confirm 
this relationship. For example, the review of PME research on affect (Leder & 
Forgasz, 2006) does not mention any such study. As an example of research relating 
teacher and student beliefs we can take Crater and Norwood’s (1997) study of seven 
teachers and their 138 students, where they found out that  this group of teachers’ 
beliefs influences their practices and what their students believed about mathematics 
These different findings can be summarised on a model where there the three levels 
of gender, classroom context and individual are differentiated in the process of belief 
development (Figure 1).  

Figure 1. A model for generation of mathematical beliefs. 

One origin of different student beliefs are the individual life histories that each 
student brings into the classroom.  These life histories influence the way the students 
position themselves in the classroom, the way they engage with mathematics, teacher 
and peers and the way they interpret their experiences in the classroom. On the other 
hand, there are contextual factors that students of the same class share with each 
other. These are, for example, the personality of the teacher, the physical classroom 
and the implemented curriculum. These influence all students in a class and are the 
origin of shared experiences. Moreover, also students’ individual experiences are 
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partly shaped by the shared events in the classroom. This is illustrated with an arrow 
from classroom context to individual experiences. 
On the most general level there are experiences that people of the same social 
background (e.g. ethnicity, social class, hobbies, and social subcultures) share. One of 
such subsets is generated by students' gender. Gender is seen to play a significant part 
in the experiences in the classroom and in the beliefs that students develop (e.g. 
Hannula et. al, 2008). Also most teachers' have different beliefs about boys and girls 
as mathematics learners (Soro, 2002). Therefore it is reasonable to make the claim 
that individual experiences in mathematics classrooms are not the same for male and 
female students. Moreover, as teachers and classes are different, these gendered 
experiences may vary from one class context to another. Therefore, there are arrows 
from gender to both contextual and individual experiences. 

METHODS 
Instrument and Participants 
The view of mathematics indicator has been developed in 2003 as part of the research 
project "Elementary teachers' mathematics" financed by the Academy of Finland 
(project #8201695). It has been applied to and tested on a sample of student teachers 
and was slightly modified for the present sample. That is, items addressing 
specifically aspects of teaching mathematics like View of oneself as mathematics 
teacher (D1-D6) and Experiences as teacher of mathematics (E1-E7) were removed. 
More information about the development of the instrument can be found e.g. in 
(Hannula Kaasila, Laine  & Pehkonen, 2006).  
The participants in our study came from fifty randomly chosen Finnish-speaking 
upper secondary schools from overall Finland, including classes for both, advanced 
and general mathematics. The respondents were in their second year course for 
mathematics in grade 11. Altogether 1436 students from 65 classes (26 general and 
39 advanced) filled in the questionnaire and gave it back. The response rate was 
higher among advanced mathematics courses. 
Through an exploratory factor analysis we obtained a seven-factor solution that 
counts for 59 % of variance and provides factors with excellent internal consistency 
reliability (Table 1). We related three factors to personal beliefs since a clear self-
relation aspect regarding competence (F1), effort (F2) and confidence (F7) can be 
found. Two factors were related primarily to social context variables, namely teacher 
quality (F3) and family encouragement (F4), one to more emotional expressions 
concerning enjoyment of mathematics (F5) and one to mathematics as a subject; that 
is, difficulty of mathematics (F6). A description of factor analysis as well as all 
components and their loadings can be found in another report. (Rösken et. al, 2007) 
A GLM univariate analysis was performed on SPSS. The seven belief factors were 
the dependent variables, gender was a fixed factor, and class a random factor. 
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Mathematics grade was a covariant. Students of advanced and general mathematics 
courses were analysed separately, and partial η2 is used as a measure of effect size. It 
should be noted that although partial η2 is a reliable estimate within a sample, it does 
not provide reliable estimate for the whole population. Because all variables did not 
confirm with the assumptions of normality, we made also a nonparametric Kruskal 
Wallis test to test the statistical significance of the grouping effect. 

Name of the 
component 

Sample item Number 
of items 

Cronbach’s 
alpha 

Competence Math is hard for me 5 0.91 
Effort I am hard-working by nature 6 0.83 
Teacher Quality I would have needed a better teacher 8 0.81 
Family 
Encouragement 

My family has encouraged me to 
study mathematics 

3 0.80 

Enjoyment of 
Mathematics 

Doing exercises has been pleasant 7 0.91 

Difficulty of 
Mathematics 

Mathematics is difficult 3 0.82 

Confidence I can get good grades in math 5 0.87 
Table 1. The 7 principal components of students' view of mathematics. 

RESULTS 

The GLM univariate analysis indicated several statistically significant effects (Table 
2 and Table 3). However, the assumption of equal variance did not hold true in all 
cases and nonparametric tests were necessary to confirm results (see below). 
 General mathematics 
 Grade Gender Group Gender x Group

 F Sig. η2 F Sig. η2 F Sig. η2 F Sig. η2 
Competence* 326,16 ,000 ,35 ,12 ,729 ,00 1,58 ,111 ,61 ,97 ,507 ,04

Effort 172,22 ,000 ,27 3,10 ,087 ,09 2,03 ,041 ,67 1,15 ,278 ,06
Teacher Quality 41,86 ,000 ,08 10,37 ,003 ,22 2,95 ,004 ,75 ,92 ,577 ,05

Family  
Encouragement 

,75 ,388 ,00 2,20 ,147 ,06 1,05 ,456 ,51 1,08 ,359 ,06

Enjoyment of 
Mathematics 

196,65 ,000 ,30 2,94 ,096 ,08 1,65 ,107 ,62 1,00 ,470 ,05

Difficulty of Math* 194,80 ,000 ,30 4,73 ,036 ,12 1,90 ,057 ,65 ,94 ,550 ,05
Confidence* 86,40 ,000 ,16 23,29 ,000 ,41 1,06 ,444 ,51 1,02 ,433 ,05

Table 2. GLM univariate analysis for general mathematics students (gender*group, 
grade as covariate). η2 is partial η2. *) variance in groups was not equal (Levene's Test 
of Equality of Error Variance)  

Most of the mathematical beliefs were related to the mathematics grade the student 
had. A simple correlation was calculated to determine the direction of the correlation 
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(correlation table is not reprinted here). All correlations were positive, except of 
correlation between grade and perceived difficulty of mathematics. 
Regarding gender differences, the GLM Univariate analysis indicated that for both 
advanced and general syllabus female students were less confident and they 
perceived teacher quality lower and mathematics more difficult than male students.  
The effect was strongest in self-confidence. 
The analysis indicated a strong group effect for teacher quality. In groups of general 
mathematics there was also a strong group effect on effort and in groups of advanced 
mathematics a strong group effect on enjoyment. Moreover, there was a gender and 
group interaction effect for enjoyment among advanced mathematics courses, 
indicating stronger group effect for female students. 

 Advanced mathematics 
 Grade Gender Group Gender x Group

 F Sig. η2 F Sig. η2 F Sig. η2 F Sig. η2

Competence* 332,61 ,000 ,30 1,09 ,301 ,02 1,63 ,077 ,63 1,08 ,355 ,05
Effort* 254,72 ,000 ,25 ,13 ,717 ,00 1,02 ,479 ,51 1,13 ,278 ,05

Teacher 
Quality* 

53,34 ,000 ,07 5,83 ,019 ,10 7,26 ,000 ,88 1,14 ,274 ,05

Family 
Encouragement 

1,20 ,274 ,00 ,34 ,561 ,01 1,50 ,116 ,61 ,73 ,877 ,03

Enjoyment of 
Mathematics 

175,78 ,000 ,18 ,30 ,591 ,01 2,41 ,005 ,71 1,49 ,036 ,06

Difficulty of 
Mathematics 

254,08 ,000 ,24 34,27 ,000 ,40 1,67 ,066 ,63 1,24 ,160 ,05

Confidence 115,86 ,000 ,13 75,07 ,000 ,60 1,29 ,228 ,57 1,28 ,132 ,05

Table 3. GLM univariate analysis for advanced mathematics students (gender*group, 
grade as covariate). η2 is partial η2. *) variance in groups was not equal (Levene's Test 
of Equality of Error Variance) 

Because all variables did not confirm with the assumptions of normality, we made 
separate analysis to confirm some of the disputable results above (Table 4). 
Unfortunately this analysis did not allow a simple means to control for effect of 
achievement. The results confirmed the group effects partially. For students of 
general mathematics the statistically significant group effects were different for male 
and female students. For male students, groups had an effect on competence and 
effort, whereas for female students the group effect was found on teacher quality and 
confidence. This confirms the group effect on effort for male students and teacher 
quality for female students. The observed group effects on competence and 
confidence may actually be effects of grade.  
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For advanced mathematics a statistically significant group effect was found for 
teacher quality, effort, and enjoyment. This confirms the results of GLM Univariate 
analysis. Moreover, for female students only, a group effect on confidence was found. 

Table 4. Kruskal Wallis Nonparametric Test for the group effect on mathematical 
beliefs among male and female students in general and advanced mathematics courses. 
TQ = Teacher quality,  FE = Family encouragement 

CONCLUSIONS 
The results of these analysis confirmed that there is a certain level of agreement in 
certain mathematical beliefs among students of same class. Most pronounced this was 
for perceived teacher quality. In our earlier studies on teacher education students (e.g. 
Hannula et. al, 2006) we were not sure whether the variation in respondents’ beliefs 
about their teacher's quality was an effect of their own mathematical achievement or 
if it reflected actual differences in the teaching they had received. This study confirms 
that students' belief of their teacher's quality is shared among students of the same 
class and therefore it is likely to be generated by shared experiences in the classroom 
context. Yet, also student's gender and achievement had an effect on this evaluation 
of the teacher. This provides evidence for the suggested interaction between levels in 
the model (Figure 1). 
Shared classroom context seemed to have an effect also in students' effort (general 
mathematics) and enjoyment (advanced mathematics). This is indicating that through 
choices in instruction, it is possible to create a 'culture' in the classroom that is 

Kruskal Wallis Test Statistics for group differences 

Course, Gender 
Compe-
tence Effort TQ FE Enjoy Difficulty Confidence

χ2 36,39 46,10 27,053 21,96 25,16 26,56 20,38

df 25 25 25 25 25 25 25

General, 
male 

Asymp. Sig. ,066 ,006 ,353 ,638 ,453 ,378 ,727

χ2 30,64 24,70 66,369 47,61 31,12 23,41 43,72

df 25 25 25 25 25 25 25

General, 
female 

Asymp. Sig. ,201 ,479 ,000 ,004 ,185 ,554 ,012

χ2 35,25 58,61 96,81 38,20 51,06 56,99 39,51

df 36 36 36 36 36 36 36

Advanced, 
male 

Asymp. Sig. ,504 ,010 ,000 ,370 ,049 ,014 ,316

χ2 40,71 52,04 140,12 33,8 99,700 47,43 54,14

df 35 35 35 35 35 35 35

Advanced, 
female 

Asymp. Sig. ,233 ,032 ,000 ,523 ,000 ,078 ,020
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motivating or enjoyable. However, we can not rule out the possibility that these 
differences between classes be effect of geography or some other variable that 
differentiates these groups. 
An interesting finding was that there was a gender and group interaction effect for 
enjoyment among advanced mathematics courses, indicating stronger group effect for 
female students. This might relate to the anecdotes that students still occasionally tell 
about chauvinistic mathematics teachers they have had. The small effect size (6%) 
indicates that this is not a major problem on the level of educational system. 
However, for those female students who have to suffer through these classes it may 
be a big problem. Alternatively, this might indicate that there are such teachers in 
Finnish upper secondary schools that are able to create lessons that female students 
find especially enjoyable. 
It is worth to note that gender had a stronger influence on confidence in mathematics 
than mathematics grade. The same is true also for and perceiving mathematics 
difficult in advanced course. In this sense these beliefs are truly gendered beliefs. 
The findings provide support for the presented model and give indication to the origin 
of the measured beliefs (Figure 2). The effects of context and gender were 
surprisingly strong and the results support the hypothesis of social origin of beliefs. 

 

Figure 2. Empirically confirmed gendered, contextual and individual beliefs. 

Enjoyment of mathematics, self-confidence in mathematics and self-efficacy beliefs 
are often considered as closely related aspects of attitude towards mathematics. This 
study highlights the different origin of these three aspects of attitude towards 
mathematics. Hence, it seems worthwhile to separate these different aspects also in 
future studies. 
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CHANGING BELIEFS AS CHANGING PERSPECTIVE 
Peter Liljedahl 

Simon Fraser University, Canada 
 
There is a phenomenon that has been observed in my work with inservice teachers. 
This phenomenon can be seen as embodying profound and drastic changes in the 
beliefs of the teachers participating in various projects. In this article I first describe 
this phenomenon and then more closely examine it using a framework of perspective. 
This framework allows for the articulation of the changes of beliefs as a 
foregrounding (or a reprioritization) of already existing beliefs. In doing so, I put 
forth a theory that allows for beliefs to be seen as both stable and dynamic – but 
always contextual. 

INTRODUCTION 
I work with inservice teachers. My reason for doing this is to affect change in these 
teachers' classroom practices, and ultimately, to affect change in the mathematical 
experiences of their students. In general, I try to accomplish this change through a 
focus on teachers' beliefs – beliefs about mathematics and beliefs about what it means 
to learn and teach mathematics. My assumption is that there is a link between 
teachers' beliefs and their practice (Liljedahl, 2008) and that meaningful1 changes in 
practice cannot occur without corresponding changes in beliefs.  
Recently, my main method of operating in this regard is to work with groups of 
teachers to co-construct some artefact of teaching – a definition, a task, an assessment 
rubric, a lesson, etc. This has proven to be a very effective method of reifying2 the 
fleeting, and sometimes delicate, changes to beliefs that teachers experience within 
these settings (Liljedahl, in press, 2007). Within this context I am both a facilitator 
and a researcher. However, I am not a facilitator and a researcher in only the obvious 
sense. Although it is true that I facilitate the various activities that the teachers engage 
in – from discussions to the crafting of artefacts – it is also true that I facilitate the 
environment within which this all takes place. The sort of inservice work that I am 
involved in is more than simply the delivery of workshops, it is the provision and 
maintenance of a community of practice in which ideas are provisional, contextual, 
and tentative and are freely exchanged, discussed, and co-constructed. At the same 
time, while it is true that as a researcher I am interested in the down-stream effects of 
the work that I am engaged in (changes in teachers' practice in the classroom, 

                                           
1 Meaningful change is seen as a shift in teaching towards a more reform oriented practice. This change needs to be 
pervasive and robust.   
2 In this paper reify and reification is used in the tradition of Wenger (1998) rather than in the tradition of Sfard (1994). 
As such, reification means to make concrete – to turn some ephemeral aspect of teaching into thingness.   
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improvement in students' experiences and performance, etc.), it is equally true that I 
am interested in researching the inservice setting itself. There is much that happens 
within these settings. It is this later context which is the subject of this paper.  
Working as both the facilitator and the researcher interested in the contextual and 
situational dynamics of the setting itself I find myself too embroiled in the situation 
to adopt the removed stance of observer. At the same time, my specific role as 
facilitator prevents me from adopting a stance of participant observer. As such, I have 
chosen to adopt a stance of noticing (Mason, 2006). This stance allows me to work 
within the inservice setting to achieve my inservice goals while at the same time 
being attuned to the experiences of the persons involved. I notice, first and foremost, 
myself. I attend to my choices of activities to engage in and the questions I choose to 
pose. I attend to my reactions to certain situations as well as my reflections on those 
reactions, both in the moment and after the session. More importantly, however, I 
attend to the actions and reactions of the teacher participants both as individuals and 
as members of a community. I observe intra-personal conflicts, interpersonal 
interactions, the dynamics of the group, as well as the interactions between 
individuals and the group. And in so doing, from time to time I notice phenomena 
that warrant further observation and/or investigation. Often these are phenomena that 
occur in more than one setting and speak to invariance in individual or group 
behaviour in certain contexts. Once identified these phenomena can be investigated 
using methodologies of practitioner inquiry that combine the role of educator with 
researcher – in this case teacher educator with researcher (Cochrane-Smyth & Lytle, 
2004)3. Using a methodology of noticing I have observed rapid and profound changes 
in beliefs among individual teachers within a context of reification (Liljedahl, in 
press, 2007) and, more recently, among groups of teachers within this same context. 
It is this later phenomenon that I report on in this paper.  

THEORETICAL BACKGROUND 
Green (1971) classifies beliefs according to three dichotomies. He distinguishes 
between beliefs that are primary and derived. "Primary beliefs are so basic to a 
person's way of operating that she cannot give a reason for holding those beliefs: they 
are essentially self-evident to that person" (Mewborn, 2000). Derived beliefs, on the 
other hand, are identifiably related to other beliefs. Green (1971) also partitions 
beliefs according to the psychological conviction with which an individual adheres to 
them. Core beliefs are passionately held and are central to a person's personality, 
while less strongly held beliefs are referred to as peripheral. Finally, Green 
distinguishes between those beliefs held on the basis of evidence and those held non-
evidentially. Evidence-based beliefs can change upon presentation of new evidence. 

                                           
3 It should be noted that the main distinction between a methodology of noticing and a methodology of practitioner 
inquiry is that noticing doesn't presuppose a research question. It is a methodology of attending to the unfolding of the 
situation while being attuned to the occurrence of phenomena of interest. 
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Non-evidentiary beliefs are much harder to change being grounded neither in 
evidence nor logic. Instead they reside at a deeper and tacit level.  
A person's belief system can, subsequently, be seen as a collection of beliefs 
competing for dominance in different contexts. Metaphorically, it is like a scene that 
is photographed from different perspective, with each perspective allowing something 
else to be foregrounded. Changes to learners' belief systems can then be seen as 
changes in perspectives4. Green argues that changing learners’ belief systems is the 
main purpose of teaching. I argue that changing teachers' beliefs is the main purpose 
of inservice education.  

METHODOLOGY 
The data for the results presented here comes from three different, but similar, 
contexts in which I worked with groups of teachers in different schools and school 
districts. The first context (c1) involved a group of grade 5-8 mathematics teachers 
(n=10) working to design a task that could be used as district wide assessment of 
grade 8 numeracy skills in a school district in western Canada. This inservice project 
was comprised of 6 sessions (3 hours long, 3 weeks apart) during which we were to 
co-construct a working definition of numeracy (later adopted as the district 
definition) and design and pilot test a number of tasks that would reflect the qualities 
of our definition. The second context (c2) involved a group of grade 8 mathematics 
teachers (n=6) from a different district engaged in a very similar project. This time 
we were attempting to design a task that could measure the numeracy skills of their 
own students only. This project was comprised of 3 full day meetings 6 weeks apart. 
The third context (c3) involved all the mathematics teachers (n=18) in a middle 
school (grades 6-8). In this context we were working to design an assessment rubric 
that could capture some of the mathematical processes necessary for effective 
mathematical thinking. This involved a series of 12 one hour meeting held every two 
or three weeks.  
As already mentioned, my method of operating within these inservice environments 
is through noticing. What this means from a more methodological perspective is that 
there is a great reliance on field notes taken both during the inservice sessions and 
more prolifically immediately after the inservice sessions. These field notes serve as a 
record of the things that I have noticed during individual sessions. Of course, they are 
limited in that they are only a record of that which has been attended to. However, 
these notes (or noticings) then form the basis of what is attended to in future sessions 
thereby creating an iterative process of refinement of attention. As this process 
continues phenomena that are deemed to be interesting receive more and more 
attention. This may simply mean a heightened awareness or anticipation of certain 
occurrences. Other times this means an adjustment in the facilitation practices in 
                                           
4 This is not to say that changes in beliefs cannot also be seen as changes in beliefs, but for the purposes of this paper I 
stay with the metaphor of changing perspective. 
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order to more aggressively pursue the phenomenon. And sometimes it may mean 
stepping outside my role as a facilitator to investigate the phenomenon more directly 
as a researcher through methods such as interviews or questionnaires.  
As such, the data for this study comes from a number of different sources. First and 
foremost, are the field notes from each of the aforementioned contexts. These notes 
increased in detail with each occurrence of the phenomenon. From c2 and c3 there are 
also transcriptions from interviews with different participants conducted at opportune 
times during or after certain sessions. These interviews were aimed at uncovering the 
participants own thoughts about the changes I was observing. The questions were of a 
semi-structured nature meant to preserve the conversational atmosphere that I had 
established with all of the participants while at the same time helping to illuminate 
the phenomenon itself.  

THE PHENOMENON 
The exo/endo-spection phenomenon, as I have come to call it, is comprised of a series 
of either three or four distinct phases, always in the same sequence, each having its 
own associated name. The names are an amalgamation – the prefix exo- and endo- 
comes from Greek meaning outer, outside, external and inner, inside, internal 
respectively; while -spection comes from the Latin specere which means 'to look at'.  

Phase 1: exo-spection (x) 
The teachers work on an activity which, at the time, occupies their focus. This 
could be a problem solving exercise or the designing of a lesson, task, or 
assessment rubric. Whether or not the activity is relevant to their own teaching 
practice is immaterial as the teachers' focus is on the completion of the task, 
rather than on the potential for the task to inform their own practice. That is, 
the teachers are looking at the activity as lying outside of themselves.  
Phase 2: eXo-spection (X) 
The teachers realize that the problem they have solved, or the lesson or task 
they have built, is not commensurate with their own classroom context. They 
see this as a large scale problem bemoaning the poor state of affairs of all 
students and the educational system in general. They look at the source of the 
problem as lying far outside of themselves – societal expectations, the 
curriculum, the evils of external examinations, deterioration of standards, etc. – 
and speak of systemic reform as the only solution. As such, they are not only 
pushing the problem further outside of themselves, but also broadening its 
scope. 
Phase 3: eNdo-spection (N) 
Suddenly there is a change in the teachers' disposition – the problem, 
regardless of where it lies, must be solved within their own practice in the 
scope of the classroom. Now the conversations are about what they can do 
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within their teaching in order to enable their students to be successful in 
solving a specific problem, completing a specified task, or performing well on 
a given assessment. The teachers' are no longer pushing the problem, and any 
subsequent solutions, away from themselves, but are rather bringing it back to 
their locus of control. 
Phase 4: endo-spection (n)     
For some teachers there is a final shift of attention to the plight of individual 
students. The conversations shift from the classroom to a particular student or 
subset of students, and with it comes a narrowing of focus on their influence as 
teachers. This final shift is also marked by a subtle shift in discourse from 
teaching to learning.   

It should be noted that I have deliberately avoided using the term introspection which 
means to examine one's own thoughts and feelings. This is not what I am trying to 
capture here. Endo-spection is not about looking inside oneself, but about looking at 
something as lying inside of oneself or one's locus of control. Conversely, exo-
spection is about looking at something as lying outside of oneself or one's locus of 
control.  
In c1, x occurred in the first two sessions, X during the third session, N during the 
fourth session, and for two participants, n occurred in the last two sessions. In c2, x 
and X occurred in the first session, N in the second, and for one participant there was 
evidence of n in the third session. Finally, in c3, x occurred in the first 3 sessions, X 
in the fourth and fifth session, N in the sixth session, and for some of the participants, 
n occurred at various times during the last four sessions. 
In general, the adoption of an exo-spection stance was uniformly a group position. 
That is, without prompting, every member of the group adopts an exo-spection stance 
and the group as a whole adopts an exo-spection stance. The discourse of the group 
did not deviate from this stance and there was a general sense that there was no need 
to do so – until there was a sudden transition to the eXo-spection stance. This 
transition, as well as the transition to eNdo-spection, was initiated by one or two 
members of the group, but then uniformly taken up by the group as a whole. It is 
almost as though the initiators were merely articulating what was already in the 
minds of the other members of the group, or the initiators merely precipitated an 
inevitable position. Conversely, the shift to an endo-spection stance, although 
articulated within the group context, was not taken up in the same way.  

ANALYSIS 
Because, for this paper, I am most concerned with changes in beliefs I will constrain 
my analysis to those points of greatest change – that is, the transitions between phases 
(x → X, X → N, and N → n). Further, I will look at these changes through a lens of 
changing perspectives.  
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exo-spection to eXo-spection (x → X) 
As already mentioned in the description of the exo-spection (x) phase, the teachers 
are initially contentedly working at completing the task at hand. In c1 and c2 this 
involved designing a numeracy task that conforms to a taken-as-shared definition of 
numeracy. In this case the teachers made extensive references to the published 
curriculum learning outcomes, the rationale that forms the underpinnings of the 
curriculum, as well as some ministry documents pertaining to the positioning of 
numeracy vis-a-vis the curriculum. In c3 the tasks that occupied the teachers in the 
first few sessions were increasingly challenging5 problem solving activities. Here the 
teachers were caught up in the excitement of doing mathematics that does not 
explicitly rely on mastery of specific learning outcomes. This can be seen in Barry's 
comments during one of the early sessions. 

I love these problems. I mean, it's been a long time since I worked on problems myself, 
and I really like it. That card trick problem had me scratching my head all weekend. 
(Barry, c3, session II, field notes) 

In either case, the teachers were focused on their own completion of these tasks, 
without much consideration for how they applied to their own practice.  
The transition to X occurred in all three contexts when there was a sudden awakening 
to the fact that what the teachers were working on was not commensurate to their own 
classrooms contexts. This is nicely captured in the sudden change of tone in Barry's 
comments.  

These problems are all fine and good. I mean, I enjoy doing them, but I don't have time 
for this with my kids. I have WAY too much stuff to get through to play around with 
these kinds of problems. Besides, my kids don't have enough patience for this kind of 
work. (Barry, c3, session V, interview transcripts) 

It is also seen in the comments of Heidi and Charlotte working in c1. 
I think we're getting it. The task is really starting to look like a numeracy task rather than 
just a word problem. It's not easy fitting all this stuff about communication, ambiguity, 
and multiple solutions into a task. But we're getting there. (Heidi, c1, session II, field 
notes) 

I think these tasks are great, we've done a good job, but parents [of my students] are 
never going to go for this. The first time I send something like this home the phone will 
be ringing off the hook. We constantly have to work on drills to get the kids ready for the 
FSA's [Foundational Skills Assessment – an external high stakes exam, the results of 
which fold back onto the teacher]. And if we're not we're hearing about it from the 
parents and not because of the FSA's. They don't care about that, but these parents, a lot 

                                           
5 This does not mean an increase in the mathematical complexity of the tasks. What is increasing is the demands on 
particular problem solving skills required (ability to organize work, communicate thinking, group work, deal with 
ambiguity, etc.).  
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of them are from Asia, and to them drills are important. (Charlotte, c1, session III, field 
notes) 

The beliefs that these teachers are expressing (drills are important, learning outcome 
is curriculum, what parents want is important, kids are not capable) are not beliefs 
that have suddenly manifested themselves in latter sessions of the project. These are 
deep-seated beliefs (primary, core, evidential, tacit, or otherwise) that have been in 
the background during the teachers' initial encounters with their respective tasks. 
Working alone, or in a group, on something away from the multifaceted demands and 
expectations of their job less dominant beliefs (mathematics can be fun, numeracy is 
important, etc.) were able to come to the fore and inform their work in the initial 
sessions. But as the reality of their job rushed in on them the more dominant beliefs 
once again moved to the forefront, eventually paralysing their ability to see their 
initial work as being relevant to their own practice. However, there is still a wish that 
relevance could be found, but it is overwhelmed by the deep-seated belief that the 
problem is systemic AND can only be solved systemically. This can be seen in 
Adam's remarks. 

Look, I agree that this is all very important. But there is just no way that we can make 
this work. There just isn't enough time, the kids aren't strong enough, we don't have 
administrative support, and, at the end of the day, the Ministry of Education just doesn't 
care. If they did, this is the kind of stuff we would see on the provincial exams. Until we 
can get them to change everything from the top down it just isn't going to work. I wish it 
were different, but it isn't. (Adam, c2, session I, interview transcripts) 

eXo-spection to eNdo-spection (X → N) 
Initially, this transition is what drew my attention to the xXNn phenomenon. After 
commiserating about the negativity and hopelessness experienced in prior session of 
c1 there was a sudden rebirth of professional growth. This can be seen in Charlotte's 
comments in the fourth session of c1. 

We have to keep pushing on in the direction we are going. If we don't design a task that 
shows what the kids can't do we're not ever going to be able to make any changes. We 
won't have anywhere to start. (Charlotte, c1, session IV, field notes) 

Adam expressed a similar sentiment in the second session of c2.  
In my opinion, these tasks aren't telling me enough. I'd like a task that really showed that 
these kids don't have a clue how to work together, for example. (Adam, c2, session II, 
field notes) 

He adds details to these comments in a post-session interview.  
I started to think about what we were doing here, with this whole project, and what it is 
we are trying to accomplish. I then started to think about how little I took away from my 
own math learning and what it is that is really important. We have an opportunity here to 
develop some really useful skills, stuff that these kids can use in grade 9, in grade 10, in 

WORKING GROUP 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 50



  
university, in life. They need to learn how to work together, how to deal with problems, 
how to tough it out, and stuff like that. But in order to do that we need to first show them 
that we are serious about this stuff. We can't just talk about it, we have to do it, and we 
have to mark them on it, and we have to start somewhere. (Adam, c2, session II, 
interview transcripts) 

Tracey, also from c2, has a slightly different perspective.  
They loved it. They asked me yesterday when we are going to do another numeracy task. 
I couldn't believe it. But you know what, they don't have a clue how to work together. So, 
now I'm working on that in my classroom. (Tracey, c2, session II, field notes) 

As did Mary, who brought in samples of students' work.  
As you can see there isn't much here – especially the boys. Like, you have to have a 
secret decoder ring to figure out what they are doing here. BUT, you know what, they did 
it. They worked on it and they got answers. Now we have to go forward with it. (Mary, 
c3, session VI, field notes) 

The belief that assessments can be used formatively to inform both the teacher and 
the students is, again, not new. It has now moved into the forefront, however, buoyed 
by the realization of what it is that it is important, what the students can (or cannot) 
do, and what it is that the students enjoy doing. Whereas the transition from x to X 
can be seen as a regression to the norm (a return to a lower energy level, if you will) 
that is achieved almost subconsciously, the transition to N is almost wilful in nature. 
This re-prioritizing of beliefs is taxing and will require much effort and energy to 
sustain. It requires effort and motivation, and that motivation is found both in the 
successes of the students and the recapitulation of what is important. Or it can be 
found in the realization that what has come before isn't working, as is articulated by 
Phil.  

I'm not sure if this is going to work. But I know for sure that what I've been doing before 
isn’t working and I can continue to blame the system for all its faults or I can decide to 
do something about it. All I know is that I'm tired of both teaching my students AND 
learning for my students. Something has to change. (Phil, c3, session VI, interview 
transcripts) 

eNdo-spection to endo-spection (N → n) 
As already mentioned, only some of the teachers moved to the final phase of the 
xXNn phenomenon. Those who did, however, did so for seemingly the same reason – 
they were focusing on the learning of particular students or subsets of students. This 
was seen in their discourse about particular cases. Whereas some teachers spoke 
about cases as being exemplifications of the norm or the outliers within their 
classroom, these teachers spoke about the individual cases as standing for themselves. 
This can be seen in both Tracey's and Mary's comments. 
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So, I still have this one girl who is just toxic to anyone I put her with. No matter what I 
do she just will not work cooperatively. I've talked to the councillor and we think it has to 
do with self-esteem issues. So, I'm starting to think that this is where I should be putting 
my focus when it comes to her. (Tracey, c2, session 3, field notes) 

In general, the students are doing much better. My work using graphic organizers has 
really helped. But, I still have a set of boys who just can't figure out which graphic 
organizer to use, or even that they have to use one. I'm not sure what to do about it, 
probably just keep working on it. But for now I'm still telling them which ones to use so 
that they can get through the task. (Mary, c3, session 11, interview transcript)  

The belief that students are individuals and, thus, require differentiated instruction is 
likely not a new belief. However, with the use of formative assessment as an 
information gathering tool the teachers were giving this belief more and more 
prevalence.  

CONCLUSION 
Beliefs are stable patterns of thought, conscious or otherwise (Green, 1971). It is, 
therefore, unlikely that the teachers in this study changed their beliefs as drastically as 
the data may indicate. An alternative explanation is that the profound changes in 
beliefs are not a change at all, but rather a reprioritization of already existing beliefs - 
an affording of prevalence to less dominant beliefs. Such an explanation allows for 
both the robustness of beliefs and the possibility of profound change. This idea of 
reprioritization, or perspective, also allows for a more useful application of Green's 
organization of beliefs along three dimensions. A person's beliefs are hidden from us. 
Indeed, they may even be hidden from the person themselves. As such, knowing that 
beliefs may be central or peripheral, core or derived, evidential or tacit does us no 
good. Instead, recognizing that in different contexts different beliefs will be 
foregrounded, wilfully or otherwise, will allow us to think more holistically about 
belief systems as dynamic and contextual. 
The xXNn phenomenon is such a context. Using a methodology of noticing and a 
framework of perspective I have described and analysed this phenomenon and 
concluded that the profound changes that are occurring within this context might just 
be due to a reprioritization of already existing beliefs. Further research into the 
phenomenon is necessary. There is great potential in analysing it using frameworks of 
psychology, group dynamics, as well as Gestalt. But it is early days, and this research 
is still in its exploratory phase. Now that the phenomenon has been identified, 
articulated, and even anticipated6, however, more detailed data can be gathered and 
more thorough analyses can be performed.  

                                           
6 In fact, since gathering the data for the work presented here I have already identified the phenomenon, or subsets of it, 
within a master's course, a single session of a lesson study cycle, and a 90 minute workshop.  
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“MATHS AND ME”:  

SOFTWARE ANALYSIS OF NARRATIVE DATA ABOUT 

ATTITUDE TOWARDS MATH 

P. Di Martino  

Dept. of Mathematics – University of Pisa - Italy 

Some years ago we undertook a research study aimed to obtain a ‘grounded’ 

characterization of attitude toward maths through the use of a narrative tool: we 

assigned to a large sample of Italian students the essay “Maths and me”, collecting 

more than 1600 texts. In this contribution we present some preliminary results, 

obtained using a piece of software for text analysis, regarding the way students of 

different grades describe their relationship with mathematics. In particular, we 

discuss the results from a comparative analysis between students of different school 

levels in order to find analogies and differences in the description of their own 

relationship with maths.   

INTRODUCTION 

Many research studies carried out in the last two decades in mathematics education 

highlight the relevance of affective factors to analyze and interpret students’ maths-

related difficulties, and a specific field of research developed in recent years (for an 

overview see Zan R., Brown L., Evans J., Hannula M. 2006).  

Among the affective factors, attitude toward mathematics is one of the most quoted 

constructs (by researchers in the field, teachers and educational institutions), but this 

“object” does not seem to have a well-defined and shared meaning. Among studies 

that explicitly give a definition, we can recognize three main different 

characterizations of attitude towards mathematics: 

a) a “simple” definition, that describes attitude as the positive or negative degree of 

affect associated with mathematics (Haladyna, Shaughnessy J. & Shaughnessy M., 

1983; McLeod, 1992); 

b) a “tridimensional” definition, that recognizes three components in attitude: the 

degree of affect associated with mathematics, the beliefs regarding mathematics and 

the behaviour related to mathematics (Hart, 1989); 

c) a “bidimensional” definition, that includes only emotions and beliefs and does not 

consider behaviour  (Daskalogianni & Simpson, 2000). 

Some critical issues are linked to the choice of a definition for attitude (Di Martino & 

Zan, 2001), in particular: the consistency between the chosen definition of attitude 

and the instruments to observe/measure it, the definition of positive/negative attitude 

in the case of multidimensional characterizations. To characterize students’ attitude 

toward mathematics from the bottom, we carried out a narrative study investigating 

which dimensions students use to describe their relationship with mathematics. After 
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the characterization with the same data we could compare attitude of students 

belonging in different school levels.    

In the field of mathematics education, narratives are more and more often used, 

especially in research about teachers’ beliefs and teachers’ practice (f.e. Da Ponte, 

2001). Outside the field of teacher education, less numerous studies about affect 

make use of narratives: some have adults as their object (Karsenty & Vinner, 2000), 

others used narrative to report their own research (Hannula, 2003), others have 

students as their object (Ruffell et al.,1998). In this last case the studies are often 

carried out to criticize traditional instruments used to observe attitude rather than to 

carachterize from the bottom the construct itself.  

We used students’ narratives (autobiographic essay), confident that in this way 

students could have the possibility to talk about the aspects they considered relevant 

in their own experience with mathematics. The chosen instrument is consistent with 

an interpretive approach and allows many typologies of data analysis.  

From a qualitative analysis of students’ description of their relationship with 

mathematics (Di Martino & Zan, submitted), a multidimensional model for attitude 

toward mathematics emerges, characterized by three strictly interconnected 

dimensions: the emotional disposition toward mathematics, the view of mathematics, 

the perceived competence in mathematics. That suggests the need to overcome the 

dichotomy between positive/negative attitude, and move to the identification of 

different profiles of negative attitude.  

In this contribution, we present a quantitative analysis of the same data carried out 

with the help of T-Lab [1], a powerful software for text analysis, giving some 

preliminary interpretations of these results: in particular comparing the attitude of 

students from different educational levels.    

METHODOLOGY 

We proposed the essay “Me and mathematics: my relationship with maths up to now” 

to students from different school levels. For the administration of the essays we gave 

the following guidelines: essays had to be anonymous, assigned and collected in the 

class not by the mathematics teacher. At the end, we collected 1662 essays [2] 

ranging from grade 1 to grade 13: 874 from 51 classes of 14 primary schools (grade 

1-5); 368 from  24 classes of 8 middle schools (grade 6-8); 420 from 29 classes of 10 

high schools (grade 9- 13).  

In order to perform the statistical analysis with T-Lab we typed all data in a unique 

Corpus, respecting some specific guidelines, and we classified all essays with three 

control variables: identification number, grade and school level.  

After this phase of data coding, we started to set the customized settings: selection of 

the lexical units to be included in the analysis, management of the lemmatization’s 

phase, that is the reduction of the Corpus to their respective headwords called lemmas 

(for example general rules of lemmatization are: verbs’ forms are taken back to the 
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infinite tense, nouns to the singular form, and so on).   

RESULTS AND DISCUSSION 

Our attention will be focused on two typologies of analysis: co-occurrence and 

comparative analysis. The first one is finalized to find lexical units that more 

frequently are in co-occurrence [3] with some specific lemma, the latter is finalized to 

identify differences between texts from different subsets of the Corpus identified  by 

some variables (in our case we selected the variable school level). 

Co-occurrence analysis  

Starting from the choice of the key-term ‘maths’, the software calculates, in the 

whole Corpus, the lemmas with more co-occurrence with it through the association 

index of cosine [4]. This is a way to have a preliminary idea about the lexical units 

that students, in their autobiographical essays, more frequently associated with maths. 

Graph 1 is one of the outputs of the analysis: the nearness of each lemma to the  

central lemma ‘maths’ is proportional to its degree of association.  

Graph 1: Lemmas associated with maths 

 

This representation strikingly shows that the emotional disposition (concisely 

expressed by “I like/do not like maths”) is very often in co-occurrence with maths: 

this is an indication that students tend to express their emotional disposition toward 

mathematics when they tell their relationship with mathematics itself. Moreover, the 

nearness of ‘teacher’ can be interpreted in light of the fact that students recognize the 

teacher as a protagonist of their story with maths. For what concerns ‘I’, it is obvious 

that, in an autobiographical essay regarding the writer’s relationship with maths, the 
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lemmas I and maths are in co-occurrence.  

Another analysis enables us to find the lemmas that are more correlated to both 

terms: I and maths. In graph 2 the co-occurrence with the two terms is shown in 

decreasing order with respect to the chi square test [5]. 

Graph 2: co-occurrences with I and maths  

 

The relevance of the teacher in students’ building of their own relationship with 

maths seems to be confirmed. But other two dimensions emerge heavily: an affective 

one (linked to lemmas as to_like, to_adore, to_cry and also friend) and one correlated 

with the idea of success in maths (associated to lemmas as to_understand, clever, 

gifted).   

Comparative analysis 

As we said earlier, with this typology of analysis we try to underline the differences 

between the three groups of students, as identified by the variable ‘school level’.  

The first analysis regards the specificities of each group: T-Lab compares the subset 

A of the Corpus with the rest of the Corpus, individualizing which lexical units are 

typical (by the Chi-square test) or exclusive of the subset A. In table 1, for each group 

(Primary, Middle, High) the ten lemmas with the biggest chi-square value are 

reported.  

Table 1: Specificities of three school levels    

Primary school Middle school High School 
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WORD CHI  SUB TOT WORD CHI  SUB TOT WORD CHI  SUB TOT 

to_like 459,7 1560 2488 expression     63,7 114 282 to_succeed   254,5 645 1078 

operation 222,2 397 539 rule                38,3 50 111 school          185,8 399 638 

to_learn 166,0 535 837 to_study         31,2 211 714 to_study       87,9 382 714 

nice 149,8 302 423 algebra           27,2 48 118 exam            72,2 66 80 

amusing 141,9 284 397 complex         25,9 39 91 time              69,1 156 252 

examination 135,4 179 222 arithmetic      21,6 56 154 task              65,9 201 349 

number 111,3 410 658 complicated   20,1 56 157 method         60,3 64 82 

geometry 89,0 376 619 Easy               17,9 119 401 teacher         52,8 955 2168 

calculation 67,6 250 401 important       17,3 84 267 to_apply       52,2 56 72 

error 63,5 151 220 maths             14,0 1288 5603 insufficient  49,9 49 61 

Sub = number of word’s occurrences in subset, Tot = number of word’s occurrences in 

Corpus   

One interesting remark is about the strong characterization of the two extreme groups 

(Primary and High), testified by very high chi-square values. Moreover, looking at 

the first lemmas for each group, we can observe a shift from a mastery-oriented view 

(to_learn) of the relationship to a performance-oriented view (to_succeed, exam) and 

it is also interesting that the two first lemmas of the Middle group are related to an 

instrumental view of mathematics. According to our qualitative findings (Di Martino 

& Zan, submitted), this instrumental view is often combined with negative emotions 

towards mathematics and low perceived competence. This can be a possible 

explanation of the fact that in Italy the relationship with mathematics often becomes 

problematic just at middle school level. A factorial analysis allows us to characterize 

more precisely the specificity of the three groups: we can visualize their position in 

the factorial plane. 

Graph 3: variables’ position in factorial plane 

 

So we can observe that Primary and High groups are opposite poles in the X axis, 

while Middle group is characterized by its negative Y-component. In graph 4 all 
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lemmas that define the factorial plane are reported: this allows us to interpret the 

meaning of the distance between the three groups: 

Graph 4: lemmas in factorial plane 

 

This analysis confirms the interpretations following the analysis of specificities. In 

particular, the Primary group seems to be characterized by descriptive – illustrative 

lemmas regarding mathematics (geometry, number, calculation, measure, problem) 

and by an often positive judgement of one’s mathematical experience (wonderful, 

nice). The Middle group, strongly positioned at the negative pole of the Y-axis with 

respect to the other two groups, has many lemmas referring to an instrumental view 

of mathematics (procedure, memory, rule). Moreover, this group is in the 0 of the X-

axis that is also characterized by emotional responses. Finally, the High group is 

characterized by very strong emotions (to_love, to_hate) and also by a particular 

attention to succeed (to_succeed). To summarize these results, it seems that at the 

beginning of the school experience with mathematics, curiosity prevails over other 

aspects and novelty is often appreciated. Besides, there is little stress related to 

assessment. After the move to the middle school level, students’ attention seems to 

shift toward some procedural aspects of mathematics, so an instrumental view of 

mathematics emerges. This view rarely arouses a strong passion (negative or 

positive). In High school we find opposite lemmas for what concerns emotions (love, 

hate) but also perception of success; perhaps, this means that the relationship toward 

mathematics of these students becomes more radical than the relationship reported by 
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their youngest colleagues. These interpretations are also reinforced by the cluster 

analysis that we performed with a partitioning method. We fixed to 5 the cluster 

numbers because with a smaller one we hadn’t a clear distinction between groups 

identified by variables. We briefly report a table with the lemmas characterizing each 

cluster and the relationship between clusters and variables.       

Graph 5: clusters and variables 

 

Graph 6: Percentage groups subdivision in clusters   

 

The percentages of cluster 1 are very small but it is present for any subdivision in 

clusters more than two. From an evolutionary point of view, we can observe that 

cluster 2 becomes less representative passing from 35% at Primary level to 11% at 

High level and cluster 5 is more or less stable from Primary to Middle level but 

becomes less representative at High level. While clusters 3 and 4 increase the number 

of their representatives. So it is very interesting to give a look to lemmas that 

characterize these four clusters in the following table (lemmas are in decreasing order 
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of relevance): 

Table 2: description of clusters 2, 3, 4 and 5 

Cluster 2 

to_like, to_learn, number, geometry, operation, nice, calculation, amusing, error, examination, 

multiplication_table, to_write, to_make_a_mistake, fear, figure, logic, to_calculate, measure, 

drawing, correct, to_discover, wonderful, get_angry, question, to_play, to_draw, ability, 

exercise_book, brain, to_read, happy, to_worry, to_measure, anxiety, to_reproach, tidy, heart, 

to_sweat_blood, to_cry, gaiety, punishment, to_bore, mysterious, angry, test              

 

Cluster 3 

to_study, school, to_explain, mark, task, engagement, time, to_hate, to_hope, to_improve, 

to_carry_out, algebra, to_comprehend, rule, explanation, complex, oral_test, course_book, luck, 

best, future, to_love, worsening, resolution, cause, gifted, sincere, memory, reasoning, patience, 

to_overcome, positive, passion, to_forget, fundamental, serious, set_theory, possible, negative, 

genius, unpleasant, to_attract, to_fascinate, to_repeat_year, competition, to_give_up, theory, able, 

procedure, nightmare, frightened, torment, unlucky, serene, unbearable, tension, surprise, 

to_persecute, suffering             

 

Cluster 4 

teacher, to_understand, to_succeed, to_find, to_think, difficulty, interesting, to_know, to_believe, 

to_talk, formula, to_try, attention, will, ugly, to_memorize, immediately, friend, truth, effort, 

blackboard, sure, alone, strange, to_appreciate, idea, quiet, pleasant, clear, to_reflect, confuse, 

to_upset, experience, impossible, to_imagine, sense, thought, reality, stupid, to_resign, terrible, 

dream, terror, to_make_curious, hateful, slow, pride, success, disgusting, sadness, horrible, shame  

 

Cluster 5 

maths, I, problem, difficult, clever, to_teach, easy, boring, exercise, to_be_useful, certainty, 

expression, important, to_solve, simple, liking, arithmetic, useful, complicated, to_reason, game, 

quickly, severe, exciting, happiness, school_report, mathematician, to_implement, fascinating, 

tiring, to_support, challenging, to_listen, intelligence, shout, dubious, to_confuse, tremble               

 

Cluster 2 is centred on the description of the objects of mathematics as well as on 

related activities (to_learn, number, geometry, operation, calculation, 

multiplication_table, to_write, figure, logic, to_calculate, measure, drawing, 

to_discover, to_play, to_draw, exercise_book, to_read, to_measure). Cluster 3 

centres on theories of success (to_study, engagement, time, to_comprehend, rule, 

cause, gifted, memory, reasoning, patience,...) like cluster 4 (to_understand, 

to_succeed, to_find, to_think, to_know, to_believe, formula, to_try, attention, will, 
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effort,...), but whereas cluster 3 seems to be projected ahead (to_hope, to_improve, 

future, to_overcome), cluster 4 seems to be more static and centred on a definitive 

evaluation of what happened (impossible, to_resign,...), cluster 5 seems to be the 

cluster of balance between difficulties (difficult, simple, complicated,…) and 

usefulness (to_be_useful, important,…). Finally, all four clusters have some 

emotional components: surely clusters 3 and 4 are characterized by lemmas that 

evoke stronger emotions (to_hate, to_love, nightmare, frightened, torment, tension, 

to_persecute, suffering for cluster 3 and terrible, terror, disgusting, hateful, pride, 

horrible, shame) than cluster 2, which seems to be the one with the highest number of 

lemmas linked to positive emotions, and cluster 5. 

CONCLUSIONS   

An important aspect of the described research study is the combination of 

quantitative analysis with an interpretive approach. All the results we got led us to 

interpretive hypotheses, that become stronger if compared to, and interconnected 

with, the qualitative analysis performed on the same material (and partially described 

in Di Martino & Zan, submitted). We point out that if on the one hand, the obtained 

results offer extremely interesting stimuli, on the other hand they cannot provide 

certainties, due to the type of material we analyzed (open texts). In this case, we 

really ought to be cautious: the analysis of open texts based on lexical units only, 

without an analysis of the contexts within which these lexical units are used, might be 

problematic. To exemplify, the lemma to_like is not always referred to mathematics; 

the word problem might stand for a mathematical problem but also for a real life 

problem. Therefore, it was really important to compare results of this analysis with 

those of the qualitative one (described in Di Martino & Zan, ibidem): in particular, 

the results about the three dimensions characterizing attitude towards mathematics 

are confirmed. 

The ‘evolutionary’ results that emerge from cluster analysis seem to be particularly 

interesting. A general deterioration of students’ relationship with mathematics can be 

clearly detected but, most of all, as the school level increases, the lemmas used to 

describe one’s relationship with mathematics suggest that the latter becomes more 

and more radical. Moreover, there seems to be a move from a phase of interest in the 

novelty of mathematics -the pleasure of discovery- to a phase in which succeeding 

prevails over the subject matter itself. One final remark: the fact that in this phase 

emotional aspects become more radical provides material for further reflection. 

NOTES 

1. The bibliography related to T-lab is available on-line: http://www.tlab.it/en/presentazione.asp 

2. The collected essays constitute a convenient sample, obtained through a collaboration with teachers and heads of 

schools who accepted our requests. The schools are situated in six different area of Italy: from North to South. 

3. Co-occurrence is when two or more lemmas are present together in the same text.   
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4. To calculate the cosine index between lemma X and lemma Y we have to consider a = # of essays with lemma X and 

Y, b = # of essays with lemma X and without lemma Y, c = # of essays with lemma Y and without lemma X. Cosine 

(lemma X, lemma Y) = a / square root of (a + b) x (a + c). 

5. The Chi-square test is a well-known test used to check if the frequency values obtained by a survey are significantly 

different from the theoretical ones. T-Lab applies this test to 2x2 tables then the threshold values is 3.84 (df=1, p=0.05) 

or 6.64 (df=1, p=0.01).    
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STUDENTS’ BELIEFS ABOUT THE USE OF REPRSENTATIONS IN 
THE LEARNING OF FRACTIONS  

 Athanasios Gagatsis**, Areti Panaoura*, Eleni Deliyianni**and Iliada Elia** 
* Frederick University, ** University of Cyprus 

 
Cognitive development of any mathematical concept is related with affective 
development. The present study investigates students’ beliefs about the use of different 
types of representations in understanding the concept of fractions and their self-efficacy 
beliefs about their ability to transfer information between different types of 
representations. The interest is concentrated on differences among students at primary 
and secondary education. Results indicated that students at secondary education have 
less positive beliefs for the use of representations at the learning of mathematics than at 
primary education. As a consequence they have less positive self-efficacy beliefs about 
their abilities to use them. Unexpected was their lower performance at solving tasks on 
fractions for which the information is represented in different forms.  
 
Keywords: representations, beliefs, self-efficacy, fractions 
 
Mathematics is a specialized language with its own contexts, metaphors, symbol 
systems and purposes (Pimm, 1995). From an epistemological point of view there is a 
basic difference between mathematics and other domains of scientific knowledge as the 
only way to access mathematical objects and deal with them is by using signs and 
semiotic representations (Duval, 2006). Cognitive development is related with 
metacognitive and affective development. One’s behavior and choices, when confronted 
with a task, are determined by her/his beliefs and personal theories, rather than her/his 
knowledge of the specifics of the task. Thus, students’ academic performance somehow 
depends on what they have come to believe about their capability, rather than on what 
they can actually accomplish. 
The relationship between cognition and affect has the last decades attracted increased 
interest on the part of mathematics educators, particularly in the search for causal 
relationship between affect and achievement in mathematics (Young, 1997). This is due 
to the fact that the mathematical activity is marked out by a strong interaction between 
cognitive and emotional aspect. The affective domain is a complex structural system 
consisting of four main dimensions or components: emotions, attitudes, values and 
beliefs (Goldin, 2001). At the present study we focus on students’ beliefs and mainly 
their self-efficacy beliefs in using different types of representations in mathematics 
learning and understanding. We concentrated our attention on the notion of fractions. 
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Fractions are among the most essential (Harrison & Greer, 1993), but complex 
mathematical concepts that children meet in school mathematics (Charalambous & 
Pitta-Pantazi, 2007). An important factor that may contribute to students’ difficulties in 
learning fractions is the transition from primary in secondary school with all the changes 
that this encompasses in mathematical teaching and learning. 
 

THEORETICAL BACKGROUND 
Self-efficacy beliefs 
Beliefs is a multifaceted construct, which can be described as one’s subjective 
“understandings, premises, or propositions about the world” (Philipp, 2007, p. 259). 
According to Pehkonen and Pietila (2003) there are several difficulties in defining 
concepts related to beliefs. Some researchers consider beliefs to be part of knowledge 
(e.g. Pajares, 1992), some think beliefs are part of attitudes (e.g. Grigutsch, 1998), and 
some consider they are part of conceptions (e.g. Thompson, 1992).  
The construct of self-efficacy beliefs constitutes a key component in Bandura’s social 
cognitive theory; it signifies a person’s perceived ability or capability to successfully 
perform a given task or behavior. Bandura (1997) defines self-efficacy as one’s 
perceived ability to plan and execute tasks to achieve specific goals. He characterized 
self-efficacy as being both a product of students’ interactions with the world and an 
influence on the nature and quality of those interactions. Self-efficacy beliefs have 
received increasing attention in educational research, primarily in studies for academic 
motivation and self-regulation (Pintrich & Schunk, 1995). It was found that self-efficacy 
is a major determinant of the choices that individuals make, the effort they expend, the 
perseverance they exert in the face of difficulties, and the thought patterns and 
emotional reactions they experience (Bandura, 1986). Furthermore, self-efficacy beliefs 
play an essential role in achievement motivation, interact with self-regulated learning 
processes, and mediate academic achievement (Pintrich, 1999). 
Multiple representations in mathematics teaching and learning 
The representational systems are fundamental for conceptual learning and determine, to 
a significant extent, what is learnt (Cheng, 2000).  Learning involves information that is 
represented in different forms such as text, diagrams, practical demonstrations, abstract 
mathematical models, simulations etc (Schuyter & Dekeyser, 2007). Recognizing the 
same concept in multiple systems of representations, the ability to manipulate the 
concept within these representations as well as the ability to convert flexibly the concept 
from one system of representation to another are necessary for the acquisition of the 
concept (Lesh, Post, & Behr, 1987) and allow students to see rich relationships (Even, 
1998). Recently the different types of external representations in teaching and learning 
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mathematics seem to become widely acknowledge by the mathematics education 
community (NCTM, 2000). The necessity of using a variety of representations or 
models in supporting and assessing students’ constructions of fractions is stressed by a 
number of studies (Lamon, 2001). The geometric shapes used for introducing the 
continuous model of fractions are distinguished into two types: the circular model which 
is based on the use of circles and the linear model which is based on a rectangle divided 
into a number of equal part (Boulet, 1998). 
An issue that has received major attention from the education community over the last 
years refers to the students’ difficulties when moving from elementary to secondary 
school and to the discontinuities in the curriculum requirements, the use of teaching 
approaches, aids and methods. According to Schumacher (1998) the transition to 
secondary school is accompanied by intellectual, moral, social, emotional and physical 
changes. Pajares and Graham (1999) investigated the extent to which mathematics self-
beliefs change during the first year of middle school. By the end of the academic year, 
students described mathematics as less valuable, and they reported decreased effort and 
persistence in mathematics. The findings of the Deliyianni, Elia, Panaoura and 
Gagatsis’s (2007) study suggest that there is a noteworthy difference between 
elementary and secondary education in Cyprus concerning the representations used in 
mathematics textbooks on fractions. There are also differences in the functions the 
various representations in the school textbooks fulfil. 
The present study investigated Grade 5 to Grade 8 students’ beliefs about the use of 
different representations for the learning of the fractions and their self-efficacy beliefs 
about the use of those types of representations. That means that it explores the 
differences of students’ beliefs at primary and secondary education concerning the use 
of different types of representations.  
 
METHOD 
The study was conducted among 1701 students of 10 to 14 year of age who were 
randomly selected from urban and rural schools in Cyprus. Specifically, students 
belonging to 83 classrooms of primary (Grade 5 and 6) and secondary (Grade 7 and 8) 
schools (414 in Grade 5, 415 in Grade 6, 406 in Grade 7, 466 in Grade 8) were tested.  
A questionnaire was developed for measuring students’ beliefs about the use of different 
types of representations for understanding the concept of fractions. The questionnaire 
comprised of 27 Likert type items of five points (1=strongly disagree, 5=strongly agree). 
The reliability of the whole questionnaire was very high (Cronbach’s alpha was 0.88). 
The items of the questionnaire are presented at Table 1.  
At the same time a test was developed for measuring students’ ability on multiple 
representation flexibility as far as fraction addition is concerned. The test included 22 

WORKING GROUP 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 66



  
 

fraction addition tasks that examine multiple-representation flexibility and problem-
solving ability. There were treatment, recognition, conversion, diagrammatic problem-
solving and verbal problem-solving  tasks (further details for the tasks can be found at 
the paper of Deliyianni et al. (2007). Indicative examples of the items are presented at 
Appendix. Cronbach’s alpha for the test was 0.87. 
The test and the questionnaire were administered to the students by their teachers at the 
end of the school year in usual classroom conditions. Right and wrong or no answers 
were scored as 1 and 0, respectively. Solutions in treatment, recognition and translation 
tasks were assessed as correct if the appropriate answer, diagram, equation or shading 
were given respectively, while a solution in the problems was assessed as correct if the 
right answer was given.  
 
RESULTS 
The analysis of students’ responses to the items of the questionnaire resulted in six 
factors (KMO=0.933, p<0.001) with eigenvalues greater than 1 (Table 1). The first 
factor corresponded to students’ self-efficacy beliefs about conversion from one type of 
representation to another. The second factor was associated with their general self-
efficacy beliefs in mathematics. The third factor represented their beliefs about the use 
of the number line, while the forth factor represented their beliefs about the use of 
models, materials or representations. The fifth factor corresponded to students’ beliefs 
about the use of diagrams in problem solving and the sixth factor to their self-efficacy 
beliefs about the use of verbal representations.  
Item F1 F2 F3 F4 F5 F6 
I can easily find the diagram that corresponds to an equation of fractions. 
I can easily solve tasks than ask toconverse the part of a diagram into an 
equation. 
I can easily find the diagram that corresponds to an equation of decimals. 
I can easily find the equation of fraction addition that corresponds to a part 
of a surface of a rectangle. 
I can easily find the equation of fraction addition which is presented with 
arrows in number line. 

.53 
 

.62  

.67 
 

.63 

.58 

     

I am very good in solving tasks with decimals. 
I am very good in problem solving fractions. 
I can easily solve tasks with fractions. 
I can easily solve equations of fraction addition. 
I can easily solve equation of decimal addition. 

 

.70 

.78 

.79 

.70 

.56 

    

Number line helps me in problem solving with fractions. 
Number line helps me in solving equations with fractions. 
My teacher usually uses number line in order to explain us the operations 
of fractions. 
Number line helps me in solving equations with decimals. 

 

 .68 
.68 

 
.64 
.64 

   

A good student in mathematics can present the solution of a problem by 
many different ways. 
For the problem solving the use of equation is necessary. 
In mathematics the use of materials (fraction circles, dienes cubes etc) is 

 

   
.55 
.65 
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useful mainly for students at primary education 
The diagrams (number line, rectangle etc) are useful for executing 
operations. 
If I have to explain how I have solved a problem with decimals, I prefer to 
use an equation. 

.59 
 

.42 
 

.57 

If I have to explain how I have solved a problem with fractions, I prefer to 
use a diagram. 
When I solve a problem with fractions, I use the number line for executing 
the operations. 
When I solve a problem with fractions by using a diagram, I then try to 
solve it by using an equation, as well. 
When I solve a problem with decimals I use a diagram.  
I can easily explain how I have solved a problem with decimals by using a 
diagram. 

     
.65 

 
.44 

 
.49 
.67 

 
.47 

 

I prefer solve problems with decimals which present the data verbally. 
I can easily explain verbally how I have solved a problem with decimals.    

   .79 
.69 

       
Eigenvalues  7.87 2.48 1.92 1.58 1.25 1.17 

Percentage of variance explained  24.6 9.76 6.77 5.01 4.20 3.34 

Cumulative percentage of explained variance  24.6 34.3 41.1 46.1 50.3 53.6 

Table 1: Factor loading of the six factors against the items associated with participants’ 
beliefs 

Analysis of variance (ANOVA) indicated that there were statistically significant 
differences in respect to grade for the factors F1, F2, F5 and F6. Specifically in the case 
of F1 there were differences at the means (F3,1547=9.09, p<0.001) between students’ self-
efficacy beliefs to converse flexibly the concept of fraction addition from one 
representation to any other who were attending the Grade 8 with the students of the 
Grades 5, 6 and 7. In the case of the F2 the statistically significant differences 
(F3,1574=31.615, p<0.001) were between the Grade 5 with Grades 7 and 8, the Grade 6 
with the Grade 7 and 8. Students at the Grade 8 seemed to have less positive beliefs for 
the significance of using different types of representations (F5). There were statistically 
significant differences between Grade 5 and Grade 8, Grade 6 and Grade 8. In the case 
of their preference for using verbal explanations the differences were between Grade 5 
with Grade 7 and 8 and Grade 6 with Grade 7 and 8. Therefore, most of the differences 
revealed were between the students at primary education and the students at secondary 
education.  All the means are presented at Table 2. 
 F p X 5 X 6 X 7 X 8 
F1 9.09 <0.001 3.63 3.58 3.53 3.37 
F2 31.615 <0.001 4.08 3.93 3.70 3.56 
F5 6.209 <0.001 3.29 3.24 3.17 3.09 
F6 21.036 <0.001 3.46 3.36 3.15 2.96 
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Table 2: The means for the factors F1,F2, F5 and F6 with the statistically significant 
differences in respect to grade. 
Very impressive and unexpected were the descriptive results of the students’ 
mathematical performance at the test. As it is obvious in Figure 1 students at the Grade 7 
have lower performance than the students at the Grade 6.  
 
 
 
 
 
 
 
Figure 1: Students’ of different grades performance on the mathematical test. 
Students were cluster, by using cluster analysis, according to their performance at the 
test into three groups (Group1: 426 students with low performance, Group2: 788 
students with medium performance, Group3: 487 students with high performance) 
Analysis of variance (ANOVA) with independent variable the three groups and 
dependent variables the six factors, which were comprised from the abovementioned 
factor analysis, indicated statistically significant differences in respect to F1 
(F2,1547=51.819),  F2 (F2,1474=74.903), F4 (F2,1609=12.057) and F6 (F2,1671=8.844). In all 
cases the first group had the most negative beliefs and self-efficacy beliefs and the third 
group had the most positive beliefs. That means that students with high mathematical 
performance had at the same time positive beliefs for the use of representations and high 
self-efficacy beliefs. 
Finally students were clustered into two groups according to their general self-efficacy 
beliefs in mathematics (F2), by using cluster analysis. The group with higher self-
efficacy beliefs consisted of 1047 students ( X =4.31) and the second group consisted of 
528 students ( X =2.82).T-test analysis between the two groups in respect to the other 
five factors indicated that there were in all cases statistically significant (p<0.01) 
differences (Table 3). Students with higher general self-efficacy beliefs in mathematics 
had at the same time more positive beliefs for the use of different forms of 
representations and more positive self-efficacy beliefs for the use of those 
representations and their ability to transfer their knowledge. 
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 t df X 1 X 2 
F1 22.82 1463 3.81 2.97 
F3 6.508 1527 3.30 2.99 
F4 13.897 1507 4.09 3.57 
F5 9.151 1499 3.32 2.96 
F6 14.616 1565 3.48 2.73 

Table 3: Students’ with high and low self-efficacy beliefs differences in respect to their 
beliefs about the use of representations 

DISCUSSION 
The main emphasis of the present study was on investigating students’ self-efficacy 
beliefs for mathematics in relation to their beliefs about the use of representations for 
understanding the concept of fraction. The analysis of the data confirms earlier findings 
that young students have high self-efficacy beliefs (Bandura, 1986) and that they tend to 
overestimate their abilities. However those beliefs decreased at the secondary education. 
It seems that students’ sense of efficacy diminishes somehow when they compare their 
abilities with classmates and even more in relation to their mathematical performance as 
it is revealed by their final grades at mathematics. The influence of those active 
experiences is too strong and with immediate results. Accepting that the most important 
step is getting individuals to become aware of their own processes, strengths and 
limitations in order to have an accurate self-representation, it seems that the specific 
result is important for the learning of the concept of fractions. Nevertheless it is not 
positive generally, because there are too many other concepts at the teaching of 
mathematics at secondary education for which students have to use flexibly different 
types of representations. For example the concept of function admits a variety of 
representations, each of which offers information about particular aspects of the concept 
without being able to describe it completely (Elia et al., 2008). 
Interesting and unexpected was the differences between students’ performance in the use 
of different forms of representations at primary and secondary education and mainly the 
lower performance at secondary education. A possible explanation for the lack of 
improvement regarding their mathematical performance observed are the differences 
regarding the representations and their functions in mathematics textbooks used in 
primary and secondary education in Cyprus (Deliyianni et al., 2007). Furthermore, the 
secondary school students may had not created referential connections between 
corresponding elements and related structures in a way that promotes understanding of 
this concept during their primary schooling. Their difficulties increased in secondary 
education since no emphasis is placed on learning with multiple representations.  
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Results confirmed that students with low performance in mathematics have at the same 
time negative beliefs for the use of different forms of representations because they 
cannot use them fluently and flexibly as a tool to overcome obstacles while solving tasks 
and handling the whole situation. It seems that there is a need for further investigation 
into the subject with the inclusion of a more extended qualitative and quantitative 
analysis. Most mathematics textbooks today make use of a variety of representations 
more extensively than every before in order to promote understanding (Elia, Gagatsis & 
Demetriou, 2007). Much more research is needed for the students’ beliefs about the role 
of those representations regarding different mathematical concepts in relation to their 
self-efficacy beliefs for using them as a tool for the better understanding of the concepts.  
Appendix  
1. Circle the diagram or the diagrams whose shaded part corresponds to the equation  2/3 + 1/4. 

                    (recognition) 

2. Solve the following equation  

1/6 + 2/5 = …..              (treatment) 

3. Write the fraction equation that corresponds to the shaded part of the following diagram:  

    Equation: ...............................                                  (conversion) 
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EFFICACY BELIEFS AND ABILITY TO SOLVE VOLUME 
MEASUREMENT TASKS IN DIFFERENT REPRESENTATIONS 

Paraskevi Sophocleous & Athanasios Gagatsis  
University of Cyprus 

The aim of this study was to investigate the relationship between students’ efficacy 
beliefs and their performance in volume measurement tasks which were given in 
different representations. A group of sixth grade students (N=173) completed a four-
part self-report questionnaire and solved six volume measurement tasks in different 
representations format: text, diagram of 3-D cube array and net diagram. Perceived 
efficacy to solve volume measurement tasks was found to be a significant predictor of 
students’ general performance. Furthermore, high-ability students had stronger and 
more accurate efficacy beliefs towards tasks with net diagram which were unfamiliar, 
whereas low-ability students had more accurate efficacy beliefs towards verbal tasks 
which were familiar. 
Key words: efficacy beliefs, volume, 3-D cube arrays, net.  

INTRODUCTION  
The affective domain has in recent years attracted much attention from mathematics 
research community (Philippou & Christou, 2002). A number of researchers who 
have examined thoroughly the connections and the relationship among affect and 
mathematical learning found that affect plays a decisive role in the progress of 
cognitive development (Bandura, 1997; Ma & Kishor, 1997; Philippou & Christou, 
2002). One of the components of affective domain are self-efficacy beliefs (Goldin, 
2002), which were found to have significant correlations and direct effects on various 
math-related variables (Pajares, 1996). However, although much work has been done 
in this area, little attention has been given to the relationship between self-efficacy 
beliefs and the use multiple representations in mathematics (e.g. Patterson & 
Norwood, 2004).  
In this paper we try to investigate the relationship between efficacy to solve volume 
measurement tasks and performance in volume measurement of cuboid tasks which 
are given in different modes of representations.  

THEORETICAL BACKGROUND 
Self-efficacy beliefs and mathematics performance 
Self-beliefs, such as self-esteem, self-concept and self-efficacy, comprise components 
of the general beliefs system (Philippou & Christou, 2002). Students' perceived self-
efficacy for a task, are defined as their judgments about their ability to complete a 
task successfully (Bandura, 1997). 
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A number of studies have found a positive relationship between students’ self-
efficacy beliefs and mathematics performance (Pajares, 1996). More specifically, 
Pajares and Miller (1994) reported that self-efficacy in solving math problems was 
more predictive of that performance than sex, math background, math anxiety, math 
self-concept and perceived usefulness of mathematics. Additionally to this, Pajares 
and Kranzler (1995) found that self-efficacy made as strong a contribution to the 
prediction of problem-solving as did general mental ability, an acknowledged 
powerful predictor and determinant of academic outcomes. In this line, Mayer (1998) 
stressed that students who improve their self-efficacy will improve their success in 
learning to solve problems. 
Researchers have also indicated that high-ability students have stronger self-efficacy 
and have more accurate self-perceptions (e.g. Pajares & Kranzler, 1995; Zimmerman, 
Bandura, & Martinez-Pons, 1992). Schunk and Hanson (1985) found that students 
who expected to be able to learn how to solve the problems tended to learn more than 
students who expected to have difficulty.  
Self-efficacy beliefs have already been studied in relation to a lot of aspects of 
mathematics learning, such as arithmetical operations, problem solving and problem 
posing (e.g. Pajares & Miller, 1994; Pajares, 1996; Nicolaou & Philippou, 2007). 
However, these beliefs haven’t been examined in relation to volume measurement 
tasks and this study tries to investigate this relationship. 
Students’ understanding of 3-D rectangular arrays of cubes 
A number of researchers investigated students understanding of three dimensional 
rectangular arrays (3-D) of cubes, using interviews or tests (Ben – Chaim, Lappan & 
Houang, 1985; Battista & Clements, 1996). In particular, Ben – Chaim et al. (1985) 
indicated four types of errors that students in grades 5-8 made on the volume 
measurement tasks with three dimensional cube arrays. The first error was to count 
only the number of faces of cubes shown in a given diagram, while the second error 
was doubling that number. The third error was counting the number of cubes shown 
in the diagram and the forth error was doubling that number (see for example figure 
1). In this study, when researchers asked students to determine how many cubes it 
would take to build such prisms, they found that only 46% of the students gave the 
correct answer, while most of them made the errors of type 1 or 2 (Ben-Chaim et al., 
1985). These results are in line with those from a recent work by Battista and 
Clements (1996) where they found that 64% of the third graders and 21% of the fifth 
graders double-counted cubes. These types of errors made by students are clearly 
related to some aspects of spatial visualization (Ben-Chaim et al., 1985). In addition 
to this explanation, Battista and Clements (1996) stressed that many students are 
unable to correctly enumerate the cubes in such an array, because their own spatial 
structuring of the array is incorrect. In particular, they found that for some students 
the root of such errant spatial structuring seemed to be attributed to their inability to 
coordinate and integrate the views of an array to form a single coherent mental model 
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of the array. However, Hirstein (1981) believes that these errors are caused by their 
confused notions of volume and surface area. 
How many unit cubes does it take to make this rectangular solid? (Clements & 
Battista, 1996) 

 
Four types of errors that students make on this problem: 
Error type 1: Counting the cube faces shown in the diagram, e.g. 20+12+15=47 
Error type 2: Counting the cube faces shown in the diagram and doubling that 
number, e.g. 47 x 2= 94 
Error type 3: Counting the numbers of cubes showing in the diagram, e.g. 20+8+8=36
Error type 4: Counting the numbers of cubes showing in the diagram and doubling 
that number, e.g. 36 x 2=72 

Figure 1: Four types of errors that students make on volume measurement problems. 

THE PRESENT STUDY 
The purpose of the study 
The purpose of this study was to explore the relationship between students’ efficacy 
beliefs to solve volume measurement tasks and their ability to solve volume 
measurement cuboids tasks; these were given in different modes of representations, 
namely text, diagram of 3-D cube array and net diagram. More specifically, the 
present study addresses the following questions: (a) Are students’ efficacy beliefs to 
solve volume measurement tasks strong predictor of their performance in these tasks? 
(b) What is the relationship between students’ efficacy beliefs to solve volume 
measurement tasks and their errors in dealing with 3-D cube arrays and net diagrams? 
(c) Are there differences in the efficacy beliefs and the accuracy of these beliefs 
among students of varied abilities?  
Participants and Test 
In the present study data were collected from 173 sixth grade students (84 females 
and 89 males) ranging from 11 to 11.5 years of age. These students were from 10 
primary schools in Cyprus from rural and urban areas.  
All participants completed a five-part test which was developed on the basis of 
previous studies (e.g. Ben-Chaim et al., 1985; Battista & Clements, 1996; Nicolaou & 
Philippou, 2007). For the purpose of this paper, we did not use students’ answers 
from the first part of the test. The first four-parts of the test measured efficacy beliefs 
towards mathematical problems and volume measurement tasks and the fifth part 
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measured students’ ability to solve volume measurement tasks in different 
representations. Specifically, in the second part, students were asked to read each of 
the three volume measurement tasks: verbal task (SEiA), task with 3-D cube array 
(SEiB) and task with net diagram (SEiC) and state their sense of certainty to solve 
these tasks, without solving them. Responses were recorded on a 4 point Likert scale 
with 1 indicating not at all certain and 4 very much certain. In the third part, students 
were asked to state which one of the tasks from the second part was easy to solve 
(Es), was difficult to solve (Df), liked to solve (Lk) and did not find interesting to 
solve (Lint). The forth part comprised of five cartoon-type pictures and statements 
explaining the situation presented by each picture; the students were requested to 
select the picture that best expressed their efficacy beliefs (very high-SEI, high-SEII, 
medium-SEIII, low-SEIV and very low-SEV) to solve volume measurement tasks. 
The fifth part of the test had six volume measurement cuboids tasks which were given 
in different modes of representations: text, diagram of 3-D cube array and net 
diagram (see figure 2). 

Verbal tasks 
1. Mary tries to put 28 unit-sided cubes (1 cm edge) in a rectangular box with 
dimensions 2 cm x 5 cm x 3 cm. Is this possible? Explain your answer. (VPr1) 
 
4. Four friends went to the cinema. They decided to buy some bags of nuts during 
the movie. The vendor said to them that there were two size bags of nuts, where: 
• The prize of small bag was €1. 
• The large bag’s dimensions were two times the small bag’s dimensions and its 
prize was €6. 
The dimensions of small bag were 20 cm, 10 cm and 5 cm.  
One child suggested to his friends that it was better to buy and share one large size 
bag, instead of buying four small bags. Do you agree? Explain your answer. (VPr4) 
 

Tasks with diagram of three dimensional cube array 
Find the volume (the number of cubes) of the following cuboids: 

                       
                                 (SPr2a)                                         (SPr2b) 
Which one of these cuboids has the greatest number of cubes? Explain your answer. 
(SPr2Ans) 
 

WORKING GROUP 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 77



  

Tasks with net diagram 
The figures below show the nets of cuboids with one of its sides missing. Find the 
volume (number of cubes) of this net when folded:   

              
                                        (NPr3a)                               (NPr3b) 
Which one of these nets when folded can carry the least number of cubes?  Explain 
your answer. (NPr3Ans) 
 

Figure 2: Volume measurement tasks. 

The coefficient of reliability Gronbach’s Alpha of the five-part of test was very high 
(a=0.794). Specifically, we found that the reliability of answers of students in the first 
four-part of questionnaire was α=0.782 and the reliability of answers in volume 
measurement tasks was α=0.810.  
Data Analysis 
Students correct responses in volume measurement tasks were marked with 1 and 
incorrect response with 0. However, the marks to responses of the questions: “Which 
one of these cuboids has the greatest number of cubes? Explain your answer.” and 
“Which one of these nets when folded can carry the least number of cubes?  Explain 
your answer.” were: 1 for fully correct response, 0.5 for partly correct response 
(wrong explanation) and 0 for incorrect answer. We used the classification of errors 
made in previous studies (Ben Chaim et al., 1985; Battista & Clements, 1996) to code 
the students’ errors while solving the volume tasks with 3-D cube array diagram and 
net diagram.  
To answer the research questions of this study, four different analyses were 
conducted: a Regression Analysis, an Implicative Statistical Analysis with the use of 
the computer software CHIC (Bodin, Coutourier, & Gras, 2000), an Analysis of 
Variance one way and a Crosstabs Analysis. The implicative statistical analysis is a 
method of analysis that determines the similarity connections and the implicative 
relations of factors.  

RESULTS   
We used regression analysis with independent variable students’ efficacy beliefs to 
solve volume measurement tasks (answers of students in forth part of test) and 
dependent variable their general volume measurement performance in the test. We 
found that students’ efficacy beliefs to solve volume measurement tasks can be a 
statistically significant predictor of their performance in the test (10,1%). 
Furthermore, we examined the predictive role of students’ efficacy to solve verbal 
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volume measurement tasks to their performance in these tasks and regression analysis 
confirmed that (6%). Additionally, students’ efficacy to solve volume measurement 
tasks with 3-D diagram can be a statistically significant predictor of their 
performance in one of these tasks (3%). We also found that students’ efficacy to 
solve volume measurement tasks in net diagram predicted only 4% of their 
performance in these tasks.   
To examine the relationships between students’ efficacy beliefs to solve volume 
measurement tasks, their performance in these tasks which were given in different 
representations and their errors in dealing with 3-D cube arrays and net diagrams, we 
employed the statistical implicative analysis for the data of this study and gave us the 
similarity diagram (see figure 3), which allowed for the grouping of the tasks and the 
statements based on the homogeneity by which they were handled by students.  

 

Figure 3: Similarity diagram of students’ responses to the four-part of test. 

Note: The similarities in bold color are important at level of significance 99%.  

In figure 3, three distinct clusters of variables were formed. The first cluster consists 
of correct responses of students to volume measurement tasks and high efficacy 
beliefs, while the second and the third cluster consist students’ errors and low 
efficacy beliefs. More specifically, the first cluster involved five similarity groups. 
The first group included the two statements of high efficacy beliefs to solve all 
volume measurement tasks and verbal tasks. The second group involved the verbal 
volume measurement tasks, while volume measurement tasks with 3-D cube array 
diagram and net diagram formed the third similarity group. These groups provided 
further support that different cognitive processes were required in order to solve 
verbal volume measurement tasks and volume measurement tasks with diagram. 
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However, their similarity connection indicated that equivalent content knowledge was 
needed to develop volume measurement ability in different representations. The forth 
group included the three statements of high efficacy beliefs to solve all volume 
measurement tasks, tasks with 3-D cube array diagram and tasks with net diagram. 
Finally, the fifth group of the first cluster involved mainly four statements which 
referred to students’ evaluation for verbal tasks as easy and interesting and for tasks 
with net diagram as difficult and less interesting. All above groups of similarity of the 
first cluster show that students with high efficacy beliefs to solve volume 
measurement tasks in different representations solved these tasks in a similar way. 
Furthermore, these students assessed the verbal tasks as easy and interesting, while 
the task with net diagram as difficult and less interesting. It is hypothesised that 
students solved mainly verbal volume measurement tasks in their textbooks and so 
they had more experiences to solve these tasks than tasks with net diagram. 
Therefore, they felt more certain to solve familiar tasks than unfamiliar ones.  
The second cluster involved two similarity groups. The first group mainly included 
four statements which referred to students’ evaluation for tasks with net diagram as 
easy and interesting and for verbal tasks as difficult and less interesting. The second 
group involved the statement of low efficacy beliefs to solve volume measurement 
tasks and the wrong strategy: count the number of faces of cubes shown in diagram, 
which used from students to solve tasks with 3-D cube array diagram. The third 
cluster involved the statement of lowest efficacy beliefs to solve volume 
measurement tasks and errors to tasks with diagram. From the second and third 
cluster indicated that different cognitive processes were required to calculate the 
number of faces of cubes shown in 3-D cube array diagram and in net diagram. 
However, in the case of errors: count the number of faces of cubes shown in diagram 
and double that number, similar cognitive processes were required to apply it in 3-D 
cube array diagram and in net diagram.    
The sample of this study was clustered into three groups according to their volume 
measurement performance in the tasks of the fifth part of the test. The performance of 
the three clusters of students was examined in respect to their efficacy beliefs to solve 
volume measurement tasks. The comparison of the means by one way ANOVA 
indicated statistically significant differences between these groups (F(2,169)=6.240, 
p=0.002) at efficacy beliefs towards volume measurement tasks. Using Bonferroni 
procedure, we found only statistical significant differences at efficacy beliefs between 
students with the lowest performance (Χ= 3.10) and highest performance (Χ=4.18) 
in volume measurement tasks. Therefore, high-ability students have stronger efficacy 
beliefs towards volume measurement tasks than low-ability students. 
However, at the same time, according to the results of the crosstabs analysis, students 
who solved the tasks of test correctly or wrongly indicated both very high efficacy 
beliefs and very low efficacy beliefs. We found that students who solved the tasks of 
the test correctly had more accurate self-efficacy than students who solved the tasks 
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of the test wrongly. More specifically, high-ability students were more accurate in 
their efficacy beliefs towards tasks with net diagram in relation to their performance 
in these tasks (73% of students who solved the tasks with net diagram correctly 
indicated very high and high efficacy beliefs and only 7.5% of them indicated very 
low and low efficacy beliefs). The tasks with net diagram considered as an unfamiliar 
form of the volume measurement tasks for the students, because they did not solve 
any similar tasks in their mathematics textbooks. Also, crosstabs analysis showed that 
low ability students were more accurate in their efficacy beliefs towards verbal tasks 
in relation to their performance in these tasks (37% of students who solved verbal 
tasks wrongly indicated very high and high efficacy beliefs and 35% of them 
indicated very low and low efficacy beliefs). The verbal tasks are more familiar to the 
students, since their mathematics textbooks have a number of these tasks.   
Additionally, the sample of this study was clustered into five groups according to 
their efficacy beliefs towards volume measurement tasks. The efficacy beliefs to 
solve volume measurement tasks of the five clusters of students were examined in 
respect to their general volume measurement performance. The comparison of the 
means by one way ANOVA indicated statistically significant differences between 
these groups (F(5,166)=3.697, p=0.003) on volume measurement performance. Using 
Bonferroni procedure, students with very high efficacy beliefs (Χ=2.43) and students 
with very low efficacy beliefs (Χ=0.55) differed significantly in their general volume 
measurement performance.  

DISCUSSION 
The purpose of the present study was to investigate the relationship between students’ 
efficacy beliefs to solve volume measurement tasks in different representations and 
their performance in these tasks. We found that students’ efficacy beliefs to solve 
volume measurement tasks was a statistically significant predictor of the general 
volume measurement performance of students. The predictive role of efficacy beliefs 
was indicated from various studies in different concepts of mathematics (Pajares & 
Miller, 1994; Pajares & Kranzler, 1995; Nicolaou & Philippou, 2007).  
In the similarity diagram three distinct clusters of variables were formed. The first 
cluster included students who solved correctly the tasks of the test and indicated very 
high and high efficacy beliefs towards volume measurement tasks, whereas the 
second and the third group involved students who used wrong strategies to solve 
volume measurement tasks with 3-D cube array diagram and net diagram and 
indicated very low and low efficacy beliefs towards volume measurement tasks. 
Specifically, these different similarity groups which were formed show that the 
confidence with which students approached volume measurement problems 
connected and had direct effects on their volume measurement performance.  
We found, also, that high-ability students had stronger and more accurate efficacy 
beliefs towards volume measurement tasks in comparison to low-ability students. 
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These findings confirm the earlier results by Pajares and Kranzler (1995) and 
Zimmerman et al. (1992). Furthermore, high ability students had more accurate 
efficacy beliefs towards volume measurement tasks with net diagram which were 
unfamiliar, whereas low-ability students had more accurate efficacy beliefs towards 
verbal volume measurement tasks which are more familiar to them.  
Moreover, students who had high efficacy understand the volume measurement tasks 
better that the students who have low efficacy beliefs. This finding confirms the 
results of the study of Schunk and Hanson (1985). Also, students with high efficacy 
beliefs tend to assess the verbal tasks as easy and interesting, whereas the tasks with 
net diagram as difficult and less interesting. Therefore, these students’ perceptions 
probably play an important role to their volume measurement performance and/or the 
development of their efficacy beliefs. This finding needs to be further explored.   
In conclusion, the above findings about the predictive role of efficacy beliefs towards 
volume measurement tasks in different representations are very important in 
mathematics teaching and learning. Efficacy beliefs is an important component of 
motivation and behaviour (Pajares, 1996) and thus teachers need to develop ways to 
enhance efficacy beliefs of students of varied abilities. More specifically, high ability 
students need to solve “new” and creative tasks in which they will give the necessary 
attention and low ability students need to solve more easy and familiar tasks in which 
they can succeed.   
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MOTIVATION FOR LEARNING MATHEMATICS IN TERMS OF 
NEEDS AND GOALS 

Kjersti Wæge 
Programme for Teacher Education, Norwegian University of Science and 

Technology, Trondheim 
 

This article suggests a framework for analysing students’ motivation for learning 
mathematics. In the present paper, motivation is defined as a potential to direct 
behaviour. This potential is structured through needs and goals. The author examines 
students’ motivation in terms of needs and goals, and the emphasis is on the 
psychological needs for competence and autonomy. The proposed theoretical 
framework as an analytical tool is useful in describing the students’ goals and 
changes in goals in details. It could also contribute to increased insight into relations 
between different aspects of instructional designs and the students’ motivation for 
learning mathematic. The usefulness of the theoretical framework will be illustrated 
with some findings from the study. 

INTRODUCTION  
In mathematics education there has not been done much work on people’s motivation 
to date (Evans & Wedege, 2004; Hannula, 2006). Only a few researchers have 
distinguished between intrinsic and extrinsic motivation in mathematics (Goodchild, 
2001; Holden, 2003; Middleton & Spanias, 1999), or between task orientation and 
ego orientation (Nicholls, Cobb, Wood, Yackel, & Patashnick, 1990; Yates, 2000). 
Some mathematics educators have discussed students’ motivation under the terms of 
motivational beliefs (Kloosterman, 1996; Op't Eynde, De Corte, & Verschaffel, 2002) 
and interest  (Köller, Baumert, & Schnabel, 2001; Schiefele & Csikszentmihalyi, 
1995). Evans and Wedege (2004; , 2006) consider people’s motivation and resistance 
to learn mathematics as interrelated phenomena.  
Hannula (2006) points out that many of the above approaches fail to describe the 
quality of the individual’s motivation for learning mathematics in sufficient detail.  
He suggests that the reason for this is that the authors’ approaches aim to measure 
predefined aspects of motivation, not to describe it (p. 166). Hannula developed a 
theoretical foundation of motivation as a structure of needs and goals, and his study 
shows that the students’ goals vary a lot from person to person. The aim of this article 
is to present (develop) a theoretical framework for analysing the students’ motivation 
for learning mathematics, in terms of needs and goals. The article reports on a 
particular aspect of a study where the focus is the development of Norwegian upper 
secondary school students’ motivation for learning mathematics when they 
experience an inquiry mathematics teaching approach. The study followed a design-
research approach in that it involved both instructional design and classroom based 
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research (Cobb, 2001). I collected a large and varied pool of data (participant 
observation, semi-structured interviews, videotapes of students working, 
conversations with the teacher, students’ diaries, collection of material, assessment) 
on seven of the students. The focus of this article is the development of theory. Some 
findings from the study will be presented, mainly to illustrate the usefulness of the 
theoretical framework. Due to space constraint, the original data and analyses cannot 
be included. The interested reader should return to original papers.  

MOTIVATION 
Motivation is defined in different ways in the literature of (achievement) motivation, 
and I have chosen to use the following definition: 

Motivation is a potential to direct behaviour that is built into the system that controls 
emotion. This potential may be manifested in cognition, emotion and/or behaviour. 
(Hannula, 2004, p. 3) 

Motivation is considered as a potential to direct behaviour, and therefore, my focus is 
on the orientation of motivation. According to the definition, students’ motivation 
may be manifested in cognition, emotion and/or behaviour. For example, a student’s 
motivation to get a good grade in mathematics may be manifested in happiness 
(emotion) if he or she scores high on a test. It may also be manifested in studying for 
a test (behaviour) and in new conceptual learning (cognition) when studying for the 
test. Needs are specified instances of the potential to direct behaviour (Hannula, 
2004). Psychological needs that are often emphasised in educational settings are 
competence, relatedness (or social belonging) and autonomy (e.g. Boekaerts, 1999; 
Ryan & Deci, 2000). I have chosen to define motivation as a potential to direct 
behaviour and therefore the orientation of motivation becomes central. Thus it is 
necessary to add a more fine grained conceptualization of motivation focusing on 
needs and goals.  
Self Determination Theory and needs 
Self Determination Theory (SDT) is a general theory of motivation that focuses on 
psychological needs, and I have chosen to use Ryan and Deci’s (2002) definition of 
needs. Before presenting the definition, I will give a short presentation of the theory. 
Most contemporary theories of motivation assume that people engage in activities to 
the extent that they believe the behaviours will lead to desired goals or outcomes 
(Deci & Ryan, 2000). Within Self determination theory one is concerned about the 
goals of the behaviour and what energizes this behaviour. SDT is founded on three 
assumptions. The first assumption is that human beings have an innate tendency to 
integrate. Integrating means to forge interconnections among aspects of one own 
psyches as well as with other individuals and groups in his or her social world:  

…all individuals have natural, innate and constructive tendencies to develop an even 
more elaborated and unified sense of self. (Ryan & Deci, 2002, p. 5) 
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This assumption of active, integrative tendencies in development is not unique to 
SDT. However, specific to this theory is that this evolved integrative tendency cannot 
be taken for granted. The second assumption in SDT is that social-contextual factors 
may facilitate and enable the integration tendency, or they may undermine this 
fundamental process of the human nature: 

…SDT posits that there are clear and specifiable social-contextual factors that support 
this innate tendency, and that there are other specifiable factors that thwart or hinder this 
fundamental process of human nature. (Ryan & Deci, 2002, p. 5) 

In other words, there is a dialectic between an active organism and a dynamic 
environment (social context) such that the environment act on the individual, and is 
shaped by the individual. To describe and organize the environment as supporting 
versus thwarting the integrative process, the concepts of needs are used. Needs are 
defined through optimal functioning (growth and well-being), and I have chosen to 
use the following definition: 

There are necessary conditions for the growth and well-being of people’s personalities 
and cognitive structures, just as there are for their physical development and functioning. 
These nutriments are referred to within SDT as basic psychological needs. (Ryan & Deci, 
2002, p. 7) 

Looking back at Hannula’s definition, psychological needs are specified instances of 
the general potential to direct behaviour. The third assumption in SDT is that human 
beings have three basic psychological needs, the needs for competence, relatedness 
and autonomy (Deci & Ryan, 2000; Ryan & Deci, 2002). Within SDT, competence, 
relatedness and autonomy are defined in the following way: 

Competence refers to feeling effective in one’s ongoing interactions with the social 
environment and experiencing opportunities to exercise and express one’s capacities 
(Ryan & Deci, 2002, p. 7). Relatedness refers to feeling connected to others, to caring for 
and being cared for by others, to having a sense of belongingness both with other 
individuals and with one’s community (Ryan & Deci, 2002, p. 7). Autonomy refers to 
being the perceived origin or source of one’s own behaviour (Ryan & Deci, 2002, p. 8).  
(My italics in the three quotations) 

According to the definition, competence is not an attained skill or capacity, but it is a 
felt sense of confidence and effectiveness in action. The individual feels and 
experiences competence in the specific situation, it is not a product that shall be used 
(Wæge, 2007). In that case it is different from the way it is used by Hannula (2002). 
Hannula defines competence as the individual’s functional understanding and skills. 
He considers competence to be a product, something the individual could use. 
Relatedness, in the definition above, refers to the psychological feeling of being 
together with other persons in a secure community or unity. In a similar way as for 
the construct of competence, Hannula considers social belonging (or relatedness) to 
be a target to attain. It also includes a goal of social status in the group. Within SDT 
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relatedness refers to the students’ feelings of belongingness with others. When 
individuals are autonomous they experience themselves as volitional initiators of 
their own actions. Cobb and colleagues (Cobb, 2000; Cobb, Gravemeijer, Yackel, 
McClain, & Whitenack, 1997; diSessa & Cobb, 2004) use the concept of intellectual 
autonomy as a characteristic of a student’s way of participating in the practices of a 
classroom community. They speak of the students’ awareness and willingness to 
draw on their own intellectually capabilities when making mathematical decisions 
and judgments as they participate in mathematics activities. Hannula define autonomy 
as “the need to have control over own actions and to feel self-determining” (Hannula, 
2002, p. 74). His definition differs from Ryan and Deci’s definition in that it adds an 
aspect of having control over own actions.   
The concept of needs is useful because it allows the specification of the social-
contextual conditions that will facilitate motivation. According to SDT, students’ 
motivation will be maximized within social contexts that provide them with the 
opportunity to satisfy their basic psychological needs for competence, autonomy and 
relatedness. I have chosen to use Ryan and Deci’s definitions of the three 
psychological needs [1]. The data in the study did not give a basis for detailed 
analyses of the student’s needs for relatedness and the goals the students’ have in 
relation to this need. Therefore, the need for relatedness was not a focus in my study. 
In my study I focused on the students’ needs for competence and autonomy. In his 
study, Hannula focuses on the three psychological needs for competence, relatedness 
and autonomy, but as I pointed out above, his definitions of the constructs differ from 
Ryan and Deci’s definitions, which are the ones I have chosen to use.  
Needs and goals structures 
Hannula’s definition of motivation (above) purports the potential to direct behaviour 
is structured through needs and goals. Needs and goals are specified instances of the 
potential to direct behaviour. According to Hannula, goals are derived from needs, 
and the difference between needs and goals is their different level of specificity. A 
need may be directed toward a relatively large category of objects, while a goal is 
directed toward a specific object (Hannula, 2004). For example, in my study, Berit 
realised her need for competence as a more specific goal of gaining a good grade. She 
translated her need for autonomy into the more specific goal of developing her own 
ideas, independently of the teacher. Another student, David, realised his need for 
relatedness as a goal to gain the mathematics teacher’s confidence and respect.  
According to Boekaerts, the students’ goal structures are complex, and they tend to 
pursue multiple goals. The goals are related to each other, and pursuing one goal 
might be necessary to attain another goal or different goals may be seen as 
contradictory (Boekaerts, 1999; Shah & Kruglanski, 2000). Learning goals and 
performance goals are usually considered as contradictory to each other (Lemos, 
1999; Linnenbrink & Pintrich, 2000), but Hannula’s (2004) and my own findings 
(Wæge, 2007) indicate that these goals should not be seen as mutually exclusive 
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goals in mathematics education. To exemplify this I present an utterance of a student 
[2]: 
 

Berit: […] I think it has been pretty enjoyable. In the beginning I thought it was a 
bit difficult (Interviewer: Mm) because I was not used to this kind of 
teaching approach. […]  I think this mathematical approach is much better. 
The full-day test [3] was pretty special this time, because usually I didn’t 
quite understand what I was doing {inaudible}. Do this, follow rules and 
things like that. This time I thought that I understood everything and I 
thought the test went very well. And then I get a 4[4] and when I didn’t 
understand it I used to get a 5. But I almost think it’s better to try to 
understand a little more and nevertheless get a lower grade. Anyhow, I 
think it is possible to increase the grade. It’s only a new way of thinking. 
It’s quite interesting, I think {laughing} strange, yes. 

 

My analysis of Berit shows that she has a specific goal of relational understanding in 
mathematics (Skemp, 1976). Her sense of mastery and her feeling of succeeding in 
mathematics are higher when she experiences that she understands the mathematics 
problems, than when she uses rules without understanding. Another important goal 
for Berit is to get good grades on the mathematics tests. Her goals of relational 
understanding in mathematics and good grades in mathematics support each other 
mutually. Getting good grades are important to Berit, but relational understanding in 
mathematics is the most important goal for her.  

FIVE MOTIVATION VARIABLES 
There is a serious methodological problem with research on a mental construct like 
motivation. Students’ motivation cannot directly be observed, and thus measured, and 
it needs to be reconstructed through interpretation of the observable. I have developed 
an instrument to assess students’ motivation for learning mathematics in terms of 
cognition, emotion and behaviour. In doing this I focus on the five sets of 
motivational variables that Stipek, Salmon, Givvin & Kazemi (1998) used in their 
study entitled: “The value (and convergence) of practices suggested by motivation 
research and promoted by mathematics education reformers” [2]. These are the 
students’ 

1. focus on learning and understanding mathematics concepts as well as on 
getting right answers; 

2. enjoyment in engaging in mathematics activities; 
3. related positive (or negative) feelings about mathematics. 
4. willingness to take risks and to approach challenging tasks; 
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5. self-confidence as mathematics learners; 

All these motivation variables figure prominently in the achievement motivation 
literature and in the mathematics reform literature. The five motivation variables are 
closely related to the needs for competence and autonomy. The first and the fourth 
variable, students’ focus on learning and their willingness to take risks and approach 
challenging tasks, are closely related to the students’ need for competence. Deci and 
Ryan (2002) claim that the students’ need for competence leads them to seek 
adequately challenging mathematics tasks and to attempt to maintain and develop 
their mathematical understanding and skills. In my analysis I distinguish between 
students’ learning orientation and performance orientation (Nicholls, Cobb, Wood, 
Yackel, & Patashnick, 1990). In addition, I also make a distinction between relational 
understanding and instrumental understanding (Skemp, 1976). The fifth variable, 
students’ self-confidence, is related to students’ willingness to approach tasks 
(Stipek, Salmon, Givvin, & Kazemi, 1998). The second and the third variable, 
students’ enjoyment and their feelings about mathematics, are related to the students’ 
intrinsic motivation in mathematics. According to Deci and Ryan (2002), intrinsic 
motivation represents a prototype of self-determined activity. They suggest that there 
is a strong connection between people’s intrinsic motivation and their need for 
autonomy and competence. Mathematics classrooms that support the students’ needs 
for autonomy and competence will enhance their intrinsic motivation in mathematics. 
Contextual events that students experience as thwarting satisfaction of these needs 
will undermine their intrinsic motivation.  
In analysing the data, I assess these five motivation variables and I analyse the needs 
and goals of the students in relation to these specific motivational orientations. More 
specifically, the analysis is divided into two parts. First I analyse the data according 
to the five motivation variables. Although the variables can be seen as interrelated 
they are analysed separately in order to provide detailed insight into the students’ 
motivation for learning mathematics. In the second part, I analyse the student’s needs 
and goals in relation to these five specific motivational orientations. Furthermore, my 
emphasis is on the students’ need for autonomy and competence.  

TEACHING APPROACH 
The teaching approach in the study was intended to give more space for the students 
to satisfy their needs for competence and autonomy, than teacher-centred and teacher-
controlled teaching approaches. In the study attention was given to the development 
of students’ mathematical thinking and reasoning. Our (the teacher and I) task was to 
create instructional activities that supported the development of both collective 
mathematical meanings evolving in the classroom community and the mathematical 
understanding of the individual student. We tried to support  
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…the collective learning of the classroom community, during which taken-as-shared 
mathematical meanings emerge as the teacher and students negotiate interpretations and 
solutions (Gravemeijer, Cobb, Bowers, & Whitenack, 2000, p. 226).  

The teacher always asked the students “What did you think when you solved this 
problem? What strategies did you use?” In the written tasks we developed, the 
students were frequently asked to explain their solutions and strategies, and the 
students were invited to find several solution strategies to a problem. The teacher 
tried to promote a classroom microculture (Cobb, Boufi, McClain, & Whitenack, 
1997) where active participation and encouragement to understand were emphasised.  
In some of the instructional activities the students had to develop their own ideas, 
apply the mathematics in realistic situations and draw their own conclusions. 
Collaboration was important in our teaching approach. When the student’s were 
given problems they were not familiar with, we wanted the students to collaborate. 
The students had an opportunity to experience themselves and their peers as active 
participants in creating mathematical insight. Every student brought a personal 
contribution at his or her level. These elements of our design study were suitable for 
meeting the students need for competence, autonomy and relatedness. 

THE THEORETICAL FRAMEWORK – SOME KEY POINTS 
The proposed theoretical framework for analysing students’ motivation is useful in 
describing students’ goals and changes in goals in detail. The framework is useful in 
clarifying students’ notion of what it might mean to understand in mathematics. For 
example, the analysis of Berit shows that for her, to understand means to know what 
to do and why. We may also understand the relations between different goals through 
the use of such a framework. The complete analysis of Berit shows that there was a 
strong connection between her goal of relational understanding and her goal of 
finding her own solutions. She believes that finding own strategies for solving 
problems helps her in learning and understanding mathematics. As I described above, 
her goal of getting a good grades in mathematics and mastery goal, in this case a goal 
of relational understanding in mathematics, mutually supported each other.  
The study shows that students’ motivation for learning mathematics, although it is 
considered relatively stable, can be influenced by changes in the teaching approach. 
The case of Berit shows that students’ motivation for learning mathematics might 
change in a relatively short time. Within the first semester of the school year, Berit 
changed her goal of instrumental understanding (Skemp, 1976) to a goal of relational 
understanding in mathematics.  
We may also understand the relations between different aspects of the instructional 
designs developed in the study and the students’ motivation for learning mathematics 
in terms of needs and goals through this framework. The analysis of Berit indicate 
that a combination of working with mathematics problems and routine tasks from the 
textbook, and the fact that the students were given opportunities to find their own 
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solutions and rules for solving the problems, in collaboration with peer students and 
with guidance from the teacher, contributed to a sense of understanding and mastery 
with Berit.  
I perceive that the theoretical framework as an analytical tool captured the complexity 
and the richness of the students’ motivation in detail, and the tool made it possible for 
me to present detailed descriptions of the students’ motivation for learning 
mathematics.  

NOTES 
1. See Wæge (2007) for a detailed description of my interpretation of the definitions.  

2. Key to transcripts: […] extracts edited out of transcript for sake of clarity; {inaudible} unclear words; {text} 
comments about context or emotional behaviour like laughing; {.} 1 sec pause, {..} 2 sec pause, and so on.  

The interviews took place in Norwegian. I have tried to translate from colloquial Norwegian to colloquial English, but 
it does not give an exact word for word translation. My analysis took place without any translation, that is, I analysed 
the transcripts in the original language. 

3. At the end of each semester, the students have an all-day test in mathematics.  

4. 1 is the lowest grade and 6 is the highest. 

REFERENCES 
Boekaerts, M. (1999). Self-regulated learning: Where we are today. International 

Journal of Educational Research, 31, 445-457. 
Cobb, P. (2000). The importance of a situated view of learning to the design of 

research and instruction. In J. Boaler (Ed.), Multiple perspectives on 
mathematics teaching and learning (pp. 45-82). Stamford, CT: Ablex. 

Cobb, P. (2001). Supporting the improvement of learning and teaching in social and 
institutional context. In S. Carver & D. Klahr (Eds.), Cognition and 
Instruction: Twenty-Five Years of Progress (pp. 455-478). Mahwah, NJ: 
Lawrence Erlbaum Associates. 

Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997). Reflective discourse and 
collective reflection. Journal for Research in Mathematics Education, 28(3), 
258-277. 

Cobb, P., Gravemeijer, K., Yackel, E., McClain, K., & Whitenack, J. (1997). 
Mathematizing and symbolizing: The emergence of chains of significance in 
one first-grade classroom. In D. Kirshner & J. A. Whitson (Eds.), Situated 
cognition. Social, semiotic, and psychological perspectives (pp. 151-235). 

Deci, E. L., & Ryan, R. M. (2000). The "What" and "Why" of Goal Pursuits: Human 
needs and the Self-Determination of Behavior. Psychological Inquiry, 11(4), 
227-268. 

diSessa, A. A., & Cobb, P. (2004). Ontological Innovation and the Role of Theory in 
Design Experiments. The journal of the learning sciences, 13(1), 77-103. 

WORKING GROUP 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 91



  
Evans, J., & Wedege, T. (2004). Motivation and resistance to learning mathematics 

in a lifelong perspective. Paper presented at the 10th International Congress on 
Mathematical Education, http://www.icme10.dk/, TSG 6, Copenhagen, 
Denmark. 

Goodchild, S. (2001). Students' Goals. A case study of activity in a mathematics 
classroom. Norway: Caspar Forlag. 

Gravemeijer, K., Cobb, P., Bowers, J., & Whitenack, J. (2000). Symbolizing 
modelling and instructional design. In P. Cobb, E. Yackel & K. McClain 
(Eds.), Symbolizing and communicating in mathematics classrooms. 
Perspectives on discourse, tools, and instructional design. (pp. 225-273). 
Mahwah, New Jersey: Lawrence Erlbaum Associates. 

Hannula, M. S. (2002). Goal regulation: Needs, beliefs, and emotions. In A. D. 
Cockburn & E. Nardi (Eds.), Proceedings of the 26th Conference of the 
International group for the Psychology of Mathematics Education (Vol. 4, pp. 
73-80). Norwich, UK: University of East Anglia. 

Hannula, M. S. (2004). Regulation motivation in mathematics. Paper presented at the 
10th International Congress on Mathematical Education, 
http://www.icme10.dk/, TSG 24, Copenhagen, Denmark. 

Hannula, M. S. (2006). Motivation in mathematics: Goals reflected in emotions. 
Educational Studies in Mathematics, 63, 165-178. 

Holden, I. M. (2003). Matematikk blir gøy - gjennom et viktig samspill mellom ytre 
og indre motivasjon. In B. Grevholm (Ed.), Matematikk for skolen (pp. 27-50). 
Bergen: Fagbokforlaget. 

Kloosterman, P. (1996). Students' Beliefs About Knowing and Learning 
Mathematics: Implications for Motivation. In M. Carr (Ed.), Motivation in 
Mathematics (pp. 131-156). Cresskill: Hampton Press, Inc. 

Köller, O., Baumert, J., & Schnabel, K. (2001). Does Interest Matter? The 
Relationship Between Academic Interest and Achievement in Mathematics. 
Journal for Research in Mathematics Education, 32(5), 448-470. 

Lemos, M. S. (1999). Students' goals and self-regulation in the classroom. 
International Journal of Educational Research, 31, 471-485. 

Linnenbrink, E. A., & Pintrich, P. R. (2000). Multiple Pathways to Learning and 
Achievement: The Role of Goal Orientation in Fostering Adaptive Motivation, 
Affect, and Cognition. In C. Sansone & J. M. Harackiewicz (Eds.), Intrinsic 
and Extrinsic Motivation. The Search for Optimal Motivation and Performance 
(pp. 195-227). San Diego, California, USA: Academic Press. 

Middleton, J. A., & Spanias, P. A. (1999). Motivation for Achievement in 
Mathematics: Findings, Generalizations, and Criticism of the Research. 
Journal for Research in Mathematics Education, 30(1), 65-88. 

Nicholls, J. G., Cobb, P., Wood, T., Yackel, E., & Patashnick, M. (1990). Assessing 
students' theories of success in mathematics: Individual and classroom 
differences. Journal for Research in Mathematics Education, 21, 109-122. 

WORKING GROUP 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 92



  
Op't Eynde, P., De Corte, E., & Verschaffel, L. (2002). Framing students' 

mathematics-related beliefs. In G. C. Leder, E. Pehkonen & G. Törner (Eds.), 
Beliefs: A hidden variable in mathematics education? (pp. 13-37). Dordrecht: 
Kluwer Academic Publishers. 

Ryan, R. M., & Deci, E. L. (2000). Intrinsic and Extrinsic Motivations: Classic 
Definitions and New Directions. Contemporary Educational Psychology, 25, 
54-67. 

Ryan, R. M., & Deci, E. L. (2002). Overview of Self-Determination Theory: An 
Organismic Dialectical Perspective. In E. L. Deci & R. M. Ryan (Eds.), 
Handbook of Self-Determination Research (pp. 3-33). New York: The 
University of Rochester Press. 

Schiefele, U., & Csikszentmihalyi, M. (1995). Motivation and ability as factors in 
mathematics experience and achievement. Journal for Research in 
Mathematics Education, 26(2), 163-181. 

Shah, J. Y., & Kruglanski, A. W. (2000). The Structure and Substance of Intrinsic 
Motivation. In C. Sansone & J. M. Harackiewicz (Eds.), Intrinsic and Extrinsic 
Motivation.  The Search for Optimal Motivation and Performance (pp. 105-
127). San Diego: Academic Press. 

Skemp, R. R. (1976). Relational and Instrumental Understanding. Mathematics 
teaching, Bulletin of the Association of Teachers of Mathematics, 77, 20-26. 

Stipek, D., Salmon, J. M., Givvin, K. B., & Kazemi, E. (1998). The Value (and 
Convergence) of Practices Suggested by Motivation Research and Promoted by 
Mathematics Education Reformers. Journal for Research in Mathematics 
Education, 29(4), 465-488. 

Wedege, T., & Evans, J. (2006). Adults' resistance to learning in school versus adults' 
competences in work: The case of mathematics. Adults learning mathematics, 
1(2), 28-43. 

Wæge, K. (2007). Elevenes motivasjon for å lære matematikk og undersøkende 
matematikkundervisning. Norwegian university of science and technology, 
Trondheim. 

Yates, S. M. (2000). Student optimism, pessimism, motivation and achievement in 
mathematics: A longitudinal study. In T. Nakahara & M. Koyama (Eds.), 
Proceedings of the 24th Conference of the International Group for the 
Psychology of Mathematics Education (Vol. 4, pp. 297-304). Japan: Hiroshima 
University. 

 
 

WORKING GROUP 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 93



 

MATHEMATICAL MODELING, SELF-REPRESENTATION AND 
SELF-REGULATION 

Areti Panaoura*, Andreas Demetriou**, Athanasios Gagatsis** 
* Frederick University, ** University of Cyprus 

 
The aim of the present study was to investigate the improvement of students’ self-
representation about their self-regulatory performance in mathematics by using 
mathematical modeling. Three materials were developed and administered at 255 11th 
years old students, for mathematical performance, self-representation and the use of 
self-regulatory strategies for problem solving. A web page with the proposed model (the 
model of Verschffel, Greer & De Corte, 2000) was constructed and used individually by 
students. Results indicated that the program created a powerful learning environment in 
which students were inspired in their own experiences. Although the program improved 
their cognitive and self-regulatory performance, it reproduced the differences among 
students in respect to their cognitive and metacognitive performance.  
 
Keywords: self-regulation, self-representation, mathematical modeling 
 
In the last decades, children’s early understanding of their own as well as others mental 
states has been intensively investigated, reflecting growing interest for the concept of 
metacognition (Bartsch & Estes, 1996). In psychological literature, the term 
metacognition refers to two distinct areas of research: knowledge about cognition and 
self-regulation (Boekaerts, 1997). Self-regulation refers to the processes that coordinate 
cognition. It reflects the ability to use metacognitive knowledge strategically to achieve 
cognitive goals, especially in cases where someone has to overcome cognitive obstacles.  
As regards the relationship between academic self-concept and academic achievement, 
extant literature supports both direct and indirect relationships between them; however, 
the range of correlations reported is a function of several factors (Guay, Marsh & 
Boivin, 2003). Age is a factor that affects this relationship since young students, 
academic self-concept is usually very positive and not highly correlated with external 
indicators, such as skills and achievement (Guay et al., 2003). Veenman and Spaans 
(2005) assumed that metacognitive skills initially develop on separate islands of tasks 
and domains. Beyond the age of 12, these skills will gradually merge into a more 
general repertoire that is applicable and transferable across tasks and domains. The 
present work is concentrated on the improvement of metacognitive performance on the 
domain of mathematics and more specifically on the improvement of self-regulatory 
behavior. 
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Learning mathematics, as an active and constructive process, implies that the learner 
assumes control and agency over his/her own learning and problem solving activities 
(De Corte, Verschaffel & Op´t Eynde, 2000). Knowing when and how to use cognitive 
strategies is an important factor to successful word problem solving (Teong, 2002). 
Metacognitive behavior can be applied in every stage of the problem solving activity 
(Lerch,2004). For example before starting solving a particular problem, students can ask 
themselves questions like what prior knowledge can help them develop a solution plan 
for the particular task; during the application of the solution plan the students monitor 
their cognitive activities and compare progress against expected goals. Finally, after 
reaching a solution, the students may need to look back, to check for the reasonableness 
of outcomes and integrate newly acquired knowledge to existing.  
Problem solving procedure and the use of mathematical modeling 
Studies on solving mathematical word problems refer to various conditions that cause 
transfer to occur, for example, providing solved examples (e.g. Bassok & Holyoak, 
1989), having a scheme (Nesher & Hershkovitz, 1994), and providing feedback (Hoch 
& Loewenstein, 1992). The first step in solving a problem is to encode the given 
elements (Davidson & Sternberg, 1998). Encoding involves identifying the most 
informative features of a problem, storing them in working memory and retrieving from 
long-term memory the information that is relevant to these features. Incomplete or 
inaccurate metacognitive knowledge about problems often leads to inaccurate encoding 
and could generate learning obstacles. 
A specific strategy frequently taught in math classes in order to enhance problem 
solving ability, is to use analogy in order to create a mental model of similar problems. 
In this regard, the students are expected to extract the relevant facts from the statement 
of the problem, compare it to their knowledge base, relevant to the problem domain, and 
recognize similarities between the new problem and problems they have previously 
encountered, and abstract the proper entities and principles. Empirical findings show 
that students fail to see the underlying principles unless they are explicitly pointed out 
(Panaoura & Philippou, 2005).  
The modeling of open-ended problems have been of interest to mathematics educators 
for decades. Mathematical modeling of problem solving is a complicated procedure 
which is divided into different stages (Mason, 2001). When a mathematical modeling 
task is offered in a school the goal generally is not that students learn to tackle only that 
particular task. Rather, students are expected to recognize classes of situations that can 
be modeled by means of a certain mathematical concept, relation or formula, and to 
develop some degree of routine and fluency in mapping problem data to the underlying 
mathematical model and in working though this model to obtain a solution (Van 
Dooren, Verschaffel, Greer & De Bock, 2006).  
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A characteristic is that the modeling process is not a straightforwardly sequential 
activity consisting of several clearly distinguishable phases. Modellers do not move 
sequentially through the different phases of the modeling process, but rather run through 
several modeling cycles wherein they gradually refine, revise or even reject the original 
model. The present paper discusses the impact of the use of the mathematical model 
proposed by Verschaffel et al. (2000) on the development of students’ self-
representation about their self-regulatory behavior in mathematics. The main stages of 
the model are: 1) Understanding the phenomenon under investigation, leading to a 
model of the relevant elements, relations and conditions that are embedded in the 
situation (situation model), 2) Constructing a mathematical model of the relevant 
elements, relations and conditions available in the situation model, 3) Working through 
the mathematical model using disciplinary methods in order to derive some 
mathematical results, 4) Interpreting the outcome of the computational work to arrive at 
a solution to the real – word problem situation that gave rise to the mathematical model, 
5) Evaluating the model by checking if the interpreted mathematical outcome is 
appropriate and reasonable for the original problem situation, and 6) Communicating the 
solution of the original real – word problem. 
At the first phase of the problem solving procedure by the use of the mathematical 
model students have to consider and decide what elements are essential and what 
elements are less important to include in the situation model. In the next phase, the 
situation model needs to be mathematised i.e. translated into mathematical form by 
expressing mathematical equations involving the key quantities and relations. Students 
need to rely on another part of their knowledge base, namely mathematical concepts, 
formulas, techniques and heuristics. After the mathematical model is constructed and 
results are obtained by manipulating the model, numerical result needs to be interpreted 
in relation to the situation model. At this point, the results also need to be evaluated 
against the situation model to check for reasonableness.  As a final step, the interpreted 
and validated result needs to be communicated in a way that is consistent with the goal 
or the circumstances in which the problem arose.  
Nowadays problem solving skills have become a prominent instructional objective, but 
teachers often experience difficulties in teaching students how to approach problems and 
how to make use of proper mathematical tools. Many teachers of mathematics teach 
students to solve mathematical problems by having them copy standard solution 
methods. It comes as no surprise, therefore, that many students find it difficult to solve 
new problems, especially problems within a context (Harskamp & Suhre, 2006). 
Attempts to improve problem solving should focus on episodes students neglect when 
solving problems. The aim of the present study was to develop students’ (5th grade) 
problem solving ability and to enhance their ability to self-regulate their cognitive 
performance in order to overcome cognitive obstacles when they encounter difficulties 
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while trying to solve mathematical problems.  One of the main emphases was to oblige 
students reflect on their cognitive processes while trying to solve the problems and 
encounter difficulties in order to self-regulate their behavior. We hypothesized that the 
development of self-representation in order to be more accurate regarding the students’ 
strengths and limitations would improve their self-regulatory behavior in mathematics. 
Especially for the problem solving procedure we hypothesized that the better distinction 
of problems and the clustering of those problems according to their similarities and 
differences would have as a consequence the better transfer of knowledge and strategies 
from the one domain to the others and from general situation to the specific ones.   
METHODOLOGY 
Participants: Data were collected from 255 children (107 experimental group and 148 
control group), in Grade 5 (11 years old) from five different urban elementary schools. 
The participation at the program were voluntary because we had used the extra time 
students stayed at school for the program of the Ministry of Education, called “day-long 
school”.  
Procedure: The main emphasis was on the development of the program for the use of the 
proposed mathematical model, the training of students on the model and the evaluation 
of its results. At the first phase of the study three materials were constructed for pre and 
post test. The first one was about students’ self-representation, the second for 
mathematical performance and the third one for their behavior while trying to solve 
mathematical problems. The first one comprised of 40 Likert type items of five points (1 
= never, 2 = seldom, 3= sometimes, 4= often, 5= always), reflecting students’ self-
representation about mathematical learning (e.g.“I can better explain my solution for a 
problem when I use a diagram”, “I can easily compare two pictures in order to find their 
similarities”. The reliability was very high (Cronbach’s alpha was .87). 
The second questionnaire comprised of 20 mathematical tasks on counting, geometry, 
statistics and problem solving (e.g. “How the area of a square, side 4cm, will be changed 
if the side is doubled”, “Construct the bigger four digit number with the digits 9 and 3”, 
“In our neighborhood every year since 2000 we organize a celebration, For the three 
following years, after the first one it did not organize. At what date (chronology) did it 
start again?”) All items in the mathematical performance questionnaire were scored on a 
pass-fail basis (0 and 1). The reliability was high (Cronbach’s alpha was 0.85). 
The third questionnaire comprised of ten couples of sentences and students had to 
choose which one expressed better their cognitive behavior while they were 
encountering a difficulty in problem solving (a. When I explain to my friend how to 
solve a problem, I prefer to use a diagram, b. When I explain to my friend how to solve 
a problem I prefer to do it verbally). All the questionnaires were first used at a pilot 
study in order to examine their construct validity.  
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Then an intervention program was developed in order to propose the use of the 
mathematical model (Figure 1) for problem solving, proposed by Verschaffel et al. 
(2000). The emphasis was on the understanding that different stages of problem solving 
would have as a consequence the use of different cognitive procedures and that the 
cognitive obstacles could be encountered by realizing the cognitive interruptions at one 
or more of those stages and mainly by self-regulating the cognitive performance. For 
example a self-regulatory strategy is the ability to recognize the “inner” mathematical 
similarities and differences of mathematical problems in order to transfer cognitive and 
metacognitive strategies among different domains.  For the purpose of the project we 
had constructed a web page which was visited individually by each student of the 
experimental group (107 students) during 20 “meetings”. One of the main emphases was 
to oblige students rethink their cognitive processes while trying to solve the problems 
and encounter difficulties in order to monitor their performance. 

 
 

 
 
 
 
 
Figure 1: The mathematical model proposed by Verschaffel et al. (2000) 

We had organized twenty “individual meetings” of the students with the webpage in 
order to work with the model (almost 20 minutes each meeting). Using the model used 
the first four “meetings” for the familiarization with the environment of the computer 
and for understanding the whole idea of the webpage for the problem solving procedure.  
The ten following “meetings” concentrated on different stages of the proposed 
mathematical model. For example at the stage of “understanding the problem” students 
had to solve problems with not enough data, or with more than the necessary data, they 
had to answer specific questions about the data of the problem, they had to explain in 
their own words the problem, to summarize it etc. At the stage of “modeling” they had 
to work on the classification of mathematical problems by explaining the criteria they 
used in order to classify the problems. There were problems with the same situational 
characteristics or the same context in order to oblige students to be concentrated on the 
structural mathematical characteristics. At the last six “meetings” students should solve 
mathematical problems by using all the stages of the mathematical model. In each stage 
the “cartoon” that was the hero of the web page asked questions such as “How did you 
get that? This isn’t a better solution? (for a proposed solution). Do you have any better 
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solution?”, in order to force students to self-regulate their cognitive performance. We 
wanted to have a reflection at all the stages of their work. The students’ responses were 
recorded automatically at a database with details such as when they had worked on the 
specific task and for how long. The whole procedure is presented at Figure 2. 
 
 
 
 
 
 
 
 
 

Figure 2: The development of the intervention program 
RESULTS 
The data about self-representation (1st questionnaire) were first subjected to exploratory 
factor analysis in order to examine whether the presupposed factors that guided the 
construction of the items of the first questionnaire were presented in the participants’ 
responses. This analysis resulted in 6 factors with eigenvalues greater than 1, explaining 
65.56% of the total variance. After the content analysis, according to the results of the 
exploratory factor analysis items were classified in the following factors: F1: general 
self-image about mathematics, F2: self-representation about problem solving abilities, 
F3: self-representation about the strategies used in order to self-regulate the cognitive 
performance, F4: self-representation about students’ spatial abilities in mathematics, F5: 
self-representation about the degree of concentration on problem solving procedure, F6: 
the preference for different types of representations 
We concentrated on the three factors which were related with self representation in 
respect to problem solving and self-regulation (F1, F2 and F3). The comparison of the 
means of the three factors between the pre and post tests for the experimental and the 
control group were statistically significant in all cases (p<0.001). Nevertheless the 
improvement was highest for the experimental group in the case of the second and the 
third factors  (Table 1). It is obvious the increase of the control group as well as a 
consequence of the age development and the impact of teaching and learning (those 
were factors that could not be controlled). However the improvement was in all cases 
higher in the case of the experimental group.   

pre-test 
 
questionnaire 1 
questionnaire 2 
questionnaire 3 

post-test 
 
questionnaire 1 
questionnaire 2 
questionnaire 3 

Control group 

Intervention program (web page- 
use of model) 20 meetings 

Experimental group 

4 meetings- familarization with the environment 
10 meetings – different stages of the proposed model 
6 meetings – using the model alone in order to solve difficult      problems 
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 pre - test post - test 
 experimental control experimental control 
F1 3.92 4.00 4.00 4.07 
F2 3.22 3.25 3.69 3.57 
F3 2.76 2.78 3.35 3.20 
Table 1: The means of the experimental and the control group for the three factors at the 
pre and post test. 

At the same time for the experimental group the improvement was highest in the case of 
the general mathematical performance ( X 1exp=0.27, X 2exp=0.63, X 1control=0.27, 
X 2control=0.52) and the problem solving performance ( X 1exp=0.20, X 2exp=0.47, 
X 1control=0.20, X 2control=0.39). Specifically the highest differences were found in the 
domain of geometry ( X 1exp=0.28, X 2exp=0.47, X 1control=0.29, X 2control=0.44) and 
statistics ( X 1exp=0.38, X 2exp=0.69, X 1control=0.38, X 2control=0.64). This result reveals the 
positive impact of the use of the specific mathematical model on the mathematical 
performance.  
The most important in the case of self-representation is the accuracy of this feature in 
relation to the real mathematical performance. We have clustered, depended on cluster 
analysis, the participants in respect to their general self-image about their mathematical 
performance into three groups. The first group was consisted of 42 students with low 
self-image ( X =2.55), the second one of 82 students with medium self-image ( X =3.26) 
and the third one of 99 students with high self image ( X =3.94). There were statistically 
significant differences between the first and the third group at the initial phase (pre – 
test) in respect to their real mathematical performance (F=4.716, df=2, p=0.01, 
X 1=0.466, X 2=0.543, X 3=0.605). After the program the difference of the groups 
regarding their general self-image in relation to their mathematical performance (post 
test) was significant only in the case of the experimental group (F=4.447, df=2, p=0.01, 
X 1=0.557, X 2=0.6059, X 3=0.699). Those results indicated that most students had 
accurate self-image in respect to their real mathematical performance and they did not 
seem to overestimate their abilities. At the same time students’ means at the 
classification of similar mathematical problems according to the mathematical structure 
of the problems were highest at the post test. The development was statistically higher in 
the case of the experimental group ( X 1=0.29, X 2=0.49, t=12.79. p<0.001) than the 
control group ( X 1=0.29, X 2=0.41, t=11.69, p<0.001). The difference between the two 
groups was statistically significant (t=3.32, df=228, p<0.01). 
A part of the couples of sentences at the third questionnaire were about the self-
regulatory strategies they use in order to encounter difficulties and cognitive obstacles at 
the problem solving procedure. For the self-regulatory strategies the difference of the 
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means between the two measurements was statistically significant (t=2.93, df=98, 
p<0.01, X 1=0.65, X 2=0.69) only in the case of the experimental group. That means that 
students tended to develop more self-regulatory strategies or tended to believe that they 
have to develop those strategies. Even the second learning situation is an important step 
for the change of cognitive and metacognitive behavior, as well.  
Students of the experimental group were clustered according to their self-representation 
about problem solving ability and their general mathematical ability into three groups 
(low self-representation: 24 students, medium: 36 students, and high self-representation: 
34 students). Analysis of variance (ANOVA) indicated that there was a statistically 
significant difference concerning their self-representation about the use of self-
regulatory strategies in mathematics (F2,93 =6.094, p=0.003). As it was expected the 
mean of the group with the high self-representation was higher (0.80) than the other two 
groups (medium: 0.63 and low: 0.58). The most interesting result was that the students’ 
with medium and low mathematical performance was increased after the program (low: 
X 1=0.83, X 2=0.87, medium: X 1=0.90, X 2=0.94, high: X 1=0.94, X 2=0.94). In the case 
of the improvement on the self-representation about the use of self-regulatory strategies 
for the three groups the changes were similar (low self-representation: X 1= 0.50, X 2= 
0.53, medium self-representation: X 1= 0.64, X 2= 0.67, high self-representation: X 1= 
0.80, X 2= 0.84). This stability or low increase may indicate that students realized their 
difficulties and limitations and did not tend to overestimate their abilities in using 
strategies.  
DISCUSSION 
Results confirmed that providing students with the opportunity to self-monitor their 
learning behavior in the case of encountering obstacles in problem solving through the 
use of modeling is one possible way to enhance students’ self-representation about the 
self-regulatory strategies they use in mathematics and consequently their mathematical 
performance. It seems that the program with the use of the model created a powerful 
learning environment in which students were inspired in their own experiences. 
Nevertheless it is obvious that students with high self-representation about their 
mathematical abilities in the initial phase were at the same time students with the most 
self-regulatory strategies after the impact of the intervention program, as well. That 
means that although the program improved the metacognitive performance and the 
mathematical performance of the experimental group, further research is needed in order 
to find ways to change the initial differences among students. 
For the development of a more accurate self-representation about mathematical 
performance and self-regulation in problem solving teachers must create a powerful 
learning environment, in which children are allowed and inspired to, their own learning 
experiences. According to the self-regulated learning approach students are self-
regulating when they are aware of their capabilities of the strategies and resources 
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required for effectively performing a task (Paris & Paris, 2001). Learners, who decide to 
ask a more competent person for assistance when faced with a task, indicate that they 
realize their difficulties and try to find out ways to overcome them. The accurate self-
representation about the strengths and limitations is a presupposition for the 
development of self-regulation. Instruction should mainly lead students to self-
questioning as a systematic strategy in helping them control their own learning and 
organize by themselves the different occasions they may encounter. In the area of 
mathematics, a number of important questions about metacognition remain unanswered. 
Much more research is needed to study the different aspects of metacognition in a more 
systematic and detailed way. We suggest specifically that further research could focus 
on interactive computer programs that may be designed to provide feedback and hints to 
assist students in becoming more aware of their cognitive and metacognitive processes. 
It would be optimistic and naïve to claim that such types of intervention programs would 
develop the self-regulatory strategies of all students. Possibly different models and 
programs are suitable for different groups of students.  
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ENDORSING MOTIVATION: IDENTIFICATION OF 
INSTRUCTIONAL PRACTICES 

Marilena Pantziara and George Philippou  
Department of Education –University of Cyprus 

This paper presents some results of a larger study that investigates the relationship 
between instructional practices in the mathematics classroom and students’ 
motivation and their achievement in mathematics. Data were collected from 321 sixth 
grade students through a questionnaire comprised of three Likert-type scales 
measuring motivational constructs, a test measuring students’ understanding of the 
fraction concept and an observation protocol for teachers’ instructional practices in 
the classroom. Findings revealed the importance of multi-level modelling in the 
analysis of instructional practices suggested by achievement goal theory and 
mathematics education research that promote both students’ motivation and 
achievement in mathematics.  
INTRODUCTION 
Research on achievement motivation provides substantial evidences of instructional 
practices that foster students’ motivation (Anderman et al., 2002; Turner et al., 2002). 
These instructional practices are alike the ones developed by mathematics educators 
to achieve both learning and motivational outcomes (Stipek et al., 1998). Motivation 
is treated in mathematics education as a desirable outcome and a means to enhance 
understanding (Stipek et al., 1998). In broad, the socio-constructivist perspective on 
learning (Op’t Eydne et al., 2006) underlines the interplay between cognitive, 
motivational and affective factors but also it highlights the influence of the specific 
classroom context in the whole process.  
In this respect, the present study investigates variations in instructional practices and 
their impact on students’ achievement motivation and outcome. Understanding the 
interplay between the characteristics of a particular instructional setting, and students’ 
achievement-related goals and outcomes is an important direction for both 
motivational and mathematics education research (Anderman et al., 2002; Stipek et 
al., 1998).  In the next section we consider the basic concepts and define the research 
questions.  
THEORETICAL BACKGROUND AND AIMS 
Motivation 
Motivation cannot directly be observed but it can be noticeable only by its interaction 
with affect, cognition and behaviour. Hannula (2006) defines motivation as the 
preference to do certain things and to avoid doing some others. In regards to students’ 
motivation four basic theories of social-cognitive constructs have so far been 
identified: achievement goal orientation, efficacy beliefs, personal interest in the task, 
and task value beliefs (Pintrich, 2003). In this study we conceptualise motivation 

WORKING GROUP 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 104



  

according to achievement goal theory because it has been developed within a social-
cognitive framework and it has studied in depth many variables which are considered 
as antecedents of students’ motivation constructs. Some of these variables are 
students’ competence based variables, such as need of achievement or fear of failure, 
self-based variables, such as self efficacy beliefs, and demographic variables, e.g. 
gender (Elliot, 1999). In addition, one of the strengths of goal orientation theory in 
understanding students’ motivation is that it explicitly considers the role of teachers 
and instructional contexts in shaping students’ goal orientations. Thus a major tenet 
of goal theory is that students’ adoption of personal goals is influenced even in part, 
by the goal structures promoted by the classroom and boarder school environments 
(Anderman et al., 2002).  
Achievement goal theory is concerned with the purposes-goals students perceive for 
engaging in an achievement-related behaviour and the meaning they ascribe to that 
behaviour. A mastery goal orientation refers to one’s will to gain understanding, or 
skill, whereby learning is valued as an end in itself. In contrast, a performance goal 
orientation refers to wanting to be seen as being able, whereby ability is demonstrated 
by outperforming others or by achieving success with little effort (Elliot & Church, 
1997). Recently, there has been a theoretical and empirical differentiation between 
performance-approach goals, where students focus on how to outperform others, and 
performance-avoidance goals, where students aim to avoid looking inferior or 
incompetent in relation to others (Cury et al., 2006). 
These goals have been related consistently to different patterns of achievement-
related affect, cognition and behaviour. Being mastery focused has been related to 
adaptive perceptions including feelings of efficacy, achievement, and interest 
(Anderman et al., 2002; Elliot & Church, 1997; Cury et al., 2006). Although the 
research on performance goals is less consistent, this orientation has been associated 
with maladaptive achievements beliefs and behaviours like low achievement, fear of 
failure and superficial cognitive commitment, i.e. the use of ‘surface’ learning 
strategies such as copying, repeating and memorizing (e.g. Cury et al. 2006). Efficacy 
beliefs encountered as an antecedent variable in the achievement goal theory, refers 
to the beliefs in one’s capabilities to organize and execute the courses of action 
required to manage prospective situations (Bandura, 1997). 
Instructional practices 
Environmental factors are presumed to play an important role in the goal adoption 
process and eventually in students’ achievement (Anderman et al., 2002). Elliot & 
Church (1997) underline that if the achievement setting is strong enough it alone can 
establish situation-specific concerns that lead to goal preferences for the individual, 
either in the absence of a priori propensities or by overwhelming such propensities. 
Earlier studies on achievement goals specify various classroom instructional practices 
as contributing to the development of different types of goals and consequently, 
eliciting different patterns of motivation and achievement outcomes (e.g. Ames, 
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1992). Goal orientation theorists lying on a large literature on classroom motivational 
environments focus on six categories that contribute to the classroom motivational 
environment. The categories, represented by the acronym TARGET refer to task, 
authority, recognition, grouping, evaluation and time. Task refers to specific 
activities, such as problem solving or routine algorithm, open or closed questions in 
which students are engaged in; Authority refers to students’ level of autonomy in the 
classroom; Recognition refers to whether the teacher values the progress or the final 
outcome of students’ performance and how the teacher treats  students’ mistakes (as a  
a part of the learning process or as cause for punishment); Grouping refers to whether 
students work with different or similar ability peers; Evaluation refers to how the 
teacher treats assessment, giving publicly grades and test scores, or focusing on  
feedback as a means for improvement and mastery; Time refers to whether the 
schedule of the activities is rigid or flexible.  
This framework has been adapted and developed by goal theory researchers working 
within classroom context (Anderman et al., 2002; Turner et al., 2002). Using 
classroom observations and qualitative analysis, they found that instructional 
practises in classrooms in where students adopted mastery goals differed from 
instructional practises in classroom characterized by students’ low mastery goals or 
high performance goals. Specifically, according to the task variable, in mastery 
oriented classrooms teachers used an active instructional approach, ensuring that all 
students participated in classroom talk and adapted instruction to the developmental 
levels and personal interests of their students, while in low mastery oriented 
classrooms, learning was processed by students listening to information and 
following directions (Anderman et al., 2002; Turner et al., 2002). Regarding 
authority, in high mastery oriented classrooms teachers engaged the class in 
generating the rules, while in low mastery oriented classrooms the teachers presented 
their rules to the students (Anderman et al., 2002). In high mastery classrooms 
teachers emphasized the intrinsic value of learning, while recognition practices were 
characterized by warm praise, which was also task oriented, clear, consistent and 
credible (recognition). High levels of genuine enthusiasm, positive affect and 
enjoyment by these teachers with respect to engaging in academic tasks was also 
observed. In low mastery oriented classrooms teachers used punishment and threats 
with students who did not do what they were told (Anderman et al., 2002). In high 
mastery orientation classrooms students had considerable freedom within the 
classroom-e.g. talking to classmates (autonomy) and peer collaboration (grouping) 
(Anderman et al., 2002). Reversely, in high mastery classrooms teachers emphasized 
students’ performance, relative performance and differential prestige (evaluation) 
while in low mastery classrooms teachers emphasized test scores and grades or 
students’ differential performance on tasks (evaluation). Moreover teachers in high 
mastery classrooms valued the time during the lesson referring to time allocation for 
different activities (time) while students in the low mastery oriented classrooms were 
allowed to work on their paces (Anderman et al., 2002). 
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In mathematics education domain, Stipek et al. (1998) in a relevant study referring to 
instructional practices and their effect on learning and motivation found that affective 
climate was a powerful predictor of students’ motivation and mastery orientation. 
Students in classrooms in which teachers emphasized effort, pressed students for 
understanding, treating students’ misconception and in which autonomy was 
encouraged reported more positive emotions while doing math work and enjoying 
mathematics more than other students while they also scored higher in a fraction test. 
Teachers’ provision of substantive feedback to students rather than scores on 
assignments was also associated with mastery orientation. 
Despite the apparent utility of the list concerning the classroom practices both by 
achievement goal researchers and mathematics educators, very few studies have 
examined these practices in relation to students’ perceptions of achievement goals 
and outcomes in the ecology of regular classroom. To the best of our knowledge none 
of these studies had employed multilevel statistical tools for the identification of 
teachers’ practices that influence students’ specific goals and vis-à-vis students’ 
achievement. In this respect the purpose of this study was: 

• To test the validity of the measures for the six factors: fear of failure, self-
efficacy, interest, mastery goals, performance-approach goals and 
performance-avoidance goals, in a specific social context. 

• To construct and test the validity of an observational protocol that includes 
convergent variables referring to instructional practices in the classroom from 
the mathematics education domain and the achievement motivation one. 

• To identify instructional practices suggested by achievement motivation theory 
and mathematics education theory that affect students’ motivation (mastery 
and performance goals) in the mathematics classroom applying multilevel 
analysis. 

METHOD 
Participants were 321 sixth grade students, 136 males and 185 females from 15 intact 
classes and their 15 teachers. All students-participants completed a questionnaire 
concerning their motivation in mathematics and a test for achievement in the mid of 
the second semester of the school year.  
The motivation questionnaire comprised of six sub-scales measuring: a) mastery 
goals, b) performance goals, c) performance avoidance goals, d) self-efficacy, e) fear 
of failure, and f) interest. Specifically, the questionnaire comprised of 35 Likert-type 
5-point items (1- strongly disagree, and 5 strongly agree). The five-item subscale 
measuring mastery goals, the five-item subscale measuring performance goals, the 
four-item subscale measuring performance-avoidance goals, as well as the five item 
subscale measuring efficacy beliefs were adopted from the Patterns of Adaptive 
Learning Scales (PALS) (Midgley et al., 2000); respective specimen items in each of 
these four subscales were, “one of my goals in mathematics is to learn as much as I can” 
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(Mastery goal),  “one of my goals is to show other students that I’m good at mathematics” 
(Performance goal), “It’s important to me that I don’t look stupid in mathematics class” 
(Performance-avoidance goal), and “I’m certain I can master the skills taught in 
mathematics this year” (efficacy beliefs). Students’ fear of failure was assessed using 
nine items adopted from the Herman’s fear of failure scale (Elliot & Church, 1997); a 
specimen item was “I often avoid a task because I am afraid that I will make mistakes”. 
Finally, we used Elliot and Church (1997) seven-item scale to measure students’ 
interest in achievement tasks; a specimen item was, “I found mathematics interesting”. 
These 35 items were randomly spread through out the questionnaire, to avoid the 
formation of possible reaction patterns.  
For students’ achievement we developed a test measuring students’ understanding of 
fractions. The tasks comprising the test were adopted from published research and 
specifically concerned students’ understanding of fraction as part of a whole, as 
measurement, equivalent fractions, fraction comparison and addition of fractions with 
common and non common denominators (Lamon, 1999). 
For the analysis of teachers’ instructional practices we developed an observational 
protocol for the observation of teachers’ mathematics instruction in the 15 classes 
during two 40-minutes periods. The observational protocol was based on the 
convergence between instructional practices described by Achievement Goal Theory 
and the Mathematics education reform literature. Specifically, we developed a list of 
codes around six structures, based on previous literature (Ames, 1992; Anderman et 
al., 2002; Stipek et al., 1998), which were found to influence students’ motivation 
and achievement. These structures were: task, instructional aids, practices towards the 
task, affective sensitivity, messages to students, and recognition. 
The structure task included algorithms, problem solving, teaching self-regulation 
strategies, open-ended questions, closed questions, constructing the new concept on 
an acquired one, generalizing and conjecturing. We checked whether teachers made 
use of instructional aids during their lesson. Practices towards the task included the 
teacher giving direct instructions to students, asking for justification, asking multiple 
ways for the solution of problems, pressing for understanding by asking questions, 
dealing with students’ misconceptions, or seeking only for the correct response, 
helping students and rewording the question posed. Behaviour referred to affective 
sensitivity included teachers’ possible anger, using sarcasm, being sensible to 
students, having high expectations for the students, teachers’ interest towards 
mathematics or fear for mathematics. Messages to students included learning as 
students’ active engagement, reference to the interest and value of the mathematics 
tasks, students’ mistakes being part of the learning process or being forbidden, and 
learning being receiving information and following directions. Finally, recognition 
referred to the reward for students’ achievement, effort, behavior and the use of 
external rewards by the teachers.   
During the two classroom observations lasted for 40 minutes for each teacher, we 
identified the occurrence of each code in each structure.  
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RESULTS 
With respect to the first aim of the 
study, confirmatory factor analysis was 
conducted using EQS (Hu & Bentler, 
1999) in order to examine whether the 
factor structure yields the six 
motivational constructs expected by 
the theory. 
In the analysis for the identification of 
the six factors, we followed a process 
including the reduction of raw scores 
to a limited number of representative 
scores, an approach suggested by 
proponents of Structural Equation 
Modelling (Hu & Bentler, 1999). 
Particularly, some items were deleted 
because their loadings on factors were 
very low (e.g. for the factor interest the 
item i.3.18. and for the factor fear of 
failure the item f.5.28) and some other 
items were grouped together because 
they had high correlation with each 
other (e.g. for the factor fear of failure 
the items f.1.5 and f.3.17). From the 

analysis the factor performance-
avoidance goals failed to be confirmed. 
Then in line with the motivation theory,  

a five-factor model was tested (fig. 1). To assess the overall fit of the model we used 
maximum likelihood estimation method and three types of fit indices: the chi-square 
index, the comparative fit index (CFI), and the root mean square error of 
approximation (RMSEA). The chi square index provides an asymptotically valid 
significance test of model fit. The CFI estimates the relative fit of the target model in 
comparison to a baseline model where all of the variable in the model are 
uncorrelated (Hu & Bentler, 1999). The values of the CFI range from 0 to 1, with 
values greater than .95 indicating an acceptable model fit.  Finally, the RMSEA is an 
index that takes the model complexity into account; an RMSEA of .05 or less is 
considered to be as acceptable fit (Hu & Bentler, 1999).  
Items from each scale are hypothesized to load only on their respective latent 
variables. The fit of this model was (x2 =691.104, df= 208, p<0.000; CFI=0.770 and 
RMSEA=0.086). After the addition of correlations among the five factors the 
measuring model has been improved (x2 =343.487, df= 198, p<0.000; CFI=0.931 and 
RMSEA=0.049).  

Fig 1: The factor model of students’  
motivation with factor parameter estimates. 
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Concerning the second aim of the study, analysis of the observations involved 
estimating the mean score of each code for the two 40 minutes observations using the 
SPSS and creating a matrix display of all the frequencies of the coded data from each 
classroom. Each cell of data corresponded to a coding structure. From a first glance, 
the observational protocol succeeded in detecting differences in teachers’ practises 
during the mathematics lessons. Notably, teachers 4, 9, 13, 15 used more algorithmic 
tasks than the others, while teachers 2, 4, 7 used more problem solving activities than 
their other colleagues. Open-ended questions were used more by teachers 3, 5 while 
teachers 8 and 14 used more the closed type of questions. Very few teachers made 
use of the visual aids (4, 7, and 8). From the category practices towards the task 
justification of students’ answers were asked from almost all teachers expect from 
teachers 2, 3, 10, 13. Press for understanding characterized teachers’ 6 and 13 
practices, while asking for multiple problem solutions was not popular to this sample 
of teachers. Teacher 5 was characterized by her willingness to help students. 
Regarding teachers’ affective sensitivity, teacher 1 expressed anger while teacher 7 
showed great sensitivity to students. Concerning the structure messages all teachers 
apart from teachers 1 and 15 treated students’ erroneous responses as part of the 
learning process, while the other codes regarding this category were met rarely during 
these lessons. Regarding recognition, teachers 1 and 7 rewarded students for their 
performance. 
According to the third aim of the study, the identification of instructional practices 
suggested by achievement motivation theory and mathematics education that affect 
students’ mastery and performance goals, we applied Multilevel analysis using the 
program MLwin (Opdenakker & Van Damme, 2006). Multilevel analysis is a 
methodology for the analysis of data with complex patterns of variability, with a 
focus on nested sources of variability: e.g. students in classes, classes in schools, etc. 
The main statistical model of multilevel analysis is the hierarchical linear model, an 
extension of the multiple linear regression model to a model that includes nested 
random effects. Multilevel statistical models are always needed if a multi-stage 
sampling design has been employed (a sample of pupils and a sample of teachers) 
because the clustering of the data should be taken into consideration avoiding the 
drawing of wrong conclusions (Opdenakker & Van Damme, 2006). The simplest case 
of this model is the random effects analysis model (null model). The null model 
exhibits only random variation between groups and random variation within groups. 
(e.g. students and teachers). Estimating the variance at the distinguished level (e.g. 
students and teachers) it is possible to see which level is important for the estimation 
of the variance. For example if the estimation variance at student level (level one) is 
much higher that the estimation of the variance at the teacher level, then this means 
that differences between students with respect to the characteristics under study are 
largely related to individual students and not to the teachers.  The null model can be 
expanded by the inclusion of explanatory variables. With the explanatory variables, 
we try to explain part of the variability of the dependent variable. It is possible to 

WORKING GROUP 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 110



  

explain variability at level one as well as in a next-step at level two (Opdenakker & 
Van Damme, 2006). 
In our case a two level model was employed with students’ performance or mastery 
goals as the depended variable and students’ motivational constructs and teachers’ 
practices as the exploratory variables. The first test in the analysis regarding variables 
that influence the development of mastery goals was to determine the variance at the 
student level and teachers’ level without explanatory variables (null model 0). The 
variance at each level reached statistical significance (p<0.05) and this implied that 
MLwiN could be used to identify the variables which were associated with 
achievement in each subject. Regarding mastery goals, student effect was much 
higher than teachers effect (91% and 9% respectively). Following the procedure we 
added in model 1 student demographic variables. Model 1 explained 2% of the total 
variance. From the three variables (education mother-father and gender) only gender 
had statistically significant effect on students’ mastery goals. The variance was 
explained solely to student level (2%). Explicitly, female students demonstrated 
higher mastery goals than male students. In model 2 all affective variables according 
to achievement goals theory were added to the model. Specifically the antecedent 
variables fear of failure and efficacy beliefs were added to the model and also 
performance goals. Model 2 explained 26% of the total variance. The antecedent 
variables had a statistically significant effect to the model, with fear of failure to have 
negative effect, while performance goals did not have any effect. From the 26% of 
the total variance 23% was at the student level and 3% at the teacher level. In Model 
3 we added teachers’ educational background but it turned out not to have any 
statistical significant effect on students’ mastery goals. Then we added to the model 
teachers’ practices concerning the structure Task and again they did not have any 
statistical significant effect to the model. We continue adding the other categories of 
teachers’ practices. The only one that had negative statistical significant effect on 
students’ mastery goals was the absence of visual aids. Model 3 explained 2% of the 
total variance and this variance was explained exclusively to teacher level. 
We followed the same process to identify variables that had significant effect on 
students’ performance goals. We ended that from student level, fear of failure and 
self efficacy had statistically significant effect on students’ performance goals while 
from teacher level the practice, “teacher rewords the question asked” had statistically 
significant effect to students’ performance goals. 
Next, we followed Stipek et al. (1998) process grouping instructional practices in 
each of the six categories regarding the observational protocol together with the ratio 
of open-ended questions to closed questions. The ratio related to the questions had 
statistically significant negative effect on students’ performance goals.  
Figure 2 presents the results of the multilevel analysis in identifying exploratory 
variables that affect students’ mastery and performance goals in mathematics. Dotted 
arrows represent negative effect. 
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Fig 2: Results of the Multilevel analysis on mastery and performance goals. 

CONCLUSION 
Regarding the first aim of the study, data revealed that factors referred to the five of 
the six motivational constructs were confirmed in the Cypriot environment. The 
factor regarding performance-avoidance goals failed to be confirmed in contrast to  
the results of other studies (Cury et al., 2006). This may be due to students’ age-
usually this factor is confirmed in elderly students or to the different cultural context. 
Regarding the second aim of the study, the data revealed important differences in the 
instructional practices used in the mathematics classrooms in line with other studies 
(Anderman et al., 2002; Pantziara & Philippou, 2007; Stipek et al., 1998). However 
the need for in-depth analysis of these practices born due to the study’s evidence that 
while in some classrooms teachers applied the practices suggested by motivation and 
mathematics education to foster students’ motivation, students’ motivation was high 
while their mathematics performance was poor.  
As far as the third aim is concerned, taking into consideration the clustering of the 
data in the multi-stage sampling (sample of pupils and sample of teachers) we applied 
the multilevel analysis to identify variables that have statistically significant effect on 
students’ achievement goals. The results revealed that more effect on students’ 
motivation had students’ variables (gender, fear of failure, efficacy beliefs) while 
only few of the numerous instructional practices suggested by other studies 
(Anderman et al., 2002; Stipek et al., 1998) found to have statistically significant 
effect on students’ motivation. This may be due to the new analytical tools used 
considering the variance between the different level of the depended variables or to 
the small number of teachers involved in the study. Whatever the case is, further 
research is needed using multilevel analysis in domains regarding achievement goals 
and mathematics education for the identification of instructional practices that 
endorse motivation and achievement in mathematics. 
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THE EFFECTS OF CHANGES IN THE PERCEIVED 
CLASSROOM SOCIAL CULTURE ON MOTIVATION IN 

MATHEMATICS ACROSS TRANSITIONS  
Athanasiou C. and Philippou G. N. 

Department of Education, University of Cyprus 
This study investigates the effects of changes in the perceived classroom social 
environment on students’ motivation in mathematics across the transition from 
primary to secondary school and during the transition from one grade level to the 
next within the same school (elementary or secondary school). The comparisons of 
students who perceived an increase, decrease or no change in the classroom social 
environment across the transition to middle school indicated that students’ who 
reported a decline in their classroom social dimensions also reported a decline in 
social aspects of motivation and an incline in negative self-esteem. Furthermore, the 
effect of the changes in the classroom social dimensions on motivation were found to 
be larger across the transition to middle school than across the transition within 
elementary school, whereas they were mirrored in the secondary school transition.   

BACKGROUND AND AIMS OF STUDY 
The period surrounding the transition from primary to secondary school has been 
found to result in a decline in students’ motivation in mathematics (e.g. Athanasiou & 
Philippou, 2007, MacCallum, 1997). This decline was found to be related to certain 
dimensions of the school and classroom culture (e.g. Eccles et al., 1993, Urdan & 
Midgley, 2003). It has been suggested that the two types of schools are very different 
organizations with respect to “ethos” as well as to practices and that this discrepancy 
influences students’ motivation and performance. Most children move from a 
relatively small, more personalized and task-focused elementary school to a larger, 
more impersonal and performance-oriented middle school where they face 
differences in grading and teaching practices and expectations (Midgley et al, 1995).  
The focus of the above studies has been on the academic aspect of motivation and of 
the school environment. However, students’ social perceptions and goals were found 
to influence their motivation within a new school setting and thus are a significant 
part of motivation. The importance of attending to the social aspects of students’ 
transition experiences in order to gain a fuller understanding of young adolescents’ 
motivation in school was reinforced by the study of Anderman & Anderman (1999), 
in which students’ social perceptions made significant, unique contributions to their 
achievement goal orientations. Furthermore, many longitudinal studies documented 
that the discontinuity in the social environment students’ face across the transition to 
secondary school has an effect on motivation in mathematics (e.g. Eccles et al., 
1993). Social discontinuities include changes in the diversity of the student 
population, relations with teachers and classmates and sense of school belonging. 
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In these studies middle school classrooms were characterized by less positive teacher-
student relationships than elementary school classrooms (Midgley et al., 1995). The 
study of Eccles et al. (1993), revealed that the students who moved from the 
mathematics classroom of a high–support teacher (with respect to fairness and 
friendliness) to a classroom of a low-support teacher showed a decrease in their 
ratings of the intrinsic value and the perceived usefulness and importance of 
mathematics, whereas students who experienced a change from low-to-high-support 
teacher showed an increase in their ratings of intrinsic value. Furthermore, Anderman 
& Anderman (1999) found that the feeling of belonging in one’s school and the 
endorsement of social responsibility goals were associated with an increased focus on 
academic tasks and predicted an increased task goal orientation, whereas endorsement 
of social goals for forming peer relationships and maintaining social status were 
associated with an increased focus on the self and predicted an increased ability goal 
orientation. 
All the above longitudinal research shed some light on the nature of motivational 
change and the influence that social classroom and school environmental factors have 
on this process during the transition from primary to secondary school. These studies 
however examined motivational change for students as a whole group assuming and 
inferring that the transition affects all students the same way. This is not necessarily 
the case; recent research in the area of students’ perceptions of their classroom 
environments supports the view that students perceive the same environment in 
variable ways at least on some of its dimensions (Urdan & Midgley, 2003). If there 
are differences in students’ perceptions of their classroom environment across the 
transition which should really be expected, then it is possible that students perceive 
the transition differentially.  
Despite the above theoretical considerations we are aware of only one study, by 
Urdan & Midgley (2003), which examined the effect of moving from a classroom 
perceived to emphasize a mastery goal in elementary school to a performance goal 
structure in secondary school (i.e. that the purpose of engaging in academic work is to 
develop competence or to demonstrate competence respectively). These researchers 
compared students who perceived an increase, decrease and no change in the mastery 
and performance goal structures of their classrooms during the transition to middle 
school and across two grades within middle school. The results of their study 
indicated that changes in the mastery goal structure were more strongly related to 
changes in cognition, affect and performance that were changes in the performance 
goal structure, whereas the most negative pattern of change was associated with a 
perceived decrease in the mastery goal structure of classrooms across the transition to 
middle school. 
The aim of the present research is twofold. Firstly, to examine the effects of changes 
in the perceived classroom social environment on students’ motivation in 
mathematics across the transition from primary to secondary school (grade 6 to 7). To 
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this end the classroom social environment was operationalized focusing on three 
dimensions: (a) teacher fairness and friendliness (FAI/FRI), (b) cooperation and 
interaction (COOP/INTE), and (c) competition (COMPET), whereas students’ 
motivation was conceptualized involving social cognitive (orientations and goals) and 
affective dimensions (self-esteem). Secondly, to investigate whether the changes 
observed in students’ perceptions of classroom social environment and the related 
motivation across the transition to middle school are mirrored across the transition 
from one grade level to the next within the same school context. More specifically, 
the research questions are formulated as follows: 

(1) What are the effects of the direction of change in the perceived classroom 
social environment on students’ motivation in mathematics across the 
transition from primary to secondary school? 

(2) Are the changes observed in students’ perceptions of the classroom social 
environment and the related changes in motivation across the transition from 
primary to secondary school mirrored across the transition from grade 5 to 6 in 
elementary school and across grade 7 to 8 in secondary school? 

METHOD 
Participants in this study were 331 students who were followed over a period of two 
consecutive school years. The students were divided in three Cohorts. The 220 
students in Cohort T (CT) experienced the transition from primary to secondary 
school (grade 6 to 7); the 42 students in Cohort E (CE) were followed over the last 
two years of elementary school (grade 5 to 6), and the 69 students in Cohort S (CS) 
were followed over the first two years in secondary school (grade 7 to 8).  
Data were collected through a self-report questionnaire in the spring semester of each 
school year, since by that time of the year students’ motivation and their perceptions 
of the classroom social environment are well developed and established. The 
questionnaire was comprised of 42 items measuring four dimensions referring to 
students’: (a) social motivational goals (students’ social reasons for engaging in math 
work with 14 items tapping three specific motivational goals such as 
competition/social power, social concern and affiliation e.g. for affiliation “In 
mathematics I try to work with friends as much as possible”); (b) social motivational 
goal orientation (4 items tapping students’ perceptions of how socially oriented they 
are e.g. “I am most motivated when I am showing concern for others in 
mathematics”); (c) self-esteem in mathematics (students’ perceptions of their 
competence in doing mathematics with 8 items tapping two dimensions such as 
positive and negative self-esteem e.g. for negative self-esteem “I often make mistakes 
in mathematics”); and (d) classroom social dimensions (16 items measuring three 
dimensions referring to teacher fairness/friendliness, cooperation/interaction and 
competition e.g. for cooperation/interaction “We get to work with each other in small 
groups when we do math”). The items referring to the first three dimensions were 
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adapted from the Inventory of School Motivation Questionnaire (McInerney, Yeung 
& McInerney, 2000), whereas the items for the latter were adapted from the Student 
Classroom Environment Measure (Eccles et al., 1993). All statements were presented 
at a five-point Likert-type format (1=Strongly Disagree, 5=Strongly Agree). The 
reliability estimates were found to be quite high for all the scales ranging from α=.69 
to α=.88. 
Data processing was carried out using the SPSS software. The statistical procedure 
used in this study was Repeated Measures ANCOVA. Change group (CG-3 levels) 
was the independent, between-groups factor and time of measurement (TM-2 levels) 
was the within-groups repeated measures component. For all the analyses, gender 
was included as a covariate to control for any differences by gender. 
In order to provide answers to the two research questions, three groups of students for 
each of the classroom environment variables were created. To create the three groups, 
students’ classroom environment scores were firstly standardized. Next, the change 
score was calculated by subtracting students’ scores on the first measurement from 
the respective scores on the second measurement, in each classroom dimension. The 
change scores for each dimension were then divided into three groups: (i) increase; 
(ii) no change; and (iii) decrease in classroom environment variable. The groups were 
created by using .50 standard deviations as the cut-off such that students in the 
“increase” groups scored at least half a standard deviation above the mean change 
score, those in the “decrease” groups scored at least half a standard deviation below 
the average change score, and those in the “no change” groups were within .50 
standard deviations either above or below the mean change score. Half standard 
deviation was selected as the cut-off point to make sure that the groups created would 
be different from one another and yet maintain a large number of participants in order 
to allow comparisons across groups. 

RESULTS 
To answer the first research question, CT students’ responses were analysed using 
Repeated Measures ANCOVAs. Table 1 presents the means, standard deviations and 
the F ratios for the Change Group x Time of Measurement interactions (CG x TM) 
for each of the three social dimensions change groups on each of the dependent 
variables. The alphabetical superscript ‘ª’ within each classroom social dimension 
change group indicates that the means in grades 6 and 7 are significantly different 
from one another. Similar numeric superscripts indicate non significant differences 
between group means on variables measured in 7th grade using univariate post hoc 
tests. The .05 level of significance was adopted for these comparisons.  
The analyses indicated that the CG x TM effect was significant for social goal 
orientation, social concern and affiliation goals and negative self esteem for the 
FAI/FRI and the COOP/INTE change groups. Examining the results from the 6th to 
7th grade transition, it appears that the most negative pattern of change in motivation 
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was associated with a perceived decline in FAI/FRI and COOP/INTE classroom 
social dimensions. Specifically, the tests of simple effects within groups indicated 
that students’ social goal orientation, social concern and affiliation goals were 
significantly lower in 7th grade than in 6th grade within the group that perceived a 
decrease in FAI/FRI and in COOP/INTE across the transition to middle school. No 
significant differences were found between the 6th and 7th grade means for either the 
perceived “no change” or “increase” groups. The opposite pattern was observed for 
negative self-esteem, i.e., students’ mean ratings were significantly higher in 7th grade 
than in 6th grade within the group that perceived a decrease in FAI/FRI and in 
COOP/INTE across the transition. The univariate post hoc tests of 7th grade means 
revealed that the mean ratings of students in the FAI/FRI and in the COOP/INTE 
“decrease” change groups on social goal orientation, social concern and affiliation 
goals were significantly lower than the mean ratings of students in the “no change” or 
“increase” groups, whereas their negative self-esteem was significantly higher. Also, 
the analysis of TM effect revealed a significant decline from 6th to 7th grade in social 
goal orientation (F=3.341, p<0.05), social concern (F=8.656, p<0.01) and affiliation 
goals (F=2.946, p<0.05) and a significant incline in negative self-esteem (F=3.038, 
p<0.05). Since no statistically significant differences were found between the means 
of students in the FAI/FRI and in the COOP/INTE “no change” or “increase” 
groups from primary to secondary school for social orientation, goals and negative 
self-esteem, these declines in orientation and goals and the incline in negative self-
esteem were not evident for students who perceived no change or an increase in both 
the above classroom social dimensions. 
The ANCOVA analyses for COMPET change groups indicated that the CG x TM 
effect was significant for social goal orientation, competition/social power, social 
concern and affiliation goals and negative self-esteem. The largest differences were 
associated with a perceived incline in COMPET classroom social dimension. 
Specifically, the tests of simple effects within groups indicated that students’ social 
goal orientation, social concern and affiliation goals were significantly lower in 7th 
grade than in 6th grade within the group that perceived an increase in COMPET 
classroom environment across the transition from primary to secondary school. In 
both the perceived “no change” and “decrease” groups there weren’t any significant 
differences between the 6th and 7th grade means. For competition/social power goal 
and negative self-esteem the opposite pattern was observed since students’ mean 
ratings were significantly higher in 7th grade than in 6th grade within the group that 
perceived an incline in COMPET environment across the transition. The univariate 
post hoc analyses of 7th grade means revealed that the mean ratings of students in the 
COMPET “increase” change group on social goal orientation, social concern and 
affiliation goals were significantly lower than the mean ratings of students in the “no 
change” or “decrease” groups, whereas their competition/social power goal and 
negative self-esteem were significantly higher. Also, the analysis of TM effect 
revealed a significant decline in social goal orientation (F=3.427, p<0.05), social 
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concern (F=9.507, p<0.01) and affiliation goals (F=3.105, p<0.05) from 6th to 7th 
grade and a significant incline in competition/social power goal (F=9.144, p<0.01) 
and negative self-esteem (F=3.247, p<0.05). Since there were no statistically 
significant differences between the means of students in the COMPET “no change” 
or “decrease” groups from primary to secondary school for social orientation, 
competition/social power, social concern and affiliation goals and negative self-
esteem, these declines in orientation and goals and the incline in competition/social 
power goal and negative self-esteem were not evident for students who perceived no 
change or a decrease in the COMPET classroom social environment. 

Teacher fairness and friendliness change groups (FAI/FRI) F Interaction: 
Decrease (N = 62) No change (N = 89) Increase (N = 69) CG by TM Dependent Variables 

6th grade 7th grade 6th grade 7th grade 6th grade 7th grade  
Social goal orientation 3.23ª (.81) 2.60¹ (.93) 3.09 (.97) 2.90² (.95) 3.14 (.84) 2.99² (1.03) 4.873*** 
Compet/social power 2.03 (.95) 2.47 (1.14) 2.24 (1.00) 2.72 (1.12) 2.25 (.89) 2.46 (1.12) ns 
Social concern goal 3.91ª (.87) 3.30¹ (89) 3.95 (.91) 3.79² (.99) 3.90 (.93) 3.72² (1.10) 3.987*** 
Affiliation goal 3.17ª (.89) 2.73¹ (1.05) 3.40 (.96) 3.27² (.95) 3.32 (.93) 3.11² (.91) 4.268*** 
Positive self-esteem 3.70 (.75) 3.06 (1.07) 3.81 (.69) 3.42 (1.10) 3.79 (.74) 3.21 (1.19) ns 
Negative self-esteem 3.21ª (.88) 3.97¹ (.86) 3.27 (.86) 3.49² (.91) 3.39 (.77) 3.48² (.88) 5.488*** 

Classroom cooperation and interaction change groups (COOP/INTE) F Interaction: 
Decrease (N = 78) No change (N = 63) Increase (N = 79) CG by TM Dependent Variables 

6th grade 7th grade 6th grade 7th grade 6th grade 7th grade  
Social goal orientation 3.27ª (.81) 2.56¹ (.84) 3.23 (.80) 2.98² (1.00) 2.96 (.99) 3.03²(1.05) 6.581* 
Compet/social power 1.95 (.84) 2.43 (1.15) 2.24 (.95) 2.46 (.97) 2.37 (1.02) 2.79 (1.20) ns 
Social concern goal 4.02ª (.88) 3.33¹ (.97) 4.05 (.73) 3.83² (1.00) 3.73 (1.01) 3.73²(1.01 5.912** 
Affiliation goal  3.37ª (.98) 2.86¹ (.99) 3.35 (.83) 3.18² (.89) 3.22 (.95) 3.19² (.99) 4.259*** 
Positive self-esteem 3.75 (.76) 3.07 (1.15) 3.80 (.73) 3.18 (1.07) 3.77 (.69) 3.49 (1.12) ns 
Negative self-esteem 3.30ª.(86) 3.92¹ (.95) 3.32 (.72) 3.51² (.82) 3.26 (.90) 3.42² (.88) 5.018** 

Classroom competition change groups (COMPET) F Interaction: 
Decrease (N = 76) No change (N = 64) Increase (N = 80) CG by TM Dependent Variables 

6th  grade 7th grade 6th grade 7th grade 6th grade 7th grade  
Social goal orientation 3.24 (.80) 3.08¹ (.96) 3.09 (.92) 2.92¹ (.91) 3.11ª (.93) 2.59² (1.03) 4.785*** 
Compet/social power 2.35 (1.06) 2.48¹ (1.16) 2.22 (.97) 2.40¹ (1.12) 2.00ª (.79) 2.79² (1.08) 4.955*** 
Social concern goal 3.88 (.94) 3.72¹ (.95) 3.92 (.88) 3.74¹ (.89) 3.97ª (.88) 3.42² (1.10) 3.877*** 
Affiliation goal  3.40 (1.00) 3.36¹ (1.04) 3.24 (.87) 3.17¹ (.88) 3.29ª (.91) 2.71² (.95) 3.744***. 
Positive self-esteem 3.91 (.70) 3.21 (1.07) 3.71 (.65) 3.25 (1.10) 3.69 (.78) 3.30 (1.21) ns 
Negative self-esteem 3.39 (.89) 3.55¹ (.90) 3.21 (.75) 3.41¹ (.87) 3.27ª (.86) 3.85² (.89) 4.057*** 
Table 1: Means, Standard Deviations and Summary of Repeated Measures ANCOVAs 
on motivational variables by changes in classroom social dimensions 

*p<0.001 **p<0.01  ***p<0.05 

To answer the second research question, the same set of analyses were conducted as 
students moved from 5th to 6th grade in elementary school (CE) and from 7th to 8th 
grade in secondary school (CS). Table 2 presents the means and the F interaction (CG 
x TM) for all the classroom social dimension change groups for students in CE and 
CS. Standard deviations are not presented due to space limits.  
Regarding the comparability of results involving the direction of changes in 
classroom social dimensions between the elementary to secondary school transition 
(grade 6 to 7) and the elementary school transition (grade 5 to 6), the patterns of 
results involving all the classroom social dimensions change groups across the 
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transition from primary to secondary school were not replicated during the 
elementary school transition. There were no significant interactions for COMPET 
change groups, whereas for FAI/FRI and COOP/INTE only one significant 
interaction was observed involving social goal orientation with students’ perceptions 
across the transition within elementary school changing the same way as the 
perceptions of students across the transition from primary to secondary school. 

 Teacher fairness/friendliness (FAI/FRI) Cooperation/interaction(COOP/INTE) Competition (COMPET) 

 CE CS CE CS CE CS 

 5th 6th 7th 8th 5th 6th 7th 8th 5th 6th 7th 8th 

Social orientation             
     Decrease 3.44ª 3.12¹ 3.36ª 2.62¹ 3.47ª 3.02¹ 3.50ª 2.57¹ 3.33 3.37 3.39 3.25¹ 
     No change 3.75 3.60² 3.12 2.95² 3.37 3.48² 3.25 3.17² 3.40 3.36 3.14 3.08¹ 
     Increase 3.31 3.57² 3.12ª 3.43³ 3.62 3.71² 2.85ª 3.09² 3.66 3.55 2.96ª 2.57² 
     F Interaction: CG by TM 3.181*** 6.145** 3.560*** 5.562** ns 2.991*** 
Compet/social power goal             
     Decrease 2.15 2.17 2.63 2.27 2.43 2.25 2.73 2.51 2.20 2.23 2.63ª 2.24¹ 
     No change 2.16 2.19 2.65 2.56 2.06 2.07 2.58 2.39 2.28 2.07 2.59 2.44¹ 
     Increase 2.17 2.13 2.65 2.72 2.05 2.20 2.66 2.77 2.05 2.16 2.73ª 3.04² 
     F Interaction: CG by TM ns ns ns ns ns 4.777*** 
Social concern goal              
     Decrease 3.86 3.71 4.00ª 3.66¹ 3.18 2.89 3.59ª 3.05¹ 3.66 3.30 4.01 3.89¹ 
     No change 3.80 3.50 3.71 3.62¹ 3.96 3.90 3.94 3.80² 3.79 3.93 3.73 3.77¹ 
     Increase 3.78 3.75 3.72 3.73¹ 4.17 4.03 3.71ª 3.94² 3.95 3.77 3.55ª 3.19² 
     F Interaction: CG by TM ns 2.998*** ns 3.840*** ns 3.241*** 
Affiliation goal              
     Decrease 3.38 3.05 3.68ª 3.27¹ 3.41 2.89 3.46ª 2.71¹ 3.26 3.25 3.29 3.05¹ 
     No change 3.61 3.26 3.12 2.92² 3.18 2.87 3.39 3.28² 3.29 2.88 3.11 3.16¹ 
     Increase 3.00 2.70 2.75 2.89² 3.35 3.19 2.57ª 2.80¹ 3.35 2.83 3.03ª 2.73² 
     F Interaction: CG by TM ns 3.125*** ns 4.553*** ns 3.310*** 
Positive self-esteem             
     Decrease 4.01 3.97 3.34 3.23 3.31 3.49 3.34 3.21 3.51 3.44 3.47 3.27 
     No change 3.73 3.67 3.48 3.32 4.12 3.91 3.51 3.35 4.13 4.15 3.42 3.26 
     Increase 3.87 3.87 3.73 3.52 4.05 4.08 3.66 3.46 3.98 3.97 3.71 3.59 
     F Interaction: CG by TM ns ns ns ns ns ns 
Negative self-esteem             
     Decrease 3.40 3.42 3.12ª 3.60¹ 3.06 3.16 3.59ª 3.88¹ 2.94 3.00 3.30 3.20¹ 
     No change 3.34 3.36 3.29 3.16² 3.43 3.42 3.09 3.08² 3.72 3.76 3.26 3.19¹ 
     Increase 3.01 3.01 3.41 3.34² 3.16 3.16 3.33 3.23² 3.16 3.14 3.27ª 3.63² 
     F Interaction: CG by TM ns 3.565*** ns 3.243*** ns 2.987*** 

Table 2: Means and Summary of Repeated Measures ANCOVAs on motivational 
variables by changes in classroom social dimensions for students in CE and CS 

*p<0.001 **p<0.01 ***p<0.05 
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On the contrary, the patterns of changes in classroom social dimensions change 
groups for students across the transition from primary to secondary school were 
mirrored for students across the transition within secondary school, with some 
notable exceptions. Firstly, social goal orientation increased significantly from 7th to 
8th grade among those students who perceived an increase in FAI/FRI and 
COOP/INTE classroom social environment but decreased significantly for those 
students who perceived a decrease in FAI/FRI and COOP/INTE social environment 
over time. A similar pattern was observed for the analysis regarding social concern 
and affiliation goals as the dependent variable for the COOP/INTE social dimension. 
In addition, the comparison of the differences found across the transition to secondary 
school (6th to 7th grade) with those found during middle school (7th to 8th grade) 
among the COMPET social dimension change groups revealed similar directions of 
change for social orientation, social concern and affiliation goals and negative self-
esteem. However, a significant difference over time was found for the 
competition/social power goal. The students who moved from 6th to 7th grade and 
perceived an increase in the COMPET social dimension of their classroom reported 
endorsing competition/social power goals significantly more, whereas students in the 
no change or decrease groups did not change significantly in their adoption of 
competition/social power goal. But when students moved from 7th to 8th grade, the 
endorsement of competition/social power goal decreased significantly among those 
students who perceived a decrease in the COMPET social environment over time. 

DISCUSSION 
The results of the study suggest that when students make the transition to middle 
level schools they are likely to move into classrooms that are characterized by less 
teacher-student relations, less cooperation and interaction whereas competitiveness is 
emphasized. Despite those general trends, there are students who perceive no 
difference in their classroom social environment before and after the transition and 
other students who perceive an increase in their classroom social orientation. Recent 
studies have contributed to our understanding of what occurs within classrooms, but 
nothing is known about the effects of moving from one classroom social environment 
to another. Thus, while it has been documented that the classroom social environment 
changes after the transition from primary to secondary school, it remains unclear 
what effects these differences might have on students’ motivation in mathematics. 
The present study shed some light on these issues. 
More specifically, the results of the study revealed that students who reported a 
decline in their classroom social environment across the transition to middle school 
also reported a decline in the social aspects of their motivation and an increase in 
negative self-esteem. Also, it was found that among students who reported an 
increase in the social environment of their classrooms after the transition, the general 
negative pattern of change in motivation was not evident. These results suggest that 
whereas a perceived increase in classroom social dimensions has advantages, the 
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disadvantages associated with a perceived decrease in the classroom social 
environment are even stronger. Perhaps social messages in the classroom are more 
evident to students when they are first removed than when they are perceived to be 
added. In other words, students may not notice the presence of social dimensions in 
the classroom as much as they notice their absence. This may be particularly true 
when students move from what has been described as the more nurturing elementary 
school environment to the more impersonal middle school classroom environment 
(Anderman & Anderman, 1999).  
The changes in motivation associated with changes in the perceived classroom social 
dimensions were found to be larger during the transition to middle school than they 
were during the last two years in primary school. This finding is pretty logical taking 
into consideration the fact that the classroom environment in elementary school is 
almost the same across grades. On the contrary, the effect of changes in the perceived 
classroom social environment and changes in motivation that were found across the 
transition to middle school were replicated within the first two yeas of middle school. 
Therefore, the stress of moving to middle level schools does not enlarge the size of 
the effects of changes in the perceived classroom social dimensions on motivation, 
despite the fact that previous research has documented that the transition to middle 
level school can be a stressful time in students’ lives (e.g. Eccles et al., 1993).  
Although the size of the changes in motivation associated with changes in the 
perceived classroom social environment were quite similar across the transition to 
middle school and within the first two years in middle school, there were some 
interesting differences in the direction of the changes and in which change groups the 
largest differences were found. The changes in the means were largest among 
students in the decrease groups for FAI/FRI and COOP/INTE dimensions from 6th 
to 7th grade. For students in the 7th to 8th transition the differences within these groups 
remained whereas differences in the FAI/FRI and COOP/INTE increase groups 
were found since students’ who perceived an increase in the above social dimensions 
reported higher social orientation and goals and lower negative self-esteem. It also 
appears that the pattern of change among the COMPET social dimension change 
groups differed across the two time periods of the study. For example, the COMPET 
increase group reported a decrease in motivation from 6th to 7th grade, whereas when 
students made the transition from one grade to the next within middle school the 
COMPET decrease group reported an increase in their motivation.  
These shifting patterns of results are evident due to the fact that the transition to 
middle school influences the salience of the presence or absence of social messages in 
the classroom (Anderman & Anderman, 1999). When moving from a smaller and 
perhaps more social oriented elementary school environment to a middle school 
environment, students may be particularly aware of decreases in the emphasis on 
social orientations and goals in the classroom, creating stronger effects on motivation 
among those students who perceive a decrease in the classroom social environment. 
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Once familiar and comfortable with the middle school environment, however, 
increases in the classroom social environment become as salient as decreases and the 
effects of these two types of change become more even.   
The findings of the present study highlight the effects of changes in the classroom 
social environment on students’ motivation in mathematics during the transition from 
one school context to another or from one grade level to the next within the same 
context. Therefore, longitudinal studies examining these issues can assist in 
unravelling the complexity of motivational change across transitions. Such studies 
should examine different aspects of motivation (academic, social and affective) and 
various dimensions of the classroom or school environment. This multidimensional 
perspective is very important in order to understand not only the effects of what is 
more prevalent in classrooms but in determining what the most facilitative 
environments are, even if they are uncommon, in order to test the effects of these 
environments on the nature of change in students’ motivation in mathematics. Such 
information will be useful for teachers, educators and policy makers in their planning 
to make systemic transitions easier so fewer students are lost.  
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“AFTER I DO MORE EXERCISE, 
I WON'T FEEL SCARED ANYMORE” – 

EXAMPLES OF PERSONAL MEANING FROM HONG KONG 
Maike Vollstedt 

University of Hamburg, Germany 
What kind of meaning do students relate with mathematics education? To answer this 
question, the concept of personal meaning is developed and integrated in an interplay 
with context and culture. Personal meaning hereby denotes the personal relevance 
students relate with a certain action or object. Finally, the concept is illustrated with 
an example of personal meaning constructed by a 15-year-old student from Hong 
Kong. Along this example, the relation of personal meaning and (learning) culture is 
disclosed. 

INTRODUCTION 
The demand for meaning in the context of mathematics education and education in 
general has been noted for many years. Hurrelmann stated in the early 1980ies that 
students are in the need of meaning when dealing with learning contents at school 
(Hurrelmann, 1983). But what exactly is understood by the term meaning when 
thinking about school education? Do educators and students denote the same concept 
when using the term? To be more precise: What kinds of meaning are there? And 
which meaning do students see when dealing with mathematics in school context? To 
shed some light on the obscurity of this realm, this paper starts with briefly presenting 
different understandings of meaning before the focus is put on the perspective of the 
students. Then, the concept of personal meaning is related to the notions of context 
and culture. The discussion shows in what way personal experiences and perspectives 
are important for the student to construct meaning. Finally, examples of personal 
meaning constructed by a 15-year-old Hong Kong student are presented to illustrate 
the concept and to show its relations to the (learning) culture the student has been so-
cialised in. 

FROM MEANING TO PERSONAL MEANING 
Meaning: A blurred concept 
A review of the relevant literature shows that very different understandings of mean-
ing are used. The notion may refer for instance to the act of leading the schema of an 
unconscious sensori-motor or mental activity to consciousness (Thom, 1973), to the 
development of a certain mathematical concept over time (Bartolini-Bussi, 2005), or 
to the collectively shared understanding and application of mathematical concepts 
(Biehler, 2005). These kinds of meaning deal primarily with mathematical concepts 
and develop a theory about its referents. 
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On the other hand, meaning can also be understood as a condition for students to en-
gage in the action of learning (Alrø, Skovsmose & Valero, 2007), i.e. as an integrated 
aspect of acting (Lange, 2007) and the educational situation (Skovsmose, 2005), or as 
the personal relevance an object or action has for a certain student (Vollstedt, 2007). 
These interpretations move the focus from the meaning of concepts to the meaning of 
action, i.e. the educational process and the perspective of the students. The term 
meaning is therefore used here in a personal sense (Kilpatrick, Hoyles & Skovsmose, 
2005). 
Quite important differences between the understandings of meaning as described in 
the last two paragraphs can be detected. Howson therefore points out that 

one must distinguish between two different aspects of meaning, namely, those relating to 
relevance and personal significance (e.g., ‘What is the point of this for me?’) and those 
referring to the objective sense intended (i.e., signification and referents). (Howson, 
2005, p. 18) 

To sharpen the terminology used, I will use the more specific terms personal mea-
ning when denoting the personal relevance of an object or action for a certain person, 
and objective or collective meaning when denoting a collectively shared meaning of 
an object or action (Vollstedt, 2007; Vollstedt & Vorhölter, 2008 [1]). 
Characteristics of personal meaning and its construction 
As described in Vollstedt (2007), some assumptions can be made concerning personal 
meaning. It is characterized by the following traits: 
− Personal meaning is subjective and individual. This means that every person con-

structs his/her own meaning with respect to a certain object or action. As the con-
struction of meaning is not collective but individual, different students who attend 
the same lesson can also construct different meanings relating to the same object 
or action. 

− The construction of personal meaning is also context bound. Here, context denotes 
on the one hand the subject context as well as the situation in the classroom. On 
the other hand, it also embraces the personal context of the students (see below). 

− Personal meanings can be reflected on but normally do not have to. This means 
that the process of the construction of personal meaning can in some parts be 
dominant in the situation so that one is aware of it (e.g. in an Aha-experience); the 
meaning enters consciousness. On the other hand, meaning may remain latent and 
can be constructed implicitly. 

The student's perspective 
Bearing in mind that there are different understandings of meaning in relation with 
mathematics education, one has to decide which perspective to put the focus on: col-
lective or personal meaning? This means one has to ask whether mathematical con-
cepts or the students are in the centre of attention. 
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My dissertation project reported on in this paper (see below) evolves from the context 
of the Graduate Research Group of Educational Experience and Learner Develop-
ment located at the University of Hamburg. In this research group we investigate 
processes of learning and Bildung from the learner's perspective. Special attention is 
paid to the individually experienced tensions resulting from societal or institutional 
demands on the one hand, and the learner's individual responses being rooted in 
his/her biography on the other hand. On the one hand, special emphasis is put on the 
way how students acquire knowledge and skills. On the other hand, research is done 
about how they develop the ability to come to decisions and to act responsibly in an 
increasingly complex and difficult world (Graduiertenkolleg Bildungsgangforschung, 
2006). 
Due to the connection to the field of Educational Experience and Learner Develop-
ment, the focus of my study lies clearly on the learner's perspective. The study seeks 
to find out what kinds of personal meanings students construct in the context of 
mathematics education. Like Lange I therefore want to “look with children” (Lange, 
2007, p. 271) instead of looking at them. 
Personal meaning, context, and culture 
Personal meaning cannot be constructed in a vacuum but is related to context. Con-
text is here used as a cover term for both, situational context (i.e. context of the learn-
ing situation in terms of topic as well as classroom situation) and personal context. 
The personal context of a student then may consist of his/her personal traits (i.e. as-
pects which concern the student’s self like his/her self-concept, motivation, or be-
liefs) and his/her personal background (i.e. aspects which concern the world around 
the student like his/her socio-economic status, migration background, or surrounding 
(learning) culture) (Vollstedt & Vorhölter, 2008). 
Mercer describes context from the student’s perspective in the following way: 

What counts as context for learners […] is whatever they consider relevant. Pupils ac-
complish educational activities by using what they know to make sense of what they are 
asked to do. As best they can, they create a meaningful context for an activity, and the 
context they create consists of whatever knowledge they invoke to make sense of the task 
situation. (Mercer, 1993, pp. 31–32, italics in original) 

Therefore the student decides which information and experiences are relevant for 
him/her to deal with the given task. I interpret Mercer’s description in a broad way as 
not only knowledge but also for instance beliefs, goals or other kinds of personal 
traits or background may be relevant for the student in a learning situation. These are, 
however, object to cultural influence as culture has a strong impact on the way how 
learning takes place in any learning situation (Leung et al., 2006). 
This understanding goes along with Mercer, who states that learning in the classroom 
depends both on culture and context as learning is, 
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(a) culturally saturated in both its content and structure; and (b) accomplished through 
dialogue which is heavily dependent on an implicit context constructed by participants 
from current and past shared experience. (Mercer, 1993, p. 43). 

When we take for instance the East Asian and the Western traditions, both, culture 
and context of a learning situation are very different as they are based on Chi-
nese/Confucian and Greek/Latin/Christian traditions respectively (Leung, 2001). In 
how far culture also has an impact on the construction of personal meaning will be 
shown in the following section with the help of an example from Hong Kong. 

PERSONAL MEANING CONSTRUCTED BY A HONG KONG STUDENT 
To illustrate the concept of personal meaning, I will present some findings from a 
qualitative study which seeks to find out similarities and differences between the per-
sonal meanings constructed by students in two different learning cultures, namely 
Germany and Hong Kong. I will restrict myself here to Hong Kong data and results. 
The study 
In total, the study is based on 33 interviews with 15- and 16-year-old students in 
Germany (form 9 and 10) and Hong Kong (Secondary 2 and 3) [2]. In Germany I in-
terviewed 16 students attending a grammar school; the 17 Hong Kong students at-
tended band one EMI-schools (schools with the highest academic standards and Eng-
lish as medium of instruction [3]). The interviews began with a phase of stimulated 
recall (Gass & Mackey, 2000) based on a video-sequence of five to ten minutes from 
the last mathematics lesson the interviewee attended. The student was asked to utter 
and reflect on his/her thoughts he/she had when having attended the lesson. This was 
followed by a guided interview about various topics like the student's beliefs about 
and attitudes towards mathematics (lessons), his/her connotations of mathematics 
(lessons), or the feelings he/she associates with mathematics (lessons), i.e. personal 
traits. Aspects of personal background were not explicitly asked for [4]. In average, 
the interviews lasted for about 35 to 45 minutes. In the style of grounded theory 
(Strauss & Corbin, 1996), the theory of personal meaning was refined and deepened 
in the process of data evaluation. Data evaluation itself was a coding process follow-
ing grounded theory with the aim to construct different types of personal meaning 
evolving from the data. These types are then reflected on from a cultural perspective. 
Personal meanings constructed in the context of mathematics education in Hong 
Kong 
Emma, a 15-year-old girl from Hong Kong, attends a highly selective band one 
school in which the classes are divided into academic achievement. She is a member 
of class Secondary 3C, which is the class of the top 40 students of her year. Although 
she attends this class, she explains that she has difficulties with mathematics and 
shows a low mathematical self-concept (Marsh, 1986). This low self-perceived ability 
in mathematics, being part of her personal traits (i.e. personal context), is an impor-
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tant precondition for the personal meaning she constructs in relation with learning of 
mathematics at school. The following extract from the interview ([5]) may help to il-
lustrate this point: 

99 Interviewer: First of all, what comes to your mind when you hear the word mathe-
matics? 

100 Emma: First, at the beginning I feel, I'm afraid of mathematics. Because it is 
difficult for me to think. Think is the main problem for me. When I 
saw the mathematics sentence questions, I will feel scared. I think I 
don't understand, whether I understand that question or not, so that I 
feel scared. But after I do more exercise, I won't feel scared anymore 
and I feel I am safe. 

101 Interviewer: So is it because of the language, the problem is given in or is it be-
cause it's something unknown, or do you know why you are scared? 

102 Emma: I think it's not the language problem. I think is my problem because I 
think very slow. So I'm afraid I can't catch up with the other class-
mates. 

103 Interviewer: But you are in C class and C class is the best, isn't it? 
104 Emma: It is very difficult for me to go into this class because there is many 

pressure. There are many students are get high marks. So, there will 
be against students and students. So I need to study hard. 

We can see that Emma comes to her low mathematics self-concept by means of inter-
nal and external references (Marsh, 1986). On the one hand she negates that her diffi-
culties in mathematics are due to the fact that the mathematical problems and lessons 
are given in English (101-102), which is not her first language. The internal compari-
son of her self-perceived verbal ability with her self-perceived mathematics ability 
(Marsh, 1986) make her come to this conclusion. She also, on the other hand, com-
pares her abilities in mathematics with those of her classmates (102, 104), i.e. signifi-
cant others in her frame of reference (Marsh, 1986). Due to the selective process, 
there are lots of very good students in her class so that it is not astonishing that Emma 
experiences high pressure when she compares her own achievement with the ones of 
her classmates. Especially as she mentions that there is quite some competition going 
on between the students (104). 
The reason Emma gives for her difficulties with mathematics is that she has problems 
to think fast enough (100, 102). Therefore she stresses that actively doing mathemat-
ics can help “train us our mind and the logic” (66). Also, practice can help her to 
overcome her difficulties (100) as well as meet the pressure experienced between the 
students (104). She also refers to this point in another sequence of the interview in 
which she explains the importance of good grades with relation to the pressure caused 
by the Hong Kong Certificate of Education Examination (HKCEE): 

198 Interviewer: How important is it for you to achieve the mark you want to achieve 
in quizzes, or tests, or examinations, or whatever? 
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199 Emma: Do more exercise. And when you see the questions, you should not 

feel afraid of them. Just like homework or worksheets, not a quiz or 
exams. So that we can relax and we won't feel more pressure. 

200 Interviewer: Is it important for you to get good marks? 
201 Emma: Yes, because we need to study in form four. And when we study in 

form five, there is Hong Kong CEE. It is very important because if we 
got a pass in a Hong Kong CEE we can study in form six and form 
seven. And if we are not pass in a Hong Kong CEE, maybe we can't 
study in form six, form seven and so that at that time maybe we need 
to find a job. But it is very difficult to find a job with form five level 
because many companies needs a person who got a university level. 
So the competition is very big. 

Emma describes how practice can help to overcome anxiety and pressure as quizzes 
and exams may lose their threatening power when having done enough exercises be-
forehand (199). Therefore she is of the opinion that “it is not enough for us to do the 
school work. We should do more, so we find more practice exercise” (230). Her aim 
is to “remember all the steps” (230) necessary to solve a question. As a consequence 
she can relax and does not feel more pressure (199). On the other hand, she explains 
that the results of the HKCEE are so important for Hong Kong students as their future 
depends on them (201). This means that Emma reflects here on her future opportuni-
ties or foreground (Skovsmose, 2005). 
To meet this high pressure and competition, the warm and friendly atmosphere that 
relates her with the teacher is very important for her: 

203 Interviewer: Which feelings do you relate with mathematics lessons? 
204 Emma: Happy. 
205 Interviewer: Why? 
206 Emma: Because teacher is our friend and a friend teaches us things and it will 

be easy to remember a friend’s words. So that we will more easily to 
understand mathematics and the explanation. So I think Ms. Wong’s 
teaching method is good for us. 

Describing her teacher as “friend” (206) shows Emma’s strong need for relatedness 
(Ryan & Deci, 2004) with the teacher and its importance for her learning (206). This 
positive relation is the cause that Emma relates a happy feeling with mathematics les-
sons (204) in spite of great pressure and competition. 
Taken together we can describe Emma as a girl with low mathematical self-concept 
who suffers from the high pressure experienced in her learning environment. There-
fore she fears mathematics and examinations, especially the HKCEE. The situational 
context as well as personal traits are therefore highly influential for the personal 
meanings Emma constructs. The positive atmosphere in the classroom (resulting 
from the good relation with the teacher) opposes high pressure. In addition, studying 
hard is soothing preparation for important exams for Emma and works against her 
low mathematical self-concept. 
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Discussion from a cultural perspective 
Emma's personal context as described in the last section can be explained with refer-
ence to the culture she was socialised in, i.e. the Chinese (a Confucian Heritage Cul-
ture (CHC) (Wong, 2004)). Leung shows that the CHC does have influence on how 
mathematics is taught in schools because “there exist distinctive features of mathe-
matics education in East Asia and [...] those features are expressions of distinctive 
underlying cultural values” (Leung, 2001, p. 48). He identifies six features of mathe-
matics education in East Asia and contrasts them with features in Western countries. 
To provoke discussion, he formulates these features in the form of the following six 
dichotomies (East Asia vs. West): product (content) vs. process; rote learning vs. 
meaningful learning; studying hard vs. pleasurable learning; extrinsic vs. intrinsic 
motivations; whole class teaching vs. individualised learning; and concerning the 
competence of teachers: subject matter vs. pedagogy (Leung, 2001). Leung, however, 
stresses the point that 

[i]t does not mean that all East Asian societies are on one side of the dichotomies 
and all Western countries are on the other side. Very often, it is a matter of the 
relative positions of the two cultures on a continuum between two extremes rather 
than two incompatible standpoints. (Leung, 2001, p. 38) 

Emma is certainly not the only student with a low mathematical self-concept who 
studies hard and practices as much as possible to pass the HKCEE. This behaviour is, 
as far as I can judge from observation and data evaluation, somehow typical for Hong 
Kong students. It seems to be culturally determined and can be related to the three 
features of East Asian mathematics education that refer to students' behaviour, 
namely rote learning, studying hard, and extrinsic motivation. 
Emma's attitude to practice as many tasks as possible can be explained by the Chinese 
belief that practice makes perfect (Li, 2006). It is closely linked with the feature of 
rote learning which Leung describes to be rooted in the East Asian view on the nature 
of mathematics learning. In East Asia, rote learning or memorization are not nega-
tively connoted but, on the contrary, accepted and necessary steps of learning (Leung, 
2001). Also, memorization and understanding are not necessarily separated (as a 
Western view might presume) but may be intertwined to lead to higher quality out-
comes (Dahlin & Watkins, 2000). 
Closely linked to the belief that practice makes perfect is the belief that studying hard 
is necessary to gain deep knowledge of the subject. This belief comes from the East 
Asian view that learning is necessarily accompanied by hard work (Leung, 2001). 
How deeply rooted this belief is in China can be deduced from the Chinese characters 
denoting education: 教育. They consist of different parts which mean 'young people' 
(lower left part of the first character), 'hard burden' (upper part of the first character), 
and 'development' (second character). So taken together the characters of 'education' 
confer the idea that “young people grow and develop under the condition in which 
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they make every endeavor to tackle tough tasks” (Li, 2006, p. 131). Therefore, dili-
gence and effort are needed to come to a deep level of plea-sure and satisfaction as 
the outcome of study. 
Finally, Emma studies hard to prepare herself for the HKCEE, which she has to sit in 
2.5 years. Although the HKCEE is still fairly far in her future, it has already quite 
some power over Emma. This power comes, due to the large population, on the one 
hand from the serious competition between students for university admission. There 
is, however, also a historical argument of the big importance of exams in China or 
Hong Kong respectively. Throughout history, education has been a way for social 
advancement insofar as examinations had to be taken to be selected for important of-
ficer positions (Li, 2006). In addition, examinations are a warrantable source of moti-
vation in the East Asian understanding. As Leung points out, “East Asians believe 
that, being human, we need some 'push' in our learning” (Leung, 2001, p. 43). There-
fore, an optimal level of pressure is helpful to direct students' energy and attention to 
study and to learn. 
From this illustration we can see that culture has an impact on the context of the indi-
vidual in different ways: culture shapes the identity of mathematics education (see 
Leung (2001)) and with it the learning situation, and cultural beliefs seem to deter-
mine the individual’s actions and beliefs about learning. 

CONCLUSION 
The discussion of personal meaning has shown in what way the personal context is 
important for constructing personal meaning in the context of mathematics education. 
It is of special importance that personal meaning may be explained with reference to 
culture (the Confucian Heritage Culture in Emma's case). Her personal meaning 
(practising mathematics soothes and prepares for important exams) could be related 
to the CHC on three levels. Some of her personal traits (being diligent) as well as 
some of the actions she carries out in line with her personal meaning (working hard, 
practising as much as possible) seem to be rooted in cultural beliefs which are part of 
the CHC culture. So – as culture seemingly does matter for the construction of per-
sonal meaning – it is at near hand to support Leung, Graf & Lopez-Real, who assume 
that “the impact of cultural tradition is highly relevant to mathematics learning” 
(Leung et al., 2006). 

NOTES 
1. The German term for personal meaning we use in our research is Sinnkonstruktion. Objective or 
collective meaning on the other hand are equivalents of Bedeutung. 

2. In Hong Kong, compulsory schooling starts with primary school, which lasts for 6 years (Pri-
mary 1 to Primary 6). Subsequently students attend up to 7 years of secondary school. After Secon-
dary 5, the Hong Kong Certificate of Education Examination (HKCEE; similar to GCSE in the 
United Kingdom) has to be sit. 
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3. Secondary schools in Hong Kong are divided in band one to three. This division is based on the 
achievement of their students in the HKCEE. After finishing primary school, Hong Kong students 
are divided into different groups according to their achievement in relation to the standing of their 
school. Only high-achieving students are allowed to attend a band one school after primary school. 

4. All students come from rather privileged and well-educated background. This can be argued by 
the kind of school they attend (private band one school/grammar school). For other aspects it was 
assumed that interviewees would give the information voluntarily or could be asked about it. 

5. The transcripts of the interviews are simplified in language in the way that stuttering and break-
ups are left out; grammatical mistakes are not corrected but left unchanged. As Emma is very fluent 
in English, it was not necessary to mark hesitation etc. in the quoted sequences. 
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Abstract 
In this paper we provide a partial description of certain facets and experiences that 
are central to the development of emotional knowledge from the retrospective 
perspectives of two highly experienced mathematics teachers in middle and high 
school. One of the study participants refers to the emotional knowledge she 
developed over the years regarding her interactions with her students, while the 
second participant also refers to the emotional knowledge she developed regarding 
her interaction with the school principal. Both indicate the differences in their 
emotional reactions between the first practice years and the years after. The 
differences are seen primarily in the type and in the intensity of their emotions. While 
negative feelings mostly accompanied the first years, later years were accompanied 
by more positive emotions. 
 1. Introduction  
Teaching and emotions are inseparable. Emotions are dynamic parts of ourselves, and 
whether they are positive or negative, all organizations, including schools, are full of 
them (Hargreaves, 1998). In his literature review, Zembylas (2007) asserts that 
although "teacher knowledge" has become a major area of exploration in educational 
research, limited attention is given to the emotional aspects of teaching. While 
Shulman's (1987) work on pedagogical content knowledge (PCK) was further 
investigated and discussed by many researchers, teachers' understandings of 
emotional aspects of teaching and learning continued to be ignored. Zembylas argues 
that "any effort to expand current conceptions of PCK should include the connection 
between PCK and emotional knowledge (EK) in general – that is, a teacher's 
knowledge about/from his or her emotional experiences with respect to one's self, 
others (e.g. students, colleagues), and the wider social and political context in which 
teaching and learning takes place" (p. 356). Furthermore, Zembylas continues, in 
order to teach well, "teachers must be able to connect their emotional understanding 
with what they know about subject matter, pedagogy, school discourses, personal 
histories, and curriculum" (p. 364). In this paper we provide a partial description from 
a study we conducted that focused on themes identified by teachers as central to their 
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development of EK.  We present two case-studies of mathematics teachers, each of 
whom has more than 30 years of teaching experience.  
2. Theoretical background 
In the process of determining mathematics teachers' qualifications, teacher educators 
focus on various types of knowledge identified as essential for good teaching: content 
knowledge, didactical knowledge, knowledge about students, and knowledge of class 
management (Shulman, 1987; Shulman, 2000). Often these types of knowledge are 
discussed, separately on the assumption that teachers are capable of integrating them 
into a coherent whole. However, issues concerning emotional aspects of teaching and 
their interrelations with the above knowledge types, are rarely discussed in 
mathematics teachers' training programs.  
Planes and types of EK. Zembylas (2007) finds a reciprocal relationship between 
PCK and EK, and argues that the latter "occurs on different planes as there are 
different types of EK that are aspects of PCK" (p. 358). These planes are: individual, 
relational, and socio-political. The individual plane refers to how teachers experience 
and express their EK on the personal plane; the relational plane refers to how teachers 
use EK in their relationships with students; and the socio-political plane refers to EK 
of the institutional and cultural context of schooling and its influence on teachers' 
curricular decisions and actions. There is no hierarchical order between the three 
planes. Their boundaries are blurred, and mutual influence and interaction exist 
between them.  
Positive vs. negative emotions. Smeltzer (2004) studied the emotions of beginning 
teachers, and discerned positive and negative emotions according to their 
characteristics and forcefulness, as they appeared in the teachers' reactions.  The 
categories of positive emotions include: joy-happiness, fulfillment-reward-
satisfaction, competence-confidence-motivation, and surprise-fun. The categories of 
negative emotions include: frustration-anger, incompetence-anxiety-fear-doubt, 
exhaustion-stress, and disappointment-discouragement-sadness. Smeltzer also found 
that the most dominant and intense category of emotion is frustration-anger. It comes 
as a result of the turmoil beginning teachers, experience as defeat, distress, or 
displeasure. The incompetence-anxiety-fear-doubt category represents low self-
efficacy, expressed by feelings of inadequacy, uneasiness, apprehension, worry, 
hesitancy, or uncertainty. The exhaustion-stress category characterizes weariness, 
fatigue, and energy loss. The disappointment-discouragement-sadness category refers 
to the most desperate and desolate of emotions such as unfulfilled expectations, 
sorrow, low spirits, disheartenment, and dashed hopes.  

The categories of positive emotion were found to be of less frequency and 
intensity. The joy-happiness category represents the delight, pleasure, and 
contentment experienced in the early years of teaching. The fulfillment-reward-
satisfaction category extends the joy-happiness category, representing a deeper and 
more intense degree of gratification. The competence-confidence-motivation 

WORKING GROUP 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 135



 

 

category signifies teacher self-efficacy identified by assurance, certainty, and 
proficiency. The least dominant and intense of all the emotional classifications is the 
surprise-fun category that refers to unanticipated and spontaneous experiences in 
teaching. In the present study the research participants recounted various emotions 
that can be generally grouped into positive and negative headings. Moreover, these 
emotions can also be further categorized according to Smeltzer's types which were 
previously mentioned.  
3. The study  
Our study focuses on experienced mathematics teachers, each of whom who has more 
than 30 years of teaching experience. The aims of our study are to characterize: (i) 
facets and experiences that are central to the development of EK from retrospective 
perspectives; (ii) interrelations between EK and PCK; and (iii) the evolvement of 
teachers' EK during their years of practice from retrospective perspectives. In this 
paper we provide a partial description of the results from the first part of our study. 
We also present certain facets and experiences of the emotional component of 
teaching that are central to the development of EK, as shown in these two case-
studies. 
3.1 The study participants 
Twelve mathematics teachers with more than 30 years of teaching experience each 
were interviewed. In this paper we will briefly present the narratives of only two of 
them: Betty (56) and Rose (55), both who teach mathematics in middle-high school. 
We chose to make use of their stories because more than the other participants, Betty 
and Rose were able to identify the "causes and effects" that impacted their emotions 
and the development of their EK. In section 4 we present excerpts from their actual 
narratives.  
3.2 Method 
Data collection. We asked the twelve teachers to tell us their stories, with deliberate 
attention given to emotional aspects of teaching and EK. The interviews were open. 
We asked the teachers several general questions (for example – why they chose to 
become teachers), and following their narratives we asked for further clarification. 
We were careful not to direct them, or to interfere in their associative train of thought. 
The interviews were tape-recorded. Each interview lasted between 3 to 4 hours and 
took place in an informal setting, such as the teacher's home or Cafeteria.  
Data analysis. Scanning the transcripts of the recorded interviews, we first picked out 
all the excerpts which included expressions of emotion. Then we differentiated 
between various types of emotion according to the addressee of the emotional 
reaction, namely: emotional reactions towards students, the school principal or other 
colleagues.   

Being aware of the small size of our sample, we cannot say that the data 
collected represents the general emotional profile of the teachers in our country. 
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However, it does shed light on some important aspects of the teaching experience that 
should be considered.  
4. Results and discussion 
In this section we make use of the narratives of Betty and Rose to characterize some 
of the important facets and experiences that emerged in relation to EK development. 
In the scope of this paper we focus merely on EK with respect to students and school 
principal.  
Betty's story 
Betty is 56 years old and has more than 29 years of teaching experience. Betty was 
born and raised in Lebanon. She remembers her classmates "standing tensely and 
quietly in their places until the teacher entered the class and gave us permission to sit 
down. All the students behaved politely and respected the teachers, and there were no 
disciplinary problems…When I came to Israel I knew it was a different country with 
a different culture but I could not anticipate the extreme differences."  

Betty immigrated to Israel when she was 16 years old. When she was 18, she began 
to study computer science.  After graduation she worked as a computer programmer 
for two years in a large commercial company, and then was offered a position as a 
mathematics teacher in a middle-high school. She accepted the offer. Betty chose to 
begin her story as a mathematics teacher with a description of her first lesson in the 
school: 

"Although it happened many years ago I remember it as if it were yesterday. This 
was my first day at school and I had to teach mathematics in one of the 11th grade 
classes. I opened the door and I was shocked. All the students were half-sitting, 
half-lying on the tables and no one even bothered to turn his/her head toward me 
when I entered the classroom. I felt discouraged. I asked the students to sit 
properly so that we could start the lesson and they said: "This is how we behave!" 
I felt hopeless and speechless but after a few seconds I said: "If you do not follow 
my request, I will leave the classroom." One of the boys went to the door lay 
down on the floor and said: "Over my dead body!" The rest of the students 
laughed. I was very close to tears and felt very frustrated and hopeless. But I 
knew that if I showed any sign of weakness I would not be able to teach this class 
again. So with my remaining bit of strength I insisted that they follow my 
instructions which eventually they did. I must admit that from time to time I ask 
myself what I would have done had they had kept misbehaving… 

Unfortunately, I had to face similar situations several times during my first 
two years of teaching. I felt like the students were testing me, looking to see how 
consistent my behavior was…However the second time is never like the first. The 
first time you confront a certain situation which was not anticipated, the 
emotional effect is very powerful since it is accompanied by a sense of 
helplessness. The first time it happens to you, you do not know how to respond, 
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you feel a lack of proper communication skills, and your self-esteem plunges. 
However, when you face a similar situation again, knowing that you have already 
survived such an experience, your emotional reaction (ER) is less intense. You 
feel like you already know how to handle the situation successfully." 

Betty claims that although the first years were difficult she chose not to quit 
her job: "I had many moments when I asked myself why keep on suffering? 
However, emotionally, I could not afford to give up. It was actually like 
admitting that I was not capable of handling a class. I could not bear this 
thought…It was my pride [smiling] that prevented me from quitting."  
Betty's description of her first lesson is full of negative emotional expressions:  

shock, disrespect, hopelessness, and frustration. These emotions resulted in a sense of 
"being pushed to the corner," which affected her ER and her decision to use the threat 
of leaving the classroom against the students. After the students laughed, her 
emotions intensified to such an extent that Betty was close to tears. The fact that 
Betty chose to open her story with this lively and unpleasant memory demonstrates 
how powerful these emotional impressions were. Betty, however, quickly regained 
her composure and repressed her negative emotions. She chose to use an alternative 
ER, and then insisted that the students follow her instructions. Although this 
alternative reaction was successful, the pestering thought of "what would have 
happened if…" occupied her thoughts for years. It appears as if some sort of 
"emotional sequence" in Betty's mind remained unsolved.  

According to Betty, ERs decrease in their intensity due to the building of EK. 
The second time she had to face such an episode in the teaching environment, she 
already knew what to do and how to react. Emotions can either paralyze one's actions 
or serve as a starting point for learning how to transform them into an actual 
response. This is the meaning of building EK. In Betty's case, EK that was translated 
into communication skills with students and knowledge about classroom 
management. In the ensuing years Betty asserts that she continued to suffer from 
negative emotional experiences and reactions within the classroom. Building her EK 
actually sustained her through the inner emotional struggle of whether to give up and 
thus lose her pride or whether to learn to confront her emotions and regulate and 
navigate her way through them. Gradually Betty built her self-image as a teacher: 

"During the first few years of my teaching I remember that my students kept 
asking me personal questions. I believe this was their way to get to know me and 
to adjust their behavior to my expectations. At the beginning I was flattered and I 
cooperated with them. But then I realized that they interpreted this cooperative 
behavior of mine to mean I was their friend. When I had to be authoritative they 
were confused. So I realized that I had to operate differently - to be nice to them 
not as a friend but as a teacher.  In fact, my image as a mathematics teacher was 
built during that period… I believe that after the first two years at the school my 
image as a mathematics teacher was solidified and the students conveyed that 
information about me to new incoming students." 
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Learning to reflect on her EK also enabled Betty to establish her image as well as her 
status as an appreciated teacher. Although she was tempted to cooperate with the 
students and to provide them with personal information, she chose to remain nice to 
them, but not too friendly. We might say that these were Betty's first steps in 
developing emotional understanding (Denzin, 1984). Betty concluded her story:     

"The main difference between my functioning as a beginning and as an 
experienced teacher is that as a beginning teacher the types of knowledge I had 
were disconnected, isolated. I had no idea how to integrate my content 
knowledge, pedagogical knowledge, and EK. Moreover, I wasn't even aware of 
the fact that such integration was essential to my success as a teacher. I believe 
that my reflections on the complexity of class management and student-teacher 
relations was most dominant in developing my EK and in developing my ability 
to synthesize these types of knowledge. Only after I was able to balance between 
these types of knowledge did the intensity of my ERs significantly decrease, no 
longer being the dominant aspect of my teaching."  

Betty's reflection on her evolution as a teacher focuses on the importance of merging 
academic content, pedagogical, and emotional knowledge. In the beginning her 
deficiencies in EK created a situation according to which her emotions governed and 
directed her actions, and they were highly intense. With time, her ability to regulate 
her emotions, reflect on them to generate EK, minimized their intensity and 
dominancy, and enabled her to recognize EK as equally important as other types of 
knowledge. It was, however, only after she realized that all types of knowledge were 
interconnected that she felt she became a good teacher.       
Rose's story 
Rose is 55 and she has 32 years of teaching experience. Rose’s parents were both 
teachers. Her father was a mathematics teacher. Rose claims that "since I was a child 
I knew I would never be a teacher. I saw my parents working very hard and I didn't 
want to be like them." When she was 18 she started studying statistics at the 
university. She recalls: "I hated every moment there. The teachers were bad. We were 
more than 100 students in a class, and the teachers didn't know us personally. I was 
shy, and in such a large class I was embarrassed to ask questions or provide answers." 
By the end of the year, after failing most exams, she started to wonder whether she 
had chosen the right profession. Before the beginning of the school year her father 
suggested that she work as a substitute teacher in his school until the beginning of the 
university's academic year. She accepted the suggestion "just to save some money." 
However, "the moment I entered the class I knew – this is what I wanted to do! It was 
something about the chemistry with the students." Rose left the university and started 
to study in a small college, where she graduated as a mathematics and physics 
teacher: "I loved the college. There were no more than 10 prospective teachers in a 
class, and our teachers knew each of us personally. They encouraged me to ask 
questions and listened to what I had to say." After her graduation she started to teach 
mathematics in a middle-high school: 
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"I was young and naïve, and at the beginning I didn't realize that I was sent to 
teach classes no other teacher wanted. There were many disciplinary problems, 
but it didn't bother me. The other teachers didn't understand how I managed to 
survive these students…When I reflected on my experience at the university and 
the college, I realized that the alienated attitude at the university as opposed to the 
close and warm relations between the teachers and students in the college had a 
tremendous influence on my ability to persist in my studies. So I guessed that if I 
treated each student warmly and personally, not as a problematic person but as an 
individual, I would be able to see beyond my immediate emotional difficulties 
that might stem from disciplinary problems. And it worked… I knew that many 
students hated mathematics and found it very difficult. It was very important for 
me to reduce their fears. I knew this was one of the keys to my success as a 
teacher… Nothing however prepared me for the struggle with the school 
management. I never realized why the principal of the school was hostile. He 
didn't speak nicely to me and didn't support me as a new teacher. I tried very hard 
not to let this affect my work with the students. For me, closing the door of the 
classroom was like entering an airplane and landing in a different country… As I 
said, I was naïve and I had nothing to do with intrigues. By the end of the year the 
principal told me that he didn't want me to teach high-school classes anymore, 
only middle-school classes. He didn't explain why. He said that because I didn't 
teach the high level classes he didn't consider me important for the school. I felt 
insulted and humiliated, and although I loved the students I couldn't bear this 
humiliation and decided to leave this school."  

Rose left the school with "hard feelings. My self-esteem was harmed, and I was 
confused. I didn't realize what had been disrupted." She found a job in another 
school, but the supervisor of the former school pleaded to return. She acceded to his 
request on the condition that she continue to teach her students. Rose feels that "I 
returned to that school as a winner. I gained back my self-esteem. However, the 
principal couldn't accept the fact that he was forced to have me back against his will. 
Emotionally, it was very hard to arrive to school every day. I had no idea how to 
confront him." Three years later her father told her that there was a vacant position in 
his school and she "went back to where it all started."  This new school was highly 
selective in those days, and she started to work with "totally different students."  
From Rose's story it appears that she had a high emotional self-awareness when she 
started to teach. Reflecting on her emotional experiences as an undergraduate student, 
she realized that personal and attentive relations with students are essential for 
developing their readiness to learn. The fact that by the time she started to teach she 
had already gained some relevant EK helped her handle successfully problematic 
disciplinary situations, and not to consider them threatening. In fact, we might say 
that even if there were any conflicts with the students, Rose put them aside since she 
was emotionally more occupied by an unexpected front – the bad attitude of the 
school principal. As a new teacher in school she expected to receive supportive 
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attention from the school management in general and from the school principal in 
particular. The principal's attitude hurt her feelings and gave rise to feelings of 
humiliation and insult in her. Her lack of EK regarding relations with management 
prevented her from confronting her emotions and coping successfully with the 
situation she encountered. Rose was not able to resolve the situation, and therefore, 
with her damaged self-esteem, she chose to leave the school. Trying to recover her 
self-esteem Rose agreed to return to the school, but during the following three years 
she did not manage to further develop her EK with respect to teacher-management 
relations, and she decided to leave the school again, this time forever.   
As regards to her relationships with students, Rose believes that she had "a 
breakthrough when my daughter entered middle-school":  

"It happened fourteen years ago, and I realized that my approach to the students 
was too academic. I didn't really know their emotional world. I understood that 
when they were angry or in bad mood it wasn't because they wanted to struggle 
with me, but merely because they were teenagers with emotional distresses. I 
became more curious about their emotional lives. I wasn't angry when they didn't 
do their homework. I talked to them personally and tried to be more attentive to 
their emotions… I tried to develop awareness about what might insult them, to 
recognize those with whom I could be cynical with, those who needed my 
encouragement, and those who needed my embrace. I stopped punishing them, 
because I didn't want to insult them… This emotional approach turned out to be 
beneficial for them as well as for me. I started to enjoy teaching more… to 
emphasize values and emotions, and to treat them as equal partners… As I said 
before, many students are afraid of mathematics, and I became more sensitive to 
this emotion, and I kept looking for various didactical approaches to help them 
overcome their anxiety." 

Rose's further development of her EK as a teacher occurred when she started to 
develop her EK with respect to her own daughter. From her, Rose became aware of 
the reasons that underlie her students' anger and dispositions and started to be more 
involved in their emotional lives. Her new EK directed her towards developing 
personal emotional relationships with the students on the basis of each student's 
personality. Although she was already aware of their fear of mathematics, it was only 
after she established her EK that she was able to successfully integrate her EK and 
her didactical knowledge as well as her knowledge about the curriculum.       

Five years ago the principal of the school retired, and a new principal started to 
administrate Rose's school: "This principal is bad for school. Since his first day at 
school he gathered around him 'yes-men' and formed cliques…I refused to join the 
'right' clique and, like other teachers in my condition, I have to deal with his 
harassment. However, unlike my first school, I don't let it ruin me emotionally. I 
believe I have learned how to control my emotions, to neutralize them when 
necessary. I don't take it personally. He has his own personal problems, and I can't be 
responsible for that."  
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Rose's last excerpt shows that throughout the years she developed her EK 
regarding teacher-management relationships. When she had to face hostile behavior 
for the second time, she was already prepared and her ER towards the situation was 
not as intense as it had been the first time.      
5. Conclusions 
Teaching is an emotional practice and the use of emotions can be helpful or harmful 
(Hargreaves, 2000). Thus there is a need to learn about teachers' EK in order to be 
able to redirect it in desirable directions.   

EK is about developing emotional understanding. The last term is constituted 
from two words which come from totally different areas. Emotional refers to 
activities ruled by instincts and intuition, while understanding refers to activities 
ruled by logic and cognition. The combination of these two terms implies the need to 
control and lead the emotions by cognitive means, such as understanding. Moreover, 
while didactical and content knowledge can be acquired in teacher training 
programs, EK is dynamically built as a result of human interaction. Moreover, EK is 
subjective and varies from one person to another. Both Betty and Rose describe EK 
as a knowledge base that is gradually built and which comes as a result of human 
interaction. When Betty and Rose made their initial steps as teachers, they were well 
equipped with didactical and curricular knowledge. Their preliminary EK however 
was influenced by their previous experiences as learners: in Betty's case – her 
experience as a pupil in school and in Rose's case – her experience as an 
undergraduate. Both Betty and Rose refer to EK concerning their interaction with 
students while Rose refers in addition to EK concerning her interaction with the 
school’s principal. Considering Zembylas' (2007) distinction between the three 
planes of EK, although Betty and Rose refer to the individual, relational and socio-
political planes of emotion, in our paper we relate merely to personal relationships. 
EK that relates to inter-personal relationships develops as a result of what teachers 
encounter during their professional lives. Namely, when facing crises in teacher-
student or teacher-management relationships, coping with the situation produces an 
ER which in turn produces a practical reaction that can affect the situation itself.  
Considering Betty's and Rose's narratives, it appears that ERs differ in their intensity 
and focal points. The intensity is heavily dependent on the rate of familiarity with 
the focal point, the teacher’s personality, social-cultural background, and more.  

That the interviews represent retrospective perspectives of events the teachers 
experienced many years ago, strengthens the feeling that after all these years they 
served as milestones in building their EK. It is harder to reflect on ER than on 
cognitive processes since the first action might involve the exposure of weaknesses 
and difficulties. It is therefore worthwhile to consider Betty's suggestion to create a 
kind of support group which can help teachers safely make it through the hard start 
is unusual, since people often tend to avoid the exposition of their feelings in public.  
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Both interviewees managed to develop a certain level of ability to reflect on 
their emotions during their teaching practice. This ability enabled them to develop 
their emotional understanding regarding their relations with students, the school 
principal, and other colleagues.  

In most professions people face new situations, experience frustration and 
helplessness, joy and satisfaction, and difficult individuals, among other challenges. 
The inability to reflect on circumstances and ER, to grow and develop into the 
profession, can lead one to experience negative feelings such as frustration. These 
feelings, although essential to the process of growth and development, have a 
tremendous influence on other aspects of one's personal life (Yaffe-Yanai, 2000). It is 
therefore important that teachers be able to reflect on their experiences, design and 
develop their EK, and learn to integrate the different types of knowledge they 
possess. It would be interesting to listen to the stories of teachers who chose to quit 
teaching in various phases of their professional lives, and compare their EK to those 
who persisted. 

Our focus is on middle- and high-school mathematics teachers. It is reasonable 
to assume that elementary school teachers have different stories. It would be also 
interesting to examine the differences between lower-elementary and upper-
elementary school teachers to learn how the students' age influences teachers 
developing EK. 
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 HUMOUR AS MEANS TO MAKE MATHEMATICS 
ENJOYABLE 

Pavel Shmakov & Markku S. Hannula 
University of Helsinki & University of Turku, Finland  

The traditional educational system is constructed in such a manner that it excludes 
humour as a unique live process for promoting knowledge and understanding. 
Informational communications is the basis of logical thinking instead of vivid 
dialogue that has an informative purpose. Present work represents an intermediate 
stage of research of influence of CheCha math method. In particular, humour as the 
affective factor in mathematical reflection is being considered. With the use  this 
method, the positive emotions that result can influence how teaching material is 
perceived, can facilitate creation of joyful atmosphere in the classroom, and can help 
maintain creative state of mind in students.  
Key words: problem solving, emotions, humour, classroom climate, motivation 

 INTRODUCTION 
"…the comic thought, which with contradiction, and is strengthened by imagination, is 
capable of delivering pleasure by training and induces the pupil to participate in dialogue... 
Game and laughter are higher expressions of living and rejoicing of life" (Muñiz, 1996). 

Anyone who has paid attention to great speakers would know that humour is an 
excellent method for eliciting sympathy from the audience and opening them up to 
your message. Every teacher also knows that a sense of humour is necessary to 
winning the hearts of students. Research has established that one's affective state has 
an effect on cognitive processes (see e.g. Hannula, 2006). How should this inform 
teaching? Should the teachers focus on creating an entertaining show for their 
students? Or would the teachers change their lessons into therapy sessions?  
This study presents a teaching approach that is built around math problems that are 
for the student at the same time Cheerful (entertaining, funny, cool) and Challenging 
(difficult). We call this CheCha mathematics. 

 THEORETICAL FRAMEWORK 
CheCha math method is based on three educational approaches: acknowledging the 
role of affect in math learning (Hannula, 2006), using humour in teaching (Grecu, 
2008) and use of open-ended problems in math teaching (Pehkonen, 2004).  
 Affect in mathematical thinking and learning 
In order to study affect in math education in contexts of actual classrooms there are 
three main elements to pay attention to: cognition, emotion, and motivation. 
Achievement without motivation is not sustainable, and neither is motivation without 
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enjoyment. All three domains have a more rapidly changing state-aspect and more 
stable trait-aspect. (Hannula, 2006) 
One "fundamental principle of human behavior is that emotions energize and 
organize perception, thinking and action" (Izard, 1991). Research has confirmed a 
positive relationship between positive affect and achievement. It seems that the 
affective outcomes are most important during the first school years, as they are less 
likely to be altered later on. Two key elements of a desired affective disposition are 
self-confidence and motivation to learn (Hannula, 2006). 
Advances in our understanding of the neuropsychological basis of affect (e.g. 
Damasio 1995, LeDoux, 1998) have radically changed the old view of the 
relationship between emotion and cognition. Emotions are no longer seen as 
peripheral to cognitive processes or as 'noise' to impede rationality. Emotions have 
been accepted as necessary for rational behaviour. Moreover, research has also shown 
– although not yet fully understood – that certain emotions facilitate certain type of 
cognitive processing (Linnenbrink & Pintrich, 2004). 
Focusing on motivation we may find ways to influence what the subjects want to do, 
not only how they try to achieve it. In the existing literature, psychological needs that 
are often emphasized in educational settings are autonomy, competence and social 
belonging (e.g. Boekaerts, 1999). These all can be met in a classroom that emphasises 
exploration, understanding and communication instead of rules, routines and rote 
learning. However, this requires that all feel safe and perceive that they can 
contribute to the process. A possible approach to meet all these conditions would be 
the open approach, and more generally focusing on mathematical processes rather 
than products (Hannula, 2006). 
 Humour 
Already Kant (1952) considered the nature of humour. He stated "Laughter is the 
result of expectation which suddenly ends in nothing" (p. 199). His classical 
statement has started considering humour as a mental mechanism resulting in 
laughter. As another early scientific approach to humour, Freud (1991) divided comic 
into wit, humour and actually comic. Many kinds of activity, including wit, are 
directed on reception of pleasure from intellectual processes. A person feels pleasure 
from suddenly released energy, which is splashed out in the form of laughter. From 
this perspective already, we can perceive how a good joke can generate a joyful 
atmosphere and create a positive emotional background of activity. 
The comic, humorous contents can be reached in various ways and techniques. For 
example, Veatch (1998) suggests a list of types that are funny: finishing to the point 
of irrationality, satire, literal understanding of metaphors, irony, ambiguity, word-
play, contradiction, discrepancy, excessive rationality and a deviation from the usual. 

WORKING GROUP 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 145



 
Each of these types of the comic can be expressed as a joke or a problem in math 
context. As an example of a math contradiction we take a joke, here framed whithin 
the world of Winnie the Pooh:  

Pooh and Piglet sit on a small bench and talk. Eeyore has sent them a box. In the box 
there are ten sweets and a note. In the note Eeyore tells them to divide them: seven for 
Pooh and seven for Piglet. Piglet: "How is that? I do not understand. What do you think 
of it?” Pooh: "I do not even want to think. But I have already eaten my seven sweets". 

Humour can also act as means of a psychological discharge, and promote efficiency 
of pedagogical activity. Suhomlinsky (1975) wrote:  

I would name laughter as a back side of thinking. To develop ability to laugh in the child, 
to enhance his sense of humour - means to strengthen his intellectual forces, abilities, to 
teach him to think and to see the world wisely. 

Grecu (2008) has considered use of humour in teaching. She highlights seven basic 
functions of humour in pedagogical activity:  

1) informatively-cognitive (Opens essential features and properties of subjects and the 
phenomena. Rejecting standard approaches, the humour bears in itself any discovery), 

2) emotional (the Humour can act as means of creation of creative state of health and as 
means of emotional support) 

3) motivational (The humour can serve as a stimulator of volitional processes) 

4) communicative (the Person with humour is attractive for people) 

5) developing (Humour promotes development of critical thinking, a sharpness of vision 
of the world, observation and consequently intellect) 

6) diagnostic (by the laughter maintenance - at what the person laughs, it is possible to 
judge about his merits and demerits) and 

7) regulative (the humour gives the chance to look at oneself from an unexpected angle, 
allowing self-evaluation). 

In CheCha method most of these are relevant, the most important functions being on 
top of the list. Grecu suggest the following techniques for designing of humour for 
educational tasks. These pedagogical techniques are paradox, finishing to the point of 
irrationality, comparison by the remote or casual attribute, return comparison, wit of 
absurd, pseudo-contrast or false opposition, a hint, a self-exposure of own faults, 
intentional ignoring of things that might cause laughter, and exaggeration of the 
certain features of behaviour. 
Grecu has offered also classification of means of the comic: 1) "word-play" based on 
violation of language norm (carrying of terminology over to a context unusual to it). 
Consider the following riddle: "I am it while I do not know that I am. But I am not it 
when I know that I am. What am I?” 2) Comparison, author's original neologisms, - 
based on artistic expressive means (double entendre, an ambiguity). Examples are 
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easy for finding in Carroll's books (2006, s. 50): “Explain yourself!” “I can’t explain 
myself.” 3) Paradox, an example being the claim “I am lying now”. 
Also Dzemidok (1993) distinguishes several humoristic methods: modification and 
deformation of the phenomena, unexpected effects and amazing comparisons, 
disproportion in attitudes and communications between the phenomena, imaginary 
association of absolutely diverse phenomena, creation of the phenomena which 
deviate from logic. As an example of the latter method consider the following: 
There were only 3 students attending a professor's lecture in University. Suddenly 5 persons 
left the room. The professor said: "If 2 students enter this room, there is nobody attending."  

Most types of humour and their techniques could be used at mathematics lessons. 
Thanks to entertaining tasks and comical contents of the problems the classroom 
climate promotes a positive interaction between the teacher and students. However, 
one must be aware that opportunities of humour as pedagogical means have their 
limits. Grecu (2008) gives several suggestions regarding these limits. She suggests 
that one should use humour gently and support humour of students. She also warns 
not to ridicule student’s person, laugh at what the student is not able to correct or 
change or laugh at an involuntary mistake of the student. Rough joking would 
indicate lack of customs and disrespect of the student and hence is absolutely 
unacceptable for the teacher. Moreover, the teacher should avoid being the first to 
laugh at one's own joke, as it can cause the reaction opposite to expected. 
 Problem solving and open-ended problems 
Problems are said to be open, if their starting or goal situation is not exactly given 
and they usually have several correct answers (cf. Pehkonen 2008). Open-ended 
problems emphasize understanding and creativity (e.g. Nohda, 2000, Stacey 1995). 
This would not mean lowering the expectations, quite the contrary. If an open task 
allows the solver to gain deeper and deeper insights (a "chain of discovery"; 
Liljedahl, 2005) it can facilitate a state of sustained engagement. This would also lead 
to more intensive working.  
Research has shown that problem solving can be engaging and enjoyable for many 
students, but it does not attract everyone. Schoenfeld (1985) defined an individual's 
beliefs or "mathematical world view" as shaping how one engages in problem 
solving. For example, those who believe that math is no more than repetition of 
learned routines would be more likely to give up on a novel task than those who 
believe that inventing is an essential aspect of maths. Unfortunately, there are 
students who do not see the potential for engagement and enjoyment in a math 
problem. We see humour as a means to engage also those students who do not 
perceive math problems enjoyable to begin with.  
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THE FEATURES OF CHECHA MATH 
This research is more about creating tools for teaching than about analysing the 
reality of classrooms. The work has been started based on the first author's 
pedagogical intuition as a teacher and his will to engage students with math. This 
research falls within didactical engineering (Artigue, 1994) or design research 
paradigm (Cobb, Confrey, diSessa, Lehrer, & Schauble 2003) and it has a clear 
practitioner approach: "How can the teacher use humour to engage students' interest 
in math?” Previous experience in teaching had shown that information, when 
presented in humoristic form, is more convincing and is more easily acquired. This 
approach has developed gradually over a few years into a teaching approach that 
assumes: 

* in the same assignment entertainment is combined with a set of difficulty levels; 

* during problem solving there are conditions for emotions to rise;  

* all students can participate actively in solving the assignment regardless of their 
abilities. 

The educational space is constructed in such a manner that teamwork of the teacher 
and students accepts dialogue character and interest in mathematics is favored. While 
using CheCha method, we separate the following basic constructs: a) entertainment in 
learning process, b) level of the problem’s difficulty, c) plurality of problem 
solutions. We refer to as entertainment in learning process the affective components 
which excite the interest, draw attention and/or create a joyful atmosphere. For 
example, as entertainment we assume appeal, extraordinary content, intriguing title 
and/or amusing formulations. Level of the problem’s difficulty we define as the 
variable degree of solution’s complexity, beginning from the “obvious”, achievable 
for many children, proceeding to a more complicated. It is important that the simplest 
way not always guides to the right solution. Plurality of problem solutions is a 
construct that consists of variety of means and ways of solving problem on the same 
level of abstractness, understanding and complexity. Various approaches are possible 
in one problem and it is supposed to have both a set of ways of solving and sets of 
different solutions as a whole. For example, to create a problematic math situation 
such parameters, as incomplete condition, the overloaded contents, or introduction of 
"not existing in reality” factors are used.  

 RESEARCH METHODS  
In this paper, we shall describe the method of creating mathematical assignments 
(CheCha problems) and evaluate the practice of CheCha math teaching. We explore 
1. What mathematical problems are entertaining from the students' point of view? 
2. How CheCha method influences the atmosphere in mathematics lessons? 
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 The construction of CheCha problems  

The technique of construction of such problems consists of certain stages. At the 
initial stage there is a search of "matrix" of a condition or its author's creation. Useful 
sources to find problems that can be developed into CheCha problems have been 
math jokes, E. Lear's (e.g., 2002) and L. Carroll's (e.g., 2006) books, collections of 
problems from math Olympiads. Chessboard has also been a good setting for such 
problems. The original problem is typically open or can be modified into an open 
problem, meaning that it has no unique and final solution. 
The next principle is to consider age-typical interests of students, their specific 
personalities and personal preferences. Substantial richness of a context of a problem 
is carried out at a following stage. There is a transformation into a context that bears 
in it entertainment, extraordinary and comic flavour or lively situations. At the same 
time, level of difficulty and plurality of the solutions is considered, allowing a wide 
range of different levels of solutions and approaches.  
Then the problem is introduced to students and there is the opportunity for feedback, 
which is stirring up cognitive activity through questions, solutions and discussions. 
The teacher observes and reflects upon students' thinking during problem solving, 
focussing on: the perception of a problem by students (acceptance or non-
acceptance); questions asked by them (depth and breadth); a degree of understanding 
of the context. These help the teacher to find direction for task's development. 
It is important to notice that for every area of math teaching and learning one can find 
or construct such CheCha problems. This may lead to creation of a new problem, or 
changing of the task. For example: “Three tortoises go one after another along the 
road. The tortoise says, “Two tortoises follow my rear”. The second says, “One 
tortoise goes ahead”, “One goes back of me”. The third says, “Two are ahead”, 
“One creeps behind”. How can this be?” One should note that this problem is more 
attractive than something about moving material points along a straight line, with 
particular coordinates. The most common answer here is that it is impossible. But, in 
fact, there can be the solutions. “Three tortoises go…”: the words of the third tortoise 
contradict each other. The solution might be that the last tortoise is lying! …One 
tortoise is riding on another. …There is a time lapse between the phrases, allowing 
one tortoise to run ahead. …The fourth tortoise stays near or behind the last turtle, 
and begins moving after the first phrase of the third turtle… The road is circular… 
The road is triangular… There is a mirror behind the last turtle. When it looks at its 
back, it can see one more turtle. Progressing from considered examples, and, instead 
of tortoise, we turn to another object, e.g., cows. One more possible solution is the 
birth of a calf! 
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 Using CheCha problems in teaching and feedback from students 
Research was carried out in two Finnish schools (Espoo 2007-08 and Helsinki 2008-
09), in 7th classes with different level of acquaintance with CheCha math method and 
various educational atmospheres. The first author was teaching in these schools.  
1. In December, 2007 the first author surveyed students' preferences of entertaining 
features in maths. The questionnaire consisted of five questions of open and closed 
types, e.g. "What in a math problem can be entertaining?" Two questions were 
multiple choice questions concerning the respondents' view of entertaining maths. 
Respondents were 40 students from two seventh classes and one eighth class. 
2. In February, 2008 a second questionnaire was given in the same school (Espoo) to 
the students, where they were asked which kind of problems they preferred. In this 
survey 40 seventh graders from the same three classes responded.  
3. In September, 2008 another questionnaire was administered in a school in 
Helsinki. The data were collected in two 7th grade classes (40 students) within the 
first month of employment of first author as the teacher in this school. Students were 
asked to fill in a questionnaire and draw a picture of a topic "Me at a math lesson".  
a. In the first class (19 respondents) there was a favourable educational atmosphere 
and teacher-student relations were built at dialogue level. The atmosphere was 
promoted by playing Chess, Go, Katamino and other intellectual games. This was a 
basis for the future introduction of the CheCha method. 
b. A comparison group (for the same survey) was a seventh grade class (21 
respondents) of another teacher, in which CheCha method was not applied. 

 RESULTS 
1. When responding what can be entertaining in maths, the frequency of choices were 
humour (55 %), "something else" (27 %), "cutting and drawing" (25 %), "unusual 
names and properties" (13 %), “plurality of answers” (13 %), and “fabulousness of a 
plot” (10 %.) Altogether 88 % of students mentioned reasons why maths can be 
entertaining, and 5 % of children had written "nothing" in their specification of what 
the 'something else' could be. 
2. The students' task preferences has shown, that tasks of comic character were most 
popular (51 %), then were the tasks that could be solved using Lego or Chessboard 
(33 %), cutting and drawing (30 %), a fantastic plot (15 %) and unusual names and 
properties (12 %), (Figure 1).  
3. a. In this second sample the preferences were slightly different (Figure 1). This 
time the most popular choice was cutting and drawing (58 %), then the comical 
character (47 %), the tasks solved with the help Lego and Chess of (26 %), further a 
fantastic plot (21 %) and unusual names and properties (11 %). 
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The results of this survey have shown that 74 % of the respondents mention reasons 
why mathematics can be entertaining. Half of the students mention chess, and 29 % 
the personality of the teacher as the defining factor.  
In the drawing task, 63 % have drawn a joyful image of a math lesson, 11 % of 
respondents drew themselves thinking or pondering, 15 % represented subjects of 
maths presented in a positive light (e.g. a notebook with the tasks solved correctly). 

 
 
 
  
 
 
 

 

Figure 1. Students' responses to which types of tasks they prefer 

When asked to continue the sentence "The CheCha-maths is ..." the most frequent 
answers were "Great!" (21 %) and "fun" (21 %). 16 % of students noted that it is 
simultaneously a game and study. There were also individual answers of such a 
character as "creative and interesting”, “many-sided”, “various” and “laughter". 
3. b. The other survey in the class where CheCha maths was not applied produced 
somewhat different responses. For the question "It is possible to take pleasure at math 
lessons" only 26 % gave a positive answer, mostly responding utility of maths, 
instead any reference to its enjoyable nature. Also the drawing test did not show 
joyful atmosphere at a lesson. The priorities chosen by these respondents were cutting 
and drawing (67 %), the comical character (43 %), a fantastic plot (33 %), unusual 
names and properties (24 %) and the tasks solved with the help Lego and chessboard 
(10 %). On the offer to make definition "The entertaining maths is ..." the most 
frequent response was that such maths "is impossible" (29 %). Then was "drawing" 
(24 %) and there was a fair amount (29 %) of other positive characterisations (e.g. 
"games", "humour",”of a funny nature", "easy"). 

 CONCLUSIONS 
One growing branch in mass media is 'edutainment' where EDUcational purposes are 
combined with enterTAINING qualities and interaction possibilities (e.g. computer 
games). Could math education learn something from the edutainment business in 
order to deepen the students' engagement with maths? We strongly believe that it is 
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possible to develop suitable (open and multilevel) math tasks with attractive 
humorous flavouring, that make learning of maths very close to matter of laughter. 
When this method was tried out and developed in different schools, the students’ 
feedback points out how the teacher can use humour to engage students with maths: 
1. From the students' point of view, entertaining tasks associated largely with 
humorous content. The longer students are working with humorous tasks, the higher 
percentage of students prefers such problems over other types of problems.   
2. CheCha math method influences the atmosphere in the lesson. The use of 
intellectual games (or creating a favourable atmosphere in other ways) prepares the 
ground for the use of humour in the lesson. In an unfavourable atmosphere, comical 
assignments can lead to undesirable results. The importance of the overall receptive 
atmosphere was observed in fall 2008. In one of the 7th grade classes taught a part of 
students responded negatively to use of comic tasks, speaking about "irrelevance" of 
jokes. When math problems were not understood, the comic presentation of problems 
caused negative reaction in a part of children. However, tasks with fantasy 
characteristics did not cause negative reaction. Students were distracted into 
conversations among themselves, and they moaned about the inconvenient 
arrangement in a class (the uncomfortably big group was placed in a computer class, 
not suitable for math lessons). After a replacement into an ordinary classroom the 
atmosphere had changed into more positive. Playful statements and problems began 
to be perceived positively, increasing motivation to learn.  
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BELIEFS: A THEORETICALLY UNNECESSARY CONSTRUCT? 
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In this paper I analyze different existing definitions of the term beliefs, focusing on 
relations between beliefs and knowledge. Through this analysis I note several 
problems with different types of definitions. In particular, when defining beliefs 
through a distinction between belief and knowledge systems, this creates an idealized 
view of knowledge, seen as something more pure (less affective, less episodic, and 
more logical). In addition, attention is generally not given to from what point of 
perspective a definition is made; if the distinction between beliefs and knowledge is 
seen as being either individual/psychological or social. These two perspectives are 
also sometimes mixed, which results in a messy construct. Based on the performed 
analysis, a conceptualization of beliefs is suggested. 
Key words: belief, definition, individual, knowledge, social 

INTRODUCTION 
There exists plenty of research in mathematics education focusing on aspects of 
beliefs, in recent years evident by books covering this specific topic (e.g., Leder, 
Pehkonen, & Törner, 2002b). However, Thompson (1992) points out that although 
the topic has been popular in educational research for many years, little attention has 
been given to theoretical aspects of the concept of beliefs. Specifically for 
mathematics education, Op't Eynde, De Corte, and Verschaffel (2002) note the same 
type of lack of theoretical studies about beliefs. 
In many studies, the term ‘belief’ is not explicitly defined, but it is assumed that the 
reader knows what is meant (Thompson, 1992). For some purposes this might suffice, 
and in general different types of definitions, from informal to extended types, could 
be suitable depending on the situation (McLeod & McLeod, 2002). In addition, a 
theoretical perspective can focus on different aspects, for example by being more or 
less philosophically or psychologically oriented. When Schommer (1994) discusses 
different types of beliefs as key concerns in the conceptualization of epistemological 
beliefs, she argues that interesting results, perhaps of a more applied type, can be 
achieved also without explicit focus on the more philosophical aspects, but that the 
inclusion of such aspects would improve the conceptualization of beliefs. A 
philosophical perspective can include what McLeod and McLeod (2002) describe as 
part of a more elaborate definition, such as relations to nearby concepts. For beliefs, 
this elaboration could include relations between beliefs, knowledge, and different 
affective constructs. 
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When studying beliefs, instead of analyzing and arguing around different types of 
definitions of beliefs, it seems most common to describe different definitions found in 
the literature and then choose one of these or create your own for the study in 
question (if a definition is at all given). Even if it is perhaps impossible to create a 
general definition that is suitable for all types of research (as noted by Abelson, 1979; 
McLeod & McLeod, 2002), there is a need to discuss and analyze different types of 
definitions. In the present paper the focus is on such analyses. 
Purpose 
As the title of the present paper implies, I am taking a critical perspective regarding 
the concept of beliefs and suggestions of how this construct can be defined. This 
critical stance has evolved from informal, personal reflections when having read 
different types of studies of beliefs, and similarly as Pajares (1992), having noted a 
certain messiness regarding definitions and properties of beliefs. I have not only 
noted such messiness when looking at the breadth of different studies, where plenty 
of different types of definitions or properties are described, but also when trying to 
analyze the internal coherence of singular articles regarding definitions and properties 
of beliefs. 
The main purpose of the present paper is to dig deeper into these reflections, in order 
to see what types of problems seem to exist when trying to define beliefs and also if 
and how these problems can be resolved. In particular, I will suggest a type of 
reconceptualization of beliefs, emerging from noted problems around (1) the point of 
perspective taken when defining and describing properties of beliefs, and (2) 
relationships between beliefs and knowledge. 
It is important to note that I am not suggesting that the ideas presented here should be 
seen as final in some sense, but that they primarily constitute a starting point in my 
attempts to reconcile with some experienced problematic issues, for continued 
discussions and reflections and for continued work on a larger research project (see 
Österholm, in press). Also, I am not suggesting that I am presenting an entirely new 
perspective, regarding the mentioned reconceptualization, but as can be seen by 
references given throughout the present paper, others have presented similar 
suggestions, although sometimes done from other perspectives or focusing on 
somewhat different aspects of beliefs. 
Research about beliefs 
Historically, the interest in educational research in the study of beliefs seems to come 
from realizing that a focus on “purely cognitive” factors (in particular, content 
knowledge) is not sufficient when trying to describe and explain students’ problem 
solving activities (Pehkonen & Törner, 1996; Schoenfeld, 1983) or teachers’ 
classroom behavior (Speer, 2005). The relationship between (content) knowledge and 
beliefs is thus a central aspect. This relationship is also the most commonly referred 
to when discussing the definition of beliefs, and different views about this 
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relationship can also be seen as a major reason for experiencing beliefs as a messy 
construct (Pajares, 1992). 
Since there can be different types of knowledge, such as procedural or conceptual, 
while beliefs are usually formulated as statements, the comparison between 
knowledge and beliefs can focus on factual, declarative knowledge. 

BELIEFS – AS SEEN FROM DIFFERENT POINTS OF PERSPECTIVES 
Abelson (1979) describes a cultural dimension of beliefs; that if all members of some 
type of group have a specific belief, then they might not label it as a belief but as 
knowledge. This cultural dimension corresponds to what other authors describe as a 
social property of knowledge (e.g., Op't Eynde et al., 2002; Thompson, 1992); that 
for something to be seen as knowledge it has to satisfy some type of truth condition – 
a condition that is negotiated and agreed upon within a community (of practice). 
Thus, depending on what social community you belong to, you can have different 
views on what is seen as knowledge and what is seen as belief. From this perspective, 
when focusing on social aspects, the difference between belief and knowledge can be 
defined by saying that knowledge fulfills the mentioned social criteria but that beliefs 
do not, or perhaps cannot, since there can exist statements that cannot be evaluated 
using existing criteria within a certain community. 
This relative property of beliefs highlights the importance of taking into account from 
what perspective a labeling of something as a belief or as knowledge is being done. In 
addition, there is also the possibility of changing perspective when deciding on the 
definition of beliefs, from defining beliefs from a social perspective to defining 
beliefs from an individual perspective. For example, when Leatham defines beliefs he 
describes the relationship between belief and knowledge by seeing that 

there are some things that we “just believe” and other things that we “more than believe – 
we know.” Those things we “more than believe” we refer to as knowledge and those 
things we “just believe” we refer to as beliefs. (Leatham, 2006, p. 92) 

This type of definition describes the relationship between beliefs and knowledge as a 
psychological property. A somewhat different defining property of beliefs, but also 
from the individual perspective, is given by Abelson (1979); that the believer is 
aware that others may believe differently. This property includes a social dimension 
but the distinction between beliefs and knowledge is still being done from the 
individual perspective, and is psychological in nature. From this perspective, when 
focusing on the individual, the difference between belief and knowledge can be 
defined by seeing beliefs as something related to uncertainty, either in relation to 
other parts of an individual’s beliefs/knowledge or in relation to what others claim to 
believe/know. 
Sometimes an author describes some defining properties of beliefs that are from an 
individual perspective and some other properties that are from a social perspective. 
For example, I have mentioned Abelson (1979) when describing both these 
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perspectives, and Pehkonen and Pietilä (2003) also include both these perspectives 
when differentiating between beliefs and knowledge. The simultaneous use of these 
different perspectives when defining a concept could be a cause for creating a messy 
construct. However, it is often difficult to decide if all given properties should be 
seen as part of a homogenous definition or as something that can be inferred from a 
(sometimes implicit) definition or from empirical results. 
From this analysis we can see that a central distinction in the discussion of beliefs and 
knowledge is from what perspective a definition or description is given, whether 
these concepts are construed as individual or social. This distinction deals with 
whether the decision regarding differences between belief and knowledge is located 
in the individual (i.e., that it is psychological in nature) or if it is located in the social 
community. Independently of which of these perspectives is used when defining 
beliefs, there is also another aspect of different perspectives; that different persons 
can have different views on what is regarded as knowledge and what should be 
labeled as belief, that is, there is a relative property of beliefs. This property is caused 
by taking the relationship between beliefs and knowledge as a starting point when 
defining beliefs and is also based on a general view of knowledge (which has 
previously not been stated explicitly in the present paper), that knowledge is “not a 
self-subsistent entity existing in some ideal realm” (Ernest, 1991, p. 48), but that 
knowledge is seen either as an individual construction (what Ernest labels as 
subjective knowledge) or as a social construction (what Ernest labels as objective 
knowledge). 

TYPES OF DEFINITIONS OF BELIEFS 
Sometimes it can be difficult to analyze some of the definitions and properties of 
beliefs since authors do not always motivate or describe these defining properties in 
detail. For example, it is sometimes mentioned, without further explanation, that 
beliefs can be conscious or subconscious (e.g., Leatham, 2006; Pehkonen & Törner, 
1996), but since the concept of consciousness in itself is very complex (e.g., see 
Velmans, 1991) it is difficult to interpret such a suggested property of beliefs. In 
particular, the interpretation becomes more difficult if some definition of beliefs has 
not been given, or if no connection is made between a certain property of beliefs and 
a given definition. 
One way to define beliefs is to focus on the claim that a person believes that (or has 
the belief that) a certain statement is true. The question of what you mean by such a 
claim deals with the definition of beliefs. For example, a belief can be seen as a type 
of knowledge that is “subjective, experience-based, often implicit” (Pehkonen & 
Pietilä, 2003, p. 2), or as a personal judgment formulated from experiences 
(Raymond, 1997, p. 552). However, many such definitions seem to be of an informal 
type (as labeled by McLeod & McLeod, 2002), since they most often do not 
explicitly describe what is meant by all words used in the definition and how these 
words/properties create a construct different from nearby concepts. 
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Another way to define beliefs, or at least to describe some properties of beliefs, is to 
focus on relationships between different beliefs, and thereby describe characteristic 
properties of so-called belief systems. Certain differences between belief systems and 
knowledge systems can then be taken as a characterization of beliefs. In the literature 
it seems common to refer to Abelson (1979) and Green (1971, as cited in for example 
Furinghetti & Pehkonen, 2002; Leatham, 2006; Op't Eynde et al., 2002; Pehkonen & 
Pietilä, 2003; Raymond, 1997) who both have proposed such differences between the 
two kind of systems. Since references to belief systems seem quite common in the 
mathematics education literature, I will in the next section analyze the notion of belief 
system regarding the view of knowledge that is implicitly, and sometimes explicitly, 
created through the separation of belief and knowledge systems. 
While a definition that focuses on a singular belief/statement can be done from both 
an individual and a social perspective, implicit in the type of definition that focuses 
on belief systems seems to be a view that such systems are psychological constructs. 
Properties of belief systems – creating an idealized view of knowledge 
There is no consensus in the research community on the positioning of beliefs on a 
cognitive-affective scale (Furinghetti & Pehkonen, 2002), but it is sometimes claimed 
that a difference between belief and knowledge systems is that the former has, or at 
least has a relatively stronger, affective component (Abelson, 1979; Speer, 2005). 
However, it is unclear why, for example, a certain belief about mathematics teaching 
should have a greater affective component than the knowledge of the relationship 
between the diameter and the circumference of a circle. The situation (or the several 
situations) when the knowledge about the circle has been dealt with could very well 
have been strongly loaded with affect, for example from the joy of discovering this 
relationship or the dislike of having another fact to memorize. Such existing affective 
components of knowledge are also pointed out by Pajares (1992). 
Also, it is seldom explained in detail how or why beliefs should be regarded as ‘more 
affective’ than knowledge, and when McLeod (1992) describes a framework for the 
study of affect, it is pointed out that beliefs are not emotional in themselves but that 
the role of beliefs is one (central) factor when attitudes and emotional reactions to 
mathematics are formed. 
Some claim that belief systems are more episodic in nature than knowledge systems; 
that beliefs have a closer connection to specific situations or experiences (Abelson, 
1979; Speer, 2005). This property seems to lie close to the clustering property 
described by Green (1971, as cited in Leatham, 2006), which permits the belief 
system to consist of clusters of beliefs that can be more or less isolated from each 
other. Leatham (2006) describes this property as a means to explain the 
contextualization of beliefs and that a person can hold different beliefs that can seem 
to contradict each other, if these beliefs belong to different clusters. However, 
learning and thereby knowledge is also always situated and context dependent, 
“resulting in clusters of situated knowledge” (Op't Eynde et al., 2002, p. 25).  

WORKING GROUP 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 158



  
Another suggested difference between belief and knowledge systems is that belief 
systems are built up using quasi-logical principles while knowledge systems are built 
up using logical principles (Green, 1971, as cited in Furinghetti & Pehkonen, 2002). 
For example, it is claimed that relationships between beliefs cannot be logical “since 
beliefs are arranged according to how the believer sees their connections” and also 
that “knowledge systems […] cannot contain contradictions” (Furinghetti & 
Pehkonen, 2002, p. 44). If a person’s knowledge system is not built up around how 
this person sees the connections between different components of the system, it 
seems unclear exactly who or what is creating the structure within the system. In this 
case knowledge is perhaps not referred to as an individual, psychological construct 
but seen as a social construct. However, also when seeing knowledge from such a 
perspective it becomes difficult to reconcile with the statement that knowledge 
systems cannot contain contradictions, since the history of mathematics includes 
examples of such contradictions, for example regarding the connection between 
convergence of series and the limit of the general term (see Leder, Pehkonen, & 
Törner, 2002a, p. 9). You could explain this by viewing knowledge as something 
absolute and thus maintaining that knowledge systems cannot be contradictory, by 
seeing contradictions as stemming from beliefs and not from knowledge. 
In summary, regarding the relationships between beliefs and knowledge based on 
existing suggested properties of belief systems, knowledge is described as less 
affective, less episodic, and more logical and consistent. These properties create an 
idealized picture of knowledge, as something pure and not ‘contaminated’ with affect 
or context. 

A PROPOSED CONCEPTUALIZATION 
Based on the analysis about different types of definitions of beliefs that can be made 
from different points of perspectives, I here discuss a conceptualization of beliefs that 
take into account the criticism that has been put forward. I am not suggesting that this 
conceptualization is necessarily suitable for all types of studies or situations, but that 
it is one way to relate to some of the problems that seem to exist when defining and 
describing beliefs. 
Beliefs are seen as being related to uncertainty in some way. From some observer’s 
perspective a statement can be labeled as a belief for different reasons, but all related 
to some degree of uncertainty, as described in the following examples. 
The first example is that if a statement cannot be included in, or directly related to, 
some (traditional) existing (scientific) content domains, such as mathematics or 
pedagogy, it can be labeled as a belief. For example, Ernest (1989) and Schoenfeld 
(1998), who do not explicitly discuss the definition of beliefs, describe beliefs and 
knowledge as two separate categories. Included in these categories are knowledge 
about teaching and learning, and beliefs about the nature of teaching and learning, 
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where the former can be included in the domain of pedagogy while the latter perhaps 
cannot (but perhaps can be included in the domain of philosophy). 
A second example of a reason for labeling something as a belief is if a statement 
contradicts something that is part of some scientific domain. For example, this is 
done by Szydlik (2000) who discusses content beliefs, which for example include to 
see the existence of gaps in the real line. 
Both these examples are from a social perspective since they relate to domains (i.e., 
communities of practice), but the property of uncertainty was also mentioned earlier 
when discussing beliefs defined from an individual perspective. What an individual 
regards as belief is something that is more uncertain than knowledge. The level of 
uncertainty refers to how confident a person is that a statement is true. That is, a 
person has some (implicit) criteria from which it can be decided if something is 
labeled as belief or knowledge. Törner (2002, p. 80) describes this as measuring 
certainty on a scale from 0 to 1, where knowledge can be seen as a special case in his 
framework of beliefs, possessing the certainty degree of 1. 
Thus, uncertainty can be seen as a more general aspect of beliefs, regardless of from 
what perspective the concept is defined, either the social or the individual. 
Unlike uncertainty, an aspect that can differ depending on from what perspective 
beliefs are defined is whether a belief, when compared to knowledge, is seen as a 
different type of psychological object. From a social perspective it becomes difficult 
to motivate that beliefs and knowledge refer to such different types of objects since 
the difference by definition is a social construction. Therefore, when studying the 
behavior of individual persons (such as teachers’ activities in classrooms or students’ 
problem solving activities) the social perspective does not seem suitable when 
defining beliefs. This has also been highlighted by other authors, for example by 
arguing that 

individuals (for the most part) operate based on knowledge as an individual construct. 
That is, their actions are guided by what they believe to be true rather than what may 
actually be true. (Liljedahl, 2008, p. 2) 

Others have also suggested that one should focus on the study of conceptions as a 
whole, which includes what some label as beliefs and knowledge (e.g., Thompson, 
1992). However, there could be a reason to study beliefs as defined from an 
individual perspective, such that beliefs and knowledge from this perspective can be 
seen as psychologically different types of objects, since experienced differences in 
the degree of uncertainty could affect behavior differently. Empirical studies seem 
necessary for deciding if there is a reason to make such a distinction or if it is more 
reasonable to see the whole of a person’s conceptions. 
These presented perspectives on beliefs mainly focus on singular statements and not 
on properties of a system of beliefs compared to a system of knowledge. This type of 
conceptualization is chosen because of the problems noted about the systemic view 
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when defining and describing properties of beliefs, in particular the tendency to 
create an ideal and problematic view of knowledge. Also, the presented perspectives 
put an emphasis on the person making a claim about relationships between beliefs 
and knowledge, which some authors also have noted, but have not taken as a more 
fundamental aspect. 

CONCLUSIONS 
In the present paper, two main issues have been highlighted through the analysis of 
existing definitions and descriptions of properties of beliefs: 
(1) The important issue of explicitly focusing on the point of perspective taken when 
defining and describing properties of beliefs, in particular the difference between 
taking a social or individual perspective regarding where the difference between 
belief and knowledge is located. 
(2) The problematic issue of trying to define, in an objective manner and focusing on 
the individual, the difference between beliefs and knowledge through the separation 
of belief and knowledge systems. 
Due to these issues one can question the necessity of the concept of beliefs, since the 
difference between beliefs and knowledge is not construed as so absolute, but that the 
meaning of the concept can be relative with respect to the person labeling something 
as a belief. In this way, beliefs are not seen as being used for making an important 
theoretical distinction between belief and knowledge, but more seen as a linguistic 
tool to signal what type of object/statement is in focus, as seen from the person 
making a claim about beliefs. Thus, the notions of belief and knowledge may say 
more about an observer than they do about some important theoretical distinction 
between two types of entities “within” the person being observed. In this sense, the 
concept might have lost some of its theoretical importance. 
The most central point in my analysis and criticism is directed towards certain 
contradictory aspects in the existing literature, in particular that a common 
psychological perspective presented through the distinction between belief and 
knowledge systems implies a more idealized view of knowledge than what is existent 
in the social perspective of knowledge. Most often, when aspects of both these 
perspectives are mentioned, there is no in-depth analysis of possible relationships or 
contradictions between these aspects. Even when Op’t Eynde et al. (2002) perform a 
more in-depth analysis of the social perspective, they also claim the existence of a 
psychological difference between beliefs and knowledge, by mentioning the quasi-
logical property of beliefs. I see this use of a mixture of different perspectives as a 
central cause for the creation of beliefs as a messy construct. Thus, a main topic when 
defining beliefs is to decide, based on what is being studied, which perspective is the 
most suitable one when defining beliefs, the social or the individual, and then to be 
consistent within this one perspective. 
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CATEGORIES OF AFFECT – SOME REMARKS 
Wolfgang Schlöglmann 

Institut für Didaktik der Mathematik, Universität Linz, Austria 
 

Cognitive concepts were insufficient to explain some effects observed in mathematics 
learning, particularly differences in performance. So researchers began investigating 
the influence of affect on the learning process, using the concepts of beliefs, attitudes, 
emotions and values. This paper discusses questions connected with the theoretical 
status of these concepts. 

 
Introduction  
 
McLeod (1992) wrote in his survey paper, “Research on Affect in Mathematics 
Education: Reconceptualization”, that beliefs, attitudes and emotions are used in 
mathematics education research to describe a wide range of affective responses to 
mathematics. Although terms and concepts are often transferred from psychology to 
mathematics education, McLeod points out why such a transfer to the affective 
domain can be problematic: 

Terms sometimes have different meanings in psychology than they do in mathematics 
education and even within a given field, studies that use the same terminology are often 
not studying the same phenomenon.... Clarification of terminology for the affective 
domain remains a major task for researchers in both psychology and mathematics 
education. (McLeod, 1992; 576) 

There have been efforts to clarify the meanings of these concepts, particularly with 
respect to beliefs and attitudes. In a paper appearing in the collection, “Beliefs: A 
Hidden Variable in Mathematics Education”, Furinghetti and Pehkonen (2002) 
describe a process that clarifies some shared core elements commonly mentioned in 
characterizations of beliefs: 

Using an international panel we looked for common background suitable in describing 
the characteristics of the concept of beliefs and the mutual relationship in the critical triad 
“beliefs – conceptions – knowledge”. (Furinghetti and Pehkonen, 2002; 46) 

Even if it were not possible to reach a common shared definition of beliefs, the paper 
clarifies some of the common and contrasting meanings of this concept.  
With respect to the problem of definition in the case of “attitude toward 
mathematics”, we find a situation analogous to the one described by Di Martino and 
Zan (Di Martino and Zan, 2001; Zan and Di Martino, 2008); namely, a  

…lack of clarity that characterizes research on attitude and the inadequacy of most 
measurement. (Di Martino and Zan, 2008; 197) 

In their analysis of academic papers, Di Martino and Zan found three types of 
definition of attitude toward mathematics: a “simple” definition where attitude 
toward mathematics is seen as being either a positive or negative emotional 
disposition toward mathematics; a multidimensional definition where three 
components constitute attitude – emotional response, beliefs regarding the subject 
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and behaviour related to the subject; and a bi-dimensional definition where attitude 
toward mathematics is seen as a pattern of beliefs and emotions associated with 
mathematics. 
The lack of clarity in what “beliefs” or “attitude toward mathematics” means also has 
implications for research in the affective field. Thus Sfard writes: 

Finally, the self-sustained “essences” implied in reifying terms such as knowledge, 
beliefs, and attitudes constitute a rather shaky ground for either empirical research or 
pedagogical practices – a fact of which neither research nor teachers seem fully aware. 
(Sfard, 2008; 56) 

Hart, too, referred to this problem and wrote that  
research on the affective domain in mathematics education is in need of a strong 
theoretical basis that will be developed only through sustained, systematic efforts over 
time. (Hart, 1989; 38)      

All of this suggests we have to rethink the concepts used in research on affect, and, 
moreover, it seems necessary to consider the problem in a more general way: 
“Wherein lies the problem of defining concepts and, in relation to this, what is the 
status of research methods?” “Can results from other fields help us better understand 
the categories of affect?” 
 
General aspects of concepts 
 
In his paper, “Aspects of the Nature and State of Research in Mathematics 
Education”, Niss (1999) refers to a crucial fact permeating all research: 

It is important to realise a peculiar but essential aspect of the didactics of mathematics: its 
dual nature. As in the case with any academic field, the didactics of mathematics 
addresses, not surprisingly, what we may call descriptive/explanatory issues, in which the 
generic questions are ‘what is (the case)?’ (aiming at description) and ‘why is this so?’ 
(aiming at explanation). Objective, neutral answers are sought to such questions by 
means of empirical and theoretical data collection and analysis without any explicit 
involvement of values (norms). (Niss, 1999; 5) 

We use terms and concepts to describe and explain phenomena:  therefore we have to 
see if this duality can be discerned in our terms and concepts.  
In the literature on mathematics education numerous accounts exist of deep 
considerations of mathematical concepts (see, for instance, the Special Issue 
“Semiotic Perspectives in Mathematics Education” in Educational Studies in 
Mathematics Education, Saenz-Ludlow and Presmeg, 2006). In these papers, the 
focus is on the process of construction of the meaning of mathematical concepts. We 
therefore need to consider the process of constructing the meaning of concepts used 
in mathematics education research, with a special focus on affective concepts. 
 
Let us discuss the meaning-construction-problem as encountered in the study of 
affect from a more general viewpoint; i.e. one that considers the ontological and other 
status of the concepts in the scientific research process, particularly in the way the 
latter’s relationship to a concept’s meaning. 
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In semiotics researchers analyse the relationship between symbols and referents. 
Frege discussed this in his important paper, “Zeichen, Sinn und Bedeutung (Sign, 
Sense and Meaning)”. Here,  “meaning” represents the objective idea of a thing; 
“sense” contains the subjective interpretation made by a person relating to this thing; 
and “sign” designates the objective idea (Kilpatrick, Hoyles, Skovsmose, & Valero, 
2005; Steinbring, 2005). In modelling the process of meaning construction, 
Steinbring (2005) uses the scheme of an “epistemological triangle”, in which 
sign/symbol, object/reference context and concept form the triangle’s corners: 

Mathematics requires certain sign or symbol systems to record and codify knowledge… 
these signs do not immediately have a meaning of their own. The meaning has to be 
produced by the student or the teacher by establishing a mediation between signs/symbols 
and suitable reference contexts. (Steinbring, 2005; 22) 

Sfard stresses the discourse aspect of a concept definition:  
A concept is a symbol with its use. (Sfard, 2008; 111) 

Within this concept definition, the term “symbol” includes more signifiers than 
words; and “use” refers to the use of a symbol in a discourse (Sfard, 2008; 236). This 
extension of the term “meaning of a symbol” to its use in a discourse process allows 
attention to be directed toward more perspectives (such as that of emotional reaction) 
than was possible in Frege’s classical concept of meaning. Otte refers to the 
important fact that all our perceptions include elements of interpretation as well as of 
generalization and therefore all knowledge is in a certain sense indirect knowledge 
and a function of symbols and representations (Otte, 2005; 231). Thus understanding 
concepts is a cognitive activity that is connected with intuition: 

Thom, and Bruner as well, intend to draw attention to the fact that we cannot develop our 
cognitive activities if we do not believe in the reality of our intuitions, and that these 
intuitions or mental states nevertheless may be treacherous and without objective validity 
or reference. Subjective meaningfulness and objective validity may not coincide. (Otte, 
2005; 231) 

Reading this quotation, moreover, raises the question of how an individual acquires a 
concept. Two answers may be found in mathematics education research, depending 
on how the problem is viewed. Following the ideas of Piaget, intellectual growth 
results from a direct interaction between the individual and the world; on the other 
hand, according to social constructivism, 

…whatever name is given to what is being learned by an individual – knowledge, 
concept, or higher mental function – all these terms refer to culturally produced and 
constantly modified outcomes of collective human efforts. (Sfard, 2008; 77) 

We should probably accept that knowledge and concepts are outcomes of a cultural 
process and neither can be learned outside a discourse community. For instance, a 
learner needs help from an experienced person (Lave and Wenger describe this 
learning process as “legitimate peripheral participation” (Lave and Wenger, 1991)). 
Furthermore, we ought to consider the individual parts comprising the acquisition 
process. Lakoff and Nunez refer to the important role of metaphors: 

One of the principal results in cognitive science is that abstract concepts are typically 
understood, via metaphor, in terms of more concrete concepts. This phenomenon has 
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been studied scientifically for more than two decades and is in general as well established 
as any result in cognitive science (although particular details of the analysis are open to 
further investigation). One of the major results is that metaphorical mappings are 
systematic and nor arbitrary. (Lakoff and Nunez, 2000; 40 – 41) 

This role of metaphors is important to keep in mind – especially if we transfer 
concepts, such as attitude, from other fields– because the borrowed concepts are 
combined with metaphors in our field to understand the concepts already present in 
our field. We must specify the metaphors required for using the concepts in our field, 
mathematics education. 
A second crucial point is strongly connected to our use of language. We use words or 
symbols that are the endpoints of a process of objectification; and these words or 
symbols produce the illusion that they are in the same category as things, yet they can 
have no empirical manifestation: 

After objectification, we often interpret metastatements, that is, statements about 
discourse, as statements about the extradiscursive world (…) This ontological collapse 
(a) may produce an illusory dilemma, (b) can result in phony dichotomies leading to 
tautologies disguised as causal explanations, and (c) is likely to lead us to consequential 
omissions; blinding us to potentially significant phenomena that cannot be described in 
ontologically “flattered” terms. (Sfard, 2008; 57) 

In the light of this, we ought to keep in mind that concepts used in mathematics 
education research that are formulated in words have no empirical manifestation – 
and therefore no reference objects – and they get their meaning through the 
metaphors and associations that we imagine in connection with the symbol for the 
concept. In mathematics one can use a “realization tree” (Sfard, 2008; 165) to 
overcome, in a certain sense, the lack of a reference context; however, for concepts 
encountered in mathematics education we have no such realization tree. 
 
The problem of meaning construction for affective categories 
 
Research into affect was motivated by the fact that cognitive concepts were 
insufficient to explain some of the effects observed in mathematics learning 
(McLeod, 1992), such as differences in the outcomes of mathematics learning. To 
explain these differences, researchers used affective concepts such as attitudes and 
beliefs. Thus differences in mathematical performance were also viewed as a 
consequence of differences in attitudes or beliefs. 
With reference to the general remarks on concepts in the previous chapter of the 
paper, in our context three components are important:  the concept definition 
(independent of the formal state of this definition (see McLeod and McLeod (2002) 
for the case of beliefs); the associations and metaphors that combine with the concept 
definition; and the research methods that are used to investigate and measure the 
concept. It shall be argued below that with respect to the meaning-construction 
problem in mathematics education research, the components “concept definition” and 
“concept images” (or concept trees (Sfard, 2008)) are helpful, but the ontological 
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status of “research methods” is problematic, and the reason for this ought to be made 
widely understood. 
Let us start with a definition of the affective categories, after Goldin (2002); also, in 
the following, we shall use the concept of beliefs to demonstrate the meaning-
construction problem: 

(1) emotions (rapidly changing states of feeling, mild to very intense, that are usually 
local or embedded in context); 
(2) attitudes (moderately stable predispositions toward ways of feeling in classes of 
situations, involving a balance of affect and cognition); 
(3) beliefs (internal representations to which the  holder attributes truth, validity, or 
applicability, usually stable and highly cognitive, may be highly structured);  
(4) values, ethics, and morals (deeply-held preferences, possibly characterized as 
“personal truth,” stable, highly affective as well as cognitive, may also be highly 
structured).  (Goldin, 2002; 61) 

In the following I also refer to the definitions of beliefs formulated by Op’t Eynde, 
De Corte and Verschaffel (2002) and Törner (2002; Goldin, Rösken and Törner, 
2009): 

Students’ mathematics-related beliefs are the implicitly or explicitly held subjective 
conceptions students hold to be true about mathematics education, about themselves 
as mathematicians, and about mathematics class context. These beliefs determine in 
close interaction with each other and with students’ prior knowledge their 
mathematical learning and problem solving in class. (Op’t Eynde, De Corte and 
Verschaffel, 2002; 27) 

Törner uses constitutive elements (ontological, enumerative, normative and affective 
aspects) to define beliefs B as a quadruple B = (O, C0, µi ej), whereby O is the belief 
object, C0 the content set of mental associations, µi the membership degree function 
and ej the evaluation map (Törner, 2002; Goldin, Rösken and Törner, 2009).  
It is important to note that each of these definitions refers to descriptions of mental 
systems. These mental systems are activated in all situations in which mathematics is 
involved and these systems influence the thoughts and acts of a person in these 
situations (Furinghetti and Pehkonen, 2000; Hannula, 1998). The lack of reference 
objects for the concepts (all of which are discourse objects (Sfard, 2008)) leads to a 
problematic situation when attempting to give the concepts a meaning in the 
discourse process.  
In the definitions we find certain keywords – “intensity”, “stability”, “structure” and 
“truth”. These keywords are supposed to lead to a meaning for the concepts: we 
therefore need to analyze them. Intensity is often described as “hot” or “cool” 
(McLeod, 1992), metaphors that are also used to describe affective states: 

Affection, for example, is understood in terms of physical warmth. (Lakoff and 
Nunez, 2000; 41) 

The terms “stability” and “balance” refer to a metaphor originating from physics and 
describing a state of equilibrium. In our case this term is used to evoke a twofold 
meaning. On the one hand, it is meant to capture the notion that some mental system 
always leads to the same endpoint that persists for an extended period; on the other 
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hand, it describes an equilibrium between the affective and cognitive systems. 
“Structure” refers to an ordering in the mental system that is clearly distinct from 
other systems. “Truth” is a metaphor borrowed from logic and used here in the 
singular sense that all utterances made by an individual are subjectively seen as true.  
However, all these keywords are also discourse objects and are therefore at the same 
level as the concepts that they are intended to give meaning to.  
How do we proceed? Another opportunity to construct meaning for a concept is 
afforded by using insights from other scientific fields striving to understand the same 
phenomena. In our case we could use insights from neuroscience. 
With respect to cognition and affect, neuroscience distinguishes two different 
systems: cognition and emotion. Both exist as a result of biological evolution, with 
the aim of aiding the individual’s survival (Wimmer and Ciompi, 1996; Damasio, 
1999; LeDoux, 1998; Roth, 2001). Although located in different parts of the brain 
(Damasio, 1999; LeDoux, 1998; Roth, 2001), there are connections between the two 
systems that allow interactions. A very important consequence of the existence of 
these two systems is that we have to distinguish between “feeling” and  “knowing 
that we have a feeling” (Damasio, 1999; 26); or “emotional reactions” and “conscious 
emotional experience” (LeDoux, 1998; 296). 
For our problem we should note that although all processes on the neuronal level are 
not conscious, some of these processes lead to conscious results. We are aware only 
of these conscious parts of the processes. For remembrances, too, two memory 
systems exist with respect to emotions: an implicit emotional memory and an explicit 
memory of emotions (LeDoux, 1998). The implicit emotional memory operates 
unconsciously, is strongly connected to arousal systems and may often lead to bodily 
reactions. The explicit memory of emotional situations contains all the conscious 
knowledge of emotional situations, emotional reactions to objects, persons and ideas 
etc.. The most important consequence of this is that this memory system is part of the 
cognitive memory and there is no distinction between a remembrance of an emotion 
and a remembrance of a cognitive content (LeDoux, 1998). The fact that memory of 
emotions is cognitive has important consequences (Schlöglmann, 2002): 
1) We have knowledge about our feelings, their origin and their effect. This 

knowledge is stored in memory systems as cognitive knowledge.  
2) Memory of emotions is open to “rational” manipulation. That means we are able 

to think about our emotional remembrances, and that all verbal statements about 
emotional facts are controlled by cognition. 

3) Knowledge of our affect with respect to objects and situations allows us to handle 
our affect at least in controlled situations (see Goldin’s example of the roller 
coaster experience (Goldin, 2002; 62)). 

4) Humans are able to  “construct” their remembrances in a way that they are able to 
live with this memory. Part of this process is forgetting unpleasant facts more 
easily than pleasant ones: our memory has suppression mechanisms to handle 
unpleasant remembrances (Roth, 2001). 
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Assimilation and accommodation processes lead to affective-cognitive schemata 
(Ciompi, 1999). The affective component is stored in two memories: in the implicit 
memory that works unconsciously but influences our actions and thoughts (Damasio 
developed the concept of “somatic marker” to explain this (Damasio, 2004; Brown 
and Reid, 2004)); and in the explicit memory that stores all the knowledge of affect 
with respect to people, objects and situations.  Affective-cognitive schemata always 
contain both the unconscious and the conscious components. Repeated assimilation 
and accommodation processes in relation to a special problem leads to consolidation 
of the unconscious reactions, as well as to more and more conscious knowledge of 
feelings and emotional reactions. It provides information on the outbreak of 
emotional reactions and allows the development of strategies for handling such 
situations (Goldin, 2002; Schlöglmann, 2006)). 
Neuroscientific research suggests that we ought to distinguish between reactions 
occurring within the two memory systems; however, according to neuroscience, we 
have no criteria to distinguish between knowledge and knowledge of our affective 
relationship to mathematics. This underscores the problem that a distinction is also 
difficult to formulate in philosophy (Österholm, 2009; Pehkonen and Pietilä, 2003), 
and helps us appreciate that the problem of defining affective categories, especially 
beliefs, must be considered at the discourse level. Yet we have seen that descriptions 
of affective categories as “discourse objects” themselves also use discourse objects 
(e.g. intensity, stability, structure, truth) together with some metaphors. We are in a 
circle situation: we are bound to define our concepts in terms that contain no 
reference objects. 
On top of these considerations, in order to measure the categories, we need an 
operationalization of them, usually in terms of items of a questionnaire. The items are 
formulated by the researchers with the aim of grasping all of the important aspects of 
the definition, and are formulated as questions or simple statements. The attention of 
the responder is directed towards finding an appropriate answer or value on a scale. 
However, the items are more concrete than the definition, and we have a situation 
where the measurement methods are derived from theoretical concepts, while  they 
themselves become an important part of the concept. This problem is inherent in all 
discourse objects. 
 
Conclusion 
 
The analysis of the problem of defining affective concepts shows that these concepts 
are objects of a discourse with no reference objects. To give these concepts a 
meaning we use discourse to clarify the meaning: in particular, by employing other 
terms and metaphors. However, these terms are often also objects of a discourse at 
the same level as the terms they are intended to give meaning to. In a discourse this 
obstacle can be successfully surmounted. In contrast, if we want to measure a 
concept, we must formulate the description of it mostly in the form of items of a 
questionnaire, and these items are a consequence of our definition – yet for the 

WORKING GROUP 1

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 170



purposes of the measurement they are the realization of the definition. The problem is 
that we cannot escape this situation. Therefore it is important to be aware of the 
problem. As a consequence of this state of affairs, researchers have developed 
numerous methods whose appropriateness depends on the complexity of the 
phenomenon at hand (for the case of beliefs research see (Leder and Forgasz, 2002)); 
indeed, in extending the basis of information about some phenomenon, more than one 
research method is often used to overcome, in a certain sense, the problem of 
defining a concept.  
On the whole we can see three groups of methods: quantitative, qualitative and 
observational methods. The basis for quantitative methods is the questionnaire, 
together with the statistical methods used to handle the responses. Qualitative 
methods are mostly based on texts (protocols of interviews, essays, protocols of 
narratives and protocols of observations), and are used to look for keywords 
expressing affective or emotional reactions (see, for instance, Tsamir and Tirosh, 
2009; Evans, 2002). Observations can also be used to look for keywords as well as 
other signs indicating emotional state, such as body language. (A small number of 
studies exist in which physiological facts are utilized.) All these efforts can help 
clarify the meaning of a concept, and, in a certain sense, overcome the theoretical 
obstacle in a discursive way.   
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INTRODUCTION 
ARGUMENTATION AND PROOF 

 
Maria Alessandra Mariotti, Università di Siena 

Leanor Camargo, Universidad Pedagogica Nacional de Bogotà 
Patrick Gibel, Université de Bordeaux 
Kristina Reiss, München Universität 

 
This chapter collects the contributions discussed during the working sessions of the 
WG2 at CERME6. The work of the participants of the Thematic Working Group on 
Argumentation and Proof was organized around the goals of  

• Putting our research studies in relation to each other. 

• Getting feedback for improving both our research work and our papers.  
Each participant was expected to act as reactor to one of the other papers, presenting 
the key issues and posing questions to the author(s). Such intervention was aimed to 
trigger a collective discussion on the paper in focus as well on general issues.  
Although they all share the issue of proof and argumentation, the contributions offer 
a quite varied spectrum of perspectives, both from the point of view of theoretical 
frameworks assumed and of issues in focus. The main themes that emerged from the 
papers were the frame according to which the working sessions of the group were 
organized, and it is the same frame we use to organize this introduction. These main 
themes were the following.  
Historic and epistemological issues 
Conjecturing and proving 
Visual aspects in proving 
Teachers and teaching of proof 
Models to describe models to explain 
 
HISTORIC AND EPISTEMOLOGICAL ISSUES 
Historic and epistemological issues were specifically addressed in some of the papers 
presented. Molinini discusses mathematical explanation in Physics using the lens of 
history. His aim is to clarify how explaining a physical phenomenon via mathematics 
may foster its understanding and consequently may have a pedagogical value. As 
Avigad says: “We look to mathematics for understanding, we value theoretical 
developments for improving our understanding, and we design our pedagogy to 
convey understanding to students” (Avigad, 2008, p. 449). 
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The relationship between argumentation and proof is also addressed by Barrier, 
Mathé and Durrand-Guerrier. Taking a semantic approach the authors try to 
overcome the limits of previous discussions concerning the gap between 
argumentation and proof. 
The function of proofs in the history of mathematics inspired the analysis presented 
by Hemmi and Lofwall that concerns the idea of transfer, that is the contiguity 
between proofs and methods for problem solving. The importance of proofs for the 
development of mathematics is compared with the opinion - shared by some of the 
mathematicians involved in the investigation - about the crucial role that certain 
proofs my have in the learning of mathematics. 
Habermas' theory of rationality is proposed by Morselli and Boero as a research tool 
and a theoretical ground according to which new educational challenges can be 
pursued. 
 
CONJECTURING AND PROVING: THE ROLE OF ARTEFACTS 
The relationship between conjecturing and proving is addressed from the specific 
point of view of the contribution offered by artefacts, either in fostering the 
production of conjectures or in developing the sense of a theoretical approach. Our 
group’s work in this area considers, in particular, three different artefacts, related to 
different mathematical domains: a linkage device to produce an ellipse – specifically 
the reconstruction of an ancient machine; a Dynamic Geometry environment – Cabri; 
a software for algebraic manipulation – Alnuset. 
The papers present different potentialities offered by the use of such artefacts. The 
field of experience of linkages (mathematical machines) may be compared with that 
offered by a Dynamic Geometry System. Bartolini Bussi discusses direct 
manipulation, highlighting the potential of the exploration tasks, where a key request 
concerns the explanation of the functioning of the linkage. Exploration tasks are also 
discussed in the paper of Baccaglini-Frank and Mariotti, where the authors present a 
model for describing and explaining the process of production of a conjecture, based 
on dragging strategies for grasping the relationship between geometrical invariant 
properties.  
In her paper, Pedemonte discusses the use of a particular symbolic manipulator, 
Alnuset, with respect to enhancing the teaching and learning of proof in algebra.  
 
VISUALIZATION  
Some of our group’s contributions address the issue of visualization in relation to 
proof and proving. Such issue is discussed from different perspectives, providing a 
good opportunity for reflecting on the diversity and the complexity of phenomena 
that are usually referred to as visualization. In fact, this issue was widely discussed in 
the working sessions, and the discussion provided a good opportunity to confront our 
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different epistemological assumptions as well as the different points of view about 
visualization. Exploring the use of visual reasoning is the goal of the paper of 
Bardelle. In her paper, she presents the results of a preliminary study concerning 
students’ way of working with visual proofs. The difficulties in treating and 
accepting visual proofs described in Bardelle’s study finds an eco in the paper of 
Biza, Nardi and Zachariades, where the authors elaborate on empirical results that 
clearly show the relationship between teachers’ and students’ beliefs. The instability 
of teachers’ beliefs about the role of visual representation with respect to what counts 
as a valid proof has a counterpart in students’ uncertainty on what counts as a proof. 
The role of visual reasoning was discussed not only with respect to the proving 
process but also with respect to the process of discovering and producing a 
conjecture. Difficulties emerge concerning the complexity of treating visual 
representation such as lack of basic geometrical knowledge or ambiguity of images 
from which it is difficult to extract useful information. However, the key issue 
concerns the uncertain status of images as argument for validating a statement. This 
issue brings to the forefront the role of the teacher in introducing students to a 
theoretical perspective in mathematics. 
 
TEACHERS AND TEACHING PROOF 
Several papers address the issue of teaching both in terms of teachers’ mathematical 
competences and in terms of teachers’ role in organizing and managing a learning 
environment that could (and should) enhance students’ proving performances. In 
many countries – in Israel for instance – recent reform recommendations require that 
proof and proving become key components of classroom practice. 
The paper of Barkai et al. reports on an empirical study showing how teachers are 
able to produce correct proofs of a given statement, but meet difficulties in 
understanding and evaluating the validity of students’ arguments supporting the 
validity of the same statement. These results question the type of competences that 
teachers should have in order to face everyday practice with students’ productions of 
proof. Along the same lines, the paper of Potari et al. discusses teachers’ reaction to 
hypothetical classroom scenarios, specifically how teachers approach the refuting of 
students’ claims. These results indicate teachers’ misleading epistemological views 
about theorems and theory, as well about the role of counterexamples in 
mathematical reasoning. 
These contributions enrich previous results concerning the relationship between 
teachers' beliefs and practices. At the same time they show the high complexity of 
treating visualization issues and the need of elaborating specific research questions 
that go beyond testing of teachers’ ability of producing correct mathematical proofs. 
Teachers’ view of what constitutes a proof and its functions influences the choice of 
what is to be integrated into one's own teaching practices and consequently how 
students evaluate their own productions.  
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Shifting the attention from the teachers to the students, two papers address students’ 
productions of proofs. The study presented by Back et al. aims at giving a clear 
picture of how students motivate their solutions and how these change throughout the 
course. The issue of evaluating students’ productions of proofs is again the focus of 
this paper that discusses how students’ justifications relate to both teachers’ and 
textbooks’ ways of justifying and explaining, focussing particularly on the opposition 
between verbal and symbolic expression. In this respect, the episode reported by 
Raman et al. is also significant. These researchers describe an episode in which 
students come very close to a proof (they reach something that a mathematician 
would have basically recognized as a proof), however they were not able to recognize 
their argument as a proof. That raises a natural but difficult question: why are 
students unable to recognize what they are saying as a proof? How to bridge the 
distance between students and experts in elaborating informal arguments into proofs? 
More specific difficulties are described in the paper of Stylianides & Al-Murani and 
in the paper of Antonini & Mariotti. The first paper focuses on the possible 
coexistence of a proof and a counterexample for the same statement. Although the 
answers to a survey seemed to provide some evidence of such misconception, the 
interview data collected in the following suggest that students’ responses originate 
from a particular interpretation of the given questions. The second paper focuses on 
difficulties related to indirect proof. Specifically, the paper discusses examples of 
abductive processes that are mobilized in order to produce explanatory hypotheses to 
establish what for the solver is a meaningful link between the contradiction produced 
in the indirect argument and the original statement to be proved.    
No great discussion on didactic issues related to proof can be found in the 
contributions to the working group. The only exception is the specific example of a 
teaching intervention presented in the paper of Douek. In this paper, after a 
theoretical introduction, the author presents the outline of the didactic engineering, 
based on the notion of cognitive unity. The author highlights the crucial role of the 
situation for a student to engage him/herself in argumentative reasoning, nevertheless 
the difficulty of implementation clearly emerges from the reported results, raising 
many open questions. 
 
CONCLUDING REMARKS 
A considerable part of the discussion in the group was devoted to the illustration and 
the comparison of the different theoretical constructs that contributed to shape the 
different investigations, directing the researcher both in selecting the questions to be 
addressed and the ways to look for possible answers.  
The opportunity of comparison that we had during the working sessions made us 
aware of the need and the usefulness of making theoretical assumptions explicit and 
clear. Similarly the comparison of different models and of their use in our 
investigations was very stimulating, suggesting possible integrations.  
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It is difficult to elaborate conclusions for a discussion group that spent a considerable 
amount of time exploiting the richness of diversity. In our discussion we were driven 
not only by the need of comparing but also by the curiosity of possible integration 
among different paradigms. This may constitute a program for our next up-coming 
meeting at CERME7. 
 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 180



 

 

 

 

UNDERSTANDING, VISUALIZABILITY  

AND MATHEMATICAL EXPLANATION 

Daniele Molinini 

REHSEIS, Université Paris 7 

 

In this paper I focus on Mathematical Explanation in Physics and I analyse its 
interplay with the concepts of understanding and visualizability. Starting from a 
recent contextual approach to scientific understanding (De Regt & Dieks, 2005) I 
will try to see how an historical analysis of the formulation of a particular theorem 
could help to clarify the role of understanding and visualizability in mathematical 
explanation. My test case will be Euler’s theorem for the existence of an 
instantaneous axis of rotation in rigid body kinematics. In particular, I will argue 
that the specific concept of vector space, defining a new standard of intelligibility, 
offers a good perspective in order to underline the dynamical character of 
mathematical explanation and its essential role in mathematical education.  
  
1. INTRODUCTION 

Different authors agree that the problematic of explanation is deeply connected to the 

debate about the nature of understanding in science. At the moment the major 

accounts of scientific explanation such as the Unificationistic (Friedman, 1974; 

Kitcher, 1981, 1989), the Causal (Salmon, 1984), the Pragmatic (Van Fraassen 1980; 

Acrhinstein, 1983) do not offer a satisfactory definition of understanding within their 

theories. While the authors and the supporters of those theories affirm that their 

particular accounts of explanation provide understanding, the notion of understanding 

remains still vague and is the cause of a series of controversies between philosophers 

of science. It seems quite plausible that a good explanation in science must provide 

understanding. But what is understanding? Is it really this “aha!” experience we are 

confronted with after some cognitive experience? And how can a good explanation 

provide understanding? 

In this paper I will focus on the very specific notion of mathematical explanation, and 

in particular on the notion of mathematical explanation in physics. As clearly 

expressed by Mancosu in his studies on mathematical explanation (Mancosu 2005, 

2008), we can have two different senses mathematical explanation:  

In the first sense “mathematical explanation” refers to explanations in the natural or 

social sciences where various mathematical facts play an essential role in the explanation 

provided. The second sense is that of explanation within mathematics itself (Mancosu, 

2008, p. 184). 
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Naturally, as pointed out by Shapiro (2000), mathematical explanation as intended in 

the first sense is connected to the more general problematic concerning the 

application of mathematics to reality and opens the mysterious problem of the 

“unreasonable effectiveness of mathematics in the natural sciences” (Wigner, 1967). 

However, leaving apart mysteries and ontological questions, many authors agree that 

it is possible to have a better comprehension of mathematical explanation of physical 

phenomena (MEPP) [1] starting from general discussions of scientific explanation 

and introducing an historical perspective (Tappenden, 2005; Kitcher, 1989). In this 

paper I will follow this line, getting my hands dirty via a bottom-up approach that 

starts from the mathematics itself. I will compare two different formulations of 

Euler’s theorem for the existence of an instantaneous axis of rotation in rigid body 

kinematics and I will try to discuss the concepts of understanding and visualizability 

under the light of dynamical MEPP. I assume as a starting point that in both the 

formulations the mathematical machinery has an essential role: they represent two 

mathematical explanations of the same physical fact. Naturally, in such a contextual 

analysis, the arena of mathematical education is of primary importance and I will 

offer a perspective in order to work in this direction. 

In a recent series of papers De Regt and Trout have discussed the notion of 

understanding in science (De Regt, 2001, 2004, 2005; Trout, 2002, 2005). My point 

will be that, contrary to Trout’s idea that is impossible to give an objective epistemic 

role to understanding (Trout, 2002), some interesting ideas of De Regt’s account 

could be utilized in order to study the role of visualizability and understanding in 

mathematical explanations. I hope this study will make clear that MEPPs have a 

dynamical character, and in some case the role of understanding in them could be 

studied if we have at disposition conceptual tools like visualizability. After all, a 

number of new studies and a sort of “renaissance in visualization” (Mancosu, 2005, 

p. 13) have emerged during the last years in philosophy of mathematics and cognitive 

sciences. The impetus in this sense has been given for the most part by the rise of 

visualization techniques in computer science, from which has clearly emerged the 

heuristic and pedagogical value of visual thinking [2]. Naturally, I stress again, my 

analysis implicitly focus on the importance of mathematical activity and education. 

Explaining a physical fact via mathematics in order to make it understandable is a 

mathematical practice, and first of all a pedagogical practice. In particular, if I 

assume with De Regt and Dieks (2005) that understanding transcends the domain of 

individual psychology and is relative to scientific communities in a specific historical 

period (they call it the “meso-level in science”), the importance of the acquisition of 

skills should be take into account in a more complete analysis. As remarked by 

Jeremy Avigad (2008) in his discussion of the notion of understanding in 

mathematical proofs:  

We look to mathematics for understanding, we value theoretical developments for 

improving our understanding, and we design our pedagogy to convey understanding to 
students. Our mathematical practices are routinely evaluated in such terms. It is therefore 
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reasonable to ask just what understanding amounts to (Avigad, 2008, p. 449. My 

emphasis). 

So mathematical education is directly linked to the concepts of understanding, 

mathematical explanation and to the intelligibility standard of visualizability. In this 

direction: transitions in the formulation of Euler’s theorem in mathematical (and 

physical) textbooks could be very helpful in order to study mathematical explanation 

in our sense and the variation of “what is considered more understandable” from a 

pedagogical point of view.  

In the next Section I will briefly give an outline of the theorem and the two different 

mathematical explanations for the physical phenomenon. In Section 3 I will claim 

that MEPPs in this particular case have dynamical character, while in Section 4 I will 

focus on visualizability, understanding and on the particular role of vector space 

theory. I will defend the epistemic relevance of a contextual notion of understanding 

and I will put in evidence a shift in the notion of visualizability for this particular case 

of explanation. The final section will contain my conclusions and some 

epistemological and educational perspective. 

 

2. EULER’S THEOREM 

2.1 Euler’s Original mathematical formulation in E177 

Euler's contributions to mechanics are numerous and of primary importance. Between 

them, the remarkable fact that Euler was the first to prove the existence of an 

instantaneous axis of rotation in the kinematics of rigid body motion. He obtained the 

result of the instantaneous axis of rotation for the first time in his paper E177 

Decouverte d’un nouveau principe de Mecanique. In this work Euler utilizes previous 

results in order to study the general motion of a rigid body with a fixed point and 

deduce the changes in the position and the velocity distribution from the given forces 

acting on the body [3]. His enterprise in the dynamics of rigid body motion in space 

was stimulated by the problem of the rotation of the Earth around its axis (as to 

explain the precession of equinoxes). The introduction of the perpendicular 

rectangular frame of reference permits Euler to apply Newton's second law separately 

with respect to each of the coordinates. This was brought about by a kinematical 

result: the instantaneous axis of rotation.  

In the section Détermination du mouvement en général, dont un corps solide est 
susceptible, pendent que son centre de gravité demeure en repos, in order to study the 

velocity distribution, Euler introduces a cartesian system fixed in absolute space and 

assumes that a point Z of the body with coordinates x, y, z has velocities P, Q, R in 

the direction of the axis. The components of the velocity P, Q, R are functions of x, y, 

z. Euler's final purpose is to found those functions. He considers another point z 

“infiniment proche du précédent Z”, of coordinates x + dx, y + dy, z + dz and 

velocities P + dP, Q + dQ, R + dR. After a mixed geometrical-analytical procedure 
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Euler is able to state that there are points, which have coordinates (Cu, -Bu, Au), that 

do not move during time dt. In other words, those points are on a straight line through 

the origin, which is called the instantaneous axis of rotation [4]. 

... tous les points du corps, qui sont contenus dans ces formules x=Cu, y=-Bu, z=Au 

demeureront en repos pendant le tems dt. Or tous ces points se trouvent dans une ligne 

droite, qui passe par le centre de gravité O; donc cette ligne droite demeurant immobile 

sera l'axe de rotation, autour duquel le corps tourne dans le présent instant (Euler, 1750. 

p. 95). 

Euler also added a geometrical proof of the existence of the instantaneous axis of 

rotation, discussing the infinitesimal motion of a spherical surface with a fixed point. 

The geometrical argument provided by Euler legitimates his analytical argument and 

holds not only for the instantaneous case but also for the discrete case. 

 

2.2 A Modern formulation in Linear Algebra  

As originally proved by Euler, the theorem for rigid body motion states that: “The 

general displacement of a rigid body with one point fixed is a rotation about some 

axis”. The motion of a rigid system in modern mechanics is described specifying at 

each instant the position of the points of the body with reference to a system of axis. 

To every point we associate a vector which belongs to an euclidean 3-dimensional 

space. The orientation of the rigid body in motion can be described at any instant by 

an orthogonal transformation, the elements of which may be expressed in terms of 

some suitable set of parameters. With the progression of time the orientation will 

change and the matrix of the transformation will evolve continuously from the 

identity transformation A(0)=1 to the general matrix A(t). Here we assume that at 

time t = 0 the body axes (the axes fixes in the rigid body) are chosen coincident with 

the space axes (a system of axes parallel to the coordinate axes of external space). 

The assumption that the operation implied in the matrix A describing the physical 

motion of the rigid body is a rotation assures that one direction (the axis of rotation) 

remains unaffected in the operation and the same holds for the magnitude of the 

vectors. If we consider as the fixed point in the rotation the origin of the sets of axes 

(and not necessarily the center of mass of the object), the displacement of the rigid 

body involves no translation of the body axes and we can restate Euler's theorem in 

the following modern mathematical form: “Every matrix A in SO(3), with A different 

from I3, has an eigenvalue +1 with a 1-dimensional eigenspace” (Sernesi, 1993, p. 

305).  

A proof of the mathematical theorem in the form I have given involves the general 

concepts of matrix, vectors (in particular the more specialized concepts of eigenvalue 

and eigenvector), eigenspace, basis, orthogonality, bilinear forms (in particular the 

scalar product, which is a symmetric and non-degenerate bilinear form). All those 

concepts are included in linear algebra and their close interplay does not permit any 
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easy separate analysis of the elements which are found in the proof structure of such a 

theorem. Israel Klein pointed out this difficulty in his History of Abstract Algebra: 

Among the elementary concepts of linear algebra are linear equations, matrices, 

determinants, linear transformations, liner independence, dimension, bilinear forms, 

quadratic forms, and vector spaces. Since these concepts are closely interconnected, 

several usually appear in a given context (e.g. linear equations and matrices) and it is 

often impossible to disengage them (Klein, 2007, p. 79). 

The modern proof of the algebrical formulation is constructed into the general 

framework of linear algebra and the particular framework of euclidean 3-dimensional 

vector space R
3
. Clearly, the proof's outcome is to show the existence of the 

eigenvalue λ=1 [5]. If we do not consider the concept of group, and we focus on the 

general concept of vector space, we could analyse the explanatory structure and make 

some relevant remarks. 

 

3. SHIFT IN MATHEMATICAL EXPLANATION 

It is clear that Euler did not have at disposition the modern concept of vector and 

vector space. But, as we can see from his papers, he did have the basic idea of 

geometrical transformation (point-to-point association in space and not 

transformation from physical magnitude to geometrical magnitude), which was 

central to his analysis. Differently from Euler’s original argument, in which the 

mathematical explanation is given by a mixed geometrical-analytical argument by 

means of a geometrical space (and via a geometrical intuition [6]), the modern 

explanation of the existence of an instantaneous axis of rotation is given in the 

framework of linear algebra. Having the particular structure of euclidean 3-

dimensional vector space is essential to Euler's theorem as formulated in modern 

terms because only the mathematical properties of a real vector space equipped with 

scalar product permit to “map” the properties of the kinematical system (angles, 

distances, orthogonality condition) into the algebraic structure.  

In a recent paper Gingras (2001) has underlined how the shift in explanation and the 

“disparition of substances into the acid of mathematics” are an epistemic and an 

ontological effect of the process of mathematization started with Newton. As a 

consequence of an historical process concepts like determinant, matrix, orthogonality 

or transformation are today included in the mathematical apparatus of linear algebra 

and we could profit of their interplay without exit from this framework (i.e. the 

framework of abstract algebra). In other words: in the modern algebrical proof the 

geometrical part is already “included'” in the structure of vector space and we do not 

need a geometrical argument [7]. It is very interesting to observe that Peano himself, 

in his Analisi della teoria dei vettori, remarked: 

Thus the theory of vectors appears to be developed without presupposing any previous 

geometrical study. And since, by means of this theory, all of geometry can be treated, 
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there results thereby the theoretical possibility of substituting the theory of vectors for 

elementary geometry itself  (Peano, 1898, p. 513). 

After having proved the dynamical character of mathematical explanation (i.g. the 

mathematics is essential to both the two explanations but it changes), in the following 

Section I will use De Regt & Dieks’s criteria for understanding and intelligibility in 

order to show how the theory of vector space offers a new conceptual tool of 

intelligibility and understanding. 

 

4. UNDERSTANDING AND VISUALIZABILITY IN MEPP. 

If I admit (and I do!) with De Regt & Dieks (2005) that visualizability constitutes a 

context-dependent standard of intelligibility, and only intelligible theories can 

provide an understanding of phenomena, then I can look at the shift between our two 

MEPPs in a more fruitful and interesting way. But, first of all, it is necessary to give a 

possible sense to the notions of visualizability, intelligibility and understanding. 

As showed by De Regt (2001) being a spacetime theory is a necessary but not 

sufficient condition for visualizability. It might be objected here that I deal with 

mathematical entities and the term “spacetime” is very dangerous and misleading. 

Fortunately, I am referring to MEPPs and for my particular test case the conditions of 

necessity and sufficiency for visualizability are both fulfilled (Euler’s geometrical 

framework and the framework of vector space theory both make the physical 

phenomenon visualizable in space -as a vector- at a particular time t, as could be seen 

from the diagrams we find in a common textbook of mechanics or mathematics). We 

can say that geometrical space in Euler and the modern concept of vector space map 
the physical space into a structure (a geometrical and a mathematical structure). In 

the case of vector space this mapping consists in an explicitly assumed isomorphism 

between the physical space and the 3-dimensional Euclidean space.  

De Regt & Dieks (2005) propose two criteria for understanding and intelligibility: 

CUP (Criterion for Understanding Phenomena) and CIT (Criterion for the 

Intelligibility of Theories). 

CUP: A Phenomenon P can be understood if a theory T of P exists that is intelligible (and 

meets the usual logical, methodological and empirical requirements). 

The necessary connection between visualizability and understanding is made by De 

Regt through the Criterion for the Intelligibility: 

CIT: A Scientific Theory T is intelligible for scientists (in context C) if they can 

recognize qualitatively characteristic consequences of T without performing exact 

calculations. 

In the previous Criterion I substitute “Mathematical Theorem” for “Scientific 

Theory” and I assume the applicability of the CIT in both cases (with some 

differences that should be discussed). But how do we “recognize qualitatively 
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characteristic consequences of T without performing exact calculations”? A possible 

answer: through conceptual tools. In a particular historical or methodological context 

we have at disposition some conceptual tools and visualizability could be one of them 

[8]. In other words: visualizability is a conceptual context-dependent tool, i. g. a 

conceptual contingent tool which depends from the skill of the scientific-

mathematical community and which is present during a precise historical period, and 

it could permit the intelligibility of a theory making possible the circumvention of the 

calculatory stage and the jump to the conclusion. So it is clear that also intelligibility 

is context-dependent. Naturally, as remarked by De Regt (2001), visualizability is not 

a necessary condition for intelligibility. Often other conceptual tools as abstract 

reasoning or familiarity could lead scientists and mathematicians to intelligibility as 

an immediate conclusion (see De Regt & Dieks, p. 156, for examples). Mathematical 

practice and theoretical physics are full of situations like this. 

In Euler the tool of visualization is perfectly applicable in the classical geometrical 

framework (I call it Euclidean Geometrical Theory): point-to-point association and 

geometrical considerations offer the idea (a visual idea) of what is happening to the 

mechanical system in motion. The instantaneous axis of rotation could always be 

visualized in spacetime, and its existence could be established through a geometrical-

intuitive reasoning [9]. In the modern explanation given in the framework of abstract 

algebra it might seem that this “chance” of intellegibility has been lost, but a deeper 

look shows that this is not completely true. The concept of 3-dimensional Euclidean 

vector space offers two new ways for obtaining the intelligibility (in line with CIT). 

Reading the modern formulation of Euler’s theorem a mathematician or a student 

could affirm “Yes, I see the eigenvalue +1”, just by looking at the formulation of the 

theorem in the matrix formalism. This is associated with the conceptual tool of 

familiarity, or abstract reasoning, and is related to a previous learning of matrix 

theory or other mathematical abilities. Instead of this approach, one can reach the 

same direct conclusion just by considering some general results in matrix theory and 

visualizing the eigenvector (the instantaneous axis) in the diagram [10]. The latter can 

be considered a new conceptual tool leading to the fulfilment of CIT. Naturally, the 

structure of nxn matrices with entries from R and the structure of homomorphisms of 

a 3-dimensional space (over R) into itself are isomorphic. From the last 

considerations is clear that visualizability still plays a very important role in 

understanding and in developing a fruitful strategy of mathematical education.  

 

5. CONCLUSIONS AND PERSPECTIVES 

MEPPs are context-dependent and have dynamical character. In particular, via a 

contextual approach to understanding, it is possible to recognize that the framework 

of linear algebra has defined new standards (or tools) for intelligibility which 

legitimate an explanation as “a good explanation” (an explanation which produces 

understanding). The understanding in this context is a payoff that directly comes from 

the availability of those conceptual tools. As I have showed, in the modern 
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formulation the understanding of the mathematical explanation for the existence of an 

instantaneous axis of rotation is obtained through a double route (visualization and 

abstract reasoning). I claim that this result might be very helpful in mathematical 

education and could offer a possible answer to Avigad’s question “How do we design 

our pedagogy to convey understanding to students?” for the specific case discussed. 

A new interesting direction, as showed by Marcus Giaquinto in his studies on the 

epistemic function of visualization in mathematics (Giaquinto, 2005), could emerge 

from an analysis of visualization as a powerful educational tool in the context of 

discovery [11]. 

A better comprehension of mathematical explanation could profit from the historical 

study of the interplay between the proof structure of the theorem and the system of 

concepts that characterizes the explanatory structure. If a change in one of them 

influences the other, it could be interesting to study different formulations of Euler’s 

theorem in textbooks in order to see how the mathematical explanation has been 

offered during this period and how it has changed in mathematical education. 

Naturally, the epistemological analysis of this paper opens the way to the more 

general question of how introduce proofs in classrooms and how concepts like 

explanation, understanding and visualizability should be taken into account in 

mathematical education. 

 

NOTES 

1. For shortness, from now on, I will refer to Mathematical Explanation of Physical Phenomena 

with the term MEPP. 

2. For a panoramic of this field and the very interesting discussion of this point, including how 

computer graphics has helped to recognize mathematical structures such as Julia sets which would 

have been impossible to recognize analytically, see Mancosu (2005). 

3. For a more precise reconstruction of Euler’s argument in Euler (1750) see the paper “What we 

can learn about mathematical explanations from the history of mathematics” I’ve presented at 

Novembertagung Conference, in Denmark, 5-9 November 2008.  

4. Euler does not use the word “instantaneous axis”. He refers to it simply as “axe de rotation”. 

5. For a proof of the theorem see Sernesi (1993, p. 306). 

6. The importance of the geometrical intuition in Euler emerges from the geometrical proofs he 

adds after his analytical arguments. The geometrical argument defines and legitimates the analytical 

procedure and is essential to the mathematical explanation of the existence of the axis. 

7. Vector spaces firstly appear in their axiomatic form in Peano (1888). 

8. Evidently, the intelligibility standard or tool of “casual connection” is of no interest in our 

discussion. 

9. See Euler’s geometrical argument or a modern geometrical argument (Whittaker, 1904, p. 2). 
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10. Here I am not claiming that the geometrical interpretation of matrices and eigenvectors is 

intrinsic in their definitions. I am assuming that under a particular “reading” (in our case Euler’s 

theorem in kinematics of rigid body motion), a subset of vectors of the vector space considered (the 

subset containing the instantaneous axis) has a geometrical representation in a diagram at time t (or 

a representation in a computer graphic simulation). A very good example of a case in which a 

precise situation is visualizable in the context of Vector Space Theory has been given by Artin 

(1957) and is discussed in Tappenden (2005). 

11. For simple and interesting cases in which a case of visualization could provide the discovery of 

a theorem see Giaquinto (2005) or, in a different flavour, the famous Lakatos (1978).   
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ARGUMENTATION AND PROOF: A DISCUSSION ABOUT 
TOULMIN'S AND DUVAL'S MODELS 
Th. Barrieri, A.-C. Mathéii, V. Durand-Guerrieriii 

LEPSi, iii, Université Lyon 1i, iii, LMLii, Université d’Artoisii 
In this paper, we discuss the idea of a gap between argumentation and proof, an idea 
we think to be prevailing in the educational institution. Our claim is that the only use 
of propositional calculus is insufficient to the analysis of the validation process in 
mathematics and could artificially reinforce that idea of a gap. This claim can be 
understood as a criticism of Toulmin’s and Duval’s model, a criticism we hope to be 
a constructive one. We are then brought to the following proposal: taking explicitly 
into account the logical quantification and the mathematical objects in the models 
could help to explain mathematical creativity.     

INTRODUCTION: THE PREGNANT IDEA OF A GAP  
The issue at stake in this paper is the relationship between argumentation and proof. 
It seems to us that the assumption of a gap prevails in the educational institution. This 
prevalence could have major effects on mathematic education:  

« Is it possible, yes or no, to shift from one to the other without too many efforts or 
misunderstandings?  

[…] 

If one answers No, one admits there is a gap between the cognitive processes of 
argumentation and the deductive reasoning at stake in a proof: the use of argumentation 
could not but maintain or even reinforce the obstacles and misunderstandings about what 
a proof is, because its discursive process acts against a valid reasoning process in 
ordinary language. » (Duval, 1992, p. 43, our translation) 

Willing to take into account this gap between argumentation and proof, which is 
theorised in Duval's works, part of the teachers have been induced to put forward 
specifically the formal aspect of the proof (through structuring attempts like "I know 
that", "Now", Therefore" for example) and to distinguish this aspect from the work on 
the content of statements. This phenomenon can be seen in Kouki's thesis (2008) 
through a survey carried out among six Tunisian teachers about learning and teaching 
of equations, inequalities and functions. Moreover, Kouki shows, through a more 
extended experimental study (involving 143 pupils and students in their transient 
period between secondary school and higher education) the consequences of these 
theoretical conceptions on the students' practices which tend to apply formal 
procedures as much as possible. In another context, Segal (2000) highlights the 
tendency of UK students to evaluate proof validity only from their formal aspect. 
There are a lot of examples of this phenomenon. We shall focus on two specific ones 
in order to point out the stakes of this issue.  
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Example 1 
This example is taken from Barrier (2008) in which an extract of Battie (2003) is 
analysed. In this paper, a group of three students in scientific upper sixth form are 
asked to evaluate the following statement )1),(()1),(( 22 =⇒=∀∀ baGCDbaGCDba . The 
group starts an argumentation built on the choice of some coprime natural numbers (3 
and 2, 2 and 5, 9 and 17 then 4 and 15) and on the evaluation of the GCD of their 
respective square. Here is an extract of their dialogue (translated from French). 

1. A :  Or 125 and 16. They are relatively prime. 

2.  I don't know. 

(Laughes) 

3.  You set 125 divided by 16 and you'll see… No, it is not the right way to do 
it. 16 by 16 is 4 2, 2 times 2/ 

4. A :  No, I think 16 and 125 are relatively prime. 

5.  Yeah, when we square the things/ 

6. A :  Yeah, but we don't know, it's not written in the text book, but we can't 
prove it in the general case / 

7.  Oh we make fun of it! 

8. A1 :  We can't use it then. Well, I think, I really don't know, the teacher may have 
told it. 

In (3), a student undertakes a prime factorization of 16. This method could be used 
for the emergence of a proof of the analysed statement. However, it seems to us that 
the students, influenced by their school culture regarding proof, disregard this 
possibility. They act as if the evaluation of a statement through an argumentation 
built on the manipulation of objects and the search for proof were two distinct and 
independent activities.  
Example 2 
Alcock & Weber (2005) analyse how thirteen student volunteers taken from first-
term, first year introductory real analysis courses check the validity of the following 
proof (they were asked to determine whether or not the proof was a valid one): 

Theorem. ∞→n  as ∞→n  

Proof. We know that mm baba <⇒< .  

So baba <⇒< . 

1+< nn  so 1+< nn  for all n. 

So ∞→n  as ∞→n  as required. 
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The inference between the two last propositions is invalid. Exactly two students 
rejected the proof because they had familiar counter-examples. Their rejection was 
not founded on the recognition of a logical gap between the propositions. Three other 
students rejected the proof. They did it because they failed to recognize what they 
thought to be a proof structure. In particular, they argued that the definitions of the 
mathematical concepts involved in the argument were not used. Their decision seems 
to be grounded on exclusive formal considerations. From the point of view of 
mathematical activity, this is a misconception: definitions are not always employed in 
a mathematical proof and, above all, very few mathematical proofs are enough 
detailed so that their logical structure can be recognized without any work. To finish 
with this example, notice that while only two students refused the proof because of an 
invalid warrant, ten did it when the interviewer helped them to interpret “ 1+< nn  so 

1+< nn  for all n” as “the series is increasing” and “ ∞→n  as ∞→n ” as “the 
series is divergent”. Our hypothesis is that this last intervention allowed the students 
to enter the semantic content of the proposition. Precisely, the translation into 
ordinary language could help them to go to a semantic interpretation in a familiar 
domain in which they know that there is some increasing and convergent series.  
We shall now undertake a criticism of Duval and Toulmin's models which are often 
used in research in mathematical didactics about argumentation and proof (Mathé 
(2006), Tanguay (2005), Inglis & al. (2007), Pedemonte (2007, 2008)). Our main 
thesis is that using the proposition (in the sense of propositional calculus, as opposed 
to predicate calculus) as a basic element of modelling leads to overestimate the gap 
between argumentation and proof. In particular, we consider that taking into account 
mathematical objects and quantification in the didactical analysis allows a quite 
different approach to the validation process in mathematics.  

BRIEF PRESENTATION OF DUVAL AND TOULMIN'S MODELS  
We shall begin with a brief presentation of Duval's approach. Let us use Balacheff's 
presentation (2008, p. 509): 

 ‘‘Deductive reasoning holds two characteristics, which oppose it to argumentation. First, 
it is based on the operational value of statements and not on their epistemic value (the 
belief which may be attached to them). Second, the development of a deductive 
reasoning relies on the possibility of chaining the elementary deductive steps, whereas 
argumentation relies on the reinterpretation or the accumulation of arguments from 
different points of view. (Following Duval 1991, esp. p. 240–241).’’ 

Duval often stands out that only argumentation lies on the content of propositions 
whereas what is important in a proof is the operating status of the proposition (in 
other words the way the proposition fits into the formal structure of the "modus 
ponens"). 

"This brings a first important difference between deductive reasoning and argumentative  
reasoning. The latter appeals to implicit rules which depend partly on the language 
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structure and partly on interlocutors' representations: therefore the semantic content of 
the propositions is essential. On the contrary, in a deductive step, the propositions do not 
intervene directly according to their content but according to their operating status, that 
is to the position previously assigned to them in the step process" (Duval, 1991, p. 235, 
our translation)   

Duval especially focuses on this argument to support the idea that proof and 
argumentation involve very different cognitive processes. In this matter, Balacheff 
(2008, p. 509) points out that: 

« One can imagine how this should raise question in our field considering that other 
researchers give a central role to ‘‘mathematical arguments’’ and ‘‘mathematical 
argumentation’’ in their consideration of what proof is.” 

Recently, Toulmin's model has been used in many works focused on reasoning from a 
mathematics education viewpoint. The following example shows how Pedemonte 
(2008, p. 387) presents Toulmin's restricted model: 

 “In Toulmin’s model an argument consists of three elements (Toulmin, 1993): 

C (claim): the statement of the speaker. 

D (data): data justifying claim C. 

W (warrant): the inference rule, which allows data to be connected to the claim. 

In any argument the first step is expressed by a standpoint (an assertion, an opinion). In 
Toulmin’s terminology the standpoint is called the claim. The second step consists of the 
production of data supporting the claim. The warrant provides the justification for using 
the data conceived as a support for the data-claim relationships. The warrant, which can 
be expressed as a principle, or a rule, acts as a bridge between the data and the claim.”   

This model has been used to analyse as well the production of arguments as the 
production of proof. In particular, Pedemonte uses this model to compare 
argumentation and proof relationships. Therefore the three elements (C, D, W) must 
be considered as more inclusive than the ternary structure of "modus ponens" (A, 
A→B, B) used by Duval to analyse the proof in the sense where the Toulmin's model 
warrant is not necessarily a theorem. Nevertheless, these two models share a common 
point by both using the proposition in the sense of propositional calculus as a basic 
element of modelling. Mathematical objects and quantification are not explicitly 
taken into account in the model structure.  

AN EXAMPLE OF USE OF A QUANTIFICATION THEORY 
Several attempts have been made to use first-order theories in order to help analysing 
mathematical reasoning in our research team (natural deduction in Durand-Guerrier 
& Arsac (2005) and Durand-Guerrier (2005), Tarski's semantics in Durand-Guerrier 
(2008), Lorenzen's dialogic logic and Hintikka's game semantics in Barrier (2008)). 
The ambition of these theories is to allow for the relationships between the semantic 
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and syntactic aspects to be taken into account in the validation activities. On the 
contrary, Duval identifies a reasoning step when applying the "modus ponens" rule. 
He asserts for example:  

«The deductive step process is well known. It is defined by the fundamental rule "modus 
ponens", also called Law of Detachment." (Duval, 1992, p. 43, our translation) 

We also saw that Toulmin's model rested on the same type of ternary structure. 
Durand-Guerrier & Arsac (2005, p. 151-152) showed that this standpoint was 
insufficient for analysing proof, especially in the case of analysis. Furthermore, the 
only "modus ponens" rule cannot exhaust the propositional calculus insofar as other 
deductive rules are necessary (Vernant, 2006, Chapter 3). Nevertheless, the deductive 
step derived from the Law of Detachment prevails in proof learning at lower 
secondary school and certainly deserves special attention. Our contribution will rather 
focus on the theoretical effects of this restriction: we consider that restricting the 
model to the propositional calculus induces to overestimate the distinction between 
argumentation and proof. Let us consider how Duval (1992, p. 44-45, our translation) 
analyses the following text by Sartre: 

« Jessica : Hugo ! You speak reluctantly. I watched you when you talked with 
Hoerderer : 

0. He convinced you. 

Hugo : 1. No, he didn't convince me. 

2. Nobody can convince me that (one must lie to its friends). 

3a. But if he had convinced me. 

3b. It would be a reason more to shoot him. 

4. Because it would prove that he would convince other guys. »          

Duval asserts that this argumentation appeals to the following deductive step: 
Premise: If he had convinced me 

Warrant: Nobody can convince me that one must… 

Conclusion: (it would prove that) he would convince other guys. 

This modelling leads Duval to draw the fundamental differences between 
argumentation and proof. Indeed, the argumentation step as modelled by Duval is 
quite different from the proof step based on the " modus ponens". Our questioning on 
this model induces us to suggest an alternative interpretation of this argumentation 
step based on natural deduction (Durand-Guerrier & Arsac (2005)). We note that xCy 
is the assertion that « x has convinced y ». The first step of Hugo's reasoning may 
then be interpreted in the following way: 

Data:   )(xCHugox¬∀  (2)  

Inference rule:   universal instantiation  
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Conclusion:   )( ugoHoedererCH¬  (1) 

We shall go on with the analysis of the reasoning (setting apart the assertion (3b) and 
identifying (4) with «he would convince other guys », i.e. removing what seems to 
refer to metalanguage) in the following way: 

Data :   ugoHoedererCH  (3a) 

Inference rule:   existential generalisation 

Conclusion:   xxHoedererC∃  

Data:    xxHoedererC∃  (recycling) 
HodererCyHoedererCxyxyxxxHoedererC ∧∧≠∃∃→∃ )( * 

(implicit axiom) 

Inference rule:  modus ponens 
Conclusion:  HodererCyHoedererCxyxyx ∧∧≠∃∃ )(  (4) 

One shall notice that without the implicit axiom (*) (if Hoederer is able to convince 
one person, then he is able to convince two persons at least) the deduction from 

ugoHoedererCH  to HodererCyHoedererCxyxyx ∧∧≠∃∃ )(  would be invalid. Therefore it 
is necessary, in a way, to complete the reasoning to make it valid. In this extract, one 
does not know whether the implicit theorem applied is part of a set of statements 
which are jointly accepted by Hugo and Jessica. However, this type of completion is 
not exclusive to argumentation, since in mathematics a fully explained proof would 
be much too long and therefore illegible. Weber (2008) puts forward an experimental 
study on how proofs are checked by mathematicians. This does not mean that the 
check is limited to the good practices of inference rules: proof checking, including 
validation, calls on not only a search for sub-proofs but also for informal or example-
based arguments.  
Now, an important question to be raised is the relationship between proof and 
proposition content. In the analysed example, we used an implicit axiom to complete 
the formal analysis of reasoning. This axiom is linked to a certain idea we have about 
the interpretation field objects (human beings in this example), what Duval calls the 
semantic content of propositions. In particular, the implicit axiom (*) is based on the 
idea that human beings are more or less homogeneous. The purpose of the following 
paragraph is to show that the content of propositions also intervenes in the proof 
construction.  

 « CONTENT » OF PROPOSITIONS AND PROOFS  
We use here an experiment from Inglis & al. (2007). Andrew, an advanced 
mathematics student, is confronted with the conjecture « if n is a perfect, then kn is 
abundant, for any INk ∈  ». Notice that a perfect number is an integer n whose 
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divisors add up to exactly 2n and that an abundant number is an integer n whose 
divisors add up to more than 2n. 

ANDREW : Ok, so if n is perfect, then kn is abundant, for any k. Ok, so what does it, 
yeah it looks, so what does it mean ? Yeah so if n is perfect, and I take 
any ip which divides this n, then afterwards the sum of these spi  is 2n. This 
is the definition. Yeah, ok, so actually we take kn, then obviously 
all ikp divide kn, actually, we sum these and we get 2kn. Plus, we’ve got 
also, for example, we’ve also got k dividing this, dividing kn. So we need to 
add this. As far, as basically, there is no disquiet, k would be the same as 
this. Yeah. And, how would this one go ? [LONG PAUSE] 

INTERVIEWER : So we’ve got the same problem as up here but in general ? With a … ? 

ANDREW : Yeah. Umm, can we find one? Right, so I don’t know. Some example. 

INTERVIEWER : I’ve got some examples for you. 

ANDREW : You’ve got examples of some perfect numbers ? OK, so 12, we’ve got 1 + 2 
+ 3 + 4 + 6, then, ok, + 12. [MUTTERS] But this is not ? Ok, perfect, I 
wanted perfect numbers. OK, so let’s say six. Yaeh, and we’ve got divisors 
2, 4, 6, 12. Plus I claim we’ve got also divisors. Yeah actually it’s simple 
because, err, because err, the argument is that we’ve also got 1 which is 
divisor, and this divisor is no longer here is we multiply. 

At the beginning of the interview, Andrew manipulates the definition of the concepts 
involved in the conjecture but this strategy fails to construct a proof. Then, he asks 
for examples and begins to play a semantic game which involves several numbers. As 
Duval says, this game increases the belief of the students in the validity of the 
conjecture (the epistemic value of the conjecture). In this sense, those kind of games 
are cumulative. However that argumentation which is linked with the content of the 
conjecture seems to be the clue of the completion of Andrew’s strategy in his former 
attempt of proof construction. This is the manipulation of the perfect number 6 which 
provides to Andrew the idea that for all n, 1 is a divisor of 2n which is not equal to 
any 2k (with k a divisor of n). Pedemonte (2008) provides several convergent 
examples concerning algebra. In particular, she stands for the need of an 
argumentation which would integrate what she calls abduction steps in the proof 
construction process. In our example, the purpose is to explain why 12 would be 
abundant, starting from the fact that it is abundant (this practice is sometimes called 
the analysis of analysis/synthesis dyade). The proof approach (the synthesis of the 
dyade) is based on this explanation (12 is abundant because 1 is a divisor of 12 which 
is not a double of any divisor of 6). Pedemonte (2007, p. 32-33) also gives an 
example of this type of approach in geometry. Besides, from experiments carried out 
in set theory and analysis, Weber & Alcock (2004) underline the weakness of 
syntactic proof procedures ("unwrap definitions" and "push symbols") compared with 
semantic procedures (which call on object instantiations).   
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ABOUT TOULMIN'S COMPLETE MODEL 
In their above-mentioned paper, Inglis & al. (2007) advocate the use of Toulmin's 
complete model which includes three new categories: the backing, the modal qualifier 
and the rebuttal which are introduced as follows (p. 4) : 

« The warrant is supported by the backing (B) which presents further evidence. The 
modal qualifier (Q) qualifies the conclusion by expressing degrees of confidence; and the 
rebuttal (R) potentially refutes the conclusion by stating the conditions under which it 
would not hold. »  

The authors show that there are various types of warrant that the students (five 
students prepare a doctorate degree and one a master degree) connect with various 
modal qualifiers. They advocate the importance of inductive and intuitive 
justifications in the mathematical activity provided that these justifications are paired 
with the appropriate modal qualifier for the conclusion of the argument. They 
underline the interest for didactics researchers to use modal qualifiers specifically in 
the analysis process.  

“The restricted form of Toulmin’s (1958) scheme used by earlier researchers to model 
mathematical argumentation constrains us to think only in terms of arguments with 
absolute conclusion.” (Inglis & al., 2007, p. 17)  

In his remark on Toulmin, Jahnke (2008, p. 370) makes this argument his own and 
emphasises the role of open general statements in mathematics. It seems to us that the 
role assigned to modal qualifiers in Toulmin's model shows that it is very difficult, in 
the didactic of mathematics, to integrate mathematical objects and their manipulation 
into models which are basically built from the propositional logic and from a 
syntactic approach of the mathematical activity. 

CONCLUSION 
Barrier (2008) advocates the necessity to appeal to transactional and intra-world 
procedures (Vernant, 2007) in order to explain mathematical creativity, i.e. to take 
into account the students' specific interactions with mathematical objects and the 
following decisions. The quantification theories, in particular the theories which 
develop a semantic point of view, allow to explain the milieu’s enrichment 
(Brousseau, 1997) along the proof processes. Durand-Guerrier (2008) also stresses 
the importance of the manipulation of objects in order to make mathematical practice 
fertile. This viewpoint seems to converge with Weber & Alcock's position:  

“Just as most streets in a town intersect many other streets, at any given point in a proof, 
there are many valid inferences that can be drawn that might seem useful to an untrained 
eye […]. Hence, writing a proof by syntactic means alone can be a formidable task. 
However, when writing a proof semantically, one can use instantiations of relevant 
objects to guide the formal inferences that one draws, just as one could use a map to 
suggest the directions that they should prescribe.” (Weber & Alcock, 2004, p. 232) 
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Obviously, every argumentation does not lead to proof, since the rules of the game 
are different in these two activities. In particular, in geometry, it is likely that the 
important gap between the different semiotic registers makes it more difficult to shift 
from an argumentation game to a proof game. As stated by Balacheff (2008, p. 509), 
it is necessary to bear this semiotic thinking in mind in order to understand Duval's 
approach. However, as we pointed it out in our examples, the assumption of an 
impassable gap between proof and argumentation is likely to hinder students' 
validation attempts. In particular, when validation is not immediate (we mean that it 
does not directly derive from the manipulation of the definitions of concepts involved 
in the statement of the proposition to be proven), it is often necessary to work on the 
content of the propositions. From a mathematical activity viewpoint, proof 
production seems to go with the familiarisation with mathematical objects. 
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WHY DO WE NEED PROOF 

Kirsti Hemmi     Clas Löfwall 

Linköping University, Sweden  Stockholm University, Sweden 

We explore teaching mathematicians’ views on the benefits of studying proof in the 
basic university courses in Sweden. The data consists of ten mathematicians’ written 
responses to our questions.  We found a variety of ideas and views on the function of 
proof that we call transfer. All mathematicians in the study considered proofs 
valuable for students because they offer students new methods, important concepts 
and exercise in logical reasoning needed in problem solving. The study shows that 
some mathematicians consider proving and problem solving almost as the same kind 
of activities. We describe the function of transfer in mathematics, exemplify it with 
the data at a general level and present particular proofs illuminating transfer that 
were mentioned by the mathematicians in our study. 

INTRODUCTION 

The various functions of proof in mathematics and mathematics education have been 
discussed by researchers during many years and they have gained a wide consensus 
in the mathematics education research community (Bell, 1976; De Villiers, 1990; 
Hanna, 2000). Especially the functions of conviction and explanation have been in 
focus in the field (e.g. de Villiers, 1991; Hanna, 2000; Hersh, 1993). However, 
Weber (2002) states that besides proofs that convince or/and explain there are proofs 
that justify the use of definitions or an axiomatic structure and proofs that illustrate 
proving techniques useful in other proving situations. Lucast (2003) studied the 
relation between problem solving and proof and found support for the importance of 
proofs rather than theorems in mathematics and mathematics education for example 
from Rav’s (1999) philosophical article. Lucast considers proof and methods for 
problem solving as in principal the same and states that proving is involved in the 
cognitive processes needed for problem solving. 

According to the mathematicians in our earlier study, there are proofs that can 
introduce new techniques to attack other problems in mathematics or offer 
understanding for something different from the original context. For example, they 
mentioned the method of completing the square in deriving the formula for the 
solution of the second degree equation as useful in problem solving [1] (Hemmi, 
2006).  We decided to call this function of proof for transfer and we remarked that it 
had neither been in the focus in the research on proof in mathematics education nor 
involved in the earlier models about the functions of proof. It is close to and partly 
overlapping the aspect Weber (2002) describes but not exactly the same. Recently, 
Hanna and Barbeau (2008) have started to explore this function from a point of view 
of philosophy and mathematics education [2]. Also they stress that it has been 
overlooked in mathematics education research. 
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Extended information about various functions of proof communicates something 
about the meaning of proof in mathematical practice, and the consciousness of them 
should therefore be important for how newcomers experience the practice. Some 
students in our earlier study who had difficulties to follow and understand proofs that 
were presented in the lectures expressed for instance the lack of examples from 
mathematicians about connections between proofs and problem solving.  

Most often you don’t have to be able to know anything of the proofs in order to solve 
problems.  (Student – Intermediate course, 2004 in Hemmi, 2006) 

They also advocated working manners and tasks where they could use the proofs in 
some ways in order to enhance their own engagement with proofs. 

I mean tasks in which you are supposed to calculate something using proofs. At least for 
me, it is easier to understand if I really use them for something.  (Student – Intermediate 
course, 2004 in Hemmi, 2006) 

Our recent study contributes to the field by exploring mathematicians’ often tacit 
knowledge concerning the teaching and learning of proof in the practice of 
mathematics. In this paper, we first describe the function of transfer from the 
perspective of history of mathematics and then present an analysis of a pilot study 
with ten mathematicians concerning their views on proof, in particular with respect 
to the function of transfer in the basic courses [3] of mathematics in Sweden.  

TRANSFER IN MATHEMATICS 

Proof has not always been a natural part of mathematical activity. In the old cultures 
in Babylonia, Egypt and China, mathematicians seemed to be only interested in 
presenting results which could be used in different applications and not in the 
question of how these results were obtained. They might have done verifications of 
results also, but if so, they did not think it was worth while to write them down. With 
the Greeks, the deduction style of mathematics was born and the emphasis was put 
rather on the questions of truth, foundations, logic, and proving than on practical 
applications. Their work in geometry which we know from Euclid’s Elements has 
since then been a model for scientific thinking. It was not until the 1900th century 
that proofs in algebra and analysis could be performed with the same kind of logical 
strength that was done in the Elements. Nowadays, proving has been almost a 
synonym for doing research in mathematics and an enormous amount of 
mathematical proofs are produced every year.  

A natural question to ask is why the deductive style in mathematics has been so 
successful? Nobody can question the importance and usefulness of mathematics in 
the modern society, but do we need the proofs? It is only the very results in 
mathematics that are used in other sciences and, in the end, they are important for the 
production of all the facilities we see around us. We think the “market” should have 
forced mathematics to use the “handbook” style if this turned out to be as (or more) 
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efficient as the ”deductive style”. For the Greeks it might have been possible to study 
proofs just because they thought it was an intellectual challenge, but in our society 
we think this is impossible. 

However, the deductive style in mathematics has survived and been successful. One 
important reason for this is indeed that the proofs contain information of how to get 
other results and also often contain methods of calculation used for example in 
applications. As an example, consider Archimedes result about the volume of the 
sphere. It is of course interesting for applications to be able to compute the volume 
of a sphere, and with the formula in hand also some other problems maybe solved, 
e.g., the volume of a half sphere. But without the proof it is hard to find formulas for 
the volume of other bodies. Archimedes described the method he used to find the 
formula, which may be seen as a form of integration and is interesting for other 
applications. It is a heuristic argument based on his law of the lever. The method 
contains a lot of information which may be used to reach far beyond the original 
problem. For other examples of theorems where the proofs are far more interesting 
than the results, see Rav (1999).  

There is certainly a consensus among mathematicians that the proofs contain much 
more information than just the verification of the results, but how do they think about 
this function of proof in the teaching context?  

METHODOLOGY AND THEORETICAL STANCES IN THE PILOT STUDY 

In August 2008, we e-mailed to 16 mathematicians at various universities. We 
presented the aim of the study and invited them to share their thoughts with us 
concerning the following questions.   

1. Why do you think that students in basic courses should become familiar with 
proofs and proving or do you think they do not need to do so and in this case 
why? 

2. What specific proofs/derivations do you consider as central in basic courses 
which you have taught? 

3. Are there specific proofs/derivations in the basic courses that teach students 
techniques, concepts, procedures, strategies or offer other tools that are useful 
in other contexts, for example in problem solving? 

4. Are there proofs not filling the criteria in question 3 but which you in any way 
consider as central in the basic courses, in that case which proofs and why? 

To encourage the mathematicians to response, we stressed that the answers would 
not need to be exhausting, it was enough to give some examples. Ten mathematicians 
from five different institutions e-mailed their answers. Although the responses varied 
both in length and in content we obtained very rich data. We had also the possibility 
to contact the mathematicians and ask for complementary information.   
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We consider the mathematicians as old-timers in their communities of practice of 
mathematics (see Wenger, 1998). All the mathematicians in the pilot study had at 
least ten years experience of teaching and all of them have somehow been engaged in 
the teaching of elementary courses. Learning is conceived as increasing participation 
in the mathematical practice where proof is a central artefact with many functions 
(see Hemmi, 2006). According to the theory of Lave and Wenger (1991) artefacts 
and their significance to the practice can be more or less visible for the newcomers. 
This is called the condition of transparency of proof in the teaching of mathematics, 
i.e. how and how much to focus on various aspects and functions of proof and how 
and how much to use proof in doing and presenting mathematics without a focus on 
it as proof (see also Hemmi, 2008).  

This is one of the aspects in the conceptual frame that was created by combining the 
social practice approach with theories about proof obtained from the didactical 
studies in the field. The other aspects, relevant for this study, are the functions of 
proof of conviction, explanation, communication, intellectual challenge, aesthetic 
and transfer. All these aspects are intertwined and partly overlapping but have to be 
separated in order to be able to analyse the data.  

We analysed the data with help of NVivo software by firstly relating the 
mathematicians’ responses to the aspects in the conceptual frame. Then, we used an 
open approach and looked at the issues enlightening the function of transfer from 
various points of view and connected these issues to the themes described in the 
introduction (Weber, 2002; Lucast, 2003; Hemmi, 2006; Hanna & Barbeau, 2008). 

We interpret the mathematicians’ utterances as representative of views belonging to 
the community, utterances that are influenced by the social, cultural and historical 
context of the same mathematics environment but also from other possible 
environments they are members of. The aim of the pilot study is to investigate the 
diversity of ideas among mathematicians analysing a small sample in order to later 
explore a larger sample. This is why we cannot generalise the results and there is no 
use to give exact numbers of mathematicians talking about various themes. We make 
very little quantifications when reporting the results.  

First, we sum up the main reasons mentioned by the mathematicians for why they 
wanted to include proof in the basic courses. Then we provide some examples about 
utterances concerning the function of transfer at a general level. Finally, we present 
some specific proofs that according to the mathematicians involved this function.  

RESULTS 

All the ten mathematicians stated that students in the basic courses should become 
familiar with proofs and proving. This is interesting because in our earlier study 
which concerned only one department, most of the mathematicians said they did not 
deal with proof so much in the basic courses for various reasons (Hemmi, 2006). Yet, 
some of the mathematicians in the present study pointed out that there was no use to 
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prove for example statements concerning limits of functions rigorously for the 
students studying engineering, chemistry or other sciences. One mathematician even 
stated that one should try to “serve up” mathematics for such students with so few 
proofs as possible and concentrate on applications.   

The mathematicians gave various reasons for why proof is important to include in 
the curriculum for the basic courses. Some of them stated that proof helped to make 
visible the difference between school mathematics and university mathematics for 
the students and that inclusion of proof in the curriculum helped students to leave 
their preconceived interpretations about what mathematics actually is. Proof should 
be included in the basic courses because proof is the soul and the backbone of 
mathematics. It is the very idea of doing mathematics. According to one 
mathematician, working with some proofs also offered possibilities to discuss what 
proof is. This refers to the aspect of transparency.  

In line with our earlier study many mathematicians consider school mathematics as 
teaching students to apply rules they get through examples from the teacher or a 
textbook. According to the mathematicians, this manner does not lead to 
understanding of what mathematics is, “i.e., concepts and intuitive and logical 
reasoning about these concepts and their relationships”. Proof explains how the 
concepts are related to each other. This view refers to the function of explanation.  

Another reason the mathematicians gave was that proof connects all mathematics, 
without proof “everything will collapse”. You cannot proceed without a proof. This 
refers to the verification function of proof.  

Some mathematicians stressed that it was important to present proofs (or convincing 
arguments) for statements which are not conceived as evident by the students. This 
refers to the attempts to create possibilities for the students to experience the 
function of conviction of proof. 

One mathematician stated that proof enhanced students’ interest towards 
mathematics by giving aha-experiences and also that students were curious about 
proof. The latter was confirmed by our study among university entrants. It showed 
that about 80 percent of students were interested in proof and wanted to learn more 
about proof when they came to the university (Hemmi, 2006). This refers to the 
function of intellectual challenge.  

One mathematician also pointed out that it was important to present some “beautiful 
proofs” even if he thought it was difficult to find such proofs suitable for the basic 
courses. This refers to the function of aesthetic. 

Finally, one of the mathematicians talked about proof as useful in the learning of 
mathematical language. This refers to the function of communication.  

All the functions mentioned above are interconnected and partly overlapping. Some 
of the reasons presented in this section that the mathematicians mentioned for why 
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they wanted the students to meet proof in the basic courses are already connected to 
the function of transfer, the main target of this article.  

Transfer at a general level 

All mathematicians considered proofs more or less important in a manner that they 
taught students concepts and techniques needed in problem solving even if one of 
them mostly saw benefits at this level for other proving tasks. Some of the 
mathematicians stated that all essential proofs in the basic courses carried this 
function whereas others had difficulties to find examples of proofs involving this 
function at the basic level.  

At a general level, many mathematicians mentioned that proofs helped students to 
learn mathematical and logical reasoning valuable in problem solving. 

If one becomes accustomed to study proofs one gets practiced with mathematical 
reasoning, something one can draw great advantages of in problem solving. Problem 
solving is an art of formulation. (M4) 

But they (the proofs) should also contribute to demonstrate and develop students’ skills of 
logical reasoning. This is useful in many situations. One of the function of mathematics in 
the engineering program is this. (M8)  

Yet, not all mathematicians considered this function of proof so important for 
engineering students as the one in the citation above.  

Also the understanding of generalisations, especially with respect of the models for 
problem solving within mathematics or in applied sciences could be enhanced by 
studying proof according to some mathematicians. 

They have to start to argue for the solutions of the problems for example in applications 
that they present, show that they are correct, so they can work in a manner not just filling 
in numbers in given models but tackle new problems. (M10) 

One mathematician talked about the value of proof for problem solving because they 
helped students to learn and understand new mathematical concepts.   

Mathematics is about defining concepts and to study how these concepts are connected. 
To understand the concepts you have to understand how they are connected to each other. 
[…] From the proof one should learn something about the concepts involved in it. (M8) 

Even technical proofs were considered as valuable by one mathematician as they 
helped students understanding of problem solving.  

Also the technical proofs are useful to do: the technique leads to better understanding of 
problem solving. (M1) 

Here, the mathematician might mean that the proof techniques could be explicitly 
used in problem solving. 
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Proving and problem solving involved in each other  

Some of the mathematicians stated already in their responses to the first question that 
they considered proving and calculating/problem solving as in principle the same 
activity (compare with Lucast, 2003). By highlighting this in the teaching they 
wanted to “demystify proof”.   

I don’t consider “proof” as something different from other mathematical activities – 
obviously it is about reasoning, calculating, being ingenious/creative, using one’s 
knowledge and experiences and then drawing conclusions. To prove the rule of squaring 
a binomial, to give an elementary example, is of course just to perform the calculation. 
(M9) 

I would like to extend the meaning of “proof” to refer to logical reasoning in general. In 
proofs one meets such reasoning in a concentrated form. But it is present also in problem 
solving and in mathematical discussions in general. (M4) 

There is no difference in principle between proving and calculation. When a student 
carries out a computation in several steps, then these steps is a proof of the statement that 
the final result is the answer to the question. It is important that students at all levels get 
the insight that it is always reasoning which is the core of mathematics. (M6)  

Most of the mathematicians talked about transfer only at a general level but there 
were some examples of specific proofs that we found valuable to present in order to 
later explore their potentials for further studies.  

Some examples of proofs that teach students concepts or techniques 

The mathematicians mentioned a number of proofs and exercises as valuable for 
students in order to learn techniques applicable in other proving tasks. This refers to 
the function Weber (2002) writes about. We have gathered their suggestions in the 
following table.  

The relation in Pascal’s triangle can be proved by induction 

There are an infinite number of primes enlightens proof by contradiction   

The square root of 2 is irrational. The students can then surely find other results 
where the number 2 is replaced by another integer. 

n(n+1) is divisible by 2 , if  n  is a positive integer. The same proof techniques can be 
applied in other proving tasks concerning divisibility.  

Is it true that the proposition P(x) holds for all real numbers x?” where P(x) is for 
instance an inequality. This trains the ability to see what is required of a proof, and 
that a refutation just needs a counter example which is very important in many proving 
tasks. 

Open tasks. They encourage the willingness to investigate and make hypotheses – 
which then are to be proved or disproved. 
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The next citation is an example about how studying proofs or proving statements 
concerning the derivatives is seen to help students to become familiar with and learn 
to understand new concepts and definitions, in this case the notion of the limit of a 
difference quotient as a derivative.     

The derivative is defined as the limit of a difference quotient, and you get a geometric 
interpretation as the slope of the tangent, but you also have the technical interpretation as 
change of rapidity (in a broad sense). Next you derive (prove) the rules for the derivative 
of a sum, product, … and you derive the derivatives of the elementary functions. All these 
you may of course find in a table of formulas and you should moreover know them by 
heart, they are so important for the applications. But through studying the proofs you get 
opportunity to many times consider limits of a difference quotient, and in that manner 
consolidate the definition of the important notion of derivative. (M8) 

The last quotation below is about the proof of the factor theorem. The factor theorem 
states that x – α is a divisor of the polynomial f(x) if and only if f(α)=0. We find the 
proof of this theorem as a good example of such proofs at an elementary level that 
allow mathematicians to highlight importance of studying the methods and notions in 
proofs.  

We can begin with the factor theorem. The theorem expresses for sure an equivalence and 
it is interesting to discuss that one implication is obvious while the other is deeper. If you 
look at the actual proof you then see that the proof gives a bit more than what the theorem 
states. Indeed, the proof gives us information about the remainder even in the case where 
the remainder is not zero. (M4) 

As an example of a problem where the proof of the factor theorem could be useful, 
consider the following:  Determine the remainder, without carrying out the division 
algorithm when x4 + x3 +x2 + x + 1 is divided by x – 1. 

DISCUSSION 

The study shows that the function of transfer is a natural way of thinking about proof 
for many mathematicians and all mathematicians express the importance of teaching 
proofs also in the beginning courses at university. Yet, one of them states that the 
students studying applied sciences do not need any proofs and some others that they 
do not need all the rigorous proofs. Only one mathematician did not think that proofs 
could be useful in problem solving at the basic level.  

Some mathematicians wanted to look at proving and calculation/ problem solving in 
a similar way. The resemblance between proving and problem solving has been 
studied and discussed by Lucast (2003). This is an interesting point of view as we 
can also think the other way around, i.e., students can learn concepts and techniques 
in problem solving that they can use in proving tasks.  

We find it interesting to note that the connection between proving and problem 
solving is something fundamental in the area of constructive mathematics, where 
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these two activities are considered to be not just similar but in fact the same (see 
Nordström & Löfwall, 2006). It could be fruitful to study the notions of proving and 
problem solving from the perspective of constructive mathematics in order to get 
more insight in their connections. 

In school mathematics and also in the beginning courses at university it has been a 
tendency to avoid the word “proof” in order to not frighten the students (Hemmi, 
2006). However, students lack discussions about what proof is and why it is needed. 
An important didactical question is how to in the best way highlight the connections 
between proving and problem solving in the teaching of mathematics. Consider for 
example the following citation:  

To prove the rule of squaring a binomial, to give an elementary example, is of course just 
to perform the calculation. (M9) 

The mathematician expresses here a view that proving, in this case, is just calculating 
but we could also take it the other way around and consider this calculation as 
proving.  

We have shed light on the function of proof that we call transfer from historical point 
of view and explored mathematicians’ pedagogical views on it. We have described 
transfer at a general level and exemplified some proofs where connections to 
problem solving can be made visible. It is clear that mathematical proofs are carriers 
of mathematical knowledge and there are various ways of enlightening this for 
students.  

However, we do not want to look at the function of transfer mechanically, even if 
there are situations where it is possible to just copy a proof technique to another 
proving task. In this paper, we have described transfer from the perspective of 
teaching mathematicians. We have to acknowledge that what experts consider as 
evident connections may be difficult to see for a learner. When studying transfer we 
have to study the learners’ personal constructions of similarity across proving and 
problem solving from their perspective (Lobato, 2003). Our study shows that there is 
a lot to explore in university mathematics regarding the ideas from the 
mathematicians’ personal experiences of proof in the learning and doing 
mathematics. 

NOTES 

1. Consider for example the following problem: Determine the centre and the radius of a circle x2+2x+y2-4y=0. It should 

be easier to solve it if one is familiar with the method of completing the square. 

2. However, Hanna and Barbeau (2008) do not use the word transfer for this function. 

3. With basic and elementary courses, we refer to the courses taught during the first semester. With intermediate courses 

we refer to the courses taught during the second semester. 
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PROVING AS A RATIONAL BEHAVIOUR:  

HABERMAS' CONSTRUCT OF RATIONALITY AS A 
COMPREHENSIVE FRAME FOR RESEARCH ON THE 

TEACHING AND LEARNING OF PROOF 
Francesca Morselli and Paolo Boero  

Dipartimento di Matematica, University of Genova, Italy 
In this paper we draw from Habermas’ construct of rational behaviour a construct 
for rationality in proving that we propose as suitable to investigate the teaching and 
learning of proof and generate new research developments. At first, we discuss our 
conception of the proving process, where cognitive and cultural aspects are shown to 
play a crucial role, and we present our adaptation of Habermas’ construct as a way 
of taking into account both cognitive and cultural aspects. The adapted construct is 
shown to be useful in the discussion of some examples at tertiary level; finally, 
drawing from the analysis of the examples, we indicate some research questions 
(formulated in terms of the theoretical construct) that we feel worth to be explored.  
Key-words: proof and proving, rational behaviour, Habermas, tertiary level  

INTRODUCTION 
The aim of our paper is to contribute to the debate on theoretical frameworks suitable 
to take into consideration the complex nature of the teaching and learning of proof.  
When planning the teaching of theorems and mathematical proof and when analyzing 
students’ difficulties in approaching them, we have at disposal several theoretical 
tools coming from epistemology, history of mathematics, psychology, and didactics 
of mathematics. In order to build a comprehensive framework for proof and its 
teaching and learning, encompassing the epistemological, psychological and 
didactical dimensions, we think that at first it is necessary to consider proof as a 
crucial component of mathematics and to look at mathematics from a cultural 
perspective. The definition of culture by Hatano & Wertsch (2001) suggests to 
consider mathematics as a multifaceted culture evolving through the history, which 
includes different kinds of activities and different levels of awareness, explicitness 
and voluntary use of notions, thus different levels of “scientific” mastery, according 
to the Vygotskian distinction between common knowledge and scientific knowledge 
(for further developments about mathematics as a culture, see Morselli, 2007). Within 
this cultural perspective we can situate the “culture of theorems” as the complex 
system of conscious systematic knowledge, activities and communication rules that 
refer to the processes of conjecturing and proving as well as to their final products. 
Consequently, we can describe the approach to theorems and proving as a process of 
scientific “enculturation” consisting in the development of a special kind of rational 
behaviour, characterized by the conscious mastery of the epistemic aspects of 
theorems (Mariotti et al., 1997; Balacheff, 1982) and by the intentional construction 
and control of the process that produces the proof, within a communication context 
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with its shared rules. From these considerations we can draw a link between the 
approach to theorems as a process of “scientific enculturation” and the three 
components of Habermas’ “rational behaviour” (the epistemic, the teleological and 
the communicative rationalities), as we will show in the subsequent section.  
Another entry into the same line of thought derives from the process - product 
character of proving and proof. Balacheff (1982) points out that the teaching of 
proofs and theorems should have the double aim of making students understand what 
a proof is and learn to produce it. Accordingly, we think that, in mathematics 
education, proof should be treated considering both the object aspect (a product that 
must meet the epistemic and communicative requirements established in today 
mathematics - or in school mathematics) and the process aspect (a special case of 
problem solving: a process intentionally aimed at a proof as product). Here again we 
can identify potential links with Habermas’ elaboration about rationality.  

PROVING AS A RATIONAL BEHAVIOUR 
Habermas (2003, ch. 2) distinguishes three inter-related components of a rational 
behaviour: the epistemic component (inherent in the control of the propositions and 
their enchaining), the teleological component (inherent in the conscious choice of 
tools to achieve the goal of the activity) and the communicative component (inherent 
in the conscious choice of suitable means of communication within a given 
community). With an eye to Habermas’ elaboration, in the discursive practice of 
proving we can identify: an epistemic aspect, consisting in the conscious validation of 
statements according to shared premises and legitimate ways of reasoning (cf. the 
definition of “theorem” by Mariotti & al. (1997) as the system consisting of a 
statement, a proof which is derived according to shared inference rules from axioms 
and other theorems, and a reference theory); a teleological aspect, inherent in the 
problem solving character of proving, and the conscious choices to be made in order 
to obtain the aimed product; a communicative aspect, consisting in the conscious 
adhering to rules that ensure both the possibility of communicating steps of 
reasoning, and the conformity of the products (proofs) to standards in a given 
mathematical culture. 
Our point is that considering proof and proving according to Habermas’ construct 
may provide the researcher with a comprehensive frame, within which to situate a lot 
of research work performed in the last two decades, to analyze students’ difficulties 
concerning theorems and proofs (see the four examples in the next Section) and to 
discuss some related relevant issues and possible implications for the teaching of 
theorems and proof (see the last Section).  
If we are interested in the epistemic rationality side, i.e. in the analysis of proofs and 
theorems as objects, mathematics education literature offers some historical analyses 
(like Arsac, 1988) and surveys of epistemological perspectives (like Arzarello, 2007): 
they help to understand how theorems and proofs have been originated and have been 
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considered in different historical periods and how, even in the last decades, there is 
no shared agreement about what makes proof a “mathematical proof” (cf. Habermas' 
comment about the historically and socially situated character of epistemic 
rationality). Concerning the ways mathematical proof and theorems are (or should be) 
introduced in school as “objects”, several results and perspectives have been 
produced, according to different epistemological perspectives and focus of analyses. 
In particular, De Villiers (1990), Hanna (1990), Hanna & Barbeau (2008) discuss the 
functions that mathematical proofs and theorems play within mathematics and 
advocate that the same functions should be highlighted when presenting proof in the 
classroom, in order to motivate students to proof and allow them to understand its 
importance. By referring proof to the model of formal derivation, Duval (2007) 
focuses on the distance between mathematical proof and ordinary argumentation; he 
also considers how to make students aware of that distance and able to manage the 
construction and control of a deductive chain. Harel (2008) uses the DNR construct 
to frame the classification of students’ proof schemes (we may note that they concern 
proof as a final product). We note that, in terms of Habermas’ components of 
rationality, Harel’s ritual and non-referential symbolic proof schemes may be 
attributed to the dominance of the communicative aspect, with lacks inherent in the 
epistemic component (cf. Harel’s N, “intellectual Necessity”).  
Concerning the proving process, some analyses of its relationships with arguing and 
conjecturing suggest possible ways to enable students to manage the teleological 
rationality. In particular, Boero, Douek & Ferrari (2008) focus on the existence of 
common features (“cognitive unity”) between arguing, on one side, and proving 
processes on the other, and present some activities (from grade I on), based on those 
commonalities, that may prepare students to develop effective proving processes. 
Research on abductive processes in conjecturing and proving (Cifarelli, 1999; 
Pedemonte, 2007) and the construct of “abductive system” (Ferrando, 2006) take into 
account some aspects of the creative nature of conjecturing and proving processes 
and the need of suitable educational choices to promote creativity. Boero, Garuti & 
Lemut (2007) suggest the possibility of smoothing the school approach to 
mathematical proof through unified tasks of conjecturing and proving for suitable 
theorems (those for which the same arguments produced in the conjecturing phase 
can be used in the proving phase). However Pedemonte (2007) shows how in some 
cases of “cognitive unity”, students meet difficulties inherent in the lack of “structural 
continuity” (when they have to move from creative ways of finding good reasons for 
the validity of a statement, to their organization in a deductive chain and an 
acceptable proof): her study suggests to consider the relationships between 
teleological, epistemic and communicative rationality (see the last Section).  

SOME EXAMPLES  
Morselli (2007) investigated the conjecturing and proving processes carried out by 
different groups of university students (7 first year and 11 third year mathematics 
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students, 29 third year students preparing to become primary school teachers). The 
students were given the following problem: What can you tell about the divisors of 
two consecutive numbers? Motivate your answer in general.  Different proofs can be 
carried out at different mathematical levels (by exploiting divisibility, or properties of 
the remainder, or algebraic tools). The students worked out the problem individually, 
writing down their process of solution (including all the attempts done); afterwards, 
students were asked to reconstruct their process and comment it. The a posteriori 
interviews were audio-recorded. In (Morselli, 2007) several examples of individual 
solutions and related interviews are provided, and in particular it is shown how 
students’ failures or mistakes were due to lacks in some aspects of rationality and/or 
the dominance of one aspect over the others.  
For the present paper, we selected four examples. At first, we present two very 
similar cases, concerning students that are preparing to teach in primary school, and 
we show how the theoretical construct of rationality in proving may help to single out 
important differences between the two students, as well as different needs in terms of 
intervention. Afterwards, we present two cases concerning university students in 
Mathematics: the first one is a case of success, while the second one is a case of 
failure. These two cases were analyzed in (Morselli, 2006) with a special focus on 
their use of examples. Here we discuss those proving processes by means of our 
adaptation of Habermas’ construct.  
The four examples have the double aim of illustrating how our adaptation of 
Habermas’ construct works as a tool for in-depth analysis, and introducing a 
discussion that will suggest further research developments.  
Example 1: Monica 
Monica considers two couples of numbers: 14, 15 and 24, 25. By listing the divisors, 
she discovers that “Two consecutive numbers are odd and even, hence only the even 
number will be divided by 2”. Afterwards, she lists the divisors of 6 and 7 and writes: 
“Even numbers may have both odd and even divisors”. After a check on 19 and 20, 
she writes the discovered property, followed by its proof: 

Property: two consecutive numbers have only one common divisor, the number 1. In 
order to prove it, I can start saying that two consecutive numbers cannot have common 
divisors that are even, since odd numbers certainly cannot be divided by an even number. 
They also cannot have common divisors different from 1, because between the two 
numbers there is only one unit; if a number is divisible by 3, the next number that is 
divisible by 3 will be greater by 3 units, and not by only one unit. Since 3 is the first odd 
number after 1, there are no other numbers that can work as divisors of two consecutive 
numbers.  

Monica carries out a reasoning intentionally aimed (teleological rationality): first, at 
the production of a good conjecture; then, at its proof. Proof steps are justified one by 
one (epistemic aspect) and communicated with appropriate technical expressions 
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(communicative aspect). The only lack in terms of rationality concerns the short-cut 
in the last part of the proof: Monica realizes that something similar to what happens 
with 3 (the next multiple is “greater by three units”) shall happen a fortiori with the 
other odd numbers that are bigger than 3 (“Since 3 is the first odd number after 1”), 
but she does not make it explicit. Her awareness (cf. epistemic rationality) is not 
communicated in the due, explicit mathematical form (lack of communicative 
rationality). Monica’s a posteriori comments on her text confirm the analysis: 

Monica: (...) and then I have thought that 3 was the first odd number after 1 and so if 3 
does not enter there, also the bigger ones do not enter there [from the 
previous text, we know that “there” means: between two consecutive 
numbers on the number line]. 

Interviewer: to make more general what you said with 3, what would you write now? 

Monica: ehm... I have tried to go beyond the specific case of 3, but I do not know if I 
have succeeded in it. 

Example 2: Caterina 
Starting from the fact that two consecutive numbers are always one odd and one even, we 
may conclude that the two numbers cannot be both divided by an even number. 
Afterwards, we focus on odd divisors; we start from 1, and we know that all numbers 
may be divided by 1; the second one is 3. We have two consecutive numbers, then the 
difference between them is 1, then they will not be multiples of 3, since it will be 
impossible to divide both of them by a number bigger than 1.  

Caterina is able to justify all the explicit steps of her reasoning (epistemic rationality), 
she develops a goal-oriented reasoning (teleological rationality) and illustrates her 
process with appropriate technical expressions (communicative rationality). 
Differently from Monica, in spite of a good intuition there is a lack in her reasoning: 
divisors greater than 3 are not considered. A posteriori, after having seen also the 
production of her colleagues, Caterina comments:  

My reasoning is not mistaken: indeed, I reach the conclusion giving a general 
explanation, saying that, since there is no more than one unit between the two numbers, 
the only common divisor is 1. Nevertheless, I can not create a mathematical rule. 
Observing the other solutions, I think that the correct rule is the following: along the 
number line we note that a multiple of 2 occurs every two numbers, a multiple of 3 
occurs every three numbers, hence a multiple of N occurs every N numbers. Then, two 
consecutive numbers have only 1 as common divisor.  

From the objective point of view of epistemic rationality, Caterina’s argument was 
not complete, and in her comment she reveals not to be aware of it. From her 
subjective point of view, Caterina is convinced to have found a cogent reason for the 
validity of the conjecture (“not mistaken reasoning”, “general explanation”), thus to 
have achieved her goal (teleological rationality). Some colleagues’ solutions induce 
her to reflect on the lack of a “mathematical rule”; however she doesn’t seem to 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 215



  
consider this lack as a lack in the reasoning, but as a lack in the mathematical 
communication. 
Example 3: Sara 
Sara (attending the third year of the university course in Mathematics), after having 
discovered the property by means of two numerical examples (1-2, 2-3), writes down: 

 “Two consecutive numbers are “made up” of an even number, divisible by 2 (=2n, n∈N) 
and an odd number (=2n+1, n∈N). Let’s suppose that 1 is not the only common divisor, 
that is ∃ k such that k/2n and k/2n+1. 2n= ka, a∈N  also in ka there must be the factor 
2  k=2c or a=2d; 2n+1= kb, b∈N  since k is common, k=2c, or b=2e. But only the 
product of two odd numbers is an odd number  I could not finish for a matter of time.” 

Sara seems to be aware of the way a proof should be presented (communicative 
rationality), of the importance of algebra as a proving tool and of the usefulness of 
the proof by contradiction in a case like this (two important strategic choices 
concerning teleological rationality). In particular, in the a posteriori interview she 
tells that she felt comfortable with the method of proof by contradiction, due to the 
fact that the uniqueness of 1 as a common divisor had to be proven.  
Even epistemic rationality works till the last part of her algebraic work, where she 
derives the incorrect conclusion that “k=2c, or b=2e”. However Sara gets lost after a 
few manipulations. Why did it happen? It is possible that in this case the arguments 
successfully used in the conjecturing phase (based on the distinction between odd and 
even, and thus on divisibility by 2) were misleading when applied in the proving 
phase. Incidentally, here we see that in some cases cognitive unity may act as a 
burden, if not controlled. Indeed, Sara could have reached the proof easily by 
substituting 2n=ka in the expression 2n+1=kb, but she didn’t take into consideration 
this strategy, she just focused on divisibility by two. Substituting 2n=ka in the 
expression 2n+1=kb would have required to move from the odd/even semantic-based 
argument to a pure algebraic manipulation, with a break in the continuity of the 
conjecturing and proving process. Probably, Sara got lost because, when orienting her 
proving process, she did not fully concentrate on the meaning of the expression “1 is 
not the only common divisor”, being still focused on the odd-even dichotomy. Even 
her mistake (when she derived “ k=2c, or b=2e” from the previous step) might have 
depended on her intention to get the absurd conclusion that 2n+1 would have been 
even (indeed she wrote: “But only the product of two odd numbers is an odd 
number”). Thus her failure might be interpreted in terms of one of her strategic 
choices not fitting with the aim of the proving process and not supported by a 
rigorous checking of inferences (i.e. in terms of a combined lack on the epistemic and 
teleological dimensions of rationality). 
Example 4: Valentina 
Valentina (attending the third year of the university course in Mathematics) chooses 
to carry out her exploration through an algebraic manipulation.  
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Given n∈N, if it is divisible by d∈N, then the remainder of the division of n by d is 0, 
that is to say n mod d is 0, that is to say in Zd n=0. When I consider n+1, reasoning in the 
same way I realize that dividing by d I get remainder 1, that is to say n+1=1 in Zd ∀d≠1. 
Then, the only common divisor for n and n+1 is 1. 

The exploration carried out by Valentina seems to be very useful: at the same time 
Valentina discovers the property and proves it, since the reasoning is already carried 
out in general terms. In the subsequent excerpt from the a posteriori interview, 
Valentina describes her process of conjecturing and proving. Valentina, being aware 
of the potentialities and limits of numerical examples, chooses to use algebra also in 
the exploration phase. We may say that the epistemic dimension (awareness of the 
limits of numerical examples) supports the teleological one (choice of algebra in the 
exploratory phase).  

Interviewer: Try to explain to a secondary school student how to find the property.  

Valentina: I think that… beh, I would start reasoning on data, on the hypotheses, and 
trying to see links between them, seeing what happens in various cases?  

Interviewer: do you mean using numerical examples?  

Valentina: maybe, even if this could be dangerous because induction does not always 
works, I mean, if we have limited cases, it is not a good method, it could 
even be absolutely wrong. But one could start from them; afterwards of 
course it is necessary to prove it in general… […] and just consider the 
hypothesis and try and think about them, from a general point of view, 
just…non numerical, but n, n+1, what they mean, and try exactly to think 
about them, what this data mean. 

Let us come back to Valentina's production. After the first phase, in which Valentina 
discovers and proves the property at the same time, Valentina writes down: “That 
were my fist ideas. Now I try to write them down in a better way”. This sentence 
leads to a phase of systematization of the final product.  

Given n∈ N, n and n+1 have only one common divisor, that is 1. In fact, ∀ d∈N such 
that d/n, d≠1, (n)=(0) in Zd, while (n+1)=(1) in Zd because (n+1)=(n)+(1)=(0)+(1)=(1), 
hence d∼/n+1. From the other side, ∀ p∈N such that p/n+1 and p≠1 I have that (n+1)=(0) 
in Zp and that (n)=(n+1-1)=(n+1)-(1)=(0)-(1)=(-1), hence p∼/n. On the contrary, 1/n and 
1/(n+1) because 1 divides any natural number. 

In the subsequent excerpt from the a posteriori interview, Valentina shows to put a 
great care both in the process and in the construction of the final product.  

Interviewer: ok. May I ask you why did you do a second part, in which you systematized 
what you wrote in the first part?  

Valentina: the first part was… I gave the idea, I started to write down, in a sort of draft, 
in order to make my ideas clear to myself, in order to formalize what I had 
in my mind. Afterwards, I tried to write in a more formal way, because the 
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first part was really… writing down ideas, while in the second part I tried to 
write in a more “mathematical” way, in clearer way.  

Interviewer: what do you mean by “more mathematical way”?   

Valentina: ehm… maybe using less words, trying to be more synthetic, and trying to use 
a mathematical language, then with more symbolic notation, rather than 
words.  

Interviewer: ok. But actually, as concerns the mathematical content… 

Valentina: it is the same. It is more or less the same. Yes, yes.  

We may note that Valentina is able to describe the features that, according to her, a 
mathematical proof should have. Nevertheless, Valentina is aware that the first part of 
her production is already acceptable, even if written in a less appropriate way. We 
may say that Valentina is able to manage the crucial dialectic between epistemic and 
communicative dimension: the second part is an amendment from the communicative 
point of view, but Valentina is fully aware of the fact that the communication is 
subordinated to the epistemic dimension, that is to say to the validity of the produced 
arguments.  

DISCUSSION: TOWARDS FURTHER DEVELOPMENTS 
The analysis of some examples had the double aim of showing the viability and 
usefulness of our adaptation of Habermas’ construct in the special case of 
conjecturing and proving, and of suggesting new research questions, in terms of this 
construct.  
As concerns the first aim, we have seen how success and failure may be read in terms 
of different intertwinings between the three components of rationality, or dominance, 
or lack on one of them. We may add that in the case of Valentina the communicative 
component is strictly depending on the epistemic one; furthermore, the teleological 
component intertwines with the epistemic one (choice and justification of the 
arguments) and with the communicative one (other readers will check the 
production). More generally the previous analyses suggest the opportunity of a closer 
investigation into the relationships between epistemic rationality, communicative 
rationality and teleological rationality in the case of proof and proving. Concerning 
this issue we note that in the historical development of mathematics, subjective 
evidence (or even mathematicians’ shared opinion of evidence) revealed to be 
fallacious in some cases, when new, more compelling communication rules obliged 
mathematicians to make some steps of reasoning (in particular, those concerning 
definitions: see Lakatos, 1976) fully explicit.  
From the educational point of view, while it is easy (for instance, by comparison with 
other solutions) to help Monica to make her reasoning more explicit (according to her 
need, as emerged from her comments), the intervention on Caterina is much more 
delicate: how to make her aware that the “mathematical rule” is not only a matter of 
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conventional, more complete communication, but also a matter of objective, cogent 
arguing involving the goal to achieve (an exhaustive argument)? And how to exploit 
texts that are complete (communicative aspect) in order to develop the need of an 
exhaustive argument (epistemic aspect), but at the same how to avoid that the 
necessities inherent in the communicative aspect prevail over the epistemic aspect (cf. 
Harel’s “ritual proof schemes”)? A direction for productive educational  
developments might consist in the elaboration of a suitable meta-mathematical 
discourse (see Morselli, 2007) for students (including an appropriate vocabulary), as 
well as in the choice of suitable tasks that reveal how intuitive evidence not 
developed into an explicit, detailed justification sometimes results in fallacious 
conclusions.  
These considerations raise another problem: Habermas’ construct offers only the 
possibility to evaluate a production process and its written or oral products, while in 
mathematics education we need also to consider a long term “enculturation” process. 
We are working now on the articulation between a cultural perspective to frame this 
process (see Morselli, 2007) and tools of analysis derived from Habermas’ 
elaboration on rationality. Indeed, it is within the cultural perspective outlined in the 
introduction that we think possible to deal with the approach to theorems and proving 
in school as a process of scientific “enculturation” consisting in the development of a 
special kind of rational behaviour, the one derived from Habermas, that is presented 
in this paper.  We are trying to refine the Vygotskian common concepts - scientific 
concepts dialectics in the case of theorems and proofs in order to get a frame where to 
situate the long term planning of the school approach to the culture of theorems. 
Habermas’ construct contributes to it by suggesting three interrelated dimensions 
along which to develop students’ skills in proving and students’ (and teachers’) 
awareness about crucial features of proving and proofs. The educational challenge 
consists in leading students to move from the ordinary argumentative practices of 
validation of statements in different domains to the highly sophisticated and 
culturally situated management of the components of a rational behaviour in the 
specific case of proving. 
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EXPERIMENTAL MATHEMATICS 
AND THE TEACHING AND LEARNING OF PROOF1 

Maria G. Bartolini Bussi 
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bartolini@unimore.it 
Aim of this paper is to discuss the role of experiments in mathematics for the teaching 
and learning of proof. I summarize some research findings from basic research 
studies and from teaching experiments. The examples comes from teaching 
experiments at all school levels on space and geometry by means of classical 
resources although some of the findings might be expanded to other subject areas 
and to ICT. They allow to frame the topic within the international literature on 
conjecture production and proof construction: they support the advantages of 
experimental approaches to the teaching and learning of proof and, at the same time, 
point at some critical points to be controlled in order to design appropriate teaching 
interventions. 

INTRODUCTION 
A growing interest is shown, at the international level, for the development of 
approaches to mathematics where the active participation of students is encouraged 
within a laboratory setting, with hands-on activities. The emphasis on experiments, 
manipulation and perception, measurement and examples is shared by the approaches 
developed  within ICT environments (both DGE and CAS) and within classical 
technologies (straightedge, compass and ancient instruments). This experimental 
approach, where exploration plays a major role, seems appealing for students, who 
quite often find the evidence offered by a particular experiment much more 
convincing than a rigorous proof (Jahnke, 2007) and are bored by the request to 
produce also mathematical arguments.  Hence, the appeal of experimental approach 
might be suspected of obstructing the development of mathematical styles of 
reasoning: some believe that hands-on activities are useful in either science centres or 
mathematical festivals, where popularization of mathematics is in the foreground, 
whilst are not useful and may be even risky in the mathematics classrooms, where the 
construction of mathematical meanings is at stake. In other words, many mathematics 
teachers are afraid that the need of mathematical proofs and of deductive arguments is 
put in a difficult position if experiments are given too much space in the mathematics 
classroom, at least in secondary schools. In the following, after a short review of 
literature, I present some effective experiments at all school levels where experiments 
and exploration have been combined with theoretical aims like conjecture production 
and proof construction. 

                                           
1 This study is jointly funded by the MIUR and the Università di Modena e Reggio Emilia (PRIN 2007B2M4EK on 
"Instruments and representations in the teaching and learning of mathematics: theory and practice") 
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SOME STUDIES CONCERNING PROVING IN THE MATHEMATICS 
CLASSROOM. 
The literature on proof and proving is large and encompass different aspects. In the 
recent book on "Theorems in School" edited by P. Boero (2007), the following 
aspects are highlighted: the historical and epistemological dimension; curricular 
choices, historical traditions and learning of proof (including two national case 
studies); the cognitive dimension of the relationships between argumentation and 
proof; the didactical dimension including both teacher education and classroom 
practices. In the chapter authored by Bartolini Bussi et al. (2007), a mathematical 
theorem – for didactical purposes - is conceived as a system of statement, proof and 
theory. All these three components are important: the theory as a system of shared 
principles (sometimes called postulates or axioms and definitions); the statement as 
the result of a conjecturing process, where exploration through experimental activity 
is in the foreground, the proof as a sophisticated argumentation that is, on the one 
hand, connected with the conjecturing process, and, on the other hand,  consistent 
with the reasoning styles of mathematicians (e. g. deduction from the accepted 
principles). This approach is consistent with Jahnke (2007), who speaks about ‘local 
theories’, i. e. small networks of theorems based on empirical evidence and claims: 
“There is no easy definition of the very term ‘‘proof’’ since this concept is dependent 
of the concept of a theory. If one speaks about proof one has to speak about theories, 
and most teachers are reluctant to speak with seventh graders about what a theory is”. 
And Arzarello (2007) adds: "A statement B can be a theorem only relative to some 
theory; it is senseless to say that it is a theorem in itself: even a proposition like 
"2+2=4" is a theorem in a theory A (e. g. some fragments of arithmetic)". 
In the above sense, it is possible to speak about theorems also within primary school, 
provided that the theories are “germ theories”, drawing on empirical evidence, with 
the expansive potential to capture more and more principles. Germ theories, with 
principles constructed on empirical evidence, are crucial up to 8th  grade; later, 
accordingly to curriculum, the reference to more and more structured mathematical 
theories is possible. So, for instance, in the teaching experiments below, the reference 
theory from grade 11th on is expected to be elementary geometry (either 2D or  3D) 
with some additional parts concerning either isometries or conic sections. 
The links between argumentation and proof from a cognitive perspective have been 
carefully analysed by Pedemonte (2007) who devoted her doctoral thesis to the 
development of the idea of cognitive unity, meant as a kind of continuity between the 
production of a conjecture and the construction of the proof. Experimental research 
shows that proof is more ‘accessible’ to students if an argumentation activity is 
developed for the production of a conjecture: in fact this argumentation can be used 
by the student in the construction of proof by organising in a logical chain some of 
the previously produced arguments. These studies may have important consequences 
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on the teaching and learning of proof: to explain why rote learning of ready made 
proofs is not successful for most students; to select suitable problems, which might 
foster conjecture production before proof construction; to understand why in some 
cases proving remains difficult in spite of the previous conjecturing process. 
In the following sections I shall quote very quickly some experiments where 
conjecturing and proving were promoted, at different school levels and with different 
organization. 

EXAMPLES FROM LONG TERM TEACHING EXPERIMENTS 
In the attached table, some paradigmatic examples are quoted from long term 
teaching experiments developed as coordinated studies by different research teams. 
All the tasks concern a conjecture production before proving construction. They 
appear, however, different from each other. 
Three tasks (tasks 1,2,3) concern individual activity, to be solved in paper and pencil 
setting; three tasks (tasks 4,5,6) concern small group activity, to be solved in writing 
after the exploration of a material object. The exploration is free in the case of 
sunshadows (task 4), whilst it is guided by sheets or by the teacher himself in the two 
cases from secondary school (tasks 5 and 6). The tasks 1 and 3 are construction 
problems: they require to produce a drawing and to justify the validity of the used 
method. The expressions "Explain ....." mean, in a language accessible for young 
learners, to justify the drawing process with reference to a shared (germ) theory. The 
task 2, on the contrary, seems to be given in a discursive way. Yet the explanation 
requirement with reference to a shared (germ) theory is implicit, as a part of the tacit 
rules shared within the classroom involved in these experiments. In the last three 
tasks proof is not explicitly required. Actually the focus is on the production of the 
conjecture. This is an intentional choice, because the problems are quite demanding. 
The tasks 4 and 6 concerns 3D geometry, that is usually not well mastered by 
secondary school students. The task 5 is difficult: the conjecture concerns a rotation 
around the lower point (O) in the Fig. 3. Actually to recognize it, it is necessary to 
"see" two line segments (OP and OP') that do not exist, to realize that they are always 
equal and, more generally, to be able to "see" invariants during the motion. The 
teachers, for the tasks 4, 5 and 6 had designed, according to the shared theoretical 
framework, an intermediate step where to collect and discuss the conjectures, before 
entering the proving process.  In the task 4, students are explicitly requested to 
produce a general statement. This expression was used in those classrooms to foster 
the production of statements with universal quantifiers (all, always, and so on) and 
hopefully in conditional form (if ... then) to pave the way towards the construction of 
a proof with specified hypothesis and thesis. 
 
 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 223



  

Gr. GERM THEORIES 
(REF) 

CONJECTURES - PROBLEMS 
THE TASK - TO BE SOLVED IN WRITING 

SETTING 
MATERIAL 

1.  
Gr.2 - 

8 

The invariance of 
alignment in 
perspective drawing 
(Bartolini Bussi, 
1996) 

The centre of a table drawn in central perspective. 
Draw the small ball in the centre of the table. You 
can use instruments. Explain your reasoning. 

Individual 
task 
(Fig. 1) 

2.  
Gr.2 - 

8 

Motions of geared 
wheels (Bartolini 
Bussi et al., 1999) 

The motion of trains of toothed wheels.  
What about three wheels geared with each other? 

Individual 
task 
No material 

3.  
Gr.4 - 

8 

The equality of the 
distance of the 
centres of two 
tangent circles to the 
sum of radii 
(Bartolini Bussi et 
al., 2007) 

The drawing of a circle tangent to two given 
circles. 
Draw a circle with a radius of 4 cm tangent to the 
given circles (radii 3 and 2). Explain carefully the 
method. Explain carefully why it works. 

Individual 
task (Fig. 2) 

4.  
Gr.6 - 

8 

Mathematical model 
of sunshadows.  
Basic properties of 
lines, planes, 
parallelism and 
perpendicularity (3D 
geometry) (Boero et 
al., 2007) 

The parallelism of sunshadows of sticks. 
In recent years we observed that the shadowsof 
two vertical sticks on the horizontal ground are 
always parallel. What can be said of the 
parallelism of shadows in the case of a vertical 
stick and of an oblique stick? Can shadows be 
parallel? At times? When? Always? Never? 
Formulate your conjecture as a general statement. 

Small group  
work.  
Pens, pencils, 
notebooks, 
rulers, to 
reify lines 
and planes 

5.  
Gr.11 

Elementary 
geometry (3D 
geometry). 
Definitions and 
properties of 
isometries. 
(Bartolini Bussi & 
Pergola, 1996) 

The isometry (rotation) produced, as a 
correspondence, by a pantograph. After a guided 
exploration of the pantograph. 
If P and P' are two writing points, draw two 
corresponding figures. Which are the common 
properties of the two figure? Can they be 
superimposed? Does it exist a simple motion 
which superimposes them? Describe it. 

Small group 
work. 
A pantograph 
with graphite 
leads in P and 
P' 
(Fig. 3). 

6.  
Gr.12 

Elementary 
geometry (3D 
geometry).  
Metric definition of 
conics. Equations of 
conics 
(Bartolini Bussi, 
2005) 
 

The conic obtained by cutting a cone in a suitable 
way.The task is given orally by the teacher. 
You have to obtain an important property of 
parabola [...]. As you see, [the parabola] is in a 
3D space, on the surface of the cone [...]. you 
have to discover the relationship between the 
green line segment [AE in the Fig. 4] and this line 
segment [EB  in the Fig. 4]. 

Small group 
work. 
A 3D model 
of a cone 
with a normal 
cutting plane  
(Fig. 4). 

Table 1. Some paradigmatic examples. 
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Figure 1. The small ball and the table Figure 2. The two circles and the tangent 
circle 

 
 

Figure 3. The pantograph Figure 4. The parabola 

 
At all ages, the dynamic exploration of a suitable problem situation has a crucial role 
both at the stage of conjecture production and during the proof construction. In 
particular, as to the conjecture production "the conditionality of the statement can be 
the product of a dynamic exploration of the problem situation during which the 
identification of a special regularity leads to a temporal section of the exploration 
process, which will be subsequently detached from it and then "crystal" from a logic 
point of view ('if .... then')"; and as to the proof construction, "for a statement 
expressing a sufficient condition ('if ... then'), proof can be the product of the dynamic 
exploration of the particular situation identified by the hypothesis" (Boero et al, 2007, 
p. 249 ff.). This phenomenon has been observed by Boero et al. (2007) for the task 4 
about sunshadows, by Bartolini Bussi & Pergola for the task 5 about the pantograph 
(Bartolini Bussi & Pergola, 1996) and in other ongoing experiments on either 
transformation or curve drawing devices. As concrete manipulation of materials is not 
spontaneous and guaranteed with elder students, who had already spent years to learn 
(or better to be taught) that mathematics is just a mental activity, the teacher has to 
foster it in a very coercive way: concrete exploration in demanding tasks is quite 
often the only effective way to promote dynamic exploration. Younger pupils, on the 
contrary, were accustomed to explore and to evoke exploration when no concrete 
object was available. 
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THE PROCESSES 
The six situations above, although in different modes, have been designed to foster 
cognitive unity between the conjecturing and the proving phases. I shall not try to 
summarize here the observed processes concerning them all: they are complex, long 
standing, different (also for students' age) and all available in the international 
literature. Rather I shall illustrate another simple case of conjecture production and 
proof construction at secondary school level (from grade 10 on, according on the 
curriculum), concerning a curve drawing device. I shall narrate the stories of dynamic 
exploration that show up when secondary school students are given this curve 
drawing device to foster reasoning, conjecturing and proving (another example is 
discussed by Bartolini Bussi, in press).  
I shall collect some evidences from the field notes of the exploration sessions in both 
school classrooms and the Laboratory of mathematical Machines 
(www.mmlab.unimore.it), to highlight the patterns that emerge. The two parts of the 
fig. 5 show (on the left) a drawing from the XVII century treatise by van Schooten 
(1657, p. 339) and (on the right) a photo of the brass copy reconstructed on a wood 
platform (40 cm x 40 cm) by the team of the Laboratory of Mathematical Machines at 
the Department of Mathematics of Modena, to be used with secondary and university 
students. The students are supposed to know some early properties of conics, e.g. the 
string and pencil drawing of an ellipse (together with the ellipse metric definition).                   

 

 

 

 

 

 

Fig. 5a and 5b: Van Schooten’s Ellipsograph 

There are several ways to explore the artefact (in order to produce a conjecture and to 
construct a proof of the conjecture) that span from strongly to weakly guided ones. In 
general, strongly guided exploration is suitable to the short term sessions (at most 2 
hours, including the introduction and the conclusion of the hands on activity, 
Maschietto & Martignone, in press) which take place when a classroom come to the 
Laboratory, whilst weakly guided exploration is suitable to classroom activity, when 
the teacher plans to spend more time on the same topic. Actually with a weak guide, 
the time may expand, not matching the time constraints of a short visit to the 
Laboratory. 
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A) Strongly guided exploration. Students are given a worksheet where a layout of the 
artefact is drawn with coding letters (examples: http://www.mmlab.unimore.it/on-
line/Home/VisitealLaboratorio/Materiale/articolo10005163.html) and are suggested 
to identify the fixed points, the trajectories of the moving ponts (e.g. G and F), the 
length of the bars, and so on. After this exploration, they are asked to conjecture the 
name (if any) of the trajectory of the point E (intersection of GH and FI in the fig. 5a) 
tracing it with a graphite lead on the wooden platform. The drawing is soon 
recognized as an arch of an ellipse and the conjecture is produced. Then the process 
of proof construction is to be started. We shall comment it later. 
B) Weakly guided exploration: students are given the artefact and the information 
that it may draw curves; they are given the burden to produce conjectures and to 
prove them. A graphite lead to trace the trajectory of points is available with no 
special emphasis on this experiment: they can decide to use it or not. The artefact is 
without coding letters (Fig. 5b) and actually the need of coding may be one of the 
outcomes of the exploration to understand each other (Bartolini Bussi & pergola, 
1996). When the students explore for some minutes the motion without drawing the 
arch, they may recognize a well known (although hidden) figure. HIGF (fig. 5a) is an 
isosceles trapezium with diagonals (HG and FI) and sides (FG and HI) given by brass 
bars, whilst the bases FH and GI have a variable length and are not reified by bars. 
The figure is not trivial to be noticed, as the two bases are not visible. Usually the 
students rotate G around H and observe the figure. Sometimes they seem fascinated 
by this rotation. They stay silent for minutes. They try to look at the artefact from 
different perspectives, also standing and miving around the table. They assume 
strange postures, twist their necks to follow the motion, point at the bars and follow 
the motion with the finger in the air, move the bars  forward and backward to look for 
invariants and test them stopping the continuos process. In the small group work, 
sometime a conflict arises, when the speed of the motion controlled by the actor does 
not match the exploration planned by the observer. At one point they "see" the 
trapezium and notice that EG = EI and FE = FH. When a student has "seen" the 
trapezium, this figure is immediately shared with others. When the trajectory of E is 
eventually drawn they have at disposal what they need to link the conjecture with the 
metric property of ellipse.  
I have described two 'antipodal' exploration processes with a lot of mixed cases in 
between. The weakly guided one is enjoyed by experts. The strongly guided one suits 
novices' needs to avoid frustration: it aims at encouraging to handle the artefact and at 
scaffolding the process. In both cases the demanding part is not the conjecture 
production, especially when drawing by the graphite lead is encouraged. Actually, as 
soon as the user draws the curve, the conjecture springs up, because only a limited set 
of curves is known by students: it is neither a circle nor a parabola nor an hyperbola, 
hence it must be an ellipse. The demanding task in this case concerns proof 
construction. This situation is different from the one of the tasks 4 and 5 above, 
where also conjecturing is really demanding. 
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In the strongly guided exploration, the worksheet suggests some ways to explore the 
properties of the artefact. Yet, in order to notice the properties, measuring by rulers is 
suggested. Measuring requires to stop the motion and to transform the experience of 
continuous motion into the observation of a finite set of frames. The focus risks to be 
on measuring parts of still figures. 
In the weakly guided exploration, the focus shifts on the observation of dynamically 
changing shapes and their invariants. The students have to move and observe. Their 
process seems time wasting and not effective and has to be monitored by a walking 
teacher who moves from one group to another showing how to explore the artefact, 
with changing speeds and, maybe, no word. The initial 'weak' guide seems to require 
a stronger teacher's control. The students do not need (and usually do not wish) to 
measure bars by a ruler. As soon as they notice some invariants, they use their hands: 
they pretend to pick up the line segment EG between forefinger and thumb and to 
rotate it until it matches EI. They repeat the action on the pair FE and FH. Silent 
gestures seem to be  enough to convince them. Maybe words and deductive chains 
are missing. Writing and justifying (by symmetry, for instance) the equality: 

HE + EI = HE + EG = HG 
that represents the metric property of ellipse with foci H and I is the boring 
counterpart of a relationships discovered by making "infinitely many" experiments, 
during the continuous motion of G around H. 
In both cases of exploration, if the drawing is produced too early, the attention is 
focused on the final result of drawing rather than on the dynamical process of 
drawing. I shall consider this later. 
There is a difference between the strongly guided exploration, that foster the 
production of statements concerning pointwise construction of the trajectory and the 
weakly guided exploration, that foster the production of statements  concerning the 
global construction of the trajectory by a continuous motion. This difference is 
epistemological and mirrors the ancient pointwise construction of curves and the 
modern (as from the 17th century) construction of curves by a continuous motion of a 
machine. In the pointwise construction, there is a gap between the statements 
concerning a particular point E obtained when the artefact is in a given position and 
the generalization to a whichever point of the trajectory. This gap might obstruct the 
proof construction, requiring additional arguments. 
The situation is different, yet recalls the one analysed by Pedemonte (2007) and 
concerning the construction of proofs by mathematical induction. She analysed the 
sum of the interior angles of an n-sided convex polygon, but the reasoning might be 
applied to many cases of induction. The well known formula: (n - 2) times 180°, may 
be conjectured in at least two ways, that draws on experimental activity and that are 
called: result pattern generalization (the cases of n-sided convex polygons are 
analysed separately, adding the measures of the interior angles, for n=3, n=4, n=5 and 
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so on); process pattern generalization (from an (n-1)-sided convex polygon, for n=3, 
4, 5 and so on, a new n-sided convex polygon is obtained by the juxtaposition of a 
triangle, whose sum is 180°). 
The result pattern generalization does not help much to construct the proof by 
mathematical induction, because the argumentations used have no counterpart in the 
proof. On the contrary the process pattern generalisation paves the way towards the 
proof, showing how it is possible to shift from n-1 to n. Pedemonte (2007) says that 
in the second case there is a structural continuity between the conjecture production 
(by argumentation) and proof construction (by induction). Students may succeed in 
proving the conjecture also after a result pattern generalization, but they must 
reconstruct a suitable argumentation that links the conjecture to the proving process. 
The shift to the analytic frame suggested in the Laboratory worksheets is an 
intentional break of the structural continuity, because the analytic frame is supposed 
to be the familiar context where conics are studied in secondary schools. 

DISCUSSION 
Some conclusions may be drawn from the quoted examples and research outcomes. 
First, there are good reasons to believe that conjecturing through exploration before 
proving might be very useful. Yet, when conjecture production is too fast, it might 
offer no element to be used in the proving process. Hence it is useful to look for 
strategies that slow down the conjecture production and encourage effective 
exploration of the problem. The time spent in conjecture production is not wasted and 
may be recovered in the proof construction. Second, it is not possible to give general 
rules about which exploration is effective in the conjecture production. In the last 
example, I have contrasted strongly guided and weakly guided explorations, which 
are only two examples of a very rich set of possibilities. What to choose in a 
classroom situation? The teacher's decision has to be contextualized and depends on a 
lot of issues: the time constraints, the curriculum, the students' qualifications and so 
on. This last issue is related to teacher education. The teacher's knowledge in order to 
design and to manage in the mathematics classroom this kind of activities is complex 
and does not fit in the space of this paper. A systemic approach to teacher education 
is now in the foreground in the literature on didactics of mathematics. 
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Research has shown that the tools provided by dynamic geometry systems impact 
students’ approach to investigating open problems in Euclidean geometry. We 
particularly focus on types of processes that might be induced by certain uses of tools 
available in Cabri. Building on the work of Arzarello (Arzarello et al., 1998) and 
Olivero (1999, 2002), we have conceived a model describing some cognitive 
processes that may occur during the production of conjectures and proofs in a 
dynamic geometry environment and that might be related to the use of specific 
dragging schemes. Moreover, we hypothesize that such cognitive processes could be 
induced by introducing students to the use of dragging schemes. 
Key words: conjecturing, dynamic geometry, dragging schemes, abductive processes, 
cognitive unity 

INTRODUCTION 

The contribution of a DGE to students’ reasoning and proving is particularly evident 

during the investigation of open problems, since this process involves making 

conjectures (Mariotti, 2006). Instead of a static-conjecture built in a paper-and-pencil 

environment in a DGE a dynamic-conjecture [1] can be developed. Moreover, in a 

DGE, the invariant geometrical properties of a construction, which lead to 

conjectures, can easily be grasped. An interesting question is: what kind of support 

can a DGE provide first during the development of a conjecture and then during the 

production of a proof? The answer seems to depend on the nature of the problem. On 

one hand the ease to immediately grasp certain invariants seems to inhibit some 

argumentation processes that lead to finding useful elements for the construction of a 

proof. On the other hand, research has shown that a DGE can foster the learners’ 

constructions and ways of thinking, and that it can help overcome some cognitive 

difficulties that students encounter with conjecturing and proving (e.g. Noss & 

Hoyles, 1996; Mariotti, 2002; De Villiers, 2004). 

Building on the work of Olivero and Arzarello (Olivero, 1999; Arzarello et al., 1998), 

we have conceived a model of cognitive processes that can occur during the 

conjecturing stage of open problem investigations in a DGE. Through a qualitative 

study, our final goal is to give a detailed description of some cognitive processes 

related to conjecturing and proving, and of how a DGE might foster such processes, 

thus providing a base for further research and for the development of new curricular 

activities.  
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ORIGIN OF OUR HYPOTHESES 

In the following paragraphs we will briefly outline the theoretical framework which 

the ideas are embedded in. 

Semiotic Mediation and Semiotic Potential of an Artifact 

A DGE like Cabri, which contains “objects” such as points, lines, circles, and ways to 

“manipulate” the objects, is a microworld (Papert, 1980; Balacheff & Kaput, 1996) 

built to resemble the mathematical world of Euclidean geometry. A key aspect of 

microworlds in mathematics education is that the “objects” included offer the 

opportunity for the user to experiment directly with the “mathematical objects” 

(Mariotti, 2005, 2006), because the logical reasoning behind the objects in the 

microworld is designed to be the same as that behind the real mathematical objects 

that they represent. 

Recent research has developed the ideas of tool of semiotic mediation and of semiotic 
potential of an artifact:  

“...any artifact will be referred to as a tool of semiotic mediation as long as it is (or 

it is conceived to be) intentionally used by the teacher to mediate a mathematical 

content through a designed didactical intervention” (Bartolini Bussi & Mariotti, 

2008).  

Computers in general, and a DGE in particular, are considered to be tools of semiotic 

mediation (Mariotti, 2006; Bartolini Bussi & Mariotti, 2008). However, the 

mediation can occur successfully only if their semiotic potential is exploited. 

Therefore it becomes necessary to study ways that foster exploitation of such 

potential. This was a main goal we had in mind when we started developing our 

hypotheses. 

A First Theoretical Model and the Dragging Schemes 

The dragging tool can be activated by the user, through the mouse. It can determine 

the motion of different objects in fundamentally two ways: direct motion, and indirect 

motion. The direct motion of a base-element (for instance a point), that is an element 

from which the construction originates, represents the variation of this element in the 

plane. The indirect motion of an element occurs when a construction has been 

accomplished. In this case dragging the base-points will determine the motion of the 

new elements obtained through the construction. The use of dragging allows one to 

feel “motion dependency”, which can be interpreted in terms of logical dependency 

within the geometrical context (Mariotti, 2002, p. 716). Starting from these 

phenomenological perspectives, a refined analysis of the dragging tool can highlight 

its semiotic potential that can be exploited by the teacher in school practice.  

The use of Cabri in the generation of conjectures is based on the interpretation of the 

dragging function in terms of logical control. In other words, the subject has to be 

capable of transforming perceptual data into a conditional relationship between 

hypothesis and thesis. The consciousness of the fact that the dragging process may 
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reveal a relationship between geometric properties embedded in the Cabri figure 

directs the way of transforming and observing the screen image (Talmon & 

Yerushalmy, 2004).  At the same time, that consciousness is needed to exploit some 

of the facilities offered by the software, like the ‘locus of points’ or ‘point on object’. 

Such a consciousness is strictly related to the possibility of exploiting the heuristic 

potential of a DGE (Mariotti, 2006). 

The theoretical model presented by Olivero, Arzarello, Paola, and Robutti (Olivero, 

2000; Arzarello, et al., 1998, 2002) addresses expert solvers’ production of 

conjectures, and how abduction marks the transition from the conjecturing to the 

proving phase, when a passage from “ascending control” to “descending control” 

occurs. Abduction guides the transition, in that it seems to be key in allowing solvers 

to write conjectures in a logical 'if…then' form, a statement which is now ready to be 

proved. Arzarello et al.’s analysis of subjects’ spontaneous development of dragging 

modalities led to the determination of a classification (Arzarello et al., 2002), which 

researchers have referred to as the “dragging schemes” (Olivero, 2002). 

Abduction 

In the previous section, the notion of abductive processes is mentioned. Peirce was 

the first to introduce the notion of abductive inference, and compare it with other 

inferences, such as deduction and induction. According to Peirce, 

“abduction looks at facts and looks for a theory to explain them, but it can only say 

a "might be", because it has a probabilistic nature. The general form of an 

abduction is: a fact A is observed; if C was true, then A would certainly be true; so, 

it is reasonable to assume C is true” (Peirce, 1960, p. 372). 

Recently, researchers have renewed interest in abduction. In particular, Magnani 

defines abduction in a way that we find quite useful. According to him abduction is, 

“the process of inferring certain facts and/or laws and hypotheses that render some 

sentences plausible, that explain or discover some (eventually new) phenomenon 

or observation; it is the process of reasoning in which explanatory hypotheses are 

formed and evaluated” (Magnani, 2001, pp. 17-18). 

Moreover, the following distinction of direct abduction versus creative abduction will 

be useful for our study. Direct abduction is when the “rule” used in the abductive 

process consists of a theorem that is already known to the student; while creative 
abduction is when the “rule” of the abduction consists of something new, that is not 

previously known by the student (see also Magnani, 2001; Thagard, 2006). Other 

researchers have studied various uses of abduction in mathematics education (Reid, 

2003), and abductive processes in relation to transformational reasoning (Simon, 

1996; Cifarelli, 1999; Ferrando, 2006). The basic idea is that an abductive inference 

may serve to organize, reorganize and transform problem solvers’ actions (Cifarelli, 

1999). Abductive processes have also been observed by Arzarello et al. (1998) during 

the development of conjectures when students were using the dragging schemes, as 
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mentioned above. In the next section we describe how our work builds on that of 

Arzarello et al., trying to study in detail the processes that occur during the 

conjecturing stage in open problem investigations, how these processes may be 

fostered, and what they might lead to during the phase of proof production. 

OUR HYPOTHESES 

While Olivero, Arzarello, Paola, and Robutti (Olivero, 2000; Arzarello, et al., 2002) 

focused their attention on the subjects’ use of the dragging schemes during the 

development of a conjecture, we concentrate on the abductive processes that may be 

induced by certain dragging schemes. Arzarello et al. observed that abduction occurs 

during solvers’ use of the dragging schemes. Moreover, they claim that the 

production of conjectures is based on abductive processes. Thus, it seems that the use 

of certain dragging schemes may foster abductive processes, and, consequently, the 

production of conjectures. To some extent, the dragging schemes can be seen as 

cognitive artefacts (Norman,1991).  We would like to investigate the relationship 

between the use of the dragging schemes and the development of abductive 

processes. In order to accomplish this investigation we need to induce solvers’ use of 

dragging schemes, so we decided to introduce students to the specific dragging 

strategies.  This way we seem to be able to induce the use of specific dragging 

schemes for the solution of open problems and, consequently, the appearance of 

abductive processes.   

Below is a hypothesis of what might occur as a solver, who has been introduced to 

the dragging schemes, approaches an open problem in a DGE. 

• Step 1: conscious use of different dragging strategies to investigate the 

situation – after wandering dragging, in particular dummy locus dragging (or 
lieu muet dragging) to maintain a geometrical property of the figure 

(intentionally induced invariance, or III), and use of the trace tool. 
• Step 2: consciousness of the locus (lieu) that appears through lieu muet 

dragging – this marks a shift in control from ascending to descending – and 

description of a second invariance (invariance observed during dragging, or 

IOD). 

• Step 3: hypothesis of a conditional link between the III and the IOD, to explain 

the situation. 

• Other forms of dragging may be performed: line dragging, linked dragging, 

and the dragging test. 
• Step 4: formulation of a conjecture of the form ‘if IOD then III’ (product of the 

abduction). 

• Step 5: production of a mathematical proof of the conjecture (or attempt of it). 

Potential re-formulation of the conjecture. 
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The Notion of Path and an Example 

Another hypothesis that we advance is that there is a key element, the path, that plays 

a fundamental role in the abductive process. In this section, we will try to introduce 

the concept of path and its significance for the model.  

One of the dragging schemes, lieu muet dragging, involves dragging a point with the 

intention of maintaining a given property of the figure (which becomes the III). Some 

regularity may appear during this dragging stage, leading to the discovery of 

particular constraints that the dragged point has to respect (expressed in the IOD). 

Because of their origin from dragging, such constraints may be interpreted as the 

property of the point to belong to a particular figure. In mathematical terminology, 

that of course may not be consistent with students’ way of thinking, we can speak of 

a hidden locus (lieu muet). Such locus can be made explicit by the trace tool, through 

which it appears on the screen (lieu parlante). During lieu muet dragging the solver 

notices regularities of the point’s movement and conceptualizes them as leading to an 

explicit object. We refer to this object as a path when the solver gains consciousness 

of it, as generated through dragging, and consciousness of its property that if the 

dragged point is on it, a geometrical property of the Cabri figure is maintained. In this 

sense a path is the reification (Sfard, 1991) of a lieu that can now be used in a 

“descending control” mode (Arzarello et al., 2002). Zooming into Step 2, above, we 

observe that this is the point of the process in which the notion of path arises, and we 

can add a Step 2bis to indicate the (potential) geometric interpretation of the path, in 

order to (potentially, after Step 3) perform line dragging, linked dragging, and the 

dragging test along such path. 

We believe that the path plays an important role in relation to the abductive processes 

that can be used to develop conjectures in a DGE. In particular, recognition of a path 

can act as a bridge, fostering the formulation of a conjecture. In fact, the path can be 

used during the abductive processes, but then it may no longer appear (or it may 

appear in a different form) in the formulation of the conjecture. Below, we zoom into 

a way in which abductive processes may take place and lead to a derived conjecture, 

and then we provide an example of the model in use during an activity. 

• Intentionally Induced Invariance (III): the solver tries to maintain a certain 

geometrical property. 

• Invariance Observed during Dragging (IOD): the solver notices that when 

he/she drags a certain basic point X along the path, the III seems to be 

maintained.  

• Product of abductive process: it becomes reasonable for the solver to assume 

that if point X lies on the path (description of the IOD), the III is true. 

If the path is recognized as a particular geometrical figure F, the derived conjecture 

may be: if X lies on F, the III is true.  

Activity: Draw three points A, M, K, then construct point B as the symmetric image 

of A with respect to M, and point C as the symmetric image of A with respect to K. 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 235



 

 

 

 

Construct point D as the symmetric image of B with respect to K. Drag M and make 

conjectures about ABCD. Then try to prove your conjectures. 

A Response [2]: Through wandering 
dragging solvers may notice that 

ABCD can become different types of 

parallelograms. In particular, they    

might notice that in some cases 

ABCD seems to be a rectangle (they 

can choose this as the III). With the 

intention of maintaining this property 

as an invariant, solvers might mark 

some configurations of M for which 

this seems to be true, and through the 

trace tool, try to drag maintaining the 

property, as shown in Fig 1. This can 

lead to noticing some regularity (IOD) 

in the movement of M, which might 

lead to awareness of an object along 

which to drag (the circle of diameter 

AK, potentially not yet recognized as 

“a circle”). At this point, when such 

awareness arises, we can speak of  

path with respect to the regularity of 

the movement of M.  

If solvers recognize the path to be a 

familiar geometrical object, like in 

this case, they might be inclined to 

constructing it, as shown in Fig 2, and 

dragging along it (line dragging), or 

even linking the free point to it (linked 
dragging) and performing a dragging 
test. Through this abductive process, 

as an attempt at explaining the 

experienced situation, as Magnani 

describes (Magnani, 2001), solvers 

may hypothesize a conditional link between the III and IOD. At this point the 

abduction leads to a hypothesis of the form ‘if IOD then III’, leading to a conjecture 

like the following: “If M is on the circle of diameter AK, then ABCD is a rectangle,” 

or (if they discover or derive a property of the base-points which is equivalent to M 

lying on the circle): “If AKM is a right triangle, ABCD is a rectangle.” 

In the case of the first conjecture, here is how we hypothesize the abduction (creative 
abduction) might go. 

Fig 1: Dragging with the trace tool can 

help a student notice a locus (or lieu). 

Fig 2: M is being dragged along the 

path (line dragging). 
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• III: ABCD is a rectangle. 

• IOD: when M dragged along the path, fact A seems to be true. The path is a 

known geometric figure: the circle of diameter AK. 

• Product of the abduction: If point M lies on the circle of diameter AK, ABCD 

is a rectangle. 

This product of the abduction coincides with a formulation of a conjecture. However, 

solvers might also perform a second abduction (this time a direct abduction) linking 

the property “M belongs to the circle” to a property of the base-points of the 

construction. In this case this may lead to a formulation of the conjecture like: “If the 

triangle AMK is a right triangle (with ∠AMK as the right angle), ABCD is a 

rectangle.” In this case the further elaboration of  the geometrical properties 

recognized in the path will have led to a key idea (Raman, 2003) of a possible proof. 

In particular, this idea together with that of triangles AMK and ABC being similar, 

should be enough for students to successfully provide a proof to their conjecture. In 

this sense, abductive processes involving the notion of path (as a reified concept the 

solver is aware of) might be a step towards the achievement of cognitive unity [3] 

(Boero, Garuti, & Mariotti, 1996; Pedemonte, 2003). 

 

Some Research Questions 

Given the hypotheses outlined above, we propose some general questions for a 

research study. First, it would be interesting to investigate what forms of reasoning 

(abductive, deductive, ...) are actually used (and how) during the conjecturing stage 

of an open problem in a DGE. In particular, if subjects use lieu muet dragging, what 

is the role of the path? Can our model be confirmed (even in a potentially modified 

version)? Second, how does a DGE contribute to the development of the proof of a 

conjecture? It would be interesting to compare the dragging schemes (if any) used 

during this stage to those used during the conjecturing stage. It might also be 

insightful to investigate the forms of reasoning used during the conjecturing stage in 

the cases in which subjects do produce a proof. Finally, it would be interesting to 

study whether it is possible to detect a relationship between the forms of reasoning 

analyzed, and, if possible, to describe such a relationship. 

EXPERIMENTAL DESIGN AND POTENTIAL CONCLUSIONS 

We propose to structure the study in the following general way: by a selection of the 

subjects, the introduction of the subjects to the dragging schemes, finally open-

problem-activity-based interviews on pairs of students. We will use results from the 

pilot study to refine the model, the research questions, and the activities proposed 

during the interviews. In the results of this study we hope to be able to include: a 

description of some cognitive processes that occur during the conjecturing stage of 

the investigation of open problems in a DGE; and validation of the model (or of a 

revised version of it), or motivations for rejecting it as a useful descriptive model. 

Therefore, this study should help gain better comprehension of specific cognitive 
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processes. In particular, we hope to gain some insight into how abductive processes 

may occur, whether they can be fostered by preliminary introduction of the dragging 

schemes, and how the notion of path may foster the formulation of conjectures. 

A secondary objective is to gain insight into how a DGE contributes to the 

development of proofs. The activities proposed during the interviews will all be open 

problems in which students are asked to make conjectures and then try to prove them. 

The path might also play a role in the generation of a proof, in that it may be a part of 

the “reorganization and transformation” that occurs with abductive reasoning 

(Cifarelli, 1999). This might very well be new powerful tool for the solver to use in a 

potential proof (or solution of the problem) as an aid to gain cognitive unity, as 

mentioned above. In this case, it would be reasonable to hypothesize that if the 

dragging schemes were to foster abductive processes, and abductive processes were 

to foster cognitive unity, then introducing the tool of the dragging schemes to the 

students a priori might accelerate and facilitate the entire process of making a 

conjecture and reaching a proof for it. 

If our hypotheses are confirmed, and the dragging schemes and the notion of path do 

contribute positively to the formulation of conjectures (and potentially of proofs), we 

will recognize them as tools of semiotic mediation, with a semiotic potential that 

could be exploited by teachers. In this case, teaching experiments, which introduce 

the dragging schemes at a class-level, should be carried out, in order to further 

investigate how the teacher can exploit the semiotic potential of the dragging 

schemes in the classroom practice. Later, large-scale quantitative research on the 

induction of cognitive processes through introduction of the dragging schemes could 

be conducted, with the didactic objective of implementing the teaching of the 

dragging schemes in school curricula.  

NOTES 

1. With “static” and “dynamic” referred to conjecture, here we intend to emphasize the nature of the conjecture’s origin. 

2. This is only one of the many possible responses leading to this specific conjecture. Of course different students might 

reach this conjecture in different ways. Moreover there are many different conjectures that students can formulate by 

focusing their attention on different geometric invariants (in this case, having ABCD be a kite, a rhombus, or a square). 

3. Boero et al. introduce cognitive unity as follows: “During the production of the conjecture, the student progressively 

works out his/her statement through an intense argumentative activity functionally intermingled with the justification of 

the plausibility of his/her choices: during the subsequent proving stage, the student links up with his process in a 

coherent way, organizing some of the justifications (“arguments”) produced during the construction of the statement 

according to a logical chain” (Boero, Garuti, & Mariotti, 1996, p.113). 
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THE ALGEBRAIC MANIPULATOR OF ALNUSET:  
A TOOL TO PROVE 

Bettina Pedemonte  
Istituto per le Tecnologie Didattiche – CNR Genova 

This report is devoted to analyzing the influence of an algebraic system, the 
Algebraic Manipulator of ALNUSET on students’ construction of proof in proving 
equivalence among expressions. Results of an experiment, carried out with students 
at the second year of Upper Secondary school, are presented to show in which way 
this manipulator can be used in the educational practice to enhance the teaching and 
learning of algebraic proof. 

INTRODUCTION 
As underlined in the introduction to the special issue of ZDM on didactical and 
epistemological perspectives on mathematical proof (Mariotti and Balacheff, 2008), 
research work about mathematical proof has been growing in the last decade. 
Different perspectives (historical and epistemological issues, cognitive ones, 
didactical transposition of mathematical proof into the classroom) are taken into 
account framing the proof from different points of view. The actual invitation 
addressed to educational researchers is to find complementarities in this variety of 
approaches to make them converge (Balacheff, 2008). This required effort has double 
goal. On one hand, it could mean an acknowledged awareness of what connects and 
what separates our works, and on the other hand, it could strongly contribute to 
teaching and learning of proof in everyday classes. Finally, this effort could make 
possible the connection between educational research and the school context making 
our research work effective and fruitful.  
Due to my concern for this aspect, I have been studying to find “effective supports” 
to the didactical transposition of mathematical proof into the classroom. Starting from 
evidence highlighted by existing research works about students’ difficulties in 
approaching proof, I show a possible way to use technological artefact in the 
classroom to support the teaching and learning of proof effectively. In this report I 
present a part of this work in progress. In particular, some interesting results of an 
experiment carried out with students at the second year of Upper Secondary School 
are reported.  

STUDENTS DIFFICULTIES IN LEARNING PROOF 
Students’ difficulties in learning mathematical proof have been pointed out by many 
different research works. In this report I am particularly interested in two of them: 
students do not see the usefulness of a mathematical proof and they do not understand 
its language and symbolism. 
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A new balance between the need to produce logical argument and the need to provide 
an argument that explains, communicates and convinces seems to be necessary 
(Healy and Hoyles, 2000). Various authors point out the importance of the 
explicative and justificative roles of proof (Hanna, 1989, 2000, Harel and Sowder, 
1998) that often are not grasped by students. The importance of proof should go 
beyond the establishment of mathematical truth. A broader vision of proof is 
expected: proof should provide students with important mathematical strategies and 
methods for solving problems. (Hanna and Barbeau, 2008).  
This new approach to proof could effectively support students in seeing the 
usefulness of a mathematical proof but other difficulties could come out and they 
have to be considered. For example, the deductive nature of proof and its symbolism 
should be explained and justified too. Research results highlighted the great 
difference between argumentation and proof both from a semantic point of view 
(Duval, 1995) and from a structural one (Pedemonte, 2007); it is important to 
distinguish between truth and validity from a logical point of view (Durand-Guerrier, 
2008). Logical structure, language and symbolism are important aspects in the 
construction of proof but they remain often hidden for students. Proof can appear to 
students as a sub-minimal code with no vital information for understanding (Alibert 
and Thomas, 1991).  
Furthermore, some studies highlight the role of the proof as theoretical organization. 
These studies focus on the importance of introducing students to the axiomatic 
structure of proof and to a theoretical perspective (Mariotti & al., 1997). Their aim is 
to help students access the meaning of theorem and support them in the transition 
from the need of justifying to the need of validating within a mathematical system 
(Mariotti & al., 1997). 
In general, all these studies show that the role of proof in the educational practice is 
not well defined and very often difficulties emerge because some aspects of proof are 
not explicit for students and they are not well explained by teachers. 
In teaching proof, certain often implicit aspects need to become part of explicit 
educational goals (Hemmi, 2008). Through the notion of “transparence”, Hemmi 
contributes to solve the dilemma to make more or less visible to students some 
important aspects concerning proof. The concept of transparency (Lave and Wenger, 
1991) combines two characteristics: visibility and invisibility. Visibility concerns the 
ways that focus on the significance of proof (construction of the proof, logical 
structure of proof, its function, etc.). Invisibility is the form of “unproblematic 
interpretation” and integration to the activity (Hemmi, 2008, p. 414). It concerns the 
proof as a justification of the solution of a problem without considering it as a proof. 
It has been underlined that “Proof as an artifact needs to be both seen (to be visible) 
and used and seen through (to be invisible) in order to provide access to 
mathematical learning” (Hemmi, 2008, p. 425). The lack of transparency in the 
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teaching of proof regards the lack of knowledge about proof techniques, key ideas 
and proof strategies.  
These considerations offer important insights to make the transposition of 
mathematical proof into the classroom effective.  
In this context I intend to contribute through the Algebraic Manipulator of Alnuset. 
This system can be used in teaching and learning algebraic proofs to make rules and 
axioms used visible in proof processes and to make theoretical aspects usually 
implicit in algebraic manipulation emerge. The aim of this report is to show in which 
way the Algebraic Manipulator can be used in the educational practice to enhance the 
teaching and learning of algebraic proof.  

ALNUSET 
Alnuset is a system developed in the context of ReMath (IST - 4 - 26751) EC project 
for students of lower and upper secondary school (yrs 12-13 to 16/17). It is 
constituted by three integrated components: the Algebraic Line component, the 
Algebraic Manipulator component, and the Functions component. Even if the 
educational relevance of this system emerges better through the integrated use of 
these three components, in this paper I only consider the Algebraic manipulator 
component to show how it can be used to modify the approach to the algebraic proof. 
To have a more complete idea about this system you can see the report presented in 
group 7 by Chiappini G., and Pedemonte B. of this edition of CERME.  
The Algebraic Manipulator of Alnuset: a tool to prove 
The Algebraic Manipulator component (AM) of Alnuset is a structured symbolic 
calculation environment for the manipulation of algebraic expressions and for the 
solution of equations and inequations. 
Its operative features are based on pattern matching and rewriting rules techniques. In 
the AM these techniques are used in a different perspective with respect to the CAS 
where the basic rules (commutativity, associativity, etc.) are used internally in a 
sequence generally not controlled by the user, to produce a higher level result, like 
“factorize” or “combine”. As a consequence, the techniques of transformation 
involved in CAS can be obscure for a non expert user. 
In the AM, pattern matching is based on a structured set of basic rules that correspond 
to the basic properties of operations, to the equality and inequality properties between 
algebraic expressions, to basic operations among propositions and sets. These rules 
are explicit for students. They appear as commands on the interface made active only 
if they can be applied to the part of expression currently selected.  
An expression is transformed into another through this set of rules. Students can see 
the transformation of an expression as result of the application of a rule to it. 
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A sequence of rules (chosen 
from the left panel) are 
applied to the initial 
expression (x-1)(x+1). At each 
step, the rule is applied to the 
green sub-expression, 
producing the expression on 
the next line. The last line 
shows the current selection 
(x*x in yellow), and one of 
the 7 rules highlighted in 
yellow can be applied to this 
sub-expression. 

 

Moreover, the system allows the student to create new transformational rules (user 
rules) once these new rules have been previously derived. This feature also present in 
the L’Algebrista (Cerulli, Mariotti, 2003) is important because it can be used to 
construct an idea of structured theory. 
In the following I show how the AM can be used to provide a good “transparency” 
(Hemmi, 2008) for the concept of proof. This system can be used to introduce proof 
in Algebra making visible the rules and procedures of manipulation supporting the 
comprehension of proof as part of a theoretical system. Moreover, the AM could be 
used to propose problems involving proof without a direct focus on it. For space 
reasons, in this report only the role of Alnuset as tool allowing the “visibility” of 
some important concepts about algebraic proof is analysed. 

TEACHING EXPERIMENT 
In this section, students’ resolution processes of some tasks involving the 
construction of proof in the AM of Alnuset are analysed. They are taken from a set of 
data collected from an experiment carried out in a class of 24 students of the second 
year of Upper Secondary School (15-16 years old) in the context of ReMath EC 
project.  
The main aim of this experiment was to analyse the role of Alnuset in a teaching 
experiment centred on algebraic expressions and propositions. The experiment lasted 
ten weeks, with a 2-hour section each week. The first part of the teaching experiment 
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focused on algebraic expressions (equivalent expressions, opposite expressions, 
reciprocal expressions). In this part, a specific section was devoted to the 
manipulation of expressions. In this report I present results of this section.  
During the previous weeks students had used the AM of Alnuset only twice.  
Students worked in pairs with the AM of Alnuset under the supervision of the teacher 
and the researcher. 
In the following, tasks proposed to students during the section are presented.  

Tasks 

a) Use AM to prove that (2+3)*5-25 is equal to 0 
Use AM to prove the same equality starting by 0. 
Is this the only equivalence that it is possible to prove starting by 0? 

b) Use AM to prove that (2/5+4/5)*5/6 is equal to 1 
Use AM to prove the same equality starting by 1. 
Is this the only equivalence that it is possible to prove starting by 1? 

c) In solving tasks a) and b) you have used two specific commands, both in direct and indirect 
ways: the command to add two opposite expressions (A+-A 0) and the command to 
multiply two reciprocal expressions (A*1/A 1). Have you observed any difference in the 
direct and indirect use of these commands? If yes, what differences? In  your opinion, is it 
more difficult to accomplish proofs based on the direct use or proofs based on the indirect 
use of these commands? Why? 

d) Try to prove that the expression a/b+c/d is equivalent to the expression (a*d +b*c)/bd. If this
proof is difficult for you, try to prove the equivalence between the two expressions starting 
from (a*d +b*c)/bd and then to come back step by step in order to work out the more 
complex proof. 
Use the accomplished proof to create a new manipulation rule. 

e) Try to prove that the expression a2-b2 is equivalent to the expression (a+b)(a-b). If this proof 
is difficult for you, try to prove the equivalence between the two expressions starting from 
(a+b)(a-b) and then to go backward, step by step, in order to work out the more complex 
proof. Use the accomplished proof to create a new manipulation rule. 

f) Use AM to transform the following expressions using, if necessary, the rules created in the 
previous tasks:  

x2-4;    x2-1;     
2
1

1
2

−
+

+
+
+

x
x

x
x  

 
Tasks a) and b) introduce the two rules A+-A 0 and A*1/A 1 instantiated on 
specific examples. Task c) supports reflections about the direct and indirect use of 
these rules. Tasks d) and e) require to prove the rules a/b+c/d = (a*d +b*c)/bd and a2-
b2 = (a+b)(a-b) using the two rules A+-A 0 and A*1/A 1. Task f) is useful to 
strengthen the use of the new proved rules. 
Tasks a), b) and c) 
The solution of task a) in the manipulator is reported in the following table. In the 
first part there is the manipulation from the numerical expression to 0 and in the 
second part there is the manipulation from 0 to the expression. 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 245



 

 

 

  

The second proof (right) is more difficult for students 
with respect to the first one (left). In the second proof, 
the equivalence needs a step that obliges the user to 
write 0 as addition of two opposite numbers (25-25). 
This is not obvious for students who in general are not 
able to manage it. 

The application of the rule 0=>A+-A requires to understand that 0 can be expressed 
as sum of two opposite expressions. The problem is that there are infinite possibilities 
that can be considered to replace 0. 
In the same way, to apply the rule 1=>A*1/A students have to replace 1 with two 
reciprocal expressions. 

 
 

The second proof (right) is more difficult for students 
with respect to the first one (left). In the second 
proof, the equivalence needs 2 steps that oblige the 
user to write 1 as multiplication of two reciprocal 
numbers (5*1/5 and 6*1/6). As in the previous case, 
this is not obvious for students who are not able to 
replace 1. 

 

As shown by the results of the experiment, in general these rules are used by students 
in their manipulations in paper and pen environment, in a completely implicit way. 
Most students are able to transform an expression into another one using these rules 
but they are not able to explicit them. In better cases they are able to use these rules as 
computational techniques but they are rarely able to justify them. 
Analysis of results of tasks a), b) and c) 
The results analysis of the experiment shows that most students constructed the direct 
proof in tasks a) and b) even if for task b) the intervention of the teacher was often 
necessary. Students knew the result of the sum 2/5+4/5 but they were not able to 
make it in the AM because they didn’t manage the properties and rules hidden in the 
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technique of addition of two fractions.  
The construction of the inverse proofs (from 0 to the expression (2+3)*5-25 and from 
1 to (2/5+4/5)*5/6) was not easy for them. As expected, difficulties emerged when 
students had to replace 0 as sum of two expressions and 1 as multiplication of two 
expressions.  
Only observing the previously constructed direct proof some students (6 groups out 
of 12) were able to construct also the inverse proof, following step by step the direct 
proof and going backwards to the initial expression. Here is the dialog between two 
students while constructing the proof from 0 to the expression (2+3)*5-25. 

I: But in which way can we prove this equivalence starting from 0? 
F: perhaps… 
I: wait a moment… if a+-a is 0 it is also true that 0 is a+-a 
F: yes, of course 
I: then if 25-25 is 0 it is also true that 0 is equal to 25-25... then we can write in this way 
F: following step by step the previous proof 

The AM allowed students to make explicit rules A+-A 0, A*1/A 1 and to 
understand the intrinsic difference that characterises the two directions of the rules. 
Let’s see the following example (answers reported in the copy of a group of student): 

“a) Starting with 0 it is possible to prove whatever equivalence having 0 as result. So 
there are infinite equivalent expressions to 0. b) Starting with 1 it is possible to prove 
that 1 can be replaced by all reciprocal expressions having 1 as results. c) In our opinion 
it is easier to produce proofs based on the direct use of the command A+-A  0, 
because in the inverse case it is necessary to look for the opposite expression, while the 
direct use of the command only requires the application of the correct axiom. For the 
rule A*1/A  1 the principle is the same, but in this case consider reciprocal 
expressions and not opposite expressions”. 

Answers given by these students to task c) show that they have developed awareness 
about the role of the two rules and the way they can be used in manipulation. 
Tasks a), b), and c) allowed students to reflect deeply on these rules that are usually 
used in the algebraic manipulation in a completely “invisible” way. The AM of 
Alnuset allowed students to “make visible” these rules and their use in the 
construction of the proofs.  
Tasks d), e) and f) 
Task d) and task e) are very useful in approaching proof and in particular they are 
effective to understand the idea of theoretical systems. As a matter of fact, only when 
the rules a2-b2 = (a+b)(a-b) and a/b+c/d =(a*d +b*c)/bd are proved they can become 
new user rules and they can be used to prove expressions as those proposed in task f).  
A possible solution of the task e) in the AM is reported in the following table. 
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It is better to begin from the 
second proof (right) because in 
the first proof (left) it is 
necessary to insert 0 and replace 
it with the sum of the two 
opposite expressions ab and –ab.
 
 
Once the proof is accomplished 
students can solve it as a new 
rule: the following one. 

This user rule can be used in the 
successive manipulations.  

A lot of steps are necessary to prove the equivalence a2-b2 = (a+b)(a-b) in the AM of 
Alnuset, because manipulation requests students to make rules and axioms that are 
necessary to prove the equivalence explicit.  
In the same way it is possible to produce the proof of the equivalence a/b+c/d = (a*d 
+b*c)/bd. 
Analysis of results of tasks d), e) and f) 
Tasks d) and e) required a lot of efforts by students. Nevertheless, these tasks were 
very fruitful to understand the meaning of proving a rule starting by a basic set of 
rules and axioms. Students who tried to prove the two equivalences a/b+c/d=(a*d 
+b*c)/bd and a2-b2=(a+b)(a-b) inserting the first expression (a/b+c/d or a2-b2) were 
not able to begin the manipulation. All students were forced to follow the suggestion 
given by the text of the tasks inserting the second expression and manipulating it. 
Also in this case the solution was not obvious. Some difficulties concerned denotative 
aspects: deletion of superfluous parentheses, application of properties in order to 
make the expression match with the rule to be applied, and so on. Nevertheless, in 
some cases, difficulties concerned “conceptual aspects” usually invisible in the 
ordinary manipulation in the paper and pen environment. For example, students were 
not confident with rules such as a-b=a+-b and -a=-1*a. Thus steps concerning the 
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application of these rules were often introduced by the teacher. Let’s see the dialogue 
of two students during the resolution of task d). 

S: This is a specific product… Insert in Alnuset the expression a2-b2 
L inserts the expression in AM 
S: and then? 
L: I really have no idea…. 
S tries to apply some rules without success.  
L: Perhaps… it is better to start from the other side. Try to insert (a-b)(a+b) 
S inserts the expression in AM and then she applies the distributive law.  
She is not able to sum –ab +ab because she was not able to transform the expression 
aa+ba-(ab+bb) into the expression aa+ba-ba-bb.  
L: What? We are not able to add these two expressions. We know that the solution is 0 but... 
S: in which way can we find this result? 
Teacher: You have to apply the rules a-b=a+-b to transform –(ab+bb) into -1(ab+bb)… 
S: Ah ok! We try… 
Students complete the proof and they try to perform the inverse proof.  

Even if it was really hard for students to solve the tasks, the constructed proofs 
obliged them to make explicit axioms and rules that are used step by step during the 
transformation of an expression into another. 
In general, students were very proud of their proofs and they liked a lot to save the 
proved rules as new rules that could be used in their successive proofs. Task f) was 
solved by most students without any difficulty. In this task they eventually realised 
that the previously proved rules were useful to prove other new rules.  

CONCLUSIONS 
The results of the experiment might show that the AM of Alnuset does not help 
students construct proofs and makes proofs more complicate for them. In a sense this 
is true - a lot of students are able to transform (a+b)(a-b) into a2-b2 in paper and pen 
environment and perhaps it is not so important to be able to make the inverse 
transformation. The problem is that in school practice, algebra is usually considered 
as a body of rules and procedures for manipulating symbols. Students are usually able 
to develop calculus but they are not aware of the axioms and theorems they are using 
in performing it. Thus, algebra is taught and learned as a language and emphasis is 
put on its syntactical aspects. In this context, algebraic proof appears as a grammar 
structure made of a sequence of formulae connected by calculus rules. In this way, 
the meaning of proof is completely lost. Despite this, rigorous proof is generally 
considered as a sequence of formulae within a given system, each formula being 
either an axiom or derivable from an earlier formula by a rule of the system. The AM 
of Alnuset supports this kind of proof though in a different way. Each step in the 
manipulation is produced by the application of a rule that has to be chosen by the 
student from a set of rules. If the choice is not correct it could be very difficult for the 
student to construct the proof. During the experiment the intervention of the teacher 
often supported students that were unable to accomplish the task. Notwithstanding 
this, at the end of the experiment, students were able to explicit rules used during 
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their proofs spontaneously. Also during ordinary school practice, students justified 
their steps making the rule used in the transformation explicit. This kind of approach 
required a lot of effort but it supports the awareness of what it is an algebraic proof 
and in which way a mathematical theory can be constructed. 
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VISUAL PROOFS: AN EXPERIMENT 
Cristina Bardelle 

Università degli Studi del Piemonte Orientale “A. Avogadro” 
The main goal of this paper is to start a preliminary study of the basic features of 
visual proofs in mathematics and their use in mathematics teaching. The 
investigation, based on college mathematics students, shows a very poor use of visual 
reasoning in mathematical tasks involving figures. Moreover, students’ use of visual 
semiotic systems is not spontaneous but seems to need some special training. Some of 
the ways of working students usually adopt when dealing with visual proofs have 
been identified, showing that most often diagrams are not seen as representations of 
complete processes, but rather as ready-made aids to solve problems.      

INTRODUCTION 
Many researchers have stressed the importance of visual reasoning in the learning of 
mathematics and have remarked that research in mathematics education has still a lot 
to develop about this topic (see e.g. Dreyfus 1991, Jones 1998, Presmeg 2006). In this 
perspective this paper focuses on visual proofs i.e. on proofs where the deductive 
steps are based on figures, diagrams or graphs. This means that the inferences are 
possible through just the reading of the figures. Although geometrical figures will be 
taken into account only, the expression ‘diagrammatic proof’ or ‘visual proof’ will be 
used in a more inclusive sense. At this regard, a number of works, such as Nelsen’s 
books (1993, 2001) have provided a wide selection of examples of visual proofs from 
different sources. In literature visual proofs are usually presented with no comments 
in verbal language (i.e. without words), but only based on diagrams, possibly 
equipped with numbers, letters, arrows, dots, or other signs and sometimes associated 
with symbolic expressions; the reconstruction of the proof is left to the reader. 
Nowadays visual arguments are far to be considered legitimate arguments for 
rigorous proofs probably due to the fact that they can easily misread and therefore 
lead to wrong inferences. Anyway their importance as an aid for the discovery of new 
results and the production of more formal proofs is widely recognized. In the last 
decades interest in visual proofs has grown up leading to both new mathematical 
investigations and applications to mathematics education. On the side of 
mathematical investigations above all we mention the work of Barwise and 
Etchemendy (1991) and further developments in the same line such as Jamnik’s study 
(2001). From the educational viewpoint the role of visual reasoning in mathematics 
teaching has been taken again into account and emphasized (see e.g. Dreyfus 1991, 
Dvora & Dreyfus 2004, Hanna 1989, Presmeg 1997, 2006).  
The main goal of this paper is to identify the main difficulties in the use of diagrams 
in mathematics, in particular in the extraction of information. For this purpose some 
visual proofs have been taken into account. In the experiment I am describing some 
statements with the corresponding diagrammatic proofs have been given to 
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mathematics sophomore and third year students. Such proofs have been presented 
without any explanation on the inference steps implicit in the figures. The work is 
also aimed to compare the processes involved in visual proofs to those involved in 
the standard ones. Diagrams are not relevant only in relation to visual proofs, but they 
can also support either standard proof processes (i.e. proofs based on a verbal or 
symbolic text) or problem solving. Indeed the heuristic role of figures is widely 
recognized both by mathematicians and by mathematics educators. Therefore some 
features of diagrammatic proofs will be taken into account, which might be relevant 
from the educational viewpoint and to explore the opportunities that they can provide 
in order to improve the approach to mathematical theorems. 

THEORETICAL FRAMEWORK 
The production or the understanding of a diagrammatic proof involves constructing 
and treating (detaching, reversing, superposing, translating,…) figures and extracting 
information from them. All these operations will make evident the inferential steps 
that make up a visual proof of a statement. Moreover a diagrammatic proof is 
developed for a particular value of the domain of validity of the theorem but anyway 
it represents the proof for all values of the domain (character of generality, Barwise & 
Etchemendy 1991). 
We did not find in literature a theoretical framework closely focused on visual proofs 
in mathematics education. Although here we are focusing on visual proofs that are 
based on geometrical figures, we take into account some different works about visual 
reasoning and visualization that could help us to interpret difficulties about this topic. 
First of all, according to Fischbein (1993), geometrical figures are mental entities 
(named also ‘figural concepts’) which possess conceptual and figural characters at the 
same time. In this frame, as other studies in geometry, we refer to figures as the 
mental entities which possess properties imposed by, or derived from axiomatic 
systems and to drawings as their (external) representations. A major problem in the 
use of diagrams and figures is the potential conflict between conceptual and 
perceptual features of figures. Fischbein’s theory is very helpful at this regard. 
Fischbein argues that ‘…figural concepts constitute only the ideal limit of a process 
of fusion and integration between the logical and figural facets’ (Fischbein 1993, 
p.150). In particular visual proofs involve some logical questions concerning the 
nature of deductions based on diagrams and figures. Actually, it is to be considered 
that visual proofs are bound to correspond to some extent to proofs in the standard 
mathematical sense. In this work I do not mean to question the rigorousness of 
diagrammatic proofs (on this topic see Barwise & Etchemendy (1991), Jamnik 
(2001), Hanna & Sidoli (2007), Allwein, G. & Barwise J. – Eds. (1996) and 
references therein) but I assume that they can be regarded as legitimate mathematical 
processes.  
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Another main difficulty encountered by students is due to the lack of coordination of 
systems of semiotic representations (Duval 1993). Working with a visual proof 
requires a continuous interplay between the semiotic system of figures and the 
semiotic systems involved in the statement, usually verbal texts or symbolic 
expressions. Like Duval, I assume that semiotic systems are not neutral carriers of 
meanings but can contribute to the construction of meaning themselves. This explains 
the attention I am going to pay to semiotic systems through this paper.  

AN EXPERIMENT 
At the Università del Piemonte Orientale, in Italy, in the context of a course devoted 
to mathematical proof, we have given a group of 13 sophomore and third year 
undergraduate Mathematics students a number of tasks requiring to look at 
diagrammatic proof of some statement and to reconstruct such a proof (i.e. to 
describe how the proof could be extracted by the figure). The tasks have been 
administered as written tests and they were followed by interviews in order to better 
understand the arguments written by students.  
The problems are the following: 

Task 1. 

The picture on the right represents a visual proof of the 
Pythagoras' theorem. 

- Describe such a proof. 

- Reconstruct the figure in the case that the legs of 
the right-angled triangle have the same measure. 

 
 
Task 2. 

The picture on the right 
represents a visual proof of 
the theorem 
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Describe such a proof. 
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The statements are in two different fields of mathematics: the Pythagoras' theorem 
and the geometric series. Pythagoras' theorem is customarily associated to visual 
representations, whereas the latter is less common (at least in Italy), as the 
convergence of the geometrical series is usually proven using a combination of 
algebraic and analytical arguments. So this visual proof is very unusual for Italian 
mathematics college students. The choice of theorems from different fields is aimed 
at finding common features and common difficulties related just to visual reasoning. 
As the results show, students find this kind of problems very difficult. The main 
difficulty is due to the fact that the drawing is a static object while a proof is made of 
an ordered sequence of inference steps. A drawing presents in a whole all written data 
and the reader has to choose the order of the construction and how to extract the 
information. 
Analysis of task 1. Here the construction of the drawing may not present so many 
problems since it is not required a precise order of construction as far as one 
recognizes that there is a particular disposition of six right angle triangles. Troubles 
can arise when trying to find correspondences between the statement and the picture. 
This task is mainly based on visual arguments. Students could meet with difficulties 
in the identification of the area of the square built on the hypotenuse (Fig.1) and 
above all of the areas of squares whose sides are the legs of the right triangle (Fig.2) 
since they are not bounded with segments. Such a problem is related to the 
rearrangement of the figure. 

 
Fig.1 

 

 
Fig.2 

Therefore students could meet with difficulties from the perceptual side, as they 
might fail to spot the appropriate triangles or squares. In fact, as pointed out by Duval 
(1993) graphical sign can be either a help or a hindrance in understanding diagrams.  
Analysis of task 2. In this case the reconstruction of the drawing itself is a difficulty. 
It requires the conceptualization that such a construction is made of infinitely many 
steps and that it proves that the series is convergent. All this requires a good 
conceptualization of the real numbers and their representation on the line. Moreover 
students could meet difficulties, not only with perceptual aspects, but above all with 
the lack of coordination of three different semiotic systems. One has to recognize that 
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−∑  is a proportion, then to translate it in the graphical system and finally to 

identify it in the given figure.  

RESULTS 
Task 1. 
First of all in this task few students only provided an explicit description of the 
construction process of the figure. In this visual proof, the construction of the 
drawing is not related to the understanding of the proof since they succeed to achieve 
it even if with deductive arguments not based upon the whole picture but on some 
parts of it only. In particular, notice that some students do not feel the necessity to 
prove themselves that the tilted figure that looks like a square is indeed a square. In 
this case the perceptual facet is not controlled by the conceptual one. Second, all of 
them introduced letters a, b, c to indicate the measure of the sides of the triangle in 
order to find correspondence between the formula a2+b2=c2  and the figure. Finally, 
students addressed the first task in three different but not necessarily separate ways: 

1. Modifying the formula in order to find correspondence with the figure 
Some students tried to connect the formula a2+b2=c2 to 
the figure and to identify just c2 in the picture to the 
right. They were not able to do the same for a2 and b2. 
Then they wrote down (a+b)2-2ab=c2 most likely 
because they could find (a+b)2 and 2ab in the picture 
too, as shown below: 

 
 

 
This way the students recognized the remaining area 
a2+b2 in the figure on the right. This kind of proof is 
mostly based on visual arguments except for the initial 
modification of the formula.    
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2. Area computation 

This strategy is the most common in problems of this kind. It consists in calculating 
the area of the external figure in two different ways and then comparing the results to 
obtain the required relationship.  
In the first problem they calculated the area of the square of 
side a+b i.e. (a+b)2  and then the same area as the sums of 
the five subfigures (four triangles and a square of side c) 
i.e. 24

2
ab c+ . Comparing the two expressions they got the 

Pythagorean theorem through algebra. In this case they did 
not consider the dashed lines in the picture on the right.  

3. Figures as plain  tools  
The figure is not seen as a process embodying the proof of a statement but just as a 
tool that can be used to occasionally pick some piece of information useful to get a 
proof.  
For example in this problem four students considered just the 
tilted square of side c and its five subfigures (four right-angled 
triangles and the square of side a-b). Actually they did not 
consider the dashed lines in the figure on the right. Comparing 
the area of the square of side c calculated as c2  with the same 
area but regarded as the sum of the areas of the five subfigures 
one obtains the result as in point 2 (Area computation). 
Another student just considered the rectangle    

 

defining a the short side and b the long one. Then she 
used a so called “circular argument” or “begging the 
premise” (cf. Weston, 2000), i.e. she used the 
Pythagoras’ theorem to get 2 2c a b= +  and hence 
squaring both sides she got the Pythagoras’ theorem 
c2=a2+b2 . 

Notice that also the answers in point 2. (Area computation) denote that the figure is 
not seen as an autonomous process of proof.  
 
Task 2. 
The Problem 2 proved the most difficult one. Nobody succeeded in understanding 
this visual proof. So a hint was given to them while they were solving the task. It was 
told them that a fundamental tool for its comprehension was the similitude of 
triangles and in particular the proportionalities between corresponding sides of the 
triangles. After that some of them succeeded to recognize that ∆ PST and ∆ PQR are 
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similar and they found the correspondence between the formula and the sides of 
triangles.  
As a first result we have that students were able to match labels with the formula, and 
to understand the meaning of the dots ‘…’. As second finding we have that most 
students did not reconstruct the drawing. The reasons are three:  

1. Students understood the need to reconstruct the drawing. Such construction is a 
necessary step in order to consider the visual proof as a process.  Unfortunately 
they are not able to do such a reconstruction. One can see this outcome from the 
following excerpts: 

         A:  Consider a square of side of length 1 ( 0l r= ) PQMS and construct a right-
angled triangle PST such that the shorter leg is 0PS r=  and one finds that the 
longer leg ST is the sum of infinite segments having measure respectively 0r , 

1r , 2r , ….. 

     (Student A understood that the measure of ST is not an assumption but a finding 
of the construction but he could not prove that result, as it became clear from the 
interview) or 

         B:  I can not understand how in the figure 2r  comes out from r . 

2. Students considered figures just as plain tools. This is evident in task 2:  

         C:  …from figure I can see that PS  measures 1, ST measures 
0

i

i
r

+∞

=
∑ ,… 

          Student C did not see that PS 1=  is an assumption while 
0

ST i

i
r

+∞

=

=∑  is the result 

of a   deductive steps and in particular it means that the series converges.  
3. Students understood the need to reconstruct the drawing but they failed to do it 

since they considered it trivial.    
Finally some students could conclude the proof using the help given to them, but we 
distinguish  

- students who were able to prove that the triangles PST and PQR are 
similar because they recalled this notion; 

- students who did not recalled this notion or never learnt it. 
In this case the problem is that even if students had a good knowledge of similitude 
of triangles they failed to introduce such “new” tool which could not be directly 
extracted by a simple manipulation of the objects already appearing in the proof.                         
General discussion 
One of the main findings of this work is that visual proofs are not seen as processes 
but the figures are just plain tools which help to find results. The investigation of the 
protocols highlights that the unsuccessful results of this kind of tasks are due not only 
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to the semiotic system of figures or to the conflict between the conceptual and figural 
nature of visual proofs but it comes out that the concept of mathematical proof is not 
understood enough. This conclusion comes out above all from the fact that students 
do not feel the need for reconstructing the drawing. Moreover, in the first problem 
students used just some parts of the figure and not the whole of it, that is some 
students did not attribute values at every graphical sign, as it is explained in the 
analysis of the first task. Also this behaviour, in some cases, is due to a 
misunderstanding of the nature of the process of visual proofs. In fact the role of 
graphical signs and more in general of the perceptual learning of a figure is very 
important both in a positive and in a negative sense (Duval 1993). Perception can be a 
useful tool only if it is controlled by conceptual processes as pointed out by 
Fischbein.  
Second it comes out that one of the main obstacles is the lack of geometrical 
knowledge: notions like similitude and congruence of triangles, Thales’ theorem, etc. 
are hardly known, which severely prevents any attempt to work with the figure. This 
situation is found in the problem about the geometrical series. For example one of the 
fundamental steps for understanding this visual proof is to notice that the triangles ∆ 
PQR and ∆ PST are similar. No one spotted this geometrical fact. There might be two 
reasons of it. First, students have never learnt this or they have forgotten it. Second, 
they could not easily call to mind this notion, actually they knew something on 
similitude of triangles but they were not used to work with it. This means that 
students are not aware that there are some theorems, techniques, tools, which they can 
exploit when facing triangles. The fact is that Italian students work very little or do 
not work at all on the visualization of geometrical figures (for further details see 
Mariotti, 1998). Moreover, the time given for solving the task is not sufficient to 
remember or to reconstruct this notion. However, the necessity to use tools and 
constructions which are not directly related to objects at hand is a common feature in 
mathematical proofs, which do not refer to visual proofs only. Students could not 
overcome the difficulty of introducing such new elements in the visual proof we 
proposed them. Moreover, students were not even able to exploit the symbolic 
expression in the statement, since it would have required to represent it as a 

proportion, that in Italy is given prevalently by ( )
0

:1 1: 1i

i
r r

+∞

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ , and then into the 

figural system. The difficulty about the introduction of new elements, however, is not 
peculiar to visual proofs only. Indeed the first task does not present this problem. In 
this case all students succeeded in grasping the result even if in an improper way, for 
example using the figure just as a tool to extract information. Here one has just to 
manipulate the formula of the Pythagorean Theorem or manipulate its figure; there is 
no need to introduce new constructions, techniques, assumptions, tools, etc. 
Finally the analysis of protocols shows that students prefer to work with algebra 
instead of using visual arguments coming from manipulation of figures. The visual 
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proof in task one is only of visual nature but no one addressed it with just visual 
arguments. Just one student used prevalently visual arguments (see strategy 1), but 
even in this case there was a preliminary modification of the formula. 

CONCLUSION 
This explorative research outlines the lack of skills in visual reasoning by a group of 
Italian mathematics college students. This lack is due to different reasons: poor 
knowledge of certain basic mathematical tools, poor acquaintance with the use of 
figural representations, conflict between the conceptual and perceptual nature of 
diagrammatic proofs and sometimes poor understanding of the concept of 
mathematical proof itself. Besides, the research points out that it is very difficult to 
learn proofs without being able to pick and use some basic pieces of mathematical 
knowledge. In this context tasks like those presented in this work might help students 
to develop a correct use of deductive method when working with figural 
representation and not only in the field of geometry but also in other context as in the 
second task presented. Obviously graphical representations in different mathematical 
settings can present different features related to different concepts. For example, in 
the case of the geometrical series one has to take into account the graphical 
representation of real numbers and of their properties. According to Duval, the 
coordination of at least two different semiotic systems of representation of a concept 
can improve its understanding. In particular I think that the passage from verbal and 
symbolic representations into the figural one and vice versa could be very fruitful. 
Moreover I think also that problems like the second one can help to overcome the 
trend to deal with mathematical subjects in isolation. Since, as our result confirms, 
the use of graphical representation presents a lot of difficulties, its use requires a 
particular training in order to exploit its potential. In this perspective tasks like those 
presented in this work could help students to develop some important tools to 
approach also other mathematical problems such as standard proofs.       
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TEACHERS’ VIEWS ON THE ROLE OF VISUALISATION  
AND DIDACTICAL INTENTIONS REGARDING PROOF 

Irene Biza*, Elena Nardi* and Theodossios Zachariades** 
*University of East Anglia (Norwich, UK), **University of Athens (Greece) 

In this paper we explore secondary teachers’ views on the role of visualisation in the 
justification of a claim in the mathematics classroom and how these views could 
influence instruction. We engaged 91 teachers with tasks that invited them to: reflect 
on/solve a mathematical problem; examine flawed (fictional) student solutions; and, 
describe, in writing, feedback to students. Eleven teachers were also interviewed. 
Here we draw on the interviews and the responses to one Task (which involved 
recognising a line as a tangent to a curve at an inflection point) of two teachers. We 
do so in order to explore potential influences on the didactical contract regarding 
proof that these teachers are likely to offer their students. One such influence is the 
clarity and stability of their beliefs about the role of visualisation.  
Key Words: teacher beliefs, proof, visualisation, tangents, didactical contract 

INTRODUCTION 
‘The emphasis that teachers place on justification and proof no doubt plays an 
important role in shaping students’ ‘proof schemes’’1 (Harel & Sowder, 2007, p827). 
The not very extensive research in this area (p824) shows that this emphasis is 
insufficient both in terms of extent and in terms of quality. Internationally in most 
educational settings – even those with an official curricular emphasis on proof – little 
instructional time is dedicated to proof construction and appreciation (p828). 
Furthermore teachers’ own proof schemes are often predominantly empirical and 
teachers do not always seem to understand important roles of proof other than 
verification (p836). For example, in Knuth’s (e.g. 2002) study of practising 
secondary mathematics teachers, while all teachers acknowledged the verification 
role of proof, they rarely talked about its explanatory role. With regard to their proof 
schemes many of the interviewed teachers: felt compelled to check a statement on 
several examples even though they had just completed a formal proof; considered 
several of given non-proofs as proofs; and, accepted the proof of the converse of a 
statement as proof of the statement; and, found arguments based on examples or 
visual representations to be most convincing.  
One of the aims of the study we report in this paper is to explore the relationship 
between teachers’ pedagogical and epistemological beliefs about proof and their 
intended pedagogical practice (e.g. Cooney et al, 1998; Leder et al, 2002). Here we 
report some findings that relate to their beliefs about the role of visualisation. 

                                           
1 Harel & Sowder’s (1998) term which describes an individual’s and a community’s perception of 
proof. They distinguish between external conviction (authoritarian, ritual, non-referential symbolic), 
empirical (inductive, perceptual) and deductive (transformational, axiomatic) proof schemes. 
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In the last twenty years or so the debate about the potential contribution of visual 
representations to mathematical proof has intensified (e.g. Mancosu et al, 2005), not 
least because developments in IT have expanded this potential so greatly. Central to 
this debate is whether, how and to what extent, visual representation can be used not 
only as evidence and means of insight for a mathematical statement but also as part 
of its justification (Hanna & Sidoli, 2007). For example, Giaquinto (2007) argues that 
visual means are much more than a mere aid to understanding and can be resources 
for discovery and justification, even proof. Whether visual representations need to be 
treated as adjuncts to proofs, as an integral part of proof or as proofs themselves 
remains a point of contention. 
Visualisation has gained analogous visibility within mathematics education. Its 
richness, the many different roles it can play in the learning and teaching of 
mathematics – as well as its limitations – are increasingly being written about (e.g. 
Arcavi, 2003). These works address a diversity of issues, including: mathematicians’ 
perceptions and use of visualisation; students’ seeming reluctance to engage (and 
difficulty) with visualisation; etc. (Presmeg, 2006). Overall we still seem to be rather 
far from a consensus on the many roles visualisation can play in mathematical 
learning and teaching. So, while many works clearly recognise these roles, several 
(e.g. Arcavi, ibid.) also recommend caution with regard to ‘the ‘panacea’ view that 
mental imagery only benefits the learning process’ (Aspinwall et al, 1997, p315).  
One of the aims of the study we report in this paper is to contribute to the above 
debate as outlined in the work of Presmeg, Arcavi and others through exploring 
secondary mathematics teachers’ beliefs about the role of visualisation as evident in 
the reasoning and feedback they present to students. The specific part of the debate 
our study aims to contribute to concerns the relationship between these beliefs and 
teachers’ intended pedagogical practice. Our particular interest is in the potential 
influences on the didactical contract (Brousseau, 1997) that teachers offer their 
students with regard to the role of visualisation. One such potential influence is the 
clarity and stability of teachers’ belief systems (Leatham, 2006). Below we briefly 
introduce the study. 

THE STUDY AND THE TANGENT TASK  
The data we draw on in this paper originate in a study, currently in progress in 
Greece and in the UK, in which we invite teachers to engage with 
mathematically/pedagogically specific situations which have the following 
characteristics: they are hypothetical but likely to occur in practice and grounded on 
learning and teaching issues that previous research and experience have highlighted 
as seminal. The structure of the tasks we ask teachers to engage with is as follows – 
see a more elaborate description of the theoretical origins of this type of task in (Biza 
et al, 2007): reflecting upon the learning objectives within a mathematical problem 
(and solving it); interpreting flawed (fictional) student solution(s); and, describing, in 
writing, feedback to the student(s). 
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In what follows we focus on one of the tasks (Fig. 1) we have used in the course of 
the study. The Task was one of the questions in a written examination taken by 
candidates for a Masters in Mathematics Education programme. Ninety-one 
candidates (of a total 105) were mathematics graduates with teaching experience 
ranging from a few to many years. Most had attended in-service training of about 80 
hours.  

Year 12 students, specialising in mathematics, were given the following exercise: 
‘Examine whether the line with equation y = 2 is tangent to the graph of function f, where 

3( ) 3 2f x x= + .’ 
Two students responded as follows: 
Student A 
‘I will find the common points between the line and the graph solving the system: 

3 3 3 03 2 3 2 2 3 0
22 2 2

xy x x x
yy y y
=⎧ ⎧ ⎧= + + = = ⎧

⇔ ⇔ ⇔⎨ ⎨ ⎨ ⎨ == = = ⎩⎩ ⎩ ⎩
 

The common point is A(0, 2). 
The line is tangent of the graph at point A because they have only one common point (which 
is A).’ 
Student B 
‘The line is not tangent to the graph because,  
even though they have one common point,  
the line cuts across the graph, as we can see  
in the figure.’  
 
a. In your view what is the aim of the above exercise? 
b. How do you interpret the choices made by each of  

the students in their responses above? 
c. What feedback would you give to each of the  

students above with regard to their response to the exercise? 
Figure 1: The Task  

The first level of analysis of the scripts consisted of entering in a spreadsheet 
summary descriptions of the teachers’ responses with regard to the following: 
perceptions of the aims of the mathematical exercise in the Task; mathematical 
correctness; interpretation/evaluation of the two student responses included in the 
Task; feedback to the two students. Adjacent to these columns there was a column for 
commenting on the approach the teacher used (verbal, algebraic, graphical) to convey 
their commentary and feedback to the students across the script. On the basis of this 
first-level analysis we selected 11 of the participating teachers for interview. Their 
individual interview schedules were tailored to the analysis of their written responses 
and, mostly, on questions we had noted in the last column of the spreadsheet. 
Interviews lasted approximately 45 minutes and were audio recorded. 
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The mathematical problem within the Task in Fig. 1 aims to investigate students’ 
understanding of the tangent line at a point of a function graph and its relationship 
with the derivative of the function at this point, particularly with regard to two issues 
that previous research (e.g. Biza, Christou & Zachariades, 2008; Castela, 1995) has 
identified as critical: 

• students often believe that having one common point is a necessary and 
sufficient condition for tangency; and, 

• students often see a tangent as a line that keeps the entire curve in the same 
semi-plane. 

The studies mentioned above attribute these beliefs partly to students’ earlier 
experience with tangents in the context of the circle, and some conic sections. For 
example, the tangent at a point of a circle has only one common point with the circle 
and keeps the entire circle in the same semi-plane. 
Since the line in the problem is a tangent of the curve at the inflection point A the 
problem provides an opportunity to investigate the two beliefs about tangency 
mentioned above − similarly to the way Tsamir et al (2006) explore teachers’ images 
of derivative through asking them to evaluate the correctness of suggested solutions. 
Under the influence of the first belief Student A carries out the first step of a correct 
solution (finding the common point(s) between the line and the curve), accepts the 
line tangent to the curve and stops. The student thus misses the second, and crucial, 
step: calculating the derivative at the common point(s) and establishing whether the 
given line has slope equal to the value of the derivative at this/these point(s). Under 
the influence of both beliefs, and grounding their claim on the graphical 
representation of the situation, Student B rejects the line as tangent to the curve.  
With regard to the Greek curricular context, in which the study is carried out, the 
Year 12 students (age 17/18) mentioned in the Task have encountered the tangent to 
the circle in Year 10 in Euclidean Geometry and the tangent lines of conics in 
Analytic Geometry in Year 11. In Year 12, they have been introduced to the tangent 
line to a function graph as a line with a slope equal to the derivative of the 
corresponding function at the point of tangency. Although in Years 11 and 12 the 
tangent is introduced as the limiting position of secant lines, this definition is rarely 
used in problems and applications. The students’ mathematics ‘specialisation’ 
mentioned in the Task refers to the students’ choice of mathematics as one of the 
curriculum subjects for more extensive study in Years 11 and 12.  
The discussion we present in this paper is based on a theme that emerged from the 
first-level data analysis and was explored further in the interviews: the teachers’ 
beliefs about the role of visualisation in mathematics (epistemological) and in their 
students’ learning (pedagogical). This theme emerged largely from our observation 
that, in their scripts, the majority of the teachers distinguished between (and often 
juxtaposed) Student A’s algebraic approach and Student B’s graphical approach. 
Most of these teachers included in their comments an evaluative statement regarding 
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the sufficiency/acceptability of one or both approaches. And often they referred 
explicitly to their beliefs about, for example, the sufficiency/acceptability of the 
graphical approach; or about the role visual thinking may play in their students’ 
learning. The teachers’ responses also appeared significantly influenced by the 
mathematical context of the problem within the Task; namely, by their own 
perceptions of tangents and their own views as to whether the line in the Task must 
be accepted as a tangent or not.  
For example, with regard to the teachers’ evaluation/interpretation of Student B’s 
solution and feedback to Student B we scrutinised the scripts and designed the 
interviews with reference to questions such as: does the teacher turn the student away 
from the graphical approach (which may have led the student to an incorrect claim) 
and towards an algebraic solution in order to help the student change their mind about 
whether the line is a tangent or not? Does the teacher compare and contrast the 
algebraic solution to Student B’s solution or do they proceed directly to the 
presentation of an algebraic solution? What types of examples/counterexamples, if 
any, do they employ in this process? What is the teacher’s position towards Student 
B’s grounding their claim on the graph and, generally, towards the validity of 
graphical argumentation as proof? Etc.. We presented a preliminary analysis of the 
above in (Biza, Nardi & Zachariades, 2008). This analysis suggested that there was 
substantial variation amongst the participating teachers in terms of the stability and 
clarity of their beliefs about the role of visualisation (epistemological and 
pedagogical). In what follows we present evidence from the scripts and interviews of 
two teachers, Spyros and Anna2, whose cases exemplify this variation. Of particular 
interest in the accounts that follow is the interplay between the teachers’ beliefs and 
their (stated) pedagogical practice. The data is translated from Greek. 

SPYROS 
Spyros has about fifteen years of teaching experience in secondary education. In his 
written response to the Task he described what led Student A and Student B to their 
respective answers. His feedback to the students was brief and stated rather generally. 
He emphasised the significance of mathematical definitions (in this case; the 
definition of tangent) and juxtaposed students’ understanding and use of the 
definition with what he called ‘intuitive’ perception of the concept. He did not refer 
to any specific procedure through which the students could have determined whether 
the line is a tangent or not. At the same time he focused almost entirely, but rather 
generally, on the conceptual understanding of the definition and its ‘history’ in 
mathematics. We invited him to the interview in order to explore further his 
references to the ‘history’ of the concept and elaborate his feedback to the students.

                                           
2 We note that Spyros is one of the 38 (out of 91) teachers who rejected Student B’s claim that the 
line is not a tangent. Anna is one of the 25 teachers who agreed with Student B’s claim. There was 
some evidence of support for Student B’s claim in the scripts of another 18 teachers and there were 
also 9 blank or half-completed scripts. 
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During the interview he stated that he had not thought about the relationship between 
the circle tangent and the tangent to a curve. He recognised that Student A had 
regarded having a unique common point as a sufficient condition for tangency and 
stressed that this condition is neither sufficient nor necessary. He also described 
counter-examples that could help Student A reconstruct their image of a tangent line. 
While discussing Student B’s response we asked him to elaborate on whether he 
would accept an argument based on a graph. His answer was firm: ‘No, first of all it 
is not an adequate answer in exams’. (We note that in the Year 12 examination, 
which is also a university admission exam, there is a requirement for formal proof). 
We asked him to let aside the examination requirements for a moment and consider 
whether an argument based on a graph would be adequate mathematically. He 
replied: ‘Mathematically, in the classroom, I would welcome it at lesson-level and I 
would analyse it and praise it, but not in a test’. Asked to elaborate he says: ‘Through 
[the graph-based argument] I would try to lead the discussion towards a normal 
proof…with the definition, the slope, the derivative etc.’. Asked to justify he says: 

This is what we, mathematicians, have learnt so far. To ask for precision. For 
axiomatic… we have this axiomatic principle in our minds. Whatever I say I prove on the 
basis of axioms, on the basis of theorems, on the basis…. And this is what is required in 
the exams. And we are supposed to prepare the students for the exams. 

In the above, Spyros’s statement is clear: while he cannot accept a graph-based 
argument as proof, he recognises graph-based argumentation as part of the learning 
trajectory towards the construction of proof. He seems to approach visual 
argumentation from three different and interconnected perspectives: the restrictions 
of the current educational setting, in this case the Year 12 examination; the 
epistemological constraints with regard to what makes an argument a proof within 
the mathematical community; and, finally, the pedagogical role of visual 
argumentation as a means towards the construction of formal mathematical 
knowledge.  
These three perspectives reflect three roles that a mathematics teacher needs to 
balance: educator (responsible for facilitating students’ mathematical learning), 
mathematician (accountable for introducing the normal practices of the mathematical 
community) and professional (responsible for preparing candidates for one of the 
most important examinations of their student career). Spyros’ awareness of these 
roles, and their delicate interplay, is evidence of the clear and stable didactical 
contract he appears to be able to offer to his students. Below we discuss a rather 
different case. 

ANNA 
Anna is a recent graduate with about four years of teaching experience in private 
tuition. In her written response to the Task she agreed with Student B’s claim that the 
line is not a tangent. She interpreted Student A’s answer as an implication of 
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accepting the uniqueness of the common point between the line and the curve without 
examining the ‘nature’ of this point (she pointed out that an infinite number of lines 
pass through one point). She attempted to reconstruct Student A’s views through 
reference to graphs and then to the definition. She did not elaborate on the use of the 
definition; she simply cited the related formula but did not apply it in the case of the 
function in the Task. She accepted Student B’s graphical approach. She stressed that 
students are rarely at ease with the graphical approach and are often reluctant to use 
it. She however wrote that she would draw Student B’s attention to the fact that a 
graphical approach is not always feasible. Therefore, she wrote, she would 
demonstrate the ‘analytical’ way through an appropriate worksheet in which she 
would use a function with a hard-to-construct graph. For a ‘more complete repertory’ 
she would encourage Student A to use graphs and Student B to use the analytical 
approach. We invited Anna to the interview because of her emphasis on the necessity 
of the algebraic approach in cases where the graphical approach is not possible – not 
because of her concern for its validity. Also because we wanted to explore further 
how this sat alongside her overt appreciation of Student B’s solution. 
Anna, between writing the response and being interviewed, had realised that she 
should accept the line as a tangent. In the interviews, she attributed her, and the 
students’, ‘misunderstanding of tangents’ to earlier experience with circle tangents.  

 I thought that the tangent should be always like the circle tangent, but this is wrong. 
Because the student in question made the graph and saw it was horizontal and cuts the 
graph in half, he considered that this is not right, that’s why… he expected to see 
something like [she gestures a line touching the graph without splitting it]. 

When we asked her to describe the algebraic solution she managed only with 
extensive help on our part.  
While discussing Student B’s response we asked Anna if she would accept Student 
B’s graphical solution as correct if the student had concluded with the acceptance of 
the line as a tangent.  She said: ‘I think that we have to do all the procedure’ because 
‘the line could be here, [showing on the graph] higher or lower, where it isn’t a 
tangent’ and ‘I cannot decline that it isn’t tangent but also I cannot say that it is. 
Don’t I have to do some…’. When we asked her why, in the light of these 
reservations, she accepted the graphical explanation in her written response, she 
replied: ‘I accepted it because he said that it wasn’t and I had in my mind that when I 
see the line splitting [the graph] there is no other choice, whatever it was’. So, would 
she accept a graphical solution, in general? ‘If it is correct, I would accept it’, she 
replied. Would she accept student B’s solution as correct if the student indicated on 
the graph that, although the line intersects the curve, the intersection point is an 
inflection point, as, for example, in the case of f(x)=x3? She replied: ‘I would accept it 
[…] it is not necessary to use the algebraic method with formulas and all that, that’s 
what I believe. [hesitating] I am not sure this is correct [awkward laugh]’.  
She then added: 
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Simply, I believe that students are not so familiar with graphical representations… and, 
for them, it is easier to use formulas…they see this as a methodology, as… I do not 
believe that they have gone into depth so that they know how to construct graphs 
perfectly and know how to interpret them well and this is why most of them usually use 
algebraic formulas. […] Because to make a graph and analyse it you have to have 
understood something very, very well… to own it, completely, while for this [the 
algebraic formula] you learn how, somewhat blindly, and you solve it, that’s what I 
believe. In any case if [the claim] was correct I would accept it because I would see that 
the student understood it better than someone who can follow the algebraic formulas… 
now I don’t know, am I right? What do you think?! [to the interviewer] 

Later on in the interview, we asked her what would happen if the inflection point 
wasn’t at 2.00 but very close to it (e.g. at 2.02). That made her uncertain about the 
accuracy of the graph. She then reconsidered her previous statement and said: ‘So I 
believe that the best is that the students do the algebra and then make the graph 
[awkward laugh]’. She elaborated her change of mind as follows:  

I simply believe that after we solve through the algebraic formulas and find the result, 
then it is good to tell the students to make the graph because sometimes they reach the 
end and say ‘ok, I found it’ without having realised in their mind how it would look 
roughly and as soon as they see a graph they cannot answer immediately and I believe 
this is what happened to me… that is I was used to see circle tangents and it had crossed 
my mind… subconsciously that all of them must be like that … all tangents have to be 
like that because I was not familiar with graphs. 

In the above Anna’s beliefs about the acceptability or not of a visual argument appear 
unstable. She appears ready to accept a visual argument without any algebraic 
justification if the information in the image constitutes, for her, clear and convincing 
support for a claim. She regarded the image in the Task as sufficient evidence for 
determining that the line is not a tangent – also drawing on her belief that a tangent 
cannot intersect the graph. However she stated clearly that to prove that the line is a 
tangent an algebraic argument was necessary. Later, she stated that she could accept a 
correct statement based on the graph. When we shook her faith in the graph she 
declared the algebraic solution necessary. While initially she did not speak of 
validation of the visual statement through reference to mathematical theory, she 
asked for such validation when she realised that the image could be misleading. 
Many times in her interview she returned to her appreciation of visual representation 
and argumentation as evidence of a student’s in-depth understanding and as an 
important means towards students’ construction of mathematical knowledge. She did 
not specify whether she meant formal mathematical knowledge (for example, proof). 
Furthermore her views with regard to the sufficiency and acceptability of a visual 
argument appeared rather ambivalent and heavily dependent on the specific images 
involved in the discussion. In this sense the didactical contract she appears to be able 
to offer to her students seems less clear and stable than that of Spyros. 
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CONCLUDING REMARKS 
Spyros’ clear insistence on the class’ collective arrival at a formal proof as closure to 
the lesson is distinctly different from Anna’s fluctuation between cases where she 
would and would not accept a visual argument. Her willingness to rely, occasionally, 
on imagery in order to support a claim is ‘a practice that may mislead students into 
thinking that such are acceptable mathematical ‘proofs’ and reinforcing the 
acceptability of their empirical proof schemes.’ (Harel & Sowder, 2007, p829). 
Furthermore, her own criteria about what makes a visual argument acceptable 
appeared very personal and rather fluid. Within the unstable didactical contract that 
this vagueness might imply, how would her students distinguish between when a 
visual argument is acceptable and when not? In the already compounded didactical 
contract of school mathematics such vagueness can be detrimental.  
A clearer contract could be as follows: in a classroom discussion where a visually-
based (incorrect) claim is proposed, the class employs the algebraic, formal approach 
to convince the proposer about the incorrectness of their claim. Even when a visually-
based (correct) claim is unequivocally accepted by the whole class, the class still 
employs the algebraic approach to establish the validity of the claim formally. In both 
cases visualisation emerges as a path to insight and proof as the way to collectively 
establish the validity of insight. In both cases there is a pedagogical opportunity for 
linking imagery with algebra and for embedding the algebra in the immediately 
graspable meaning in the image. 
The above suggest a role for proof in the mathematics classroom that is not disjoint 
from the creative parts of visually-based classroom activity and that reflects an 
essential intellectual need. We conclude with quoting Harel & Sowder’s (2007, p836) 
statement regarding this intellectual need: 

The subjective notion of proof schemes is not in conflict with our insistence on 
unambiguous goals in the teaching of proof – namely, to gradually help students develop 
an understanding of proof that is consistent with that shared and practised by the 
mathematicians of today. The question of critical importance is: What instructional 
interventions can bring students to see an intellectual need to refine and alter their current 
proof schemes into deductive proof schemes. 
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MODES OF ARGUMENT REPRESENTATION FOR 
PROVING – THE CASE OF GENERAL PROOF 

Ruthi Barkai, Michal Tabach, Dina Tirosh, Pessia Tsamir, Tommy Dreyfus 
Tel Aviv University1 

In light of recent reform recommendations, teachers are expected to turn 
proofs and proving into an ongoing component of their classroom practice. 
At least two questions emerge from this requirement. Is the mathematical 
knowledge of high school teachers sufficient to prove various kinds of 
statements? And does their knowledge allow the teachers to determine the 
validity of an argument made by their students? The results of the present 
study point to a positive answer to the first question in the framework of 
elementary number theory (ENT). However, the picture is much less positive 
with respect to the second one.   
THEORETICAL BACKGROUND 
The calls for enhancing students’ abilities to prove and to refute 
mathematical statements appear prominently in various reform documents of 
different countries (e.g., Israeli Ministry of Education, 1994; National 
Council of Teachers of Mathematics [NCTM], 2000). In the NCTM 
document, reasoning and proof is one of five process standards for all grade 
levels. Still, there is a need to clarify what proof is in the classroom context. 
Stylianides (2007) made an attempt in this direction:   

Proof is a mathematical argument, a connected sequence of assertions for or 
against a mathematical claim, with the following characteristics: 

− It uses statements accepted by the classroom community (set of accepted 
statements) that are true and available without further justifications; 

− It employs forms of reasoning (modes of argumentation) that are valid and 
known to, or within the conceptual reach of, the classroom community; and  

− It is communicated with forms of expression (modes of argument 
representation) that are appropriate and known to, or within the conceptual 
reach of, the classroom community. (p. 107). 

Stylianides’ (2007) definition talks about the classroom community as the 
authority to determine the correctness of a proof. However, the teacher, as 
the representative of the mathematics community, has a special role in the 
endeavor. He needs to be attentive to both – the mode of argument for a 

                                                 
1 The research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 900/06) 
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given statement (such as general proof, counter example, supportive 
example), as well as the mode of argument representation (such as 
numerical, verbal or symbolic), to be able to determine the correctness of a 
justification. 
To what extent are teachers prepared to implement proofs and proving as 
part of their classroom practice? Relatively little is known on teachers' 
subject matter knowledge in this area. Dreyfus (2000), following Healy and 
Hoyles’ (1998) work with high school students, presented 44 secondary 
school teachers with nine justifications to the universal claim “The sum of 
any two even numbers is even”. He found that most secondary school 
teachers easily recognized formal proofs, but had little or no appreciation for 
other types of justifications such as verbal, visual or generic ones. Knuth’s 
(2002b) findings suggest that secondary school teachers recognized the 
variety of roles that proofs play in mathematics. Noticeably absent, however, 
was a view of proofs as tools for learning mathematics. Many of the teachers 
held limited views of the nature of proof in mathematics and demonstrated 
inadequate understandings of what constitutes proofs.  
In a different study on in-service high school teachers’ knowledge of 
elementary number theory (ENT), only a third of the 36 teachers provided 
counter examples to the (false) universal statement "All commutative actions 
are also associative" (Zaslavsky & Peled, 1996). 
These studies focused solely either on universal or on existential statements. 
Tirosh (2002) presented the same group of elementary and middle school 
teachers with both universal and existential ENT statements. Tirosh and 
Vinner (2004) analyzed 38 prospective middle-school teachers’ written 
answers to questionnaires on the issues of constructing and evaluating proofs 
and refutations in ENT. They found that about 20% of the prospective 
teachers incorrectly argued that some of the existence theorems in the 
questionnaires are false (e.g., "There exists a real number b so that a + b < 
a"). Furthermore, about half of the prospective middle school teachers 
incorrectly argued that numerical examples that satisfy existential statements 
are just examples and could not be regarded as mathematical proofs. These 
responses suggest that some prospective teachers develop a general view 
that a mathematical statement is true only if it holds for “all cases”, a view 
which is adequate for universal statements but not for existential ones.  
The present study addresses a high school teacher’s knowledge with respect 
to universal and existential statements in the area of ENT. It aims to give a 
preliminary answer to the following two questions. Is the mathematical 
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knowledge of high school teachers sufficient to prove ENT statements? And 
does their knowledge allow the teachers to determine the validity of an 
argument made by their students? 
Note: the work of Tirosh (and Vinner) and Dreyfus differ from the work 
presented here in the population and the mathematical statements.  
METHOD 
Participants 
A group of 50 high school teachers participated in the research. All teachers 
had some experience teaching in high school. Ms R was one of the teachers. 
Ms R was chosen as focus teacher for this study on the basis of her answers 
to the set of questionnaires below.  
When participating in our project, Ms R had been teaching for five years in a 
high school, working with high-achieving students from a high socio-
economic background. In parallel, she was studying for her Master’s degree 
in mathematics education. The program included a number of mathematics 
courses and a number of psycho-didactical courses.  
Tools  
In one of these courses, the participants' mathematical knowledge was 
analyzed through their written reactions to two questionnaires that dealt with 
six ENT statements. No time-limit was imposed for the work on the 
questionnaires. In this section we briefly describe each of the questionnaires. 

Predicate 
Quantifier 

Always true 
 

Sometimes true Never true 

Universal 

S1. The sum of any 
five consecutive 
natural numbers 
is divisible by 5. 

True/General proof 

S2. The sum of any 
three consecutive 
natural numbers 
is divisible by 6. 
False/Counter 

example 

S3. The sum of any 
four consecutive 
natural numbers 
is divisible by 4. 
False/Counter 

example 

Existential 

S4. There exists a 
sum of five 
consecutive 
natural numbers 
that is divisible 
by 5. 

True/Supportive 
example 

S5. There exists a 
sum of three 
consecutive 
natural numbers 
that is divisible 
by 6. 

True/Supportive 
example 

S6. There exists a 
sum of four 
consecutive 
natural numbers 
that is divisible 
by 4. 

False/General proof 

Table 1. Classification of the six statements 
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The Prove-Questionnaire was intended to identify the participants’ 
production of proofs (validations and refutations) to various (true or false) 
statements. The questionnaire included six ENT statements (statements S1-
S6 in Table 1). The statements were chosen to include one of three 
predicates (always true, sometimes true or never true), and one of two 
quantifiers (universal or existential). Clearly, the validity of a statement is 
determined by the combination of its predicate and its quantifier. Three of 
the statements are true (S1, S4, S5), and the other three are false (S2, S3, 
S6). Table 1 displays the six statements according to their quantifier and 
predicate; their truth value as well as a suitable proof method are also 
indicated. The participants were asked to examine each of the statements, to 
determine whether it is true or false, and to prove their claim.  
The True or False-Questionnaire was intended to check the participants’ 
identification of the correctness of 43 justifications for the six statements 
they had proven before, between six and nine justifications for each 
statement, using numerical, verbal or symbolic modes of arguments 
representations. For each justification, the participants were asked to 
determine whether it verifies (refutes) the statement, and to explain their 
evaluation. The justifications were presented as if they were written by 
students in various modes of argument representations. 
In analyzing teachers’ answers to the first and second questionnaire we 
related to the modes of argumentations as well as to the mode of argument 
representations.  
RESULTS AND DISCUSSION 
In this section we first present the participants' answers to the Prove-
Questionnaire, with examples of Ms R’s proofs. Then we discuss the 
participants' answers to the True or False-Questionnaire. Here we narrow 
the discussion to five justifications which relate to two statements – S1 and 
S6. We chose these two statements because they require general proofs. We 
present in detail the answers of Ms R to each justification, followed by a 
brief description of the results for all participants with regard to the same 
justifications. 
Prove-Questionnaire  
All the teachers produced correct proofs to each of the six statements. That 
is, the modes of argumentation the teachers chose for each statement were 
appropriate. Their proofs were presented in one of two modes of argument 
representation – symbolic or numeric (see Table 2). 
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All participants used the symbolic mode of argument representation for 
statements S1 and S6, which required a general mode of argumentation. 
About half of the participants produced numerical examples to refute the 
universal statements S2 and S3, and the majority of the participant provided 
a single numerical example to validate the existential statements S4 and S5. 
None of the participants provided several examples to prove or refute a 
statement. These findings indicate that the participants who used numerical 
examples knew when an example is sufficient for proving a statement. 

 S1 S2 S3 S4 S5 S6 
Numeric --- 50 44 72 80 --- 
Symbolic 100 50 56 28 20 100 

Table 2: Percentages of modes of argument representation produced by the 
participants (N=50) 

We present Ms R's proof for statement S1 which is a universal, always true: 
Let’s denote five consecutive numbers by a, a+1, a+2, a+3, a+4. Their sum is: 
a+a+1+a+2+a+3+a+4 = 5a+10.  
(5a+10):5 = a+2. a+2 is a natural number for any a that is a natural number. 
Therefore the statement is true. 

As we can see, the proof that Ms R provided related to all the cases in the 
domain, used correct inference rules, is concise, and thus exemplifies a 
sound proof. 
Ms R’s proof for statement S6, an existential, never true statement shows 
similar characteristics: 

Let’s check: a is a natural number. (a+a+1+a+2+a+3):4=(4a+6):4 
We divide the last expression by 2, obtaining (2a+3):2. But, 2a+3 is an odd 
number (the sum of even, 2a and odd, 3), and therefore is not divisible by 2. 
The statement is not true.   

Again Ms R correctly identified the need for a general mode of 
argumentation, and used a symbolic mode of argument representation.  
True or False-Questionnaire – Ms R’s explanations.  
We now focus on the two statements that required general proofs, meaning 
that the general mode of argumentation should be used. Yet, such an 
argument can be displayed in at least two modes of argument representation 
– verbal and symbolic. Five sets of justifications, Ms R’s judgments, and her 
explanations are presented. A short discussion follows each set.  
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Example 1: Verbal justification to statement S1 and Ms R’s explanation 
The given correct justification: 

Moshe claimed: I checked the sum of the first five consecutive numbers: 
1+2+3+4+5=15 is divisible by 5. The sum of the next five consecutive 
numbers is larger by 5 than this sum (each number is bigger by 1 and therefore 
the sum is bigger by 5), and therefore this sum is also divisible by 5. And so on, 
each time we add 5 to a sum that is divisible by 5, and therefore we always 
obtain sums that are divisible by 5. Therefore the statement is true. 

Ms R's judgment: Moshe’s argument is not correct. 
Ms R’s explanation 

Moshe checked the case 1+2+3+4+5=15, which can be accidentally true. In 
proving one needs to generalize, and therefore Moshe’s justification is not 
correct. 

From Ms R’s explanation we can learn that she correctly identified the mode 
of argumentation needed for proving S1. Yet, she failed to notice the 
coverage aspect in Moshe’s justification. 
Example 2: Verbal justification to statement S1 and Ms R’s explanation 
The given correct justification 

Mali claimed: I first tried the first ten examples of 5 consecutive numbers:
 1+2+3+4+5=15  2+3+4+5+6=20   3+4+5+6+7=25  
 4+5+6+7+8=30 5+6+7+8+9=35 6+7+8+9+10=40  
 7+8+9+10+11=45          8+9+10+11+12=50  
 9+10+11+12+13=55     10+11+12+13+14=60. 
I saw that the statement is true for the first ten. All other sums of five 
consecutive numbers are obtained by adding multiples of 10 to one of the listed 
sums (for instance, the sum 44+45+46+47+48 is obtained by adding multiples 
of 10, 5 times 40, to the sequence: 4+5+6+7+8 that I checked before). Since 
multiples of 10 are also divisible by 5, the statement is true. 

Ms R's judgment: Mali’s argument is not correct. 
Ms R’s explanation 

Here also there is no generalization to all the natural numbers, and therefore this 
is incorrect. It is not a proof. 

From Ms R’s explanation in this case we can learn that Ms R is concerned 
with the mode of argumentation. She did not identify the cover aspect in 
Mali’s correct verbal justification.  
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Example 3: Symbolic justification to statement S1 and Ms R’s explanation 
The given incorrect justification 

Ayala claimed: Among any five consecutive numbers, there is one that is 
divisible by 5. Let’s look at a sequence of five consecutive numbers : 5x,  5x+1,  
5x+2,  5x+3,  5x+4  (5x is divisible by 5). The sum of this sequence is: 
5x+(5x+1)+(5x+2)+(5x+3)+(5x+4)= 25x+10, and 25x+10 is divisible by 5 
for any x. Therefore the statement is true. 

Ms R's judgment: Ayala’s argument is correct. 
Ms R’s explanation 

x represents any number, and therefore the proof  is general. 

Ms R’s explanation in this case relates to two important observations. x 
represents any number, and in this sense the justification is general. 
However, 5x represents a multiple of five, and thus the sequence 1, 2, 3, 4, 5, 
for instance, is not included. Hence, Ayala’s justification is correct for only a 
subset of the cases that one needs to relate to in order to prove S1. Ms R 
failed to notice this flaw in Ayala’s justification. 
Example 4: Verbal justification to statement S6 and Ms R’s explanation 
The given correct justification 

Moshe claimed: I checked the sum of the first four consecutive numbers: 
1+2+3+4=10, ten is not divisible by 4. The sum of the next four consecutive 
numbers is obtained by adding 4 to this sum (each of the four numbers in the 
sum grows by 1, so the sum grows by 4). It is known that adding 4 to a sum that 
is not divisible by 4 will yield a sum that is not divisible by 4 either. And so on, 
each time we add 4 to a sum that is not divisible by 4, and therefore we always 
obtain sums that are not divisible by 4. Therefore the statement is not true. 

Ms R's judgment: Moshe’s argument is not correct. 
Ms R’s explanation 

Moshe chose an example, and on the basis of this example he concluded that 
there are no such four numbers. But maybe if he would have picked up four 
other numbers it could have been correct. 

Once more, Ms R's reaction exemplifies her view that Moshe’s verbal 
explanation is an example. Again she correctly determined that for this 
statement an example is not an appropriate mode of argumentation.  
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Example 5: symbolic justification to statement S6 and Ms R’s explanation 
The given incorrect justification 

Ayala claimed: Among any four consecutive numbers, there is one that is 
divisible by 4. Let’s look at a sequence of four consecutive numbers : 4x,  4x+1,  
4x+2,  4x+3 (4x is divisible by 4). The sum of this sequence is: 
4x+(4x+1)+(4x+2)+(4x+3) = 16x+6. 16x is divisible by 4 for any x, while 6 is 
not divisible by 4. So, the sum 16x+6 is not divisible by 4. Therefore the 
statement is not true. 

Ms R's judgment: Ayala’s argument is correct. 
Ms R’s explanation 

Ayala proved the claim for all four numbers, and hence it is not possible to 
show that there are four numbers, hence the justification is correct. 

The same phenomenon as in example 3 is evident again in Ms R’s reaction. 
On the one hand, it shows that she fully understands the mode of 
argumentation needed, but on the other hand she fails to recognize whether 
the given justification carries the general aspect needed.  
It seems that for Ms R, the symbolic mode of argument representation, 
assures that the cover aspect of the proof is taken care of. Also, for Ms R, a 
verbal mode of argument representation is judged to be merely a numerical 
example.  
One may wonder whether Ms R is unique in her judgments. Let’s return to 
the entire population of 50 participants and check how many teachers made 
similar choices as Ms R. 
For the first statement (S1), 34 percent of the participants rejected the correct 
verbal justifications (Examples 1 and 2), on the ground that they are not 
general, and at the same time accepted the incorrect symbolic justification 
(Example 3), on the ground that it is general. As Ms R, these teachers 
correctly identified the mode of argumentation needed for each statement. 
For the last statement (S6), 26 percent of the participants rejected the correct 
verbal justification (Example 4), on the ground that it is not general, and at 
the same time accepted the incorrect symbolic justification (Example 5), on 
the ground that it is general. Also in this case, the teachers correctly 
identified the mode of argumentation needed for each statement. 
Twenty percent of the participants were consistent in their answers, that is 
made the same choices as Ms R in the cases of the five justifications 
presented above.   
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SUMMING UP AND LOOKING AHEAD 
The present study addressed the following two questions. Is the 
mathematical knowledge of high school teachers sufficient to prove 
mathematical statements from the field of elementary number theory? And 
does their knowledge allow the teachers to determine the validity of an 
argument made by their students?  
Our findings indicate that the participants were able to produce correct 
proofs and refutations to the statements presented. While the teachers chose 
correct modes of argumentation for each statement, it was evident that they 
were concerned with this aspect in the second questionnaire.  
The picture emerging from the True or False-questionnaire seems more 
complex. About a third of the teachers failed to identify as universal the 
general-cover aspects of the given arguments in verbal modes of 
representation. These findings substantiate similar findings reported by 
Dreyfus (2000), that teachers tend to perceive verbal proofs as deficient 
because they lack symbolic notations. However, Dreyfus (2000) found that 
teacher tended to reject verbal justifications. Our findings indicate that 
teachers had difficulties in understanding verbal justifications, but they did 
not reject them as such. Teachers’ difficulties with verbal justifications are 
particularly worrying in light of the results reported by Healy & Hoyles 
(2000), namely that high school students not only preferred verbal proofs 
due to their explanatory power but also that their verbal arguments were 
more often deductively correct than their arguments in other modes of 
representation, yet at the same time they expected to get low grades for such 
proofs.  
A quarter of the participants failed to identify when symbolic justifications 
did not cover all cases in the domain. These findings substantiate findings 
reported by Knuth (2002b): "In determining the argument's validity, these 
teachers seemed to focus solely on the correctness of the algebraic 
manipulations rather than on the mathematical validity of the argument” (p. 
392). When being presented with an algebraic justification, the teachers' 
focus was on the examination of each step, ignoring the need to evaluate the 
validity of the argument as a whole.    
The everyday practice of teachers involves a constant evaluation of students’ 
justifications for statements. It is likely that verbal or symbolic justifications 
of the kinds presented in our study, will emerge during interactions with 
students. Therefore, it is important that teachers will be familiar with verbal 
justifications and able to judge their validity. 
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MATHEMATICS TEACHERS’ REASONING FOR REFUTING 

STUDENTS’ INVALID CLAIMS  
Despina Potari*,  Theodossios Zachariades* and Orit Zaslavsky** 

*University of Athens, ** Technion - Israel Institute of Technology 
This study investigates secondary school mathematics teachers’ reasoning for 
refuting students’ invalid claims in the context of hypothetical classroom scenarios. 
The data used in this paper comes from seventy six teachers’ responses to a student’s 
invalid claim about congruency of two given triangles and from interviews with a 
number of them. Some teachers responded to the claim by trying to refute it. Two 
main approaches to refuting the student’s claim were identified: 1. by using known 
theorems; 2. by using counterexamples. Teachers’ difficulties to generate correct 
counterexamples were traced. Moreover, a rather narrow meaning of the theorems 
and their use to refute invalid claims was manifested.       

INTRODUCTION 
Reasoning and proof are considered fundamental aspects of mathematical practice 
both in the practice of mathematicians and in the practice of students and teachers 
(Hanna, 2000). A large number of studies in mathematics education have explored 
students’ justifications and proof strategies (e.g., Healy & Hoyles, 2000; Harel & 
Sowder, 1998). Refuting conjectures and justifying invalid claims requires reasoning 
that goes beyond the syntactic derivations of deductive proof which has been 
traditionally the focus of high school mathematics. It mainly involves the generation 
of counterexamples, the development of logical arguments that are grounded on 
exploration and experimentation, which are related to the construction of 
mathematical meaning and understanding. Balacheff (1991) discusses the diversity of 
ways of dealing with a refutation by referring to the epistemological work of Lakatos 
(1976) and to his own experimental study with high school students. Lin (2005) also 
demonstrates the complexity of the process by identifying the different types of 
arguments that secondary school pupils developed to refute false conjectures.  
The process of evaluating and refuting students’ claims is central to teacher practice.  
This often requires the teacher to give on the spot appropriate explanations that often 
involve the use of examples or counterexamples. Although the process of 
exemplification is highly demanding it has not been extensively investigated with 
regard to the teacher (Bills, Dreyfus, Mason, Tsamir, Watson & Zaslavsky, 2006). 
Desirable choice of examples depends on teacher’s subject matter knowledge 
(Rowland, Thwaites & Huckstep, 2003) on her teaching experience (Peled & 
Zaslavsky, 1997) and on her awareness of students’ prior experience (Tsamir & 
Dreyfus, 2002). The generation of examples and counterexamples in geometry gets a 
special meaning as the visual entailments of examples pose certain constraints (Zodik 
& Zaslavsky, 2008). In this paper, we investigate how teachers respond to students’ 
invalid claims in the context of Euclidean geometry.  
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THEORETICAL BACKGROUND 
We briefly present below the main theoretical constructs that framed our study. These 
include teacher knowledge, the process of refutation, and the nature and use of 
counterexamples. 
The process of evaluating and refuting students’ invalid claims strongly relates to 
mathematics teacher knowledge. Stylianidis and Ball (2008) studied the 
characteristics of teacher knowledge for reasoning and proof. Zodik and Zaslavsky 
(2008) also attempted to capture the dynamics of secondary mathematics teachers’ 
choice and generation of examples in the course of their teaching. They offer an 
example-based teaching cycle with respect to teacher knowledge, the planning stage 
and the actual lesson.  
The process of refutation has been mainly studied under the epistemological 
framework of Lakatos (1976) (e.g., Balacheff, 1991; Larsen & Zandieh, 2007). Lin 
(2005) developed a categorisation of students’ refutation schemes. Accordingly, he 
distinguished between rhetorical arguments (reasons relative to the person spoken to), 
heuristic arguments (reasons taking into account the constraints of the situation), and 
mathematical proofs (the process of generating correct counterexamples).  
Peled & Zaslavsky (1997) distinguished between three types of counterexamples 
suggested by mathematics teachers: specific, semi-general and general examples. 
Semi-general and general examples offer some explanation and ideas how to generate 
more counterexamples. Related to teachers’ generation of counterexamples is the 
theory of personal example spaces, which encompasses examples that are accessible 
to an individual in response to a particular situation (Bill et al, 2006). Zazkis & 
Chernoff (2008) introduced the notions of pivotal example and bridging example and 
highlighted their role in creating and resolving cognitive conflict.   
The study reported here is part of a larger study that investigates teachers’ ways of 
responding to students’ false claims. In this paper, we explore the different types of 
arguments that teachers use in dealing with an invalid claim in the context of 
geometry, an area where research is rather scarce. 
METHODOLOGY 
Seventy six teachers who were all candidates for a Masters in Mathematics Education 
programme participated in the study. Six of them were primary school teachers with 
an education degree, while the rest had a mathematics degree. Thirty of these were 
secondary school practicing mathematics teachers.  
The teachers took a three hour exam as part of the selection process for the Masters 
programme. In this exam they had to respond in writing to five tasks in which they 
were asked to react to hypothetical teaching events. Four of these hypothetical events 
were related to the process of dealing with students’ arguments and claims. Their 
written responses were analyzed from both mathematical and pedagogical 
perspectives. On the base of this analysis, 45 teachers were interviewed individually 
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in order to explore further their reactions and justifications. Each interview lasted 
about 15-30 minutes. One researcher interviewed the teachers while another one took 
notes of the conversation. Since these interviews were part of the selection process, 
we refrained from using any audio or video recordings, in order to avoid negative 
effects on the candidates.  
In this paper we analyse the data based on the test and the first set of interviews 
concerning one of the tasks. 
The task 
The task was the following: 

In a Geometry lesson, in grade 10, the teacher gave the following task: 
Two triangles ABΓ and EHZ have BΓ=HZ=12 and AB=EH=7 and the angles AΓB and EZH 
equal to 30 degrees. Examine if the two triangles are congruent. 
Two students discussed the above task and expressed the following opinions: 
Student A: The two triangles have two sides and an angle equal. Therefore they are 
congruent. 
Student B: We know from the theory that two triangles are congruent when they have two 
sides and a contained angle equal. Therefore, the given triangles are not congruent.  

If the above dialogue took place in your classroom, how would you react? 

The task refers to a hypothetical classroom scenario which focuses on issues of 
learning and teaching mathematics. Further discussion about the importance of this 
type of tasks as a research tool for exploring teachers’ thinking can be seen in Biza, 
Nardi & Zachariades (2007). This task was based on an example discussed and 
analysed by Zodik & Zaslavsky (2007). Its mathematical content, the properties of 
the triangles and their congruence, is part of the Euclidian Geometry course taught in 
grade 10 in Greek high schools. In the task, student A expresses his belief that if two 
triangles have two sides and one angle that are respectively equal then they are 
congruent. He seems to over-generalize the theorem “if two triangles have two sides 
and the contained angle that are respectively equal then they are congruent.”  

 

Figure 1: A geometric construction of a counterexample 
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There are at least three different approaches to refute the claim of this student. The 
first one is to provide a specific counterexample based on a geometric construction 
using a ruler and compass (Figure 1). 

In this case we may continue and prove a general geometric theorem based on the 
geometrical construction, namely, that two sides (a and b, were a>b) and the angle 
(β) opposite the smaller side determine exactly two distinct triangles that are not 
congruent, except for a special case where ( )β = bsin a . In the latter case the triangle 
is necessarily a right-triangle, therefore it is uniquely determined, that is, all triangles 
with these givens are congruent. The second approach is to prove this general 
theorem and apply it to the specific given case. The third approach is the use of the 
sine and cosine laws in trigonometry. By applying the cosine rule for the given angle, 
we determine the third side, and find that there are two possible values for its length. 
By applying the sine law we find that there are two possible angles opposite the 
larger side (a) – an acute one and its supplementary angle. An interpretation of this 
calculation and the verification of the existence of triangles with these sides or angles 
lead to the conclusion that there are two (and only two) distinct non-congruent 
triangles satisfying the givens.  

RESULTS 
Classifying teachers’ justifications 
In this section, we present a classification of teachers’ justifications based on their 
written responses. Out of the seventy six mathematics teachers three did not reply 
while eight considered the given triangles congruent. The remaining sixty five 
teachers acknowledged that the given triangles were not necessarily congruent. Sixty-
three of them gave an explicit justification to their assertion. These justifications were 
grouped in categories which are presented in the tree diagram in Figure 2. The 
numbers in brackets indicate the number of teachers' responses that fall in each 
category. 
Out of 63 teachers, 18 justified their claim by drawing on mathematical theorems 
relevant to the problem and 45 asserted that a counterexample was needed to justify 
their claim.  
Reasoning based on known theorems:  
As mentioned above, this type of responses was manifested by 18 teachers. Only two 
gave a full valid proof. The rest gave invalid proofs that included proof-like 
arguments.  
Valid proof. Interestingly, although the context is geometry, the two teachers who 
gave valid proofs based them on trigonometry. One of them (T64) used the sine rule, 
and the other (T32) used the cosine rule, as described earlier.  
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Figure 2: Mathematics teachers’ justifications of the assertion that the two given 
triangles are not necessarily congruent 

Invalid proof-like arguments. The remaining sixteen teachers provided invalid proof-
like arguments to support their claim by maintaining that none of the known theorems 
about the congruence of two triangles applies in this case. The following example 
indicates the latter case: “Student A replied without considering the known criteria for 
congruence of triangles. I would encourage him to draw the two triangles so that to realise 
that these criteria cannot be applied” (T10). These teachers believed that this reasoning 
offers a valid proof for refuting student A’s claim.  
Reasoning based on counterexamples: 
This type of responses was manifested by 45 teachers. Only 11 gave a specific 
counterexample with correct justification.  
General reference to a counterexample. Eight teachers only made reference to the 
need to give a counterexample by stating that they themselves or their students would 
give a counterexample. For example, T23 simply mentioned that “... to convince him 
(Student A) we could show him some triangles that have two sides and one angle equal but 
are not congruent” while T18 suggested asking the students: “... to experiment with the 
shapes and to make many different trials. So, Student A would see a good counterexample 
that would contradict his view”. 
Specific counterexamples: The remaining 37 teachers in this category, constituting 
half of the participants, gave a specific counterexample. Twenty of them provided 
incorrect counterexamples. For example, some sketched two triangles that appeared 
to satisfy the given conditions and claimed that these triangles were not congruent 
although in their drawing these triangles seemed congruent. Thus, we consider this to 
be non-appropriate examples. Other examples had too many constraints - thus were 
non-existent. For example, T72 drew two triangles that seemed symmetrical in his 

Based on known 
theorems (18) 

Reasoning for refuting 
Student A's claim (63) 

Based on 
counterexamples (45) 

Valid proof (2) Invalid proof-like 
arguments (16)

 general reference to a 
counterexample (8) 

Specific counterexample (37) 

Correct with 
justification (11) 

Incorrect (20) Seemingly correct with 
no justification (6)
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attempt to produce two triangles that were not congruent (Figure 3), however, they 
seemed congruent. 

 
Figure 3: The drawing of T72 
Some teachers considered the variation of a pair of angles but without giving specific 
measures. Others drew two triangles by attributing specific values to the angle 
contained between the two given sides. For example, T74 wrote: “ I would ask the 
students to make two triangles ABΓ and EHZ with BΓ=ZH=12, AB=EZ=7, the angles AΓB 
and EHZ equal to 30 degrees, the angle ABΓ equals 90 degrees and the angle EZH equals 
45 degrees”. In both cases, as it appeared also from the interviews and will be 
analysed further below, several teachers did not think about the existence of the 
suggested triangles and did not notice that they were suggesting non-existing cases.  
Six teachers gave counterexamples that were seemingly correct with no justification. 
They drew two triangles which satisfied the given conditions for which the angles 
opposite to the sides of length 12 seemed supplementary, like in the appropriate 
counterexample. They claimed that this was a counterexample but did not give any 
justification for their claim. Finally, eleven teachers gave a correct counterexample 
with justification by constructing geometrically the two triangles that had the given 
elements and were not congruent. Some of them suggested to explore further with the 
students the situation and to formulate relevant theorems. For example, after the 
geometrical construction of a counterexample T33 wrote: “I would ask the students to 
try to prove that if one triangle has two sides and the angle opposite to one of these sides 
equal to the corresponding sides and angle of another triangle, then the corresponding 
angles that are not contained in the two sides are either equal or supplementary”. 
Emerging epistemological issues 
The issue of existence of a (counter)example 
As shown in Figure 2, over one third of the teachers (26) had not considered the 
problem of existence in their initial responses. In the interviews, the teachers who had 
not justified the process of constructing a counterexample as well as those who gave 
an incorrect example, were asked about its existence: “How do you know that the 
triangles you have drawn exist?”. Some of them argued for the existence of their 
counterexample by inferring from a familiar theorem, recalling an image, or 
describing the drawing process. Following are some examples of their arguments: 
“I have seen this counterexample in a textbook” (T32, recalling an image) 
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“If I remember well, there is a theorem that says that the non-contained angles are equal or 
supplementary”. (T40, inferring from a theorem) 

“The sum of their angles is 180 degrees...They can be constructed...I can vary the angles” 
(T69, inferring from a theorem) 

“I made them; I measured its sides with a ruler”. (T30, describing the drawing process) 

When asked to consider the issue of existence, most of the teachers responded 
immediately that they had to check the existence of the suggested triangles. However, 
there were some who seemed to believe that the question about the existence of a 
triangle with specific properties had no meaning. Typical responses were: 
“Yes, why can’t we? Do we have to prove it?” (T46) 

“Is it possible not to exist?” (T60) 

“I thought that it is sure that there are two triangles (satisfying the given conditions) which 
are not congruent. So, I opened a bit the angle and I moved the side to that direction.” (T73)  

Another issue that emerged and was related to the problem of existence was the 
number of possible counterexamples. There were teachers who believed that there 
was more than one counterexample and in some cases they described a process of 
generating an infinite number of triangles (for example, T69, T73 mentioned above). 
This finding concurs with the findings of Zodik & Zaslavsky (2007). 
During the interviews, we observed that some of these teachers started to think about 
ways of constructing appropriate counterexamples. For example, T39 sketched two 
triangles and commented: “If we draw on the board two triangles ABΓ and EZH with the 
given elements and the angles ABΓ and EZH to be acute - one smaller than the other – it is 
easy to verify by using transparent paper that the two triangles are not congruent”. In the 
interview she formed a new hypothesis that: “if in both triangles (satisfying the given 
conditions) all angles are acute, they are congruent while they must be different if one 
triangle is acute-angled and the other obtuse.”  Later in the interview, she used the sine-
rule trying to prove her hypothesis. However, she did not manage to construct 
geometrically the suggested triangles. On the other hand, T32 had given as a 
counterexample two triangles, one right-angled and the other isosceles. In the 
interview she initially recalled a known theorem “that one pair of angles can be equal or 
supplementary” and finally she gave a correct geometrical construction of the 
counterexample.  
The issue of over-reliance on familiar criteria  
Another issue that emerged from our data was the use of theorems for justifying 
refutable (invalid) claims. A number of teachers believed that the non applicability of 
the known relevant theorems implied that the claim was wrong. In particular, some 
teachers concluded that the two triangles were not necessarily congruent as none of 
the three commonly used criteria about the congruence of triangles could be applied. 
For example, in his written response T11 reminded the (hypothetical) student these 
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three criteria, and added that “the problem statement does not satisfy the criterion S-A-S 
... so from the given data we cannot conclude that the two triangles are congruent”. The 
above argument was the only one that the teacher gave for justification. T47 also 
expressed a similar view in his written response. In the interview, although this belief 
was challenged by one of the researchers, it seemed to be rather strong as 
demonstrated in the following extract: 

T47:  The two triangles are not necessarily congruent 
R:  How do you know this? 
T47:  We cannot apply the criterion S-A-S.  
R:  Ok, a known criterion cannot be applied. But how do you know that 

there is no other way to prove the congruence of the two triangles? 
T47:  We cannot prove the congruence with the criteria we teach. 

In the above cases, the teachers seem to base their reasoning on the principle that we 
can infer that two triangles with given properties are congruent only if these 
properties satisfy one of the three commonly used criteria (S-S-S, S-A-S and A-S-A). 
So, since these conditions were not explicitly given in the task, some teachers 
(falsely) inferred that these triangles cannot be congruent, while others claimed that 
they were not necessarily congruent. Although the latter claim may reflect legitimate 
logical inference, it may also have flaws and lead to wrong conclusions. For example, 
if the length of shorter side of the two triangles of our problem were 6 instead of 7, 
then the above kind of reasoning would lead to the conclusion that the two triangles 
are not necessarily congruent, while in fact, in this case the two triangles are right-
angled and thus are indeed congruent.  
It should be noted that even though the above way of refuting invalid claims is not a 
mathematical valid proof, in some cases it can be used as a tool for posing 
conjectures. For example, in his written response T21 initially stated that the known 
criteria could not be applied and then gave a geometrical construction of the 
counterexample. 

CONCLUDING REMARKS 
From the seventy six mathematics teachers of our study only thirteen refuted 
correctly the invalid claim of student A, eleven by constructing a counterexample and 
two by using theorems. Some of the characteristics of teachers’ reasoning that were 
identified in this study are similar to those reported by Lin (2005) in the case of 
students. For example, there were teachers who confirmed the invalid claim, others 
who suggested the possibility of a counterexample without generating it, and few 
who actually constructed a counterexample accompanied by a mathematical proof.  
In our study, teachers seemed to draw on their personal example spaces in order to 
generate counterexamples. It should be noted that in the case of Student A's (false) 
claim, a carefully thought through construction of an appropriate counterexample is 
needed. Teachers who just randomly sketched two triangles were not able to come up 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 288



  
with an appropriate counterexample. In this problem, there is only one 
counterexample. This counterexample can be seen according to Mason and Pimm 
(1984) as a generic example, in the sense that it can reflect and lead to the general 
case (as illustrated in Figure 1). Similarly, in terms of Zaslavsky and Peled (1997) 
this counterexample has a high explanatory power. However, thinking of it for the 
first time turned out to be a strong demand on the teachers. 
The two main phenomena that emerged from our study should be of great concern: 
overlooking the question whether an example exists, and over-relying on familiar 
theorems and criteria. Our findings illustrate how these two phenomena may lead to 
invalid inferences. Similar to Zodik and Zaslavsky's (2008) findings, there were 
several instances where teachers considered a non-existing example as if it existed, 
and did not seem to be aware of this issue at all. The second phenomenon reflects 
teachers' beliefs that a claim can be refuted if “all” the relevant theorems that they 
know (mostly those that are included in the school textbooks) cannot be applied. This 
conception indicates a misleading epistemological view of theorems and their status 
in mathematical reasoning. 
In this paper, we focused mainly on teachers' mathematical knowledge as reflected in 
their responses. Pedagogical aspects of their knowledge that emerged from our data 
have not been discussed here. These aspects may provide a more comprehensive 
account of what is entailed in dealing with students' invalid claims.  
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STUDENT JUSTIFICATIONS IN HIGH SCHOOL MATHEMATICS 
Ralph-Johan Back, Linda Mannila and Solveig Wallin 

Åbo Akademi University, Finland  

In this paper, we continue our previous work on evaluating the use of structured derivations in the 
mathematics classroom. We have studied student justifications in 132 exam solutions and described 
the types of justifications found. We also discuss the results in light of Skemp’s (1976) framework 
for relational and instrumental understanding. 

Keywords: student justifications, structured derivations, high school, instrumental and relational 
understanding 

INTRODUCTION 

The ability to justify a step in, for instance, a proof can be considered a skill that needs to be 
mastered, at least to some extent, before proof is introduced. In a wider sense, proof can even be 
regarded as justification (Ball and Bass, 2003). Unfortunately, students are not used to justify their 
solutions (Dreyfus, 1999). It is common for teachers to ask students to explain their reasoning only 
when they have made an error; the need to justify correctly solved problems is usually de-
emphasized (Glass & Maher, 2004). Consequently, without the explanations, the reasoning that 
drives the solution forward remains implicit (Dreyfus, 1999; Leron, 1983).  

A previous study (Mannila & Wallin, 2008) indicated that high school students can improve their 
justification skills in one single course. In this paper, we will present the results from a follow-up 
study, focusing on the types of justifications given by the students. We will first discuss some 
related work and also give a brief introduction to the approach used when teaching the course. The 
main research questions are the following: What types of justifications do students give in a 
solution? Do the types of justifications change as the course progresses, and in that case how? 

RELATED WORK 

Justifications as a condition for proof 

The importance of proof and formal reasoning for the development of mathematical understanding 
is also recognized by the National Council of Teaching Mathematics (NCTM), which issues 
recommendations for school mathematics at different levels. According to the current document 
(NCTM, 2008), students at all levels should, for instance, be able to communicate their 
mathematical thinking, analyze the thinking of others, use mathematical language to express ideas 
precisely, and develop and evaluate mathematical arguments and proof. While discussing 
mathematical ideas is important, communicating mathematical thinking in writing can be even more 
efficient for developing understanding (Albert, 2000). 

To think mathematically, students must learn how to justify their results; to explain why they think 
they are correct, and to convince their teacher and fellow students. “[M]athematical reasoning is as 
fundamental to knowing and using mathematics as comprehension of text is to reading. Readers 
who can only decode words can hardly be said to know how to read. … Likewise, merely being 
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able to operate mathematically does not assure being able to do and use mathematics in useful 
ways.” (Ball & Bass, 2003; p. 29)  

Justifications are not only important to the student but also to the teacher, as the explanations (not 
the final answer) make it possible for the teacher to study the growth of mathematical 
understanding. Using arguments such as “Because my teacher said so” or “I can see it” is 
insufficient to reveal their reasoning (Dreyfus, 1999).  A brief answer such as “26/65=2/5” does not 
tell the reader anything about the student’s understanding. What if he or she has “seen” that this is 
the result after simply removing the number six (6)? 

Types of understanding and reasoning 

A review of literature on mathematics education shows that there is an interest in studying the 
distinction between being able to apply a determined set of instruction in order to solve a 
mathematical problem and being able to explain the solution by basing it on mathematical 
foundations. Several frameworks have been presented for investigating types of learning and 
understanding.  

Skemp (1976) discusses two types of understanding named by Mellin-Olsen: relational (“knowing 
both what to do and why”) and instrumental (“knowing what”, “rules without reasons”). People 
who exhibit an instrumental understanding know how to use a given rule and may think they 
understand when they really do not. For instance, getting the correct result when applying a given 
formula is an example of instrumental, not relational, understanding. One typical example can be 
found in equation solving, where students learn to “move terms to the other side and change the 
sign”, without necessarily knowing why they do it.  

Sfard (1991) investigates the role of algorithms in mathematical thinking and discusses how 
mathematical concepts can be perceived in two ways: as objects and as processes. Pirie and Kieren 
(1999) present a theory of the growth of mathematical understanding and its different levels. More 
recently, Lithner (2008) has created a research framework for different types of mathematical 
reasoning, distinguishing between two main types: imitative and creative. Imitative reasoning is 
rote learnt and can be divided into two subtypes: memorised reasoning, where the student, for 
instance, solves a problem by recalling a full answer given in the text book or by the teacher, and 
algorithmic reasoning, where a problem is solved by recalling and applying a given algorithm. The 
other main type, creative reasoning, includes a novel reasoning sequence, which can be justified 
and is based on mathematical foundations. One of the main differences between imitative and 
creative reasoning is that the former does not necessarily involve analytical and conceptual 
thinking, whereas such thinking processes are essential to creative reasoning.  

STRUCTURED DERIVATIONS 

Structured derivations is a logic-based approach to teaching mathematics (Back & von Wright, 
1998; Back & von Wright, 1999; Back et al, 2008a). The format is a further development of 
Dijkstra's calculational proof style, where Back and von Wright have added a mechanism for doing 
subderivations and for handling assumptions in proofs. Using this approach, each step in a 
solution/proof is explicitly justified.  
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In the following, we illustrate the format by briefly discussing an example where we want to prove 
that x2 > x when x > 1.  

• Prove that x2 > x:  task  

-  x > 1    assumption 

||- x2  > x    term 

≡ { Add –x to both sides }  justification 

 x2 - x > 0   term 

≡ { Factorize }        … 

 x(x - 1) > 0 

≡ { Both x and x-1 are positive according to assumption. Hence, their product is also positive 
} 

T 

The derivation starts with a description of the task (“Prove that x2 > x”), followed by a list of 
assumptions (here we have only one: x > 1). The turnstile (||-) indicates the beginning of the 
derivation and is followed by the start term (x2 > x). In this example, the solution is reached by 
reducing the original term step by step. Each step in the derivation consists of two terms, a relation 
and an explicit justification for why the first term is transformed to the second one.  

Another key feature of this format is the possibility to present derivations at different levels of 
detail using subderivations, but as these are not the focus of this paper, we have chosen not to 
present them here. For information on subderivations and a more detailed introduction to the 
format, please see the articles by Back et al. referred to above.  

Why use in education? 

As each step in the solution is justified, the final product contains a documentation of the thinking 
that the student was engaged in while completing the derivation, as opposed to the implicit 
reasoning mentioned by Dreyfus (1999) and Leron (1983). The explicated thinking facilitates 
reading and debugging both for students and teachers. According to a feedback analysis (Back et 
al., 2008b), students appreciate the need to justify each step of their solutions. They also find that 
the justifications makes solutions easier to follow and understand both during construction and 
afterwards. 

Moreover, the defined format gives students a standardized model for how solutions and proofs are 
to be written. This can aid in removing the confusion that has commonly been the result of teachers 
and books presenting different formats for the same thing (Dreyfus, 1999). A clear and familiar 
format also has the potential to function as mental support, giving students belief in their own skills 
to solve the problem. Also, as solutions and proofs look the same way using structured derivations, 
the traditional “fear” of proof might be eased. Furthermore, the use of subderivations renders the 
format suitable for new types of assignments and self-study material, as examples can be made self-
explanatory at different detail levels. 
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STUDY SETTINGS 

Data collection 

The data were collected during an elective advanced mathematics course on logic and number 
theory (about 30 hours in class) that was taught at two high schools in Turku, Finland, during fall 
2007. All in all, twenty-two (22) students completed the course at either school and participated in 
the study (32 % girls, 68 % boys). The students were on their final study year.  

The course included three exams held after 1/3, 2/3 and at the end of the course. The exams were of 
increasing difficulty level, i.e. the first was the easiest and the last the most difficult one. Two 
assignments from each were chosen for the analysis. Hence, we have in total analyzed 132 solutions 
(six solutions for each student) written as structured derivations.  

The assignments analyzed were the following: 

A1: Determine the truth value of the expression (x2 + 3 ≤ 7 ∧ y < x - 4) ∨ x + y ≤ 5, when x = 2 
and y = 4. 

A2:  Solve the equation | x - 4| = 2x - 1. 

A3:  Use de Morgan’s law (¬(p ∧ q) ⇔ ¬p ∨ ¬q) to determine if the expression  
(¬p ∨ ¬q) ∧ (p ∧ q) is a tautology or a contradiction. 

A4:  Prove that b2 - d2 = ad + bc - ab - cd if a + b = c - d. 

A5:  Prove or contradict the following: For any integers m and n, it is the case that if m*n is an 
even number, then both m and n are even. 

A6:  Prove that 2 + 1430 ≡13 106 + 2730. 

The topics covered in assignments A1 and A2 were familiar to the students from previous 
mathematics courses. The aim of these assignments was mainly to let students practice structured 
derivations and writing solutions using the new format.  

The topics covered in the rest of the analyzed assignments (A3-A6) were new to the students. A3 
and A4 focused on logical concepts and manipulation of logical expressions, whereas A5 and A6 
covered number theory.  

Method 

The data collected, i.e. the justifications, were of qualitative nature. Qualitative data are highly 
descriptive, and in order to interpret the information, the data need to be reduced. In this study, a 
content-analytical approach was chosen for this purpose. The basic idea of content analysis is to 
take texts and analyze, reduce and summarize them using emergent themes. These themes can then 
be quantified, and as such, content analysis is suitable for transforming textual material into a form, 
which can be statistically analyzed (Cohen, 2007). 

A first round of the content analysis was done by one of the authors, who analyzed 18 solutions 
from E1 and 24 solutions from E2. This initial coding resulted in a first view of the types of 
justifications. The authors discussed the results and agreed on how to combine the detailed 
justifications into higher-level categories.  Next, all solutions were analyzed using the preliminary 
categories as the coding scheme. The second round analysis showed that the categories found in the 
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initial phase were sufficient for covering all justifications found in the 132 solutions. A quantitative 
approach was then taken in order to be able to illustrate the results graphically.  

The use of both quantitative and qualitative methods has several benefits. Mixed methods avoid any 
potential bias originating from using one single method, as each method has its strengths and 
weaknesses. A mixed methods approach also allows the researcher to analyze and describe the 
same phenomenon from different perspectives and exploring diverse research questions. Whereas 
questions looking to describe a phenomenon (``How/What..?'', our first research question) are best 
answered using a qualitative approach, quantitative methods are better at addressing more factual 
questions (``Do...'', our second research question) (Cohen, 2007).  

RESULTS  

The content analysis revealed five main justification types: 

• Assumption: Referral to an assumption given in the assignment directly or in a rewritten 
format.  

• Vague/broad statement: A very brief and uninformative justification type: “logic” or 
“simplify”.  

• Rule: Referral to a name of a rule or a definition, e.g. the rule for absolute values, tautology, 
congruence etc. In some cases, the justification also included the rule explicitly written out 
in text.  

• Procedural description: An explanation of what is done in the step, i.e. a description 
including a verb. E.g. “add 2x + 4 to both sides”, “move 3 to the other side and change the 
sign” and “calculate the sum”. 

• Own explanation: An explanation for why the step is valid in own words and/or with 
symbols, e.g. ”2k2 + 2k is an integer if k is an integer. Therefore 2(2k2 + 2k) is an even 
integer”. In some justifications a mathematical definition was written out in own words, e.g. 
“2 ≡13 106 because 2 – 106 = -104, 13 | - 104”.  

Figure 1 illustrates the proportion of different justification types found in the assignments 
respectively. The diagram also shows how the types of justification used varied depending on the 
assignment.  

Some justification types are highly assignment specific. For instance, assumptions can naturally 
only be used in assignments were assumptions are present. In such assignments, it is common for 
the assumption to be used only once or twice, and the proportion of this type of justification will be 
rather low. The analysis showed that all students but one were able to handle assumptions correctly 
already in the first exam, i.e. after 1/3 of the course.  

The use of rules can also be considered assignment specific. For instance, when manipulating 
logical expressions, rules become important as these make up the basis for the manipulation. When 
students gave a rule as a justification, most usually stated only the name of the rule, whereas only a 
few also wrote out the rule itself. In the final and most difficult assignment, where the rule was 
central to the solution, a larger proportion of students (46 %) had written it out explicitly, compared 
to those who had only provided the name of the rule (22 %). 
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Figure 1: The proportion of justifications of different types in the six assignments 

In addition to these specific dependencies, the analysis also revealed some other relationships. The 
assignments in the first exam (A1-A2) were not trivial but still familiar to the students (determine 
the value of an expression and solve an equation), who consequently mainly used short 
justifications (vague/broad, assumption, rule). Given the nature of equations, the solutions to A2 
also contained a large proportion of procedural descriptions (“move 3 to the other side).  

In the second exam, students faced assignments (A3-A4) that were not as familiar anymore. In A3, 
students were to make explicit use of logical rules, which, as stated above, naturally has an impact 
on the types of justifications: almost half of all justifications referred to a given rule. The following 
assignment, A4, called for a formal proof (the Finnish high school curriculum does not include 
proofs in any other course than the elective one described in this paper). As the expression used in 
the proof was an equation, the main justification type used was, again, procedural descriptions.  

The third exam (A5-A6) is probably the most interesting one from a research perspective. The 
assignments were in a completely new domain, with which students had no prior experience: 
constructing proofs in number theory. Thus, these assignments have potential to provide insight into 
how students use justifications when adventuring into a new terrain. As indicated in the diagram 
(figure 1), the proportion of own explanations increased, in particular at the expense of the less 
informative justification type “vague/broad”.  

DISCUSSION 

As seen above, the justification types changed throughout the course. Whereas some of the 
variation (e.g. the use of assumptions and rules) is a direct result of the nature of the task at hand, 
some seems to be more related to the perceived level of difficulty.  

For instance, the most noticeable changes are found for “vague/broad” justifications and “own 
explanations”: whereas the former dominate the solutions early on, their frequency decreases 
towards the end as the number of the latter increases. The first exam was easier than the final one, 
and as easy assignments include more “straightforward” steps, students may not have seen the need 
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to justify those steps in any more detail. Rather, students seem to find the need to justify more 
carefully as the assignments become more difficult. Consequently, the occurrence of own 
explanations increase. Similarly, it is understandable that students are reluctant to write lengthy 
justifications when solving tasks similar to tasks they have solved many times before, whereas they 
may feel a need for writing more careful justifications in assignments that deal with new topics. 
This is supported by the results from our feedback study, where students found “extra writing” 
unnecessary for simple tasks (Back et al., 2008b).  

Can justifications aid in assessing understanding? 

Only two justifications types, “own explanations” and “procedural descriptions”, involve students 
writing in their own words. There is an important difference between these types. In a “procedural 
description”, students write what they do, but not why they have chosen or are allowed to do so. 
The “own explanation”, on the other hand, also gives information regarding why the step is valid. 

This is closely related to Skemp’s instrumental and relational understanding (1976). Own 
explanations are clearly relational, but the remaining four types (vague/broad, assumption, rule, 
procedural descriptions) cannot easily be mapped to either type of understanding. We will therefore 
refer to own explanations as “relational justifications” and the other four types as “instrumental 
justifications”.  

Although Skemp argued that instrumental justifications such as “move -3 to the other side” are 
examples of an instrumental approach to understanding, we do not think the situation is as black-or-
white. For instance, a simple justification such as “logic” may be the result of complex thought 
processes. Knowing that students are not keen on writing, one can also assume that students may 
choose to write a short justification even in places where they could have been more expressive in 
order to indicate their understanding. An instrumental justification simply does not reveal enough 
information about whether the student has truly understood what he or she has done. Ruling out the 
possibility of relational understanding in such situations requires more than a mere justification. 

To exemplify this, we now look at three different solutions to an assignment involving absolute 
values. The absolute value rule referred to below is the following: |x| = c ⇔ (x = c ∨ x = -c) ∧ c ≥ 0 

• Tom: instrumental justification, relational understanding   

Tom did not use the rule for absolute values learnt in class, but rewrote the expression in a way 
showing that he had really understood the absolute value concept. The solution was correct and 
indicated a relational understanding of absolute values. 

|x - 4| = 2x – 1 

 { rewrite the absolute value } 

(x – 4 = 2x – 1 ∧ 2x – 1 ≥  0) ∨ (-x + 4 = 2x – 1 ∧ 2x – 1 ≥ 0)  

• Layla: instrumental justification, instrumental or relational understanding  

Layla used the absolute value rule and solved the problem correctly. Despite the correct 
solution, we cannot know whether Layla understood the concept or merely used a rule she had 
learnt that “should work” for this type of problems.  
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|x - 4| = 2x – 1 

 { rule for absolute values } 

(x – 4 = 2x – 1  ∨  x – 4 = -2x + 1) ∧  2x – 1 ≥ 0 

• Joe: instrumental justification, instrumental understanding 

Just like Layla, Joe also justified the initial step with “the rule for absolute values”. However, he 
used the rule incorrectly, as he “forgot” the second part of it (the requirement on x).  

|x - 4| = 2x – 1 

 { rule for absolute values } 

x – 4 = 2x – 1  ∨  x – 4 = -2x + 1 

This was a rather common error in our study (made by almost 36% of all students in assignment 
A2). Had Joe had a relational understanding for absolute values, the additional requirement 
would have been clear to him even if he had forgotten what the rule looked like.  

Thus, it seems as if one can in fact conclude that a given instrumental justification is not an 
example of relational understanding – this is the case if the step is incorrect as for Joe above. 
However, doing the opposite, i.e. concluding that an instrumental justification to a correct step is 
relational, is not as straightforward.  

Is a clearly relational approach always needed? 

In high school mathematics, much time is spent on things like solving equations and simplifying 
expressions. Thus, to a large extent it boils down to using rules, and consequently a seemingly 
instrumental approach becomes dominant. However, this is foregone by the teacher explaining the 
theory behind the rules and the definitions. If the student later uses the rules in an instrumental or a 
relational way is up to how well he or she understood the theory. If the underlying concept is not 
clear to the students, the rules are most likely applied without reasons, i.e. instrumentally. One area 
of high school mathematics where relational understanding most likely becomes more evident is in 
textual problems, where students first need to formalize the problem specification. In order to 
correctly specify the problem, the student needs to understand the problem domain and the 
underlying concepts. Relational understanding is naturally also important when constructing proofs.   

Furthermore, sometimes a justification with a seemingly instrumental approach is the best one that 
can be given. Take for example a complex trigonometric expression. Finnish high school students 
have a collection of rules that they can always have with them, even on exams. One can hardly 
require them to start explaining rules in order to be allowed to apply them. What is essential in such 
a situation is that they a) have an underlying understanding for trigonometry, b) know how to apply 
trigonometric rules correctly, and c) are able to manipulate the expression into a form where one of 
the many rules can be applied correctly.  

As another example we can take equation solving and the “add -3 to both sides” type of 
instrumental justification mentioned above. Let us say we have two students: one who understands 
that whenever you have an expression of the form a = b, you can add the same value to both sides 
without changing the truth value of the full expression (a + c = b + c), and another who knows that 
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one should move “lonely numbers” to the other side while changing the sign. Both of these students 
would probably use similar justifications, but only one of them would have a relational 
understanding. This student would, however, hardly write out the rule (a = b  a + c = b + c), 
which would be needed in order for the teacher to be able to distinguish the justification from that 
given by the other student.  

Justifications and validity of steps  

As was described above, a seemingly “correct” justification can lead to an incorrect derivation step. 
This can happen for several reasons, one being the one exhibited by Joe above: not completely 
remembering a rule. Careless mistakes in a step do not seem to correlate with the type or the 
accuracy of the justification. Only a small number of this type of errors was found (in 9 % of the 
assignments throughout all three exams), which was also supported by students’ feedback as they 
pointed out that they made fewer careless mistakes using structured derivations than what they 
usually do (Back et al., 2008b). 

CONCLUDING REMARKS 

The type of justification chosen in a certain situation is closely related to the assignment and/or the 
step at hand. For example, assumptions or rules will not be used in problems where there are no 
assumptions or rules to apply. Our findings suggest that students choose the level of detail in their 
justifications mainly based on the difficulty level of the task at hand: in tasks that are familiar, 
students tend to opt for broad and vague justifications, whereas justifications which say more come 
into play as the topics covered are new and/or the assignments become more difficult. Especially 
justifications written in own words are of great importance to the teacher for understanding a 
solution and the student’s thinking; this is not necessarily the case for vague and broad 
justifications. 

The study presented in this paper is a continuation on earlier qualitative studies on the use of 
structured derivations in education. Previous results indicate that students appreciate the approach 
(“it takes me longer, but I understand better”) and that it improves students’ justification skills as 
soon as during one single course (Mannila & Wallin, 2008). Furthermore, we have found that 
explicit justifications make students think more carefully when solving a problem (Back et al., 
2008b). With this study, we now also have a rather clear picture of how students justify their 
solutions and how the justifications change throughout the course. 

Getting students to clearly document their solutions step by step is a step forward, although 
“judging” the justifications is everything but straightforward. Thus, many questions still remain. Is 
it possible to teach a way of writing “good” justifications? And if we want to try, what characterizes 
such justifications? Another aspect, not considered so far, is related to teachers and course books. 
How do teachers justify their solutions when teaching using structured derivations? How are 
examples justified in texts? In order for students to develop relational understanding, we believe 
that it is essential that examples are explained freely (“using own words”) as often as possible.  
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This paper describes an episode taken from the third year of a design experiment 
aimed at improving the teaching and learning of proof at the university level. In the 
episode, students come enticingly close to having a proof, at least as judged by 
competent outsiders.  However the students themselves, while satisfied with their 
result, abandon it when asked to write up a formal proof.  We offer an analysis of this 
episode and offer questions for further study. 
 
Key words:  Proof, Tertiary Level, Key Ideas, Technical Handle, Design Experiment 

 

INTRODUCTION 

Design experiments, or “developmental research” as this work is often called in 

Europe, are becoming increasingly common, at elementary, secondary, and even 

tertiary education (e.g. Brown 1992, Collins 1999, van den Akker, Branch, 

Gustafson, Nieveen, & Plomp, 1999, Lesh 2002). The goal is to find theoretically 

grounded answers to practical questions of the classroom, done in as natural a setting 

as possible, with as Brown puts it, the “the blooming, buzzing confusion” that one 

can sometimes find in real classrooms, under real pressures, with real constraints and 

opportunities. 

While the potential of merging theory and practice is quite alluring for many reasons, 

the practical and conceptual realities of doing so remain challenging.  As Kelly 

(2002) suggests: if design experiments began in the early 1990’s as a sort of art, they 

are emerging in recent years as a type of science, guided by increasingly rigorous 

methodology and increasingly useful results.  But specifying exactly what this 

science consists in, that is, how to merge research and practice in a mutually 

advantageous way, is still a matter of debate, discussion, and development. 

This paper is an emerging product of a design experiment aimed at improving the 

teaching of proof at the university level.  The research team, consisting of two 

                                         

†
 This research is supported by NSF grant number DUE-0736762. 

 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 301



 

 

 

 

mathematics educators and three mathematicians, came together with the aim of 

improving the teaching of “Introduction to Proof” courses, a type of course used 

frequently in American universities to help students prepare for the rigor of the 

theoretical courses like abstract algebra and analysis
1
.  The idea was to use videos of 

students struggling, and eventually succeeding, at proving claims that are known to 

be hard for students in this type of course, as a basis for discussion.  These videos can 

be used both as a professional development tool for teachers who want to better 

understand student difficulties with proof and as a curriculum resource for class 

discussion to help students be more aware about their own mathematical thinking. 

After three rounds of testing and piloting, we now have a fairly stable set of 

curricular materials, which include (1) carefully edited videos of students working on 

proofs that many other students find difficult, (2) materials to help teachers use these 

videos, both for their own understanding of student thinking and for classroom use.  

These materials have been tested in four colleges in the United States in the context 

of “Introduction to Proof” courses taught by members of the research team and their 

colleagues. We also are generating a number of research articles, this being one 

example, that probe questions of mathematical thinking that enhance and/or inhibit 

proof production.  

We consider our particular marriage of theory and practice to be a happy one.  The 

central questions which drive our research—how to reconcile student and faculty 

thinking about proof and proving—grew naturally from our experiences as teachers 

struggling to make the best of our own “Introduction to Proof” courses.  While not 

eliminating common sense and experience as legitimate grounds for interpreting data, 

we felt a real need to move into theoretical territory to help make sense of some of 

the mysteries of mathematical thinking.   

This paper describes one part of this theoretical journey.  We begin by describing an 

episode that our team found particularly compelling.  In the episode, students come 

enticingly close to finding a proof but do not seem to notice that they have done so.  

Rather than convert what outside observers recognize as a “key idea” of a proof into a 

formal proof, they abandon the idea and take a different, and ultimately unsuccessful 

path.  This episode is useful for a starting point in understanding the nature of key 

idea in the process of proof production, but also points to some fuzziness about the 

notion of key idea, which a more theoretical analysis can help clarify. 

 

FRAMING 

The methodology for this project, for which this paper is one small part, follows the 

program set out by Cobb, et al (2003).  The design is highly interactive and 

                                         

1
 See Alcock (2007) for a similar project, focusing primarily on professional development, which 

has been successfully piloted in the US and UK. 
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interventionist, involving gathering and indexing of longitudinal data from a number 

of sources, including videos of classroom practice, individual and group interviews 

with teachers and students, journal and email records from the teachers, written 

records of student work, and audio and video records of behind-the-scenes discussion 

among the research team.  Like Cobb, et al, we see this design experiment as a 

“crucible for the generation and testing of theory.”  It is the tangible pressures of 

classroom realities that provide a needed spark for the theory to develop and 

crystallize, and one of the goals of this paper is to make part of that process visible to 

both research and practitioner communities. 

The central research questions involve characterizing the trajectory of proof 

development in a way that both helps us see where students sometimes go wrong and 

also gives some guidance towards how to teach students to prove in a more effective 

way. In particular, as we traced one particular episode in which students struggled, 

came close, and eventually failed to find a proof we wanted to know (1) what were 

the critical “moments” when there was opportunity for the proof to move forward, 

and (2) what is the nature of these moments.  In the end we found three such 

moments, which seem to play a critical role in proof production. These moments do 

not necessarily occur in every proof, nor do they necessarily occur in the order in 

which we present them, but they seem to be critical in the sense that if one is present, 

the proof can move forward in a fairly significant way, and if one is absent, it is quite 

possible that the proof will not move forward (or that a proof will be produced 

without a full sense of understanding). 

The first moment is the getting of a key idea, an idea that gives a sense of “now I 

believe it”
2
. The key idea is actually a property of the proof, but psychologically it 

appears as a property of an individual (we say that a particular person “has a key 

idea” if it appears that they grasp the key idea of a proof.)  We refer to “a” key idea 

rather than “the” key idea, because it appears that some proofs have more than one 

key idea.  While a key idea engenders a sense of understanding, it does not always 

provide a clue about how to write up a formal proof. 

The second moment, is the discovery of some sort of technical handle, and gives a 

sense of “now I can prove it,” that is, some way to render the ideas behind a proof 

communicable
3
. The technical handle is sometimes used to communicate a particular 

                                         

2
 More elaborated discussions of “key idea” can be found in Raman (2003), Raman & Weber 

(2006), and Raman & Zandieh (in progress).  A key idea can be thought of as a certain kind of 

intuition that has both a public and private character:  public in the sense it can be mapped to a 

formal proof, private in the sense that it is personally understandable as a sort of primary, or prima 

facie, experience.  For a careful discussion about intuitions see Bealer (1992). 

3
  The term “technical handle” here is akin to the term “key insight” in Raman & Weber (2006).  

We have chosen to change the term in part because it sounded too similar to “key idea” which has a 

very different character, and in part because the technical aspect of this “moment” seemed central to 
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key idea, but it may be based on a different key idea than the one that gives an ‘aha’-

feeling, or even on some sort of unformed thoughts or intuition (the feeling of 

‘stumbling upon’.)   

The third moment is a culmination of the argument into a standard form, which is a 

correct proof written with a level of rigor appropriate for the given audience.  This 

task involves, in some sense, logically connecting given information to the 

conclusion.  We assume that for mathematicians the conclusion is probably in mind 

for most of the proving process.  But for students, the theorem might sometimes be 

lost from sight, adding a sense of confusion to their thinking processes. 

In the data below we will illustrate how each of these moments occurs in the midst of 

proof production before turning more critically to trying to understand the nature of 

key idea.  

 

THE EPISODE  

The following example illustrates the presence and/or absence of these three 

moments as students work on the following task: 

Let n be an integer.  Prove that if n ≥ 3 then n3
 > (n+1)

2
. 

Students were videotaped working on this task in the presence of the research team, 

and upon their completion, were asked questions about their thinking.  Afterwards, 

the research team watched and discussed the videos.  We were drawn to one part of 

the proof process that turned out to be a genuine mystery—an episode, near the 

beginning, in which the students generate what the faculty identify as a correct proof, 

but what the students, at least at some level, do not recognize as one.  

Details: In the first two minutes of working on this task, the students made an 

observation that the professors identified as a key idea of the proof, namely that a 

cubic function grows faster than a quadratic.  Rather than trying to formalize this 

idea, the students switched to an algebraic approach, what we label as a technical 

handle, to try to get to a proof. They wrote n3
 > n2

 + 2n + 1 which they manipulated 

into n(n2
 – n – 2) > 1 and then (n-2)(n+1) > 1/n. 

The students then noticed that if n ≥ 3 then the terms on the left are both positive 

integers so the product is a positive integer.  And since n is an integer greater than 2, 

the right hand side is going to be between 0 and 1.  They wrote these observations as 

if n ≥ 3 (line break) n-2 > 0 (line break)  n+1 > 0 (line break) 0 ≤ 1/n ≤ 1 

                                                                                                                                       

its nature.  The distinction between “key idea” and “technical handle” might appear at first sight to 

be similar to the distinction Steiner (1978) makes and Hanna (1989) builds on between proofs that 

demonstrate and proofs that explain.  However, it is possible that a key idea gives rise to a proof 

that demonstrates or explains, and a technical handle can also lead to both kinds of proofs.   
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and seemed quite pleased with their reasoning, one student nodding and smiling as 

the other one wrote the last line. 

S2:   Yeah. 

S1:  This is if n is greater than 3, if n is greater than or equal to 3. 

S2:   Yeah….  Cool. 

At this point in the live proof-writing, the three professors were convinced that the 

students had a proof.  They believed that “all” the students needed was a reordering 

of their argument.  To show n3
 > n2

 + 2n + 1, it suffices to show (n-2)(n+1) > 1/n, 

which one can establish by showing that the left-hand side is a positive integer while 

the right is between 0 and 1.  

However, it turned out that the students, despite being pleased with their argument, 

were less than sure that they were near a formal proof. A professor asked the students 

“Is that a proof?” and S1 replied, “That’s what I’m trying to figure out.”  As the 

students moved to now write up the proof, they switched to a new track, trying a 

proof by contraposition.  This attempt ended up turning into a confusing case analysis 

in which they tried to prove the converse of the contrapositive and investigated many 

irrelevant cases. 

 

AN EVOLVING EXPLANATION 

That students can come so close to a proof without recognizing it is probably familiar 

to most experienced teachers
4
.  Why the students are not able to recognize that they 

are so close is another, more difficult, question.  Here we show how looking at the 

three “moments” of the proof, described above, allows us to compare what the 

students did in this problem with an idealized version of what faculty might have 

done. 

The moments are represented graphically in Figure 1 below, with the blue line 

representing the “ideal” (professor-like) proving process, and the red line  

representing the students’ process
5
.  The marks mi indicate the points in the proof at 

                                         

4
 Another example can be found in Schoenfeld (1985) where two geometry students have what the 

researcher is convinced is a correct “proof” but when asked to write it up, they draw two columns 

and abandon all their previous work. 

5
 In creating this “idealized” version of a proof, we depict a continuity between the key idea and the 

technical handle, although we realize in practice that many proofs are made without the author 

being able to connect the two.  The question about whether there exists such a connection, even if it 

has not been found, is an open one. We also realize that the process of proof development is not 

linear, even for an able mathematician, in many cases.  This picture points out more the over-all 

trajectory of the proof, with minor false-paths ruled out.  Further the heights of the peaks could 

vary. 
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which different moments are achieved: m1 for the key idea, which both faculty and 

students achieved (though the students may not realize this), m2 for the technical 

handle (which students in this case see as disconnected from their key idea), and m3 

for the organization of the key idea and/or technical handle into a clear, deductive 

argument (which in this case the students never reach.) 

Specifically, m1 is recognizing that cubic functions grow faster than quadratic ones. 

m2 is choosing an algebraic approach, factoring the polynomials before and after the 

inequality sign. We label this as a technical handle even though the students do not 

know from the beginning where this might lead
6
. m3 is connecting the assumption 

that n ≥ 3 with the conclusion that n3
 > (n+1)

2
.  In this case, the students never 

reached m3, and in fact—during their attempt to write a formally accepted proof, they 

seem to lose sight of what they are proving.   

 

 

 

Figure 1:  Comparing student (red) and faculty (blue) proof strategies 

 

In the episode above, the students find two key ideas: one that cubics grow faster than 

quadratics, and another, after students have written (n-2)(n+1) > 1/n, that the right-

hand term is trapped between 0 and 1 while the left grows indefinitely.  Neither of 

these ideas gets developed into a formal proof. The curved line between m1 and m2 

represents how students move towards a technical handle and end up at the second 

key idea.   

                                         

6
 The labeling of technical handle here is a bit tricky.  If the students are not themselves aware of 

the way to link their algebraic manipulation to a proof, is it misleading to say they have found a 

technical handle since technically they do not seem to register that they “know” how to prove it.  

We have tentatively labeled this moment as a technical handle anyway, in part because as outside 

observers we can see that this algebraic manipulation could lead to a correct proof. In addition, 

while the students might not see exactly how to extract a formal proof from their algebraic 

arguments, they seem to take their arguments to be convincing and that they have grounds for 

making a formal argument. 
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The crucial distinctions between the “ideal” graph and the “student” graph are the 

breaks at m1 (students do not try to connect their key idea to a technical handle) and 

m2 (students lose sight of the conclusion and end up trying to prove a converse.)  Our 

data indicate that these breaks are not merely cognitive—it isn’t that the students do 

not have the mathematical knowledge to write a proof, since they articulate the 

essence of the proof after three minutes.  The problem is epistemological—they don’t 

seem to understand the geography of the terrain.  Expecting discontinuity between a 

more intuitive argument and a more formal one, the students abandon their near-

perfect proof for something that appears to them more acceptable as a formal proof. 

Of course it is not always possible to connect key ideas to a technical handle, or to 

render a technical handle into a complete proof.  But what distinguishes the faculty 

from the students is that the faculty are aware that this connection is possible, and 

might even be preferable given that sometimes it takes little work—in this case a 

simple reordering of the algebraic argument would suffice for a proof.  As one 

professor in the study said: 

“It became clear that to formalize meant something different to them and to us.  To us, 

formalize seemed to mean ‘simply clean up the details’.  To them, it seemed to mean 

‘consider rules of logic and consciously use one’.” 

Recognizing the difference between radical jumps that need to be made to move 

mathematical thinking forward and local jumps that allow one to delicately transform 

almost rigorous arguments into rigorous ones might be an essential difference that 

mathematics teachers can learn to recognize, diagnose, and communicate to their 

students. 

 

FURTHER QUESTIONS 

The episode and analysis described above, raise a number of questions which we 

would like to discuss briefly here.  

 

1. Nature of key idea/technical handle 

One nice feature of the episode above is that the identification of key idea and 

technical handle came fairly easy, with relatively little debate or discord among 

members of the research team.  But are the notions of key idea and technical 

handle so clear that they can be picked out in any setting, for any proof?  For 

this we need to continually refine the definitions (and in this paper we have 

actually backed away from a technical definition and given more general 

descriptions.)  An ongoing research project of our team involves looking at a 

broad number of theorems, identifying key ideas and technical handles for 

different proofs, and refining the definitions based on that data. 

2. Context of discovery vs. context of justification 
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The distinction between context of discovery and context of justification
7
, 

which has had a significant influence on epistemology and related fields, might 

be useful for understanding why students do not realize they have a proof. 

Taking the distinction to be psychological (which was not the original intent, 

but serves our purpose here), it seems natural to suggest that in the process of 

proving one has a phase of discovery and a phase of justification.  

In the episode above, the students seem to be missing an important half of this 

combination.  They sort of “discover” the key idea without seeing it as a 

justification
8
.  Perhaps being able to toggle between the different contexts is a 

marker for mathematical maturity, and somehow central for being able to 

identify a proof as a proof. Specifically, the key idea might involve some 

combination of seeing the idea as a product of discovery and a grounds for 

justification (a thing to be justified).  This is just a hypothesis, and a more 

careful analysis of the distinction between discovery/justification is needed to 

be able to substantiate it.  

3. A Fregean telescope? 

Another way of seeing the difference between student and faculty 

understandings in this episode might have to do with a deep connection (or 

lack of connection) between mathematical objects and they way they are 

grasped by the mind.  This suggestion is highly tentative:  to use Frege’s 

distinction between “sinn” (roughly, sense) and “bedeutung
9
” (roughly, 

reference) to better understand this relationship (Frege (1892/1997)). 

Frege uses the following analogy to explain the difference between sinn and 

bedeutung:  imagine a person looking at the moon through a telescope.  The 

moon is a bedeutung, an object in the world, with a public status.  The image 

on our retina is a sinn, the personal sense we have of that object, which has a 

private status.  The telescope is sort of like a thought that connects the two—it 

has public status, in the sense that anyone can look through it, but it somehow 

makes an otherwise difficult to grasp object intelligible to the human mind. 

Without going deeply into the way Frege extends this analogy to mathematics 

(in part because there are tricky moves, both going from the bedeutung of an 

object to the bedeutung of a sentence, and going from natural language to 

                                         

7
 For the original distinction see Reichenbach (1938), and for a critical discussion of this distinction 

in contemporary philosophy and history of science see Schickore & Steinle (2006). 

8
 Wright (2001) warns about misinterpreting the word “discover”.  He points out that we would not 

say someone “discovered” the South Pole if they did not realize it was there. It is with this warning 

in mind that we use the term “discover” in quotation marks. 

9
 We retain the German names since the English translations are not completely accurate.   
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mathematical language) it might be useful to think if there is an analogy to the 

telescope in the episode described above.  

Could it be that students stand facing some (to them) far away star, and with 

the aid of a telescope the public could be rendered private?  If so, what would 

the telescope be, and is it something that we could better encourage students to 

develop and/or use as they learn to prove?  Or is it possible that there is no 

telescope at all, just as when I look at the coffee mug on my desk, I feel I am 

simply getting sense data of the mug, without any mitigation.  Perhaps the 

mind simply grasps key ideas.  If so, then, what explains why some people 

grasp them and others don’t?   

This is perhaps merely a rephrasing of the central mystery found in the episode 

above.  But by placing this mystery in a Fregean context (which also allows 

access to his critics), perhaps we gain some conceptual tools to try to better 

understand, not only the mystery, but also what we can do about it. 

 

These questions mark a few of the places where we think it might be productive to 

push for a deeper analysis and where we see possibilities to connect to existing 

research.  We are especially excited about the potential to use results from the field of 

epistemology where questions about the relation between mental representations and 

the external world (of which we consider mathematics to be a part) have been 

discussed extensively. In the next phase of our project, we plan to devote increasing 

time to developing and refining our theoretical ideas.  We welcome any and all 

suggestions that can help us do so.  
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“CAN A PROOF AND A COUNTEREXAMPLE COEXIST?” 
A STUDY OF STUDENTS’ CONCEPTIONS ABOUT PROOF* 

Andreas J. Stylianides   Thabit Al-Murani 
                  University of Cambridge, U.K.        University of Oxford, U.K. 

Despite the importance of proof and refutation in students’ mathematical education, 
students’ conceptions about the relationship between proof and refutation have not 
been the explicit focus of research thus far. In this article, we investigate whether 
high-attaining secondary students have the misconception that it is possible to have a 
poof and a counterexample for the same mathematical statement. The data consisted 
of 57 student surveys augmented by follow-up interviews with 28 students. While 
analysis of the survey data alone offered considerable evidence for the existence of 
the misconception among several students in our sample, subsequent analysis with 
the inclusion of the interview data showed no evidence of the misconception. 
Implications for methodology and research are discussed in light of these findings. 

INTRODUCTION 
Despite the fundamental role that proof and refutation play in mathematical inquiry 
(e.g., Lakatos, 1976) and the growing appreciation of the importance of these 
concepts in students’ mathematical education (e.g., Lampert, 1992; Reid, 2002), 
students’ conceptions about the relationship between proof and refutation have not 
been the explicit focus of research thus far. The lack of research that aimed to 
investigate specifically students’ conceptions in this area creates a gap in the field’s 
understanding of how students perceive the standards of evidence in mathematics. 
Yet, existing research literature on proof and refutation allows us to make a 
hypothesis about students’ conceptions regarding the possible coexistence of a proof 
and a counterexample for the same statement. 
Specifically, research studies identified two student conceptions whose combination 
gives rise to the hypothesis that some students believe that it is possible to have a 
proof and a counterexample for the statement. The first conception that some students 
have is that counterexamples do not really refute: students tend to treat valid 
counterexamples to general statements as exceptions that do not really affect the truth 
of the statements (Balacheff, 1988). The second conception that some students have 
is that proofs do not really prove: students have difficulties to understand that a valid 
proof confers universal truth of a general statement thus making further checks 
superfluous (Fischbein, 1982). However, we point out that the hypothesis that some 

                                           
* The data reported in this article were collected and analyzed with support of an Economic Social 
and Research Council (ESRC) grant to the first author (RES-000-22-2536). The opinions expressed 
in the article are those of the authors and do not necessarily reflect the position of the ESRC. 
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students believe that a proof and a counterexample can coexist was derived by us 
considering findings from different studies that used different samples and methods 
and that were conducted in different cultural settings. So, the hypothesis is not 
attributed to any of those studies and should become the explicit focus of research. 
In this article, we aim to contribute to this domain of research by reporting findings 
from an investigation of the possible existence of the aforementioned misconception 
among high-attaining secondary students. In this investigation, we used survey data 
from 57 students and follow-up interviews with 28 of them. With the interviews, we 
aimed to clarify some student responses to the survey and to test the tentative 
conclusions we had drawn from our analysis of the survey data. 

BACKGROUND 
The research was part of a design experiment (see, e.g., Schoenfeld, 2006) that was 
conducted in two Year 10 classes in a state school in England. The school had 165 
Year 10 students (14 to 15 years old) who were set in seven classes according to their 
performance on a national assessment they took at the end of Year 9. A total of 61 
students from the two highest attaining classes participated in the research. 
Motivated in part by studies that showed that even high-attaining secondary students 
tend to have limited understanding of proof (Coe & Ruthven, 1994; Healy & Hoyles, 
2000; Küchemann & Hoyles, 2001-03), the design experiment aimed to generate 
research knowledge about possible ways in which classroom instruction can help 
these students develop their understanding of proof. The design experiment involved 
development, implementation, and analysis of the effectiveness of a collection of 
lesson sequences that extended over one to three 45-minute periods. Each lesson 
sequence was intended to promote issues of proof in the context of mathematical 
topics and student learning goals that were consistent with the provisions of the 
English national curriculum, treating proof as a vehicle to mathematical sense 
making. As far as proof was concerned, the lesson sequences aimed to offer students 
opportunities to develop their understanding of the limitations of empirical arguments 
and of the importance of proof in mathematics, to construct proofs for true 
mathematical statements, and to formulate counterexamples for false mathematical 
statements. However, the issue of the possible coexistence of a proof and a 
counterexample for the same statement was not explicitly discussed in the classes. 
The definition of proof that guided the work on proof within the two classes was an 
adapted version of the conceptualization of proof elaborated in Stylianides (2007, pp. 
291-300). The following definition was used in the first lesson sequence in each of 
the two classes as part of students’ introduction to the notion of proof.  

An argument that counts as proof [in our class] should satisfy the following criteria: 

1. It can be used to convince not only myself or a friend but also a sceptic. It should not 
require someone to make a leap of faith (e.g., “This is how it is” or “You need to 
believe me that this [pattern] will go on forever.”)  
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2. It should help someone understand why a statement is true (e.g., why a pattern works 

the way it does). 
3. It should use ideas that our class knows already or is able to understand (e.g., 

equations, pictures, diagrams). 
4. It should contain no errors (e.g., in calculations). 
5. It should be clearly presented. 

The definition was discussed and referred to by both classes several times during the 
course of the design experiment, and it can be considered to reflect the classes’ 
“idealized” shared understanding of the criteria for an argument to qualify as a proof. 

METHOD 
Data Sources 
The data for the article are derived from: (1) 57 student responses to a survey that we 
administered to the two classes at the end of the third lesson sequence of the design 
experiment (some students were absent the day we administered the survey), and (2) 
follow-up interviews with 28 students. The students completed the survey part way 
through the design experiment, after they had been given learning opportunities to 
develop understanding of different issues related to proof as described previously. 

 

  

Figure 1: A mathematical problem and two sample solutions to the problem 
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Survey 
The survey presented the students with a true statement contextualized in a 
mathematical problem, four sample solutions to the problem, and some open-ended 
and multiple-choice questions (figures 1 and 2); in this article we focus on students’ 
evaluations of only two solutions (Ben’s and Carol’s).  
Open-ended questions: 

1. Whose answer is closest to what you would do?  Explain your answer. 
2. Whose answer would get the highest mark from your teacher?  Explain your answer. 
3. Whose answer would get the lowest mark from your teacher?  Explain your answer. 

 
Multiple-choice questions: 

  

 

  
 

Figure 2: Open-ended and multiple-choice questions. 

The survey derived from one used in the Longitudinal Proof Project (Küchemann & 
Hoyles, 2001-03; Technical Report for the Year 8 Survey, pp. 93-94). We added the 
third open-ended question and the probes inviting students to explain their answers. 
We hoped these additions would increase the survey’s potential to reveal student 
thinking about the possible coexistence of a proof and a counterexample. While this 
issue does not seem to have been one that Küchemann and Hoyles aimed to explore 
(ibid, pp. 6-7), we thought the survey offered an excellent opportunity to do this: 
some students might not notice the (subtle) mistake in Carol’s solution and consider it 
a valid counterexample to the statement, while at the same time recognize the value 
of Ben’s deductive argument and consider it a proof for the statement. 
Interviews 
We interviewed 28 students based on their responses to the multiple-choice and open-
ended questions in the survey. Most interview sessions began with us asking the 
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students to review their responses to the survey and then to explain which survey 
question they found the hardest. This general interview probe was followed by 
specific probes for the students to elaborate on particular responses in their scripts. 
Procedure and Analysis 
Patterns in students’ responses were identified and used to formulate hypotheses 
about their conceptions. Interview data were then used to test/refine the hypotheses. 
With regard to students’ conceptions about the coexistence of a proof and a 
counterexample, our analysis of the survey data focused on those scripts that 
contained evidence to suggest the potential existence of the misconception. 
Specifically, we focused on the scripts that contained evidence of one or more of the 
following “inconsistencies”: (1) the student found a mistake in Carol’s solution and 
said that she would get the lowest mark from the teacher but agreed with the sentence 
that Carol’s solution showed that the statement was not true; (2) the student said that 
the highest mark from the teacher would go to both Ben’s and Carol’s solutions; and 
(3) the student agreed both with the sentence that Ben’s solution showed that the 
statement was always true and with the sentence that Carol’s solution showed that the 
statement was not true.   
We coded the type of evidence that was present in the scripts into two categories – 
strong or weak – depending on the degree of confidence that it gave us as researchers 
for the existence of the misconception. Specifically, we considered that strong 
evidence was offered by those scripts that had either “agree” or “don’t know” in the 
first multiple-choice questions for both Ben’s and Carol’s solutions, and that included 
no relevant disconfirming evidence in the open-ended questions. The scripts that we 
considered offered weak evidence for the existence of the misconception had again 
either “agree” or “don’t know” in the first multiple-choice questions for both Ben’s 
and Carol’s solutions, but included some relevant disconfirming evidence in the 
open-ended questions (e.g., they offered evidence that the student was aware that 
Carol’s solution had a mistake in it). For each of the strong or weak evidence 
categories we used the interview data to examine the extent to which there was, 
overall, evidence to suggest that the students actually had the misconception. Also, 
we used the interview data to seek possible explanations (from the students’ point of 
view) for the “inconsistencies” that we identified in their scripts. 

RESULTS 
General Findings 
Our analysis of the survey scripts showed that 16 out of the 28 students interviewed 
exhibited some evidence to suggest the existence of the misconception that a proof 
and a counterexample can coexist. Of these, ten scripts showed strong evidence and 
six showed weak evidence for the misconception. Our subsequent analysis of the 
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interview data revealed that the students in each group (i.e., strong or weak evidence 
group) tended to offer similar justifications for their choices.   
Regarding the strong evidence group, our interview data suggested that the 
inconsistencies in students’ responses derived from them considering Ben’s and 
Carol’s solutions in isolation from one another when they were completing the 
survey. While discussing their responses with the interviewers, however, all the 
students in this group became aware of the potential inconsistency between their 
evaluations of Ben’s and Carol’s solutions, presumably because the interviewers’ 
questions directed (implicitly or explicitly) students’ attention to the relationship 
between their evaluations. Yet, the manner in which the students became aware of 
this inconsistency and how the awareness played out in the interviews varied. 
On the one hand, some students realized the mistake in Carol’s solution without any 
prompting from the interviewers and immediately dismissed her solution. As a result 
of this dismissal, there was no opportunity for the interviewers to explore further 
whether these students would experience any sense of conflict that a proof and a 
counterexample can coexist. On the other hand, some other students needed explicit 
prompting from the interviewers to reflect on whether or how their evaluations of 
Ben’s and Carol’s solutions fitted together before they appreciated the potential 
inconsistency between these evaluations. Believing that Carol had found a genuine 
counterexample, these students attempted to resolve the emerging conflict by 
assuming there was a flaw in Ben’s argument, which however they were unable to 
identify. The interviewers then helped these students see the mistake in Carol’s 
solution and realize it was not a genuine counterexample. As a result of this 
realization, the students subsequently rejected Carol’s solution, but this rejection was 
not always accompanied with endorsement of Ben’s solution as a proof. 
Regarding the weak evidence group, our interview data suggested that the students in 
this group seemed to be aware of the following ‘inconsistency’ we identified in their 
scripts: the students pointed out the mistake in Carol’s solution in their response to 
the open-ended questions, but in the first multiple-choice question for Carol’s 
solution they agreed that the solution showed the statement was not true.   
During the interviews, the students argued, with different degrees of clarity, that, in 
spite of the mistake in Carol’s solution, her reasoning should be valued because her 
logic was correct and she had disproved a statement, albeit a different one from that 
in the problem. Consequently, none of these students changed their minds about their 
evaluations of Carol’s solution during the interview. The issue of the misconception 
was not pursued further by the interviewers, as the students were already aware that 
Carol’s argument was not a counterexample to the particular statement. 
To sum up, there is no evidence from our interviews to suggest that any of the 16 
students we originally identified as potentially having the misconception actually had 
it. Furthermore, the interview data showed that any potential conclusions that could 
be drawn from the survey data alone would be insecure, as students appeared to have 

WORKING GROUP 2

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 316



  
good reasons for ‘inconsistencies’ we identified in their scripts. For this reason we do 
not report findings with students we did not interview.  
Illustrative Case 1: The Case of Emily 
The first case is of a student we call Emily, whose responses to the survey showed 
strong evidence of the misconception. Emily’s script had “agree” in the first multiple-
choice question for Carol’s solution and “don’t know” in the corresponding question 
for Ben’s solution. Furthermore, in response to the second open-ended question, 
Emily wrote that both Ben and Carol would receive the highest marks from the 
teacher and justified her thinking as follows:  

Ben:  It [Ben’s solution] is carefully thought out and written down in an 
understandable and clear manner. 

Carol:  She has shown when it [the statement] is not true. 

During the interview Emily explained her thinking about Carol’s solution as follows:  
The question was saying [that] when two of them [the visible numbers on the cards] were 
even that the answer is always 27, but she proved that it’s not, so she answered the 
question that was being asked. 

In regard to Ben’s solution, Emily said:  
It [Ben’s answer] was very, like, well set out and easy to understand and I think that was 
how I would have done it cause the other answers are like gabbling on a bit and they 
don’t really explain why it’s [the statement is] true or false. 

She explained further that her “don’t know” response in the first multiple-choice 
question for Ben’s solution was because Ben “didn’t show that it’s always true, he 
only showed it for some numbers.” When asked whether she thought Ben had a 
proof, Emily said that Ben “needed to maybe expand it [his solution] a bit more to 
convince people that it was true” and noted that Ben could come up with a proof if he 
worked a bit harder on his solution.   
After summarizing what Emily said about the two arguments, the interviewer asked 
Emily how her two evaluations fitted together. Realizing the inconsistency between 
the evaluations, Emily laughed and said: “they don’t [fit together] because Carol’s 
proved that it’s wrong and so it’s impossible to prove that it’s true… cause it’s not 
true!” Asked what she thought was going on with the two arguments, Emily asserted:  

They [Ben and Carol] have both tried different ways and got different answers, so if they 
kept working at it, if Ben kept working on his [solution], he would eventually figure out 
that it’s not true.  

The interviewer then helped Emily to see the mistake in Carol’s solution. Once Emily 
realized the mistake, she exclaimed: “Oh, so she [Carol] could be wrong… so hers is 
wrong then.” On reviewing her original responses to the multiple-choice questions 
for Carol’s solution, Emily decided to change her response to the first question from 
“agree” to “disagree,” because, as she said, Carol “hasn’t followed the instruction.” 
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Emily concluded that Ben’s solution “might be true” but she decided not to change 
her responses to the multiple-choice questions for his solution. 
Illustrative Case 2: The Case of Evans 
The second case is of a student we call Evans, whose responses to the survey showed 
weak evidence of the misconception. Evans’ script had “agree” in the first multiple-
choice questions for both Ben’s and Carol’s solutions, an indication of the existence 
of the misconception. Furthermore, Evans’ responses to the first two open-ended 
questions showed particular appreciation of Ben’s solution: he wrote that Ben’s 
solution would be close to what he would do and that the solution would get the 
highest mark from his teacher “[b]ecause [it] shows working and offers convincing 
proof.” Yet Evans’ response to the third open-ended question offered disconfirming 
evidence of the existence of the misconception as it indicated that he was aware of the 
mistake in Carol’s solution and said that Carol’s answer would get the lowest mark 
from the teacher. In a series of two interviews, we tried to understand the reasoning 
for the apparent contradiction in Evans’ evaluation of Carol’s solution. 
Evans was aware that Carol’s solution had a mistake in it, but on the basis that she 
applied a correct mathematical method and that this application warranted 
recognition, he consciously agreed that she had shown the statement was not true. 

Well what she [Carol] has done is like impossible because 1 and 2 can’t be seen at the 
same time, so then I would have disagreed because that can’t be true. But seeing as 
though she has shown that she’s thought it through and like, with her own reasoning 
she’s come to an answer, then I would have put she technically has [shown the statement 
is not true] but she’s got it wrong. […] Carol tried to prove the statement wrong, so one 
counterexample was enough. She had the logic right but she didn’t succeed to come up 
with a correct counterexample.  

This interview excerpt shows that Evans evaluated Carol’s solution from her own 
point of view and that he understood the fundamental idea that a single 
counterexample suffices to refute a general statement. Evans considered that Carol’s 
solution embodied understanding of the latter idea, even though the counterexample 
she offered did not satisfy, as he observed, the problem’s conditions.   
When pressed by the interviewer to explain his thinking further, Evans described the 
different evaluation standards that he perceived existed in exams and in class work:  

In an exam you don’t get marks for the proof, do you?  You get marks for showing your 
working and actually getting the answer in the end.  But it [Carol’s solution] does show 
the proof and everything.  I don’t know, it depends on what sort of question it is… if it’s 
like what we’re doing proof and stuff [referring to the proof work in class] then that 
[Carol’s solution] would probably get the highest mark if that was what it was marked 
on… but in the exam it would be marked differently because it’s not about how you are 
thinking, it’s about getting the answer and getting the working and everything right. 
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The interviewer did not raise explicitly the issue of the possible coexistence of a 
proof and a counterexample, as Evans was clearly aware that Carol’s argument was 
not a valid counterexample to the particular statement in the problem. 

DISCUSSION 
Although our analysis of the survey data alone offered considerable evidence (both 
weak and strong) for the existence of the misconception that a proof and a 
counterexample can coexist, our subsequent analysis with the inclusion of the 
interview data showed no evidence of the misconception. The size of the mismatch 
between the findings of the two analyses might have been influenced by what we 
considered as evidence for the possible existence of the misconception in our analysis 
of the survey data. Nevertheless, the existence of the mismatch reinforces and 
exemplifies the point that student responses to surveys may, by themselves, offer a 
rather limited insight into students’ conceptions and that follow-up interviews with 
selected students are important for the construction of a more trustworthy picture of 
students’ conceptions.   
The latter statement is more than a reiteration of the well known methodological 
principle that triangulation of multiple data sources allows the examination of 
research questions in more nuanced ways than when using a single data source. The 
statement is also a cautionary remark that conclusions about students’ conceptions 
that are based only on analysis of students’ responses to surveys may be seriously 
misleading. This should not be taken as a criticism of the use of surveys in examining 
educational issues in general, but rather as a concern that the complexity that 
surrounds the particular issue of students’ conceptions about multifaceted 
mathematical ideas may not be possible to be illuminated satisfactorily on the basis 
only of survey data. Of course this is not a black and white situation. The extent to 
which survey data alone can help illuminate complex issues depends on several 
factors: the methods that were used to validate a survey, the kinds of questions 
included in the survey, the conditions under which the survey was administered, the 
coding scheme used to analyse the survey data, etc.  
In spite of the limitations in the conclusions that could be drawn based on the survey 
data alone, the survey offered a meaningful context in which we discussed during our 
interviews with students their ideas about the possible coexistence of a proof and a 
counterexample. This discussion was done with reference to Ben’s deductive 
argument, which could be considered a proof, and Carol’s purported counterexample. 
Carol’s argument worked particularly well for the purposes of our research, as the 
subtle mistake in it passed unnoticed by several students, thereby helping us meet the 
challenge of presenting the students with a believable “counterexample” to a true 
statement. Ben’s argument did not work as well as Carol’s argument: students like 
Emily recognised the value of Ben’s argument, but they did not accept it as a proof, 
primarily because they thought it needed “unpacking.” The fact that some students 
did not consider that Ben’s argument qualified as a proof gave them an “easy” way to 
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resolve the problematic situation regarding the possible coexistence of a proof and a 
counterexample: these students suspected a mistake in Ben’s argument and thus felt 
less hesitant to endorse Emily’s counterexample. Given that the statement in the 
problem was true, it would not be difficult to strengthen Ben’s argument in the survey 
so that more students would accept it as a proof; this modification in the survey 
would increase its potential to elicit students’ conceptions about the possible 
coexistence of a proof and a counterexample.   
Future research on students’ conceptions in this area can use this modified version of 
the survey. Also, it would be useful if future research used an additional problem that 
asked students to evaluate a valid counterexample and a believable “proof” for a false 
statement. This would complement our examination in this study, thus contributing to 
the development of a more comprehensive approach to eliciting students’ conceptions 
about the possibility of having a counterexample and a proof for the same statement. 
The fact that our research did not reveal this misconception does not mean that there 
are no students who have it; less advanced students, younger students, or students 
with fewer experiences with proof are more likely to have the misconception than the 
students who participated in our research.   
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ABDUCTION AND THE EXPLANATION OF ANOMALIES:  
THE CASE OF PROOF BY CONTRADICTION♠ 

Samuele Antonini*, Maria Alessandra Mariotti** 
* Department of Mathematics, University of Pavia, Italy 

** Department of Mathematics, University of Siena, Italy 
Some difficulties with proof by contradiction seem to be overcome when students 
spontaneously produce indirect argumentation. In this paper, we explore this issue 
and discuss some differences between indirect argumentation and proof by 
contradiction. We will highlight how an abductive process, involved in generating 
some indirect argumentation, can have an important role in explaining the absurd 
proposition, in filling the gap between the final contradiction and the statement to be 
proved and in the treatment of impossible mathematical objects.   
Key words: proof, argumentation, abduction, proof by contradiction, indirect 
argumentation.  
INTRODUCTION 
The relationship between argumentation and proof constitutes a main issue in 
mathematics education. Research studies have been based on different theoretical 
assumptions, proposing different approaches and consequently different didactical 
implications (Mariotti, 2006). In some studies (see, for example, Duval, 1992-93), a 
distance between argumentation and proof is claimed, while in others, without 
forgetting the differences, the focus is put on the analogies between the two processes 
and their possible didactical implications (Garuti, Boero & Lemut, 1998; Garuti & 
al., 1996). As a consequence, the authors hold the importance for students to deal 
with generating conjectures, and highlight that this activity can promote some 
processes that are relevant in developing students’ competences in mathematical 
proof. 
Elaborating on this first hypothesis, concerning the continuity between the 
argumentation supporting the formulation of a conjecture and the proof subsequently 
produced, Pedemonte (2002) developed the theoretical construct of Cognity Unity in 
order to describe the relationship (continuity or break) between the argumentation 
process and the related mathematical proof in the activity of conjecture’s production.  
In this paper, we aim to investigate the relationships between argumentation and 
proof in the case of proof by contradiction. The reference to the framework of 
Cognitive Unity is of the interest for this study for the following reason. Although 
important difficulties have been identified in relation to this type of proof (see 
Antonini & Mariotti, 2008; 2007; Mariotti & Antonini, 2006; Antonini, 2004; 
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Stylianides, Stylianides & Philippou, 2004; Wy Yu, Lin & Lee, 2003; Thompson, 
1996; Leron  1985), in the literature we find evidence of arguments, spontaneously 
produced by students, that can be considered very close to proof by contradiction (see 
Antonini 2003; Reid & Dobbin, 1998; Thompson, 1996; Freudenthal, 1973; Polya, 
1945). In fact, as reported by Freudenthal:  

“The indirect proof is a very common activity (‘Peter is at home since otherwise the door 
would not be locked’). A child who is left to himself with a problem, starts to reason 
spontaneously ‘... if it were not so, it would happen that...’ “ (Freudenthal, 1973, p. 629) 

We call indirect arguments the arguments of the form ‘if it were not so, it would 
happen that…’. Indirect arguments seem to be more like to appear in the solution of 
open-ended problems, as a natural way of thinking in generating conjectures, when 
one needs to convince oneself that a statement is true, or to understand because a 
statement is true.  
Therefore, it is seems important to study differences and analogies between proof by 
contradiction and indirect argumentation, and this is what we are going to do in the 
following sections.   
DIFFICUTIES WITH PROOF BY CONTRADICTION 
According with the terminology of the model presented in (Antonini & Mariotti, 
2008, 2007), given a statement S, that we called a principal statement, a proof by 
contradiction consists in a couple of proofs: a direct proof of another statement S*, 
that we call the secondary statement, in which the hypotheses contain the negation of 
S and the thesis is a contradiction (or a part of it); and a meta-theorem stating the 
logical equivalence between the two statements, the principal and the secondary. 
Here, we analyse two aspects and their relationships: the link between the principal 
statement and the contradiction achieved through the proof of the secondary 
statement; the treatment of impossible mathematical objects in both the 
argumentation and the proof. 
The link between the contradiction and the principal statement 
The link between the final contradiction and the principal statement is a source of 
difficulties for students (see Antonini & Mariotti, 2008). It can happen that such 
difficulties are openly shown when they appear astonished and disoriented after the 
deduction of an absurd proposition. This is the case for example of Fabio, a 
university student (last year of the degree in Physics), who explains very well this 
type of difficulty: 

Fabio: Yes, there are two gaps, an initial gap and a final gap. Neither does the initial gap 
is comfortable: why do I have to start from something that is not? […] However, the final 
gap is the worst, […] it is a logical gap, an act of faith that I must do, a sacrifice I make. 
The gaps, the sacrifices, if they are small I can do them, when they all add up they are 
too big. My whole argument converges towards the sacrifice of the logical jump of 
exclusion, absurdity or exclusion… what is not, not the direct thing. Everything is fine, 
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but when I have to link back… [Italian: “Tutto il mio discorso converge verso il 
sacrificio del salto logico dell’esclusione, assurdo o esclusione… ciò che non è, non la 
cosa diretta. Va tutto bene, ma quando mi devo ricollegare...”] 

Fabio identifies two gaps (he speaks also of a “jump”!) in a proof by contradiction: an 
initial gap and a final gap. According to our model, the initial gap corresponds to the 
transition from the statement S to the proof of S*, and the final gap corresponds to the 
opposite move, from the proof of S* to the conclusion that S is proved. The 
perception of these gaps makes Fabio feel unsatisfied, as if something were missing. 
In fact, he can accept the proof but he is not convinced, as he says it is “an act of faith 
that must be done”. 
The treatment of impossible mathematical objects 
It may happen that, at the beginning of a proof by contradiction, some of the 
mathematical objects have some characteristics that are absurd and strange, in an 
evident way. These mathematical objects are proved to be impossible in some theory. 
For this reasons, difficulties can emerge in the treatment of these absurd objects. As 
discussed in (Antonini & Mariotti, 2008; Mariotti & Antonini, 2006) difficulties may 
occur in the construction of the proof of S*, but difficulties may also emerge after the 
proof of S* is achieved, when absurd objects have to be discarded. In fact, at the end 
of a proof of S*, once a contradiction is deduced, one has to realize that some of the 
objects involved do not exist; actually, they have never existed. As explained by 
Leron: 

“In indirect proofs […] something strange happens to the ‘reality’ of these objects. We 
begin the proof with a declaration that we are about to enter a false, impossible world, 
and all our subsequent efforts are directed towards ‘destroying’ this world, proving it is 
indeed false and impossible. We are thus involved in an act of mathematical destruction, 
not construction. Formally, we must be satisfied that the contradiction has indeed 
established the truth of the theorem (having falsified its negation), but psychologically, 
many questions remain unanswered. What have we really proved in the end? What about 
the beautiful constructions we built while living for a while in this false world? Are we to 
discard them completely? And what about the mental reality we have temporarily 
created? I think this is one source of frustration, of the feeling that we have been cheated, 
that nothing has been really proved, that it is merely some sort of a trick - a sorcery - that 
has been played on us.“ (Leron, 1985, p. 323). 

Our research interest is in exploring whether and how these difficulties may be 
overcome when students spontaneously produce indirect argumentation. Two 
elements seem important to take into account: on the one hand the indirect 
argumentation as a product and its differences with a proof by contradiction, on the 
other hand the processes involved in producing the argumentation (see also Antonini, 
2008). In this paper we focus on the hypotheses that in many cases the students try to 
fill the gap between the contradiction and the statement in order to re-establish a link 
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and at the same time to give a new meaning to the “objects of the impossible world”, 
so that they can be modified without being discarded.  
THE ABDUCTIVE PROCESS 
Abduction is one of the main creative processes in scientific activities (Peirce, 1960). 
Magnani defines abduction as 

“the process of inferring certain facts and/or laws and hypotheses that render some 
sentences plausible, that explain or discover some (eventually new) phenomenon or 
observation; it is the process of reasoning in which explanatory hypotheses are formed 
and evaluated” (Magnani, 2001, pp. 17-18).  

The main characteristic of abduction is that of deriving a new statement that has the 
power of enlightening the relationship between the observation and what is known. 
Many studies in mathematics education have dealt with abductive processes in 
students thinking: in problem-solving activities (Cifarelli, 1999), in generation of 
conjectures (Ferrando, 2005; Arzarello et al., 2002; Arzarello et al., 1998), 
argumentation and proofs (Pedemonte,  2007).  
In this paper, through the analysis of a case study, we will show how an abductive 
process could assume a fundamental role in the production of indirect argumentation. 
Through an abduction a new statement is produced that has no logical need but 
allows one to make sense of the absurd and strange proposition and, in this way, to 
overcome the gap between the contradiction and the principal statement.  
A CASE STUDY 
The following open-ended problem was proposed to Paolo and Riccardo (grade 13), 
two students that, according to the evaluation of their teachers, are high achievers.  
Problem: What can you say about the angle formed by two angle-bisectors in a 
triangle? 
What follows is an excerpt of their interview. After a phase of exploration, the 
students generated the conjecture that the angle S (figure 1) is obtuse. Afterwards, the 
students started to explore the possibility that the angle S might be a right angle. 

61  P: As far as 90, it would be 
necessary that both K and H are 
90 degrees, then K/2 = 45, H/2 = 
45...180 minus 90 and 90 degrees. 

62 I: In fact, it is sufficient that the sum 
is 90 degrees, that K/2 + H/2 is 
90. 

63 R: Yes, but it cannot be. 

64 P: Yes, but it would mean that K+H 
is ... a square […] 

Figure 1: The angle between two 
angle bisectors in a triangle.
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65 R: It surely should be a square, or a parallelogram 

66 P: (K-H)/2 would mean that […] K+H is 180 degrees... 

67 R: It would be impossible. Exactly, I would have with these two angles 
already 180, that surely it is not a triangle. 

[…] 
80 R: [the angle] is not 90 degrees because I would have a quadrilateral, in fact 

the sum of the two angles would be already 180, without the third angle. 
Then the only possible case is that I have a quadrilateral, that is, the sum 
of the angles is 360.  

The episode can be subdivided in three parts: the development of a first 
argumentation  (61-63), the introduction of a new figure, the parallelogram (64-67), 
the production of the final argumentation (80). This last argumentation is expressed 
by Riccardo, after the students are explicitly asked to write a mathematical proof. 
The argumentation developed in the first part (61-63) is indirect: assuming that the 
angle between two angle bisectors of a triangle is a right angle, the students deduce a 
proposition that contradicts a well known theorem of Euclidean Geometry. From the 
logical point of view, the deduction of the contradiction would be sufficient to prove 
that this triangle does not exist, or, equivalently, that the angle S is not right, thus 
concluding the argumentation. But, although convinced that the angle S cannot be a 
right angle, the students do not feel that the argumentation is concluded and they look 
for an explanation for the anomalous situation. In fact, the subsequent part (64-67) 
seems to have the goal to complete the argumentation; in particular, the students 
seem to look for an explanation to the false proposition “K+H=180° ”. An 
explanation is found by formulating a new hypothesis: the figure is not a triangle, it is 
a parallelogram. In this case, it is true that the sum of two adjacent angles (K+H) is 
180. In search of an explanation the original triangle fades becoming for the students 
an indeterminate figure that have to be determined in order to eliminate the 
anomalous consequences. In 67, Riccardo makes clear that the figure can be 
transformed during the argumentation. His expression “surely it is not a triangle” 
means “this figure is not a triangle” and it must be something else. Differently, in a 
proof by contradiction, as the proof that could arise from the first part of the 
argumentation (61-64), the figure is well determined, it is a triangle and it is not 
possible to modify it. Once a contradiction is deduced, it is proved that this figure 
does not exist. In this case, the triangle would be part of the “false, impossible world” 
and it would have had a temporarily role: at the end of the proof we know that it does 
not exist. Actually, it has never existed. 
When the new case is selected and because this new case can solve the anomaly, 
Paolo and Riccardo seem to be satisfied. In 80, Riccardo summarizes the 
argumentation in what for him is a mathematical proof. The fact that the angle S is 
not right is not proved by contradiction but is based on the analysis of different cases: 
triangle, square, parallelogram. The figure is determined, and it is not a triangle, as 
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we have thought at the beginning of the argumentation. This argument seems very 
convincing for students, more than the argument based on deriving a contradiction. 
The key point in the development of the argumentation is the generation of the new 
case that is the identification of the parallelogram. This process can be classified as 
an abduction, in fact an explanatory hypothesis is produced and evaluated, as 
Riccardo says “[the quadrilateral] it is the only possible case”.   
The assumption of the parallelogram transforms a false into a true proposition. This 
argument allows students to overcome some of the difficulties that might be raised by 
a proof by contradiction (figure 2). In particular:  

 
Figure 2: An abductive process in an indirect argumentation 

• The false proposition - “in a triangle the sum of two angles is 180°” – 
becomes a true proposition related to the new explanatory hypothesis (in a 
parallelogram the sum of adjacent angles is 180°);  

• The mathematical object (the triangle) is considered an indeterminate object 
that is identified only through the abduction with the goal to explain the 
anomaly. Then the mathematical object is changed and not discarded as it 
happens in a proof by contradiction. The problem of treatment of 
mathematical object at the end of proof by contradiction highlighted by Leron 
(1985) is bypassed. 
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• Differently to what happens with proof by contradiction, a link, that is not 
only logical, between the secondary statement and the principal statement, is 
constructed: it is not possible that S is right because otherwise the triangle 
would become a quadrilateral. 

As the previous example shows, in geometry, the identification of the case that can 
explain the anomaly and allow getting out of the “impossible world” seems to be 
related to the transformation of figures. Most of the students asked to solve the 
problem of angle bisectors provided arguments based on transforming the triangle in 
a quadrilateral or in two parallel lines.  
Further researches are necessary to corroborate this hypothesis and investigate 
whether it can be extended to other context. In fact we hypothesize that also in 
contexts other than Geometry abduction can be for students the key to come out from 
the anomalous situation that occurs in proof by contradiction. In order to support this 
extension to other contexts, we report now a short episode concerning the algebra 
domain. 
ABDUCTION AND PROOF BY CONTRADICTION IN ALGEBRA: AN 
EXAMPLE 
In a questionnaire proposed to 68 secondary school students (grade 10, 11, 12) and 19 
university students, a proof by contradiction of the incommensurability of the 
diagonal of a square with its side was presented. We aimed to investigate the 
recognition and the acceptability of this type of proof. In the presented proof, it is 
assumed that the ratio is a rational number, expressed by the fraction m/n where m 
and n are two natural numbers (with n different from 0). Then it is deduced that the 
number n is both odd and even. The students were asked to choose one of the 
following answers to explain what it is possible to conclude: 

a) This is not a proof  
b) There is a mistake in some passages, but I can not identify it 
c) There is a mistake, that is (specify the error): .......................................... 
d) We have not proved anything, because being even or odd has nothing to do with 
what we wanted to prove 
e) We have proved what we wanted, in fact:…………………………………… 
f) Other (specify): 

The 25 per cent of the students gave the correct answers and the 35 per cent chose the 
answer d). This expresses the feeling that something is missing and let us suppose the 
need to see a link between the contradiction and the statement. A hint in this direction 
comes from one of the answers. One student (grade 12) marked the correct answer 
and explained:  

“we have proved what we wanted in fact one of the two numbers [the number n] is not a 
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natural number and then the ratio is not a ratio between two natural numbers” 

The argument provided does not refer to what could be recognized as the meta-
theorem, explaining the logical equivalence between the principal statement and the 
secondary statement, and thus rejecting the existence of the mathematical object m/n. 
Differently, this student does not reject the initial assumption that the ratio is rational 
from the contradiction “n is even and odd”, rather he changes the nature of the 
number n coherently (in his opinion) with the deduced proposition. If m/n is not a 
rational number, as we have believed before, everything is explained.  
Inferring the explaining hypothesis that number n, odd and even at the same time, is 
not a natural number is the product of an abduction. The hypothesis that n is not a 
natural number can explain the anomaly “n is odd and even” and, at the same time, it 
offers a link between the deduced proposition and the principal statement: n is not a 
natural number and then the ratio m/n is not a rational number. A link between the 
contradiction and the statement is now established and the proof can be accepted. 
CONCLUSIONS 
Main difficulties with proof by contradiction are related to the link between the 
contradiction and the statement to be proved, to the treatment of the impossible 
mathematical objects during the construction of the proof and at the end, to the need 
of discarding the mathematical objects involved in the proof of the secondary 
statement. The feeling of frustration that may emerge at the end of a proof by 
contradiction, as clearly expressed by Fabio’s words, is accompanied by the need of 
giving a meaning to the absurd proposition, the need of establishing a stronger link 
with the principal statement and adjusting the “false, impossible world”. 
The analysis of the episodes proposed above shows how abductive processes may be 
mobilized to produce explanatory hypotheses. The system of relationships 
represented in the diagram of figure 2 shows the key role of the abductice process and 
highlights some differences between indirect argumentation and proof by 
contradiction.  
Interpreting these results in terms of Cognitive Unity leads us to point out the 
distance between indirect argumentation as it is spontaneously developed and the 
scheme of a proof by contradiction. In particular, it clearly appears the distance 
between the meta-theorem - providing the equivalence between the principal and the 
secondary statement - and the abductive process that might emerge in an indirect 
argumentation. The question rises whether and how such distance can be filled 
through an appropriate didactical intervention. 
Of course, further investigation is necessary to better understand the differences 
between argumentation and proof by contradiction and to identify and analyse other 
processes that could be important for the production and the development of indirect 
argumentation.  
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We think that the comprehension of these processes is fundamental for teachers to 
identify, explain and treat students’ difficulties with proof. We also believe that 
indirect argumentation, even if it presents significant differences with proof by 
contradiction, should be promoted, in particular through open-ended tasks. As 
Thompson writes: 
“If such indirect proofs are encouraged and handled informally, then when students study 
the topic more formally, teachers will be in a position to develop links between this informal 
language and the more formal indirect-proof structure.” (Thompson 1996, p.480) 

As regards the transition from the argumentation to proof by contradiction, further 
researches are necessary to identify the tools to construct the didactical activity to 
face the gaps and promote the acceptability of method of proof by contradiction. 
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APPROACHING PROOF IN SCHOOL: 
FROM GUIDED CONJECTURING AND PROVING 

TO A STORY OF PROOF CONSTRUCTION 
Nadia Douek 

IUFM de Nice, UMR – ADEF Université de Provence 
This paper presents some aspects of an ongoing research aimed at leading students 
(through activities of conjecturing, guided construction of proof and story making of 
the rationale of the proof) to become aware of some salient features of proving and 
theorems. Theoretical elaboration as well as an example of didactic engineering 
concerning Pythagoras' theorem will be outlined. 

I   INTRODUCTION 
School approach to theorems has been a subject of major concern for mathematics 
education in the last two decades. Students' learning to produce proofs and their 
understanding of what does proof consist in (Balacheff, 1987) have been considered 
under different perspectives and with different aims: among them, how to make the 
students aware of the differences between proof and ordinary argumentation (Duval, 
1991, 2007); how to favour students' access to the theoretical character of proof 
(M.A.Mariotti, 2000); how to exploit "cognitive unity" (which for some theorems 
allows students to exploit the arguments they produced in the conjecturing phase to 
construct the proof) in order to smooth the school approach to theorems (Boero, 
Garuti & Lemut,  2007); in what cases of cognitive unity do students meet difficulties 
in the passage from an inductive or abductive reasoning, to the deductive 
organization of arguments (lack of structural continuity: Pedemonte, 2007, 2008); 
what are the common aspects  between ordinary argumentation and proving, and how 
to prepare students to proving by relying on those aspects (Douek, 1999a, 1999b; 
Boero, Douek & Ferrari, 2008). Previous research work helps us to formulate and 
situate some educational problems that arise in the school approach to theorems: how 
to tackle theorems for which  cognitive unity does not work, or (if cognitive unity can 
work) when students meet important difficulties due to the lack of structural 
continuity? How to make the students aware of some salient characters of proving 
and proof? And how to lead them into some specific competencies of proving 
activity? In this paper we propose a possible way to tackle these problems in an 
integrated way.  The idea is to guide students' constructive work on proving, then to 
help them focusing on the characteristics of the organisation of proof.  
This paper presents a theoretical and pragmatic elaboration about how to deal with  
theorems for which cognitive unity does not work, and approach the rationale of a 
proof at first stages of proof teaching and learning. The theoretical elaboration also 
frames the accompaniment of students through two aspects of proving activity:  
exploration (in order either to find a statement, or to find reasons for validity of a 
statement); and organisation of  reasons (or arguments), in the perspectives of 
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producing a proof, or  of understanding the links between statements or arguments in 
a proof. Our hypothesis is that the rationale of a proof can be approached early in the 
school context through “story making” situations, preceded by suitable activities of 
conjecturing and guided proof construction, and related classroom discussions. We 
provide an example of such a didactical engineering concerning Pythagoras' theorem.  

II   FRAMING PROOF CONSTRUCTION  
Inspired by Lolli's analysis of proof production (see Arzarello, 2007), we consider 
proving as a cognitive, culturally situated activity engaging four modes of reasoning: 
1) Heuristic exploration. It occurs when one tries to interpret a proposition or to 
produce a proposition or an example. One has in mind a target but the main focus is 
not on attaining the target through an acceptable mathematical reasoning. Any 
accidental event, writing, metaphor, may move the exploration activity. This type of 
reasoning is typically open to divergent paths.  
2) Organisation of reasoning, making explicit the threads of reasoning holding 
propositions together. When a proposition seems pertinent, a calculation promising, a 
writing efficient, one searches for a convincing coherent link to a local goal or to the 
global one. The links may be theoretical reasons of validity.  The intentional and 
planning characters are typical of this mode, and abduction is a good example of it. 
Deductive reasoning is not yet a priority. Such organisational intention may concern 
partial arguments or the whole of the argumentation aimed at proof construction. 
3) Production of a deductive text following mathematicians' norms. Once ideas of 
proof are brought to light, they must be organised in a deductive reasoning. 
4) Formal structuring of the text, to approach a formal derivation. This mode will not 
at all be approached in the school context we are considering. 
These four modes could be considered as successive phases of a proof construction,  
as different moments with different intentions. But in fact, as reasoning modes, they 
seldom do appear separately. Not only the succession of modes can vary and loop, 
but even two or more of them may intervene very closely in one phase aiming mostly 
at exploring or at writing a deductive text, for instance.  
Methodologically, the consideration of these  phases based on a cognitive analysis in 
terms of the four modes offers didactical tools to organise teaching-learning 
situations into sequences with clear didactical goals. As we refer to phases of 
predominant modes of reasoning, a didactical goal can be to lead the students to be 
aware of the processes they have to go through within a specific phase, essentially to 
favour students openness in exploration and their rational control in organising 
reasoning. But no exploration is blind nor any reasoning organising is totally 
controlled: when we analyse a phase of exploration activity, we ought to capture 
some reasoning organising activity, etc... (see sequence 1, in V).  
The different modes and phases of reasoning involve several cultural rules of validity, 
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and they affect the delicate game of changes from what is allowed or even needed for 
one mode, to what is allowed or needed for another. For instance abductive reasoning 
is typical of mode 2 but is not allowed in modes 3 and 4, and student will have to 
move from it towards deductive reasoning, which is not  easy. We can also consider 
the use of examples (pertinent in mode 1 and 2 but not acceptable in modes 3 and 4), 
and the conscious handling and conversion of different semiotic registers according 
to different modes of reasoning (Morselli, 2007; Boero, Douek & Ferrari, 2008). 
This analysis leads us to give a special role to argumentation both as an intrinsic 
component of reasoning, and as a didactical tool to manage the different modes of 
reasoning and the relationships between them in a conscious way, keeping into 
account specific cultural rules (to be mediated by the teacher). 

III ARGUMENTATION IN PROOF AND PROVING  

In this paper, an "Argument" will be "A reason or reasons offered for or against a 
proposition, opinion or measure" (Webster), including verbal arguments, numerical 
data, drawings, etc. An "Argumentation" consists of one or more logically connected 
"arguments".  Proof itself is an argumentation. But other argumentations play an 
important role in proving.  Mode 2 is specially based on argumentative activity: 
discussing the use of a theory or a mathematical frame to produce a step of reasoning 
relies on a meta-mathematical argumentation (Morselli, 2007). It is not really part of 
a proof, but is needed to produce it. Analogies may implicitly affect mode 1 reasoning 
or be explicit arguments in mode 2 (Douek, 1999a, 1999b). 
For teaching and learning purposes, argumentation  is a fruitful means to control the 
validity of reasoning (as the legitimate use of examples and, or transitions from one 
mode of reasoning to another with their different cultural rules).We are therefore 
interested in two levels of argumentation: as part of the proving tasks, specially for 
producing and organising arguments (mode 2); and in discussing procedures, as a 
means to assimilate and master elements of proving processes. 
Convergent structure of argumentation in a proof 
In general, an argumentation is made of more elementary ones that may be organised 
in various ways (converging towards a conclusion, or being parallel as when 
producing different explanations, etc.). In a proof, the elementary argumentations 
may form a linear chain, each conclusion being input as an argument for the 
following argumentation, thus forming one whole "line of argumentation". But in 
many cases of proof, argumentation may contain parentheses "blocks", or side 
argumentation branches that meet the main line to input a supplementary data or 
argument. A parenthesis might be considered as a secondary line of argumentation. 
This description underlines the possible hierarchical relations between various 
argumentations involved in a proof (Knipping, 2008), which is a difficult matter for 
students who are being introduced to proof  (see the Example for a suggestion).   
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IV EDUCATIONAL ASPECTS 

In the early stages of proof teaching and learning, students can be smoothly 
introduced to theorems and proofs by conjecturing and proving activities provided 
that cognitive unity works (Boero, Garuti & Lemut, 2007). In particular exploratory 
activity (Mode1) and justification (Mode 2) can be introduced at early stages. In a 
suitable educational environment, 7th and 8th graders are able to produce conjectures 
for non trivial arithmetic or geometric situations, and move (under a loose guidance 
by the teacher) towards constructing  general justifications. Comparison of students' 
productions and classroom discussions about them, orchestrated by the teacher 
(Bartolini Bussi, 1996; Bartolini Bussi & al, 1999) allow students to appreciate some 
relevant cultural requirements of conjectures and proofs, like their generality and the 
conditionality of statements (Boero, Garuti & Lemut, 2007), and to become aware of 
processes favouring conjecturing and proving. 
In the following we will focus on mode 2 reasoning, specially in the organisation of 
reasoning phases; then in the didactical engineering we will also consider mode1 
more specially related to conjecturing. 
In spite of their usefulness to initiate students into conjecturing and proving, in those 
cases in which cognitive unity works well, with no difficulties due to the lack of 
structural continuity (Pedemonte, 2007, 2008), the peculiar argumentative structure of 
a proof does not emerge as an object of reflection for students. Indeed the fact that 
both easy-to-prove theorems must be proposed for a smooth approach to theorems, 
and that the students themselves are able to enchain the arguments in an autonomous 
way, make artificial and rather empty the discussion about the specific argumentative 
arrangement of those arguments.  However students must be enabled to move from 
theorems for which cognitive unity works to theorems (like Pythagoras') for which 
proof cannot consist in the deductive arrangement of arguments produced by 
conjecturing. For other theorems students can meet difficulties in moving from 
creative ways of thinking (abduction, induction) typical of conjecturing to deductive 
arrangements of the produced arguments  (Pedemonte, 2007). In both cases proving 
needs a strongly guided activity; and teachers' guidance can even initiate students into 
the mechanisms inherent in the Mode 2 reasoning, and open the perspective of Mode 
3. Drawing from theoretical reflections, we make the hypothesis that the inherent 
argumentative activities could be promoted through debates (with real others) about 
arguments and their relations on one side, and story making on the other.  
The debate 
Classroom debates, if well oriented and guided, stimulate efforts of expression and 
explanation. These efforts, in turn, favour the consciousness of the logical rules and 
their range of validity. For instance, discussing a statement may bring students to 
methodological and meta mathematical reflections such as: producing an example to 
support the statement can be an efficient step in the exploratory phase, but is not a 
valid argument when organising a general mathematical justification; some semiotic 
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registers (like drawing) are crucial for exploration, and may be for organising  
reasoning, but insufficient to produce a suitable argument in a deductive reasoning.  
Such discussions question cultural rules of mathematical reasoning and mathematical 
knowledge too. Also the relation between arguments and the construction of lines of 
argumentation (mode 2) can be discussed in a debate, which draws students' attention 
to the goal of the line of argumentation in relation to its steps. 
Making a story  

Logic is concerned not with the manner of our inferring, or with questions of technique: its 
primary business is a retrospective, justificatory one - with the arguments we can put forward 
afterwards to make good our claim that the conclusions arrived at are acceptable because 
justifiable conclusions.  

This quotation from Toulmin (1974, p. 6) inspires the hypothesis that in order to 
grasp the rationale of a proof, students may make an individual story from the ideas 
and calculations involved in a reasoning that validates the statement. We emphasise 
the story that connects steps and fragments with reasons, in order to serve the 
conclusion, and not particularly the story of how the steps occurred in one's mind 
(Bonaffé, 1993), nor of how learning has evolved through time (Assude & Paquelier 
2005). The goal is that the students recognise the involved lines of argumentation, 
their possible hierarchical relations, and their role in the logical combination that 
produces the proof. At least at first stages of proof learning, these individual story 
makings need to be prepared by suitable tasks of guided construction of proof and by 
related debates putting into evidence some crucial "steps" of Mode 2 reasoning. 
In our theoretical construction, debates and story makings should be considered 
together and arranged as a dynamic system of complementary situations. Individual 
story making involves students in an active personal reconstruction of the rationale of 
a proof, while a debate on the work done in individual tasks of conjecturing and 
guided proving (and story making as well) offers both openness to other possible 
combinations and regulation. We expect this system to draw students' attention to the 
"components" of the story. The deductive structure of the proof (through mode3) will 
consist of a particular relating of the pertinent components of a story. 
Students need to be gradually initiated in both activities, possibly before the activities 
on theorems in order to establish a suitable didactical contract (Brousseasu, 1986). 
However story making, in the case of theorems, shows particularities that need a 
careful mediation through sequencing suitable tasks. 
Before illustrating the above theoretical reflection by an example, let us present the 
main activities we wish students to develop and their co-ordination, and give 
methodological precisions concerning the planned experiment: 
- To associate exploration and conjecturing to enhance mode 1 (without excluding 
other modes).  
- To stimulate proving the conjecture(s); either cognitive unity can work and thus the 
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students are able to produce a proof, or it cannot work and the teacher offers a task to 
guide them towards the proof.  
- To engage the dynamic system of collective debate / individual story-making, 
starting from discussing some of students' productions, to enhance mode 2 (without 
excluding other modes). In case cognitive unity could not work, students would not 
be in a good condition to understand the proof nor to learn much of it, and this 
dynamic becomes particularly crucial.  
The analysis of the experimentation should concern: Students' engagement in the 
proposed activities; and the evolution and the differences between the various 
individual productions. Observing the discussion (or its video registration), we need 
to track: How student's individual production reappears in the collective discussion; 
how the student hold his/her position in front of other's, and if some elements of 
consciousness awakened during discussion. However, some students may not take 
active part in the debate. The final individual production of story telling that follows 
should help completing the analysis. Comparing this individual production with the 
previous one (proof construction or proof reconstitution), one can see if the debate 
helped to bring to consciousness the necessity of some types of reasoning and the 
necessity of avoiding some others. The form of storytelling may reveal hierarchies of 
the types of reasoning and more particularly the linearity of the argumentation. 
Another slightly different proving situation might follow to examine: transfer of the 
various reasoning competencies; the various methods; and the level of awareness of 
the variability of rules of validity. 
 
V AN EXAMPLE CONCERNING PYTHAGORAS THEOREM 
Pythagoras theorem was chosen for two reasons:  it is an important and early met 
theorem in school mathematics; and it is not difficult to get the conjecture through a 
loosely guided path, while the construction of a proof needs a strong guidance by the 
teacher (cognitive unity cannot work, because the geometric constructions needed for 
the usual proofs are not suggested by the work done in conjecturing). Teachers' 
guidance, classroom discussions and story making will allow students to approach the 
rationale of the proof and offer occasions for learning about proof and proving. 
First sequence: “Discovering” Pythagora's theorem, expressing the conjecture 
and making sense of it 
Students have not only to grasp the theorem, but also to develop some proving skills 
(though no proving activity is demanded in this phase) and prepare for the further 
work; thus the activity on Pythagoras' theorem is prepared by Task 1 (an individual 
production on another theorem), followed by classroom discussion: 

Task1:  Consider the statement: "In a triangle of sides a, b and c, a+b is always 
smaller than c". Is it true? always? Why? Prepare yourself to explain how you 
checked it and why you think it is true, or it is not, or what makes you doubt.  
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No triangle is presented by the teacher; students are encouraged to draw some 
triangles for a check, if they did not do it spontaneously. This task aims at exploration 
through testing examples, and (specially in the discussion) at leading the students to 
express the rationale of the activity and to make visible the generality of the 
proposition they produce. An expression like “we wanted to see if it is true that... so 
we tried to verify it with four examples” is encouraged: such simple story making 
reflects an ability (and invites) to reconstruct the logical skeleton of the activity they 
went through. It bridges a Mode 1 reasoning with a Mode 2, and prepares Task 2.  

Task 2 (individual): Now if we consider the squares of the lengths, instead of the 
lengths themselves, the situation is different. See if a relation between the squares 
of the lengths of the sides of a triangle exists. Once you think you produced a valid 
statement (a "conjecture"), put it clearly in words to explain it to other students.  

Right angled, acute and obtuse triangles, are presented on the worksheet. Afterwards 
a collective discussion guided by the teacher is engaged to share and discuss the 
conjecture(s) produced, and the ways followed to produce them; and to attain and 
share acceptable expressions of the conjecture(s) (according to mathematical 
standards). An incomplete conjecture or an erroneous one may offer fine 
opportunities to make explicit the important elements of the theorem (in particular the 
condition of validity of Pythagoras' theorem, i.e. the angle being right) and their role. 

Task 3 (individual): Write down the conjecture as now you think it should be. 
Explain it and illustrate it with some examples. 

The teacher concludes with the standard formulation of Pythagoras' theorem. 
Concerning proof learning, this first sequence aims at involving students in Modes 1 
and 2:  Exploring (drawing, measuring, calculating, induction when modelling and 
producing algebraic expressions, repeating procedures and modifying data) mostly in 
mode 1; and, mostly in mode 2, organising the exploitation of the gathered data, 
classifying them in order to find some rule, expressing results as general   (everyday 
language being acceptable), etc; discussing and justifying propositions, and 
organising the steps of exploration in relation to a goal. Classifying and modelling are 
as much in mode 1 and mode 2. The explicit intentions of exploration and of 
organisation are satisfying sign in my opinion, as a main didactical goal is to enhance 
the processes students have to go through.  
Second sequence: Guiding Pythagoras' theorem proof, and teaching/learning to 
organise the steps of reasoning into lines of argumentation 
Given that cognitive unity cannot work, students are guided by means of individual 
and collective activities; then they reconstruct the lines of argumentation. 

Task 4 (individual): Here we study the proof of the theorem we have conjectured, 
you will be guided towards this proof. Consider a right angled triangle with sides a, 
b, c. We use it to build the square A (see below). Its central square S is of area c2.  
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    I) Can you describe how A can be obtained by using only our squared triangle?  
explain why S is a square (of area c2)?  

II) Try to write the area of A in two different ways (you may need to arrange the 
four identical square triangle differently). Find and explain the two ways. 
III) How can this help us to validate our conjecture?  

A geometrical reasoning is expected to intertwine with an algebraic reasoning in 
order to attain the equality between the areas. If needed, some supplementary tasks 
can be inserted either for the whole group or for some students.  
After students' individual work, the teacher orchestrates a collective discussion 
(Bartolini Bussi, 1996) concerning the reasoning that allows to prove the steps of 
argumentation and the calculations and why they are needed, and in particular, the 
connection between geometrical arguments and algebraic arguments. The interactions 
must be based on their own reasoning productions, theirs insights and their 
shortcomings. Therefore the teacher selects elements of students' production to 
provoke fruitful interactions. Two complementary levers can help maturing students' 
awareness of the reasoning organization “rules”, and their specificity in contrast to 
exploration reasoning: analyzing elements of reasoning, and rising direct 
methodological questions in the debate. The aim is to favor the elaboration of some 
satisfactory reasoning about the quality of which the student may agree, and, on 
another hand, to characterize some insufficiencies found in some produced reasoning. 
The parts of debate concerning specific algebraic or geometric steps and some sort of 
gap filling reasoning (directly concerned by the activity) need to be intertwined with 
methodological reflection about the validity of a reasoning, its communicability, the 
bases on which it can be accepted by another (indirect, implicit activity in student's 
individual production). Open “methodological” questions may be: how exploration 
and induction had been produced (algebraic induction); which different rules allow a 
reasoning to be valid (in exploration, measures and experiment are welcome, in 
proving deductive reasoning is needed, here based on elementary geometry and on 
algebraic calculus); and, in reasoning organization, how to come to such reasoning, 
and why (in particular how exploring the disposition of the four rectangles may 
favour algebraic exploration). This double level of discussion concerning the activity, 
on one hand, and the meaning and mathematical rules of the activity, on the other, is 
theoretically developed by M.A.Mariotti (2000) based on M.Bartolini Bussi's 
mathematical discussion theoretical frame. 
Task 4 is formulated and organised in a way to approach a story making of the proof. 
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The subsequent discussion of the organisation of the lines of argumentation and the 
insertion of "blocks" of arguments/calculations in the main line is meant to prepare 
students to write a “story”. 
Third sequence: story making  

Task 5 (individual): Write down how you organized your steps of reasoning to 
reach a general justification of the conjecture, and justify why those steps are 
important   

This task is particularly important for the students who were not productive in the 
previous sequence. It should allow them (as well as the others) to grasp and 
reconstruct the rationale of the proof. Here is the kind of arguments we hope the 
students produce: 

first (block 1) we calculate the area of A, then (block 2) we organised differently 
the calculation of the area (or we organised differently the disposition of the 
triangles) so that we found another algebraic expression of the are, because 
(looking forward to the final goal) surface measures of squares are written as 
algebraic squares. So we think that a2, b2 and c2 will appear and will be related 
(possibility to rejoin the main line). So, we can write the algebraic equality, and 
find the relation after transformations. 

Mode 2 reasoning is needed for this task in block 2:  students must go through an 
abductive reasoning ("how can I find a2 and b2 in this big square?") while deduction 
prevails in block 1 and will prevail afterwards, till the end.  
It is important to notice with the students that the algebraic equality is the principal 
aim (and first to come to the mind, since it is near to the conclusion we want to reach) 
but that we have to begin with geometrical considerations, which are like parentheses 
besides the principal aim. Thus the reasoning is made of a principal line of 
argumentation and side parentheses involving geometrical reasoning and calculations, 
whose conclusions flow into the main argumentation line. Getting familiar with 
mathematical proof practices (like moving from a geometrical frame to an algebraic 
one, using geometry only for strategic purposes...) is a particular aspect of this work. 
Difficulties inherent in the classroom implementation of the proposal 
Comparing the proposal with the style of teaching of most teachers, and keeping into 
account my first experiences of work with teachers on this subject, I must say that 
teachers meet some difficulties in engaging in a coherent classroom implementation 
of the proposal. One difficulty consists in the fact that "To produce a conjecture" is a 
task that does not fit the most frequent didactical contract in our schools (statements 
are usually presented and illustrated by the teacher, and learnt by students who repeat 
and apply them afterwards; the same for proofs). Another is that teachers tend to 
identify student's task of reasoning and the task of explaining the rationale of a 
reasoning as bearing the same learning targets. And, finally, the presentation and 
management of the tasks in a way that guides students' work but does not prevents 
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creativity is not easy; however, if creativity is not practised, there would be no sense 
in making a story out of a series of calculations. 
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INTRODUCTION 
ON “STOCHASTIC THINKING” 

Andreas Eichler, Universität Münster, Germany 
and 

Maria Gabriella Ottaviani, “Sapienza” University of Rome, Italy 
Floriane Wozniak, University Lyon, France 
Dave Pratt, University of London, England 

OVERVIEW 
The Working Group 3 discussed 8 three aspects that reflect the diversity of the 
research approaches on stochastic thinking: 
- theoretical issues of stochastic thinking, 
- teachers' professional development, and 
- students’ learning in respect to their success in solving stochastical tasks. 
The connective aim of all approaches was the students’ learning of stochastical 
concepts, and the students’ awareness that it is possible to use stochastics to cope 
with specific real situations. These aspects of the students’ stochastical literacy (for 
the term statistical literacy see Gal, 2004), however, were discussed using three 
different perspectives, i.e. the stochastical content (C), the teaching of stochastics (T), 
and the students’ learning about stochastics (S), that shape a didactical triangle 
referring to stochastics instruction. 

 
Figure 1: Didactical triangle involving three different perspectives on stochastics 
instruction, i.e. the content, the teachers, and the students  
In the following we will introduce the papers that match one of the three perspectives, 
and we will sketch some results of our discussion.  

STOCHASTICAL CONTENT 
Stochastics is a cocktail of statistical ideas and probabilistic ideas. Although the latter 
thesis seems to be trivial, there is a lot of evidence that the emphasis on statistics and 
probability in curricula varies, often according to knowledge and feelings of the 
teachers. In the same way, the topics of interest to researchers vary over time.  
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Currently the focus of research concerning statistics is, for instance, on distributions, 
averages, variability (including informal inference, and co-variation and correlation), 
and graphs (Shaughnessy, 2007). Concerning probability the research focus is on 
random, sample space, and probability measurement (Jones, Langrall, & Mooney, 
2007). 
The research referring to these subjects has two aims: 

- to clarify the notions, meanings or definitions of stochastical concepts. In our 
group, for instance, the talk of Hasan Akyuzulu deals with the undefined 
concept of risk highlighting the connection between risk and defined 
stochastical concepts. 

- to develop and to evaluate teaching approaches that facilitate students’ learning 
in respect to the different stochastical concepts. Matching this aspect, Herman 
Callaert discusses in his paper obstacles of the students’ learning that emerge 
through ambiguous notations and explanations of stochastical concepts in 
widely-used text books and software. 

Concerning the aspect of stochastical content, we, finally, discussed the 
recommendation of professional organisations regarding stochastics instruction. To 
this aspect, Irini Papaieronimou identifies in her paper many recommendations about 
the teaching of probability from four US professional organisations. We are 
concerned that there is insufficient support to effect a didactical transposition. 
Further, we noted an omission: such recommendations do not include the need for 
teachers to understand what it is that students know (as opposed to misconceptions). 

TEACHING OF STOCHASTICS 
A repeated claim towards the research on stochastic thinking is to increase the effort 
of investigating the teachers’ knowledge and the teachers’ beliefs concerning 
stochastical concept, and the learning and teaching of stochastics (Shaughnessy, 
2007). According to this claim, we discussed two research approaches that concern 
both, the stochastics teachers’ knowledge, and the stochastics teachers’ beliefs. 

- Carmen Batanero, Pedro Artega, and Blanca Ruiz discuss in their paper the 
knowledge of prospective primary Spanish teachers referring to statistical 
graphs based on the theoretical Framework of Curcio (1989). They found that 
some of the teachers were unable to use even basic statistical graphs, and that, 
in fact, only one third were able to draw a reasonable conclusion. 

- the paper of Andreas Eichler refers to an analysis of “ordinary” upper 
secondary teachers’ planning of stochastics instruction, the teachers’ 
classroom practice and their students’ learning. His report focus on teachers 
having differing orientations across two dimensions: seeing mathematics as: 
(i) emphasising applications or a formal subject; (ii) being dynamic or static. 
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The report gives some evidence about different modes of students’ learning 
concerning their awareness of the benefit of stochastics in the real life. 

We concluded on the one hand, that the teaching of stochastics needs to offer students 
experiences of statistics and probability before theoretical perspectives are 
introduced. On the other hand, we stated that there is much research to do to 
understand the teachers’ knowledge and the teachers’ beliefs about stochastics that 
both in some sense determine the students’ learning of stochastics.  

LEARNING ABOUT STOCHASTICS 
Finally, we discussed three considerably different research approaches focusing 
students’ learning in respect to their success in solving stochastical tasks. 

- The paper of Zoi Nikiforidou and Jenny Page provides a psychological 
experiment on children (age 5 or 6 years), in which the children made 
decisions based on posterior information. The results of this research give 
some evidence that even such young children have some understanding of 
ideas that may be the roots of probability or inference. This result argues 
against the Piagetian framework. 

- The paper of Theodosia Prodromou and Dave Pratt concerns students (15 
years of age) using a computer simulation. This research yielded that it was 
possible to design a computer simulation such that students were able to make 
use of ideas about causality to make sense of distribution. In this sense, the 
deterministic and the stochastic worlds are not disconnected but connected 
through levels of complex causality. 

- Finally, Sofia Anastasiadou provides in her paper a study referring to 
children’s meaning-making with respect to set theory. She found that the 
students were not able to recognise the mathematical concept across differing 
representations. Perhaps the lack of transfer could be attributed to the students 
lack of preparation: time to discuss, interact and work on related tasks. 

Although the papers focusing on the students’ learning match some of the claims to 
the research into stochastics education, the three research approaches mentioned 
above showed the diversity of possible research questions in this field. 

CONCLUSIONS 
The papers of Working Group 3 highlighted the diversity of research approaches 
focusing on stochastic thinking. However, we concluded with thre claims for future 
research that often combine several perspectives on the teaching and learning of 
stochastics that shape a didactical triangle (fig. 1): 

- We need empirical results that give evidence, how we can support the 
implementation of recommendations from professional organisations. 
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- We need empirical based strategies we support teachers to be more 
connectionist in their approach. 

- We need to research how students can transfer ideas from one domain to 
another. Reference could be made to connectionist theoretical frameworks. 

One of the problems to achieve these claims is that it is sometimes not possible to 
transfer results yielded into mathematics education on stochastics education due to 
the fundamental difference of stochastics in contrast to other mathematical 
disciplines. For instance, the role of context is very different in statistics from in 
mathematics. Mathematics as a discipline aims to be decontextualised whereas 
statistics may draw on context. However, in both mathematics and stochastics 
learning, the students must experience the underlying ideas in meaningful contexts. 
Another problem seems to be that stochastics instruction in Europe still emphasise 
probability, and, for this reason, studies in the field of stochastics education often 
focus on probability. Hence, we hope to see more research in statistics in future 
conferences of the ERME. Otherwise, we are afraid that statistics will be lost from 
CERME. But also, we as educationalists fear this might parallel a loss of statistics to 
mathematics education. 
However, stochastics and, in particular, statistics are certainly useful to many subjects 
and to citizens in general but it is also important to mathematics education. 
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CHANCE MODELS: BUILDING BLOCKS FOR SOUND 
STATISTICAL REASONING  

Herman Callaert 
Center for Statistics, Hasselt University, Belgium 

herman.callaert@uhasselt.be  
 
A good understanding of chance models is crucial for mastering basic ideas in 
statistical inference. Mature students should be introduced to the concepts of 
inference through a study of the underlying chance mechanisms. They should learn to 
think globally, in models. In an introductory course, these models should have their 
own clear and unambiguous notation. Fuzziness and flaws, as encountered by our 
students in textbooks and software, may hamper their learning process seriously. The 
above claims are based on my experience as an instructor for university students. 
They should be substantiated by systematic research on the potential advantage of 
“thinking in models”, possibly also for younger pupils.   

INTRODUCTION 
From my experience as a teacher of statistics, thinking in models is a stumbling block 
for many mature students when they are confronted with the basic concepts of 
statistical inference. As long as students do not master the connection between 
underlying chance mechanisms and statistical conclusions, procedures like the 
construction of confidence intervals remain “black boxes”. The main problems with 
confidence intervals have been discussed in a previous paper (Callaert 2007) where 
the ability of “thinking backwards” was shown to be essential. After seeing the data, 
the main question was: “how did those data come to me?” This is a question about an 
underlying probability model as an ideal mathematical construct for modelling 
outcomes in a physical world. Those models are the main theme of the current paper. 
This paper has two parts. It first shows how mathematical mature students can be 
introduced to chance models at all places, from populations over samples to statistics. 
A simple example illustrates how the models are built. It points at the same time to 
the fact that a clear and unambiguous notation is crucial for acquiring clear and 
unambiguous insight. Students discover the need for distinguishing a population 
mean from a sample mean, or an “observable” chance model from an “unobservable” 
but fixed parameter. Many of the inaccuracies found in research papers, textbooks 
and software packages have their origin in a lack of insight in underlying chance 
models. Some examples are given in the second part of this paper. 
The current text is focused on mathematical mature students (using explicit 
mathematical notation). The underlying concepts however are very fundamental and 
it certainly is worthwhile finding out what can be done with younger pupils. Research 
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by Prodromou (2007) and Prodromou and Pratt (2006) is most interesting in this 
respect. They look at the connection between a data-centric and a modelling view on 
distributions, and write that: “The modelling perspective reflects the mindset of 
statisticians when applying classical statistical inference”. How and at what age can 
the connection with statistical inference be made? 

THE POPULATION AS A CHANCE MODEL 
From the very start, it is important that pupils not only are interested in “what” comes 
to them but also in “how” it comes to them. When they are allowed to build their own 
chance mechanisms, it is clear that (after some time and some experiments) they 
focus on both aspects. Nice examples can be found in a variety of research papers, 
such as in the study carried out by Pratt (1998) where children are able to manipulate 
“the underlying chance mechanism” (workings box). Another example is described in 
a paper by Cerulli et al. (2007) where they write: 

In that study, one team of pupils creates not just a Garden but a Random Garden. This 
means that the pupils not only think about the composition of the garden (the flowers 
and trees) but they also know that the Bird will extract objects “at random and with 
replacement”. A competing team of pupils has to guess the Random Garden after 
they have inspected a Nest. That the objects in the Nest came “at random and with 
replacement” is key information and it is used (rather implicitly) by the competing 
team when they look at bar graphs and counters. One of the important consequences 
of the setup of this study is that pupils start discussing (and understanding) the 
concept of “equivalent chance mechanisms” (called equivalent gardens). If the study 
would have been set up differently, with the same flowers and trees but with a Bird 
that extracts objects not at random or without replacement, the “Guess my Garden 
Game” would have been completely different. This aspect might be stressed even 
more in such types of studies since it is important to find out at what age pupils are 
able to “think in models” and what kind of strategies can be used for enhancing (and 
evaluating) this type of thought-processes. 
The above examples refer to studies with younger pupils (such as 11-12 years old). 
At a later stage the concrete objects in populations (such as flowers or colored 
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segments) are replaced by numbers. But the basic question about a population stays 
unaltered: “which numbers will come to me and with what probability?” For 
mathematical mature students, comfortable with abstract notation, it is helpful to 
make a distinction between a chance model and its outcomes. In line with the notation 
for random variables, a chance model can be denoted by a capital letter (such as ) 
and outcomes by the corresponding small letter

X
x . An example of such a “population 

chance model” is what I call a red die. Physically, it is just a regular die (falling on 
each side with probability 1/6) but the numbers on the faces have been changed. 
There are 3 faces with a 1, 2 faces with a 3, and one face with a 6. The way in which 
outcomes from this population appear is governed by a throw of this red die. Hence, 
one will never see a number 2 but, for example, one will get a number 3 with 
probability 2/6 , denoted as ( 3) 2/P X 6= = . The next table gives complete 
information about this population . X

x 1 3 6 

P(X=x) 3
6

 2
6

 1
6

 

Table 1. The population described by its chance model X
Remark that also in the continuous case it is customary to describe a population by 
providing at the same time the range of the values and their chance behavior, as 
reflected by statements like: “we work with a normal  population”. (124 ;16)N

THE SAMPLE AS A CHANCE MODEL 
Once students get used to look at populations from the perspective of chance models 
one would think that the step towards looking at a sample from the same perspective 
is straightforward. For most of my students, this was not evident. The following 
(simple) example became a real eye-opener for many of them. 
What happens when one takes a sample of size 2n =  from the population  
described in table 1 (the red die)? The main point here is that students have to answer 
the question before they actually take the sample. Hence, the question: “What will be 
the result of the first draw?” is not answered by “How can I know?” (reasoning only 
about specific outcomes after an experiment has been carried out) but by “I can tell 
you, beforehand, every possible value together with its probability”. And then of 
course it is not difficult to come up with the chance model  for the first draw. The 
second draw  has the same behavior. 

X

1X
2X

 

Table 2.     Table 3.  
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A model for a sample of size 2n =  now follows easily from tables 2 and 3. The 
model is denoted by  and its outcomes by 1 2( ,X X ) 1 2)( ,x x . It is instructive for 
students to construct this model for themselves arriving at table A1 (appendix) or at 
an urn model with random draws from the urn (figure 1).  
The insight that a sample result 1 2( , )x x  is nothing 
but one of the possible outcomes of an underlying 
chance mechanism  is very important. It 
creates the appropriate context for a proper 
understanding of the behavior of the sample mean 
(or of any other statistic constructed from a 
sample). 

1 2( ,X X )

         Figure 1. 

THE SAMPLE MEAN AS A CHANCE MODEL 
Continuing the above example, it takes just a few minutes to find all possible values 
of the sample mean together with their corresponding probabilities (see table A2 in 
the appendix). This leads to the following model: 

Table 4. The sample mean  1

2
2X XX +

=  described by its chance model 

Simulation tools might be extremely useful for learning statistical concepts but it is 
my experience that mature students (and secondary school mathematics teachers) also 
need an explicit confrontation with the more abstract tool of “thinking in models”. 
For many of them, the behavior of a sample mean is better understood in the context 
of chance models like table 4 than through the experience that a simulated bar chart 
or histogram is an approximation of a so-called sampling distribution. Properties like: 
“the mean of the sample mean is the population mean” can be discovered through 
simulations, but a clear view on underlying models surely can enrich insight in this 
discovery. In either case, an unambiguous notation is needed as a support to students 
for distinguishing populations from samples, and chance models from their outcomes. 
The next sections illustrate some problems.  

EXAMPLES FROM TEXTBOOKS 
During the past couple of decades reform in statistics education at the school level 
has been extensive in the United States. It has resulted in the production of new 
textbooks by authors such as: Yates, Moore and Starnes (2003) [YMS], Watkins, 
Scheaffer and Cobb (2004), Agresti and Franklin (2007), and many others. All these 
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books use capital letters (such as ) for random variables and small letters (such as X
1 2, ...x x ) for their outcomes. This is nice since this notation makes a clear distinction 

between an underlying chance process and a particular outcome. But once students 
start sampling, their attention is drawn to particular outcomes and the notation for 
underlying models, such as (capital) X  for the sample mean, is gone. Paul Velleman, 
author of ActivStats, says: “Convention in the introductory course is to emphasize the 
observed values, which are usually not thought of as random. Every text I know uses 
a lower case x  to represent the sample mean. The r.v. version is a hypothetical 
construct of which the sample mean at hand is one realization. A bit sloppy at times, 
but, I think, less confusing for students” [ (1999) personal communication]. The 
experience I have with my students tells me the opposite. On p.525 of [YMS] one 
reads: “The sampling distribution of x  describes how the statistic x  varies in all 
possible samples from the population. The mean of the sampling distribution is μ , so 
that x  is an unbiased estimator of μ ”. The fact that x  stands for an outcome while at 
the same time it is said that x  is unbiased is confusing. The problem persists in the 
chapter on hypothesis testing where one reads on p.568 that 0.3x =  and that 

( 0.3P x ≥ ) is needed for computing the p-value. But probability statements are 
statements 
about chance 
processes. 
Hence, the p-
value is the 
probability 
that (under the null hypothesis) the chance process X  generates values which are at 
least as large as the observed outcome x  . Notation is crucial here and the above 
phrase should be written as ( )P X x≥ . If 0.3x =  in the sample of one student while 

0.4x =  in the sample of another student, they now can start with the same notation 
( )P X x≥ . Afterwards, they only have to plug in their x -value for arriving at 
( 0.3P X ≥ )  [or at ( 0.4P X ≥ )  ] as meaningful expressions. 

EXAMPLES FROM SOFTWARE 
Software can provide powerful educational tools and can create unique opportunities 
for gaining insight in statistical concepts. This is not only true for our students but 
also for adults who (sporadically) need to carry out a statistical analysis. At those 
instances, people often use their favorite package as a fast resource, both for ideas 
and for computations. From a “statistical literacy” point of view, one would hope that 
statistical information encountered in widespread packages is clear and accurate. 
Excel 
When your student says that, in a one-sided two-sample t-test, the null hypothesis 
assumes that the two means are equal and the alternative hypothesis says that one 
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mean is larger than the other, you might be willing to consider the answer as correct. 
But when he writes 0 :H x y versus H x y= 1 : >  you can’t believe your eyes. In his 
notation, he tries to find out whether the mean in his first sample is larger than the 
mean in his second sample x y>  instead of investigating whether the mean of the 
first population is larger than the mean of the second population 1 2μ μ> . This type of 
confusion has been present in Excel for decades. Several versions in the nineties had 
in their “Data Analysis Toolpack” a help file called “Learn about the t-test: Two 
Sample Assuming Equal Variances Analyses”. What you could learn was as follows. 
“This analysis tool performs a two-sample Student’s t-test. This t-test form assumes 
that the means of both data sets are equal; it is referred to as a homoscedastic t-test. 
You can use t-tests to determine whether two sample means are equal”. Apparently, 
when you have two datasets you can use the Data Analysis Toolpack in Excel for 
finding out whether x  equals y . And you can do so at some alpha level, as follows. 
“Enter the confidence level for the test. This value must be in the range 0…1. The 
alpha level is a significance level related to the probability of having a type I error 
(rejecting a true hypothesis)”. There is no clear distinction between a null and an 
alternative hypothesis (which is the true hypothesis to be rejected?) nor is there any 
reference to underlying populations. This type of fuzziness is disturbing. Attention to 
these problems has been drawn at several occasions, even in a publication (Callaert 
1999). Change however is slow and confused. In Excel 2003 as well as in Excel 2007 
it depends on the order in which you call for help. Press F1 (Help), type the phrase 
Data Analysis and click Search. Then click on Data Analysis and in the new window 
click on t-Test. The following text appears. 
 
 
 
 
 
But if you click on Formulas –>More Functions–>Statistical–>TTEST–>”Help on 
this function”, then you can read about equality of population means together with a 
choice of using either a one-tailed or a two-tailed t-distribution. 
 
 
Fathom 
Never before I’ve worked with Fathom, so I only can give some first impressions by 
a novice (having downloaded a Fathom Evaluation Version 2.1). The fact that I was 
lost right from the start might be blamed on my inexperience. I think however that the 
rather abstract structure of Fathom working with “collections”, “attributes”, 
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“measures” and “statistical objects” is not obvious for beginning students. In contrast 
with this, Maxara and Biehler (2007) report on a study where Fathom was used 
systematically by their university students, apparently with success. I assume that 
those students’ first contact with Fathom was different from mine, since I clicked 
Help–>Sample Documents–>Statistics and started reading. I was quite amazed. 
To start with, a clear notation could be helpful. The Fathom Documents use “mu”, 
“Mean”, “popMean”, “m”, “Avg”,.. and “sigma”, “Std. dev.”, “popSD”, “s”, “sd”,… 
Why not stick to μ  and σ  for populations and to x  and s  for sample results? 

Furthermore, the notational distinction between a binomial model  (capital letter) 
and its -values (small letter) should be applauded were it not that  is said to be a 

random variable chosen from the set of possible values.  

X
x X

The binomial model comes up several times but its discrete nature is seldom stressed, 
even in small samples. The “Polling Simulation” document wants to compare theory 
and experiment and uses   resulting in a 
theoretical model where a lot of possible outcomes and their associated probabilities 
are missing. It is not because one has not seen 17 successes in a particular simulation 
(and hence not a proportion of 17/20=0.85) that the predicted probability of a 
proportion of 0.85 doesn’t exist. 
 
 
 
 
 
 
 
A further problem with this document lies in its histogram representation comparing 
the simulation results with the (also truncated of course) theoretical model. Repeating 
a poll of size 20 1000 times does not produce 1000 different outcomes. There still are 
only 21 different possible proportions. A bar graph comparing theoretical 
probabilities with experimental relative frequencies would make sense here since the 
chance model is discrete. By the way, try to let your students discover for themselves 
the formula  for drawing such a 
histogram. Of course, the problem is much deeper and relates to the obsession of 
making curves fit histograms who themselves have to represent experiments with 
discrete outcomes. The “Normal” document for example shows a histogram of 100 
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random numbers from a normal population together with [quote]: “a plotted curve of 
a normal distribution with the same mean, standard deviation, and area as the 
histogram”. Yes, with the same area! Fortunately the example uses a histogram on a 
density scale. But there is no problem if one would use a histogram with frequencies. 
In the same document under number 3 of the “To do” list attention is drawn to the 
fact that the density then has to be multiplied by both the count and the bin width. If 
you do this, you find the figure on the right. 

But  is a 
model for what? It is a curve fitting the “frequency 
histogram” but it certainly isn’t a model for an 
underlying chance mechanism. These problems are 
not uncommon. In Schaeffer and Tabor (2008) one 
finds a similar figure. This time, a histogram has been 
drawn on a Relative Frequency scale and the density has only been multiplied by the 
bin width. The authors write: “The figure shows a simulated sampling distribution of 
sample proportions. This sampling distribution has a mean of 0.53 and a standard 
deviation of 0.05 and is nicely represented by the normal distribution (overlaid 
smooth curve) with that same mean and 
standard deviation”. But the top of a 
normal density  is equal to 8, 
not to 0.16. So, what’s the name of a bell-
shaped curve that (i) is nowhere negative 
and (ii) has an area under the curve equal to 
0.02? Indeed, that’s the blue curve in that 
paper. 

(0.53; 0.05)N

Fathom’s “Central limit Theorem” document has analogous problems. Wouldn’t it be 
nice to compare the histograms of the simulated sample means x  with the target 
model of X  ? That model is normal 
with mean 1.5μ =  and with standard 
deviation / 0.5 /nσ = n . The 
document instead uses the mean and 
standard deviation of the randomly 
generated set of 200 x -values. 
Moreover, the collection called “Population” is not the population but contains the 
sample values, while the population itself is represented by a bimodal curve 
integrating out to 2 (yes, two). 

CONCLUSION 
Thinking in chance models might be too abstract for the young learner but at some 
level in the developmental process the more mature student might need more than 
“approximations by simulation” in order to fully understand the underlying reasoning 
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of statistical inference. At this point one needs a careful identification of all the 
involved entities, together with a clear notation, both in textbooks and software. It 
might be interesting for further research to investigate the impact of an unambiguous 
notation on the effectiveness of student’s learning and understanding of statistics. 
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APPENDIX 
 
 
 
 
 
 
 
 
 
 
 

Table A1. The sample  described by its chance model 1 2( ,X X )

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table A2. Sample mean values 1

2
2x xx +

=  for all possible sample outcomes (x1 , x2). 

The arithmetic mean is computed for all outcomes (x1 , x2) from table A1. 
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Changes in school mathematics curricula in the last few decades have brought along 
an increase on the importance placed on probability (National Commission for 
Excellence in Education, 1983; National Council of Teachers of Mathematics, 2000). 
Since teachers’ knowledge can have an impact on students’ learning (Fennema & 
Franke, 1992), it is important that teachers have sufficient probability content and 
teaching knowledge. This paper identifies the suggested probability knowledge for 
secondary mathematics teachers through an examination of the recommendations 
from four professional organizations, namely the American Mathematical Society 
(AMS), the American Statistical Association (ASA), the Mathematical Association of 
America (MAA), and the National Council of Teachers of Mathematics (NCTM).  

Keywords: teachers’ knowledge, probability, professional recommendations 
 
PROBABILITY CONTENT IN THE SECONDARY SCHOOL 
MATHEMATICS CURRICULUM 
Since the late 1950s, there have been strong calls for an increase in the inclusion of 
probability in the US K-12 mathematics curriculum (NCSM, 1977; NCEE, 1983; 
NCTM, 2000). Probability has come to gain importance as a content area that 
students need to have experience with in order to be well-informed citizens since its 
study “can raise the level of sophistication at which a person interprets what he sees 
in ordinary life, in which theorems are scarce and uncertainty is everywhere” 
(Cambridge Conference on School Mathematics, 1963, p.70; as cited in Jones, 2004).  
In 1963 a group of mathematicians and National Science Foundation (NSF) 
representatives published Goals for School Mathematics in which the importance of 
“some ‘feeling’ for probability” for all students was indicated (Jones, 1970, p. 291; as 
cited in Sorto, 2004). Following, the National Council of Supervisors of Mathematics 
(NCSM) defined probability as one of the basic skills that students should acquire 
(1977). In 1983, the National Commission for Excellence in Education (NCEE) 
published A Nation at Risk, a report aimed at pointing out the immediate need for 
reform in education, with the suggestion that high school graduates understand 
elementary probability and be able to apply it in everyday life.  
More recently, the National Council for Teachers of Mathematics (NCTM) published 
the Curriculum and Evaluation Standards for School Mathematics (1989) in which it 
was recommended that in grades 5-8 students “explore situations by experimenting 
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and simulating probability models”, construct sample spaces in the attempt to 
determine probabilities of “realistic situations”, and appreciate the use of probability 
in the real world (1989, p. 109). Particular to grades 9-12, recommendations included 
the understanding of the difference between experimental and theoretical 
probabilities, theoretical and simulation techniques for computing probabilities, and 
interpreting discrete probability distributions (p. 171). In the mid to late 1990s the 
NCTM standards were revised resulting in the publication of Principles and 
Standards for School Mathematics (2000). Here, recommendations stated that  

 “middle-grades students should learn and use appropriate terminology and should be 
able to compute probabilities for simple compound events … In high school, students 
should compute probabilities of compound events and understand conditional and 
independent events.” (NCTM, 2000, p. 51). 

This increased attention on probability in school curricula is an indicator of how 
important it is that “teachers, mathematics educators, parents, and administrators, 
must provide their children and their students with alternative ways of approaching 
data and chance” (Shaughnessy, 2003, p. 223). Since “[T]here is perhaps no other 
branch of the mathematical sciences that is as important for all students, college 
bound or not, as probability and statistics” (Shaughnessy, 1992, p. 466, emphasis in 
original) and since misconceptions about probability are common among children, it 
is important that instruction allows students to confront their misconceptions and 
develop a deeper understanding of probability concepts (Garfield & Ahlgren, 1988; 
Konold, 1989; Shaughnessy, 2003). Since teachers’ knowledge can have an impact 
on students’ learning (Fennema & Franke, 1992), it is important that teachers be able 
to tackle these student difficulties and misconceptions on probability as they arise in 
mathematics classrooms. In order to be able to do so, teachers need to have sufficient 
probability content and teaching knowledge.  
Teachers’ Knowledge of Probability 
Although there have been calls for an increased attention on probability in the school 
curriculum, one of the problems encountered is the inadequate preparation of teachers 
in probability (Penas, 1987; CBMS, 2001). Many teachers have not encountered 
probability in their own K-12 mathematics courses and sometimes need convincing 
as to why they need to learn and teach probability topics (CBMS, 2001). Batanero et 
al. (2004) suggest that educators need to provide better initial training for teachers by 
offering courses at the college level specific to the didactics of probability. Such a 
course should include an introduction to the history of probability; information on 
statistics journals, associations, and conferences; the study of fundamental probability 
concepts; readings of literature on heuristics and biases in probability, as well as 
students’ difficulties and misconceptions in probability; identification of the 
educational theories and teaching approaches, assessment, teaching resources, and the 
use of technology; and examples of projects that can be used when teaching 
probability. 
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Teachers’ Knowledge of Mathematics 
Several scholars in the past three decades have provided insight into the definition of 
teachers’ knowledge. In his work, Shulman (1986) provided a framework of teachers’ 
knowledge which includes the following three categories: i) subject matter content 
knowledge which refers to “the amount and organization of knowledge per se in the 
mind of the teacher” as well as not only understanding that something is so but also 
why it is so and why it is important to the discipline (p. 9); ii) pedagogical content 
knowledge which refers to  

“the most useful forms of representation of those ideas, the most powerful analogies, 
illustrations, examples, explanations, and demonstrations – in a word, the ways of 
representing and formulating the subject that make it comprehensible to others” (p. 9).  

This category also includes knowledge of common conceptions/preconceptions that 
students have; and iii) curricular knowledge which includes knowledge about the  

“full range of programs designed for the teaching of particular subjects and topics at a 
given level, the variety of instructional materials …, and the set of characteristics that 
serve as both the indications and contraindications for the use of a particular curriculum 
or program materials in particular circumstances” (p. 10). 

The difficulty faced by educators is how to blend the components of teacher 
knowledge so as to effectively prepare teachers to help all students to learn 
meaningfully.  

FOCUS OF THE PAPER AND QUESTION 
With the above issues under consideration, a study was carried out by the author in 
which US state and national mathematics standards for grades 6-12, secondary 
mathematics textbooks, and recommendations from professional organizations were 
analyzed in order to identify the content and teaching knowledge that secondary 
mathematics teachers need to have relative to the domain of probability. A report of 
the results relating to the probability topics that secondary mathematics teachers 
should know and be able to teach was presented at a previous conference 
(Papaieronymou, 2008), whereas this paper focuses on the teaching aspects of these 
probability topics and more specifically on the following question: 

What are the aspects of teaching knowledge of probability that secondary 
mathematics teachers need to have as suggested by professional organizations? 

For the purposes of addressing this question, only the recommendations from 
professional organizations were analyzed. The data sources specific to students (i.e. 
national and state standards for grades 6-12 and secondary mathematics textbooks) 
were not very informative since they did not directly address teachers’ knowledge.  
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METHODS 
Data Sources 
In particular, A Call for Change: Recommendations for the Mathematical 
Preparation of Teachers of Mathematics (1991) published by the MAA, the 
Professional Standards for Teaching Mathematics (1991) published by the NCTM, 
The Mathematical Education for Teachers (CBMS, 2001) published by the AMS, and 
the Guidelines for Assessment and Instruction in Statistics Education (GAISE) 
College Report (Aliaga et al., 2005) published by the ASA were analyzed. The ASA 
report presents a list of goals for college students – not specifically prospective 
mathematics teachers – and recommendations for the teaching of introductory 
statistics courses.  
Data Analysis 
The number of recommendations from each professional organization was as follows: 

Data Source Number of Recommendations 
before multi-coding 

AMS (2001) 27 

ASA (2005) 9 

MAA(1991) 17 

NCTM(1991) 6 

Total 59 

Table 1: Number of recommendations from each organization before multi-coding 
These 59 recommendations were categorized according to Shulman’s (1986) 
framework of teacher knowledge with 8 recommendations being placed under more 
than one category. In deciding under which knowledge category to place each 
recommendation, the verbs appearing in the recommendation and their use in 
association with the probability concepts mentioned in the respective 
recommendation were considered. Some examples of recommendations that were 
placed under each of Shulman’s categories are: 

Recommendation Knowledge 
Category 

Mathematics teachers should be able to use permutation and 
combinatorial computations in problems arising from several 
areas, including geometry, algebra, and graph theory. They 
should also understand how counting techniques apply in the 
calculation of the probability of events. (MAA report, p. 36) 

Subject-matter 
content 
knowledge 

The fact that, under random sampling, the empirical probabilities Pedagogical 
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actually converge to the theoretical (the law of large numbers) 
can be illustrated by technology (computer or graphing 
calculator) so that an understanding of probability as a long-run 
relative frequency is clearly established. (AMS report, p.116) 

content 
knowledge 

Precede computer simulations with physical explorations (e.g. 
die rolling, card shuffling) (ASA report) 

Curricular 
knowledge 

Other topics that should be introduced include fair games and 
expected value, odds, elementary counting techniques, 
conditional probability, and the use of an area model to represent 
probability geometrically (NCTM, 1991, p. 138) 

Subject-matter 
and pedagogical 
content 
knowledge 

Table 2: Examples of recommendations under Shulman’s (1986) knowledge 
categories 
In the last recommendation provided in Table 2 above, the use of the area model to 
represent probability implies pedagogical content knowledge since this type of 
knowledge includes the ways of representing the subject. The reference to topics of 
probability that should be introduced implies subject matter content knowledge; the 
topics refer to the amount of knowledge that teachers should have with respect to 
probability so as to be able to introduce these topics in their mathematics classrooms. 

RESULTS 
Once the 59 recommendations were categorized under Shulman’s framework for 
teacher knowledge, with 8 recommendations being placed under two of the 
knowledge categories, the results were: 

Data Source Subject-matter content 
knowledge 

Pedagogical content 
knowledge 

Curricular  
knowledge 

Total 

AMS (2001) 22 5 1 28 

ASA (2005) 7 1 1 9 

MAA (1991) 13 6 2 21 

NCTM (1991) 2 4 3 9 

Total 44 16 7 67 

Table 3: Number of recommendations under each of Shulman’s (1986) categories 
As can be seen from Table 3, about 66% (44 out of 67) of the recommendations from 
the four professional organizations relate to subject matter content knowledge, 24% 
(16 out of 67) of the recommendations refer to aspects of pedagogical content 
knowledge and 10% of the recommendations specify aspects of curricular knowledge 
that should be included in the preparation of secondary mathematics teachers.  
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The analysis also showed that the following topics were recommended by at least two 
of the organizations: 

Common Topic Professional Organizations in agreement 

Combinatorics AMS, MAA, NCTM 

Experimental and Theoretical Probability AMS, MAA, NCTM 

Simulations ASA, MAA, NCTM 

Probability Distributions AMS, MAA, NCTM 

Hypothesis Testing AMS, ASA, MAA 

Conditional Probability AMS, NCTM 

Expected Value AMS, NCTM 

Probabilistic Misconceptions AMS, NCTM 

Uses/Misuses of Probability AMS, MAA 

Table 5: Probability topics recommended by at least two of the organizations 

DISCUSSION 
Given the small number (59) of recommendations overall across all four 
organizations specific to the area of probability and that 66% of the recommendations 
relate to subject matter content knowledge whereas 24% refer to pedagogical content 
knowledge and only 10% refer to curricular knowledge, the results imply that it is 
still unclear what exactly the pedagogical content knowledge and curricular content 
knowledge that secondary mathematics teachers need to have in the area of 
probability is.  
A closer examination of the recommendations indicates that with respect to 
pedagogical content knowledge specific to probability, teachers need to acquire an 
awareness and ability to confront common probabilistic misconceptions and student 
difficulties relative to probability concepts (as suggested by the ASA, the MAA, and 
the NCTM). In addition, teachers need to be able to use technology to carry out 
simulations in order to illustrate probabilistic concepts (as recommended by all four 
of the professional organizations) and should also be able to use concrete objects such 
as dice, cards, and spinners to demonstrate probability concepts to students in the 
mathematics classroom (as suggested by the ASA and the NCTM). Furthermore, 
secondary mathematics teachers should be able to represent probabilities using 
various models such as the area model (as suggested by the NCTM).  
Specific to curricular knowledge, secondary mathematics teachers should be aware of 
the various materials and programs that they can use to help students understand 
probability concepts. That is, they should be aware that they can use various 
computer programs such as Fathom and DataScope in their mathematics classrooms 
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when working with probability concepts (as suggested by the AMS) and they should 
know the power of simulation as a technique that can be used to solve probability 
problems (as recommended by the MAA and the NCTM). 
As can be seen from Table 5, the four professional organizations place considerable 
emphasis on experimental versus theoretical probability and simulations. Secondary 
mathematics teachers need to be able to plan and conduct experiments and 
simulations (Aliaga et al., 2005; CBMS, 2001; Committee of the Mathematical 
Education of Teachers, 1991; NCTM, 1991), distinguish between experimental and 
theoretical probability (Committee of the Mathematical Education of Teachers, 
1991), determine experimental probabilities (CBMS, 2001; Committee of the 
Mathematical Education of Teachers, 1991), use experimental and theoretical 
probabilities to formulate and solve probability problems (Committee of the 
Mathematical Education of Teachers, 1991), and use simulations to estimate the 
solution to problems of chance (Committee of the Mathematical Education of 
Teachers, 1991; NCTM, 1991). Secondary mathematics teachers should be able to 
provide a model which gives a theoretical probability that can be compared to 
experimental results, which in turn is essential when studying the concept of relative 
frequency (CBMS, 2001). In order to help students develop an understanding of 
probability as a long-run relative frequency, secondary mathematics teachers need to 
understand the law of large numbers and be able to illustrate it using simulations 
(CBMS, 2001).  
With regards to theoretical probability, teachers should know about and be able to use 
both discrete and continuous probability distributions (NCTM, 1991), understand 
probability distributions (CBMS, 2001) and especially the normal distribution 
(CBMS, 2001; Committee of the Mathematical Education of Teachers, 1991), as well 
as the binomial, poisson, and chi-square distributions (Committee of the 
Mathematical Education of Teachers, 1991). They should also be able to use 
simulations to study probability distributions (CBMS, 2001; Committee of the 
Mathematical Education of Teachers, 1991) and demonstrate their properties (CBMS, 
2001). Moreover, they should be introduced to fair games (NCTM, 1991) and 
understand expected value (CBMS, 2001).   
Another topic among the recommendations from three of the four professional 
organizations is that of hypothesis testing. Secondary mathematics teachers should 
understand the concept of statistical significance including significance level and p-
values, and that of confidence interval (Aliaga et al., 2005; Committee of the 
Mathematical Education of Teachers, 1991) including confidence level and margin of 
error (Aliaga et al., 2005).  
Returning to the idea of theoretical probability, secondary mathematics teachers 
should be able to use counting techniques (NCTM, 1991) such as permutations and 
combinations to determine such (theoretical) probabilities (Committee of the 
Mathematical Education of Teachers, 1991). In addition, they should be exposed to 
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the applications of combinatorics (CBMS, 2001) including their use in calculating the 
probability of events (Committee of the Mathematical Education of Teachers, 1991). 
Secondary mathematics teachers should also understand and be able to calculate the 
probabilities of independent and dependent events (CBMS, 2001), compound events 
made up of independent and dependent events (CBMS, 2001) and also understand 
conditional probability (CBMS, 2001; NCTM, 1991). Various representations such as 
area models and tree diagrams should be used by teachers to aid students in better 
understanding compound events (CBMS, 2001; NCTM, 1991). 
In addition, teachers should know about the uses of probability in many fields and its 
misuses in such sources as newspapers and magazines (CBMS, 2001; Committee of 
the Mathematical Education of Teachers, 1991). Once experiments have been 
performed, teachers should be able to use probability to make decisions and 
predictions (CBMS, 2001; Committee of the Mathematical Education of Teachers, 
1991).  
An issue that arose as recommendations were being coded concerned the exact 
definition of the verbs that appeared in the documents. In many cases it was unclear 
as to what action or type of knowledge was expected of teachers based on the verb 
used since the meaning of the verb appearing in the report was unclear. Within the 
four documents of recommendations from the professional organizations, verbs 
appeared in different forms e.g. use, using, used or apply, applying, applied. Counting 
the different forms of a verb as one verb family gave rise to a total of 53 verb families 
being identified in the four reports. For example, consider the last recommendation 
on Table 2 which lists a set of probability topics that need to be ‘introduced’ in a 
mathematics classroom. The mere list of topics in this recommendation implies 
subject matter content knowledge. However, if the recommendation had established 
more clearly how, in what order, what types of problems should accompany these 
topics, and how much emphasis should be placed on each, the categorization might 
have been different. Let us also consider the verb family understand which had the 
highest frequency (29) in the four documents overall. In the mathematics education 
literature much has been written about the definition of this verb family. For example, 
Skemp (1976) makes a distinction between relational understanding (“knowing both 
what to do and why” (p.20)) and instrumental understanding (“rules without reasons” 
(p.20)). On the other hand, the National Research Council (2001) refers to procedural 
understanding and conceptual understanding. However, in the four reports examined 
in this study, it is not clearly indicated by the professional organizations which of 
these meanings the verb family understand carries when used in a recommendation. 
Such precise meanings are needed so as to accurately code the recommendations. 

CONCLUSION 
In recent decades, probability has come to gain importance as one of the content areas 
of school curricula in the United States. However, research on teachers’ knowledge in 
this content area is scarce. The identification of the knowledge of probability that 
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secondary mathematics teachers need to have in the form of content topics and their 
aspects of teaching is an essential tool that can be used in future research in this area. 
The analysis of recommendations on probability provided by professional 
organizations has revealed the importance of language in attempting to communicate 
to mathematics educators and teachers what is expected that they know and teach. As 
mentioned, 53 verb families were identified in the data sources. However, no clear 
definitions of these verbs, as related to the probability topics they accompanied, were 
provided by any of the sources leaving much to the interpretation of the researcher. 
Precise definitions of action verbs are needed in such documents to avoid possible 
errors in the coding of the recommendations and to help educators as they plan 
courses for prospective mathematics teachers.   
Last, the analysis of the reports on recommendations for the preparation of secondary 
mathematics teachers by the AMS, ASA, MAA, and NCTM, revealed the inadequate 
number of such recommendations especially with regards to pedagogical content 
knowledge and curricular knowledge requirements specific to the area of probability 
at the secondary level. Given the increased attention of probability in school 
curricula, it is essential that professional organizations provide more extensive and 
detailed reports regarding the recommended skills in probability for future 
mathematics teachers. It would perhaps be most beneficial if professional 
organizations provide such a report collaboratively so that there is common 
agreement about the expectations of probabilistic knowledge of secondary 
mathematics teachers. 
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STATISTICAL GRAPHS PRODUCED BY PROSPECTIVE TEACHERS IN 
COMPARING TWO DISTRIBUTIONS 

Carmen Batanero*, Pedro Arteaga*, Blanca Ruiz** 
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**Instituto Tecnológico y de Estudios Superiores, Monterrey, México 
 
We analyse the graphs produced by 93 prospective primary school teachers in an 
open statistical project where they had to compare two statistical variables. We 
classify the graphs according its semiotic complexity and analyse the teachers’ 
errors in selecting and building the graphs as well as their capacity for interpreting 
the graphs and getting a conclusion on the research question. Although about two 
thirds of participant produced a graph with enough semiotic complexity to get an 
adequate conclusion, half the graphs were either inadequate to the problem or 
incorrect. Only one third of participants were able to get a conclusion in relation to 
the research question. 
Keywords: Statistical graphs, semiotic complexity, prospective teachers, 
assessment, competence. 
 
INTRODUCTION 
Graphical language is essential in organising and analysing data, since it is a tool 
for transnumeration, a basic component in statistical reasoning (Wild & 
Pfannkuch, 1999). Building and interpreting statistical graphs is also an important 
part of statistical literacy which is the union of two related competences: 
interpreting and critically evaluating statistically based information from a wide 
range of sources and formulating and communicating a reasoned opinion on such 
information. (Gal, 2002). Because recent curricular guidelines in Spain introduce 
statistics graph since the first year of primary school level and therefore, this 
research was oriented to assess prospective primary school teachers’ graphical 
competence in order to use this information in improving the training of these 
teachers. 
Understanding statistical graphs  
In spite of its relevance, didactic research warn us that competence related to 
statistical graphs is not reached in compulsory education, since students make 
errors in scales (Li & Shen, 1992) or in building specific graphs (Pereira Mendoza 
& Mellor, 1990; Lee & Meletiou, 2003; Bakker, Biehler & Konold, 2004). Other 
authors define levels in graph understanding (Curcio, 1989; Gerber, Boulton-Lewis 
& Bruce, 1995; Friel, Curcio & Bright, 2001) that vary from a complete 
misunderstanding of the graph, going through reading isolated elements or being 
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able to compare elements to the ability to predict or expand to data that are not 
included in the graph. More recently, these levels were expanded to take into 
account the critical evaluation of information, once the student completely reads 
the graph (Aoyama, 2007): 
1. Rational/literal level. Students correctly read the graph, interpolate, detect the 

tendencies and predict. They use the graph features to answer the question posed 
but they do neither criticise the information nor provide alternative explanations. 

2. Critical level: Students read the graph, understand the context and evaluate the 
information reliability; but they are unable to think in alternative hypotheses that 
explain the disparity between a graph and a conclusion. 

3. Hypothetical level: Students read the graphs, interpret and evaluate the 
information, and are able to create their own hypotheses and models. 

Graphical Competence in Prospective Teachers 
Recent research by Espinel, Bruno & Plasencia (2008) also highlight the scarce 
graphical competence in future primary school teachers, who make errors when 
building histograms or frequency polygons, or lack coherence between their 
building of a graph and their evaluation of tasks carried out by fictitious future 
students. When comparing the statistical literacy and reasoning of Spanish 
prospective teachers and American university students even when the tasks were 
hard for both groups, results were much poorer in the Spanish teachers, in 
particular when predicting the shape of a graph or reading histograms. Monteiro 
and Ainley (2007) studied the competence of Brazilian prospective teachers and 
found many of these teachers did not possess enough mathematical knowledge to 
read graphs taken from daily press. A possible explanation of all these difficulties 
is that the simplicity of graphical language is only apparent, since any graph is in 
fact a mathematical model. In producing a graph we summarize the data, going 
from the individual observations to the values of a statistical variable and the 
frequencies of these values. That is, we introduce the frequency distribution, a 
complex object that refers to the aggregate (population or sample) instead of 
referring to each particular individual and this object can be not grasped by the 
students. 

 
THE STUDY 
As stated in the introduction, the main goal in our research was to assess the 
graphical competence of prospective primary school teachers. A secondary aim was 
to classify the graphs produced by these teachers as regards its complexity. More 
specifically we analyse the graphs produced by 93 prospective teachers when 
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working in an open statistical project with the aim of providing information useful 
to teacher educators. These students had studied descriptive statistics (graphs, 
tables, averages, spread) the previous academic year (their first year of University) 
as well as in secondary school level. The data were collected along a classroom 
practice (Godino, Batanero, Roa & Wilhelmi, 2008) that was carried out in a 
Mathematics Education course (second year of University) directed to prospective 
teachers in the Faculty of Education, University of Granada. In this practice (2 
hours long) we proposed prospective teachers a data analysis project. At the end of 
the session, participants were given a sheet with the data obtained in the classroom 
and were asked to individually produce a data analysis written report to answer the 
question set in the project. Participants were free to use any statistical graph or 
summary and work with computers if they wished. They were given a week to 
complete the reports that were collected and analysed. 
The statistical project: “Check your intuitions about chance” 
This project is part of a didactical unit designed to introduce the “information 
handling, chance and probability” content included in the upper level of primary 
education. Some aims are: a) showing the usefulness of statistics to check 
conjectures and analyse experimental data; b) checking intuitions about 
randomness and realising these intuitions are sometimes misleading. The sequence 
of activities in the project was as follows. 
1. Presenting the problem, initial instructions and collective discussion. We 

started a discussion about intuitions and proposed that the future teachers carry 
out an experiment to decide whether they have good intuitions or not. The 
experiment consists of trying to write down apparent random results of flipping 
a coin 20 times (without really throwing the coin, just inventing the results) in 
such a way that other people would think the coin was flipped at random. 

2. Individual experiments and collecting data. The future teachers tried the 
experiment themselves and invented an apparently random sequence (simulated 
throwing). They recorded their sequences using H for head and T for tail. 
Afterwards the future teachers were asked to flip a fair coin 20 times and write 
the results on the same recording sheet (real throwing). 

3. Classroom discussion, new questions and activities. After the experiments were 
performed we started a discussion of possible strategies to compare the 
simulated and real random sequences. A first suggestion was to compare the 
number of heads and tails in the two sequences since we expect the average 
number of heads in a random sequence of 20 tosses to be about 10. The lecturer 
posed questions like: If the sequence is random, should we get exactly 10 heads 
and 10 tails? What if we get 11 heads and 9 tails? Do you think in this case the 
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sequence is not random? These questions introduced the idea of comparing the 
number of tails and heads in the real and simulated experiments for the whole 
class and then studying the similarities and differences.  

4. At the end of the session the future teachers were given a copy of the data set 
for the whole group of students. This data set contained two statistical 
variables: number of heads for each of real and simulated sequences and for 
each student; n cases with these 2 variables each. As prospective teachers were 
divided in 3 groups, n varied (30-40 cases in each group).  They were asked to 
complete the analysis at home and produce a report with a conclusion about the 
group intuitions concerning randomness. Students were able to use any 
statistical method or graph and should include the statistical analysis in the 
report. 

 
RESULTS AND DISCUSSION 
Once the students’ written reports were collected, we made a qualitative analysis of 
these reports. By means of an inductive procedure we classified into different 
categories the graphs produced as a part of the analysis, the interpretations of 
graphs and the conclusions about the group intuitions. The classification of graphs 
took into account the type of graph, number of variables represented in the graph, 
and underlying mathematical objects as well as some theoretical ideas that we 
summarise below. 
Font, Godino and D’Amore (2007) generalize the notion of representation, by 
taking from Eco the idea of semiotic function "there is a semiotic function when an 
expression and a content are put in correspondence" (Eco, 1979, p.83) and by 
taking into account an ontology of objects that intervene in mathematical practices: 
problems, actions, concepts-definition, language properties and arguments, any of 
which could be used as either expression or content in a semiotic function. In our 
project we propose a problem (comparing two distributions to decide about the 
intuitions in the set of students) and analyse the students' practices when solving 
the problem. More specifically we study the graphs produced by the students; these 
graphs involve a series of actions, concepts-definitions and properties that vary in 
different graphs. Consequently the semiotic functions underlying the building and 
interpretation of graphs, including putting in relation the graphs with the initial 
question by an argument also vary. We therefore should not consider the different 
graphs as equivalent representations of a same mathematical concept (the data 
distribution) but as different configurations of interrelated objects that interact with 
that distribution. Five students only computed some statistical summaries (mean, 
median or range) and did not produce graphs; we are not taking into account these 
students in our report. Using the ideas above we performed a semiotic analysis of 
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the different graphs produced by the other 88 students and defined different levels 
of semiotic complexity as follow: 
L1. Representing only his/her individual results. Some students produced a graph to 
represent the data they obtained in his/her particular experiment, without 
considering their classmates' data. These graphs (e.g. a bar chart) represent the 
frequencies of heads and tails in the 20 throwing. Students in this level tried to 
answer the project question for only his /her own case (tried to assess whether 
his/her intuition was good); part of these students manifested a wrong conception 
of chance, in assuming a good intuition would imply that the simulated sequence 
would be identical to the real sequence in some characteristic, for example the 
number of heads. Since they represented the frequency of results in the individual 
experiment, in fact these students showed an intuitive idea of statistical variable 
and distribution; although they only considered the Bernoulli variable "result of 
throwing a coin" with two possible values: "1= head", 0= tail" and 20 repetitions of 
the experiment, instead of considering a Binomial distribution "number of heads in 
the 20 throwing" that have a wider range of values (1-20 with average equal to 10) 
and r repetitions of the experiments (r= number of students in the classroom). 
L2. Representing the individual values for the number of heads. These students did 
neither group the similar values of the number of heads in the real nor in the 
simulated sequences. Instead, they represented the value (or values) obtained by 
each student in the classroom in the order the data were collected, so they did 
neither compute the frequency of the different values nor explicitly used the idea of 
distribution. The order of data in the X-axis was artificial, since it only indicated 
the arbitrary order in which the students were located in the classroom. In this 
category we got horizontal and vertical bar graphs, line graphs of one or the two 
variables that, even when did not solve the problem of comparison, at least showed 
the data variability. Other students produced graphs such as pie chart, or stocked 
bar charts, that were clearly inappropriate, since they did not allow visualizing the 
data variability.  
L3. Producing graphs separate for each distribution. The student produced a 
frequency table for each of the two variables and from it constructed a graph or else 
directly represented the graph with each of the different values of the variable with 
its frequency. This mean that the students went from the data set to the statistical 
variable “number of heads in each sequence” and its distribution and used the ideas 
of frequencies and distribution. The order in the X-axis was the natural order in the 
real line. In case the students did not use the same scale in both graphs or used 
different graphs for the two distributions the comparison was harder. Examples of 
correct graphs in this category were bar graphs and frequency polygons. Students 
also produced incorrect graphs in this category such as histograms with incorrect 
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representation of intervals, bar graphs with axes exchanged (confusing the 
independent and dependent variable in the frequency distribution), representing the 
frequencies and variable values in an attached bar graph or representing variables 
that were not related. 
L4. Producing a joint graph for the two distributions. The students formed the 
distributions for the two variables and represented them in a joint graph, which 
facilitated the comparison; the graph was more complex, since it represented two 
different variables. We found the following variety of correct graphs: attached bar 
chart; representing some common statistics (e.g. the mean or the mode) for the two 
variables in the same graph; line graphs or dot plots in the same framework. 
Example of incorrect graphs in this category were graphs presenting statistics that 
were not comparable (e.g. mean and variance in the same graphs) or the same 
statistics for variables that cannot be compared. 
In Figure 1 we present an example of graphs produced in each category. Even when 
within each of these categories we observe a variety of graphs and configurations 
of mathematical objects it is evident a qualitative gap between each of the different 
levels. In Table 1 we present the distribution of students according the semiotic 
complexity of the graph, it correctness, the interpretation of the graph and the 
conclusion about intuitions. 

Table 1. Results 

 
Correctness 
of the graph

Interpretation 
of graph 

Conclusion 
on the 

intuitions 
 1 2 3 1 2 3 1 2 3 

Total in the 
level 

L1. Representing only the student data 1  1 1 1    2 2 
L2. Representing individual results 10 1 4 4 10 1  3 12 15 
L3. Separate graphs 15 17 14 15 15 16 1 12 33 46 
L4. Joint graphs 14 6 5 9 11 5 1 7 17 25 
Total 40 24 24 29 37 22 2 22 64 88 

(1) Correct; (2) Partially correct; (3) Incorrect or no interpretation / conclusion 
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Figure 1. Examples of graphs in each different level of semiotic complexity 
 

From a total of 93 students 88 (94,6%) produced some graphs when analysing the 
data, even if the instructions given to the student did not explicitly require that they 
constructed a graph. This fact suggests that students felt the need of building a 
graph and reached, by a transnumeration process some information that was not 
available in the raw data. Most students (52,2%) produced separate graphs for each 
variable (level 3), that were generally correct o partly correct (correct graph with 
different scales or different graph in each sample; not centring the rectangles in the 
histogram, or missing labels). 
14 students in this level constructed a non-meaningful graph since they represented 
the product of values by frequencies, exchanged the frequencies and values of 
variables in the axes thus confusing the independent and dependent variable in the 
frequency distribution. 28,4% students worked at level 4, and produced only a joint 
graph for the two variables, although 6 of these graphs were partly correct and 5 
incorrect (same reasons than those described in level 3). Few students only 
analysed their own data (level 1) and only 17% of participants studied the value got 
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by each student without forming the distribution. Consequently the concept of 
distribution seemed natural for the majority of students who used it to solve the 
task, although the instructions did not require this explicitly. 
In general, these prospective teachers interpreted correctly or partially correctly the 
graphs in all the levels, reaching the Curcio’s (1989) intermediate level (reading 
between the data) and the difficulty of interpretation of graphs increased with its 
semiotic complexity. However, an important part of students in our levels 3 and 4, 
even when they built correct graphs did not reached the “reading between the data” 
level, because either they did not interpret the graph either made only a partial 
interpretation. As regards the Aoyama’s (2007) levels, the majority of prospective 
teachers only read the graphs produced at a rational/literal level, without being able 
of read the graphs at a critical or a hypothetical level. The teachers performed a 
mathematical comparison of the graphs but did not get a conclusion about the 
intuitions in the classroom (e.g. they correctly compared averages but did not 
comment what were the implications in relation to the students’ intuitions). Only 
two students in the group reached the hypothetical level in reading the graphs, as 
they got the correct conclusion about group's intuition. These two students realised 
that the group have correct intuitions about the average number of heads but poor 
intuitions about the spread. Students were supposed to get this conclusion from 
comparing the averages and range in the variables in the simulated and real 
sequences distributions. At higher level statistical tests could also be used to 
support this conclusion that have been observed in previous research about people 
perception of randomness. 22 participants got a partial conclusion that the intuition 
as regards averages was good, as they were able to perceive difference or similitude 
in the averages, but they did not considered the results obtained in comparing 
spread of the variable (number of heads) in the two sequences.  These students also 
work at the Aoyama’s (2007) hypothetical level, although they did not considered 
spread in comparing the two distributions. Those working at levels 1 and 2 got few 
partly correct conclusions and none correct conclusion, so that these levels of 
complexity in the graph were not adequate to get a complete conclusion. 

 
CONCLUSIONS 
In the project posed the prospective teachers went through the different steps in the 
statistics method as described by Wild and Pfannkunch (1999) in their PPCAI 
cycle: setting a problem, refining the research questions, collecting and analysing 
data and obtaining some conclusions. They also practiced the process of modelling, 
since, beyond working with the statistics and random variables, they should 
interpret the results of working with the mathematical model in the problem context 
(whether the students' intuitions was good or not). This last step (relating the result 
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with the research question) was the most difficult for the students, who lacked 
familiarity with statistical projects and modelling activities. Since these activities 
are today recommended in the teaching of statistics since primary school level in 
Spain and are particularly adequate to carry out group and individual work as 
recommended in the Higher European Education Space we suggest they are 
particularly suitable for the training of teachers. Our research also suggest that 
building and interpreting graphs is a complex activity and confirm some of the 
difficulties described by Espinel, Bruno and Plasencia (2008) in the future teachers, 
in spite that they should transmit graphical language to their students and use it as a 
tool in their professional life. Improving the teaching of statistics in schools should 
start from the education of teachers that should take into account statistical graphs. 
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THE ROLE OF CONTEXT IN STOCHASTICS INSTRUCTION 
Andreas Eichler 

Universität Münster 
This report focuses on a research project that combines two aspects of a stochastics 
curriculum related to teachers’ classroom practice, and their students’ stochastical 
knowledge and beliefs. Data were collected with questionnaires. The development of 
the questionnaires derived from results of a qualitative research project will be 
sketched. Afterwards, some results concerning the role of the context will be 
discussed. 
Keywords: stochastics teachers, students’ learning, beliefs, role of the context 

INTRODUCTION 
One central aim of the teaching of stochastics in school is to prepare students to deal 
with real stochastic situations in their lives (Jones, Langrall, & Mooney, 2007). This 
aim involves two goals, the students’ comprehension of stochastical concepts, and the 
students’ awareness that it is possible to use stochastics to cope with specific real 
situations. There is a wide consensus between researchers into stochastic education 
that to achieve these two goals, students must explore stochastical concepts on the 
basis of realistic situations instead of exploring solely pseudo realistic situations 
(cards, urns, dices) or learning stochastics in a formal and abstract way (e.g. Jones et 
al., 2007). While there is a consensus about the role of the context for the teaching 
and learning of stochastics, there is, however, still little insight into the daily teaching 
practice of “conventional” stochastics teachers. In this report, the results of a research 
project involving a quantitative survey concerning the classroom practice of German 
stochastics teachers will be discussed. The main focus is the role of the context based 
on the following aspect:  
1. The teachers’ beliefs about the goals of teaching stochastics, 
2. the students’ beliefs about the usefulness of stochastics, and 
3. the impact of the teachers’ beliefs on the students’ beliefs. 
The research project discussed in this report is part of a larger research project 
involving a qualitative designed investigation of stochastics teachers’ classroom 
practices and the impact of the latter on students’ learning (Eichler, 2008a; Eichler, 
2007). The results of the qualitative part of the research that provides the basis for 
the quantitative survey will be sketched in the following. 

RESULTS OF THE QUALITATIVE RESEARCH 
The first step of the qualitative research comprised an interview study with eight 
stochastic teachers (Eichler, 2007a). This study yielded four types of (individual) 
statistics curricula that are similar concerning the content, but considerably differ 
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with regard to the teachers’ objectives or beliefs. The distinction between the four 
types is characterised by differences of the teachers concerning two dimensions. The 
first dimension can be described with the dichotomous pairs of a static versus a 
dynamic view of mathematics or stochastics. The second dimension can be described 
with the orientation on formal mathematics versus mathematical applications. The 
four types of statistics teachers were characterised with reference to their main 
objectives as follows (Eichler, 2007a). 
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dynamic view of mathematics (dimension 1)static view of mathematics 

Application preparers: their central goal is to 
have students grasp the interplay between 
theory and applications. Students firstly must 
learn stochastical theory in order to cope with 
mathematical applications later. 

Every-day-life preparers: their central goal 
is to develop stochastical methods in a 
process, the result of which will be both the 
ability to cope with real stochastic problems 
and the ability to criticise. 

Traditionalists: their central goal is to 
establish a theoretical basis for stochastics. 
This involves algorithmic skills and insights 
into the abstract structure of mathematics, but 
it does not involve applications. 

Structuralists: their central goal is to 
encourage students’ understanding of the 
abstract system of mathematics (or 
stochastics) in a process of abstraction which 
begins with mathematical applications. 

 
Figure 1: Four types of stochastics teachers 

The second step of the qualitative research comprised the observation of the 
classroom practice of four teachers (Eichler, 2008a). One central result of this step of 
observation was that the instructional practice of the teachers provides strong 
evidence that they pursue their main objectives. Concerning the role of the context, 
the traditionalists and the every-day-life-preparers represent the extreme positions. 
The students of the traditionalists predominantly explore stochastical concepts on the 
basis of formal or pseudo realistic situations (cards, urns, dices). They seldom explore 
realistic situations. In contrast, realistic situations are crucial in the classroom practice 
of the every-day-life-preparers. Their students predominantly explore stochastical 
concepts on the basis of realistic situations or real problems, which arise, for instance, 
from articles of newspapers. 
The third step of the qualitative research comprised an interview study with five 
students of each of the four teachers who were observed before. In this step the 
construct of statistical knowledge (Broers, 2006) and the distinction of declarative 
knowledge, procedural knowledge, and conceptual knowledge (Hiebert, & Carpenter, 
1992) was used to describe the students’ knowledge (Eichler 2008a). A central result 
of the third step of the qualitative research was that the students differ in their 
knowledge and beliefs. The differences consist between the students of one teacher, 
and between sets of students of different teachers. The students also differ concerning 
the role of the context. Thus, the students differ in the use of stochastic situations 
(formal, pseudo realistic or realistic) to explain stochastical concepts. Further, the 
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students differ considerably concerning their beliefs about stochastics and 
mathematics referring to their relevance for society and their relevance for the own 
life (Eichler, 2008a). 

METHOD 
In regard to the characterisation of the four types of teachers (figure 1), a 
questionnaire including four parts was developed. The first part concerns the 
instructional contents of stochastics courses. The other three parts of the 
questionnaire concern the teachers’ objectives of statistics and mathematics 
instruction. In each of the latter three parts of the questionnaire the teachers were 
asked to rate typical statements of the teachers who represent one of the four types 
(from full agreement to no agreement, coded with 1 to 5). In these three parts 
respectively two statements of every type have to be rated. 
The questionnaire for the students involves items concerning declarative knowledge 
and conceptual knowledge. Concerning their declarative knowledge, the students 
were asked to rate a list of 28 statistical concepts whether they: are not able to 
remember the statistical concept (coded with 0), are able to remember the statistical 
concept (coded with 1), are able to approximately explain a statistical concept (coded 
with 2), are able to exactly explain a statistical concept (coded with 3).  
Concerning the conceptual knowledge, the students were asked to indicate 
interconnections into the consecutively numbered concepts (category declarative 
knowledge)  
Four parts of the questionnaire comprise the role of the context. Thus, the students 
were asked to indicate 
- stochastic situations of the classroom (category application). 
- statistical applications along with related statistical concept (category 

connections).  
- real situations (outside of the classroom), for which stochastics may be useful 

(category benefit). 
- the benefit of stochastics for students’ future life, the benefit of stochastics for the 

students’ professional career. These two categories were linked with a single item, 
in which the students are asked to rate the relevance of stochastics for their lives 
from high relevance (coded with 5) to no relevance (coded with 1, category 
relevance-life, and category relevance-profession). 

A random sample of 240 German secondary high schools was selected. These schools 
were asked to conduct the survey. 166 of these agreed. Two teachers’ of each of these 
schools and three students per teacher with different statistical performance were 
asked to fill out the questionnaire (January to July 2007). The completed 
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questionnaires of 107 teachers and 315 students were analysed. The stochastics 
courses last between three and six month with three to five hours a week. 

RESULTS CONCERNING THE TEACHERS 
The statistics curriculum is dominated by the so called classical block of probability 
(see table 1).  
Block Topics and percent of teachers  teaching the topic (n=107) 
Classical block of 
probability 

Frequencies (98%), Laplacean probability (97%), statistical probability 
(72%), probability tree (100%), Bernoulli experiment (99%), binomial 
distribution (100%), expected value (95%), standard deviation (95%) 

Inferential statistics Hypothesis testing (89%), confidence intervals (51%), Bayesian statistics 
(27%) 

Conditional 
probability 

Conditional probability (81%), (in)dependence (80%), theorem of Bayes 
(74%) 

Distributions Normal distribution (79%), hypergeometrical distribution (49%) Poisson 
distribution (49%) 

Descriptive statistics Frequencies (98%), mean (87%), spread (74%), median (52%), regression 
and correlation (16%) 

Table 1: Percentage of teachers teaching different instructional content  

Factor analysis concerning the objectives of the teachers’ statistics curricula in the 
responses to questionnaires yield three interpretable factors (table 2) which include 
15 of the 24 items referring to the objectives of the statistics curriculum. For each 
factor the number of items and the Cronbach’s Alpha is shown in table 2. 

Factor Factor 1 (5 items,  
α = 0.689) 

Factor 2 (6 items,  
α = 0.725) 

Factor 3 (4 items,   
α = 0.779) 

Interpretatio
n 

Traditional curriculum, 
little reference to real data 

Curriculum with high 
reference to real data 

Curriculum with high 
reference to process 

Table 2: Factors concerning the objectives the statistics curriculum 

In the following the main focus is on the first two factors or rather on the teachers 
with a high acceptance to the items of one of these two factors. These items are 
shown in the following table. The items involve a statement of a teacher who 
represents one of the four types of stochastic teachers (figure 2). The type is indicated 
in the brackets (T: traditionalists; S: structuralists; A-P: application-preparers; E-P: 
every-day-life-preparers). 
Factor 1 Factor 2 
- The objective of teaching stochastics is 

to establish a theoretical foundation of 
stochastics (T). 

- Students must learn to deal 
successfully with abstract and formal 
systems (S). 

- Algorithmic skills constitute the basis 
of learning statistics or mathematics

- The main goal of the teaching of stochastics is the 
students ability to understand decision-making 
processes in our society (E-P) 

- Students must explore stochastical concepts solely on 
the basis of real stochastic situations (E-P). 

- Students must learn to use stochastical or 
mathematical theory to be able to argue referring to 
real problems (A-P). 
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(T). 
- Students must be well prepared 

concerning final exams and studies (T).
- Students must learn a precision in 

reasoning in order to deal successfully 
with abstract and formal mathematics
(S). 

- Students must understand that stochastics or 
mathematics is part of the general ability of problem 
solving (E-P). 

- Students must learn to solve real problems either for 
their own or in a team (E-P). 

- Students solely will be motivated if they understand 
that stochastics or mathematics is applicable in the 
reality (A-P). 

Table 3: List of the items included in factor 1 and factor 2. 

The correlation coefficient between factor 1 and factor 2 is - 0,1. For the distinction 
between teachers with high acceptance to the items of one factor and low acceptance 
to the other, two clusters were defined by the medians concerning the value of the 
two factors. Cluster 1 includes those teachers with high acceptance to factor 1 and 
low acceptance to factor 2. Cluster 2 includes those teachers with high acceptance to 
factor 2 and low acceptance to factor 1. Cluster 1 includes 39 teachers, cluster 2 34 
teachers. 

 

Cluster 1

Cluster 2

Figure 2: Clusters of teachers concerning factor 1 and factor 2 

RESULTS CONCERNING THE STUDENTS 
Figure 3 shows the results concerning five categories: 
1. the students’ self estimated ability to explain the 28 different stochastical concepts 

(the students’ declarative knowledge), 
2. the number of connections between two different stochastical concepts as part of 

the students conceptual knowledge (for instance: if a student indicated the 
connection between the three concepts of expected value, variance and standard 
deviation, the number of possible connection is 3 over 2 or rather 3) 

3. the number of  stochastic situations of the classroom (application). 
4. the number of pairs of applications and statistical concept (connections).  
5. the number of real stochastical situations (benefit). 
Due to the fact that different teachers indicated different numbers of stochastical 
concepts taught in the classes, figure 3 shows the results concerning the category 
knowledge weighted. For this category the students’ self estimated knowledge is 
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divided by the number of concepts taught by the teachers. This category alludes to a 
restricted sample, which involves the set of completed questionnaires of one class 
(some of the completed questionnaires allude only to the teachers or only to the 
students). 
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Figure 3: Results concerning the students knowledge and beliefs (average and 95%-
interval) 

The interpretation (only for the averages) is as follows: The sum of the students’ self-
estimations concerning the 28 given stochastical concepts is in average about 39. In 
average, the students rate their knowledge about the stochastical concepts taught by 
their teachers with about 1,4. The students indicate more than 9 connections between 
different stochastical concepts, they indicate about 2,1 stochastical situations of the 
classroom and about 2 stochastical situations outside of the classroom. Finally, the 
students indicate in average about 1,9 connections of a stochastical situation and a 
specific stochastical concept.  
Concerning the role of the context it is important whether the indicated stochastical 
situations to the categories application, benefit, and connections refer to realistic 
situations or pseudo realistic situations (the pseudo realistic situations include games 
of chance). Table 4 shows the distribution of the indicated stochastical situations 
(with the number of indications in brackets) for the first two categories: 

Application  Benefit 
realistic situations 
(255) 

pseudo realistic situations 
(385) 

realistic situations 
(359) 

pseudo realistic situations
(270) 

quality control (48) game of chance (100) economy (63) game of chance (100) 
forecasts (30) lottery (91) quality control (45) lottery (78) 
elections (28) dice (66) elections (39) poker (13) 
statistics (24) urns (33) statistics (37) bets (18) 
clinical diagnostic (23) coins (23) polls (32) dice (14) 
polls (16) cards (15) clinical diagnostic (26) bingo (13) 
economy (16) poker (13) further education (26)  
weather (11) lots (10) weather (17)  
  stock market (16)  
  insurance (12)  
other situations with less than 10 indications other situations with less than 10 indications 
Table 4: Distribution of stochastical situations and number of indications in brackets 

The stochastical situations are topics: the situation economy includes, for instance, 
market research, promotion and some more specific situations. Although some of the 

WORKING GROUP 3

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 383



stochastic situations were indicated for both categories, application and benefit, it is 
obvious that  
- concerning the category benefit, the pseudo realistic situations are restricted to 

existing games of chance, and 
- concerning the category application, the majority of situations refers to pseudo 

realistic situations. 
Some of the indicated situations stem from typical tasks in German textbooks, in 
particular quality control, elections, and clinical diagnostic. Students predominantly 
use these three different situations connecting a stochastical situation with a specific 
stochastical concept. The students, however, more often use pseudo realistic 
situations for connecting a stochastical situation with a specific stochastical concept, 
and, in this case, predominantly dice, urns and lottery (see table 4). 

Realistic situations (157) Pseudo realistic situations (341) 
Situation Connected stochastical concepts Situation Connected stochastical concepts 
Quality 
control 
(85) 

hypothesis testing (17), binomial 
distribution (6), confidence 
interval (5), Bernoulli experiment 
(4), conditional probability (4) 
normal distribution (3), expected 
value (2), spread (2), probability 
tree (1), combinatorics (1) 
2 x 2 table (1) 

Dice Laplacean probability (36), Bernoulli 
experiment (14), probability tree (9) 
random experiment (7), expected 
value (5), binomial distribution (4) 
probability (2), statistical probability 
(2), normal distribution (2), 
hypothesis testing (1), variance (1) 
simulation (1), combinatorics (1) 

Clinical diagnostic (33), elections (9) Urns (79), lottery (53) 
Table 5: stochastical situations and related stochastical concepts 

Obviously, students remember predominantly connections between pseudo realistic 
situations and specific stochastical concepts. Further, the variation of indicated 
stochastical situations concerning the category connections is much lesser than the 
variation of indicated situations concerning the categories application and benefit.  
Although the students estimated their declarative knowledge by themselves, these 
estimations give evidence of the students’ factual knowledge. Thus, the correlations 
between the students’ declarative knowledge and other categories discussed above are 
shown in table 6:  

Application benefit connections 
realistic pseudo 

realistic 
realistic pseudo 

realistic 
realistic pseudo 

realistic 

 conceptual 
knowledge 

situations situations situations 
declarative 
knowledge 

0,418** 0,172** -0,233** 0,277** -0,181** 0,269** -0,177**

Table 6: Correlations between students’ declarative knowledge and 5 other categories  

The correlations are predominately weak, although they are significant different from 
zero. However, the correlations as a whole give evidence that the students’ self 
estimated declarative knowledge measure in some sense the students’ flexibility of 
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dealing with statistical concepts. Further, there is evidence that the higher the 
students’ flexibility of dealing with statistical concepts is the higher their reference to 
realistic statistical situations is, and the lower the reference to pseudo realistic 
situations is. 

TEACHERS – STUDENTS  
To prove possible interrelations between the teachers’ orientation concerning the 
goals of the stochastics instruction and the students’ knowledge and beliefs, the 
sample must be restricted. This was necessary, because sometimes a teacher sends his 
completed questionnaire back but his students not, sometimes the students send their 
completed questionnaires back, but the teacher not. Two strategies were used for the 
following analysis. Firstly, the correlations between the factors, i.e. factor 1 and 
factor 2 (or rather the sum of ratings the teachers given to the items of the two 
factors), and the categories concerning the students (knowledge weighted, 
application, benefit, and connections). Secondly, the clusters of teachers defined 
above (figure 2) were used to split up the sample of the students. The averages of the 
two new samples concerning the categories knowledge weighted, application, benefit, 
and connections were compared by a t-test.  
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Figure 4: Students’ weighted knowledge and students’ procedural knowledge. f1F2:  
teachers, who have low acceptance to factor 1 and high acceptance to factor 2,  F1f2: 
teachers, who have high acceptance to factor 1 and low acceptance to factor 2 

Most parts of the analysis give no evidence of an interrelation between the teachers’ 
orientation and the students’ knowledge and beliefs. For instance, concerning the 
clusters of teachers, who have low acceptance to factor 1 (traditional curriculum) and 
high acceptance to factor 2 (curriculum with high reference to real data) or who have 
low acceptance to factor 2 and high acceptance to factor 1 (see figure 2), the 
distribution of the students’ weighted knowledge and the students’ ability to indicate 
connections between stochastical concepts (figure 4). 
Although there are differences in detail, these differences are statistically not 
relevant.  Thus, there is little or no evidence that a teacher’s orientation towards a 
traditional curriculum (factor 1) or a curriculum that includes real data (factor 2) 
promote (or impede) students’ learning in reference to the students’ declarative 
knowledge, the students’ conceptual knowledge, and the students’ beliefs concerning 
the relevance of statistics except the category benefit. For this category t-test give 
some evidence that the students of teachers with high acceptance to factor 2 and low 
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acceptance to factor 1 use more often realistic situations than pseudo realistic 
situations to explain the relevance of stochastics for the society. However, the 
differences are not significant (table 7).  

Realistic 
situations (F1f2) 

14,1=x  Psudo realistic 
situations (F1f2) 

66,0=x  

Realistic 
situations (F1f2) 

83,0=x  Psudo realistic 
situations (F1f2) 

00,1=x  

Benefit 

 121,0=α   063,0=α  
Table 7: Difference of the students concerning the category benefit 

In contrast to the low interrelations between the teachers’ objectives concerning the 
statistics curriculum and their students’ knowledge and the students’ beliefs, there is 
stronger evidence that the amount of contents has an impact on the students’ 
knowledge. So, the greater the number of statistical concepts taught by the teachers 
is, the lower the declarative knowledge of the students seems to be (Pearson’s 
correlation coefficient r = -0,43**). 

CONCLUSION 
The results of the quantitative survey concerning the curriculum of statistics teachers 
and the learning of students give evidence that: 
- “The traditional way of teaching statistics, with its heavy emphasis on formal 

probability” (Broers, 2006, p.4) is still existent in German secondary high schools; 
- the teachers’ instructional contents are similar, but the teachers’ objectives differ 

considerably; 
- the quality of students’ declarative knowledge affects their conceptual knowledge 

and their beliefs concerning the relevance of statistics; 
- the students predominately indicate few realistic situations to explain both the 

relevance of stochastics for the society and connections between stochastical 
situations and specific stochastical concepts; 

- the teachers’ orientation towards a curriculum with high reference to real data 
seems to affect the students’ ability to use realistic stochastical situations to 
explain the relevance for the society. 

However, the latter interrelation between the teachers’ orientation and the students’ 
beliefs is weak. Above all, there is no evidence for the impact of the teachers’ 
orientation and the students’ knowledge and beliefs. The lack of statistical relevant 
interrelations between the teachers teaching and the students learning may be caused 
by the fact, that there are only small differences of the teachers’ stochastics teaching 
with the emphasis on probability. It is possible that a stronger orientation to a data 
driven curriculum has a stronger impact of the students’ knowledge and beliefs 
concerning the role of the context. Further it is possible, that the quantitative survey 
discussed in this report is not able to measure possible differences concerning the 
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students’ knowledge and beliefs. There is some evidence that qualitative research can 
show differences in detail between students’ of teachers who have different goals 
concerning the role of the context (see Eichler, 2008a). 
However, the stochastics teachers’ teaching is determined by the teachers’ 
fundamental orientation, i.e. the teachers’ system of objectives (or beliefs) concerning 
stochastics teaching. Pajares (1992) stated that it could be difficult to change the 
teachers’ central beliefs. One approach to change these central beliefs may start by 
the teachers’ conviction that a changed curriculum actually will promote students’ 
stochastical knowledge. For this reason it would be desirable to have more research 
into the stochastics teachers’ curricula, the students’ stochastical knowledge and 
beliefs, and, in particular, the relations between stochastics teachers’ curricula and the 
students’ stochastical knowledge or beliefs. 
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DOES THE NATURE AND AMOUNT OF POSTERIOR 
INFORMATION AFFECT PRESCHOOLER’S INFERENCES 

Z. Nikiforidou, J. Pange 
Department of Early Childhood Education 

University of Ioannina-Greece 
 
Children as young as 5 have been found to possess basic notions of probability, in 
contradiction to the piagetian perspective. In the current pilot study, preschoolers 
(N=25) participated in a probability task of single events, with alterations in the 
given posterior information. Children took into account the new sets of information 
and responded differently in each condition, depending on the nature and the amount 
of information. Such findings stress the importance of designing probability tasks in 
accordance to the children’s cognitive capacities and probabilistic understanding.  
Key words: preschoolers, posterior probability, design of probability tasks. 
 
INTRODUCTION 
The development of probabilistic thinking is a topic of much interest during the last 
decades from many perspectives, i.e. mathematical, cognitive, and educational.  
Early research carried out mainly by Piaget and Inhelder (1951) supported that 
children undergoing the pre-operational developmental stage (4-7 years old) have no 
intuitions of randomness and no conceptions of chance and probability.  Under this 
traditional perspective, probabilistic concepts develop as complementary to logical 
operational structures which emerge in relation to age (Kreitler & Kreitler, 1986). At 
the age of 5, children cannot differentiate certain from random events. 
On the other hand, Fischbein (1975) suggested that young children possess a 
particular intuition of chance and probability in the sense that they possess ‘primary 
intuitions’ which are ‘cognitive acquisitions derived from the experience of the 
individual, without the need for any systematic instruction’ (Fishcbein et al, 1971).   
Based on this intuitive perspective, young children show a minimal understanding of 
randomness and can identify the most/least likely outcomes (Way, 2003). 
Preschoolers have been found to understand the probability of an event (Jones et al, 
1997; Falk& Wilkening, 1998), to make use of random sampling and base rate 
information (Denison et al, 2007), to realize part-part comparisons in order to 
estimate probability (Spinillo, 2002), to make use of probabilistic evidence in order to 
infer about causal strength (Kushnir& Gopnik, 2005). Preschoolers are able to 
compute prior probabilities in order to predict an uncertain event.  
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In the current study preschoolers were tested onto whether they can take into account 
and manipulate posterior probability. Posterior probability is a revised probability 
that integrates new available information. What happens when children are asked to 
consider new specific information in order to make judgments about the outcome of a 
probabilistic task? According to a study carried out by Girotto & Gonzalez (2008), 
even kindergartners were found to be able to use posterior information in order to 
update their evaluations about random outcomes. Young children made optimal 
decisions while integrating new information into prior information of single events. 
The general hypothesis is that preschoolers are expected to take into consideration the 
extra-posterior information while building-up their inferences. The nature and 
amount of information that characterizes each condition (base rate vs category) is 
expected to affect children’s responses: the more precise information (condition 2 vs 
condition 1), the more accurate judgments.  

 
METHODOLOGY 
This pilot study took place in a public kindergarten in a town of Western Greece, in 
2008. The random sample consisted of both girls and boys. In this study we did not 
consider age and gender effects due to the small sample. Participants (N=25), aged 5 
to 6, were asked to make predictions in a two-stage procedure: at a first point they 
were asked to infer given prior information and then they were asked to infer again 
by taking into account new, available posterior information.  
The probabilistic task consisted of animal cards that depicted ducks and mice. In 
every condition the sample space was invariably 8 and cards were distributed 
unequally in 2 identical boxes. Among the 8 cards there was one lucky-card that had 
a sticker on it. Once children found that particular card in the correct box, they gained 
a sticker themselves. The lucky animal in all cases was a duck -participants were 
aware of that from the beginning of the task- and consequently mice were used as 
‘noise’. 

  1st stage of choice (based on 
prior information) 

2nd stage of choice (based 
on posterior information) 

1st 
condition: 
base rate 

 
 

  No info provided 
  about the content.  

Aware that one box has 6 
animal-cards vs the other 
box with 2. 

2nd 
condition: 
category 

    Aware that both 
   boxes have 4 cards 
   each.  

Aware that the 
distributions are 3:1 and 
1:3  

  
  
      

     
     
     

  
  

  
       

Table 1: Design of the probabilistic task. 
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The design of the task (Table 1) comprised 2 conditions with differences in the nature 
and amount of information and 2 stages of provided information that affected 
participants’ choice. In both conditions, participants began with information that 
didn’t favor any box; both boxes had equal chances to carry the lucky-animal (level 
of probability, 50:50). Then, posterior information would provide additional evidence 
about in which box the lucky-duck might be.  
In precise, in the 1st condition, children were given as prior information nothing, they 
were just asked to choose one box at random. As posterior information, they were 
informed that one particular box contained 6 whereas the other 2 cards.  
In the 2nd condition, information was more detailed both in the prior and the posterior 
stages. In the beginning, preschoolers were aware that both boxes had 4 cards each, 
and after, they were given as posterior information each box’s distributions of the 
sample spaces (3:1 vs 1:3).  
Children participated in pairs in a separate room of the school. They were given 
instructions about the task and were motivated by the fact that they would win 
stickers. During the game, cards remained on the table reminding them the given 
information. At a 1st level, participants were asked to select orally the box they 
believed contained the lucky animal-card. As soon as they pointed to a box and 
before drawing a card of their choice, they were given new information orally by the 
experimenter about where the lucky card might be. Based on this new information, 
children either reconsidered their prior choice and switched box or made new 
predictions in order to succeed the desired outcome, i.e. the lucky –card. All 
participants carried out the 2 conditions in the same order. 
Children recorded by themselves their final choices on specially designed sheets, 
independent of the actual outcome. These recorded sheets were used for further 
analysis. 

 
RESULTS 
Overall, children made correct predictions; they gave in total 36 correct answers out 
of 50. For the purposes of the current study, ‘correct’ is the answer that relates to the 
box with the higher probability of hiding the lucky animal. The predictions that 
related to the less probable box were scored as ‘incorrect’. Such coding is used just 
for the analysis of the current results, as there is no such ‘correct- incorrect’ in 
probability tasks.  
From the descriptive analysis (Table 2) it can be seen that in condition 1, children 
predicted the correct box by 60% and in condition 2 they responded correctly by 
84%, in terms of selecting the more probable box.  

 

WORKING GROUP 3

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 390



responses

0

5

10

15

20

25

1 2

conditions

pa
rt

ic
ip

an
ts

correct

incorrect

 
Table 2: Overall responses in cases 1&2. 

 

The differences in the available information of each condition affected children’s 
responses. Concerning the nature and the amount of information, it was found by the 
paired-sample t-test analysis concerning proportions, that there is a significant 
difference between conditions 1 and 2, t (25) = 2.295, p<0.05. There is a significant 
difference between the means of the two conditions. This implies that children’s 
inferences in tasks that relate to posterior probability get affected by the kind and the 
range of information provided as new.  

 
DISCUSSION   
The results of this pilot study support that preschoolers may participate in 
probabilistic tasks successfully and integrate any available information, while 
forming their inferences in more than one stage. These results comply with the 
findings of Girotto& Gonzalez (2008). Among these lines, young children correctly 
revise their decisions when given new sets of information about single, non-
repeatable events. 
The baseline for both conditions was that the sample space was 8 and the lucky 
animal was a duck. The amount of given information was more complex and detailed 
in condition 2 and was not of equivalent difficulty as in condition 1. Thus, in this 2nd 
condition preschoolers were found to be able to make more correct predictions in 
terms of choosing the more probable set of given information. Overall, children 
showed the capacity to consider and handle information while participating in a 
probabilistic task. 
However, the limited sample considers an issue for further research. Another 
limitation that could be taken into account refers to the children’s participation in 
pairs. If children conducted the task individually would they make the same 
predictions? Or do they get influenced by their classmates? In addition, more 
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conditions, randomization of the boxes, more variations in the given information (i.e. 
qualitative) and other stimuli such as cards with different themes or pictures could 
lead to different interpretations. 
In this game, children made more correct predictions when given more detailed and 
precise information about the sample space (i.e. condition 2 vs condition 1). This has 
a methodological significance that should be considered while designing probabilistic 
tasks. Children express and develop probabilistic ideas, depending on the design of 
the given activity (Papaparistodemou& Noss 2004; Pratt, 2000). The nature and the 
amount of information are important factors that affect children’s probabilistic 
thinking.  
Opposed to the piagetian perspective, young children before the age of 7 can make 
inferences and handle more than 2 combinations in order to participate in probability 
tasks. Recent studies have shown that children as young as 4 demonstrate an 
understanding of probabilities and expected value, adjust preferences based upon 
probability, understand basic notions of probabilistic thinking (Acredolo et al, 1989; 
Schlottmann, 2001; Way, 2003; Nikiforidou& Pange, 2007) and possess specific 
concepts and skills associated with probabilistic reasoning (Langrall& Mooney, 
2005).    
Furthermore, preschoolers make use of additional information and reveal a capacity 
to proceed in posterior probabilities (Girotto& Gonzalez, 2008) or in a two-stage 
choice task. Future research has to focus in this direction; in setting all the factors that 
are cognitively equivalent to young children’s probabilistic thinking. The types of 
random generators, the mathematical structure of sample space, the type of responses, 
the nature of comparison or estimation (Way, 2003), the sort and amount of given 
information should be taken into consideration while designing probability tasks for 
preschoolers, who are characterized by intuitive and non-formal thinking. 
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STUDENT’S CAUSAL EXPLANATIONS FOR DISTRIBUTION 
Theodosia Prodromou 1and Dave Pratt2  

1Vergina Lyceum, Cyprus; 2University of London, UK 
This paper presents a case study of two students aged 14-15, as they attempt to make 
sense of distribution, adopting a range of causal meanings for the variation observed 
in the animated computer display and in the graphs generated by the simulation. The 
students’ activity is analysed through dimensions of complex causality. The results 
indicate support for our conjecture that carefully designed computer simulations can 
offer new ways for harnessing causality to facilitate students’ meaning-making for 
variation in distributions of data. In order to bridge the deterministic and the 
stochastic, the students transfer agency to specially designed active representations 
of distributional parameters, such as average and speed. 
Keywords: causality, agency, stochastic thinking, variation, randomness, probability
  
VARIATION AND CAUSALITY  
This research study builds on ideas which emerged from two research studies: 1) the 
seminal work of Piaget (1975, translated from original in 1951) and 2) Pratt’s work 
(1998; 2000) as it attempts to clarify how students let go of determinism whilst at the 
same time re-apply such ideas in new ways to account for variation (Prodromou, 
2008; Prodromou & Pratt, 2008).  
Piaget and Inhelder (1951) reported how the organism fails in the first place to apply 
operational thinking to the task of constructing meanings for random mixtures, which 
were therefore unfathomable. Only much later, according to Piaget, the organism 
succeeds in inventing probability as a means of operationalising the stochastic. In 
contrast, students soon gain mastery over the deterministic, appreciating cause and 
effect at least in a basic manner, apparently lending itself more easily to operational 
thinking. Instead of interpreting Piaget’s work as presenting an impregnable divide 
between the stochastic and the deterministic, at least until a late stage of 
development, we began to wonder whether the divide was a manifestation of 
conventional technologies and whether digital technology might provide a means by 
which the deterministic might be harnessed to support new ways of thinking about 
the stochastic. 
In Pratt’s work (for example, 2000, 2002), students aged 11 years explored computer-
based mini-simulations of everyday random generators, such as coins, spinners and 
dice. These simulations provided functionality beyond that which would be 
experienced in everyday life. For example, the students were able to change the 
workings of the simulation and so explore their ways of thinking about randomness. 
Gradually, the students articulated the heuristic that “the more times you throw the 
dice, the more even is its pie chart”. We detect in this statement a sense that the 
number of throws determined the appearance of the pie chart. Similar causal 
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statements were made about other aspects of the system, such as the effect of 
changing the workings of the simulation. 
Pratt referred to these causal heuristics as situated abstractions (Noss and Hoyles, 
1996), internal meanings for making sense of phenomena that capture the abstracted 
nature of the meaning, expressed in language tied to the situation. Pratt and Noss 
(2002) have further elaborated on the nature of situated abstractions as part of a 
model for the micro-evolution of mathematical knowledge. 
We believe Pratt has made a prima facie case that, in certain conditions, possibly 
deeply connected to the potential of technologically-based environments, students 
can construct stochastic meanings out of causality. In this study, we examine this 
possibility further by building a digital simulation to provide a window on students’ 
thinking-in-change (Noss & Hoyles, 1996) about average and spread as parameters 
within a distribution. 
First though, we must be more specific about what we mean by causality. In fact, 
causality can be seen at a variety of levels (Grotzer and Perkins, 2000; Perkins and 
Grotzer, 2000). Grotzer and Perkins have proposed a taxonomy or a classification 
scheme that attempts to organise increasing complexity of causal explanation. The 
taxonomy comprises causal explanations organised in four dimensions along which 
causal complexity is characterized: 
Mechanism includes the most superficial causal explanations, appealing to the most 
general of phenomena, or to token agents, perhaps “luck”, “destiny” or “god’s will” 
in the case of stochastic. Within this dimension we begin also to see inferences of 
underlying mechanisms.   
Interaction pattern begins with simple cause and effect explanations but extends to 
complex relational causality, involving the co-existence of two or more 
interdependent factors, possibly with feedback mechanisms. For example, agent A 
affects agent B but feedback from agent B then affects agent A.  
Probabilistic Causality relates to the use of uncertainty in modelling causal 
relationships. Often apparently deterministic systems hide uncertainty in a chaotic 
complexity. Thus, does the cup which rests on the table express the equilibrium of 
underlying static forces? Or should we seek explanation by reference to the chaotic 
dynamic motion of the sub-atomic particles that constitute the table and the cup? 
Conversely, we choose to explain phenomena in terms of probability to avoid 
reference to deep layers of underlying causality. Thus, we might choose to model the 
outcome from the throw of a dice in terms of probability, rather than by reference to 
multiple and interacting forces, such as the strength of the throw, the weight of the 
dice and the friction at the surface. 
Agency describes those explanations that recognise that causality is distributed across 
many elements. Such explanations might use ideas of emergence. For example, we 
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might consider a theoretical distribution as a pattern that emerges from the many 
pieces of data. 
We wished to explore what sorts of computer-based tools might provide us with a 
window on the use of these differing levels of causal complexity to make sense of 
distribution, as generated within a computer simulation. We set out to design a virtual 
environment that supported students in attributing agency to the emergent shape of 
the distribution while they were discriminating and moving smoothly between data as 
a series of random outcomes at the micro level, and the shape of distribution as an 
emergent phenomenon at the macro level.  
In that respect, we conjectured that the computer simulation environment could 
enable students: 

• at the micro level to use their understanding of causality whilst at the same time 
begin to recognise its limitations in explaining local variation, and   

• at the macro level to see parameters such as average and spread as causal agents, 
impacting on the shape of distribution, whilst nevertheless not completely 
defining the distribution.  

METHOD 
Approach and tasks. The approach of this research study falls into the design 
research methodology (Cobb et al., 2003) resulting in the BasketBall simulation as 
depicted below (Fig 1). The animation of the basketball player was controlled by  

 
Fig 1: The interface of the BasketBall simulation. 
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varying the handles on the sliders of the release angle, speed, height and distance or 
by entering the data directly. Once the play button has been pressed, the player 
continues to throw with the given parameters until the pause or stop button is pressed. 
The trace of the ball can be switched off. Feedback is made available from the 
Monitors and Graphs panes. When the arrows button has been switched on, two 
arrows appear from both sides of the handle on the slider (Fig 2), in which case the 
value of the parameter is chosen from a distribution of values, centred on the handle 
of the slider. The students are able to vary these arrows to increase or decrease the 
spread of the values of the parameter around that centre. The microworld also 
allowed the students to explore various types of graphs relating the values of the 
parameters to frequencies and frequencies of success. The students have access to a 
linegraph of the success rate as well as a histogram of the frequency of successful 
throws or throws in general against release angle (or release speed, or height, or 
distance). Initially, the students were challenged to throw successfully the ball into 
the basket. When the parameters were determined, the histograms of the frequency of 
successful throws against release angle (or release speed, or height, or distance) 
appeared as a single bar columns.  
Once the preliminary task was completed, some discussion about the realism of the 
simulation followed, which normally introduced notions such as skill-level,  the use 
of the ‘arrows’ buttons and the appearance of the histograms. When bias had been 
introduced to the throws, the graphs appeared as histograms. The subsequent task for 
the students was to model a real but not perfect basketball player (one who was not 
successful on every throw). 

 
Fig 2: The value of the parameter was selected from a distribution of values, centred 
on the position of a slider.     

Participants. The simulation was used by eight pairs of students in a UK secondary 
school. It was assumed that the simulation would be used only by students ranging in 
age from fourteen to fifteen years because a tight focus on the students’ intuitions of 
the distributions indicated that the age of 14-15 years old was mainly ripe for 
conceptual change in this domain. Another important advantage of working with 
students of this age was curriculum-based. In the UK National curriculum (DfES, 
2000) students of this age are expected to know how to graph data using histograms, 
dotplots and boxplots, and compare distributions and make inferences, using the 
shapes of distributions and measures of average and range. Students of this age, 
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therefore, encounter distribution as a collection of data, either given or generated 
through experiments and surveys.  
In this paper, we concentrate on the work carried out by two students, Ethan and 
Emma (aged 14-15 years), as they engaged with modelling a real but not perfect 
basketball player. These students had already experienced moving either or both of 
the arrows, generating values that corresponded to distributions with different spread 
and bias. The first author was a participant observer during this process.  She 
frequently intervened in order to probe the reasons or intuitions that might lie behind 
participants’ actions.  
Data collection and analysis. The data collected included audio recording of the 
students’ voices, video recording of the screen output on the computer, and the first 
author’s[2] field notes. The analysis was one of progressive focussing (Robson, 
1993). At the first stage, the recordings were simply transcribed and screenshots were 
incorporated as necessary to make sense of the transcription. Subsequently, the first 
author turned the transcript into a plain account. At the third stage, an interpretative 
account was written by the first author and discussions about the validity of those 
interpretations with the second author followed, making therefore an account of the 
data before accounting for the activity (Mason, 1994). 
FINDINGS   
The case of Ethan and Emma provides an illustration of students’ typical causal 
explanations for the observed variation. The two hour session with Ethan and Emma 
demonstrates how the two students mobilized combinations of different tools to 
create explanations of variation.  
Having already found how to make a successful basket, in the following extract, 
Ethan and Emma were first introduced to the arrows and they had spent a little time 
looking at the effect on the animation:  

1 Re[1]: What do you think these arrows do? 
2 Et: …Do they change the angle and the height? 
3 Em: It’s just changed the angle, so we will get better results, so we can see. 
4 Re: What do you mean by ‘better’? 
5 Em: Because each result is different on the graph (Fig 3). 
6 Re: Why are they better? 
7 Em: Because they much more like realistic.  

By looking at the animation, Ethan had recognized that the arrows were causing 
changes in the throws made by the Basketball player (line 2). Emma refers to the 
changes in the graph (line 5), and seems to acknowledge that it is more realistic for 
the basketball player to throw at varying angles (line 7).  
A few minutes later however, Emma deliberated upon the role of the arrows in 
determining the choice of angle: 
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Fig 3: Emma seems to be referring not only to the different values of the angles which 
were chosen by the basketball player, but also appears to refer to the graph of success 
rate.    

8 Re: What do you think the arrows are for? 
9 Em: Is it… where the two arrows are, every time he throws is going to be 

the distance between that arrow (the arrow to the left of the vertical 
bar on the slider) and that arrow (the arrow to the right of the vertical 
bar on the slider)… 

10 Re: Do you mean the angle? 
11 Em: Yeah … the angle … You can only throw from here to there (pointing 

to the two arrows). You cannot go any place outside the two arrows.  
Emma seemed to be conjecturing that the angle was chosen from between the two 
arrows (lines 9 and 11), though she still had offered no sense for the mechanism by 
which the choice was made. 
For several minutes, the students experimented with the arrows, at which point their 
attention was re-focused on the variation which could be perceived through the 
histograms: 

12 Re: Tell me what do you think your graphs will look like. Do you expect 
these graphs to have one bar, two bars, three bars, or four bars? 

13 Em: …about three bars.  
14 Re: So, it will not be only one bar? Why? 
15 Em: Because he is throwing at different angles… so… he is not throwing 

at the same angle all the times, so there would be more than one bar. 
Emma asserted that variation in the throwing angles would result in additional bars in 
the histogram (line 15), and soon went further to predict that “the wider apart the 
arrows around the handle, the more bars there would be in the histogram”. Although, 
as can be seem, Emma tended to lead the discussion, Ethan was also comfortable at 
this point that variation could be perceived in the player’s throws and through the 
frequency histograms. 
Their thinking about the relationship between the gap in the arrows and the number 
of bars was tested further a few minutes later when the bars were moved very far 
apart: 

16 Re: Would there be more or less bars on the histograms? 
17 Em: Because he can throw any distance between those two arrows… We 

haven’t given him a fixed angle to throw it at, so they would not be 
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the same every time. It will be different… because the arrows give 
him more of a choice… because the computer like assigns any angle 
at random between those two arrows… it records it in the graph. 

For the first time, Emma referred to a random mechanism operating to make the 
choice from the gap between the arrows (line 16). She referred also to the interactions 
between a group of agents (arrows, basketball player, computer), which somehow 
cooperated to accomplish variation in the distribution. 
So far, the discussion had centred on the connection between the gap in the arrows 
and the variation as seen in the animation or in the graphs. Later, the discussion 
switched to whether the score was successfully made or not. In the following extract, 
the handle is positioned on an angle which would successfully throw the ball into the 
basket and Emma and Ethan know this to be the case. They considered the effect of 
the arrows on success: 

18 Em: Yeah… because when we put the arrows closer together, so it doesn’t 
have enough choice, like… He can only pick between those two 
arrows for the release angle… so, he gets a better chance of… to 
score. 

19 Et: As he’s got the release angle inside… that space so… so got to choose 
that release angle that is scored… 

20 Re: Which is inside …?  
21 Em: 63.3… and 76.3… he can only choose…  a release angle between 

those two numbers.  
Emma and Ethan both seemed to grasp that a small gap reduced the possibilities for 
failing to throw a successful basket (lines 17 and 18).  
DISCUSSION   
As an expert observing Emma and Ethan’s activity, it is not difficult to recognise the 
connection between the arrows and the statistical notion of spread. Such an expert 
might see the distance between the arrows as a measure of spread. In fact, the data 
that is actually generated might portray spreads greater or less than that predicted by 
the gap between the arrows. In this sense the gap between the arrows operationalises 
the spread parameter of an underlying theoretical distribution, whereas what the 
students observe is a set of data generated randomly from that distribution. 
The above protocol illustrates, through the case of Emma and Ethan, the use of causal 
explanations, at differing levels of causal complexity, to make sense of variation as it 
is depicted in the simulated animation of a basketball player and in graphical 
feedback. These explanations do not take the form of formal robust theory-oriented 
statements but rather they emerge more as tentative, situated, conjectural utterances, 
though as the exploration continues the utterances carry more authority and assurance 
and begin to sound more like conclusions than conjectures. 
In Table 1, we list seven observed situated abstractions, based on the body of 
evidence, which the above protocol typifies: 

WORKING GROUP 3

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 400



 

 

 

 

Ref Characterisation of situated abstraction Line
SA1 “the arrows affect the angle that the basketball player throws 

the ball” 
2 

SA2 “the arrows affect the graph” 5 
SA3 “angles are chosen from between the arrows” 15 
SA4 “the wider apart the arrows around the handle, the more bars 

there would be in the histogram” 
15 

SA5 “the computer assigns any angle at random between the arrows 
and records it in the graph” 

16 

SA6 “The computer assigns a random value from the gap between 
the arrows for the basketball player to throw the ball” 

17 

SA7 “the closer together the arrows, the more is that chance to 
score” 

18 

Table 1: Examples of situated abstractions  

The situated abstraction, SA1, reflects an awareness that the arrows have a causal 
affect on the variation in throws by the animated basketball player. SA2 similarly 
recognises a causal effect on the graph. Both these situated abstractions seem to 
operate at the mechanism level in the Grotzer and Perkins taxonomy. There appears 
at this stage to be little appreciation of further underlying levels of causal complexity 
though these begin to emerge later. Situated abstractions, SA3 and SA4, show an 
increased focus on mechanism as Emma and Ethan strive to make sense of how the 
arrows affect the player’s actions and the appearance of the graphs. 
Situated abstraction, SA5, portrays the relationship not as purely deterministic but as 
including a random element. This introduction of uncertainty seems to represent a 
move from the mechanism level to probabilistic causality in the terminology of 
Grotzer and Perkins. Emma and Ethan do not have a sophisticated understanding of 
probability and so they do not progress deeply into this level but they do seek out, as 
articulated in both SA5 and SA6, explanations that accept a probabilistic language as 
a means of coping with a possible multitude of unknown factors. Of course, this 
move may have been all the easier to make because randomness is something they 
perhaps regularly experience on computers through, for example, playing computer 
games.In SA7, Emma and Ethan recognise, even with their ongoing probabilistic 
language, combinations of agents, as predicted in the interaction pattern level in the 
Grotzer and Perkins taxonomy. Emma and Ethan envisage a transference of agency 
from the computer to the arrows and then to the Basketball player. We note that we 
have previously reported a similar transference of agency from the student itself to 
the arrows (Prodromou, 2008; Prodromou & Pratt, 2006). 
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CONCLUSION 
The facility to transfer agency seems to be a crucial move in making connections 
between the causal and the stochastic (from our perspective on the student’s 
psychological state) and in harnessing the deterministic (from the perspective of 
designing for the student’s abstraction). Indeed, by providing handles, arrows and a 
basketball player, together with feedback on “their actions” (and here we 
intentionally give these things agency), we set up the possibility that distribution 
might be seen as generated by the agents. Technological tools, therefore, may have 
been especially significant in supporting the construction of stochastic meanings out 
of causality and that in this sense they may provide a route towards operationalising 
the stochastic in the absence of formal operations. 
We believe that such a view of distribution is consistent with the expert position in 
which a theoretical distribution is sometimes viewed as a generative model, for 
example sending out a signal determined by the average parameter and noise 
determined by the spread parameter. Such a position accepts that the deterministic 
view of distribution is useful within limitations. Simulations such as basketball might 
provide opportunities for students to begin to appreciate that expert position. 
Even though we have referred regularly to agents, the reader may have noticed that 
nothing has actually been said about the final level in the Grotzer and Perkins 
taxonomy, that of agency in which causality is distributed across many agents. In 
fact, we intend to report elsewhere on students’ attempts to make connections from 
the distribution of data to the theoretical distribution, a direction which demanded an 
emergent perspective from the students. 

When students view variation as an accomplishment of a combination of agents, they 
think about distribution in terms of a relational model. Their expressions move along 
the underlying causality dimension towards considering that the simulated BasketBall 
is a context perturbed by a random mechanism. Students’ accounts began gradually to 
address dimensions of probabilistic causality, such as noisy systems, chancy systems. 
Students were able to view the activities in the BasketBall context as noisy processes 
dependent on a variety of intervening variables. Those accounts were themselves 
preceded by students’ understanding of mediating causality, where predominant 
causal agents, such as the arrows, and neglected agents of lower saliency in the 
context, such as the basketball player and the computer, mediate the effect of one 
agent to another in order to cause variation in the setting (Interaction pattern).   
NOTES 
1. ‘Re’ refers to the first named author (Dr. Theodosia Prodromou). 

2. The data were collected for the first author’s doctoral thesis.  
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GREEK STUDENTS’ ABILITY IN PROBABILITY PROBLEM SOLVING  
Sofia Anastasiadou 

University of Western Macedonia 
This study aims to contribute to the understanding of the approaches students develop 
and use in solving probabilistic tasks and to examine which approach is more correlated 
with students’ ability in probability problem solving. Participants were students from the 
12th grade. Implicative statistical analysis was performed to evaluate the relation 
between students’ approach and their ability to solve problems. Results provided 
support for students’ intention to use the algebraic approach and avoid Venn’s 
diagrams. Students who were able to use the coordinated approach by using multiple 
representations had better results in problem solving. In addition the results suggest the 
flexibility in multiple representations is a trivial predictor of probabilistic problem 
solving. 
Keywords: Probability, problem solving, 12th grade students, representations. 
 
INTRODUCTION 
There is an increasing recognition that statistical and probabilistic concepts are among 
the most important unifying ideas in mathematics. Statistical concepts form the single 
most important idea in all mathematics, in terms of understanding the subject as well as 
for using it for exploring other topics. The reasons to include probability and statistics 
teaching refer to the usefulness of statistics and probability for daily life, its instrumental 
role in other disciplines, the need for a basic stochastic knowledge in many professions 
and its role in developing a critical reasoning (Gal, 2002).  
The understanding of probabilistic and statistical concept does not appear to be easy, 
given the diversity of representations associated with this concept, and the difficulties 
presented in the processes of articulating the appropriate systems of representation 
involved in probabilistic and statistical problem solving (SPS) (Anastasiadou, 2007).  
Probability is difficult to teach for various reasons, including disparity between intuition 
and conceptual development even as regards apparently elementary concepts 
(Chadjipadelis and Gastaris, 1995). Since an education that only focuses on technical 
skills is unlikely to help teachers overcome their erroneous beliefs, it is important to find 
new ways to teach probability to them, while at the same time bridging their content 
knowledge and their pedagogical content knowledge (Batanero et al, 2005). 
There is general consensus in the mathematics education community that teachers need a 
deep and meaningful understanding of any mathematical content they teach 
(Chadjipadelis, 2003). Biehler (1990) suggests that teachers require meta-knowledge 
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about probabilities and statistics, including a historical, philosophical, cultural and 
epistemological perspective on statistics and its relations to other domains of science. 
In primary and secondary school levels, probability and statistics is part of the 
mathematics curriculum and primary school teachers and mathematics teachers 
frequently lack specific preparation in statistics education (Anastasiadou and Gagatsis, 
2007; Chadjipadelis, 2003). According to Batanero  et al., (Batanero et al, 2005) 
probability is increasingly taking part in the school mathematics curriculum; yet most 
teachers have little experience with probability and share with their students a variety of 
probabilistic misconceptions. The understanding of probabilistic concepts has been a 
main concern of statistics education that is an important focus of interest for the 
International Statistical Institute and of the International Association for Statistical 
Education. 
In the field of statistics learning and instruction, representations play an important role 
as an aid for supporting reflection and as a means in communicating statistical ideas. 
Furthermore the NCTM’s Principles and Standards for School Mathematics (2000) 
document include a new process standard that addresses representations and stress the 
importance of the use of multiple representations in statistical learning. In addition, an 
important educational objective in statistics is for pupils to identify and use efficiently 
various forms of representation of the same mathematical concept and move flexibly 
from one system of representation of the concept to another.  
A representation is defined as any configuration of characters, images, concrete objects 
etc., that can symbolize or “represent” something else (Confrey & Smith, 1991, Goldin, 
1998). Representations have been classified into two interrelated classes: external and 
internal (Goldin, 1998). Internal representations refer to mental images corresponding to 
internal formulations that we construct of reality. External representations concern the 
external symbolic organizations representing externally a certain mathematical reality. 
In this study the term “representations” is interpreted as the “external” tools used for 
representing statistical ideas such as tables and graphs (Confrey & Smith, 1991). The 
need for a variety of semiotic representations in the teaching and learning of 
probabilities is usually explained through reference to the cost of processing, the limited 
representation affordances for each domain of symbolism and the ability to transfer 
knowledge from one representation to another (Duval, 1987). By a translation process, 
we mean the psychological processes involving the moving from one mode of 
representation to another (Janvier, 1987). Several researchers in the last two decades 
addressed the critical problem of translation between and within representations, and 
emphasized the importance of moving among multiple representations and connecting 
them (Gagatsis & Elia, 2004; Goldin, 1998; Yerushalmy, 1997). Different 
representations refering to the same concept complement each ither and all these 
together contribute to a glibal understanding of it (Gagatsis & Siakalli, 2004).  Duval 
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(2002) claimed that the conversion of a mathematical concept from one representation to 
another is a presupposition for successful problem solving. A person who cans easily 
transfer this knowledge from one structural system of the mind to another is more likely 
to be successful in problem solving by using a plurality of solution strategies and 
regulation processes of the system for handling cognitive difficulties.  Kaput (1987) 
suggest that the concept of representation involves the following five components: a 
representational entity, the entity that it represents, particular aspects of the 
representation entity, the particular aspects of the entity that it represents that form the 
representation and finally the correspondence between the two entities. According to the 
above definition, the representation is considered a mental symbol or concept, which 
represents a concrete material symbol. It takes the place of another element and obtains 
more capabilities tan the object itself. Many studies identified the difficulties that arise 
in the conversion from one mode of representation of a mathematical concept to another. 
They revealed students inconsistencies when dealing with relative tasks that differ in a 
certain feature, i.e. mode of representation. This incoherent behavior was addressed as 
one of the basic features of the phenomenon of compartmentalization, which may affect 
mathematics learning in a negative way (Gagatsis & Elia & Mousoulidis, 2006). 
According to Duval (Duval, 2002), the phenomenon of compartmentalization reveals a 
cognitive difficulty that arises from the need to accomplish flexible and competent 
conversion back and forth between different kinds of mathematical representations. 
In Greece, the introduction of Statistics in the mathematics textbook of primary schools 
took place at the end of nineties. The teaching of fundamental statistical concepts was 
assigned to primary school teachers who are responsible for teaching all the curriculum 
subjects in the primary level. (Anastasiadou, 2007).  The emphasis on statistics and 
probability in curricula varies, often according to knowledge and feelings of the teacher. 
Although that many researches have been done in relation to study of the of the 
representations role in mathematical understanding and learning, there only a few that 
explore students’ performance in using multiple representations of statistical and 
probability concepts with emphasis on the effects exerted on performance and on the 
relations among the various conversion abilities from one representation to another. 
The purpose in this study is to contribute to the statistics education research community 
understands of approach students build up and use in solving statistical tasks and to 
examine which approach is more associated with students’ ability in solving statistical 
concepts. A main question of this study referred to the approach primary school students 
use in order to solve simple probability tasks. It is important to know whether students 
are flexible in using algebraic, graphical and verbal representations in probabilistic 
problems. Most of the students used an algebraic approach in order to solve the simple 
probabilistic tasks. This study intends to shed light on the role of different modes of 
representation on the understanding of some basic probabilistic concepts. This study 
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investigated pre-service teachers’ performance, in two aspects of probabilistic 
understanding: the flexibility in multiple representations and the problem solving ability. 
METHOD 
Participants- Data analysis-Tasks 
The sample of the study involved 132 12th grade students from secondary schools in 
different regions of Thessaloniki (Western Thessalonki, Eastern Thessaloniki, Central 
Thessaloniki) in Greece. These regions were selected because of their diversity in size 
and population. In Greek secondary education only students of the 12th grade are taught 
basic concepts of probability theory. 
For the analysis of the collected data the similarity statistical method (Lerman, 1981) 
was conducted using a computer software called C.H.I.C. (Classification Hiérarchique, 
Implicative et Cohésitive) (Bodin, Coutourier & Gras, 2000). This method of analysis 
determines the similarity connections of the variables. In particular, the similarity 
analysis is a classification method which aims to identify in a set V of variables, thicker 
and thicker partitions of V, established in an ascending manner. These partitions, when 
fit together, are represented in a hierarchically constructed diagram (tree) using a 
similarity statistical criterion among the variables. The similarity is defined by the cross-
comparison between a group V of the variables and a group E of the individuals (or 
objects). This kind of analysis allows for the researcher to study and interpret in terms of 
typology and decreasing similarity, clusters of variables which are established at 
particular levels of the diagram and can be opposed to others, in the same levels. It 
should be noted that statistical similarities do not necessarily imply logical or cognitive 
similarities. The red horizontal lines represent significant relations of similarity.  
The test consisted of 12 tasks of two “equivalent” problems in difficulty from the 
mathematical point of view. In particular, the tasks concerned concepts of the 
probability theory such as probability, Venn’s diagrams, events and probability 
problems. 
Right and wrong or no answers were scored as 1 and 0, respectively. Students’ responses 
to the tasks comprise the variables of the study which were codified by an uppercase V 
(variable concerns Venn’s diagrams) or P (probability problem), ή R (concept definition, 
e.g.event), followed by the number indicating the exercise number. Following is the 
letter that signifies the type of initial representation (e.g. r=representation, t=table, 
g=graphic, v=verbal) and, lastly, comes the letter that signifies the type of final 
representation.  
For example the first and second tasks are the following ones: Task 1. Given two events 
A and B of a chance experiment and with the help of set theory we have the following 
event . Present with a Venn diagram this event (V1sg). Task 2. Given two events 
A and B of a chance experiment and with the help of set theory we have the following 

'Α ∩Β '

WORKING GROUP 3

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 407



event . Express the verbal representation of this event (V2sv).  ( ' ) ( ')Α ∩Β ∪ Α∩Β

 
RESULTS 
Descriptive results 
Table 1 presents the success rates of third, fifth and sixth grade indigenous students and 
immigrants in all types of conversions.  
 

Tasks Type of translation 

 

12th grade 

success rate  

of students 
(%) 

Tasks Type of translation 12th grade  

success rate 
of 

students (%) 

V1sg Symbolic - Graphic 52.8% P7va Verbal  - Algebraic 32.6% 

V2sv Symbolic  - Verbal 51.6% P8vg Verbal - Graphic 28.3% 

V3gs Graphic - Symbolic 34.5% P9vs Verbal - Symbolic 22.6% 

V4gv Graphic  - Verbal 30.7% P10vv Verbal - Verbal 27.5% 

V5vg Verbal - Graphic 46.2% R11vv Verbal - Verbal 23.1% 

V6vs Verbal  - Symbolic 48.6% R12vs Verbal  - Symbolic 22.9% 

Table 1: Success rates of indigenous students and immigrants in the tasks 

Similarity  diagram of students’ responses to the two tests  
The similarity diagram in this study concern the data 11th grade and allow for the 
arrangement of students’ responses ((V1sg), (V2sv), (V3gs), (V4gv), (V5vg), (V6vs), 
(P7va), (P8vg), (P9vs), (P10vv), (R11vv), (R12vs), to the tasks into groups according to 
their homogeneity. 
Two clusters (Cluster A and B) of variables are identified in the similarity diagram of 
11th grade students’ responses as shown in Figure 1. Cluster A involves three pairs of 
variables V1sg-V2sv, V3gs-V4gv, V5vg-V6vs in Cluster A and concerns events 
representations with the aid of Venn diagrams. Cluster B involves three pairs of 
variables R11vv- R12vs, P7va-P8vg, P9vs-P10vv and involves variables relating to 
probability problem solving. This grouping suggests that students dealt similarly with 
the conversions involving probability problems. 
The structure of the diagram reveals a cognitive difficulty that arises from the need to 
accomplish flexible and competent conversion back and forth between different kinds of 
probabilistic representations. Thus, this particular structure of the diagram indicates a 

WORKING GROUP 3

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 408



compartmentalization of the tasks of the tests. Students approached in a completely 
distinct way the tasks which involved the use of Venn’s diagrams and the probability 
problems. Therefore, possible instructive activities would focus on the identification of 
the two different groups. The strongest similarity (almost 1) occurs between variables 
(V3gs-V4gv) (Figure 1) that were the most difficult for the students of 12th grade (Table 
1). Furthermore the similarity (V1sg-V2sv, V3gs-V4gv) is also important (0.923). 
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Figure 1: Similarity Diagram 
 
CONCLUSIONS RESULTS  
Representations enable students to interpret situations and to comprehend the relations 
embedded in probabilistic problems. Thus, we consider representations to be extremely 
important with respect to cognitive processes in developing probabilistic concepts. The 
main contribution of the present study is the identification of secondary students’ 
abilities to handle various representations and to translate among representations related 
to the same probabilistic relationship. Our findings provide a strong case for the role of 
different modes of representation on 12th grade students’ performance to tasks on basic 
statistical concepts such as frequency. At the same time they enable a developmental 
interpretation of students’ difficulties in relation to representations of Venn diagrams. 
Lack of connections among different modes of representations in the similarity diagram 
indicates the difficulty in handling two or more representations in probabilistic tasks. 
This incompetence is the main feature of the phenomenon of compartmentalization in 
representations, which was detected in students if both grades. This inconsistent 
behavior can be seen as an indication of students’ conception that different 
representations of the same concept are completely distinct and autonomous 
mathematical objects and not just different ways of expressing the meaning of a 
particular notion. An alternative explanation for the difficulty in transferring knowledge 
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could be the emphasis on stating with representations and defining transfer as 
connecting those representations. Perhaps links that were more powerful and meaningful 
for the students would have led to a space of the utility of the statistical and probability 
construct (Ainley and Pratt, 2002). Transfer might then be achieved by recognizing new 
situations which are consistent with the same meaning. In addition the lack of transfer 
may be attributed to the students’ lack of preparation: time to discuss, interact and work 
on related tasks. 
Probability instruction needs to encourage pupils’ involvement in activities including 
translations between different modes of representation. Even more educators should 
focus on reasons that we use a specific representation or another of the same probability 
concept. As a result, students will be able to overcome the compartmentalization 
difficulties and develop their flexibility in understanding and using a concept within 
various contexts or modes of representation and in moving from one mode of 
representation to another. Moreover there is a strong need for teachers to understand 
what it is that students know about stochastic and offer them experiences of probability 
before theoretical perspectives are introduced. 
It seems that there is a need for further investigation into the subject with the inclusion 
of a more extended qualitative and quantitative analysis. In the future, it is interesting to 
compare the strategies and modes of representations students used in order to solve the 
problems. Besides, longitudinal performance investigation in the multiple representation 
flexibility tasks for secondary students should be carried out.    
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In CERME–6 Working Group “Algebraic Thinking” we continued the work done in 
previous CERME conferences, both by following the discussions raised and by point-
ing out unanswered questions (Puig, Ainley, Arcavi & Bagni, 2007). 
More particularly, in CERME–6, Working Group “Algebraic Thinking” was con-
cerned with further discussion on historical, epistemological, and semiotic perspec-
tives in research in the teaching and learning of algebra. The role of artifacts, techno-
logical or not, was also considered in this perspective. In general, Working Group 
“Algebraic Thinking” was interested in proposing to address the issue of the actual 
impact of research on curriculum design and development, and on practice. 
In order to allow a detailed discussion of the contributions, we decided to split the 
working group into two subgroups: 

• the subgroup A (co–ordinated by Lisa Hefendehl–Hebeker) included some 
contributions mainly focused on cognitive aspects. The Authors were W.F. 
Castro and J.D. Godino; M.–C. Croset; A. Cusi; J.–P. Drouhard; C. Fernández 
and S. Llinares; B. Gómez and C. Buhlea; M. Hoch and T. Dreyfus; J. Hodgen, 
D. Kuchemann, M. Brown and R. Coe; R. Oldenburg; I. Papadopoulos and M. 
Iatridou; F. Siebel and A. Fischer; I. Sinitsky and B.–S. Ilany; E. Söbbeke and 
C. Böttinger; A.M. Wille.  

• the subgroup B (co–ordinated by Janet Ainley) included some contributions 
mainly focused on pedagogical aspects. The Authors were O. Akkus and E. 
Cakiroglu; M. Ayalon and R. Even; G.T. Bagni; A.B. Fyhn; S. Gerhard; M. 
Haspekian and E. Bruillard; I. Jones; J.–B. Lagrange and T.K. Minh; C. 
Marchini, A. Cockburn, P. Parslow–Williams and P. Vighi; M. Panizza; R.A. 
Rinvold, and A. Lorange; E. Robotti, G. Chiappini and J. Trgalova. 

Posters presentations by R. Berrincha and J. Saraiva, Ç. Kiliç and A. Özdaş, B.M. 
Kinach, A. Matos, C. Monteiro and H. Pinto, A.I. Silvestre, I. Vale, T. Pimentel pro-
duced important contributions to our discussion. 
In the following file, contributions are organised according to the alphabetic order of 
the corresponding authors. 
GENERAL REFLECTIONS 
The invention of the symbolic language of algebra influenced the development of 
mathematics in all domains. Symbolic language is used throughout all mathematics: 
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for instance, there is no possible calculus or analysis without solving inequalities, 
structures (groups, rings, …) are used to describe all parts of mathematics (Drouhard, 
2009). This must be taken into account when considering early algebra. 
Historically, algebra results from what evolution scientists call co–evolution. This 
co–evolution involves: first an art, then a science of resolution of numerical prob-
lems; first informal representation systems, then formal registers (semiotic represen-
tation systems); first a science of numbers, then a science of structures (Drouhard, 
2009). So today algebra is a science of resolution of numerical problems, a family of 
semiotic systems (linguistic or not), and a science of numbers and structures. 
In a passage of his Questions Concerning Certain Faculties Claimed for Man, 
Charles S. Peirce (1839–1914) suggests that it is impossible to “think without signs” 
(Peirce, 1868/1991, p. 49). In a Peircean perspective, algebraic language is based 
upon iconicity. Let us quote Peirce (1931–1958, 2.279, MS 787): 

Particularly deserving of notice are icons in which the likeness is aided by con-
ventional rules. Thus, an algebraic formula is an icon, rendered such by the rules 
of commutation, association, and distribution of the symbols […]. For a great dis-
tinguishing property of the icon is that by direct observation of it other truths 
concerning its object can be discovered than those which suffice to determine its 
construction. 

Two remarks must be taken into account. Firstly, every sign “contains” all the com-
ponents of Peircean classification, although one of them (e.g. iconicity) is predomi-
nant. For instance, algebra is not characterised by the presence or absence of letters: 
algebra is characterised by the existence of a semiotic representational system, a sys-
tem which allows us to solve numerical problems and to express number properties. 
So algebra is not but has got a language (Drouhard, Panizza, Puig, & Radford, 2006). 
Secondly, Peirce’s semiotics hardly explains the complexity of sign–based human 
thought processes and the manner in which they relate to their corresponding histori-
cal settings (Douek, forthcoming). The historical dimension of cognition and its cul-
tural subbasement (see Bradford & Brown, 2005; D’Ambrosio, 2006) are a funda-
mental theme in recent sociocultural perspectives where cognition is conceptualized 
as “a cultural and historically constituted form of reflection and action embedded in 
social praxes and mediated by language, interaction, signs and artifacts” (Radford, 
2008, p. 11). Sociocultural perspectives lead to both new conceptions of cognition 
and new views about knowledge and the cognizing subject: algebraic thinking can be 
framed into the mentioned perspective. 
Algebraic language must be described by linguistic terms (“syntax”, “semantics”). In 
terms of semantics, the power of algebra lies in the capability to judiciously “forget 
the meaning”. From an educational viewpoint, it is worth noting that students must at 
the same time master the languages (natural and symbolic), their respective syntax 
and semantics and the semiotic aspects of these languages, and be flexible, so be able 
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to work both with meaningless and meaningful expressions (see remarks in Puig, 
Ainley, Arcavi & Bagni, 2007). 
COGNITIVE ASPECTS 
As regards cognitive aspects (subgroup A), it is worth noting that the tension between 
the possibility of formal manipulation and the necessity of semantic understanding, 
which is typical for algebraic activities, causes particular cognitive demands for the 
learners. There are many partial abilities which should be learned and grow together 
to an interrelated system. Mental acts and ways of thinking (Harel, 2008) which are 
essential for algebraic thinking have to be activated on different layers: 

• Structuring: The symbolic language of algebra is a tool to conceive arithmeti-
cal structures, and as a semiotic system it has a structure of its own. Compre-
hensive learning of algebra and successful manipulation of its language de-
serves “structure sense” in different respects. 

• Generalizing: Generalizing belongs to the essence of algebra. It means to grasp 
something typical, which all cases under consideration have in common. Vari-
ables are tools to express indeterminacy and generality. To describe a sequence 
of geometrical patterns by a formula and to find a common form of a set of 
formulas (for example quadratic equations) are activities on different stages of 
generalization. 

• Representing: The representation system of algebra in its final stage is sym-
bolic and formal, that means, it allows context-free manipulation. This makes it 
difficult to grasp for learners, but for experts it gains a new kind of meaning 
and richness in itself. 

Many contributions showed that there are previous stages in the development of these 
ways of thinking, which should be cultivated in the learning process. Such activities 
might help to reduce the “cognitive gap” between arithmetic and algebra: 

• Structuring and generalizing: For example pre–service primary teachers ex-
perience structuring and thus develop “algebraic awareness” when they ana-
lyze, describe and continue patterns and structures in geometric and algebraic 
contexts. A fruitful interplay between arithmetic and geometric visual ap-
proaches can also be experienced on later stages. 

• Representing: L. Radford demonstrated in his plenary address that alphanu-
meric symbolism is not the only way to express algebraic thinking. He pointed 
out that there is a conceptual zone before, where algebraic thinking is contex-
tual and embodied in the corporeality of actions, gestures, signs and artefacts. 

Nevertheless such approaches to teaching algebra have their own problems. 
PEDAGOGICAL ASPECTS 
In considering pedagogical approaches to teaching algebra (subgroup B) there is a 
potential tension between the need to focus on structure independently of context (for 
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example to develop understandings of equality, equivalence), and the uses of context 
as ways to make structure visible (for example by means of metaphor, metonymy, al-
legory, artefacts, narratives, …). Teachers and pupils may be attending to different 
aspects of the activity: while the teacher is looking through a context such as a visual 
pattern in order to see generality, pupils may be looking at the stages of construction 
of the particular pattern. 
Different perceptions of the nature of algebraic activity may become apparent when 
considering the role of, and need for, proof. Similarly, alternative perceptions of the 
nature of tools, artefacts and representations emerge from close study of the conver-
sations in classrooms. This presents real challenges for teachers in their interactions 
with learners, and of their interventions in activities. 
A continuing challenge is the design of tasks which may motivate a real need for al-
gebraic thinking. There is clearly no single ‘best’ approach to algebra; many good 
approaches can support each other. It is important to interrogate each approach to 
identify what it may offer and for whom. The design of such tasks must take account 
of the rich variety which may be covered by the phrase ‘algebraic thinking’ and the 
ways in which such thinking may be expressed. Rather than focussing on differences 
between arithmetic and algebraic thinking, it may be powerful to see this as a contin-
uum, or parallel development, rather than as a dichotomy. Generalisation may be em-
bodied through gesture, including virtual gestures on a computer screen, or expressed 
through natural language as well as through symbolism. Variable is an algebraic idea 
that children must understand on their way to learning symbolic generalisation be-
cause it allows thinking about change, generalisation and structure. It is an idea which 
may be introduced and expressed in many ways: the design challenge is to find ways 
to engage learners in the real need for, and power of, algebra.  
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THE EFFECTS OF MULTIPLE REPRESENTATIONS-BASED 
INSTRUCTION ON SEVENTH GRADE STUDENTS’ ALGEBRA 

PERFORMANCE 

Oylum Akkus1 and Erdinc Cakiroglu2 

The purpose of this study was to investigate the effects of multiple representation-based 
instruction on seventh grade students’ algebra performance. The study was conducted 
on four seventh grade classes from two public schools lasting eight weeks. For assessing 
algebra performance, three instruments called translations among representations skill 
test, objective based achievement test, and Chelsea diagnostic algebra test were used. 
The analyses were conducted by using multivariate covariance statistical model. The re-
sults pointed out that multiple representation-based instruction had a significant effect 
on students’ algebra performance compared to the conventional teaching. In addition to 
this, students from experimental groups found this way of teaching fruitful.  

INTRODUCTION 
Various meanings can be given to the concept of “representation” in connection with 
the teaching and learning of mathematics. Seeger, Voight, & Werschescio (1998) 
summarized some of those definitions in very general terms as follows: 
“…representation is any kind of mental state with a specific content, a mental repro-
duction of a former mental state, a picture, symbol, or sign, symbolic tool one has to 
learn their language, a something “in place of” something else”.  
Multiple representations can be generally defined as providing the same information 
in more than one form of external mathematical representation by Goldin and Shtein-
gold (2001). The usage of multiple representations in mathematical learning was in-
vestigated in depth by Janvier who defined it “understanding” as a cumulative proc-
ess mainly based upon the capacity of dealing with an “ever-enriching” set of repre-
sentations (Janvier, 1987, p. 67). There are two important key terms in a theory of 
representation that are; “to mean or to signify, as they are used to express the link ex-
isting between external representation (signifier) and internal representation (signi-
fied)” (Janvier, Girardon, & Morand, 1993, p. 81). External representations were de-
fined as “acts stimuli on the senses or embodiments of ideas and concepts”, whereas 
internal representations are regarded as “cognitive or mental models, schemas, con-
cepts, conceptions, and mental objects” which are illusive and not directly observed 
(Janvier, et. al., 1993, p. 81). 
Another approach to the theory of multiple representations which is called Lesh Mul-
tiple Representations Translations Model (LMRTM) has been suggested by Lesh 
(1979). His theory draws the theoretical framework of this study since he improved a 
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model involving translations among representational modes and transformation 
within one representational mode. According to Lesh, Post and Behr (1987), repre-
sentations are crucial for understanding mathematical concepts. They defined repre-
sentation as “external (and therefore observable) embodiments of students’ internal 
conceptualizations” (Lesh, et al. 1987, p. 34). This model suggests that if a student 
understands a mathematical idea she or he should have the ability of making transla-
tions between and within modes of representations. According to this view, a good 
problem solver should be able to “sufficiently flexible” in using variety of representa-
tional systems. He claimed further, “As a student’s concept of a given idea evolves, 
the related underlying transformation/translation networks become more complex; 
and teachers who are successful at teaching these ideas often do so by reversing this 
evolutionary process; that is, teachers simplify, concretize, particularize, illustrate, 
and paraphrase these ideas, and imbed them in familiar situations” (p. 36). 
A MULTIPLE REPRESENTATIONS TRANSLATION MODEL  
After reviewing a number of theories about multiple representations, this study em-
phasizes investigating particularly students’ ability to use the given representational 
mode for solving problems, and to make translations among the representational 
modes. A multiple representational translations model combined from the models be-
longing to Lesh and Janvier would seem to be perfect modeling for this research 
study. The five distinct representational modes; namely, manipulatives, real-world 
situations, written symbols, spoken symbols, and pictures or diagrams in LMRTM 
were directly included in the model of this study. Some of those representational 
modes were named differently referring the Janvier Representational Translation 
Model (JRTM). Instead of “written symbols” from LMRTM, wording of “formulas” 
from JRTM was included in this study. Besides in lieu of the combination of “situa-
tions, pictures, and verbal descriptions”, the researcher decided to use those represen-
tational modes separately. Therefore instead of “situations, pictures, and verbal de-
scriptions” in JRTM, “manipulatives,” “pictures or diagrams,” and “spoken symbols” 
were taken from LMRTM. “Tables” and “graphs” were taken separately from JRTM. 
Janvier’s Representation Translation Process was revised in light of the Lesh (1979) 
ideas as appeared in Table 1. 
Table 1: The combined model of Lesh and Janvier for translations among representation modes 

From \ To 
Spoken 

Symbols 
Tables Graphs 

Formulas 

(Equations) 
Manipulatives 

Real Life 

Situations 
Pictures 

Spoken 

Symbols 
_ Measuring Sketching Abstracting Acting out Acting out Drawing 

Tables Reading _ Plotting Fitting Modeling Modeling 
Visualiz-

ing 

Graphs Interpre- Reading Off _ Fitting Modeling   
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tation 

Formulas (Equa-

tions) 
Reading Computing Sketching _ Concretizing Exemplifying Localizing 

Manipulatives 
Describ-

ing 

Exemplify-

ing 

Concretiz-

ing 

Symboliz-

ing 
_ 

Simplifying, 

Generalizing 
Drawing 

Real Life Situa-

tions 

Describ-

ing 

Exemplify-

ing 
Plotting 

Modeling, 

Abstracting 

Particulariz-

ing 
_ Modeling 

Pictures or Dia-

grams 

Describ-

ing 
Describing Sketching Abstracting Constructing 

Situationaliz-

ing 
_ 

SIGNIFICANCE OF THE STUDY 
The issue of what instructional approaches should be used in algebra classes does not 
have a single and clear answer. No matter which instructional approach is used, the 
primary goal of mathematics instruction should be to help students in forming con-
ceptual understanding. Janvier (1987) mentioned that if teachers enrich their algebra 
classrooms by placing multiple representations, the students can more efficiently 
make connections between the meaning of algebraic concepts and the way of repre-
senting them, therefore they simply “go for the meaning, beware of the syntax” which 
results in conceptual understanding.  
The improvement of mathematical understanding and representational thinking of 
students require flexible use of multiple representations and the interaction of exter-
nal and internal representations (Pape & Tchoshanov, 2001). Since making meaning-
ful translations in representational modes plays a crucial role in acquisition of 
mathematical concepts and there are still unanswered questions about the instruc-
tional outcomes of using multiple representations, we believe that it would be worth 
to investigate the multiple representations in this respect.  
Since this study focuses on the effects of multiple representation-based environments 
in mathematics classroom, its results should help mathematics educators who seek 
alternative pedagogical instructions in classroom settings. Furthermore, if a teacher is 
aware of his/her students’ understanding of the multiple representations and what 
kind of learning is supported by multiple representation-based environments, s/he can 
better choose and utilize appropriate type of methods, manipulatives, or activities to 
meet the needs of students. Moreover, providing students with a multiple representa-
tion-based algebra instruction would promote a conceptual shift to thinking algebrai-
cally. Therefore, receiving such kind of instruction makes students more competent in 
the area of algebra. 
RESEARCH QUESTION 
The purpose of this study is to examine the effects of a treatment based on multiple 
representations on seventh grade students’ performance in algebra, and this study at-
tempted to answer the following research question; 
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“What are the effects of the multiple representations-based instruction compared to 
conventional teaching method on seventh grade students’ algebra performance when 
students’ gender, mathematics grade of previous semester (MGPS), age, prior algebra 
level are controlled?” 
METHOD 
The research question was examined through a quasi-experimental research design 
since this study did not include the use of random assignment of participants to both 
experimental and control groups. The target population of this study consists of all 
seventh grade students from public schools in Çankaya district in Turkey. There were 
103 public schools in this region. However, two schools from this district were de-
termined as the accessible population. There were 2 seventh grade classes in School 
A, and 7 in School B. One experimental and one control group were selected from 
both schools. There were 15 girls and 13 boys in experimental group and 16 girls and 
13 boys in control group taken from School A. On the other hand, the experimental 
group from School B consists of 17 girls and 21 boys and in the control group the 
number of girls and boys were equal, that is 18. The participants in this study ranged 
in age from 11 years to 14 years old. 
INSTRUMENTS 
To assess algebra performance, three distinct instruments namely Algebra Achieve-
ment Test (AAT), Translations among Representations Skill Test (TRST), and Chel-
sea Diagnostic Algebra Test (CDAT) were used. The rational of using combined in-
struments is to perceive algebraic learning in a multi dimensional way. It includes 
procedural, conceptual, and translational knowledge and skills in its nature (Lesh, 
Landau & Hamilton, 1983). By utilizing three instrument it was aimed to assess alge-
braic learning within its all dimensions and each instrument was tried to assess differ-
ent aspect of algebra learnings. It can be claimed that when a student gets higher 
scores from three instruments s/he can be called as successful in algebra since getting 
high score means that s/he can use procedural algebra knowledge in problem solving, 
understand algebra conceptually, and also make simple translations among represen-
tations.  
Among three instruments Algebra Achievement Test (AAT) was administered to ana-
lyze students’ computation skills in algebra intensively. 10 essay type questions were 
used in this instrument which combines traditional school algebra test items including 
symbolic manipulations and computations in algebra. The items which are related 
with the procedural skills in school algebra are criterion-referenced tasks addressing 
key learning goals specified in the Mathematics Curriculum for Elementary Schools, 
published by Turkish Ministry of National Education (MEB, 2002). The required 
time for this instrument was 30 minutes. The internal reliability value of Cronbach 
alpha was calculated as .90. To score the students’ responses to each question in AAT 
four-point rubric was used. The highest point of 4 indicated a complete understanding 
of underlying mathematical concepts and procedures while the lowest point of 0 was 
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given for irrelevant or no responses. The minimum and maximum possible scores 
from the test items are 0 and 40 points, respectively. Students who got scores above 
mean score of the group was accounted as high achievers.  
Another instrument for assesing students’ algebra performance was the Translations 
among Representations Skill Test (TRST). The purpose of this test was to obtain data 
about students’ abilities in making translations among different representational 
modes. TRST contains 15 open-ended items which were designed to measure skills 
of translation among representations, use of certain representations, and creating new 
representations. The items in TRST required a translation from one representation 
type to another, such as from tabular representation to graphical one. In the last two 
items all type of representations were required to solve the problem. Duration of the 
test was 40 minutes. It was scored by using a three-point holistic scoring rubric. The 
highest point of 3 was awarded for responses showing that the problem was solved 
correctly and that the appropriate translations among representations were used. The 
lowest point of 0 indicated if the response is completely wrong or immaterial to the. 
The possible minimum score was 0, and the possible maximum score was 36. The in-
ternal reliability estimate of TRST was found to be .79 by calculating the Cronbach 
alpha coefficient.  
The last instrument was Chelsea Diagnostic Algebra Test (CDAT) which was devel-
oped by the Concepts in Secondary Mathematics and Science Team (Hart, Brown, 
Kerslake, Küchemann, & Ruddock, 1985) to determine 13-15 years old children’s al-
gebraic thinking levels. This test was designed to measure the conceptual knowledge 
of elementary algebra. In CDAT there are six different categories of interpreting and 
using the “letter”. Apart from these six categories, four levels of algebra understand-
ing were developed with respect to the children’s responses and the items themselves. 
In Level 4, children can deal with the items that require specific unknowns and which 
have a complex structure (Hart, et al., 1989) and they can be accounted as successful 
in algebra. The students answered the items in this test approximately in 60 minutes. 
The discrimination power of the items ranged from 0.20 to 0.60. Reliability measure 
as based on KR-20 coefficient was found to be 0.93. There were 53 items in the 
adapted version of CDAT. The possible minimum and maximum scores were 0 and 
53 respectively. Besides, CDAT was used as a pretest to find out experimental and 
control group students’ conceptual algebraic knowledge before the intervention. It 
was considered that seventh grade students’ algebra knowledge coming from their 
previous mathematics background might affect the experiment therefore CDAT as 
pretest was also taken to MANCOVA statistical model as a profounding variable. 
TREATMENT BASED ON MULTIPLE REPRESENTATIONS 
For this study, the instructional design for experimental groups consists of daily les-
son plans in which several activities took place. There were 21 activities which were 
involved in the lesson plans of the instructional unit in order to aid in teaching of a 
unit of algebra. All 21 lesson plans which had distinct contexts and problem situa-
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tions were developed in order to reflect the procedure of translations among represen-
tations, transformations within a specified representation, usage of any representa-
tional mode in dealing with algebraic situation. In particular, students were required 
to learn constructing the multiple representations of algebraic situations, including 
expressing them in tables, graphs, and symbols. Instead of teaching these representa-
tion skills in isolation, it was anchored within meaningful thematic situations. Instead 
of direct instruction in how to construct and use mathematical representations in al-
gebra, students were only guided in the activities to explore different representations 
and to develop their understanding of each one. In experimental groups students were 
frequently given tasks that require them to make translations among different repre-
sentations. This approach was used to present and develop concepts from verbal, al-
gebraic, graphical, and tabular standpoints. To illustrate, for instance, a concept first 
introduced a numerically intuitive approach in which tables were used to collect and 
work on data. Then a verbal representation was used to verbally complement the rela-
tionship among numbers in the tabular representation. Finally, a transition was made 
to the algebraic representation. The usage of multiple representations varied for each 
activity presented in this treatment. For instance, for the topic of equations, first the 
tabular representation then the verbal representation were constructed; however, for 
conceptualizing the concept of graph, first, the algebraic representation, and then the 
other representations were used.  
The actualization of treatment can be illustrated in one activity namely; “Inequali-
ties”. In this activity students were responsible to find out the main characteristics of 
inequalities using the tabular representation. At the beginning the activity sheets were 
given to the students, and then they examined the activity. They filled the given table 
by required numbers, and then the translation from one representation to another 
came. For this, the daily life situations and the algebraic representational modes were 
selected. Students were required to give one daily life example to the inequality of 
“x–3<7”. Students’ examples were like; 
“There are x number of teachers in one school, then 3 of them are appointed to an-
other school, and the number of the remaining teachers was less than 7”. 
“Let us say that the number of the desks in our class was x, we get rid of 3 of them, 
then there are less than 7 desks in our class”. 
After getting students translations among representations, all of them were discussed 
in class. It is compulsory for the students to keep the activity sheets in the folder that 
the researcher gave them, since they did all the works on those papers. They were 
also responsible to bring their folder to the class every mathematics lesson.  
In the treatment, particularly the translations among representational modes were 
stressed and valued by the researcher. In conventional algebra teaching, however, 
translation among representations might occur only when the students are required to 
draw a graph. In this case, instead of constructing a table to represent the given equa-
tion, they only identified two points where the line passess through. Then, by the help 
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of this information, a graph could be drawn. However, the multiple representations-
based instruction emphasizes the translations from variety of representational modes 
to the other modes. Therefore, students could have the opportunity to notice that one 
mathematical concept can be represented in several ways and these ways can be com-
plementary to understand this concept. The same task of drawing the graph of a linear 
equation is taken in a way that, students analyze the equation through daily life situa-
tions, plain language, tables, and graphs. In that sense, drawing the graph of an equa-
tion is not an end but it is a means of interpreting the existing mathematical situation. 
The treatment lasted eight-weeks. Each week experimental groups received four les-
son hours, with each session lasting 40 minutes.  
RESULTS 
To test the null hypothesis related to the research question, the statistical technique of 
Multiple Analysis of Covariance (MANCOVA) was used for comparing the mean 
scores of control and experimental groups separately on the AAT, TRST, and CDAT. 
MANCOVA was carried out by putting experimental groups together as a one experi-
mental group and control groups as one control group as well (Cohen & Cohen, 1983).  

Initial descriptive analysis revealed that the experimental groups had the higher 
scores on all the instruments compared to the control groups. Before conducting 
MANCOVA the assumptions called normality, multicollinearity, homogeneity of re-
gression, equality of variances, and independency of observations were verified 
(Green, Salkind, & Akey, 2003). 
The MANCOVA results revealed that, there was a significant effect of two methods of 
teaching on the population means of the collective dependent variables of seventh 
grade students’ scores on the AAT, TRST, and CDAT after controlling their age, the 
MGPS, and PRECDAT scores. 37% of the total variance of MANCOVA model for the 
collective dependent variables of the AAT, TRST, and CDAT was explained by group 
membership of the participants. Using the Wilks’ Lambda test, significant main ef-
fects were detected between the groups experimental group and control group (λ = 
.63, p = .000). Therefore, the results of this study were of practical significance. The 
significant finding of a group effect from MANCOVA, allowed further statistical 
analysis to be done in order to determine the exact nature of significant differences 
found in main effect. Therefore univariate analyses of covariance (ANCOVA) were 
carried out on each dependent variable in order to test the effect of the group mem-
bership. From the analyses, it can be stated that, multiple representation based in-
struction has a significant effect on the dependent variable scores of CDAT [F(1,125) 
= 38.005, p = .000)], TRST [F(1,125) = 25.942, p = .000], and AAT [F(1,125) = 
18.271, p = .000]. Furthermore, for the observed treatment effects, it was obvious that 
the values of eta squared for the scores of the CDAT, TRST, and AAT were .233, .172, 
and .128 respectively which are equal to the medium effect size. This explains 23% 
of the variance in CDAT, 17% of the variance in TRST, and 13% of the variance in 
AAT related with the treatment. Power for the scores of the CDAT, TRST, and AAT 

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 426



 

 

 

 

were found as 1.00, .92, and .78 respectively. Step-down analysis was carried out as 
significant MANCOVA follow up analysis. By the help of this analysis, the unique im-
portance of dependent variables which were found as significant in the MANCOVA 
analysis was investigated. Since there are three significant dependent variables 
namely, CDAT, TRST, and AAT, three step-down analyses were conducted. By doing 
so, any possible variance overlap among the dependent variables was planned to be 
detected. According to these results, the effect of multiple representation-based in-
struction had still significant effect on each dependent variable.  
DISCUSSION 
This research study has documented that, compared to conventional instruction, mul-
tiple representations-based instruction did make a significant influence on the algebra 
performance of seventh grade students. There might be various reasons to this result. 
Visualization of algebraic objects, connections among algebraic ideas, and the im-
provement of translational abilities in algebra problem solving (Lesh, Post, & Behr, 
1987) can be counted as what multiple representations-based instruction provide for 
students. By the help of this instruction, students avoid memorization in algebra 
learning, and understand concepts meaningfully. As suggested in Swafford and Lan-
grall`s (2000) study; multiple representations-based instruction promotes conceptual 
understanding of algebra and makes students conceptualize algebraic objects. The re-
sults of this study are supported in the literature by numerous studies. One of them is 
Brenner`s (1995) and her colleagues study. They conducted only 20 days multiple 
representations unit including variables and algebraic problem solving. After treat-
ment they implemented four instruments related to algebra learning to the seventh 
and eight graders. Significant difference was found between experimental and control 
group of students in favor of the students in experimental groups. The findings of this 
study are also consistent with the findings of previous studies (Ozgun-Koca, 2001; 
Pitts, 2003) that provided evidence for the effectiveness of multiple representations-
based instruction in engaging students in meaningful algebra learning. Additionally, 
in Herman`s (2002) study similar results were found. It was stated that after multiple 
representation based instruction in college algebra course, students were better able to 
establish connections between varieties of representational modes. 
This study confirmed the need for considering other kinds of representations, such as; 
representations used in graphic calculator and computer programs or representations 
that students create and unique for them. As it was suggested by Ozgun-Koca (2001), 
computer-based applications can be used to provide linked and semi-linked represen-
tations, and graphical form of representations. These applications can make students 
to abstract mathematical concepts from virtual world. Besides, allowing students to 
create their own representations for solving algebra problems makes them more crea-
tive and flexible in mathematics (Piez & Voxman, 1997). In this study it was ob-
served that, students were mainly restricted by four types of representations which are 
tabular, graphical, algebraic, and verbal. This can be due to the activities or re-
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searcher’s emphasize on those representation types. However, students should be 
given an opportunity that they can use representations that they invent or create. 
Moreover, it can be suggested that future research can focus on teachers and teaching 
strategies in algebra classrooms. All of the data for this study was collected from stu-
dents. Future research could combine data from students and their teachers, because 
teachers have also impact on shaping students’ representation preferences. What 
teaching strategies and representation types are used within algebra classrooms by 
teachers and how those representations are conceptualized by the students seems to 
be worthwhile to investigate.  
According to the researcher, mathematics educators ought to recognize making estab-
lishment between concepts for the mathematics instruction for all students. Nowa-
days, many attempts can be observed to improve mathematics instruction. Multiple 
representation-based instruction for conceptual algebra understanding is just the one 
that the researcher implemented and appreciated the benefits of using this method. 
Giving opportunity to new instructional methods like multiple representation based 
instruction in mathematics classrooms enables students better mathematics learner. 
As Klein (2003) implied; `Learning to create and interpret representations using 
specific media such as texts, graphics, and even videotapes are themselves curricular 
goals for many teachers and students` (p. 49). As a three-year experienced mathemat-
ics teacher before, the researcher could say that in traditional mathematics classroom, 
there is a need to encourage students to think more deeply on mathematical concepts, 
to intrinsically motivate for learning, to make students appreciate the nature of 
mathematics by getting rid of rote memorization, and to avoid overemphasizing 
mathematical rules and algorithms. In fact, new instructional methodologies like mul-
tiple representation-based instruction can address this need. 
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OFFERING PROOF IDEAS IN AN ALGEBRA LESSON IN 
DIFFERENT CLASSES AND BY DIFFERENT TEACHERS 

Michal Ayalon and Ruhama Even 
The Weizmann Institute of Science, Israel 

This paper analyzes the ways proof ideas in an algebra lesson were offered to stu-
dents (1) by two different teachers, and (2) in two different classes taught by the same 
teacher. The findings show differences between the two teachers, and between the two 
classes taught by the same teacher, regarding the proof ideas made available to learn 
in the lesson. 
Keywords: Proof ideas, algebra, classroom, curriculum, teacher. 

INTRODUCTION 
Research suggests that getting students to understand what a mathematical proof is 
and the role that proofs play in mathematics is not an easy task (de Villiers, 1990; 
Dreyfus & Hadas, 1996; Harel & Sowder, 2007). However, most of the research on 
proof focuses on the individual student’s cognition and knowledge. There is an ab-
sence of studies that focus on the complexity of teaching and learning proof in the 
classroom (Mariotti, 2006), and on the role of the content and sequencing of the cur-
riculum on the quality of teaching proof (Holyes, 1997; Stylianides; 2007). More-
over, research related to proof is commonly conducted in the context of geometry, 
and examination of proof in algebra is sparse. This study addresses this shortcoming 
of current research. Its aim is to examine the enactment of a written algebra lesson, 
which centers on determining and justifying equivalence and non-equivalence of al-
gebraic expressions. The study focuses on ways important proof ideas were offered to 
students, the extent to which they were explicit in the lessons, and the contributions 
of the teacher and the students to their development. Two of these ideas are general: 
refutation by a counter example as mathematically valid, and supportive examples for 
a universal statement as mathematically invalid – two ideas that are difficult for stu-
dents (e.g., Balacheff, 1991; Fischbein & Kedem, 1982; Jahnke, 2008). Another idea 
is algebra specific: the use of properties and axioms in proving that two algebraic ex-
pressions are equivalent as mathematically valid.  
Recent research suggests that different teachers enact the same curriculum materials 
in different ways (Manouchehri & Goodman, 2000), and that the same curriculum 
materials may be enacted differently in different classes taught by the same teacher 
(Eisenmann & Even, in press). Thus, we chose to focus here on the ways the proof 
ideas in the algebra lesson were offered to students (1) by different teachers, and (2) 
in different classes taught by the same teacher. This study is part of the research pro-
gram Same Teacher – Different Classes (Even, 2008) that compares teaching and 
learning mathematics in different classes taught by the same teacher as well as classes 
taught by different teachers. Various aspects are examined, with the aim of gaining 
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insights about the interactions between mathematics teachers, curriculum and class-
rooms.  

PROOF IDEAS IN THE WRITTEN LESSON 
The lesson appears in a 7th grade mathematics curriculum program developed in Is-
rael in the 1990s (Robinson & Taizi, 1997). The curriculum program used by the 
teachers in this study is intended for heterogeneous classes and includes many of the 
characteristics common nowadays in contemporary curricula. One of its main charac-
teristics is that students are to work co-operatively in small groups for much of the 
class time, investigating algebraic problems situations. Following small group work, 
the curriculum materials suggest a structured whole class discussion aimed at advanc-
ing students’ mathematical understanding and conceptual knowledge. The curriculum 
materials include suggestions on enactment, including detailed plans for 45-minute 
lessons.  
The lesson “Are they equivalent?”, which is the focus of this paper, is the 6th lesson in 
the written materials. Prior to this lesson, equivalent expressions were introduced as 
representing "the same story", e.g., the number of matches needed to construct a train 
of r wagons. The use of properties of real numbers (e.g., the distributive property) 
was mentioned briefly as a tool for moving from one expression to an equivalent one, 
but it was not yet presented explicitly as a tool for proving the equivalency of two 
given expressions. 
Based on an analysis of the textbook and the teacher guiding, three proof-related 
ideas were found as being explicit in this lesson:  
Idea 1: Substitution that results in different values proves that two expressions are not 

equivalent (a specific case of refutation by a counter example as mathemati-
cally valid). 

Idea 2: Substitution cannot be used to prove that two given algebraic expressions are 
equivalent3 (a specific case of supportive examples for a universal statement 
as mathematically invalid). 

Idea 3. It addresses the problem that emerges from idea 2: the use of properties in the 
manipulative processes is a mathematically valid method for proving that two 
expressions are equivalent. 

The lesson is planned to start with small group work aiming at an initial construction 
of Ideas 1 and 2. Students are given several pairs of expressions; some equivalent and 
some not. They are asked to substitute in them different numbers and to cross out 
pairs of expressions that are not equivalent. After each substitution they are asked 
whether they can tell for certain that the remaining pairs of expressions are equiva-

                                           
3 Students were not familiar at that stage with the properties of linear expressions. 

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 431



 

 

 

 

lent. Finally, students are instructed to write pairs of expressions, so that for each 
number substituted, they will get the same result.  
Then small group work continues, asking students to write equivalent expressions for 
given expressions. The aim is to direct students’ attention to the use of properties in 
relation to equivalence of algebraic expressions, which is relevant to idea 3.  
The whole class work returns to idea1, and moves, through idea 2, to idea 3, aiming 
at consolidating these ideas, by discussing questions, such as: How can one determine 
that expressions are not equivalent? that expressions are equivalent? By substituting 
numbers? If so, how many numbers are sufficient to substitute? If not, what method is 
suitable? Finally, the teacher guide recommends that the teacher demonstrate the use 
of properties for checking equivalence, and together with the students implement this 
method on several pairs of expressions in order to check their equivalency.   
Ideas 1, 2, and 3 are connected to three other ideas, none of which appears explicitly 
in the first six lessons in the written materials: 
Idea 4 justifies Idea 2: There may exist a number that was not substituted yet, but its 

substitution in the two given expressions would result in different values, thus 
showing non-equivalence.  

Idea 5 justifies Idea 3: The use of properties of real numbers in the manipulative 
processes guarantees that any substitution in two expressions will result in the 
same value, thus showing equivalence.  

Idea 6 is the underpinning for Ideas 1, 2, and 3, as well as for Ideas 4 and 5. It defines 
equivalent algebraic expressions: Two algebraic expressions are equivalent if 
the substitution of any number in the two expressions results in the same 
value. 

 
 
 
 
 

Figure 1: Connections among the proof-related ideas in the lesson 

Ideas 4 and 6 are implicit in the written lesson, and Idea 5 does not exist.  

METHODOLOGY 
The primary data source include video and audio tapes of the enactment of the written 
lesson in four classes, each from a different school (i.e., four different schools). One 
teacher, Sarah, taught two of the classes, S1 and S2; another teacher, Rebecca, taught 
the other two classes, R1 and R2 (pseudonyms). The talk during the entire class work 

Idea 2Idea 1

Idea 5Idea 4

Idea 6

Idea 3
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was transcribed. The transcripts were segmented according to focus on the six ideas, 
yielding 3-4 more or less chronological parts in each class. Next, the collective dis-
course in the classroom was analyzed by examining the contributions of the teacher 
and the students to the development of the proof ideas in each enacted lesson. We 
compared how the teachers structured and handled the proof ideas in each lesson, and 
what was available to learn in different classes of the same teacher and in the classes 
of the two teachers. 

PROOF IDEAS IN THE ENACTED LESSONS 
Idea 1  
In line with the written curriculum materials, the whole class work in all four classes 
included an overt treatment of Idea 1. However, contrary to the recommendations in 
the written materials, in none of the classes did the whole class work begin with the 
question, how can one determine whether algebraic expressions are not equivalent. 
Instead, the students performed substitutions in pairs of algebraic expressions from 
Problem 1 because the teacher requested them to do so, and not as a way of address-
ing a problem. When the substitutions resulted in different values, the classes con-
cluded that the two expressions were not equivalent. In all four classes, it was the 
teacher who eventually presented Idea 1 explicitly, attending only to the specific con-
text of non-equivalence of expressions, with no reference to the general idea of refu-
tation by using a counter example as mathematically valid.  
Idea 2  
After working on non-equivalence, the four classes proceeded to work on equivalence 
of algebraic expressions. In both of her classes Sarah presented Idea 2, that substitu-
tion cannot be used to prove that two given algebraic expressions are equivalent. She 
explicitly incorporated in the presentation of this idea its underlying justification 
(which does not appear explicitly in the written materials) that possibly there exists a 
number that was not yet substituted, but its substitution in the two given expressions 
would result in different values (idea 4). For example, Sarah said in class S1:  

We saw that with substitution, it is always possible that there is a number that I will sub-
stitute, and it will not fit. We can substitute ten numbers that would fit, and suddenly we 
will substitute one number that will not fit, and then the expressions are not equivalent… 
We have to find some way other than substitution, which will help us determine whether 
expressions are equivalent.  

Contrary to the recommendations in the written materials, the students in Sarah’s 
classes did not participate in constructing Idea 2 in class. Sarah merely presented it as 
motivation for finding a method to show equivalence, and immediately proceeded to 
work on using properties in the manipulative processes as a means to prove equiva-
lence (Idea 3).    

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 433



 

 

 

 

The idea that substitution cannot be used to prove that two given algebraic expres-
sions are equivalent was dealt with differently in Rebecca's classes. In general, in 
both classes Rebecca pressed on finding a method that works, rather than evaluating 
the method of substitution, which does not work. However, the issue of substitution 
continued to be raised. In class R1, following the students’ suggestion, the initial fo-
cus was on rejecting substitution because of the inability to perform substitution of all 
required numbers (an infinite number), as the following excerpt illustrates: 
 

Rebecca: When will I be sure that these three [points to the pairs on the board] are in-
deed equivalent? That each pair is equivalent? When will I be sure? 

S: When you check all the numbers. 
… 
S: There is an infinite number of numbers so you will never finish. 
Rebecca: So I am not going to substitute infinite numbers. I need to find some other 

trick. 

Idea 2, that supportive examples (i.e., substitution) could not be used to prove a uni-
versal statement (i.e., that two given algebraic expressions are equivalent), was not 
dealt with in class R1. Rather, it seemed to be taken as shared. Repeatedly, after sub-
stituting numbers in pairs of expressions and receiving the same value, the class con-
cluded that the pairs appeared to be equivalent but that it was impossible to know for 
certain. For example, 

Rebecca: OK, we are told to check another number, four. 
S: Right. 
Rebecca: You checked four. What did you get? 
S: That they are equivalent. 
Rebecca: I got the same result, right? 
S: Yes, right. 
S: All is well so far. 

By stating, “I got the same result” following the statement “they are equivalent” Re-
becca signaled that they did not yet know whether the latter claim was correct. Stu-
dents then agreed, “All is well so far (emphasis added)”. Later in the lesson, a similar 
conversation took place,  

Rebecca: So, does it mean that they are equivalent? 
S: Yes.  
S: Yes. Ah, no, not necessarily. 
Rebecca: Why? Do you have a counter example? 
S: We don’t know that they are equivalent. 

Still, there was no explicit rejection of substitution for proving equivalence, as a spe-
cific case of supportive examples for a universal statement as mathematically invalid. 
Instead, Rebecca changed the focus of the activity to looking for a connection be-

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 434



 

 

 

 

tween the two algebraic expressions in each pair, as a transitional move towards Idea 
3. 
In contrast with class R1, class R2 embraced the idea that substitution is a valid 
means of determining equivalence of algebraic expressions. Unlike R1, where after 
several substitutions that resulted in the same value, students claimed that they still 
could not conclude that the two expressions were equivalent, in similar situations R2 
students claimed that the expressions were equivalent because all the numbers they 
substituted resulted in identical numerical answers. This happened even after Rebecca 
offered idea 4, that there may be a number, which was not yet substituted, but its sub-
stitution in the two given expressions would result in different values. For example, 

Rebecca: So, what do you say, what should I do, check all the numbers; maybe there is a 
number that won’t fit here? 

S: No [interrupts the teacher] 
Rebecca: Or will it always fit? 
S: Always. 
… 
Rebecca: Why are they equivalent? Why do I say that these are equivalent…? 
S: Because we checked at least thirty. 
Rebecca: We didn’t check thirty, but I am asking: Why are these equivalent, in your opin-

ion? 
… 
S: Because we checked. 
Rebecca: Because you checked, but we said that maybe there is one number that you did 

not check. 
S: But we checked almost all the [inaudible]. 

Eventually, Rebecca changed the focus of the activity to looking for algebraic expres-
sions that are equivalent to given expressions, aiming at Idea 3. Thus, unlike Sarah, 
who used the brief mention of Idea 2 (and 4) as a motivational transition from Idea 1 
to Idea 3, in R2, Rebecca did not motivate the search for a method different from sub-
stitution.  
Idea 3  
Led by Sarah, in line with the written materials, S1 and S2 searched for properties 
that show that the expressions produced when working on Problem 1 (S1), or given in 
Problem 3 (S2), were equivalent. Sarah then stated that the use of properties is the 
way to show equivalence, not substitution. When introducing Idea 3 in S2, Sarah ex-
plicitly connected with Ideas 5 and 6, which underpin and justify Idea 3. However, no 
such connections were made then in S1. Only later on, in her concluding remarks in 
S1, when summarizing both ways of proving equivalence and non-equivalence of ex-
pressions, did Sarah explicitly propose Idea 6.  
Class R1 started to work on Idea 3 by searching for connections between pairs of ex-
pressions from Problem 1 that remained as potentially consisting of equivalent ex-
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pressions. The class then quickly embraced the discovery that by using properties, it 
was possible to move from one expression to another, by indicating equivalence. Re-
becca then introduced explicitly Idea 3. However, in R1, like in S1, no connections 
were made then to Ideas 5 and 6. Nevertheless, Idea 6 was introduced explicitly at the 
beginning of the lesson, when a student asked for the meaning of equivalence expres-
sions. 
Class R2 had a different starting point than R1 for treating Idea 3 because the stu-
dents were confident that based on the substitutions they performed they could infer 
that the remaining pairs of expressions from Problem 1 were equivalent. Rebecca 
then slightly deviated from the written materials' suggestions and asked the students 
to find new expressions that would be equivalent to the given ones. Eventually, R2 
embraced the idea that equivalence can be determined by manipulating the form of 
expressions, using properties. In R2, too, no connections were made with Ideas 5 and 
6. Moreover, Idea 6 was not proposed at all. 
Figure 2 depicts the teaching sequences of the proof-related ideas as offered during 
the whole class work, in the written materials, as well as in the four classes.  
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Figure 2: Teaching sequences of the proof-related ideas, as offered in the whole class 
work, in the written materials, as well as in the classes 

The figure clearly demonstrates that Sarah was the only one who explicitly proposed 
the sequence of the three proof-related ideas (1, 2, and 3) that were explicit in the 
written lesson, whereas Rebecca explicitly proposed only Ideas 1 and 3. Moreover, 
any connections between these three ideas and the other three ideas (4, 5, and 6), 
which did not appear explicitly in the written lesson, were made only in Sarah's 
classes: Idea 2 was connected to its underlying justification, Idea 4 in both of Sarah's 
classes, whereas Idea 3 was connected to its underlying support by Ideas 5 and 6 in 
S2 only. Nevertheless, Idea 4 was offered by Rebecca in R2 with no explicit connec-
tion to Idea 2, and Idea 6 was offered in S1 (at the end of the lesson) and in R1 (at the 
beginning of the lesson), with no explicit connections to the other ideas. 

FINAL REMARKS 
Sarah and Rebecca taught the written lesson “Are they equivalent?” using the same 
written materials, which included a detailed lesson plan. Thus, it is not surprising that 
the mathematical problems enacted in class were similar in all four classes. However, 
the ways the proof ideas in the lesson were offered to students differed to some de-
gree from what was recommended in the written materials. There were also differ-
ences between the two teachers, and between the two classes of the same teacher, in 
what was available to learn in the lesson. One of the main differences is related to of-
fering Idea 2. This idea is central in the written materials. However, Sarah only 
briefly mentioned it in her classes, just as a transition to Idea 3. In R1 this idea was 
taken as shared, never made explicit, as was the case in R2, which strongly embraced 
the opposite idea. Another central idea in the written materials is Idea 3. The way that 
the written materials deal with Idea 3, without making Ideas 5 and 6 explicit, seemed 
to make teaching it a challenge. Eventually, each teacher handled this idea somewhat 
differently in each of her two classes.  
These differences seem to be related to differences in teaching approaches. Sarah 
tended to make clear presentations of important ideas. Rebecca hardly made presenta-
tions, but instead, attempted to probe students, expecting them to explicate these 
ideas. Thus, some ideas were never made explicit, in one class more than the other, 
because of differences in students’ mathematical behaviour and performance.  
These initial findings illustrate the complexity of the interactions among teachers, 
curriculum and classrooms (Even, 2008). Rebecca faced serious challenges in her at-
tempts to make students genuine participants in the construction of mathematical 
ideas, as was recommended in the written materials – more so in one of her classes – 
challenges that lie at the meeting point of the specific teacher, specific curriculum and 
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specific class. Sarah, who chose to make clear presentations of the mathematical 
ideas, faced different challenges, even though she used the same materials. 
The mere fact that different teachers offer mathematics to learners in different ways, 
even when using the same written materials, is not entirely surprising, and has been 
documented by empirical research (e.g., Manouchehri & Goodman, 2000). Nonethe-
less, the nature of the differences is important because what people know is defined 
by ways of learning, teaching, and classroom interactions, as documented by Boaler 
(1997). Consequently, Sara'h and Rebecca's students were offered somewhat different 
proof-related ideas that are central in algebra and in mathematics in general, and that 
are known as not being easy for students. Furthermore, when instead of focusing 
solely on the comparison between teachers, different classes taught by the same 
teacher were also compared, important information was revealed about the interac-
tions among curriculum, teachers and classrooms. 
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RAFAEL BOMBELLI’S ALGEBRA (1572) AND A NEW 
MATHEMATICAL “OBJECT”: A SEMIOTIC ANALYSIS 

Giorgio T. Bagni 
Department of Mathematics and Computer Science, University of Udine (Italy) 

In the theoretical framework based upon the ontosemiotic approach to representa-
tions, some reflections by Radford, and taking into account Peirce’s semiotic per-
spective, I proposed to a group of 15–18 years–old pupils an example from the trea-
tise entitled Algebra (1572) by Rafael Bombelli. I conclude that the historical analy-
sis can provide insights in how to approach some mathematical concepts and to com-
prehend some features of the semiosic chain. 

INTRODUCTION 
In this paper I shall examine a traditional topic of the curriculum of High School and 
of undergraduate Mathematics that can be approached by historical references. The 
introduction of imaginary numbers is an important step of the mathematical curricu-
lum. It is interesting to note that, in the Middle School, pupils are frequently re-
minded of the impossibility of calculating the square root of negative numbers. Then 
pupils themselves are asked to accept the presence of a new mathematical object, 
“ −1”, named i, and of course this can cause confusion in students’ minds. This situa-
tion can be a source of discomfort for some students, who use mathematical objects 
previously considered illicit and “wrong”. The habit (forced by previous educational 
experiences) of using only real numbers and the (new) possibility of using complex 
numbers are conflicting elements. 
Although the focus of this paper is not primarily on the analysis of empirical data, I 
shall consider an educational approach based upon an historical reference that can 
help us to overcome these difficulties. More particularly, I shall consider the semiotic 
aspects of the development of the new mathematical objects introduced (imaginary 
numbers) and I shall ask: can we find an element from which the semiosic chain is 
originated? Can we relate the early development of the semiosic chain to the objectu-
alization of the solving procedure of an equation? 

THEORETICAL FRAMEWORK 
Radford describes “an approach based on artefacts, that is, concrete objects out of 
which the algebraic tekhnē and the conceptualization of its theoretical objects arose. 
[…] They were taken as signs in a Vygotskian sense” (Radford, 2002, § 2.2). In this 
paper I shall not consider concrete objects. Nevertheless Radford’s remark about the 
importance of “signs in a Vygotskian sense” can be considered as a starting point of 
my research. 
When we consider a sign, we make reference to an object, and in the case of mathe-
matical objects, to a concept. However my approach does not deal only with “con-
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cepts”. Font, Godino and D’Amore (2007, p. 14) state that although “to understand 
representation in terms of semiotic function, as a relation between an expression and 
a content established by ‘someone’, has the advantage of not segregating the object 
from its representation, […] in the onto–semiotic approach […] the type of relations 
between expression and content can be varied, not only be representational, e.g., ‘is 
associated with’; ‘is part of’; ‘is the cause of/reason for’. This way of understanding 
the semiotic function enables us great flexibility, not to restrict ourselves to under-
standing ‘representation’ as being only an object (generally linguistic) that is in place 
of another, which is usually the way in which representation seems to us mainly to be 
understood in mathematics education”. 
In my research I shall consider the ontosemiotic approach to mathematics cognition. 
It “assumes socio-epistemic relativity for mathematical knowledge since knowledge 
is considered to be indissolubly linked to the activity in which the subject is involved 
and is dependent on the cultural institution and the social context of which it forms 
part” (Font, Godino & D’Amore, 2007, p. 9, Radford, 1997). 
My framework is also linked with some considerations about semiotic aspects, based 
upon a Peircean approach (although, for instance, the relationship between Vygotsky 
and Peirce is not trivial: Seeger, 2005). According to Peirce we cannot “think without 
signs”, and signs consist of three inter–related parts: an object, a proper sign 
(representamen), and an interpretant (in Peirce’s theory sign is used for both the triad 
“object, sign, interpretant” and the representamen, in late works). Peirce considered 
either the immediate object represented by a sign, or the dynamic object, progres-
sively originated in the semiosic process. As a matter of fact, an interpretant can be 
considered as a new sign (unlimited semiosis). The limit of this process is the ultimate 
logical interpretant and it is not a real sign, which would induce a new interpretant. It 
is an habit–change (“meaning by a habit–change a modification of a person’s tenden-
cies toward action, resulting from previous experiences or from previous exertions of 
his will or acts, or from a complexus of both kinds of cause”: Peirce, 1931–1958, § 
5.475. I shall cite paragraphs in Peirce’s work). 
The sign determines an interpretant by using some features of the way the sign 
signifies its object to generate and shape our understanding. Peirce associates signs 
with cognition, and objects (“mathematical objects” will be considered as “objectual-
ized procedures”: Sfard, 1991, Giusti, 1999) “determine” their signs, so the cognitive 
nature of the object influences the nature of the sign. If the constraints of successful 
signification require that the sign reflects some qualitative features of the object, then 
the sign is an icon; if they require that the sign utilizes some physical connection 
between it and its object, then the sign is an index; if they require that the sign utilizes 
conventions or laws that connect it with its object, then it is a symbol. 
According to Peirce, the formulas of our modern algebra are icons, i.e. signs which 
are mappings of that which they represent (Peirce, 1931–1958, § 2.279). Nevertheless 
pure icons, according to Peirce himself (1931–1958, § 1.157), only appear in think-
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ing, if ever. Pure icons, pure indexes, and pure symbols are not actual signs. In fact, 
every sign “contains” all the components of Peircean classification, although one of 
them is predominant. So our algebraic expressions are complex icons (Bakker & 
Hoffmann, 2005). Moreover, it is worth noting that a sign in itself is not an icon, in-
dex or symbol. From the educational viewpoint, the identification of signs is not just 
a question of classifying a sign as e.g. an icon, but it is a question of showing their 
cognitive import (Bagni, 2006). 
Frequently Peirce underlined the importance of iconicity. He argued (1931–1958, § 
3.363) that “deduction consists in constructing an icon or diagram the relations of 
whose parts shall present a complete analogy with those of the parts of the object of 
reasoning, of experimenting upon this image in the imagination, and of observing the 
result so as to discover unnoticed and hidden relations among the parts”. (Peirce dis-
tinguished three kinds of icons: images, metaphor, and diagrams). According to 
Radford (forthcoming), since the epistemological role of “diagrammatic thinking” 
rests in making apparent some hidden relations, it relates to actions of objectification, 
and a diagram can be considered a semiotic means of objectification. 

HISTORY OF MATHEMATICS AND IMAGINARY NUMBERS 
History of mathematics can inform the didactical presentation of topics (although the 
very different social and cultural contexts do not allow us to state that ontogenesis re-
capitulates phylogenesis: Radford, 1997). Let us consider the resolution of cubic 
equations according to G. Cardan (1501–1576) and to N. Fontana (Tartaglia, 1500–
1557). R. Bombelli (1526–1573), too, is one of the protagonists of history of algebra. 
His masterwork is Algebra (1572), where we find some cubic equations, and some-
times their resolution makes it necessary to consider imaginary numbers. 
The resolution of the equation  x3 = 15x+4  leads to the sum of radicals  x = 

2 11 2 113 3+ + −i i   where  2+11i = (2+i)3  and  2–11i = (2–i)3. So a (real) solution of the 
equation is  x = (2+i)+(2−i) = 4. In the following image (Fig. 1) I propose the original 
resolution on p. 294 of Bombelli’s Algebra. 
 
x³ = 15x+4 
[x³ = px+q] 
(4/2)²–(15/3)³ = –121 
[(q/2)²–(p/3)³ = –121] 
 
x = 2 11 2 113 3+ + −i i  
x = (2+i) + (2–i) = 4    

Fig.1 
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Bombelli justified his procedure using the 
two–dimensional and three–dimensional geo-
metrical constructions (1966, pp. 296 and 298, 
Fig. 2 and Fig. 3 respectively). (Space limita-
tions prevent a detailed discussion of these. 
The reader is referred to Bombelli: Bombelli, 
1966). 

 
Fig. 1 

From the educational point of view, Bom-
belli’s resolution can help our pupils to accept 
imaginary numbers. As a matter of fact, its ef-
fectivity supports Bombelli’s rules for pdm 
and mdm (“più di meno” and “meno di meno” 
respectively, today written as i and –i. In the 
image see the original “rules” as listed on p. 
169 of Bombelli’s Algebra, Fig. 4). 

 
Fig. 2 

 

 
Fig. 3 

IMAGINARY NUMBERS FROM HISTORY TO DIDACTICS 
It is worth noting that the introduction of imaginary numbers, historically, did not 
take place in the context of quadratic equations, as in x2 = –1. It took place by the 
resolution of cubic equations, whose consideration can be advantageous. Their reso-
lution, sometimes, does not take place entirely in the set of real numbers, but one of 
their results is always real. A substitution of  x = 4  in the equation above (43 = 
15·4+4) is possible in the set of real numbers. In the quadratic equation, the role of  i  
and of  –i  seems very important. As a matter of fact results themselves are not real, 
so their acceptance needs the knowledge of imaginary numbers. 
Let us briefly summarize the results of an empirical research. In a first stage I exam-
ined 97 3rd and 4th year High School students (Italian Liceo scientifico, pupils aged 
16–17 and 17–18 years, respectively). In all the classes, at the time of the test, pupils 
knew the resolution of quadratic and of biquadratic equations, but they did not know 
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imaginary numbers. Responding to a question about the statement x2+1 = 0 ⇒ x = ±i 
only 2% accepted the resolution (92% refused it; 6% did not answer). A subsequent 
question proposed the following as a resolution of the cubic equation x3−15x–4 = 0 ⇒ 
x = 2 11 2 113 3+ + −i i  ⇒ x = (2+i) + (2−i) = 4. This resolution was accepted by 54% of 
the pupils (35% refused it; 11% did not answer). 
So imaginary numbers in the passages of the resolution of an equation, but not in its 
result, are frequently accepted by pupils (the didactical contract ascribes great impor-
tance to the result). Under the same conditions, a similar test was then administered to 
52 students of the same age group, where the equations were presented in the reverse 
order (Bagni, 2000): 41% accepted the solution of the cubic equation (25% rejected it 
and 34% did not answer). Immediately after that, the solution of the quadratic equa-
tion was accepted by 18% of the students, with only 66% rejecting it (16% did not 
answer). 
These data suggest that teaching a subject using insights from its historical develop-
ment may help students to acquire a better understanding of it. 

THE SEMIOSIC CHAIN 
As previously noticed, this focus of this paper is not the detailed presentation of this 
experimental data (see, Bagni, 2000). Rather I shall consider some features of stu-
dents’ approach, making reference, in doing so, to Peirce’s unlimited semiosis. As 
highlighted in section 2, every step of the interpretative process produces a new “in-
terpretant n” that can be considered the “sign n+1” linked with the object (considered 
in the sense of an objectualized procedure, following Sfard, 1991, and Giusti, 1999, 
p. 26). However we must ask ourselves: what about the very first sign to be associ-
ated to our object? 
Our mathematical object (in this case, a procedure to solve an equation) would be 
represented by a first “sign”. In fact, “absence” itself can be considered as a sign. 
Peirce (1931–1958, § 5.480) made reference to “a strong, but more or less vague, 
sense of need” leading to «the first logical interpretants of the phenomena that sug-
gest them, and which, as suggesting them, are signs, of which they are the (really 
conjectural) interpretants». So I suppose that this kind of absence can be the starting 
point of the semiosic process. 
From an educational viewpoint this is influenced by important elements, e.g. the the-
ory in which we are working, the persons (students, teacher), the social and cultural 
context. Of course by that I do not mean that there is a unique historical trajectory for 
every “mathematical object”. Nevertheless this starting point can be described as a 
complexus of “object–sign–interpretant” without a particular “chronological” order. 
It can be considered a habit linked to the absence of a procedure, or, better, a proce-
dure to be objectualized. So the situation is characterized by some intuitive sensa-
tions, and by the influence of social, cultural, traditional elements. Later, with the 
emergence of formal aspects, our object will become more “rigorous” (making refer-
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ence, of course, to the conception of rigor in an historical and cultural context – the 
rigor for Bombelli and the rigor for modern mathematicians are different). These 
stages are educationally important. 
According to an ontosemiotic approach, knowledge is linked to the activity in which 
the subject is involved and it depends on the cultural institution and the context (Font, 
Godino & D’Amore, 2007, Radford, 1997). In the case considered, pupils have the 
perception of an absence, referred to the strategy to be followed, namely the proce-
dure to be objectualized. Historical references gave them the opportunity to consider 
a situation, and the context is characterized by the “game to be played” (the resolu-
tion of an equation) at the very beginning of our experience. We cannot make refer-
ence to a semiotic function related to an object to represented. The “object” will be 
considered just later, on the basis of the solving strategy. A real strategy is actually 
absent, and only a “potential object” is connected to the possibility to find out an ef-
fective procedure in order to play the (single) game considered. 

 
In Bombelli’s work the iconicity has a major role, and this aspect can be relevant to 
students approach (further research can be devoted to this issue). Educationally 
speaking, in this stage the effectiveness of the procedure is fundamental. There is not 
a real mathematical object to be considered, nevertheless pupils have a “game to be 
played”, and this can be considered as a sign (sign 1). Now controls and proofs are 
needed, and geometrical constructions can be considered as an interpretant (interpre-
tant 1). So the possibility to provide a first “structure” to the strategy (e.g. the consid-
eration of standard actions) makes it to become a procedure to be objectualized. 
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Both from the historical viewpoint (let us remember the aforementioned Bombelli’s 
geometrical constructions) and from an educational viewpoint (with reference to the 
substitution of the result, x = 4, in the given equation,  x³–15x–4 = 0  so  4³–15·4–4 = 
0), a first objectualization can be pointed out. The experience considered do not allow 
to state that pupils reach a complete objectualization. In the following picture, the in-
terpretant 2 is related to an objectualized procedure and it is referred to the “rules” 
listed by Bombelli (as noticed, only some students accepted them). 

 
Later, the strategy will become an autonomous object and its transparency (in the 
sense of Meira, 1998) will be important from the educational point of view. It will not 
be linked to a single situation and it will be applied to different cases (Sfard, 1991). 
This stage can be characterized by the emergence of a schema of action (Rabardel, 
1995). 
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According to Font, Godino and D’Amore (2007, p. 14), “what there is, is a complex 
system of practices in which each one of the different object/representation pairs 
(without segregation) permits a subset of practices of the set of practices that are con-
sidered as the meaning of the object”. The starting point of the semiosic chain can 
hardly be considered in the sense of semiotic function. It can be considered as a first 
practice that will be followed by other practices in order to constitute the meaning of 
the object. 

FINAL REFLECTIONS 
In my opinion the importance of an ontosemiotic approach to representations can be 
highlighted by a Peircean (or post–Peircean) perspective giving sense to the starting 
point of the semiosic chain. The analysis of this stage of the semiosic chain can help 
us to comprehend both our pupils’ modes of learning and the essence of mathematical 
objects themselves. 
Nevertheless, from a cognitive viewpoint, the question is not only to show how a 
process becomes an object. The main problem is to understand how signs become 
meaningfully manipulated by the students, through social semiotic processes. It is 
also important to notice that Peircean semiotics seems not completely suited to ac-
count for the complexity of human processes in problem–solving procedures. In fact, 
we do not go always from sign to sign, but more properly from complexes of signs to 
complexes of signs (and usually they are signs of different sort: gestures, speech, 
written languages, diagrams, artifacts, and so on). 
According to L. Radford and H. Empey, «mathematical objects are not pre–existing 
entities but rather conceptual objects generated in the course of human activity». It is 
worth noting that “that mathematics is much more than just a form of knowledge pro-
duction – an exercise in theorization. If it is true that individuals create mathematics, 
it is no less true that, in turn, mathematics affects the way individuals are, live and 
think about themselves and others” (p. 250). As a matter of fact, a strategy to be ob-
jectualized can influence pupils’ approaches both to mathematical tasks and to differ-
ent (non–mathematical) activities: “within this line of thought, in the most general 
terms, mathematical objects are intellectual or cognitive tools that allow us to reflect 
upon and act in the world” (p. 250). These remarks lead us to reflect about the impor-
tance of “mathematical objects” and of their representations. They were conceived by 
mathematicians in the history, they are reprised and re–invented by our pupils today. 
So they affected – and, nowadays, affect – “all of society and not only those who 
practice it in a professional way” (p. 251). 
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COGNITIVE CONFIGURATIONS OF PRE-SERVICE TEACHERS 
WHEN SOLVING AN ARITHMETIC-ALGEBRAIC PROBLEM 

Walter F. Castro. University of Antioquia. Colombia 

Juan D. Godino. University of Granada. Spain 

The objective of this paper is to describe the cognitive configurations exhibited by the 
students when solving word problems which could be solved using arithmetic-
algebraic methods. The configurations will be described in terms of theoretic ele-
ments provided by the onto-semiotic approach to mathematics knowledge and in-
struction.  
Key words: elementary algebraic reasoning, cognitive configurations, primary teach-
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INTRODUCTION 
A number of researchers recommend the incorporation of elementary algebraic rea-
soning at different levels of primary education (e.g., Booth, 1988). Carraher and 
Schliemann (2007) state that algebra at the primary school is not simply a subset of 
the high school syllabus; rather, it is a rich sub-domain of mathematics education 
with its own approaches and problems to research. 
The introduction of student primary teachers to elementary algebraic reasoning is a 
long and complex process (Van Dooren, Verschaffel and Onghema, 2003). It is con-
sidered that primary teachers should be able to recognize and to foster the algebraic 
reasoning manifested spontaneously by their students (Carraher and Schlieman, 
2007). Therefore, research about fostering elementary algebraic reasoning in student 
teachers is of great relevance to initial teacher education (Borko et al, 2005).  
On this research domain there are two questions posed by Carraher and Schliemann 
(2007, p.675): ‘can young students really deal with algebra?’ and, ‘can elementary 
school teachers teach algebra?’. Some researchers have tackled the second question. 
For example, Schmidt and Bernarz (1997) detail student teachers’ resistance and con-
flicts in the passage from arithmetic reasoning to algebraic reasoning. Similar find-
ings are reported by Van Dooren et al. (2003). 
Our purpose is to present the initial findings of a student teachers educational pro-
posal on mathematics reasoning. The proposal offers opportunities to student teachers 
to develop didactic analysis knowledge (Godino, J. D., Rivas, M., Castro, W. F. y 
Konic, P, 2008) that could aid student teachers to recognize and to foster elementary 
algebraic reasoning in their pupils. 
We focus the attention on the notion of cognitive configuration introduced by the 
“onto-semiotic approach”, OSA, (Godino, Batanero, and Roa, 2005; Godino, 
Batanero, and Font, 2007) to characterize the mathematic knowledge that is mobi-
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lized in order to solve an arithmetic-algebraic problem. We consider that this notion 
offers a wider view of the construct of strategy by considering the conceptual, pro-
positional, argumentative, representational and situational aspects of knowledge 
alongside the traditional procedural approach.  

INSTITUTIONAL CONTEXT AND METHODOLOGY 
The research has been carried out with a sample of 94 primary student teachers en-
rolled in a mathematics method course at University of Granada, Spain. The course 
aims to develop mathematical knowledge as well as didactical reflection. It is to men-
tion that algebra as such was not studied in the course. During the course several 
mathematical problems that could be solved using elementary algebraic reasoning 
were given to students. In this paper we analyze the students’ solutions to one of 
these problems which were given during a test.  

A ball is thrown from an unknown altitude; it bounces up to one fifth of the 
altitude it was thrown from. If after three rebounds the ball reaches an alti-
tude of 6 cm, a) What is the altitude it fell from the first time?, b) Explains 
the resolution  using algebraic notation. 

The problem belongs to a category of very well studied word problems. However, 
within the framework of this course, we are specifically interested in the arithmetic 
and algebraic solutions provided spontaneously by students. 

EPISTEMIC ANALYSIS OF THE PROBLEM4 
The OSA focuses on five dimensions in analysing the objects and meanings used in 
solving a mathematical problem: linguistic objects, concepts, properties, procedures 
and arguments. In what follows we analyse the problem using OSA5. This analysis 
has two purposes for the teacher educator: to explore the objects and meanings put 
into effect during the solution of the problem, and to identify eventual meaning con-
flicts and to foresee difficulties and errors that could emerge in students’ solutions to 
similar problems. 
The word problem is stated in terms of linguistic elements, which refer to quantities, 
magnitudes and relationships between them. These can be expressed in arithmetic or 
algebraic terms.  
The statement “A ball is thrown from an unknown altitude” refers both to a real ex-
perience and to the unknown value of a quantity. Next it enounces a condition “it 
bounces up to one fifth of the altitude it was thrown from” that establishes the nu-
meric relationship, invariant during the bouncing, between the altitude the ball falls 
from and the altitude to which it bounces, expressed by the fraction 1/5.  

                                           
4 To see an example of such analysis, we refer the readers to the work of Godino et al. (2008). 
5 A priori analysis of the solution to the problem done by an expert. 
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The statement “If after three rebounds the ball reaches an altitude of 6 cm” estab-
lishes that the numeric relationship is compounded three times with itself, fraction of 
fraction. Additionally it assigns a value to the last altitude.   
Finally the statement, “What is the altitude it fell from the first time?” establishes the 
quantity that must be identified in terms of the given information in the problem 
wording.  
The linguistic terms refer to mathematic concepts (e.g., fraction, equality, unknown, 
operation), whose meanings, properties and procedures are related argumentatively in 
a complex way and favors or inhibits the solution to the problem.   
It is worth to mention that both the eventual arithmetic and algebraic solutions place 
the primary entities in different configurations. For instance, in an arithmetic solu-
tion, if it is assumed that 6 is the fifth of an unknown quantity, then we can find the 
unknown quantity by multiplying for five, inverting the fractioning operation used 
initially. However, in an algebraic solution, it is not necessary to use either this prop-
erty or the associated concept. The unknown quantity is multiplied, three times, by 
1/5 and this is equated to 6. Subsequently the unknown is isolated using a procedure 
that frames the solution in terms of multiplication/division.  

COGNITIVE ANALYSIS OF THE STUDENTS’ SOLUTIONS 
In what follows we will describe our typology of cognitive configurations evident in 
the solutions produced by the students. In each case, we identify the mathematical ob-
jects and meanings used by the students in representing their solutions.  
Algebraic configurations6  
Algebraic solutions are those where the use of unknowns is clearly manifested. The 
types of algebraic solutions are: use of unknown, assigning tags to equations, use of 
three unknowns, and additive relationships.  
ALC17: Use of unknown.  On this type of procedure the unknown appears explicitly 
written and it is isolated. The students have attributed meaning to the linguistic ob-
jects “a bounce” and “If after three rebounds”, and have represented such linguistic 
elements in procedural objects, this can be deduced from the actions carried out on 
fractions, on relationships established and expressed by the equal sign and, finally, on 
isolating the unknown.  
ALC2: Assigning tags. Students explicitly associate each rebound with an equation. 
They use a process made of three steps: initially identify the unknown “altitude the 
ball fell from” which is named x, later name the equation corresponding the first 
bounce as “first rebound”, and so two times more, up to the point where they write 
the equation that corresponds to the third bounce, and name it “third rebound”, 
equate to six and obtain the sought value.   
                                           
6 See Godino et al. 2008.) 
7 The code ALC and ARC stands for algebraic and arithmetic configurations, respectively. 
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Every solution on this category is correct. It seems that students control the alleged 
difficulty that rises when dealing with unknowns by assigning a tag that lets them to 
isolate each rebound, represented linguistically, and at the same time allocated it in 
the problem context. On this type of solution the students have isolated the linguistic 
object “it bounces up to one fifth of the altitude it was thrown from”, and have identi-
fied it as an operative invariant in the whole process and have given it a procedural 
role expressed by multiplying by one fifth. 
The procedural and linguistic objects are materialized argumentatively through the 
appropriate use of the equality in its relational meaning and by means of numerical 
operations and properties that are carried out on the equation with the purpose of iso-
lating the unknown.  
ALC3: Use of three unknowns. Students use three unknowns, each one of them asso-
ciated to the unknown’s numerical values corresponding to each bounce. Then they 
propose an equation and they execute a nested replacement of variables, from the ex-
pression corresponding to the last one up to the expression corresponding to the first 
bounce, and they proceed to isolate the unknown.  
The problem is tackled by means of a procedure that breaks up it in three moments; 
the first and the second are represented by an equation with two unknowns, and the 
third, by an equation with one unknown. The mastering of linguistic elements that de-
scribe the relationships is predominant on this procedure. 
The possible meaning conflicts on the description of the problem are overcome by 
assigning a semiotic function, whose antecedent corresponds to each and every 
bounce, and the consequent is a relationship, expressed as an equation.   
On this procedure the students operate “with” and “on” the unknown (Tall, 20001) 
and spontaneously use the transitive property of equality (Filloy, Rojano and Solares, 
2004). 
It is observed, on this solution strategy, the use of procedures on two levels, the first 
that involves the “process” of dividing the problem in three parts, and the second, the 
use of properties and procedures, in the usual manner as mathematical procedures are 
used.  This type of solution is illustrated on Figure 1.8 
 

                                           
8 A translation is provided  
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a is the initial height from which the ball is thrown. Each 
bounce a, b, 6 cm is 1/5 of the previous bounce. We 
isolated the first equation in order to substitute it in the 
others. 

cmheightinitialtheaaaof
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55
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Figure 1. Use of three unknowns (ALC3) 
CAL4: Additive relationships. On this type of solution, the students use an unknown 
and produce expressions and equations that relate arithmetic data by means of addi-
tive expressions. Some students wrote expressions (not equations) to represent the 
problem. The operative invariant “one fifth” appears multiplying the unknown that is 
operated, additively with the numbers three and six but without establishing a rela-
tionship expressed by an equation. In some cases the fragility of knowledge about 
properties of rational numbers is manifested.  
In some other solutions it can be seen that some relationships are proposed among the 
numerical values “three” and “six”, where “one fifth” multiplies the unknown, the 
students identify the presence of an unknown and recover the numbers out of the 
problem wording, however they do not related them in any way. 
Arithmetic configurations 
Arithmetic solutions were classified as those where only arithmetic operations are 
used without any reference to unknowns. The types of arithmetic solutions identified 
are: Reverse multiplication, multiplicative relationship, additive relationship, and rule 
of three. 
ARC1: Reverse multiplication. The solution procedure consists of inverting the op-
eration: it is known that the altitude to which the ball bounces is one fifth of the alti-
tude it was thrown from, as 6 is the last altitude, therefore the previous altitude is 6x5 
and the previous altitude to the last one is 6x5x5. Finally the altitude the ball was 
thrown from is: 6x5x5x5.  
Students using ARC1 exhibit competence and fluency in the use of the multiplication 
operation in the context of known quantities. It is of note that this aspect of “opera-
tion sense” underlies algebraic thinking Slavit (1999, p.256).  
On this category are located the right arithmetic answers given by the students. The 
only meaning conflict found on some answers is considering four bounces instead of 
three. Figure 2 illustrates this type of solution. 
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Figure 2. Reverse multiplication (ARC1)9 

ARC2: Arbitrary use of multiplication. Students focus their attention simply on the 
numbers contained in the problem: 6, 3 and 5, and the solution they offer is an arbi-
trary combination of multiplicative operations among these three numbers. The stu-
dents appear to construct their solution without paying any attention either to the 
conditions on numbers or to relationships among them. According to Garolafo 
(1992), these students do not exhibit a “numeric approach”, because they do not dis-
play strategies neither to decide which operations to use nor to assess a plan to solve 
the problem.  
It is deduced from the students´ solutions that they have not comprehended the mean-
ing, in operative terms, of the linguistic objects “first”, “second” and “third” bounce, 
nor in relational terms of “If after three rebounds the ball reaches an altitude of 6 
cm”. The students are incapable of expressing numerically the relationships present 
in the problem. 
The two approaches to rational numbers duplicator/partition and stretcher/shrinker   
(Behr, et. al.  1997) are stressed on this strategy due to the fact that 6 cm is not identi-
fied as the last bounce, corresponding to one fifth of a quantity that can be found by 
multiplying for five, inverting the operation initially implemented, fractioning by 
five. The operative actions corresponding to adding up fractions are carried out cor-
rectly even though it seems to be a lack of meaning that students attach to the num-
bers and operations between them. 
ARC3: Arbitrary use of addition. As with ARC2, the students only pay attention to 
numeric data, and simply add up the numbers, in some cases, without appearing to 
establish any relationship among them. It seems that students have assumed that the 
problem has an additive structure, where the length of the bounces are added up and 
the data 6cm, corresponds to the sum of the altitudes of the three bounces.  
The meaning conflicts are located in the linguistic elements corresponding to “first”, 
“second” and “third” bounce, as well as, to the statement “one fifth of”, which is in-
terpreted only in its numeric dimension. It seems that the relationships among the 
numbers and expressed linguistically in the problem wording are superfluous to stu-
dents.  

                                           
9 The translation for the Spanish in the graph is: 1) Ball was thrown from 750 cm; 2)  Bote  stands for  bounce  
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ARC4: Rule of three. The students establish a proportionality relation between the 
number three, that corresponds to the bounces and 6cm, then formulate the question: 
what is the altitude corresponding to one bounce? The meaning conflicts on this cate-
gory are much more profound. It seems that students have associated the data format 
presentation and the problem wording to the archetypal format of proportionality 
problems that are solved through the so called “rule of three”. 
On this type of solution the students carry out the change of type of register proce-
dure that lets them to produce meaning in numerical terms but with no link to the 
problem. It seems that problem complexity compels students to veer towards more 
familiar grounds and to perform arithmetic operations (Herscovics & Linchevski, 
1994). 

A discussion of results 
The last three types of arithmetic solutions (ARC2, ARC3 and ARC4) are character-
ized by a wrong meaning assignment to linguistic objects. Understanding the state-
ment of a word problem requires recognition of the existence of dependence among 
meaning corresponding to elementary entities. Anghileri (1995) suggests that the 
close relationship between real settings and the procedures used to solve problems 
characterized the initial states in learning mathematics. The students have not suc-
ceeded in writing a numerical “argument” that links different objects appearing dur-
ing the resolution process.  
The difficulties in representing the problem arithmetically or algebraically are evident 
from the analogy between ALC4 and ARC3. Nonetheless the meanings and the ways 
they are related differ essentially. Along with each type of resolution it has been 
shown that the problem structure raises a number of interpretative challenges, and 
how the solutions correspond to particular configurations of primary entities, where 
these facilitate or hinder the arithmetic or algebraic problem representations. The 
mathematic objects invoked in the problem are the same but the meanings, the rela-
tionships among them and the meaning conflicts are diverse to students. 
To Filloy, Rojano and Puig (2007), “the mode of thought- be arithmetic or algebraic- 
appears to be determined by the type of ‘ relational calculation’  that underlies the 
problem structure” (p.216). We consider that the relational calculation can be ex-
pressed and objectified in terms of primary entities, which could be useful for the 
teachers to recognize both the mathematic tasks complexity and the variety of 
mathematical reasoning leading to the solution.  

RESULTS SUMMARY 
Table 1 gives a detailed breakdown of the number and proportion of each type of al-
gebraic and arithmetic solution. 
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Types of algebraic solutions  
Number of students 

ALC1
25 

ALC2
17 

ALC3
5 

ALC4
11 

Correct/incorrect
37/58 

Types of arithmetic solutions  
Number of Students 

ARC1
4 

ARC2
14 

ARC3
3 

ARC4
2 

10/23 

Do not answer 13     

Table 1: Type of configuration and number of students in each one 
 
It can be seem that the number of algebraic solutions as the number of right solutions 
outnumbered the corresponding arithmetic solutions. The proportion between right 
solutions and solutions of each type is bigger for the case of algebraic solutions.  
Even though students are asked to provide an algebraic solution in the second prob-
lem’s item, they could have provided an arithmetic solution in the first problem item 
as well. Given that algebra was not studied during the course, it is worth noting the 
students’ algebraic preference. 

IMPLICATIONS FOR STUDENT TEACHER TRAINING 
A finding of this research is that the algebraic methods used by the students to solve 
the problem outnumber in quantity and in effectivity the arithmetic strategies. Just a 
small number of students choose to solve the problem by means of a right arithmetic 
strategy in contrast to the findings reported by Nathan and Koedinger (2000). An-
other finding is the apparent disarticulation among the linguistic, conceptual and pro-
cedural elements in the cognitive configurations exhibited by the students, who do 
not manage to elaborate an “argument” leading to a problem solution.  
We consider that teacher’s activity not only concerns with planning mathematic tasks 
but also with the promotion and recognition of the meaning present in the students´ 
solutions, where the primary entities are articulated. Recognizing the entities involved 
students´ solutions could help teachers guide their didactic actions.  
Therefore it is important to make teachers conscious of the network of objects, mean-
ings and configurations that are put into effect during the mathematics problems solu-
tions to help identifying the meaning conflicts manifested by pupils and therefore, to 
give answers to those conflicts in the classroom context. As a consequence, it is con-
venient to use the cognitive-epistemic analysis (Godino et al. 2008) in initial teacher 
training programs. 
Some researchers have contended that teacher’s competence to understand and to use 
the mathematic knowledge adapting it to students’ achievements is important (Ball, 
1990; Wilson, Shulman and Richert, 1987). More recently Hill, Rowan and Ball 
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(2005) found that content knowledge is related meaningfully to students’ achieve-
ments.  
We conclude with the observation about the arithmetic strategies that we have dis-
cussed above. Our study suggests that algebraic thinking underlies successful prob-
lem solutions. We believe that a focus on elementary algebraic reasoning can aid 
teachers in enabling their pupils to more fully understand the arithmetic domain. 
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TRANSFORMATION RULES:  
A CROSS-DOMAIN DIFFICULTY 

Croset Marie-Caroline 
UJF, Leibniz-MeTAH, Grenoble, France, Marie-Caroline.Croset@imag.fr 

The learning of a symbolic system such as algebra relies on the learning of the use of 
transformation rules. The implementation of rules in a CAS (Computer Algebra Sys-
tem) for students’ modelling has pointed out some questions that are at the junction 
of three research fields: informatics, mathematics and didactics. Each of these com-
munities has its own perception of algebraic objects, founded on models or practices. 
The implementation of objects that live in school has questioned object reliability. In 
this paper, a parallel is proposed between difficulties of informatics implementation 
of transformation rules and novices’ difficulties.  
Keywords: algebraic calculations, rules, informatics implementation, students’ difficulties. 

An important part of school algebra rests on algebraic calculations, what Kieran calls 
the “transformational activity”, which she distinguishes from the generational and 
global activities (Kieran, 2001). This activity focuses on changing the form of an ex-
pression or an equation in order to maintain equivalence. This includes, for instance, 
collecting like terms, factoring and expanding expressions. These are algorithmic 
tasks like the transformation of xxx 210)5( +++  into )2)(5( ++ xx . The conserva-
tion of equivalence relies on correct rules that allow substituting expressions by oth-
ers. These rules will be called “transformation rules” in this paper. They are sup-
ported by the laws of the polynomial ring –commutative law, distributive law and so 
on. Rules produce objects of a particularly interesting form. Their use is guided by 
what the desired expression has to look like: reduced polynomial expression or fac-
tored polynomial expression. Bellard et al. (2005) call them the constituent rules of 
mathematic theory: “these rules constitute the base of the [transformational] activity, 
govern the motion and predetermine the permitted actions”. Such mathematical rules 
are supposed to be accurate and self-sufficient. 
Nevertheless, Durand-Guerrier and Herault (2006) stress the fact that rules are objects 
the usage of which is not so obvious: “the rule is not only a way to learn but it is also 
an object which has to be learned”. It is, in fact, impossible to present a rule alone to 
students. Rules have to be transposed, adapted and as such lose a part of their accu-
racy. The implicit notions of rules are compensated by a necessary didactical contract 
(Brousseau, 1997): “it is an illusion to believe that one can produce the meaning in 
the mind of someone by indirect ways through the rule and examples” (Wittgenstein, 
Ambrose, & Macdonald, 1979). Durand-Guerrier and Herault (op.cit.) also point out 
the illusion to think that the use of a rule is plain, such as “rails that would guide un-
failingly and in advance the way to be followed”. Actually, it is an interpretation that 
allows these implicit details between the rule and its application to be overcome. But 
what are exactly the notions underlying the learning of a transformation rule?  
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Our research is in line with the identification of systematic errors that students com-
mit when solving transformational exercises. A library of correct and incorrect trans-
formation rules has been built for that purpose and an automatic diagnosis mechanism 
has been implanted in order to associate a sequence of applied rules to student’s trans-
formation (Chaachoua, Croset, Bouhineau, Bittar, Nicaud, 2008). The implementation 
of these rules has raised questions about the kind of representation of a transforma-
tion rule. Automating the process forces the researcher to clarify some implicit 
mechanisms for the expert: how does a rule work? In which way does it work?  How 
is it matched?  It has led to three crucial points about implantation difficulties:  
- The reading direction of a rule; 
- The notion of sub-expression; 
- The generic status of a rule. 
Each of these points is discussed in the next sections. We propose, in addition, to link 
these three points to three classical difficulties which novices may experience when 
doing transformational activities: the difficulty of understanding the symmetric aspect 
of the equal sign (see e.g. (Kieran, 1981)); the difficulty of the structural aspect of an 
algebraic expression (see e.g. (Sfard, 1991)) and the difficulty of applying a general 
rule to a particular case (see e.g. (Durand-Guerrier, Herault, 2006, p. 144)). 
The choices made to raise difficulties in programming may shed light an improve-
ment of the teaching of algebraic rules and may overcome students’ problems. In-
deed, the reading direction of a rule is essential for a deductive reasoning, the notion 
of sub-expression allows matching correctly a rule and the generic status of a rule is 
the power of algebra. 

1. REPRESENTATION, READING DIRECTIONS AND REASONING 
PROCESS 
Transformation rules can be represented by two kinds of writings: equality or impli-
cation. Both present advantages and have good reasons to be used. Yet, we will see 
that rules as implication form are interesting in that it highlights the reasoning process 
in the transformation activity.  
Rules as equality, used in school 
The first representation –a rule as an equality– is the usual one used in school. Rules 
can be called by different names in the textbooks: proposition, property, identity, 
equality and sometimes even theorem (Bellard et al., 2005). Whatever their name, 
rules are often coming in the form of equality. For example, the distributive law is 
presented as: 

kbkabak +=+ )( , where   and  , bak are real.  (Eq1) 

There is a double meaning of the equal sign: that of “identity” or that of “relation”. In 
transformation rules, the equal sign is of course used as “identity”, whereas in equa-
tions, the equal sign is used rather as “relation”. This well-known duality is a real dif-
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ficulty for students. Presenting rules as identity can, on the one hand, be interesting to 
get students used to and, on the other hand, provoke confusion. 
Such representations are declarative rather than procedural: this form of identity has 
no explicit reading direction since the equal sign has a double way: from left to right 
and vice versa. A learning of the way to use such a rule has to be taught. Whereas the 
process-product has been many times denounced (Davis, 1975) and that special exer-
cises are proposed to students in order to grasp the equivalence notion, here is a case 
where the equality has to be used in one of the two ways. In fact, textbooks sense 
that, most of the time, it is necessary to distinguish the two ways by proposing two 
identities: not only (Eq1), which is used to expand expressions but also 
“ )( bakkbka +=+ ” to factor. This kind of presentation requires a specific work to 
become operative: associate a reading direction to the equality for application, ac-
cording to the aim.  
Rules as implication, used in informatics 
The second representation –a rule as an implication– is the one used in informatics. 
One calls “implication” what Durand-Guerrier, Le Berre, Pontille, & Reynaud-Feurly 
(2000) call “formal implicative”, representation used in geometry:   

)()( , xQxPx ⇒ℜ∈∀ .  

Implemented rules are represented as oriented mechanisms, also called “rewrite 
rules” (Dershowitz & Jouannaud, 1990): BA → , where A is rewritten in .B  The ob-
ject   A produces the object   B and B can not produce A unless an other rule AB →  
is considered. For example, the rules:  

kbkabak +→+ )(  (R1) is used to expand, 

)( bakkbka +→+  (R2) is used to factor. 

It is rather a necessity in computing modeling to represent rules as oriented ones than 
a choice. Indeed, it is not really possible to implement rules as identity. If a single 
rule is implemented both for expanding and for factoring, there will be some loop and 
ending problems. For example, with the single rule (Eq1), the expression “ )4(3 +x ” 
would be transformed into “ 123 +x ”, then into “ )4(3 +x ” and so on.  

Even if it is a necessity, this kind of representation is interesting because its reading 
direction is explicit: given a real or a polynomial expression under the form 
“ acab + ”, where “ a ”, “b” and “c ” are reals or polynomials, it can be rewritten into 
“ )( cba + ”. One can suppose that the use of rules as implication is easier because of 
its procedural aspect. The kind of representation has an impact on its use easiness, as 
we will show in the next section.  
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Impact of the reasoning process 
Although geometry is a special introduction field for proof, the latter is not a preroga-
tive of geometry. The “deep structure” (Duval, 1995) of the transformational activi-
ties can be presented as a ternary organisation proposed by Duval. A premise (here, a 
certain expression), a proposition (a transformation rule) and a conclusion (an other 
expression), as shown in Figure 1, constitute a deduction step. These steps follow on, 
the conclusion of the current step becoming the premise of the next one. Using Du-
val’s classification (Duval, 1990), the algebraic calculation is formed by deductive 
reasoning of steps explicitly concatenated in reference to a transformation rule. 
Thereof, this activity can be viewed as a process of demonstration: 

“Demonstration would be defined to be, a method of showing the agreement of remote 
ideas by a train of intermediate ideas, each agreeing with that next it; or, in other words, a 
method of tracing the connection between certain principles and a conclusion, by a series 
of intermediate and identical propositions, each proposition being converted into its next, 
by changing the combination of signs that represent it, into another shown to be equiva-
lent to it” (Woodhouse, 1801) 

 

Figure 1: Deduction steps. 

Representing rules as implications could allows the user to follow this reasoning 
process explicitly, as shown in Figure 2. 

 

Figure 2: Example of the reasoning process in algebra. The level of making explicit a 
demonstration and the granularity of a deductive step evolves with the level of the stu-
dent. Here, for example, we have omitted to explicit the commutative law. As Arsac 
notes: “any demonstration is shortened from another demonstration” (Arsac, 2004).  

Splitting an identity into two implications conceals the fact that rules are equivalent 
but clarifies the way of application and, above all, it allows following the Duval’s 
structure of a deduction step. This is the modus ponens mode: “if p, then q, now p, 

xx 42 +
 

x)42( +  

If a polynomial is repre-
sented by ba+ca, it is also 

represented by (b+c)a 

Premise 

Conclusion

Deduction 
step 

Algebraic 
Rule 
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then q”. The representation form of a rule has an impact on its use easiness but it lets 
the difficulty to know to which object the rule can be applied.  

2. MATCHING AND SUB-EXPRESSIONS NOTION 
An unrefined syntactic unification between the premise of a rule and a part of an ex-
pression does not produce an algebraic behaviour. With an unrefined unification, a 
rule as xxx 2→+  would transform “ xx +5 ” into “5 x2 ”, which has no sense (what 
is the operator between “5” and “2”?) nor the expected result. This is a well-known 
mistake committed by students: substitute an expression by another by working only 
on a syntax level and taking no account of semantics. Mastering substitution needs 
knowing the notion of what a sub-expression of an expression is.  
The definition of an expression from the rewrite rule theory of Dershowitz (1990), in 
which rules are applied on sub-objects, underlines the notion of sub-expression, 
thanks to its recursive definition. Let us consider a set of symbols of terminal objects 
(e.g., integers), a set of symbols of variables (e.g., {x, y, z}), and a set of symbols of 
operators (e.g., +, –, ×, ^, sqrt, =, <, and, or, not). An algebraic expression is a finite 
construction obtained from the following recursive definition: 
- a symbol of terminal object  
- or a symbol of variable  
- or a symbol of operator applied to arguments which: 

- are algebraic expressions, 
- are in the correct number (correct arity [1]), 
- and have correct types [2]. 

With this definition, matching a rule R to an expression E would consist of finding a 
sub-expression E1 of E, replacing E1 in E by the expression that produces R. For ex-
ample, in “ xx +5 ”, the algebraic (sub) expressions are “ x5 ”, “ x ” (two times), “5” 
and “ xx +5 ”. The expression “ xx + ” is not a sub-expression of “ xx +5 ”. To deal 
with this problem, the internal representation of expressions in computer algebra sys-
tems (CAS) is a tree representation, in which the structure of the expression is ex-
plicit, as shown in Figure 3. 

 

Figure 3: Tree representation of the expression xx +5 . 

x

x×

+

5
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The necessity of the tree representation appears also in school curricula. Although 
school approach of expressions is foremost syntactic -algebraic expressions are de-
fined as “writings including one or more letters”-, new French curricula encourage 
making students work on tree representations. As they claim, tree representation al-
lows pointing out the structural aspect of an expression as defined by Kieran: 

“The term structural refers, on the other hand, to a different set of operations that are car-
ried out, not on numbers, but on algebraic expressions. […] the objects that are operated 
on are the algebraic expressions, not some numerical instantiations. The operations that 
are carried out are not computational. Furthermore, the results are yet algebraic expres-
sions.” (Kieran, 1991) 

This structure notion is essential to deal with matching difficulties. It enables under-
standing why such rule like kbkabak +→+ )(  (R1) can be applied on sub-
expressions of expressions such as )1(43 ++ x . Nevertheless, is it sufficient to under-
stand that this rule can be applied also on expressions such as )1(4 2 +xx  or 

)1(4 22 xxx ++ ? Either in informatics or at school, we will see that most of the time, 
one needs to precise as many rules as there are cases.   

3. GENERIC STATUS OF RULES 
The third idea which emerges of rules implementation turns on the generic status of a 
rule: how a rule such as (Eq1) or (R1) can be sufficient to apply to the expressions 
“ )3(7 x+ ”, “ )3(7 x+− ”, or even “ )3(7 2xx ++ ”? How to deal with the matching of 
“ ba + ” with “ 23 xx ++ ”? It is, with no doubt, the principal difficulty for novice us-
ers of rules: the application of a general rule to a particular case. It is, in fact, the 
same in informatics. Although the two first points –reading direction & matching 
problems– have been easily resolved in informatics, it has not been the same for this 
third problem. 
The entry by rewriting rules –and thus a syntactic presentation– leads to some new 
problems. Let us study again the case of (R1). For experts, it is not really this rule that 
is used but much more the single distributive law. With this last one, experts can ex-
pand any product of polynomials. In informatics, one needs rules to be implemented 
and so, the exact structure of an expression has to be specified. For (R1) implementa-
tion, “ k ”, for example, has to be defined: is “ k ” a real, a product such as a monomial 
or a sum? It is not possible to just say “given a polynomial k ”. Indeed, to transform 
“ k ”, its structure has to be specified. For example, if “ k ” is negative, the sign of the 
entire expression is changed. The main operator of the expression becomes “minus” 
and not “times”: the entire internal tree representation is changed, as shown in Figure 
4. The same difficulty is found when “ ba + ” is a sum of three terms: it can change 
the mechanism of the implementation of the rule. Without genericity, one needs to 
distinguish cases like “ )( bak + ” from “ )( cbak ++ ”. To deal with that, the concept 

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 464



 

 

 

 

of distributive law has been implemented. Let us consider two lists and an operator, 
the distributive rule can be written as: 

).,...,,,,...,,(),...,,(),...,,( 2212121112121 nnnnn bababababababbbaaa ∆∆∆∆∆∆→∆  

We do not have to specify the length “ n ”of the lists. 

  

Figure 4: The single change of the real 7 into -7 changes the entire structure of the tree 
representation of the expression. On the left, the expression 7(5+x); on the right, the 
expression -7(5+x). 

Another example is very representative of this problem: the rule of monomials addi-
tion, which can be written as xbabxax )( ⊕→+ , where ⊕  is the calculated sum op-
erator. Such rule is not so easy to implement. If we ask the premise to be a sum of 
two products, this rule will not apply to expressions such as “ xax + ” because “ x ” is 
a single argument and not a product: an automatic mechanism does not recognize 
“ x ” as the product of “1” and “ x ”. To deal with this problem, some concepts have 
been implemented like the monomial concept. We have implemented the added fact 
that a monomial can be either a product of a real and a variable –of explicit degree or 
not– or a single variable –of explicit degree or not. Thus, expressions such as “ 54x ”, 
“ x4 ”, “ 1x ” or “ x ” are read as monomials, and the rule xbabxax )( ⊕→+  can be 
easily implemented: one needs just to specify that the premise has to be a sum of two 
monomials. 
The same problem occurs at school: the polynomial notion is not taught in France [3]. 
The variable “k” from the rule (Eq1) is then defined as a real, so are “a” and “b”. Un-
derstanding that “a” can be itself a sum, or even a sum with variables, requires a real 
work. How do French textbooks deal with this problem? 
To answer this question, we have used the concept of praxeologies from the Cheval-
lard’s anthropological theory of didactics. Let us remain that Chevallard proposes to 
describe any human activity by a quadruplet which enables an activity to be cut in 
types of task, which can be solved by techniques –a way of doing–, which can be ex-
plained by a rational discourse, “logos” (Chevallard, 2007) [4]. Our work in progress 
(Croset, 2009) shows that French textbooks distinguish three types of task for ex-
panding expressions: 

“ )( bak + ”, “ )( bak − ” and “ ))(( dcba ++ ”. 

x

7 +

×

5
x

7 +

×

5

−
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Cases like “ )( ba +− ” or “ )( ba ++ ” are discussed in another part of textbooks (“how 
to remove brackets?”). Some textbooks propose even more distinctions: they discern 
also “ kba )( + ” and “ kba )( − ”.  

On the one hand, it seems that textbooks decide to specify many cases although all 
these tasks are explained by a single “logos”: the distributive law. The fact that text-
books need to precise many cases points out the well-known difficulties of students to 
apply a general rule to particular cases. On the other hand, all possible cases cannot 
be specified. Textbooks do not specify types of tasks as “ )( cbak ++ ” or 
“ ))(( dcbak ++ ”. Understanding the structure of the expression is supposed to be 
sufficient to deal with all these forms. Nevertheless, we have not found such work 
and reflection about the generality of rules. Only a few textbooks precise links be-
tween the three types of task described above. Explanations such as using  

kbkabak +→+ )(  to expand “ ))(( dcba ++ ” are not common. Neither are pre-
sented the iteration concept to expand “ ))(( dcbak ++ ” whereas our work (ibid.) 
shows that students’ mistakes occur specially in this sub-type of task.  
The second problematic example about monomials revealed by the computing im-
plementation occurs also in students’ difficulties: recognizing “ x ” as a monomial is 
not an easy task for a novice. A novice’s common mistake is precisely to transform 
“ xax + ” into “ ax ” because of the lack of the explicit coefficient “1” ahead of the 
“ x ”: when “ a ” is added to “nothing”, it remains “ a ” [5]. The concept of monomial 
is not taught currently in French curriculum. We speak about “like terms” but few 
textbooks precise that “ x ”, “ x1 ”, and “ 1x ” are “like terms” which can be collected. 
The force of algebra lies in the writings generic status. Its interest is lost if all cases 
are presented. To avoid that, a specific work on concepts such as distributive law or 
monomial could be proposed to novices, just like it has been done for the computing 
implementation.       

4. CONCLUSION 
The learning of the transformational activity cannot be restricted to memorizing rules. 
This requires a specific work about the application of rules. Our research focusing on 
automatic student modelling has brought to light three important difficulties concern-
ing the application of transformation rules, which have been compared with similar 
novices’ difficulties: knowing that a rule has a reading direction allows students to 
follow a reasoning process when they transform algebraic expressions; knowing the 
structure of an expression permits a correct matching; finally, having a good percep-
tion of the generic status of rules allows students to apply a general rule to a particu-
lar case. All these elements are necessary conditions for learning the algebraic sym-
bolic system. Our paper has described the parallel between informatics implementa-
tion difficulties and the ones met by novices. One can wonder if the way to deal with 
the first ones could be used to deal with the second ones.  
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Regarding these three points, rules have been looked at from a technical point of 
view. Another point of view would be considering what experts’ criteria are to con-
trol their transformations: substitute numerical values to equivalent expressions in or-
der to verify the equivalence; in other words, being aware that equivalent expressions 
denote the same object. Similarly, another interesting point of view is to explore how 
to choose the appropriate rule. We have seen that a rule is general but the choice of a 
rule is crucial to obtain the form that one needs. The raison d’être of a rule, the stra-
tegic process and elements that guide an expert in choosing this particular rule, and 
not another one, have not been discussed here, despite the fact that informatics is also 
interested in such questions. We can expect that a parallel would be again possible 
between novices’ strategic difficulties and the implementation ones. 

NOTES 
1. The arity of an operation is the number of arguments or operands that the operation takes. For example, addition is 
an operation of arity 2, sqrt is an operation of arity 1. 

2. For example the expression “ 35 =x ” has not a correct type. 

3. A recent study has compared the algebra learning in France and in Vietnam (Nguyen, 2006). It shows that algebraic 
expressions found in French textbooks rely on the notion of polynomial function whereas the ones that can be found in 
Vietnamese textbooks rely on the polynomial notion. 

4. The reference (Chevallard, 2007) is not the best one for the notion of praxeology but it presents the advantage of 
being written in English. French reader can see also (Bosch & Chevallard, 1999). 

5. Haspekian (2005) proposes another explanation to this mistake: the difficult notion of neutrality of the multiplicative 
law. We think that, in our context, the mistake is more relative to a visual lack. 
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INTERRELATION BETWEEN ANTICIPATING THOUGHT AND 
INTERPRETATIVE ASPECTS IN THE USE OF ALGEBRAIC LANGUAGE 

FOR THE CONSTRUCTION OF PROOFS 
Annalisa Cusi 

Dipartimento di Matematica - Università di Modena & Reggio 
Abstract.  This work is part of a wide-ranging long-term project aimed at fostering stu-
dents’ acquisition of symbol sense (Arcavi, 1994) through teaching experiments on proof 
in elementary number theory (ENT). In this paper I present some excerpts of students 
discussions while working in small groups on activities of proof construction. My analy-
sis of these transcripts is aimed at highlighting the incidence of anticipating thoughts 
and of the flexibility in the coordination between different conceptual frames and differ-
ent registers of representation in the development of proof in ENT. In particular, I sin-
gled out four main sources of interpretative blocks, highlighting the strict interrelation 
between anticipating thought and students’ difficulties in the interpretation of the alge-
braic expressions they produce. 

1. INTRODUCTION 
Many research studies support an approach to algebraic language related to the de-
velopment of reasoning. Arcavi (1994), for example, claims that, in addition to stimu-
lating students’ abilities in the manipulation of algebraic expressions, teachers should 
make them see the value of algebra as an instrument for understanding, introducing 
them to algebraic symbolism from the beginning of their studies through specific ac-
tivities that encourage an appreciation of the value and power of symbols. A central 
aspect in Arcavi’s approach to algebraic language is, in fact, the concept of symbol 
sense. The author chooses to characterize symbol sense highlighting, through mean-
ingful examples, the attitudes to stimulate in students to promote an appropriate vi-
sion of algebra. Particular attitudes that he names include: the ability to know when to 
use symbols in the process of finding a solution to a problem and, conversely, when 
to abandon the use of symbols and to use alternative (better) tools; the ability to see 
symbols as sense holders (in particular to regard equivalent symbolic expressions not 
as mere results, but as possible sources of new meanings); the ability to appreciate the 
elegance, the conciseness, the communicability and the power of symbols to repre-
sent and prove relationships. Many researchers share a similar vision of the approach 
to the teaching of algebra. Among them, Bell (1996), states, in particular, that it is 
necessary to favour the use of algebraic language as a tool for representing relation-
ships, and to explore aspects of these relationships by developing those manipulative 
abilities that could help in the transformation of symbolic expressions into different 
forms. This idea is strictly connected with Bell’s description of “the essential alge-
braic cycle” as an alternation of three main typologies of algebraic activity: represent-
ing, manipulating and interpreting. Similar observations are also found in Wheeler 
(1996), who asserts the importance of ensuring that students acquire the fundamental 
awareness that algebraic tools “open the way” to the discovery and (sometimes) crea-
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tion of new objects. Kieran (2004) also stresses the importance of devoting much 
more time to those activities for which algebra is used as a tool but which are not ex-
clusively to algebra (global/meta-level activities according to Kieran’s distinctions) 
because they could help students developing transformational skills in a natural way 
since meaning supports manipulations. Proof is certainly one of the main activities 
through which helping students develop a mature conception of algebra. I adopt 
Wheeler’s idea that activities of proof construction through algebraic language could 
constitute “a counterbalance to all the automating and routinizing that tends to domi-
nate the scene”. I believe that activities of proof in ENT would both provide students 
with the opportunities they need to progress gradually from argumentation to proof 
(Selden and Selden, 2002)) and help them to appreciate the value of algebraic lan-
guage as a tool for the codification and solving of situations that are difficult to man-
age through natural language only (Malara, 2002). 
I agree with Zazkis, Campbell (2006) who state that “the idea of introducing learners 
to a formal proof via number theoretical statements awaits implementation and the 
pros and cons of such implementation await detailed investigations” (p.10). In order 
both to investigate these aspects and to foster the diffusion of activities of proof in 
ENT in school, aiming at making student appreciate the value and power of algebraic 
language, I am working with upper secondary school students (10th grade) [1]. I 
planned and experimented a path for the introduction of proofs in ENT. The path was 
articulated through small-groups activities (some groups were audio-recorded), fol-
lowed by collective discussions (audio-recorded) on the results of the small-group ac-
tivities. In order to foster a widespread participation during group activities, I decided 
to work with homogeneous (according to competencies and motivations) small 
groups. In this work I will dwell on a central moment in the path: the small-groups’ 
work aimed at constructing the proof of some conjectures they produced starting from 
numerical explorations. In particular I will present the main results of the analysis of 
group discussions when students were trying to prove one of the conjectures. 
2. THEORETICAL FRAMEWORK WHICH SUPPORT MY ANALYSIS OF 
STUDENTS’ DISCUSSIONS 
Many different competencies are required of a student who has to face proof prob-
lems in ENT. In particular, he/she has to: (a) know the meaning of the mathematical 
terms in the problem text and interpret them correctly by reference to it;  (b) translate 
correctly from verbal to algebraic language; (c) be able to interpret the results of the 
transformations operated on the algebraic expressions in relation to the examined 
situation; and (d) control the consequences of his/her assumptions. I identified a set 
of theoretical references that are both appropriate to the analysis of the transcripts of 
group discussions dealing with proofs and in tune with the view of algebra that I am 
trying to promote. The main reference in my research is the work by Arzarello, Bazz-
ini and Chiappini (2001). The authors propose a model for teaching algebra as a game 
of interpretation and highlight the need for the promotion of algebra as an efficient 
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tool for thinking. An awareness of the power of the algebraic language can be devel-
oped only once the student has mastered the handling of some key-aspects that arise 
in the development of algebraic reasoning. In particular, the authors highlight the use 
of conceptual frames defined as an “organized set of notions, which suggests how to 
reason, manipulate formulas, anticipate results while coping with a problem”, and 
changes from a frame to another and from a knowledge domain to another as funda-
mental steps in the activation of the interpretative processes. According to the au-
thors, a good command in symbolic manipulation is related to the quality and the 
quantity of anticipating thoughts which the subject is able to carry out in relation to 
the effects produced by a certain syntactic transformation on the initial form of the 
expression. Boero (2001) also argues that anticipation is a key-element in producing 
thought through processes of transformation. The author defines anticipating as 
“imagining the consequences of some choices operated on algebraic expressions 
and/or on the variables, and/or through the formalization process”. In order to operate 
an efficient transformation, the subject needs to be able to foresee some aspects of the 
final shape of the object to be transformed in relation to the target. Arzarello et Al. 
stress that the ability to produce anticipations strictly depends on changes in the 
frame considered in order to interpret the shape of the expression.  
Another theoretical reference that I take as fundamental for analyzing students’ man-
agement of meaning in algebra is the concept of representation register proposed by 
Duval (2006). The author defines representation registers those semiotic systems 
“that permit a transformation of representations”. Among them, he includes both 
natural and algebraic language. Duval asserts that a critical aspect in the development 
of learning in mathematics is the ability to change from one representation register to 
another because such a change both allows for the modification of transformations 
that can be applied to the object’s representation, and makes other properties of the 
object more explicit. According to the author, real comprehension in mathematics oc-
curs only through the coordination of at least two different representation registers. 
He analyzes the functions performed by different possible typologies of transforma-
tions, distinguishing between treatments (“transformations of representations that 
happen within the same register”) and conversions (“transformations of representa-
tion that consist of changing a register without changing the objects being denoted”) 
and highlighting both the fundamental role of each of these typologies of transforma-
tions and the intertwining between them. 
In order to clarify how this set of theoretical references could help in analysing the 
role played by algebraic language in the construction of proofs (or attempts of proof) 
in ENT, the next paragraph will be devoted to the a priori analysis of the problem on 
which the working group activities, examined in this paper, were focused. 
3. A PROBLEM AND ITS A PRIORI ANALYSIS 
The problem, on which this paper is centred, is the following: “Write down a two 
digit number. Write down the number that you get when you invert the digits. Write 
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down the difference between the two numbers (the greater minus the lesser). Repeat 
this procedure with other two digit numbers. What kind of regularity can you ob-
serve? Try to prove what you state”. 
The regularity to be observed is that the difference between the two  numbers is al-
ways a multiple of 9; precisely it is the product between 9 and the difference between 
the digits of the chosen number. The proof requires the polynomial representation of 
each number: since a number of two digits m and n can be written as 10m+n, where 
m>n, the difference can be represented as 10m+n-(10n+m). Through simple syntactical 
transformations it is possible to turn the initial expression into a form that makes the 
required property explicit: 10m+n-(10n+m)=9m-9n=9(m-n). The initial conceptual 
frames to which the statement of the problem refers are ‘difference between numbers’ 
and ‘two digits numbers’. It can be assumed, therefore, that the student will not 
automatically choose the ‘polynomial notation’ frame to represent the problem (some 
students might apply the ‘positional representation of a number’ frame and then get 
stuck). The reference to the ‘divisibility’ frame, which allows them to foresee the de-
sired final shape of the expression after correct treatments (i.e. 9⋅k, where k is a natu-
ral number), seems to be less problematic but possible blocks in the treatments to per-
form on the initially constructed polynomial expression can be ascribed to interpreta-
tive difficulties, which are strictly related to students' inability to correctly anticipate 
the final shape of the considered expression (it is necessary to recognize the trans-
formation that leads to an expression that can be easily interpreted in the final frame 
‘divisibility’). Finally, some observations about possible students’ behaviours could 
be proposed. Many students could end their numerical explorations after having ob-
served that the difference between the two numbers is always a multiple of 9, without 
recognizing the relationship that exists between the two digits of the first number and 
the difference between the two numbers (i.e. the considered difference is the product 
between 9 and the difference between the digits of the chosen number). Conse-
quently, the analysis of the final expression could provide another index of students' 
interpretative abilities, in that access to the new meanings it embodies depends on 
those abilities. 
4. RESEARCH HYPOTHESIS AND AIMS 
My hypothesis is that the production of good proofs in ENT depends upon the man-
agement of three main components: (a) the appropriate application of frames and co-
ordination between different frames; (b) the application of appropriate anticipating 
thoughts; and (c) the coordination between algebraic and verbal registers (on both 
translational and interpretative levels).  
The aim of this paper is to investigate the role played, in students’ proving processes, 
by the three components I singled out and the mutual relationships between them. In 
this work I will present a sample of prototype-productions [2] helpful to highlight that 
the lack or unsuccessfully application of one of these components leads to failure 
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and/or blocks of various types. In particular, I will highlight the interrelation between 
anticipating thought and interpretative blocks.  
5. RESEARCH METHODOLOGY 
Theoretical models I used helped us identify some interpretative keys for the analysis 
of protocols of students’ discussion while working in small groups. My analysis fo-
cused on the following: (1) The conceptual frames chosen to interpret and transform 
algebraic expressions and the coordination between different frames; (2) The applica-
tion of anticipating thoughts; and (3) The conversions and treatments applied and the 
coordination between verbal and algebraic registers. 
My choice of analyzing small groups’ discussions is motivated by the conviction that 
only when students are involved in a communication it is really possible for us to 
produce an in-depth analysis of the coordination between verbal and algebraic regis-
ter. Moreover I believe that the analysis of the sole written protocols is not enough to 
highlight students’ actual interpretations of algebraic expressions they construct. The 
need to communicate their reasoning to others forces students not only to verbally 
make what they are writing explicit, but also to explain both the objectives of the 
transformations they carry out and their interpretation of results. 

6. THE ANALYSIS OF PROTOTYPE-PRODUCTIONS 
In this paragraph I will present two examples of prototype-protocols of discussions, 
chosen because they highlight how students’ interaction allows to identify the reasons 
of erroneous conversions and the difficulties in the interpretation of expressions. 
6.1 Example 1: 
The following example is characterized by the application of an initial suitable frame, 
not associated to an adequate conversion and a correct interpretation of the produced 
expressions. 

After having considered many numerical examples, students A, C and N conclude that 
the considered difference is always a multiple of 9. The following dialog represents the 
proving phase. 
27 C: Let us do with letters. 
28 N: It is more complicated. 
29 C: It will be 10x … plus … 
30 A: …plus y (they write 10x+y) [3] 
31 C: If we invert the digits, it will be y+10x 
32 A: and now … we have to do the difference 
33 C: (She writes and reads) 10x+y … minus ... (she writes y+10x) it becomes 10x+y-y-10x 
34 N: I think there is a mistake because the result is zero … they cancel each other out. 

We are not able to prove it. 
35 C:  We have 10x+y and it represents the number … Then we have to …  
36 A: (She reads) ‘when you invert the digits’ … 
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37 C:  It is the same of having 1 and … It is as if we take it on this side, so y should be 
take on the other side… however, if we take 10 on this side, it will be left a … 

38 A-N-C: one! 
39 C: So it is not 10x. I think it is x … So it would become 10x+y-(y+x). The two y cancel 

each other out, so they will be left 10x-x. Exactly 9x! We were able to prove it! …  
40 C: … (C. is looking to the numerical examples) But here I can see something more, I 

think. I can see that, practically, this is … Look what I noticed (she is looking at the 
differences 86-68, 92-29, 76-67, 52-25) … if you subtract the two tens, 8-6, you have 
only to consider the product between 9 and the difference between the two tens: 9 
times 2 is 18; 7-6 is 1, 9 times 1 is 9; 5-2 is 3, 9 times 3 is 27. 

41 A: We have to write it down. I would have never noticed it! 
42 C: (she dictates) It is always a multiple of 9 and we can observe that the result of the 

subtraction … you have to subtract the two tens and to multiply the result by 9… 
Do you know how I thought of it? Because I saw 9x and I said “it is a multiple” be-
cause there is 9 times x. Then I said “but … what is x? x is the tens!”. Then I tried to 
do x minus x. 

43 A+N: Good! 
This protocol can be subdivided in three key-moments: (1) Initial conversion and 
first treatments (lines 27-33); (2) Identification of a problem, modification of the con-
version and new treatments (lines 34-39); (3) Attempt of interpretation of the ob-
tained expression and refinement of the conjecture (lines 40-43). 
Initially C carries out a first erroneous conversion (line 31), translating this concept 
through the expression y+10x. While students correctly interpret the natural language 
term “invert” when they work on numerical examples in order to formulate the con-
jecture, when they have to carry out a conversion into algebraic register, the concept 
“exchanging the place” is translated through the pure exchange of the order of the 
monomials which constitute the polynomial 10x+y, dispelling serious difficulties in 
coordinating the ‘positional notation’ and ‘polynomial notation’ frames and lack in 
the internalization of the last. The difference (zero) they obtain starting from this er-
roneous conversion lead them to detect the inaccuracy of their initial conversion and 
to look for a new correct one. They detect a mistake in having supposed that 10x 
should represent the units digit, so they decide to correct this mistake, substituting x 
instead of 10x, but they do not consequently modify the representation of y as tens-
digit. Therefore, writing the polynomial as y+x, they carry out again an incorrect con-
version. Probably because of the prevailing of the anticipating thought they carry out 
(expecting a multiple of 9, they only concentrate on the factor 9 when they look at the 
expression 9x), once they obtain 9x as the difference between the two numbers, they 
do not immediately subject the new result to a careful interpretation. Only afterwards 
C interpret x  as the tens-digit of the initial number and decide to investigate the con-
sidered examples in order to refine their conjecture. C concentrates on the tens-digits 
of the two numbers (x and y in the correct representation) and observes, starting from 
examples, that the result is obtained multiplying 9 by the difference between those 
digits. This observation, however, does not help her in critically interpreting the ex-
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pression 9x. In her final intervention, she even tries to translate into algebraic lan-
guage, through the expression x-x, the difference between the two tens, but she is not 
able to ‘grasp’ the gap between the algebraic representation she proposes and her 
verbal considerations. 
6.2 Example 2  
In the following transcripts we can highlight what kind of difficulties students meet 
when appropriate application of the initial conceptual frame and conversions are not 
supported by anticipating thoughts and by a semantic control. 

The three students G, B and A decide to work separately on the conjecture: while A and 
G analyze numerical examples only, B works on the algebraic formalization of the dif-
ference to be considered. Without speaking with her friends, B is able to perform the 
correct conversion, representing the considered difference with 10x+y-(10y+x). After-
wards she performs correct treatments on this expression, obtaining 9(x-y), and she de-
cides to illustrate her result to A and G. 
19 B: I obtained this thing … Why 9? 9 is 9! 9 is odd! Is it possible that the result is al-

ways an odd number? 
20 A: No. Consider 20! The difference is 18! 
21 G: I sincerely can’t find a regularity … 
22 B: I could only find that the result is 9 multiplied by x-y, but … why is 9 here? There 

is 9 only because there is 10! 
23 G: Let’s try with 28 … 82-28 … the result is 54! So … What have these numbers in 

common???  
24 B: I found it!! I found it!! If I choose 65 and 56, the difference is 9. In the algebraic 

case the result is 9 multiplied by (x-y)! 
25 G: Please, explain it! 
26 B: Because, independently from the initial number, the difference is always 9. 
27 G: No! Consider 82 and 28! 
28 B: What a pity! I liked this observation! … Wait a moment … here (she refers to the 

examples she chose) we pass from a ten to the next ten. I found it! Only if we start 
from a number whose digits are consecutive, the difference is 9!!! 34 and 43 … All 
the numbers have consecutive digits!  

29 G: It is true! 54 e 45! 
30 B: 12, 23, … Do you understand? 1 and 2 are consecutive numbers. 
32 A: 14 and 41? 15 and 51? 
33 B: No! The two digits must be consecutive! When they are consecutive, the differ-

ence is always 9!  
34 A: So … what does it happen? 
35 B: I don’t know … It happens that the difference between the numbers is 9. If you 

look at the algebraic case … Can you see that it is always 9 multiplied by some-
thing?  

36 A: Only if the digits are consecutive the difference is 9?  
37 B: I don’t know why … 
38 G: But … I think that the distance between the numbers is not the only reason …  
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(silence) 
39 B: … It is always a multiple of 9!!! 
40 A: In what sense? 
41 B: Let’s try! 52-25! The result is 27! 
42 A: Also if we choose 15 and 51 …the result is 36! 
43 B: They are all multiple of 9! Can you see that every case is the same?! Tell me other 

numerical examples!  
44 A: 51-15 is 36 
45 G: 52-25 is 27 
46 B: 21-12 is 9, which is a multiple of 9! 
47 G: So we can observe that the result is always a multiple of 9. 

This excerpt could be subdivided in two key-moments: (1) Attempt to interpret the 
expression produced during an ‘algebraic exploration’ of the problem situation (lines 
19-38); and (2) Formulation of the conjecture (lines 39-47). 
Students’ choice to proceed separately turns out to be not effective. In fact, while the 
analysis of numerical examples does not help A and G in formulating a conjecture, 
the total absence of anticipating thoughts about the objective of the algebraic manipu-
lations B operates blocks her interpretation of the obtained expression 9(x-y). In fact, 
B initially tries to guess the correct interpretation of the expression as the representa-
tion of an odd number (line 19). When this interpretation is refuted by a counterex-
ample proposed by A (line 20), B decides to refer to numerical examples in order to 
meaningfully look at the obtained expression. The choice of the numerical examples 
she considers (only numbers whose digits are consecutive) suggests her that the dif-
ference is always 9 (line 24). Now the presence of an anticipating thought (the differ-
ence is 9) negatively influences B’s interpretation of the expression 9(x-y). When, 
again, G proposes a counterexample against B’s conjecture (line 27), she does not try 
to re-interpret the expression and limits herself to look at numerical examples to un-
derstand what are the conditions under which the regularity she first observed (the 
difference is 9) is valid (lines 28 and 30). Although her correct observation about the 
interrelation between the digits of the initial number and the difference between the 
two numbers, again B is not able to correctly re-interpret the expression 9(x-y), focus-
ing on the role assumed by the factor (x-y) (lines 35 and 37). B’s troubled conquest of 
an only partial interpretation of the expression 9(x-y) and her necessity to refer to 
numerical examples to understand what she obtained testify that, if algebraic manipu-
lations are not guided by an objective, significant interpretations are blocked. An evi-
dence of this problematical aspect is the fact that, paradoxically, the working group 
activity ends with the formulation of a conjecture. 
7. CONCLUSIONS 
The analysis I presented in the previous paragraph allows to offer some conclusions 
with respect to the role played by the three components I identified and the mutual 
relationships between them. The first protocol highlights the strict correlation be-
tween lack of flexibility in coordinating different frames, difficulties in carrying out 
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conversions from verbal to algebraic register and lack of interpretative games in the 
analysis of the expressions produced. Moreover, it testifies how such correlation 
causes failures in the production of proofs in ENT. In fact, the three students display 
rigidity in their use of frames and an incapability of simultaneously manage different 
frames. Such rigidity makes them produce partial or incomplete interpretations of the 
constructed expressions, so they are not alerted about the non-acceptability of their 
proof. The second protocol testifies the strict interrelation between anticipating 
thoughts, the activation of conceptual frames and the subsequent interpretations of 
the produced expressions: since the conversion and the treatments operated by B are 
not oriented by an anticipating thought, the activation of a proper conceptual frame 
and a correct interpretation of the final expression are blocked. Moreover, this proto-
col represents a good example of results produced by the strict interrelation between 
blind manipulations (i.e. produced without an objective) and blocks in the interpreta-
tive processes. The rigidities highlighted in the analyzed protocols are shared by other 
protocols (not presented here because of space limitations), to which different prob-
lems could be add, such as: (a) blocks related to the activation of an incorrect initial 
frame of reference; (b) blocks in the treatments and in the interpretative processes due 
to an inability to foresee the expression to be attained by the activation of the correct 
final frame; (c) difficulties in the choice of the treatments to be operated caused by 
the absence of anticipating thoughts. 
These observations helped us in singling out an initial classification of interpretative 
blocks in relation to causes that have produced them. Summarizing, I identified inter-
pretative blocks associated to: a) difficulties in simultaneously managing different 
frames (example 1, line 42); b) total absence of anticipating thoughts (example 2, 
line 19); c) activation of erroneous anticipating thoughts (example 2, lines 24-26); d) 
activation of a predominant (partial) anticipating thought (example 1, line 39; exam-
ple 2, lines 39-43). This classification let us highlight, in particular, the fundamental 
role played by anticipating thoughts during these kind of activities, thanks to the strict 
interrelation between them and students’ difficulties in the interpretation of the alge-
braic expressions they produce. 
In conclusion, my analysis of students’ discussions during small group activities 
turned out to be an effective methodological instrument to verify my hypothesis on 
the importance of the key-components I singled out for the analysis of proof produc-
tions in ENT. 
The results of this analysis will be a starting point for the next step of my research. I 
am convinced that the only way to make this approach to algebraic language really 
effective is to help teachers act as fundamental models in guiding their students to-
ward the acquisition of the essential competencies that can help them overcoming dif-
ficulties and blocks identified in this work and developing awareness of the central 
role played by algebraic language as a reasoning tool. Therefore I will focus my re-
search on the role played by the teacher during class activities in order to highlight 
the attitudes of an aware teacher, the choices he makes and the effects of his/her ap-
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proach on students, from the point of view of both awareness shown and competen-
cies acquired. 

NOTES 
1. The study was conducted in some classes (10th grade) of a Liceo Socio-Psico-Pedagogico, which 
is an upper secondary school originally aimed at educating future primary school teachers. 
2. The term “prototype-production” is here used with the meaning of “representative of a category 
of productions of the same kind”. 
3. The difficulties I hypothesised in the identification of the initial frame are not highlighted by this 
protocol because students have faced the problem of the representation of two and three-digit num-
bers in a previous activity. 
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EPISTEMOGRAPHY AND ALGEBRA 
Jean-Philippe Drouhard10 

University of Nice 
(IREM de Nice, IUFM Célestin Freinet, UMR P3 “ADEF”) 

We propose to address the problem of how to know students’ knowledge in an en-
tirely new approach called “epistemography” which is, roughly, an attempt to de-
scribe the structure of this knowledge. We claim that what is to be known is made of 
five tightly interrelated organised systems: the mathematical universe, the system of 
semio-linguistic representations, the instruments, the rules of the mathematical game, 
and the identifiers. 
Keywords:  epistemography, algebra, semiotics, language, subparadigm. 
One of the most commonly shared principle of didactics of mathematics is that teach-
ing must ground on students' previous knowledge. Therefore we researchers (and 
teachers too!) need to know what students know and what they are supposed to know. 
But the point is that knowing what students are supposed to know is less easy to do 
than it appears at a first glance, particularly when they shift from primary studies to 
secondary studies and when there are frequent curricular changes in the primary stud-
ies. In this case, secondary teachers cannot rely on remembering their primary school 
time; reading curricular documents is not very helpful, neither discussing with pri-
mary teachers. The problem is the lack of a common language, or better said, that the 
common language is not accurate enough. Saying that “students know the sense of 
operations” or that they are able to solve “simple word problems” is far too fuzzy and 
superficial. 
We propose to address this problem (how to know students’ knowledge) in an en-
tirely new approach called “epistemography” which is, roughly, an attempt to de-
scribe the structure of this knowledge. 
Epistemography is based on an attempt to generalise and conceptualise findings about 
knowledge we made mainly during previous researches on algebraic thinking. Ac-
cording with many authors we found that semiotic and linguistic knowledge plays a 
central role in Algebraic Thinking. And we faced the following question: to what ex-
tent is this knowledge, mathematical? Letters and symbols are not mathematical ob-
jects in the same way that numbers or sets or functions are11; but on the other hand 
they are equally necessary to do mathematics. 

                                           
10 JPDrouhard@gmail.com 

11 More precisely, digits, letters, symbols and expressions made with them form a “language”. Languages are 
mathematically described by the “Language Theory” (a part of Mathematical Logic, shared with computer science). 
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Epistemography is a description of the structure of what the subjects have to know in 
order to actually do mathematics (and not just to pretend to do mathematics!). We 
chose to call this theory “epistemography” because it is about knowledge (“epistemo-
”) but, unlike epistemology, not in a historical perspective: rather, epistemography is 
a kind of geography of knowledge. 
We claim that what is to be known is made of five tightly interrelated organised sys-
tems: the mathematical universe, the system of semio-linguistic representations, the 
instruments, the rules of the mathematical game, and the identifiers. We will now 
present in detail these five knowledge systems. Due to the lack of space this presenta-
tion is a quite schematic and abstract one; a much more detailed and discussed pres-
entation of epistemography is to be written. 

THE MATHEMATICAL UNIVERSE 
To solve some algebraic problems, you must know that the product of two negative 
numbers is positive. You can believe that negative numbers are real numbers, or just 
“imaginary” ones; whatever philosophical option you take, if you want to do mathe-
matics, you need to have some knowledge about something. We call a “mathematical 
object” this “something”, and the Mathematical Universe the system made up of these 
mathematical objects (e.g. numbers), their relations (e. g. rational numbers are real 
numbers) and properties (e. g. the product of two negative numbers is positive). Usu-
ally, objects of the mathematical universe may be described as individuals (like the 
number 20) or classes (the even numbers). 

SEMIO-LINGUISTIC REPRESENTATIONS SYSTEM 
How to avoid, however, considering as belonging to the mathematical universe, ob-
jets or properties whose nature is totally different?  We must, actually, distinguish 
carefully (mathematical) objects (like the number 20) from their (semiolinguistic12) 
representations (like the string of characters “20” made of a  “2” and a “0”, but also 
“XX” made of two “X” or “::::: :::::” made of twenty dots). This distinction –and its 
consequences– is essential and has been stressed by many authors (Drouhard & 
Teppo, 2004, Duval, 1995, 2000, 2006, Ernest, 2006, Kirshner, 1989, Radford, 2006, 
Bagni, 2007 amongst many others). Misunderstanding or neglecting this distinction 
may lead to quite severe consequences on mathematics learning and teaching studies. 
Hence our claim is that, besides knowledge about objects of mathematical universe, 
students must have some (at least practical) knowledge of the very complex and het-
erogeneous, and often hidden, system of semio-linguistic representations. 
But, how can we decide if a given property is mathematical or semio-linguistic? 
There is a practical criterion: mathematic properties may be called “representation-
free”: they remain true whatever representation system is used. For example, the irra-

                                           
12 “semio-” means “related to signs” and “linguistic”, “related to language”; see further. 
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tionality of √2 does not depend on how integers, square roots or fractions are written. 
Actually the Greeks’ notations of the first proof had nothing in common with ours (in 
particular they did not use any symbolic writing). Semiotic properties, on the con-
trary, rely on representational conventions. The property that in order to write 1/3 you 
need an infinite number of (decimal) digits is true – in base ten only; it is false in base 
three (“0,1”: zero unit and one third) or, as in the Babylonian system, in  base 
sixty: : two times ten sixtieths. 
Mathematical language 
What are the characteristics of the semio-linguistic system? First of all, the “mathe-
matical language” (in a loose sense) is a written one13. Mathematical semio-linguistic 
units are written texts. Following and extending Laborde’s ideas (1990), written 
mathematical texts are heterogeneous, made of natural language sentences, symbolic 
writings, diagrams and tables, graphs and illustrations. Their organisation follows 
what we call the fruit cake analogy, the natural language being the dough and the 
symbolic writings, diagrams, graphs and illustrations being the fruit pieces. To de-
scribe rigorously such a complex structure is far from easy.  
Linguistic system 
Students’ ability to understand natural language mathematical texts (the “dough”) is 
linguistic by nature. Mathematical natural language (we call it the “mathematicians 
jargon”) is mostly the natural language itself; but Laborde (1982) showed there are 
some differences (unusual syntactic constructions like “Let x be a number...”) be-
tween the jargon and the mother-tongue, difficult to interpret by students. 
Symbolic writings (like “b2 - 4ac > 0”) make up a language, too (Brown & Drouhard, 
2004, Drouhard et al, 2006), which is far more complex and different from mother-
tongue than it appears at first sight; detailed and accurate descriptions of this lan-
guage can be found in Kirshner (1987) and Drouhard (1992). Students must learn this 
language and its syntax14 – which allows symbolic manipulation (Bell, 1996): the ac-
tual mathematic language, ruled by a rigid syntax, permits to perform operations on 
the symbolic expressions rather than on (mental or graphic) representations. 
The present mathematical language is also characterised by a complex but precise 
semantics. Semantics (the science of the meaning) is the set of rules and procedures 
which allows interpreting expressions, in other words which allows relating expres-
sions to mathematical objects. 
The most accurate description of this semantics (how symbolic writings refer to 
mathematical objects and properties) is based on G. Frege’s ideas (Drouhard, 1995). 
                                           
13 which puts upside down the usual relationship between oral speech and written texts 

14 the syntax is the part of the grammar which deals with the rules that relate one to another the elements of a 
language. (Syntax says that a parenthesis must be close once opened... 
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G. Frege’s key concepts are “denotation” (which can be a numerical value (in the 
case of “20”), a numerical function (in the case of “x+1”), a truth value (in the case of 
“1 > 20”�) or a boolean function (“x+1> 20”�), according to the type of symbolic 
writing)15, and “sense�” (the way denotation is given). The linguistic nature of stu-
dents��’ difficulties with symbolic writings is often underestimated, or confused 
with conceptual difficulties.  
Semiotic system 
Let’s give an example of a semiotic problem in algebra. How to represent an infinite 
series of decimals? Imagine I ask you what the properties of the number 0,666… are. 
When multiplied by 3 it gives 2? No. Actually I had in mind the number 1999/3000. 
And yes, I cheated: I broke the representational rule of decimals, which is a semiotic 
rule (on how to interpret elements like “…”) about linguistic objects (the numeric ex-
pressions). 
There are more than one approach to mathematics semiotics, which were fully pre-
sented in the special issue N° 134 (2003) of Educational Studies in Mathematics. Du-
val dedicated his lifelong work to an extensive and coherent theory of semiotics of 
mathematics education. Three key concepts are the semiotic representation registers, 
the treatments (within a register) and the conversions (between different registers). 
Other researchers (see amongst others Otte, 2006) are investigating how to interpret 
mathematics education using the terms of the founder of semiotics, Charles S. Peirce 
(1991): the three types of signs –index, icon, symbol– and, maybe more interesting, 
the three types of inferences –induction, abduction, deduction).  
An entire communication paper would not suffice to present even a small part of the 
outcomes of semiotics for the study of algebraic thinking. Hence we called “semio-
linguistic” the mathematics representation system. Therefore students must handle 
both aspects of this representation system, the linguistic as well as the semiotic one, 
and the complex interaction between them. 

INSTRUMENTS 
Up to now we have seen that to do mathematics, students must not only know objects 
and how to represent them: now we will see that they need also to know how to use 
instruments (Rabardel & Vérillon, 1995) to operate on the representations of objects.  
However, unlike object/representation opposition, instruments are not characterised 
by their nature (mathematical objects can also be tools, as noted by Douady, 1986) 
but instead by their use. Students, then, must learn what these instruments are and 
how to use them. Given that instruments are only characterised by their use, it is pos-
sible to propose a typology, based on their nature: material instruments (like rulers or 
                                           
15 The AlNuSet software, developed by Giampaolo Chiappini allows (in a totally original way) a dynamic view of the 

denotation of algebraic expressions. 
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compasses, see Bagni, 2007), conceptual instruments (mathematical properties, like 
theorems), semiotic instruments (manipulations on semiotic representations) – this 
idea appears in L. S. Vygotsky, 1986); eventually one may consider “meta” instru-
ments like strategies and, more generally, meta-rules. 

THE RULES OF THE MATHEMATICAL GAME 
We have seen that students must know what mathematical objects are and their prop-
erties, how to represent them and how to use instruments. Is this sufficient to do 
mathematics? Not at all: using a given instrument to operate on a given representation 
may be, or not, legitimate (even if done properly). For instance, to solve some nu-
merical problems, some procedures are arithmetical (and are not legitimate in alge-
bra) and other are algebraic (and are not legitimate in arithmetics). 
Therefore algebra is not just a question of objects, representations and tools, but also 
of rules, which are saying what the actions are that we may or may not do amongst 
the actions we can do. Algebra is not a game in the same sense that chess is a game, 
but, like chess, algebra does have rules. These rules, moreover, are changing with 
passing times: the present way of doing differs from, say, the Renaissance Italian way 
of doing algebra. L. Wittgenstein (the “second Wittgenstein”, the author of the Phi-
losophical Remarks, or On Certainty, 1986) is an invaluable guide to clarify the ex-
tremely complex relationship between objects, signs, practices and rules. (Ernest, 
1994, Bagni, 2006). 

SUBPARADIGMS 
Some rules (in particular logic) are universal for all mathematics. But other rules are 
related to a certain domain of mathematics. A square number is always positive, ex-
cept when studying complex numbers. We call these domains “subparadigms”, which 
are analogous Kuhn’s paradigms, but less vast, and commensurable between them). 
This notion of subparadigm allows us to understand the shift from arithmetics to al-
gebra. Semantics (and instrumental value) of the “=” sign change, thus objects (the 
equalities, the expression with letters) also change. The semiotic systems, although 
looking quite the same (“2+1 = 3” and “2+x = 3”), are different in fact. 

IDENTIFYING KNOWLEDGE 
A last type of knowledge allows us to identify (or recognise) if what we do is mathe-
matical or not, and to identify to what domain of mathematics it belongs. When a stu-
dent writes something that superficially looks like algebra but actually is wrong or 
meaningless, the teacher might say: “This is not algebra”; and if later the student suc-
ceeds in writing a meaningful and correct algebraic text, the teacher might comment: 
“This is  algebra”. With these statements, the teacher speaks about the student’s text 
but also about algebra; he is actually teaching the student what is algebra – and what 
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is not16 (Sackur et al., 2005). We call this Identifying Knowledge; it is also that which 
allows us to recognise whether a mathematical problem is arithmetical or algebraic, 
and to choose the appropriate instruments to solve it (without certainty: this kind of 
knowledge is more abductive that deductive, see Panizza, 2005). 

THE LAYERED DESCRIPTION 
As said above, epistemography is not the theory of everything (or, better said, of 
every kind of knowledge)! Firstly, we only consider here the part of knowledge 
which is specific to mathematics; this leaves aside nonspecific knowledge, related 
with the use of (oral and written) natural language or with general reasoning capabili-
ties. “Mathematical activities”, however, remains too vague to allow a precise de-
scription. Then, by analogy with the Internet reference model, which is a layered ab-
stract description for the very complex communications and computer network proto-
col design, we propose a layered  description of students’ mathematical activities.  
The five descriptive layers of students’ mathematical activities are: 

1. the School Layer (what are the students’ rights and duties, why and how to 
work in the classrooms and at home, what kind of participation is expected by 
the teacher etc.). This is what french-speaking researchers like Sirota (1993) or 
Perrenoud (1994) call ““being a student” as a job”17. A great number of stu-
dents’ difficulties may be analysed in terms of the school layer: when they 
don’t want to learn, or don’t know how to, for instance. 

2. The Maths Classroom Layer (how to do maths in the classrooms and at home, 
what kind of participation is expected by the maths teacher and what is the 
math teacher supposed to do, etc.). This part of the students’ activities is ruled 
by what Brousseau (1997) calls the didactical contract (see also Sarrazy, 1995, 
for an extensive survey of this notion). Many students’ difficulties can be ana-
lysed in terms of didactical contract, as it was brilliantly done by Brousseau 
(ibid) and followers. 

3. The Modelling Layer, which is the description of, for instance, how students 
change a word problem into a matematical problem, or even how they change a 
mathematical problem (i. e. expressed in mathematical terms) into an other 
problem which they can solve with their mathematical tools. A whole field of 
mathematics education is devoted to the modelling part of the students’ 
mathematical activities (see for instance Lesh and Doerr, 2002). 

                                           
16 which would be almost impossible to do with an explicit discourse within this context: definition or characterization 

of mathematics are epistemological statements, not mathematical statements 

17 unfortunately, according to Dessus (2004) this concept is almost non existent in English-speaking sociology of 
education studies. 
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4.  The Discursive Layer, which is the description of students’ reasoning on 
mathematical objects. This reasoning may be expressed by a discourse (like “if 
x is greater than -3 then x+3 is positive and therefore...”), hence the name of 
this description layer18. In France, Duval (2006) is a main contributor in this 
domain, which is closely related to researches on argumentation (see for in-
stance Yackel and Cobb, 1997) and on proofs (see for instance Gila Hanna, 
2000). 

5. The deepest, Symbolic Manipulation Layer, describes how students operate on 
symbolic forms to yield other symbolic forms which represent the solutions of 
the problem. In the case of algebraic thinking, not too many authors (see for in-
stance Bell, 1996 or Brown & Drouhard, 2003) stress on that  – mainly because 
on the contrary it is often overemphasized by textbooks and teachers. 

It is important to notice that what is layered is the description, not the student’s activ-
ity. It is very similar to what happens in linguistics: the language’s description is split 
in phonetics, syntax, semantics, pragmatics etc. but the subject’s act of speech, on the 
contrary, is of a whole. 

CONCLUSION 
A way to cope with the problem of identifying students’ mathematical knowledge has 
long been to focus on students’ solving abilities and this can explain the prominent 
role which has been given to assessment throughout the world. However, many 
mathematics educators remain reluctant to reduce assessment criteria to solving abili-
ties. Our point is that solving abilities are not so relevant clues on what students know 
and what they are supposed to know. On the one hand, the student’s failure in achiev-
ing a task does not give much information on what his or her deficiencies or miscon-
ceptions are. On the other hand, the student’s success may just show his or her tech-
nical abilities, but we cannot be sure that s/he understood conceptually. 
Then, how can we determine what students know and are supposed to know? We 
claim that epistemography can provide accurate answers to this question.  
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SÁMI CULTURE AND ALGEBRA IN THE CURRICULUM  

Anne Birgitte Fyhn    
University of Tromsø, Norway 

Abstract: The Sámi culture’s richness of patterns and structures give rise to the ques-
tion whether an implementation of Sámi culture in the teaching of algebra might im-
prove this teaching for the Sámi pupils. The Sámi have their curriculum but Sámi cul-
ture does not seem to be implemented in its algebra syllabus. Mathematical archae-
ology with respect to metonymy upon the Sámi cultural elements duodji and joik indi-
cate possibilities for the teaching of algebra. But a remaining question is the Sámi 
mathematics teachers’ view of the situation and of the suggested possibilities. The 
paper aims to prepare for empirical studies which focus on the Sámi mathematics 
teachers’ mathematical archaeology upon their own cultural elements, as a basis for 
the teaching of algebra. 
Key words: algebra; curriculum; mathematical archaeology; patterns; Sámi 

BACKGROUND AND RESEARCH QUESTIONS 
The Sámi are an indigenous people of the arctic who live in the northern part of Nor-
way, Sweden and Finland, and in the Kola Peninsula of Russia (Kuhmunen, 2006). In 
1990 Norway ratified the ILO Convention No. 169 concerning indigenous and tribal 
peoples in independent countries, and after this the Sámi in Norway got their curricu-
lum (KUF, 1997). In the three latest national curricula, the Norwegian Ministry of 
Education has worked out special Sámi syllabuses for several subjects, but not for 
mathematics. One quite common interpretation of the curriculum is that the teaching 
of algebra should be the same for pupils in the Sámi core area in Northern Norway as 
for any pupil in our capital Oslo in the south. A quite different interpretation is that 
the Sámi should have their syllabus in mathematics. 
This paper constitutes parts of a basis for a project which intends to research the pos-
sibilities of a Sámi algebra syllabus. The idea is that one researcher and one group of 
Sámi mathematics teachers together design and develop a teaching of algebra based 
upon Sámi cultural expressions. One lower secondary school in the Sámi core area 
wants to join a meeting where this project is introduced. The aim of this paper is to 
obtain important basis material for this important meeting. The basis material in-
cludes a) an analysis of the present situation regarding the teaching of algebra for 
Sámi pupils, and b) an analysis of some Sámi cultural expressions with respect to 
possibilities for a teaching of algebra. This leads to the two research questions of this 
study: 1: How is Sámi culture implemented in the algebra part of the national mathe-
matics syllabus for lower secondary school? 2: If there are any (algebraic) structures 
to be found in Sámi cultural expressions, then how may these structures emerge?  
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THEORETICAL FRAMEWORK 
Algebra 
According to Lakoff & Núñez’ (2000, p. 110), “Algebra is the study of mathematical 
form or “structure””. According to the latest TIMSS framework (Mullis et. al., 2007) 
algebra consists of patterns, algebraic expressions, equations/formulas and functions. 
Barton (1999) describes mathematics as a system of quantities, relations and space. 
His term “relations” is interpreted to be wider than just algebra. Fyhn (2000) uses the 
metaphor “pattern” similar to Lakoff & Núñez’ (2000) “structure”. Lakoff & Núñez 
(ibid.) focus on the terms “essence” and “structure” in their approach to algebra,  

Algebra is about essence. It makes use of the same metaphor for essence that Plato did – 
namely, Essence is form. …Algebra is the study of mathematical form or “structure”. 
Since form (as the Greek philosophers assumed) is taken to be abstract, algebra is about 
abstract structure. (ibid., p. 110) 

The analyses in this paper use the term algebra as by Lakoff & Núñez (ibid.). 
Aesthetical Expressions as Basis for the Teaching of Algebra 
Fyhn (2000) searched for and analysed relations between pupils’ participation in dif-
ferent leisure time activities and their score in some TIMSS mathematics tasks from 
1995 and 1998. The pupils were categorised according to their participation in differ-
ent leisure time activities, activities which they performed at least once a week. The 
results pointed out some common features for the categories “creative-crafts-girls”, 
girls who participate in activities that concern drawing or handicraft, and the “musi-
cians”, pupils who play an instrument. The creative-crafts-girls’ mean test score was 
below the mean score, while the musicians scored high above the mean. Geometry 
was expected to be a domain where the creative-crafts-girls had their highest score, 
but their score in geometry turned out to be rather low. Actually these girls’ highest 
scores were on tasks which tested the pupils’ understanding of patterns. The musi-
cians turned out to have a test score profile that to a large extent was parallel to the 
creative-crafts-girls’ (ibid.). This gave raise to the idea of a teaching of algebra that is 
based on the pupils’ understanding of patterns. 
Symmetry is an important part of the two latest Norwegian mathematics syllabuses 
for primary school (KUF, 1996; KD, 2006b). But the approach to symmetry is limited 
to be via geometry. Norway give less priority to algebra in school, and algebra is the 
domain where the Norwegian pupils have their lowest score in the TIMSS (Trends in 
International Mathematics and Science Studies) (Grønmo, Bergem, Nyléhn & On-
stad, 2008). This opens for new ways of teaching of algebra. Due to the Sámi cul-
ture’s apparently richness of patterns and structures, a good implementation of Sámi 
culture in the mathematics subject syllabus might lead to an improved teaching of al-
gebra for Sámi pupils. Before any approaches can be done towards the design of new 
approaches to school algebra, there is a need for investigating how and to what extent 
structures and patterns from Sámi culture are integrated in the mathematics syllabus. 
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Parts of this investigation will take place in cooperation with the teachers; the rest 
will take place in this paper. In addition the apparently richness of structures and pat-
terns in Sámi cultural expressions need to be confirmed and described before they can 
be treated as a basis for the teaching of algebra. 
Mathematical Archaeology 
Mathematics can be integrated into an activity to such a degree that it disappears for 
both the pupils and the teachers. According to Skovsmose (1994, p. 94) “Mathemat-
ics has to be recognised and named, that is the task of a mathematical archaeology.” It 
makes a difference whether the teaching is built upon situations that contain possibili-
ties for application of mathematics or just for descriptive purposes. Many sorts of de-
scriptive uses of mathematics can be possible as well as appropriate through mathe-
matical archaeology; mathematics can be treated as an emerging subject (ibid., p. 90). 
It is important to a project, which contains mathematics as an implicit element, to 
spend some time on mathematical archaeology. The reason is: “If it is important to 
draw attention to the fact that mathematics is part of our daily life, then it also be-
comes important to provide children with a means for identifying and expressing this 
phenomenon” (ibid., p. 95). If there exists any algebra in the Sámi culture, it has to be 
implicit and hidden. A result of a mathematical archaeology may be that such algebra 
is recognised, named and described. A description of such algebraic structures may 
lead to an increased consciousness about possibilities for the teaching of algebra. 

METHOD 
The first research question will be answered by a) a survey of the development of the 
Sámi Curriculum in general and analyses of the treatment of algebra in it, b) a survey 
of the mathematics textbooks for Sámi pupils and analyses of their treatment of alge-
bra, and c) analyses of the treatment of algebra in the national tests for Sámi pupils in 
mathematics and Sámi language. The second research question concerns the emer-
gence of mathematics from elements in the Sámi culture. The research question will 
be enlightened by performing mathematical archaeology (Skovsmose, 1994) upon 
duodji and joik. Duodji is the name of Sámi craft, handicraft and art (KD, 2006a), 
while joik is the old Sámi folk music (Graff, 2001). The emergence of mathematics is 
categorised into three different levels; 1: recognition, 2: naming and 3: description. 

ANALYSES 
The Sámi Curriculum 
The Sámi’s right to take care of and develop their language and culture has not al-
ways been accepted in Norway. The norwegianisation (assimilation) of the Sámi has 
been extensive and long-lasting (Minde, 2005). The norwegianisation also has led to 
a disparagement of Sámi culture, and this gives reasons to believe that there are few 
tracks of Sámi culture to be found in the Norwegian curriculum. In 1989 the Ministry 
of Education published the Sámi syllabuses (KUD, 1989) as a special supplementary 
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booklet to the national curriculum for the compulsory school. The intention was to 
adapt the traditional syllabuses to the Sámi culture and the Sámi surroundings. Some 
subjects got their own syllabus, but mathematics did not. The 1997 national curricu-
lum (KUF, 1996a; KUF, 1996b) included a special Sámi curriculum (KUF, 1997). 
The mathematics syllabus was identical with the Norwegian one except for the illus-
trations.  
The national curriculum of 2007 (KD, 2006a) includes a special Sámi syllabus for 
seven subjects, but not for mathematics. Reasons for a particular Sámi mathematics 
syllabus are that the Sámi and the Norwegian numerals are structured differently 
(Nickel, 1994), and that the traditional Sámi measuring units are based on body 
measures and not on the SI-system (Jannok-Nutti, 2007). For the pupils who learn 
Sámi as their first language, Sámi units of measurement and mathematical methods 
are treated as Basic Skills in mathematics, as an integrated part of the subject Sámi 
language (KD, 2006c). And “skills in mathematics require understanding of form, 
system and composition” (ibid., p. 3). According to Lakoff & Núñez (2000), this is 
algebra. But according to the curriculum, this is part of the syllabus in Sámi language. 
For the pupils who learn Sámi as their second or third language, basic skills in 
mathematics mean general concept development, reasoning and problem solving as 
well as the understanding of quantities, amounts, calculations and measurements 
(KD, 2006a). For these pupils the syllabus has no aims regarding their understanding 
of form, system and composition. 
In the Norwegian national curriculum (KD, 2006b), the subject area “numbers and 
algebra” for the lower secondary school is presented this way 

The main subject area numbers and algebra focuses on developing an understanding of 
numbers and insight into how numbers and processing numbers are part of systems and 
patterns… Algebra in school generalises calculation with numbers by representing num-
bers with letters or other symbols. This makes it possible to describe and analyse patterns 
and relationships. Algebra is also used in connection with the main subject areas geome-
try and functions. (ibid., p. 2) 

As for the pupils who learn Sámi as their first language at school, the understanding 
of form, system and composition may be integrated with descriptions and analyses of 
patterns and relationships in the mathematics lessons. But this message is only im-
plicit in the curriculum. Thus an interesting question is whether the Sámi culture is 
integrated in the teaching of algebra for the Sámi pupils.  
Textbooks 
The Sámi mathematics textbooks are Norwegian textbooks translated into Sámi lan-
guage. The Norwegian Directorate for Education and Training (Udir, 2004) presents 
two mathematics textbooks in Sámi language for lower secondary school; one of 
them is approved for the curriculum of 1997, and the other one is Finnish. For eco-
nomic reasons Norway offer the lower secondary school pupils no Sámi mathematics 
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textbooks which are approved for our latest curriculum. However, these pupils have 
their right to get appropriate books: The United Nations’ Declaration on the Rights of 
Indigenous Peoples Article 14 claims that “Indigenous peoples have the right to es-
tablish and control their educational systems and institutions providing education in 
their own languages, in a manner appropriate to their cultural methods of teaching 
and learning” (UN, 2007, p. 6). The Sámi parliament, the Sámediggi, is an elected 
representative assembly for the Sámi in Norway (Kuhmunen, 2006). The Sámediggi’s 
Youth Committee underlines the importance of getting Sámi textbooks. They sent an 
open letter to the Norwegian Minister of Education where they demand that the Min-
istry carry out necessary actions in order to improve the school-days for Sámi chil-
dren (Nystø Ráhka, 2008). The textbook situation for Sámi pupils is far from satisfac-
tory. Thus it is not any surprise that no attention is paid towards including Sámi cul-
ture in the algebra paragraphs in the existing textbooks. 
National Tests 
From 2003 Norwegian pupils have taken part in national tests as part of a national 
system for quality assessment (KD, 2003). From 2007 the mathematics tests were re-
placed by tests in mathematics as a basic skill in every subject. One result of this is 
that algebra is no longer part of the tests. The tests are translated from Norwegian to 
Sámi language; the Sámi pupils are offered no special tasks. The Ministry of Educa-
tion and Research have decided that pupils who have Sámi as their first or second 
language will be tested in mathematics as a basic skill in this subject (KD, 2007c; 
KD, 2008). The Norwegian Directorate for Education and Training will carry out the 
translations of the mathematics tests into the three Sámi languages (ibid.). The na-
tional tests in mathematics as a basic skill do not reflect the pupils’ achievement of 
any goals which are particular for the Sámi curriculum, and the algebra goals for the 
Norwegian pupils are neither reflected in these tests. 
Duodji and Joik 
The ornamentations in Sámi handicraft, duodji, and the Sámi folk music, joik, are 
both rich on structures and patterns. This claim is based upon the doctoral disserta-
tions of Dunfjeld (2001) and Graff (2001). According to Dunfjeld (2001) the Sámi 
people’s understanding of their own ornamentation differs from the pure formal un-
derstanding of ornamentation that we find in Western Europe. Thus she introduced 
the term “Tjaalehtjimmie” which has a meaning beyond pure decoration; “it is com-
posed by signs, ornamentals and symbols which together may give meaning “(ibid., 
p. 102, my translation). For example may the meaning of the triangular engraving be 
decided from its localisation and orientation related to other symbols in a composi-
tion like in figure 1.  
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Figure 1. How the triangular engraving may symbolise personal pronouns in first and 
second person, and in singular and dual (Parts of figure from Dunfjeld, 2001, p. 109) 

In duodji there are several more or less advanced plaited patterns. Fyhn (2006) de-
scribes hair plaiting by first splitting the hair into three equal parts. Plaiting can be 
further described by numerous repetitions of “take the right part and cross it over the 
mid-part. Then take the left part and cross it over the mid part”. The right part, 
whichever it is, can refer to all of the three parts of the hair, and so is for the mid part 
and the left part as well. This is what we understand with conceptual metonymy (La-
koff & Núñez, 2000), and this exists outside mathematics.   

This everyday conceptual metonymy …plays a major role in mathematical thinking: It al-
lows us to go from concrete (case by case) arithmetic to general algebraic thinking…   
This everyday cognitive mechanism allows us to state general laws like “x + y = y + x”, 
which says that adding a number y to another number x yields the same result as adding x 
to y. It is this metonymic mechanism that makes the discipline of algebra possible, by al-
lowing us to reason about numbers or other entities without knowing which particular en-
tities we are talking about. (ibid, p. 74-75) 

According to the curriculum the Sámi ornamentations are geometry (KD, 2006a). 
Dunfjeld (2001) denotes these structures as geometry, too, and she refers definite to 
figures as triangles, rhomboids, squares and rectangles. Her mathematical archae-
ology is at level two; naming. When she refers to the organisation of the geometrical 
figures and the patterns they shape, she does not denote it as mathematics anymore. 
Fyhn’s (2006) description of ornamentation as metonymy is mathematical archae-
ology at level three, description.  
Graff (2001) claims that researchers have focused on joik from different perspectives: 
as text, as melodies and rhythms, and as communication. To “joik” a person means to 
perform a particular joik which is dedicated to this person; the joik is an expression 
with a meaning (ibid.). The pitch constitutes an analogy for conceptual metonymy in 
music, when two or more people sing together. The structure of the song is given on 
beforehand; independent of what particular pitch to use. Graff (ibid.) points out, 
among other things, that the melodic motive in joik is based upon melodic patterns 
which in turn might have different shapes. The structuring of the joiks which he in-
vestigated, show that a rhythmic motive might be repeated throughout the complete 
joik (ibid.). Algebra is the study of mathematical form or “structure” (Lakoff & 
Núñez, 2000), and joik is just a way of expression that like other music is built up by 

I You 

We two  You two  
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given structures. According to the curriculum, the understanding of how different pat-
terns and structures influence artistic and musical expressions is part of mathematical 
skills in the subject music (KD, 2006a). Graff’s (2001) term “rhythmic motive” is the 
name of a structure and could be denoted as mathematical archaeology at level two. 
He gives thorough descriptions of the structures as well, and he uses words like “as-
cending –descending melody line (inverted U-form)” (ibid., p. 210, my translation) 
and “transposition” (ibid., p. 214, my translation). But there is no mathematics con-
nected to the names and the descriptions of these structures. The structures that con-
stitute a basis for duodji ornamentations and for joiks may be identified and described 
by mathematical terms. The process in which algebra is emerging from these aes-
thetic expressions can be carried out as mathematical archaeology (Skovsmose, 1994) 
at three levels. But because joik as well as duodji express more than just aesthetics 
and structure, the meaning aspect need to be focused and enlightened.  

CONCLUSION 
The Sámi curriculum (KD, 2006a) offers a special Sámi syllabus for several subjects, 
but not for mathematics. “The understanding of form, system and composition” is 
part of the syllabus for Sámi as first language. Together with “descriptions and analy-
ses of patterns and relationships” from the algebra syllabus, this opens for an integra-
tion of elements from the Sámi culture in the mathematics lessons. But that depends 
on whether the Sámi mathematics teachers are aware of and agree to these possibili-
ties, and how the Sámi language teachers approach “form, system and composition” 
in their lessons. Due to the norwegianisation (Minde, 2005) there are reasons to be-
lieve that the teachers are not aware of the possibilities of integrating elements from 
their culture in the teaching of algebra.  
The United Nations’ Declaration on the Rights of Indigenous Peoples (UN, 2007), 
states that the Sámi lower secondary school pupils have their right to get appropriate 
mathematics textbooks in their own language. There are Sámi versions of Norwegian 
textbooks for primary school and for some of the grades in lower secondary school, 
but many of these books are based on a lapsed curriculum. And no special attention is 
paid towards including Sámi culture in the algebra parts of these textbooks. The lack 
of Sámi mathematics textbooks results in extra work for the teachers. Sámi pupils are 
offered translated versions of the Norwegian national tests in mathematics as a basic 
skill in every subject. The fact that these tests do not concern any algebra is an exam-
ple of how Norway gives less priority to algebra in school. The national tests neither 
reflect the pupils’ achievement of any goal in the Sámi curriculum. Aesthetic expres-
sions may become a resource in the teaching of algebra: According to the Sámi cur-
riculum (KD, 2006a) the relations between aesthetics and geometry are elements in 
the work with duodji decorations, while the music syllabus focus on the understand-
ing of different patterns and structures. No connection between aesthetics and algebra 
is found in the Sámi curriculum.  
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One question for the further research is whether and to what extent the Sámi mathe-
matics teachers find the project relevant and worthwhile taking part in. One more 
question is how metonymies might function in bridging the gap between Sámi cul-
tural discourses and the algebra teaching discourse. The term “discourse“, is here 
used as by Foucault (2004, p. 53), “…discursive practice is a place in which… ob-
jects is formed and deformed.” These questions are closely interwoven and the fur-
ther development of the project depends on the meeting between the researcher and 
the teachers. Maybe the teachers really want to join the project. But one other out-
come is that the teachers dislike the ideas of creating an algebra teaching based upon 
Sámi cultural expressions. Another outcome might be that the teachers give priority 
to other parts of mathematics than algebra at the moment. A third possible outcome is 
that the teachers want to take part in the project, but that metonymies turn out to be 
less useful than they seem at the moment. 
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PROBLEM SOLVING WITHOUT NUMBERS 
AN EARLY APPROACH TO ALGEBRA 

Sandra Gerhard, University of Frankfurt am Main 
 
Abstract: This paper reports a research project that aims at finding a good approach 
to school algebra using magnitudes and measurement. Thereby we not only focus on 
the way algebra can be taught effectively but also at on when in student’s mathemati-
cal education a geometric and measuring approach can be successful. For this pur-
pose we provide a theoretical framework and modify an early algebra program de-
veloped for first-graders to implement it in different age-levels.   
Key Words: Algebraic Symbolizing, Early Algebra, Cognitive Gap, Measurement 

INTRODUCTION 
In Germany, as in many other countries, algebra is taught as generalized arithmetic 
(see e.g. Lins & Kaput, 2004) after a long term arithmetical education. Reasons can 
be found on the one hand in the historical development of algebra as a medium for 
solving advanced arithmetical problems, on the other hand in the Piagetian stages of 
cognitive development. According to Piaget’s theory children achieve the formal op-
erational stage – and therewith the capability for abstract reasoning - not before the 
age of eleven (Piaget & Inhelder, 1972). It is however not self-evident that all aspects 
of algebraic thinking require achievement of the full formal operational stage.   
Linchevski (2001) talks about a “cognitive gap”, which characterizes “these steps in 
the pupil's learning experience where without a teaching intervention [...] he or she 
would not make a certain step” (Linchevski, 2001, p. 144), and this is independent of 
the Piagetian stages.  
If one reinterprets the cognitive gap in terms of Wygotski's zone of proximal devel-
opment (Wygotski, 1987), the cognitive gap marks not only the difference between 
what a learner can achieve without help and what a learner cannot achieve without 
help, but what a learner can achieve with help: in this case developing algebraic 
skills.  

THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 
Early Algebra 
The idea of teaching algebra in earlier grades beyond a preparatory pre-algebraic way 
is most welcome as one can see in several early algebra projects (see Carraher & 
Schliemann, 2007). A reason for the popularity of early algebra is that the problems 
that students have with school algebra is likely to be based mostly on long experience 
of arithmetic classes without algebraic contents (see McNeil, 2004). This leads us to a 
first question: 
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1. Are there coherences between students’ arithmetical skills and their effective 

approach to algebra? 
From Carraher and Schliemann’s (2007) review of the seven most common difficul-
ties middle and high school students have with algebra (Carraher & Schliemann, 
2007, p. 670) we can extract at least two main ideas that are demanded in arithmetic 
but are no longer desired while dealing with algebra. These are on the one hand the 
belief that the equal sign only represents an unidirectional operator that produces an 
output on the right side from the input on the left side, and on the other hand a focus 
on finding particular answers. 
Algebraic symbolizing 
Regardless of whether it is taught as regular school algebra in grade 7 or as early al-
gebra in an earlier grade, if algebra is to be taught at school we have to think about 
what school algebra is meant to be. School algebra is taught as dealing with algebraic 
symbols, terms and equations, but often without context. This is accompanied by the 
problem, that students do not see the point in algebraic symbolizing. 
“The lesson from history has implications for teaching in the sense that the potential 
of dominating algebraic syntax will not be appreciated by students until they have 
experienced the limits of the scope of their previous knowledge and skills and start 
using the basic elements of algebraic syntax.” (Rojano, 1996, p. 62) 
Van Amerom proposes that “algebra learning and teaching should be based on prob-
lem situations leading to symbolizing instead of starting with a ready-made symbolic 
language.” (van Amerom, 2002, p. 10) 
An alternative to conventional algebraic symbolizing is to allow the students to de-
velop their own sign system when solving algebraic problems. But the algebraic syn-
tax, as we know it and the way it is used worldwide, is a sophisticated tool for com-
municating about algebraic problems, and thus the understanding of and the ability to 
use and manipulate conventional algebraic symbolism is an important goal of algebra 
education (see Dörfler, 2008).   
Summarizing, on one hand there is a negative correlation between students’ advanced 
arithmetical skills and their effective approach to algebra. On the other hand there is 
the need to teach algebraic syntax in an environment that brings students to the limit 
of their mathematical abilities. This leads us to the conclusion that if algebra and al-
gebraic syntax can in fact be taught in early grades successfully then it should indeed 
be taught in these early grades for the following reasons. 
First of all, an earlier approach to algebra offers a lot more mathematical exercises 
that children can understand but cannot solve with the mathematical knowledge 
they’ve achieved up to then. At the same time the emphasis on arithmetic is reduced, 
which may decrease a habituation effect to arithmetic. Apart from that, lower achiev-
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ers in arithmetic may profit from an early approach to algebra and algebraic syntax 
can support their algebraic thinking strategies. 
The MeasureUp- Program 
An unconventional way of teaching school algebra is taken by the MeasureUp-
Program (Dougherty & Slovin, 2004) which combines early algebra with a fast intro-
duction to common algebraic symbolization, at an early stage in primary school even 
before numbers are introduced. MeasureUp is based on a teaching experiment from 
the 60s implemented by Davydov (1975), a Wygotskian student. Within this teaching 
experiment the students develop abstract algebraic thinking by comparing magni-
tudes, like length, area, volume, etc. of concrete objects. The comparison of magni-
tudes is written down firstly with the help of signs of different sizes and finally with 
letter inequations and equations. The teaching of numbers follows only when the stu-
dents can handle the algebraic syntax of elementary linear equations properly. 
Our main concern is with the idea of introducing the abstract use and manipulation of 
the algebraic symbol system by concrete comparison of the magnitudes excluding 
numbers. We want to find out if this concept, which we will call the MeasureUp-
Concept, will work for primary school children even though they have already have 
been introduced to numbers and arithmetic. This leads us to the following question. 

2. Does the MeasureUp-Concept give German primary school-children a “good” 
approach to algebra and algebraic symbolism? 

To answer this question we concentrate on two basic ideas of algebra, expressing 
magnitudes and their relations in letters and detaching the thinking from the concrete 
context.  
The various aspects of letter variables range from letters as specific unknown over 
letters as generalized numbers to letters as changing quantity (see e.g. Küchemann, 
1978). In our very first approach we have not seen it as important which of these as-
pects the children were working with. We are primarily interested in the question of 
whether the children are really seeing the letters as numbers and not developing the 
misconception of seeing letters as objects. As it is not intended to focus the children 
on magnitudes as numbers we have to differentiate the two categories letter as magni-
tude and letter as object. Bertalan (2008) claims, that a geometric approach supports 
the (mis)conception of letters as objects.  
Within the intervention the children are working with concrete objects whose differ-
ent magnitudes are compared. We want to know if the children are able to detach 
their thinking from the concrete material and if they are able to deal with word prob-
lems that do not refer to concrete material. 
When to teach algebra and algebraic syntax? 
Our focus of interest lies in the Measure Up-Concept, the introduction of abstract use 
and manipulation of the algebraic symbol system by concrete comparison of the 
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magnitudes excluding numbers, which is only a small but important part of the Meas-
ureUp-Program. Because the MeasureUp-Program starts with the first grade it is rea-
sonable to arrange our first observations at this age-level.  
However, there are several widespread reasons, why algebraic syntax without num-
bers should not be taught in primary school, including curricular issues and the argu-
ment that this is too far away from a primary school students’ everyday use of 
mathematics and thus should not be subject of mathematic lessons. With these rea-
sons in mind, we come to another question of interest: 

3. Does the Measure Up-Concept work in high school grades lower than grade 7 
in the sense that none of the difficulties named above appear. 

METHODOLOGY 
Our research is based on the paradigm of design based research (DBR), which 
“blends empirical educational research with the theory-driven design of learning en-
vironment” (The Design-Based Research Collective, 2003, p. 1). It contains two main 
goals which have to be well-connected. These are on the one hand designing learning 
environments, on the other hand developing theories of learning. DBR happens in 
multiple cycles of design, implementation, analysis and redesign. The following in-
vestigation marks the first completed cycle of design, implementation and analysis. 
Later we will state conclusions for redesign. 
As the starting point for the intervention we chose the MeasureUp-Program which we 
modified for our purpose. As variables are not part of primary school curricula, we 
have been looking for a school that enables us to teach the MeasureUp-Concept. We 
found that a Montessori primary school class with mixed age-groups would fit best 
for our first investigation. The self directed activity of children in a Montessori class 
allows us a flexible intervention alongside the regular class. 
Implementing the MeasureUp-concept in a Montessori class made it necessary to de-
velop material that children can work with on their own. So we developed exercise 
books which contain the introduction and comparison of magnitudes not only of 
Montessori but also other concrete materials, the setting up of equations and inequa-
tions, the so-called statements, and transforming inequations in equations, including 
transitivity and commutativity. 
Example 1: 
Compare 
1. Take boxes I, II and III 
2. Name the volumes of the boxes. 
3. Compare the volumes of boxes I and II, write a line-segment and a 
statement.  
4. Compare the volumes of boxes II and III, write a line-segment and a 
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statement. 
5. Which statement can you write down for the volumes of boxes I 
and III without comparing the volumes? 
The last exercise book contains word problems that do not refer to concrete material 
and word problems that contain numbers. 
Example 2: 
Word problems 
A street has length A. Julia has already walked length B. How far does 
she still have to go? 
A street has length L. Tim has already walked 200 m. How far does he 
still have to go? 
A street has length 845 m. Hans has already walked 220 m. How far 
does he still have to go? 
To address the question of whether there are coherences between students’ arithmeti-
cal skills and their effective approach to algebra, we had to collect data about the ar-
ithmetical knowledge of the children. Thus every student attended the half-
standardized interview ElementarMathematisches BasisInterview (EMBI, basis inter-
view on elementary mathematics,) before the intervention (Peter-Koop et al, 2007). 
Thus we are able to compare high achievers with low achievers. 
Then we introduced the exercise books to the children and allowed them to work with 
them during their free activity time. With some students or student groups we made 
appointments which gave us the opportunity to videotape the students while they 
were working with their exercise books and explaining their work to an interviewer. 
This happened within the principles of the Montessori school which means: students 
join voluntarily, the intervention will take part in an individual atmosphere and mis-
takes are not to be corrected. The work will consider the individual stage of develop-
ment and, if required, the exercises will be extended or modified. So the interviewer 
held a double role as interviewer and teacher. Then we transcribed the videos and 
conducted a series of qualitative content analyses. To answer our first question 

1. Are there coherences between students’ arithmetical skills and their effective 
approach to algebra? 

we have been coding in regard to the following topics: 
 The students’ possible belief that the equal sign only represents a 

unidirectional operator that produces an output on the right side from the input 
on the left side. 

 The students’ focus on finding particular (i.e. numerical) answers. 
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These we used as categories for our content analysis. Then we compared the findings 
of a, according to the EMBI, lower achiever with findings of a higher achiever. 
To answer our second question 

2. Does the MeasureUp-Concept give German primary school-children a “good” 
approach to algebra and algebraic symbolism? 

we concentrated on the ideas of expressing magnitudes in letters and detaching the 
thinking from the concrete context. We did a qualitative content analysis with the two 
categories letter as number and letter as object. Also we did a qualitative content 
analysis on the children’s work with concrete material and also on the situations 
where children are solving word problem which does not refer on material (Example 
2). For the latter we did not use pre-set categories, but generated them inductively. 
For answering the third question,  

3. Does the MeasureUp-Concept work in lower high school grades than grade 7 
in the sense that none of the difficulties named above appear. 

we are planning further cycles of design, implementation, analysis and redesign in a 
5th grade of a German high school. 

OBSERVATIONS ON STUDENTS’ ACTIVITIES  
The design of the study only allowed us a focus on a small number of students. So 
our following interpretations are based on two case studies, Jay and Elli, which have 
been chosen for following reasons. Both students, a boy and a girl, are 3rd graders and 
will leave the class in the following year to join grade 4-6. 
As showed by the EMBI, Jay is good at counting and handles interpreting and sorting 
of numbers beyond 1000 easily. He shows multiple strategies in addition, subtraction 
and multiplication and is able to solve division problems in an abstract way. Elli is 
also good at counting, but not as good as Jay and she is able to interpret and sort 
three-digit numbers. She is solving addition and multiplication problems through 
counting and needs proper material for solving multiplication and division problems. 
So we can call Jay a higher achiever and Elli a lower achiever. This is important for 
our first question, whether success in algebra class depends on arithmetic skills. 
The analyses of both the transcripts and the exercise books showed that there is no 
dominance of the belief that the equal sign only represents a unidirectional operator 
that produces an output on the right side from the input on the left side. Jay and Elli 
both wrote and completed several equations of the form D+B=A and D=A-B, without 
accounting for the direction of the equation. The transcripts also did not show any 
sign of preference or confusion about writing the equations the one or other way. 
We had a different result when analyzing the focus on particular answers. We take a 
look at how Elli and Jay dealt with Example 2 (see above). 

Jay:  …how far does she still have to go?                                                                                      
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Teacher: Right, you have said... 
Jay:  D. J wants to write down D, but the teacher stops him.  
Teacher: Wait, can you write an equation? 
Jay:  What's that? 
Teacher: A statement, with equal signs and plus and minus.                                                                
Jay:  Err, D plus B equals A.  
Teacher: Yes, right, you can write that down. J writes it down.  
Jay:  Yes, but first of all I can write down D. J writes down D and underlines it.  

Here we can see that Jay is looking for a particular answer. He names the length that 
still has to be travelled with D and wants to write it down as answer. The intervention 
of the teacher reminds him, that he can find a statement that shows how he can get 
length D with length A and B. Certainly, because of the early intervention of the 
teacher, we do not know if Jay would have written a statement without prompting. As 
we can see, he has no difficulties in finding the equation D+B=A and later on he will 
have no problems with transforming the equation into D=A-B. But for him, both 
equations do not belong to the solution. In his exercise book we can find both equa-
tions in a subsidiary position. By contrast he insists in writing down and underlining 
D “first of all” right behind the word problem. The underlining is an indicator that for 
Jay D is the particular answer of the word problem but the equations are not.  
Elli handles the word problem differently. At first she has problems with understand-
ing the question and after the encouragement of the teacher she draws the street and 
attaches the given information. Then she suggests different statements that are how-
ever not solution-orientated. With some help by the teacher she finally writes down 
the statement S=A-B.  
The following transcript shows that generally Elli feels comfortable with using let-
ters.  

Elli: A street has length 845 meters. 
Teacher: Hm. 
Elli: Is the length M. Hans already walked 200 meters. How far does he still have 

to go? 
Teacher: Hm. 
Elli: I want to do that with letters.                                                                                                 
Teacher: You want to do that with letters? Ok. Which letters do you want? 
Elli: N and M. 

By contrast Jay again is eager to calculate the solution and notes “that’s easier”. 
If we interpret the observed situation, while keeping the research question in our 
mind, we explicitly have to differentiate algebraic thinking from using algebraic syn-
tax. Elli’s difficulty with the last word problem that prompts the wish to use letters is 
a sign of her low achievement in arithmetic. We can also see her difficulties with al-
gebraic thinking and algebraic syntax, but nevertheless Elli is expecting benefit from 
using algebraic syntax. Jay on the contrary has no difficulties with solving the word 
problems because he realizes their algebraic structure. He does not use the algebraic 
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syntax, but this is not because he cannot use it. We have seen that he can easily find a 
proper statement and is able to manipulate the equation. We conjecture he does not 
use algebraic syntax because the word problems are easy for him and he is focussing 
upon an answer where the approach is a minor matter. 
We do not suspect that lower achievers in arithmetic will be likely to have fewer dif-
ficulties with algebraic thinking and using and manipulating algebraic syntax than 
higher achievers. But they may be more open for the use of algebraic syntax while 
working on word problems, because they expect a benefit for solving word problems 
and therewith are more accessible for the use of algebraic syntax. 
As we have seen students at that age-level can work easily with letters as denotation.  
For a “good” approach to algebra we need to know whether they name the object or 
the magnitude. By viewing the transcripts we found evidence for both letter as object 
and letter as magnitude. But we also observed a third category as is seen in the fol-
lowing transcript. 

Teacher: Which letter stands for example for this length? The teacher shows a grey 
stick.  

Jay: Err, the lowest, the lowest letter of all, which...ah...which is the lowest one? 
Jay is sorting the letter-cards 

Jay:  So we call the small grey ones U. This is an U.  
Teacher: So, then you can name all. 
Jay:  A is always the biggest one. 

Jay is naming “the small grey ones”. Thus he is naming not only one object, but a 
class of objects with the same attributes. But he is naming the objects and not the 
magnitudes. Although the letter U names an object, the size of the object is still con-
tained in the letter, because it is “the lowest” letter and the grey sticks have the lowest 
length. There is no lower letter than U because the letters V - Z are not available on 
letter-cards. Furthermore we can see that there is also a highest letter, the letter A 
which names “always the biggest one”. Elli shows a different but similar performance 
when she has to compare the width of two stripes which have same width but differ-
ent length. 

Elli: Do you have an U? 
Teacher: I do.  
Elli: Like Urs? And a D like Donatella? 
Teacher: A D like Donatella? Ok. 
Elli: My mother. An U and a D like my mum. 
Teacher: There’s the D, look. So, you can already write that down. Here is.... which has 

the width U? 
Elli: Dad is bigger. 

Like Jay, Elli includes the size of the object in the letter. For that purpose she refers 
to the size of family members. But Elli is focusing on what differentiates the objects 
and not on what is being compared. So she is choosing the letters while focusing on 
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the length and not the width. Therefore she picks two letters that refer to two family 
members which different length, U for her “bigger” dad and D for her smaller mum. 
Beside the categories letter as object and letter as magnitude we can summarize the 
above observation under the category letter as object with a certain size. This leads to 
new questions of interest. Does a geometric approach to algebra support the idea of a 
letter as object with a certain size instead of letter as object and letter as magnitude? 
And if so, is it to be seen as positive or negative for a “good” approach to algebraic 
thinking and/or algebraic syntax? 
Finally we take a look at the word problems of Example 2 again, to find out how Jay 
and Elli handle problems that do not refer to concrete materials but to imagined ob-
jects, in this case a street. Both were offered the opportunity to use paper strips or 
sticks to represent the street or to draw the street. For solving the second word prob-
lem, which mixes letters with numbers, Eli drew a street, while Jay used paper strips. 
The following observation was made as Elli was working on the word problem. 

Teacher:  So, a street has length N, Tim already walked 200 meters.  
Elli:  Then he still has to go 400 meters. 

With Jay we can make a similar observation.  
Jay:  ...that is length L. J displays a different paper strip. 
Teacher: That is length L? Ok.  
Jay: 200 meters, how big is a man, that big, then, I think, these are about 200 

meters.                                                                                                                                    
Teacher: Ok. 
Jay:  And this small edge here, that goes here, are the remaining…?                                            
Teacher: Meters. How do you call the remaining meters?                                                                    
Jay:  50 meters? 

Both understand the offered material not as aid for visualising the real street but as a 
scaled down model version of the street. They can’t detach themselves from the con-
crete material  thus they are not able to solve this word problem without assistance. 

PERSPECTIVE 
In regard to our questions the evaluation of the exercise books and the transcripts did 
not provide as conclusive results as we had hoped for. In particular looking at how 
the students perceive the letters brought up new questions. These questions have to be 
considered in our redesign. We also have to work more closely on the abilities of the 
children. We have seen that Jay did not use the algebraic syntax in some cases be-
cause he did not require it. As a main goal of the intervention is to adapt the use of 
algebraic syntax, we have to modify these particular exercises so that we can adapt 
them easily and flexibly at the abilities of the students. Furthermore we decided to 
move the question of the ability to detach the thinking from the concrete context to 
the projected intervention in grade 5. There we also will try to gain more clarity if a 
long term arithmetic education gets in the way of an effective approach to algebra. 
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THE AMBIGUITY OF THE SIGN 19 

Gómez, Bernardo & Buhlea, Carmen 
Departamento de Didáctica de las Matemáticas. Universitat de València 

In this paper an educational problem is discussed deriving from the ambiguity of the 
radical sign, , produced by its shift in meaning when passing from arithmetic to 
algebra. This problem is concerned with understanding difficulties that are linked to 
a particular tradition of teaching in which the radical sign is introduced by means of 
the square root notion. As a conclusion it indicates that any teaching proposal should 
take into account the distinction between root and radical. 
Key words: roots, radicals, meaning, textbook  
INTRODUCTION: The problem under investigation 

The ambiguity of the sign  as a consequence of the change in its meaning when 
passing from arithmetic to algebra often goes unnoticed by teachers and textbook au-
thors. This lack of perception may be the cause of certain cognitive conflicts experi-
enced by teachers and students. 
This work takes its cue from one of these conflicts. It is a conflict expressed by a 
Spanish secondary school mathematics teacher called Patricia, on attempting to un-
derstand the definition of equivalent radicals. She states that the equality 36 2 33 =  
cannot be true, since in the expression on the left the index of the root is even, so that 
it has two opposing roots, two solutions, whereas in the expression on the right the 
index is odd so it only has one root, which means that the two expressions have a dif-
ferent number of roots. 
The conflict expressed by Patricia leads to the difficulties and controversies related to 
the values, properties and rules of radicals, which are the ultimate aim of this work. 

Examples of that, are the students opinion about the statement 25 = ± 25. (Roach, 
Gibson and Weber, 2004), the value of (-8)1/3 =-2 (Even and Tirosh, 1995; Goel and 
Robillard, 1997; Tirosh and Even, 1997), and the rule for multiplying imaginary 
numbers (Martínez, 2007). 
THEORETICAL FOUNDATIONS 
To support the work carried out, a theoretical approach has been adopted that has 
three fundamental references. 
1. One of these looks at the cognitive side, taking into account the need to re-
conceptualise signs that change meaning when passing from arithmetic to algebra 
(Kieran, 2006, p. 13).  
                                           
19 This research was supported in part by a grant from the Spanish MEC.. Ref.: SEJ2005-06697/EDUC. 

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 509



 

 

 

 

This happens with the sign  which changes meaning, since it either indicates an 
operation, as happens in 4 , or indicates the main root of this operation, as happens 
in the solution to the equation x2 - a = 0 → x= ± a . 

There are examples of this double meaning to be found in the teaching tradition that 
appears in textbooks by such influential authors as Euler. 
Euler considered that: 

150. (…) the square root of any number always has two values, one positive and the 
other negative; that 4 , for example, is both +2 y -2, and that, in general, we may take 

a−  as well as a+  for the square root of a (…). (Euler, 1770, p. 44) 
In Euler's text the  sign is used ambiguously. In 4  it is perceived as an indicated 
operation (finding the square root of 4) and it is associated to the set of two results, in 
this case +2 and - 2. In a+  it is perceived as a result of the aforementioned process 
and designates one of the two roots of a. 

This duality of meaning starts in arithmetic when introducing the  sign in order to 
indicate an operation in an abbreviated way, the fifth elementary operation20. In 
arithmetic this number can be found and it is unique. Thus, for example, the square 
root of 4 is 2, which is written 24 = . 
Things change in algebra, since the square root of a ( )0a >  cannot be calculated, so 
that to indicate its value the expression a  is introduced, which no longer represents 
an indicated operation but a result. 
3. The second reference looks at the formal component. The mathematicians have de-
cided to assign to the radical expression, n x  , x≥0,  only one value, one of the roots 
of x, the root no negative, the one that they name principal root. With this restriction, 
the right thing is to write 24 = , not 24 ±= . 

We agree to denote by a  the positive square root and call it simply the square 
root of a. Thus 4  is equal to and not -2, even thought (-2)2=4 (Lang, 1974. p. 10). 

With this decision, the mathematical problem of the ambiguity of the radical sign dis-
appears, but no the didactic problem. Students do not learn only what they are told; 
much of students’ learning occurs when they attempt to make sense of the mathe-
matical situations that they encounter (Roach, et al. 2004). To help students to make 
sense of the formal definition there are several options:  

A) To avoid contradictions. If 24 ±= , then ( ) ( ) { }4,0,42244 +−=±+±=+ ; 
( ) ( ) { }4,0,42244 +−=±−±=−  and 4444 −+−=+   

                                           
20 This consists of given a number, find another which when multiplied by itself gives the first. 
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B) To satisfy the requirements for the definition of operation of exponentiation to ra-
tional exponents. This definition should not depend on the representatives of numbers 

involved in the operation. We want kn kmkn
km

n mn
m

r aaaaa ====  (see Tirosh,& Even, 
1997, p. 327). Nevertheless, if 24 ±= , then 36 2 33 ≠ . And, in general, n mkn km aa ≠ , 
when kn is even and n is odd, 
C) To satisfy the requirements for functions. The basic arithmetic operations addition 
and multiplication by a number different from zero establish bijective functions: 
x→x+a, x→x⋅a, a≠0. These functions have unique inverse functions corresponding to 
the inverse operations. But, an operation like: x →x2 does not establish an injective 
function; because x2 = (-x)2. Consequently, the function x →x2 has to be confined to 
one of its branches to be inverted, x ≥ 0 . In the same way the inverse operation, 
x→ x , has to be confined to positive domain, and range, in order to be unique.  

2. The third reference takes on a psychological point of view, taking into account the 
dual operational/structural nature of mathematical conceptions and their role in the 
formation of concepts, indicated by Sfard (1991). 
Sfard (1991) supports this theory with the fact that a mathematical entity can be seen 
as an object and a process. Treating a mathematical notion as an object leads to a type 
of conception called structural, whereas interpreting a notion as a process implies a 
conception called operational. 
For Sfard, the ability to see a mathematical entity as an object and a process is indis-
pensable for a deep understanding of mathematics, such that the “concept formation 
implies that certain mathematical notions should be regarded as fully developed only 
if they can be conceived both operationally and structurally” (p. 23).  
It is worth pointing out that when referring to the role of operational and structural 
conceptions, Sfard conjectures that when a person gets acquainted with a new 
mathematical notion, the operational conception is usually the first to develop, 
whereas the structural conception follows a long and difficult process that needs ex-
ternal interventions (of a teacher, of a textbook), and may therefore be highly de-
pendent on a kind of stimulus (of teaching method) which has been used (p. 17). 
Pointing out that, the investigation on the conceptualization of the radical sign should 
be held in a revision of manuals and textbooks.  
OBJECTIVES 

Once the general problem to be studied has been pointed out, as well as the theoreti-
cal references, it is necessary to specify the general aims that are to guide the investi-
gation's design and methodology: 
1. To determine the characteristic aspects of teaching the radical sign, just as they 
are shown in textbooks today. 
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2. To diagnose mathematical knowledge with respect to the radical sign that some 
secondary school teachers have. 
3. To explain teachers' possible conceptual and operational difficulties. 
PATRICIA'S CONFLICT 
The aims are linked to Patricia's conflict. Patricia is a high school mathematics 
teacher (in Spanish public education) and a student in a post-graduate programme. 
She presented the following conflict to her professor: 

In the textbook, the concept of equivalent radicals is defined as follows: "Two radicals 
are equivalent if they have the same roots" (and so I had learned). On the other hand, 
simplifying a radical by dividing the index of the radical and the exponent of the radicand 
by the same number, results (in theory) in a radical equivalent to the first. However, in a 
case like the sixth root of three squared, the cube root of three is obtained. As the index 
of the first radicand is an even number, two solutions exist (one being the opposite of the 
other) but in the second case, the index is an odd number and therefore there is a single 
root. Therefore, it cannot be said that these two radicals have strictly the same roots. So, 
are they equivalent? 

Patricia says: 
(A) Two radicals are equivalent if they have the same roots. 

Also Patricia makes reference to the following equivalency: 
(E)  

Applying the equivalency (E), Patricia obtains than: 36 2 33 = . However, to her the 
sixth root of three squared has two opposed roots, “two solutions”, as the index is an 
even number and the cube root of three has a single root as the index is an odd num-
ber, which means that the two expressions do not have the same number of roots and 
so according to (A) they would not be equivalent. 
Hypothesis in relation to this conflict  
In order to try to explain the causes of conceptual and operative difficulties that give 
rise to Patricia's conflict, the following hypothesis has been formulated: 
(H1) The lack of perception of the difference between the operational and structural 
conceptions of the radical sign that Patricia expresses is the cause of her conflict. 
(H2) This lack of perception is a product of a traditional teaching proposal, which 
does not pay attention to the need to re-conceptualise the √ sign when passing from 
arithmetic to algebra. 
(H3) In an alternative teaching proposal, where the meanings of root and radical are 
formulated, the conflict expressed by Patricia is not expected. 
METHODOLOGY 
To verify the solidity of the hypotheses an exploratory study was carried out, as a 
step prior to a more rigorous inquiry in terms of methodology, still to be carried out. 

.0a,2n,n,k,aa nnk k ≥≥Ν∈= ∗
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This exploration is based on a revision of current and representative textbooks of two 
alternative proposed ways of teaching: the Spanish one, which introduces the radical 
sign in arithmetic, and the Rumanian one, which introduces it in algebra. The revision 
of textbooks is has been complemented by a questionnaire followed by an interview 
with two representative individuals, Patricia (Spanish) and Iulian (Rumanian), two 
typical high school mathematics teachers. 
With the revision of textbooks an attempt has been made to identify characteristic 
features in the teaching of roots and radicals in Spanish and Rumanian textbooks, and 
to identify comments that may favour the ambiguity of the  sign, and Patricia's 
conflict.  
The questionnaire 
The questionnaire consists of a paper and pencil test which included four tasks. The 
first one is based on the teaching proposal given in the Spanish textbooks. In the task 
it is considered, as in Euler’s text, that the square root of any positive number has two 
solutions, one positive and another negative. However, to represent this set of results 
the symbolic form 24 ±=  is used as well as the rhetorical form: “the solution is 
double, positive and negative”. The intention of this task was to know if the differ-
ence is perceived between the structural and operational conception. The task is: 

In the class of 9th grade, after introducing the theme of the roots and radicals, the 
students were asked to calculate the square root of four. 

One student wrote 24 ±= , justifying thus: 

“As the radicand is positive and the root's index is even, then the solution is dou-
ble, positive and negative”. 

Is this correct? 
Task 1 

The interview's design took into account the answers produced by Patricia and Iulian 
to task 1. If the answer was “No”, then the interviewee was asked to justify why and 
if it was “Yes”, then they were given the second task with the aim of bringing in a 
cognitive conflict, in order to study the students’ reaction 

The second task is based on substituting 4  for 2±  in a context of calculation. With 
this the aim was to put the affirmative answer to the task 1 into conflict. 

If  24 ±=   then complete: 

( ) ( )
( ) ( ) ...2244

...2244

=±−±=−

=±+±=+
 

Explain the answer. 
Task 2 
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A third task is based on the restriction of the property of radicals in the case where k 
is an even number and 0a < , which requires the intervention of the module. 

(P)    

⎪
⎪
⎩

⎪⎪
⎨

⎧

<−≥−∈

<≥−∈

≥≥∈

=

.0a,oddn,2n,oddk,Nn,k,a

0a,2n,evenk,Nn,k,a

0a,2n,Nn,k,a

a
n

n

n

nk k  

Here, the intention was to confirm that the interviewee was taking into account the 
radical's formal definition, in a traditional problematic case. The hypothetic situation 
that is present is the following: 

In a class of 10th grade, after introducing the radicals theme, the students were 
asked to simplify: 

( )6 28−  

One student wrote: ( ) ( ) 2888 332 26 2 −=−=−=− ⋅  

and said: “I have applied the following rule: n mnk mk aa = . Is this correct? 

Task 3 
If the answer to the task was “No”, then the interviewee was asked to justify why and 
if it was “Yes”, then the fourth task was given with the aim of introducing a cognitive 
conflict, in order to study the student’s reaction.   

Task 4 imposes the strategy for calculating ( )6 28−  that leads to a different result 
from -2. With this, the intention was to put the affirmative answer given previously to 
the task 3 into conflict, in order to again study the reaction of the interviewee. 

If you consider: 

( ) ( ) 2888 332 26 2 −=−=−=− ⋅  

then complete: 

( ) ...648 66 2 ==−  

Task 4 
RESULTS OF TEXTBOOKS REVIEW 

1. In the Spanish textbooks reviewed the sign  is used to express the reverse op-
eration of taking a number to the power of two (Figure 1):  

Calculating the square root is the reverse operation of calculating the power of a square: 
baab2 =↔= .  
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Figure 1. 1º Secondary (7th grade), Anaya 2006, p. 52 

The expression that has the  sign is called a radical, that is to say the operation 
shown, and not the main root of said operation (Figure 2). 

It is called the nth root of a number a, and is written n a , where a number b meets the fol-
lowing condition: ban =  and abn =  
n a  is called radical; a, radicand, and n, the root’s index.  

 
Figure 2. 4º Secondary (10th grade), Anaya, 2006 b, p. 32 

As a consequence it is considered that a radical has roots and that its number depends 
on the index of the radicand’s sign (Figure 3). 

 
Figure 3. 3rd Secondary (9th grade), Oxford, U. P., 2007, p.32 

So, equalities appear written as 636 ±=  (Figure 4). 

 
Figure 4. 3rd Secondary (9th grade), S. M., 2003, P. 36 
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The properties of the radicals are stated without mentioning their field of validity. So 
it is not taken into account that ∈∀= a,aa2 R (Figure 5). 

 
Figure 5. 4º Secondary (10th grade), Anaya, 2006 b, p. 36 

2. In the Rumanian textbooks reviewed, the sign is associated with the radical no-
tion. The radical with an index two of a positive number a is defined as the positive 
solution of the equation ax 2 =  and is denoted by a . (Figure 6) 

 
Figure 6. 10th grade, Fair Parteners, 2005, p. 13 

It is taken into account that ∈∀= a,aa 2 R, and the domain of validity of the radi-
cal’s properties is specified. (Figure 7) 

 
Figure 7. 10th grade, Fair Parteners, 2005, P. 13 
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FINDINGS AND CONCLUSIONS 
As for the first objective, the review of textbooks shows that there are substantial dif-
ferences in dealing with the  sign. Specifically, it can be said that in the Spanish 
textbooks studied, the conception associated with this sign is operational, whereas in 
Rumanian texts it is structural. 
As regards the second objective, Patricia and Iulian’s mathematical knowledge with 
respect to the radical sign shows significant differences.  

In tasks 1 and 2, Patricia identifies 4  with the set of two solutions (2 and -2), and 
does not see the radical as the positive root when the index is even. In the interview, 
to emphasize this in task 2, she indicated that in reality there are not two solutions, 
but there are contexts in which it is replaced by +2 and others in which it is replaced 
by -2. 

Iulian does not agree with 24 ±= , arguing that the radical of an even index of a 
positive number belongs to the interval (0,∞ ) and specifies that, in any context 

4 represents a number, that is, the positive square root of 4. 

In task 3 and 4, Patricia does not take into account that ∈∀= a,aa 2 R. On the other 
hand Iulian correctly applies the restriction of the property of radicals and he realizes 
the error that the hypothetical student commits. 

In conclusion, it can be said that Patricia has procedural knowledge of the  sign, 
whereas Iulian has structural knowledge, and that these conceptions are consistent 
with what is shown in the textbooks studied. 

As for the third objective, this part of the work was restricted to Patricia’s conflict, 
the answers to the questionnaire and the interviews that provide indications suggest-
ing the validity of the hypotheses. 
(H1), Patricia does not distinguish between operational and structural use of radical 
sign.  
(H2), the review of Spanish texts evidences that the teaching proposal reflects the am-
biguity of the radical sign, used in the expression 24 ±= , and does not use the for-
mal definition of radicals, so that it is plausible to think that they encourage the ap-
pearance of Patricia's conflict.  
(H3), in the revised Rumanian texts, the formal definition of the radical sign is ob-
served, so that it is possible to think that they support Iulian’s way of acting, which 
does not encounter the conflict that Patricia expresses.  

Finally, the important educational implication that should be pointed out is that in any 
educational proposal that aims to avoid conflicts such as the one expressed by 
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Patricia, the formal definition of radical must be considered, and it must be guaran-
teed that students understand the reasons for this definition. 
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BEHIND STUDENTS’ SPREADSHEET COMPETENCIES: THEIR 
ACHIEVEMENT IN ALGEBRA?  

A CASE STUDY IN A FRENCH VOCATIONAL SCHOOL 
Mariam Haspekian, Eric Bruillard 

DIDREM (Université de Cergy), STEF (ENS Cachan, INRP) 
Research on the use of spreadsheet in mathematics education usually points out its potenti-
alities in the learning of algebra. The link between spreadsheet and algebra is thus often 
seen in the direction “spreadsheet for algebra”. This paper follows the opposite direction, 
i.e. “algebra for spreadsheet”, by questioning the role of algebra in students’ spreadsheet 
competencies. It reports a case study, based on computer tests, in the framework of a 
French research project studying students’ spreadsheet uses and competencies. The results 
of the test show algebra raising out again, playing a role behind students’ achievements 
and actions with spreadsheets.      Algebra, Spreadsheet competences, Computer tests 

INTRODUCTION 
What role can technology play in mathematics education? Usually, didactic research 
approaches ICT questions through this direction, i.e. “technology for mathematics”. 
This is the case for many studies on spreadsheets which consider this latter as a good 
tool to help pupils understanding algebraic concepts.  
Here, we take the opposite direction: “what about algebra for spreadsheet?” by ques-
tioning the role algebra plays in students’ mastery of spreadsheets. This issue comes 
from the analyses of experimentations in the context of DidaTab, a French research 
project studying students’ spreadsheet competencies. To identify the basic competen-
cies students have acquired, the DidaTab project realised tests of competencies in 
several classes. In the analyses of the results, the relation with algebra stands out 
again, raising issues on the relations between students’ achievements and actions with 
this kind of software and their mastery of algebra. 
In the first part, we give a quick description of the DidaTab project. The second part 
focuses on relationships between spreadsheets and mathematics learning. Then, to get 
a more concrete view of spreadsheet mastery problems, we detail the results of a 
computer test administrated to 17 y.o. students in a vocational marketing school. The 
results of this test put in perspective students achievements, actions, and software in-
teraction understanding, with their knowledge (or their lack of) in algebra.  
THE DIDATAB PROJECT 
According to educational authorities of many countries, ICT has to be used in class-
rooms. In the case of secondary education, all countries have established detailed rec-
ommendations (Eurydice, 2004, p. 24). In general, using ICT to enhance subject 
knowledge or learning correct use of a word processor or a spreadsheet are part of the 
objectives at lower secondary level. But, if ICT seems to be included in prescribed 
curricula, we only have very few data about effective practices in classrooms and ICT 
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competencies of students. Some data from PISA 2003 (Eurydice, 2005) provides in-
teresting results (for example, that less than half of students are familiar with using a 
spreadsheet to plot a graph) but rely on declarative statements. We don’t know 
whether students under or over estimate their competencies. To get a more compre-
hensive picture, we considered that it was not fruitful to take into account ICT as a 
whole, and decided to focus on specific software. Spreadsheets, prescribed in French 
curricula for ten years now, were a good indicator of ICT mastery. What do students 
learn about spreadsheets? Which basic competencies do they have acquired at the end 
of their schooling?  
DidaTab (didactics of spreadsheet[1]) was a three year project (2005-2007) founded 
by the French ministry of research and dedicated to study personal and classroom 
uses of spreadsheets in French context. The methodology combined questionnaires, 
interviews (students and teachers), classroom observations, computer tests, content 
analysis of official curriculum texts, websites and resources, and some comparative 
studies with other countries (Belgium, Greece, Italy) have been made. As results 
(Blondel & Bruillard, 2006), we have an almost complete cartography of spread-
sheets uses in the French secondary education, including an overview of personal 
uses, and we began to describe kinds of genealogy of uses, according to subject mat-
ters (e.g. mathematics, technology, social sciences, experimental sciences…). But we 
have not yet built a theoretical framework to explain spreadsheets uses and compe-
tencies of students. Some of these competencies relate to knowledge of mathematical 
nature, especially algebraic one. In a next part, we discuss this particular relation be-
tween spreadsheets and mathematics. 
SPREADSHEET AND MATHEMATICS COMPLEX RELATIONSHIPS 
In the title of this section, we play on the word “mathematics” to relate two points: 
mathematics as a school subject, this questions the place of spreadsheet within sylla-
bus, or mathematics as knowledge that spreadsheets may bring into play, this ques-
tions the place of mathematics within the spreadsheet objects. 
Spreadsheets within mathematics syllabus 
Spreadsheets have been introduced at many different teaching levels and courses of 
the French Educational system. Part of the mathematics syllabus since 1997, first in 
middle school (grade 6 to 9) then in high school (grade 10 to 12), their place varies 
according to the school streams, as mathematics education appears under different 
aims. Two main tendencies can be distinguished, each of them promoting a different 
use of spreadsheets. 
In the scientific streams, mathematics is a very theoretical discipline also used to se-
lect students. In this “abstract” approach of mathematics, spreadsheets appear as a 

                                           
[1] In French, spreadsheet is “tableur”. See http://www.stef.ens-cachan.fr/didatab/en/index.html for other information 
and results in English about DidaTab project 
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tool to serve the learning of mathematical concepts. Then spreadsheets’ role is to 
support and enhance learning. 
In some other streams, as vocational or literary, mathematics is considered as a more 
experimental subject oriented towards everyday life problems. This objective favours 
the use of different kinds of software such as spreadsheets, which allow a more con-
crete approach of mathematics opened on its everyday applications. 
First vision leads to a very small place for working spreadsheet competencies. More-
over, as we will elaborate in the next section, using spreadsheet to enhance mathe-
matical learning is “double-faced” as far as spreadsheet is not neutral on mathemati-
cal concepts. Second vision opens a larger place for building some spreadsheet com-
petencies. In these streams, a hypothesis would be that students’ difficulties in 
mathematics could be counterbalanced by some instrumental abilities and some mas-
tery of this software[2]. But the situation is not as simple because of the specific rela-
tionships existing between spreadsheet and mathematics: spreadsheet mastery requir-
ing mathematical knowledge. 
Mathematics within spreadsheet objects  
ICT use in mathematics education is a question among the more general problematic 
of technology use in human activity, studied in the field of cognitive ergonomics. A 
theory of instrumentation (Vérillon & Rabardel, 1995); developed in this field, pro-
vides a frame to tackle the problematic of the learning in complex technological envi-
ronments. In this frame, an instrument is not given but built by the subject (Vérillon 
and Rabardel, 1995) through a progressive individual instrumental genesis. This 
genesis, is not neutral, instruments have impact on the conceptualisation. This idea of 
non neutral «mediation» between subject and tools provides a way to report on the 
strong imbrications that exist, and have always existed, between mathematics and the 
instruments of the mathematical work. It led to an instrumental approach in didactics 
that has been used in several researches on symbolic calculators (CAS) in mathemat-
ics education (Artigue 2001, Lagrange 1999, Drijvers 2000, Guin, Ruthven & 
Trouche 2005). What about spreadsheets? 
Some "computer" objects, characteristics of spreadsheets, do not strictly correspond 
to mathematical knowledge transposed in a computer environment, even not to a 
computer transposition of school knowledge, but are however linked with mathemat-
ics. The basic principle of spreadsheet, which consists in connecting cells between 
themselves by "formula", gives an example of these objects, linking spreadsheet to 
the domain of algebra. Such a particular relation with mathematics is precisely the 
reason why many research in didactics from different countries (Ainley (1999); Arza-
rello et al. (2001); Capponi (2000); Dettori et al. (1995) or Rojano and Sutherland 
(1997)) give spreadsheets a role in the learning of algebra.at elementary stages, iden-
                                           
[2] For instance, in the literary stream, a place is given to concrete aspects of mathematics and this is precisely a stream 
where spreadsheets take an important part in the mathematics syllabus.  
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tifying them as tools of arithmetic-algebraic nature. Haspekian (2005a), having 
adopted an instrumental approach, showed that in spite of an apparent simplicity of 
use, it is not so evident for teachers to take benefit from these characteristics. The tool 
generates some complexity: spreadsheets transform the objects of learning and the 
strategies of resolution by creating new action modalities, new objects, and by modi-
fying the usual ones (as variable, unknown, formula or equation…). Here are some 
examples. 
In a paper and pencil environment, variables in formulae are written by means of 
symbols (a letter generally for the school levels concerned here). This variable ‘letter’ 
relates to a set of possible values (numerical here) and exists in reference to this set. 
In spreadsheet, let us take for example the formula for square numbers. The Fig.1 
shows a cell argument A2 and a cell B2 where the formula was edited, referring to 
this cell argument. 
 
 

Figure 1 A2 is the cell argument; B2 calculates the square of the value in A2 

Here again the variable is written with symbols (those of the spreadsheet language) 
and exists, as with paper and pencil, in reference to a set of possible values. But this 
referent set (abstract or materialised by a particular value, e.g. 5 in Fig.1) appears 
here through an intermediary, the cell argument A2, which is both: 
• an abstract, general reference: it represents the variable (indeed, the formula does 

refer to it, making it play the role of variable); 
• a particular concrete reference: here, it is a number (in case nothing is edited, 

some spreadsheets attribute the value 0); 
• a geographic reference (it is a spatial address on the sheet); 
• a material reference (as a compartment of the grid, it can be seen as a box) 
So, where in paper and pencil environment, we stick a set of values, a cell argument 
overlaps here, embarking with it, besides the abstract/ general representation, three 
other representations without any equivalent in paper and pencil (Fig.2). 
 
 
 

Figure 2: The “cell variable” 

Other examples of the changes due to spreadsheets are given in Haspekian 2005a. 
From an institutional point of view, these changes have different impact following the 
different way chosen to introduce algebra. As the recent ICMI study showed (Stacey 
et al., 2004), different aspects of algebra can be focused on: as a tool of generalisa-
tion, a tool of modelling, or a tool to solve arithmetical, geometrical or everyday life 

 Abstract 
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Compartment of 

the sheet

(the only part that 
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1
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problems through what is called since Descartes, the « analytical method ». Follow-
ing the case, different mathematics is brought forward: variables, formulae and func-
tions on one hand, unknowns, equations and inequations on the other hand. In the 
French school culture, it is traditionally the analytic way that is chosen, the resolu-
tion, though equation solving, of various problems appears as emblematic of pupils 
introduction to algebra. Table 3 gives a quick insight of the distance between the al-
gebraic culture in the French secondary education and the algebraic world carried out 
by spreadsheets. 

"Values" of algebra In paper pencil environment In spreadsheet environment 
Objects unknowns, equations variable, formulae 

Pragmatic potential tool of resolution of problems 
(sometimes tool of proof) 

tool of generalization 

Process of resolution "algorithmic" process, applica-
tion of algebraic rules 

arithmetical process of trial 
and refinement 

Nature of solutions exact solutions exact or approached solutions 
Table 3: distance between different “algebraic worlds” 

More generally, the mathematical culture sustained by spreadsheets is an « experi-
mental » one: approximations, conjectures, graphical and numerical resolutions, im-
plementing everyday life/ concrete problems, statistics… Thus, this vision fits with 
the aim of mathematics in particular streams of the French Education, especially 
where students not very good at mathematics are supposed to use spreadsheet with 
stronger objectives. It is thus interesting to investigate with students of non scientific 
streams and test them at the last year of their schooling (grade 12). 
As we will see next, the computer test confirms the complex relation between spread-
sheet and mathematics. Algebraic aspects; especially the use of cell-variables in for-
mulae, stand out again as one of students’ main difficulties with the tool.  

STUDENTS’ SPREADSHEET COMPETENCES: A CASE STUDY 
We report here the example of a one hour computer test administrated in 2005 in a 
class of 13 students of vocational school[3] (17 year old) preparing a marketing di-
ploma. After presenting the objectives and a brief description of the test, we first give 
an overview of the general results and then an analysis on the algebraic aspects that 
these results lead to focus on. 
Objectives and description of the test 
For this part of the DidaTab project, the objective was to assess students’ spreadsheet 
competences in a computer test. In order to design such tests, a first step consisted in 
the identification of basic spreadsheet skills, that have been actually organised in five 
categories (see below), then the definition of some general and simple tasks corre-

                                           
[3] This school is identified as rather difficult in the sense that students have behavioural difficulties and social prob-
lems. 
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sponding to each ability, and finally the construction of a database of skills, questions 
and tasks (for more details on this step of the project, and especially on the design of 
the tests, see Tort and Blondel, 2007).  
From the database we selected 24 exercises relevant to the school year of the students 
and covering all categories of skills. Then, the students’ mathematics teacher chose 
11 exercises from this list according to the competences she assumed that her stu-
dents have. With regard to the classification, the 11 exercises are divided in the fol-
lowing way: 

1. "Cells and Sheets Editing" (3 were selected) 
2. "Writing of formulae" (4 were selected) 
3. "Translating data into graphs" (1 was selected) 
4. "Managing data tables" (2 were selected) 
5. "Modelling" (1 was selected) 

The tasks were proposed in the computer test with increasing order of difficulty, in a 
spreadsheet file. Students had to answer directly within the tool and record their work 
at the end of the test. The collected data are constituted by these file records, observa-
tion and the complete recording of the actions for one of the students. 
An overview of the results 
Among the five categories of skills, clear differences between basic skills linked to 
superficial manipulations (not requiring knowledge of the contents) and abilities re-
quiring deeper knowledge appear. 
The best rates of success for the 13 students, concern cell formatting: italic (10), bold 
(11), date format (9). The results decrease then as the tasks require more understand-
ing of spreadsheets objects. Some tasks requiring deeper knowledge of spreadsheet 
functionalities have been moderately achieved: recopying a format (6), sorting out 
data (6), or representing data with a graph by choosing the best type of representation 
(4). Finally, more specific knowledge as the conditional format (0) or specific dis-
plays either of numerical data (fractional format: 1) either of graphics (displaying la-
bels on the X axis: 2) seem rather unknown from these students.  
All exercises of the formulae category are part of the competences that have been 
failed in. Actually, the success rates for the four tasks of this category are the lowest 
of the test, varying from 0 to 2 good answers for each item: Writing a formula to cal-
culate the AVERAGE of a line of data in adjacent cells (2), Writing a formula calcu-
lating a subtraction (0), a product (0), a division (0), Writing and copying down a 
formula using relative and absolute references (0, only 1 student answered: he gave a 
number…), Writing a conditional formula (using the IF function) (0).  
Three main issues can be raised from these observations:  
1) The inadequacies between the skills we thought students have and their actual 
level of competence. Students’ abilities were clearly lower than expected.  
2) The teacher tended as well to overestimate the skills of her students. The exercises 
she has chosen were globally too difficult.  
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3) The very bad results concerning the formulae category raise the question of 
spreadsheet’s relation to algebra. Obviously, the formulae, the copying of formulae, 
the use of relative/absolute references as variables in formulae and the conditional 
formulae appear in students’ results, as the less achieved competences. 
In the next section we analyse this last point in more details. 
Algebraic aspects in students’ achievements 
Competences just mentioned are all linked with algebraic knowledge of students, 
their understanding of the concepts of variable and formula. These results join other 
research in didactics of mathematics (Capponi, 2000, or Dettori & al. 2001). For 
Capponi, benefiting from spreadsheet potentialities requires from the user the under-
standing of some algebraic knowledge such as the notion of formula, and students’ 
difficulties with spreadsheets show their needs in this domain: the work remains at 
the numeric level (data tables, numbers, operations) without reaching the level of an 
algebraic treatment (dynamic sheet of calculations, formulae). 

About formulae 
Looking further the tasks of the formulae category, we note that sometimes, not only 
the correct formula had not been found, but not even wrong formulae have been tried. 
Some students edit, instead of formulae, the corresponding arithmetic operations, 
some others edit directly the results they calculate by hand, but most of them do not 
answer anything. Another surprising point concerns the calculus of the average: we 
did not find any formula such as “(A5+B5 +… +N5)/ 14” or equivalents and only 2 
students achieved the calculus of this average.  
Observation during the test brings out some more elements. One of the students who 
succeeded in the average used the AVERAGE functionality (and seemed yet sur-
prised to have directly the response). This can seem paradoxical, but to calculate the 
average of the given numbers, he directly used the function "AVERAGE" provided 
by spreadsheet; the references to the adequate cells are then automatically made. The 
student has to calculate an average, he has an "average" function (as a key of calcula-
tor), and he uses it without controlling more what this feature produces. The use of 
"AVERAGE" can thus mask its lack of understanding of what is really a formula in 
spreadsheet and the way it can be used. We have the same observation for the other 
student who used the average function. Finally, in the whole test, we did not find any 
other formula at all except these automatic formulae as average or sum. And the very 
surprising result that is coming to light with these analyses is that no student used a 
single relative reference in the entire test! According to us, this is precisely linked to 
the problem of the cell variable. Very few students used formulae which send back 
automatically the cell references[4] (such as SUM or AVERAGE) and not even a sin-

                                           
[4] The spreadsheet used in this experiment is Microsoft Excel. The interface provides buttons that you can directly acti-
vate and obtain the writing of a formula including cell references 

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 525



 

 

 

 

gle student was able to write a formula which requires finding and entering the cell 
variable.  
About the cell variable 
The use of cells as variable in a formula seems more difficult than the use of formulae 
itself. In tasks which require a formula which does not automatically send back the 
cells references, either students do not find any formula or they use again an “auto-
matic” formulae (AVERAGE or SUM) even when these functions have nothing to do 
with the task! For example, a correct answer to a task was a formula with a multipli-
cation and one student has written the following formula: “=SUM (C12*10)”. SUM 
is here totally useless and used in a non standard way. The student invoked the func-
tion and turned the usual argument automatically written by the software (“=SUM 
(C12)” in this case) into a multiplication. By using this automatic formula, he did not 
enter himself the cell reference in the formula.  
We have exactly the same phenomenon in another task: 2 students used SUM in both 
columns although the answer has nothing to do with a sum. One of them, after using 
the function SUM transformed the separating sign ":" in the syntax of this function 
into a subtraction (and the result is then correct)! All the others had not answered or 
had put either an operation or directly the numerical result instead of a formula. Once 
again, the use of cells as variables in a formula seems to be problematic, the type of 
functions as SUM or AVERAGE being apparently the only type of formula those 
students manage.  
The problem of the cell-variable is also revealed by the use of the recopy. Here again, 
a deeper analyse of the answers of the whole class shows that it is not so much the fill 
handle that raises problem than copying downwards formulae. The recopy becomes 
problematic when it puts at stake some cells references which have to be incre-
mented. This principle of the spreadsheet functioning, which is one of its most basic 
interesting feature, but which has an algebraic nature (the recopied cell playing the 
role of variable in the formula and the spreadsheet keeping the structure of the for-
mula during the recopy), seems not to be understood by students. Results concerning 
recopy are quite different whether the recopy does concern cell-variables (copying a 
formulae with references: 0) or not (as copying down a date: 6). 
In conclusion, it seems clear that these students do not master the ability of self edit-
ing a cell-variable in a formula or the way the recopy affects the cell references.  
DISCUSSION AND PERSPECTIVES 
The computer test reveals difficulties of grade 12 students, not so much in surface 
manipulation skills, but in their lack of understanding of algebraic concepts. Using a 
formula in a spreadsheet requires having understood the concept of "variable" in the 
spreadsheet (the cell argument in the formula). Using a recopy of a formula requires 
seeing the increment of the references produced by the recopy as a means for the 
spreadsheet to preserve the algebraic structure of the formula along the copy. The 

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 526



 

 

 

 

syntactic writing varies in every line but the algebraic structure is preserved. These 
types of knowledge were analyzed as algebraic competences which constitute a diffi-
culty for students at the pre-algebraic level (Capponi, 2000, Haspekian 2005b).  
In an exploratory study with younger students (grade 7), which consisted of a first 
approach to algebra through the use of spreadsheet, Haspekian (2005) found similar 
results. The students were asked to write, interpret or transform formulae. The obser-
vations have shown that the technique of using a formula and copying it down was 
the competence the longest to acquire and created most difficulties to the students. 
The difficulties were the following ones: 
• comprehension of formulae (some remained in a use of arithmetical level of the 

spreadsheet); 
• use of the fill handle, in particular at the beginning. But even afterward, when they 

experienced it several times, they had difficulty in appropriating it and its use was 
not systematic.  

The experiment in vocational high school shows that students of grade 12 have the 
same difficulties as regard to these algebraic concepts embarked in the tool. It would 
be interesting to make paper-pencil test on their level in algebra to validate this hy-
pothesis.  
Another interesting point is the question of the modalities of spreadsheet learning. In 
the experiment of Haspekian (2005b), half of the students had followed a training 
course about spreadsheet (hands-on work) some months before the experiment. In 
particular they had seen formulae and recopy of formulae, and the teacher of this 
course had asserted that these students would have no difficulty with the tasks of the 
experiment. The results showed that they had the same difficulties and took the same 
time to answer the exercises that the other half of the students, those who had never 
used spreadsheet previously. Our computer test points out the same difficulties.  
It is also interesting to compare with students of other professional fields or students 
of general fields. In DidaTab, another computer test has been administrated in a class 
of literary stream. Results show that students have less difficulty with recopy and 
formulae but have much more difficulties with manipulation skills. Yet in France, this 
stream is the general stream where spreadsheets use is the most strongly prescribed 
by curriculum... Certainly, as mentioned in part II, spreadsheets change too much the 
traditional mathematics that live in the general streams, teachers do not seriously 
enough take into account spreadsheet learning (not enough time devoted to spread-
sheet learning, lack of structured training sessions, etc.) in these general streams, and 
many students are not able to manage important spreadsheet features. This result is 
confirmed by many interviews of students in the DidaTab project. Thus, our small 
experiment with 12th graders gives a rather different picture from general discourses 
about students great competencies. It seems that intrinsic difficulties of spreadsheet 
concepts are not sufficiently taken into account in mathematics education, even in the 
school streams where mathematics objectives and views are connected to every day 
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life. In conclusion, students of professional fields who are mostly supposed to use 
spreadsheet due to their school profile are unfortunately those who are precisely 
blocked by their difficulties in algebra, and students of general streams with a better 
level in mathematics are those who will not “meet” spreadsheets enough because of 
the specificity of their stream…  
To go further, it would be interesting to deepen the research with more computer tests 
in different levels and settings, and try to define thus kinds of students trajectories of 
uses. 
REFERENCES 
Ainley, J. (1999) Doing algebra-type stuff: emergent algebra in the primary school. Proceedings of 

23rd Conference for the Psychology of Mathematics Education. Haifa: Israel, Vol 2, 9--16. 
Artigue, M. (2002) Learning mathematics in a CAS environment: The genesis of a reflection about 

instrumentation and the dialectics between technical and conceptual work. International Journal 
of Computers for Mathematical Learning, 7 (3), 245--274. 

Arzarello, F., Bazzini, L. & Chiappini, G. (2001) A model for analysing algebraic processes of think-
ing. In Perspectives on school algebra, R. Sutherland, T. Assude, A. Bell & R. Lins (eds), Klu-
wer, Dordrecht, Vol.22, 61--81. 

Blondel, F-M. & Bruillard, E. (2006) Analysis of the uses of spreadsheets at home and in schools 
by French students. ECER 2006 (European Conference on Educational Research), Transform-
ing Knowledge, Geneva, September 2006. 

Capponi, B. (2000) Tableur, arithmétique et algèbre. L’algèbre au lycée et collège. In Proceedings 
of Journées de Formation de formateurs 1999. IREM de Montpellier, Montpellier, 58--66. 

Dettori, G., Garuti, R. & Lemut, E. (2001) From arithmetic to algebraic thinking by using a spread-
sheet. In Perspectives on school algebra, R. Sutherland, T. Assude, A. Bell & R. Lins (eds), 
Kluwer Ac. Publishers, Dordrecht, 191--207. 

Drijvers, P. (2000). Students encountering obstacles using CAS. International Journal of Com-
puters for Mathematical Learning 5(3): 189-209. 

Eurydice (2004), Key Data on Information and Communication Technology in Schools in 2004: 
http://www.eurydice.org/ressources/eurydice/pdf/048EN/004_chapB_048EN.pdf 

Eurydice (October 2005), http://www.eurydice.org/ressources/eurydice/pdf/0_integral/069EN.pdf 
Guin, D., Ruthven, K. and Trouche, L. (eds) (2004) The Didactical Challenge of Symbolic Calcula-

tors, Turning a Computational Device into a Mathematical Instrument. Kluwer Ac. Publ. 
Haspekian, M. (2005a) An “instrumental approach” to study the integration of a computer tool into 

mathematics teaching: the case of spreadsheets. IJCML, 10(2), 109--141. 
Haspekian, M. (2005b) Intégration d’outils informatiques dans l’enseignement des mathématiques, 

étude du cas des tableurs. PhD. thesis, University Paris 7. 
Lagrange, J.B. (1999) Complex calculators in the classroom: theoretical and practical reflections 

on teaching pre-calculus. Int. Journal of Computers for Mathematical Learning 4(1), 51-81. 
Rojano, T. & Sutherland, R. (1997) Pupils' strategies and the Cartesian method for solving prob-

lems: the role of spreadsheets. Proceedings of the 21st Conference for the Psychology of 
Mathematics Education. Lathi, University of Helsinki, Vol.4, 72--79.  

Stacey K., Chick H. and Kendal M. (eds) The Future of the Teaching and Learning of Algebra. In 
The 12th ICMI Study, Kluwer Ac. Publisher, 2004. 

Tort F. and Blondel, JM (2007) Uses of Spreadsheets and Assessment of Competencies of High 
School Students. In D. Benzie & M. Iding (Eds.) Proceedings of Informatics, Mathematics and 
ICT, IMICT’07. Boston, USA, 2007. 

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 528



 

 

 

 

DEVELOPING KATY’S ALGEBRAIC STRUCTURE SENSE 
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In this paper we follow one student through a sequence of tasks and describe our ob-
servations of how her algebraic structure sense develops.  
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INTRODUCTION 
In this paper we take a close look at how one Israeli 11th grade high school student 
(age 16) performed during a series of teaching interviews designed to develop alge-
braic structure sense. 
The term structure sense was coined by Linchevski and Livneh (1999). Subsequently 
the idea was developed and refined by Hoch and Dreyfus (2006) who arrived at the 
following definition. 

Students are said to display structure sense for high school algebra if they can: 

· Recognise a familiar structure in its simplest form.  

· Deal with a compound term as a single entity, and through an appropriate substitu-
tion recognise a familiar structure in a more complex form. 

· Choose appropriate manipulations to make best use of a structure. 

See Hoch (2007) for a full definition and examples.  
In an earlier paper (Hoch & Dreyfus, 2007) we showed how, through a simple inter-
vention, students acquired the ability to recognise and exploit the properties of alge-
braic expressions possessing the structure a2 – b2. We described what is structural 
about a2 – b2, and showed how a student can learn to recognise structure. Hoch 
(2003) discussed and analysed structure in high school algebra, considering gram-
matical form (Esty, 1992), analogies to numerical structure (Linchevski & Livneh, 
1999) and hierarchies (Sfard & Linchevski, 1994), culminating in a description of al-
gebraic structure in terms of shape and order. In this research we took a similar ap-
proach, relating to any algebraic expression or equation as possessing structure, 
which has external and internal components. External components include shape and 
appearance. Internal components are determined by relationships and connections be-
tween quantities, operations, and other structures.  
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We designed a series of tasks with the aim of facilitating the improvement of struc-
ture sense. The tasks were deliberately devoid of any context other than the structural 
and technical, because the students had shown themselves unable to use certain alge-
braic techniques in different contexts, a phenomenon also noted by Wenger (1987). If 
a meaningful context had been chosen, then the issue of whether the students were 
familiar with the context and how well they understood it would have had to be con-
sidered.  
The tasks were based on five structures that Israeli students meet in high school:  
a2 – b2; a2 + 2ab + b2; ab + ac + ad; ax + b = 0; and ax2 + bx + c = 0. Hoch and Drey-
fus (2006) identified students’ difficulties with these structures. The creation of the 
tasks was based on the first author’s analysis of structure sense and supported by her 
teaching experience. She placed emphasis on verbalising about mathematical con-
cepts. In order to speak about a mathematical concept (or object), students must be 
able to deal with the result of some process without having to think about the process 
itself. The process is performed on a familiar object and then the result becomes an-
other object (Sfard, 1991; Sfard & Linchevski, 1994). For example, in exercise 3 be-
low the term 3xy is the result of the process of multiplying three elements. The stu-
dent is required to relate to this result as an entity, in order to find its value.    
In one task, the aim is to familiarise the student with equations that could be consid-
ered to have linear or quadratic structure when a product is related to as the variable. 
The student is presented with the following exercises in sequence:  

1. Find xy:  8xy + 15 = 0.    2. Find xy:  8x2y2 + 6xy – 9 = 0.  

3. Find 3xy: 17xy – 25 = 13 + xy.   4. Find 2xy:  34xy – 4x2y2 = 10xy – 13. 

5. Find x:  17x2 – 45 = 0.  
The student is asked to say which structure each equation possesses, to make up simi-
lar equations, and in some cases to devise efficient ways of solving them. The fifth 
equation is obviously quadratic, but the student is asked whether it could be consid-
ered to have a different structure if the instruction was “Find x2”. 
In another task the student is required to describe each of the five structures listed 
above in words, and make up expressions or equations similar to those shown. The 
idea here is that the need to explain a structure in words causes the student to think 
more carefully about it. Gray, Pinto, Pitta, and Tall (1999) considered the use of lan-
guage a powerful method of dealing with complexity. The student is asked to create 
expressions or equations that might be difficult for a friend to recognise. The ration-
ale for this is that the act of creating more examples deepens the personal relationship 
with the structure. Rissland (1991) and others (e.g., Bills et al., 2006) said that gener-
ating examples is an important cognitive activity and that the ability to generate ex-
amples as needed is a cognitive tool of experts, often lacking in novices. 
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TEACHING INTERVIEWS 
A series of three teaching interviews was designed, comprising tasks including the 
ones described above, with the purpose of improving students’ structure sense. A pre-
test measuring structure sense was administered to two 11th grade classes of interme-
diate to advanced students. Ten students who performed badly on the pre-test were 
chosen to participate in individual sessions of approximately 45 minutes each, over a 
period of up to two weeks.  Throughout the sessions the researcher encouraged the 
students to verbalise about what they were thinking and doing, with emphasis placed 
on the correct naming of each algebraic entity and structure. A post-test was adminis-
tered individually in a separate session a fe w days after the third session, and several 
months later a delayed post-test was administered.   
All ten students displayed considerable improvements in structure sense, as measured 
by the immediate post-test. These improvements were maintained over time, to vary-
ing extents. We chose to report on Katy because she displayed the highest level of re-
tention of learned abilities, and also because she was enthusiastic and highly verbal. 
On the pre-test Katy displayed technical skills such as opening parentheses, collecting 
like terms, and factoring trinomials. However her structure sense was poor—she was 
unable to factor an expression without first converting it into an equation and could 
not recognise a common factor. We will present here some excerpts from Katy’s in-
terviews. The excerpts are presented in chronological order: excerpt 1 is from the first 
session, excerpts 2 and 3 are from the second session, and excerpts 4 and 5 are from 
the third session. 

EXCERPT 1:  DIFFERENCE OF SQUARES 
Katy displayed difficulties in factoring 49 – y2 as (7 – y)(7 + y), and only reluctantly 
agreed that the expressions x2 – 16 and 49 – y2 belong in the same structure group. 
When asked to give a general formula for the expressions in this group, she first sug-
gested the formula a2 – b. She observed that 49 – y2 confused her, “because for me 
the ‘squared’ is always plus”. With a little help she arrived at the formula a2 – b2. 
However she was confused when asked to give a name to the structure represented by 
a2 – b2. The following extract is typical of students’ difficulties when trying to ex-
plain mathematical concepts in words. (K = Katy; I = interviewer) 

K The expression is made up of … 
I How did you decide that these belong together? [Points to x2 – 16 and 49 – y2]. What 

characterises them? 
K That squared minus that squared. Of the first degree. 

This is an example of careless use of terminology. Earlier Katy had described linear 
equations as being of the first degree, yet here she assigns this name also to a quad-
ratic expression, despite the fact that she first mentioned the squared terms. 

I You called them a2 – b2. 
K Ah. So … eh … how to give it a name? 
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I Um , a description. 
K Can I call it a2 – b2? 
I Yes. 
K Is that a name? 
I No, that’s a formula. You have a number squared minus a number squared. What do 

we call the result of a number minus a number? 
K A ratio? 
I No, that’s a number divided by a number. 
K Difference? 
I That’s right. So we can call this the difference of two squares. 
K  Ah, I understand, the difference of two squares. 

Many of the students were unable to name the result of subtraction without heavy 
prompting. 

EXCERPT 2:  COMMON FACTOR 
In the pre-test Katy failed to answer any of the questions that required extracting a 
common factor. In the first session different types of factoring were mentioned, 
though not practised, including extracting a common factor. Subsequently, in the sec-
ond session Katy had no problem factoring the expression 36axy – 16aby. She was 
able to relate to the common factor 4ay as a single entity. However the expression 
16x + 40xy + 50x2 presented her with more of a challenge. She rewrote it as 50x2 + 
40xy + 16x = 0, and extracted a common factor to get   
x(50x + 40y + 16) = 0. 

I Why did you write “equals zero”? I don’t see an equation. 
K [Scores out “equals zero”.] I can’t do anything else. 
I You extracted a common factor. I don’t think you extracted the greatest common fac-

tor. 
K Ah. Two. [Writes: 2x(25x + 20y + 8).] 
I Fine, but why did you change the order? 
K It’s just simpler for me to have the x squared at the beginning. 

The above extract illustrates Katy’s diffidence about what she can “do” with an ex-
pression, although she knows what to do with an equation. It mirrors her performance 
on the pre-test. She does not, probably cannot, justify her preference for having “the x 
squared at the beginning” other than that she feels it is simpler. This preference was 
shared by other students, and perhaps reflects the manner in which textbooks and 
teachers present quadratic expressions. Although Katy succeeded in factoring the ex-
pression, she did not relate to 2x as an entity—she extracted first x, then 2. 
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EXCERPT 3:  EQUATIONS 
When it came to equations, Katy was overconfident, making some instant decisions 
that were not always correct. She was asked to copy each equation under its structure 
(quadratic or linear). Here is her response to (2x2 – x)2 + 2(2x2 – x) – 35 = 0. 

K Wow. This also doesn’t belong here (pointing to ax2 + bx + c = 0) but  
I If it doesn’t belong, don’t write it there. 
K No, it does belong, if we use t, where t is 2x squared 
I Why? 
K Because there will be x to the third. 
I Yes, I agree you need to use a substitution, what will your t be? 
K  2x squared. 

Here followed a brief discussion about the viability of such a substitution.  
K [Thinks] Then I’ll get an equation with t equals x and tx squared and t squared. x to 

the third can be t squared. 
I How would you solve such an equation?  
K Eh … 
I I don’t know either. Can you think of a different way? 
K [Thinks] 
I Continue with the idea of t. 
K Oh I didn’t look. 2x squared minus x is t.  

Substituting t in place of a compound variable in an equation is taught in 10th grade 
and using it without regard for the appropriateness of the substitution is typical of 
many students. The fact that Katy said “I didn’t look” rather than “I didn’t see” sug-
gests that she is self-reflecting and aware of what she should have done. 
Katy very quickly classified (x2 + 3x)2 = 2x2 + 6x + 15 as having structure  
ax2 + bx + c = 0. The interviewer asked her to write down the appropriate quadratic 
equation. 

K The quadratic equation? The equation … 
I Let’s see. What will t be? 
K Eh. [Writes (x2 + 3x)2 = 2x2 + 6x + 15] To open and solve? 
I How would you solve it? 
K [Writes x4 + 6x3] 

Eventually Katy was led to make the appropriate substitution. It seems that her origi-
nal perception of the equation’s structure was based on a guess, probably provoked 
by the fact that the term in parentheses is squared, or perhaps by looking only at the 
right hand side of the equation.  
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EXCERPT 4:  NAMING A STRUCTURE  
After Katy factored (x + 3)4 – (x – 3)4 correctly the interviewer pointed out that most 
students found that extremely difficult, and asked Katy why she thought that might 
be. 

K Because of the fourth power? They didn’t identify …  
I Uhm. 
K They didn’t see the structure. 
I But there was this expression x to the fourth minus y to the fourth that nearly every-

one succeeded in factoring. [Writes x4 – y4]. 
K Because, in my eyes, it’s different. Simply, that’s clear [points to x4 – y4] and that’s 

not [points to (x + 3)4 – (x – 3)4]. 
I And now, with new eyes? 
K That’s also clear [points to (x + 3)4 – (x – 3)4]. 
I Are they different? 
K Yes, because of the words. 
I What? 
K Because in my head I see “difference of squares”. 

This extract clearly shows that being able to think about structure and give it a name 
helped Katy identify it. 

EXCERPT 5:  EXEMPLIFYING 
Table 1 shows Katy’s responses when asked to describe each structure in words and 
create more examples. Katy only managed to give the name of each structure (note 
that she said common denominator instead of common factor, a mistake made by 
many students) rather than a more wordy explanation. This, too, was typical of all the 
students. She displayed enthusiasm over the task of creating new examples, and made 
an effort to produce something out of the ordinary.  
Table 1 Verbalising and exemplifying  
Structure Explanations New examples 
a2 + 2ab + b2 It’s sum squared 1.   (3 + 2x)2 + 6(3 + 2x) + 9 

2.   (4x2 + 12x +  9)2 + 6(3 + 2x) + 9 

a2 – b2 Difference of squares 3.   z2x2 – 9 
4.   x2(3x + 2)2 – 64 

ab + ac + ad Common denominator 5.   (x + 2)y + (x2 + 5x + 6) +(x + 2)(x + 5) 
ax + b = 0 Eh … linear equation 6.   2(2x + 4)2 – 9 = (4x2 + 16 + 16x) + 5 

      Find (2x + 4)2 
ax2 + bx + c = 0 Quadratic equation 7.   9x2y2 + 6xy + 2 = 0 

8.   9x2y2 + 6xy + 4 = 0 
9.   Solve for (x2 + 2x)2  

       (x2 + 2x)4 + (3x2 + 6x)2 + 9 = 0 
10.  (x2 + 2x)4 + 3(x2 + 2x)2 + 9 = 0 
11.  (3x + 2)6 + 9 = (3x + 2)3 

 

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 534



 

 

 

 

Katy wrote example 1 and, when asked to write another one even more difficult, 
adapted it to get example 2, commenting, “I would never be able to solve that”. The 
interviewer asked her why she thought these examples might be difficult for other 
students.  

K Because when you come to an exercise, you don’t look at the general structure, 
unless it is really obvious to the eye. 

I Uhuh, okay. 
K And because … I wouldn’t get it. I would have to figure out how the 9 got there, in 

order to extract 3 plus 2x. 
It seems that here Katy was talking about how she behaved before the teaching inter-
views. 
In between writing examples 3 and 4 Katy said, “Just a minute, something more 
complicated? Now this was the one I really didn’t understand the most, now it seems 
the simplest, it’s impossible to make it more difficult.” We consider this a testimony 
to her structure sense development.  
Katy changed example 7 into example 8 because she thought that the former had no 
solution while the latter had a solution. She seemed surprised to be informed that it 
was perfectly permissible to write a quadratic equation with no real solution. “Oh,” 
she laughed, “I didn’t know.” In fact she should have known, since in class she had 
learned to analyse quadratic equations, and in fact mentioned this kind of analysis at 
the end of the first session. This is an example of how Katy has compartmentalised 
her knowledge. 
Katy corrected example 9 to example 10. She stated, “I meant this. Like x squared 
plus 3x plus 9”.  
At the end of the session the interviewer commented on how well Katy had done, and 
asked her if she had been practising. 

K [Laughs] The penny dropped. 
I How did the penny drop?  Do you think you could tell me? 
K I don’t know. But at least three times in class I found myself using this. 
I Yes? I am very pleased. 
K I said to myself, here are connections, suddenly I recognised a structure. 

Katy’s self-reflection and enthusiasm were a foreshadowing of her performance in 
the post-tests. 

POST-TESTS 
In the immediate post-test, Katy answered all the items correctly. After the test she 
commented that she felt it had taken her too long because of, “The common factor. I 
don’t think about that. I will have to think about the common factor.” (Note that this 
time she said factor, not denominator.)  When asked to account for her excellent per-
formance: 
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K Do you know what helped me the most? It’s the order; three different things. Every-
thing I see I categorize. And in addition it helps – how it sounds, subtraction of 
squares, that’s …  like … Now that we’re doing trigo, that appears a lot, a lot, a lot a 
lot, in identities. 

I And you think of the …? 
K Today, there were three exercises, like, I work ahead with two boys, and I see that 

I’m three exercises ahead of them, and I stop to look what they’ve got stuck on, and I 
see that they’re stuck on the subtraction of squares, and I said, but it’s obvious what 
to do. 

In the delayed post-test, several months later, Katy answered almost all the items cor-
rectly. Overall, Katy’s structure sense improved considerably, and this improvement 
was sustained over time. Although the improvements in structure sense of the other 
participating students were less than that of Katy, their improvements also stood the 
test of time, providing evidence for the efficacy of the teaching interviews. 

DISCUSSION 
A close look at Katy’s transcripts reveals that she displayed much typical behaviour: 
confusion between expression and equation, denominator and factor, ratio and differ-
ence; tendency to change the formulation of quadratic expressions; difficulty with 
verbalizing. She showed a clear improvement in structure sense from session to ses-
sion, yet there is no instance that pinpoints the actual learning process. However, 
naming a structure helped her to use it, and she actually said that she succeeded “be-
cause of the words” that she sees in her head.  Naming the structure is an important 
part of learning it – the name is part of the definition. One of the roles of a definition 
is to introduce a concept and convey its characterising properties. Another is to create 
a uniformity that allows easier communication of mathematical ideas (Borasi, 1992; 
Zaslavsky & Shir, 2005). A known concept or object can be given a definition by de-
scribing a few characteristic properties (De Villiers, 1998; Shir & Zaslavsky, 2001). 
In conclusion, there is evidence that learning has taken place. Since there is no way of 
pointing to any one incident of knowledge acquirement, it can be surmised that the 
learning occurred as a process over time. 
After the first post-test Katy said, “I think you should tell the teachers to do this with 
all the students. It would help them so much. Really.” Of course, one-on-one inter-
vention is not possible in a classroom situation, so the tasks would have to be adapted 
to make them suitable for group work, and yet enable the teacher to intervene when 
necessary. These tasks were designed as a form of remediation, to be used with 11th 
grade students who were assumed to be familiar with the algebraic structures. This 
raises the question whether it would be more effective if students’ attention were 
drawn to structure at a much earlier stage, perhaps even before they practised using 
the formulae. Answering this question requires further research.  
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Further research is also required to answer other questions arising when attempting to 
develop students’ structure sense. For example, can the teaching interviews be 
adapted for whole class activities? At what stage in the learning of algebra would this 
kind of intervention be most appropriate? Could the improved structure sense mani-
fest itself in other subject areas, with other structures? The improvements in structure 
sense were maintained over a period of a few months. What would a longitudinal 
study show? 
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CHILDREN’S UNDERSTANDINGS OF ALGEBRA 30 YEARS ON: WHAT 
HAS CHANGED? 

Jeremy Hodgen*, Dietmar Kuchemann*, Margaret Brown* & Robert Coe** 
King’s College London (*) & University of Durham (**) 

In this paper, we outline the design and method of the research project Increasing 
Student Competence and Confidence in Algebra and Multiplicative Structures 
(ICCAMS). Phase 1 consists of a large-scale survey of attainment in algebra and 
multiplicative reasoning, using test items developed during the 1970s for the Con-
cepts in Secondary Mathematics and Science (CSMS) study (Hart, 1981).  This will 
enable a comparison of the current attainment of students aged 11-14 with that of 30 
years ago. Phase 2 consists of a collaborative research study with 8 teachers extend-
ing the investigation to classroom / group settings and examining how formative as-
sessment can be used to improve attainment. Although the focus of this paper is on 
reporting the research design, some early analysis of data from the initial survey 
data from 2008 (n = 2400) is reported. 

INTRODUCTION 
Over the past 30 years, there has been a great deal of work directed at, first, under-
standing children’s difficulties in mathematics and, second, examining ways of tack-
ling these difficulties. Yet, there is no clear evidence that that this work has had a sig-
nificant effect in terms of improving either attainment or engagement in mathematics. 
Indeed, children continue to have considerable difficulties with algebra and multipli-
cative reasoning in particular (e.g., Brown, Brown & Bibby, 2008; Wiliam et al., 
1999). In this paper, we describe the project Increasing Student Competence and 
Confidence in Algebra and Multiplicative Structures (ICCAMS), a research study de-
signed to address these problems. 
ICCAMS is a 4-year research project involving a research team from King’s College 
London and Durham University together with eight teacher-researchers from four 
schools. The project consists of a large-scale survey of 11-14 years olds’ understand-
ings of algebra and multiplicative reasoning in England followed by a collaborative 
research study with the teacher-researchers extending the investigation to classroom / 
group settings and examining how formative assessment can be used to improve at-
tainment and attitudes. Although the project is in its early stages, we report some ini-
tial tentative results later in this paper. These initial results compare children’s current 
understandings with a similar survey, the Concepts in Secondary Mathematics and 
Science (CSMS) study (Hart, 1981), which was conducted 30 years ago. When com-
pleted, the full results will enable us to examine what gains, if any, have been made 
over the intervening period. The Phase 2 findings will extend the results to children’s 
understandings in group and classroom settings. 
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BACKGROUND 
Mathematics education in the UK21 is facing a crisis; insufficient students are choos-
ing to continue studying mathematics post-16, whilst university teachers and others 
point to falling standards in the subject (CBI, 2006; Smith, 2004). There is consider-
able research in the UK addressing reasons for non-participation in mathematics - 
students stop studying mathematics because they experience it as difficult, abstract, 
boring and irrelevant (e.g., Osborne et al., 1997). The most recent findings relating to 
16 year-olds (Brown, Brown & Bibby, 2008) suggest that students’ attainment and 
attitudes are strongly inter-related. A major factor is that even relatively successful 
students perceive that they have failed at the subject and lack confidence in their abil-
ity to cope with it at more advanced levels, especially in comparison to the perceived 
‘clever core’ of fellow-students. When pressed about the reasons for their feelings of 
failure, students suggest that they do not understand parts of what they have been 
taught; this commonly relates to algebra and to aspects of multiplicative reasoning 
(e.g. percentages, and ratio) and its applications (e.g. in trigonometry). Students’ 
negative attitudes commonly relate to the predominance of routine and formal work 
on algebra and multiplicative reasoning. Performance in these topics has been shown 
to be particularly weak in England relative to other countries (e.g. Mullis et al., 
2004). Yet algebra and multiplicative reasoning are both essential for further study in 
mathematics, in science & engineering (as well as health and medicine, economics, 
etc.) and for mathematical literacy in the workplace and elsewhere (e.g., CBI, 2006).  
The original CSMS study was conducted 30 years ago. The study made a very sig-
nificant empirical and theoretical contribution to the documentation of children’s un-
derstandings and misconceptions in school mathematics (e.g., Booth, 1984; Hart, 
1981). In the intervening period, there have been various large-scale national initia-
tives directed at improving mathematics teaching and raising attainment: e.g., the Na-
tional Curriculum, National Testing at age 7, 11 and 14, the National Numeracy 
Strategy and the Secondary Strategy22. Many of these initiatives have drawn directly 
on the CSMS study. During this period examination results have shown steady and 
substantial rises in attainment: e.g., the proportion of students achieving level 5 or 
above in Key Stage 3 (KS3)23 tests has risen from 56% in 1996 to 76% in 2006 and 
the proportion of students achieving grade C or above at GCSE has risen from 45% in 
1992 to 54% in 2006. However, independent measures of attainment suggest that that 
these rises may be due more to “teaching to the test” rather than to increases in genu-
                                           
21 This crisis in mathematics education is not confined to the UK. It is also a concern in the US and elsewhere in 
Europe. 
22 These initiatives are particular to England. However, similar initiatives relating to testing (and accountability) and to 
national curricular are evident elsewhere in the world. 
23 In England, compulsory secondary school consists of two Key Stages: KS3 (11-14 years) and KS4 (14-16 years). In 
2008, and for more than a decade previously, 14 year olds took a ‘high stakes’ test at the end of KS3, although this as-
sessment has been abandoned for 2009 and future KS3 assessment arrangements are currently under review. GCSE 
(General Certificate in Secondary Education) is the examination taken at age 16, the end of compulsory schooling. Al-
most all 16 year olds in England take GCSE mathematics. 
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ine mathematical understanding. Replication results from the science strand of the 
CSMS study (using a test on volume and density) suggest that students’ understand-
ing of some mathematical ideas as well as the related science concepts has declined 
(Shayer et al., 2007). Studies at the primary level indicate that any increases in at-
tainment due to the introduction of the National Numeracy Strategy have been at best 
modest (Brown, Askew, Hodgen et al., 2003; Tymms, 2004). Results from the Lever-
hulme Numeracy Research Programme suggest that any increase in attainment at 
Year 6 is followed by a reduction in attainment at Year 7 (Hodgen & Brown, 2007) 
Further, Williams et al. (2007) find that, following this dip at Year 7, there is a pla-
teau in attainment across Key Stage 3.  

AN ALTERNATIVE APPROACH: FORMATIVE ASSESSMENT? 
National initiatives in mathematics education in England have largely focused on 
specifying what mathematics should be taught (e.g., the National Curriculum), how 
mathematics should be taught (e.g., the Secondary Strategy) and summatively assess-
ing what mathematics has been learnt (e.g., National Tests). However, research sug-
gests that a much more effective approach to increasing attainment and engagement 
would be formative and diagnostic assessment: the tailoring of teaching to students’ 
learning needs (Black & Wiliam, 1998). In an extensive meta-analysis study Hattie 
(1999) found that interventions involving feedback are more effective than any other 
educational intervention, with an effect size of 1.13. Further, Wiliam (2007) calcu-
lates that, for the achieved effect size, the cost of formative assessment is lower than 
for other comparative educational interventions. Yet, whilst there has been a great 
deal of activity nationally and internationally in formative assessment, there is also 
considerable evidence that teachers have substantial difficulties implementing these 
ideas (Bell, 1993). These difficulties in implementation relate to three issues. First, 
formative assessment has largely been described generically rather than in subject-
specific terms (Watson, 2006). Second, formative assessment has been poorly de-
scribed theoretically and pedagogically (Black & Wiliam, 2006). Third, teachers’ 
ability to use formative assessment in mathematics is limited by their knowledge 
about key ideas, and the likely patterns of progression in student learning. Thus if 
teachers focus on teaching mathematical procedures they may find it difficult to see 
what is causing problems for students in mastering and applying these, and though 
aware of the importance of questioning, they may not know what questions they 
should ask (Hodgen, 2007).  

THE NEED FOR A COLLABORATIVE APPROACH TO DISSEMINATION 
Much of both the research and the implementation of initiatives in these areas of 
mathematics have been “done to” teachers, which may in part explain the limited in-
fluence in schools. Leach et al. (2006) found that research evidence cannot simply be 
presented to teachers; research findings need to be “re-worked” as teaching materials. 
However this process of re-working, or recontextualisation, is not straightforward 
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(Ruthven, 2002). We hypothesise that in order for change to occur teachers must have 
greater insight into the problems of student understandings and attitudes, a profound 
understanding of fundamental mathematics (Ma, 1999), and understanding of how 
available resources relate to student understandings and underlying mathematical 
ideas. These approaches have been tried before in e.g. diagnostic teaching experi-
ments – also based on the CSMS research - and have proven success (Bell, 1993; 
Swan 2006). Existing experience of collaborative research methods (e.g., Black & 
Wiliam, 2003) suggests that disseminating these approaches more widely and imple-
menting them in ordinary classrooms is more likely to be successful if these ap-
proaches have been grounded in teachers’ practices.  

THE RESEARCH STUDY 
ICCAMS is investigating engagement and achievement by focusing on the two topics 
at KS3 that are central to the current mathematics curriculum: algebra, and multipli-
cative reasoning. These topics are also fundamental to further study in mathematics 
and other numerate disciplines (e.g., science, engineering, economics24, etc.) The 
study will focus on KS3, because this is where students first meet algebra and more 
abstract multiplicative reasoning, and where attitudes begin to deteriorate (Mullis et 
al., 2004). There is also evidence of a plateau in student achievement at KS3 (Wil-
liams et al., 2007).  
Phase 1: The large-scale survey of algebra and multiplicative reasoning 11-14 
In Phase 1, we are conducting a large-scale survey of attainment in algebra and 
multiplicative reasoning and attitude to mathematics, involving both cross-sectional 
and longitudinal elements. This will use test items first developed during the 1970s as 
part of the CSMS study (Hart, 1981). Based on a representative sample of schools 
and students in England, the survey will provide a comprehensive and detailed analy-
sis of current student attainment in algebra and multiplicative reasoning. It will pro-
vide up-to-date information on student understandings of basic ideas in the areas of 
algebra and multiplicative reasoning enabling us to plot where changes have occurred 
since the original study. It will extend the CSMS study by linking understanding of 
concepts and student progression to student attitudes, to teaching, and to demographic 
factors. Analysis is being conducted using a variety of techniques, extending those 
used in the original CSMS study with Rasch and other techniques. 
The full survey will consist of both cross-sectional (n=6000) and longitudinal 
(n=600) samples identified using the MidYIS database (Tymms & Coe, 2003). Three 
original CSMS tests (Ratio, Algebra, Decimals) will be administered with some addi-
tional items relating to fractions (drawn from the CSMS Fractions test) and spread-

                                           
24 ICCAMS is funded by the Economic and Social Research Council in the UK as part of a wider initiative aimed at 
identifying ways to participation in Science, Technology, Engineering and Mathematics disciplines. 
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sheet items. Piloting indicated that only minor updating of language and contexts was 
required.  
The test items range from very basic to sophisticated, allowing broad stages of at-
tainment in each topic to be reported, but also each item, or linked group of items, is 
diagnostic in order to inform teachers about one aspect of student understanding. 
Phase 2: The collaborative research study investigating formative assessment 
In Phase 2, we are conducting a collaborative research study with teachers, which 
will indicate how they can best use a formative assessment focus within these cur-
riculum areas to improve student confidence and competence, and thus participation, 
engagement and attainment. In this phase, we adopt a design research methodology 
(Cobb et al., 2003). Central to our approach will be the analysis of children’s difficul-
ties from both teaching and research perspectives. 
Initially teachers will be supported in interpreting and acting upon the survey results 
of their students; later they will use classroom-based formative assessment based on 
the frameworks for learning provided by the tests, and assessment for learning ap-
proaches. They will also draw on research-informed approaches to the teaching of 
these curriculum areas. This study will, first, examine how teachers can make use of 
existing resources and initiatives to respond to students’ learning needs, and, second, 
develop and evaluate an intervention designed to enable a wider group of teachers 
with much less support to do this. In the final year of the study, the approach will be 
implemented and evaluated with a further group of teachers and classes.  
The Phase 1 findings will provide up-to-date information on student understandings 
of basic ideas in the areas of algebra and multiplicative reasoning to inform the teach-
ers and teacher-researchers in Phase 2 both about their own students and about where 
they lie relative to the general population.  
A central question for Phase 2 is how the generic approach of formative assessment 
can be adapted to the particular needs of mathematics teaching and learning. This will 
be done in several ways. First, the diagnostic results for individual students assessed 
against the learning and progression framework developed by CSMS will guide 
teachers in planning appropriate work for students and in further formative assess-
ment. The CSMS tests were carefully designed over the 5-year project starting with 
diagnostic interviews in order to focus on student progression in understanding of key 
concepts such as variable and rational number. (See below for a fuller description of 
the Algebra test.) Second, we will identify and link existing teaching resources into 
the developmental and diagnostic learning structure provided by CSMS, building on 
and extending our existing work in this area which is underpinned by a combination 
of Piagetian and Vygotskian theories (Adhami, et al., 1995; Brown, 1992). There is 
extensive research evidence relating to the teaching and learning of both algebra and 
multiplicative reasoning that can inform this intervention (e.g. Bednarz et al., 1996; 
Sutherland et al., 2000; Ainley et al., 2006), but these research findings and resources 
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have only made a limited impact on teaching practices in classrooms. The solution 
lies not in designing yet another resource for the teaching of algebra and multiplica-
tive reasoning, but in supporting the judicious use and interpretation of existing re-
sources by teachers (Askew, 1996). Third, we will develop our existing work in this 
area (Hodgen & Wiliam, 2006).  

THE WORK TO DATE AND EARLY ANALYSIS 
In June 2008, tests were administered to a sample of around 3000 students in each of 
Years 7, 8 and 925. Approximately 2000 of these students took the Algebra test. The 
full cross-sectional sample will be completed in Summer 2009 when a further sub-
sample of around 2000 students will be tested. We report here on the early analysis of 
this data. We note that these early results should be treated with caution. In particular, 
the current sample of students appears to be slightly higher attaining than the general 
population in England. This early analysis suggests that student attainment in algebra 
at age 14 is broadly similar to that of 30 years ago, although the patterns across the 
attainment range and in earlier years are more complex.  
Students’ understandings of letters 
We now focus on just four linked items due to space constraints: 9a-d, illustrated in 
Figure 1. These items have been chosen to give a flavour of the test. 
The CSMS algebra test was carefully designed over the 5-year project starting with 
diagnostic interviews. The original test consisted of 51 items. Of these 51 items, 30 
were found to perform consistently across the sample and were reported in the form 
of a hierarchy (Booth, 1981; Küchemann, 1981). The test items range from the basic 
to the sophisticated allowing broad stages of attainment to be reported, but also each 
item, or linked group of items, is diagnostic in order to inform teachers about one as-
pect of student understanding. The focus of the test was on generalised arithmetic, 
and in particular it looked at different ways in which pronumerals can be interpreted 
(Collis, 1975). Items were devised to bring out these six categories (Küchemann, 
1981):  

Letter evaluated, Letter not used, Letter as object, Letter as specific unknown, Letter as 
generalised number, and Letter as variable.  

The four items, 9a-d, were amongst the consistently performing items that formed 
part of the original hierarchy. Item 9a, at Level 1 in the hierarchy, and items, 9b and 
c, at Level 2, can be solved without having to operate on the letters as unknowns; the 
letters can be treated as objects (i.e., the name of the various sides of the figures). 
Items 9b and c additionally require the explicit use of some mathematical syntax. 
Item 9d, at Level 3, was designed to test whether students would readily ‘accept the 
lack of closure’ (Collis, 1972) of the expression 2n, where the given letter, n, has to 
be treated as at least a specific unknown. The proportions of 14 year old students an-
                                           
25 Key Stage 3 is made up of three academic years: Y7 (age 11-12), Y8 (age 12-13) and Y9 (age 13-14). 
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swering these items correctly in 1976 reflect this variation in difficulty: 94% for 9a; 
68% for 9b; 64% for 9c; 38% for 9d.  
The item facilities for 1976 and 2008 are presented graphically in Figure 1. This sug-
gests that the pattern of progression is similar in 1976 and 2008: an initial relatively 
steep rise is followed by a much smaller rise subsequently. However, although the 
initial steep rise now appears to take place a year earlier, this initial advantage is not 
sustained and by age 14 students’ attainment appears similar in 1976 and 2008. The 
results for item 9a are more of an anomaly: this relatively easy item appears to be 
more difficult now than in 1976.  

Figure 1: Items 9a-d. Facilities for items in both 2008 [continuous] and 1976 [dotted] 
for Year 7 to Year 10 (ages 11-14). In 2008 data were not collected for Year 10; in 1976 
data were not collected for Year 7. 

DISCUSSION 
In comparison to 30 years ago, in England, formal algebra is taught to all students 
earlier. This is partly as a consequence of the introduction of a National Curriculum. 
The initial results of the study reported here suggest that, whilst this practice confers 
an initial advantage to students, this increased attainment may not be sustained. Our 
early analysis suggests that, by age 14, current performance in algebra is broadly 
similar to that of students in 1976. Moreover, it is worth noting again that the sample 
of students tested in 2008 is in general a relatively high attaining group. Hence, the 
data presented here suggest that increases in examination performance are not 
matched by increased conceptual understanding and, thus, add weight to the research 
reported earlier in this paper.  
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PRESENTING EQUALITY STATEMENTS AS DIAGRAMS 
Ian Jones 

University of Warwick  
I describe a diagrammatic computer-based task designed to foster engagement with 
arithmetic equality statements of the forms a+b=c, a+b=b+a, and c=a+b. I report 
on six trials with pairs of 9 and 10 year old pupils, highlighting how they talked 
about distinctive statement forms and used these distinctions to discuss strategies 
when working towards the task goals. These findings stand in contrast to how pupils 
typically view and talk about equality statements as reported in the literature. 
INTRODUCTION 
The design of tasks that engage pupils with mathematical ideas in an open and ex-
ploratory manner presents a significant challenge. Constructionism offers a vision of 
mathematics learning in which learners explore, modify and create mathematical arte-
facts on a computer screen (Turkle, Papert and Harel 1991). The term “microworld” 
(Edwards, 1998) is often used to describe software that supports learners “discover-
ing” mathematical rules through experimentation, mental reflection and discussion. 
The intention is to engage learners with mathematical ideas in a way that is meaning-
ful to them. However, this can be difficult when the conventions of formal notation 
are the intended domain of learning because they are not so readily meaningful to 
learners. A way forward is offered by diagrammatic task designs in which learners 
explore, modify and create notational artefacts (Dörlfer 2006). This paper reports on 
trials with a diagrammatic computer-based task designed to engage primary children 
with arithmetic equality statements. 
CHILDREN’S CONCEPTIONS OF EQUALITY STATEMENTS 
In typical primary classrooms, arithmetical equality statements are presented and 
talked about as commands to work out a result. This leads most children to expect a 
term comprising numerals and operator signs on the left of the equals sign, and a sin-
gle numerical result on the right (Behr, Erlwanger and Nichols 1976; Dickson 1989). 
This expectation can prove stubborn (McNeil and Alibali 2005), and lead to difficul-
ties with equation solving (Knuth, Stephens, McNeil and Alibali 2006).  
Presenting young children with a variety of statement forms leads to more flexible 
thinking about mathematical notation (Baroody and Ginsburg 1983; Li, Ding, 
Capraro and Capraro 2008). Interventionist studies have focussed on the careful se-
lection of statements that appeal to structural readings, as in 50+50=99+1, 
7+7+9=14+9, 246+14= __+246 and so on (Carpenter and Levi 2000; Molina, Castro 
and Mason 2008; Sáenz-Ludlow and Walgamuth 1998). The intention is that pupils 
can notice and exploit arithmetic principles in order to assess or establish numerical 
balance, without the need to generate results. Such interventions produce encouraging 
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findings, but the long term impacts remain an open question (Dörfler 2008; Tall 
2001). 

 

Figure 1: Screenshot from the computer-based task 

A DIAGRAMMATIC APPROACH 
An alternative to presenting statements as isolated questions of balance is offered by 
Dörfler’s (2006) “diagrammatic” approach. The essence of diagrammatic notating 
tasks is learners manipulating conventional representations (“inscriptions”) in an 
open, exploratory manner.  This renders mathematical notating an empirical and crea-
tive activity, based in seeing potential actions (i.e. transformations). Generalisation 
can arise from noticing both visual patterns and patterns of repeated actions. As such, 
diagrammatic tasks offer learners an investigative, concrete notating activity that 
stimulates discussion, congruent with constructionist approaches. Note that “dia-
gram” is being used here more loosely than everyday associations with “drawings” 
rather than “writings” would suggest. In another sense, however, it is more restrictive, 
referring only to those “inscriptions” that form precise mathematical structures with 
grounded rules for making transformations. From a diagrammatic perspective, arith-
metic statements can be presented in parallel, forming relational systems akin to si-
multaneous equations (e.g. Figure 1). Numerals and their transformations, rather than 
numbers and arithmetic principles, are the intended “objects of the [learners’] activ-
ity” (p.100).  
When pupils exploit shortcuts to establish the equivalence of presented statements 
they do engage in activities that are to some extent diagrammatic. Their attention is 
on the structural relationships of numerals, rather than computed results, and this can 
stimulate rich discussion (Carraher, Schliemann, Brizuela and Earnest 2006). How-
ever, such designs exclusively promote an “is the same as” meaning of the equals 
sign due to the task goal of establishing equivalence. There is no appeal to a “can be 
exchanged for” meaning, which is central to the nature of reversible equivalence rela-
tions (Collis 1975), and supports the transforming aspect of diagrammatic notating 
tasks.  
The tasks used in the studies reported here presented pupils with sets of equality 
statements (“diagrams”) on a computer screen. A screenshot from the task is shown 
in Figure 1 (an online example of the software is available at go.warwick.ac.uk/ep-
edrfae/software). Each statement stands in isolation, but, as with an algebraic equa-
tion, can also combine with others in a collective, relational system. The task goal is 
to transform the term in the box at the top-left of the screen, 20+53, into a single nu-
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meral using the provided statements. For example, we might start by selecting 
53=3+50 and using it to transform the boxed term into 20+3+50, then use  
3 + 50 = 50 + 3 to transform it into 20+50+3, and so on until 73 appears in the box. 
The tasks offer learners new ways to view and talk about statements. Working 
through notational diagrams (such as Figure 1) requires looking for matches of nu-
merals across statements and the boxed term in order to determine where substitu-
tions can be made, and this is quite distinct from viewing statements as isolated ques-
tions of numerical balance. Observing and predicting transformational effects (20+53 
→ 20+3+50 and so on), when a statement is selected and visually matched notation is 
clicked, promotes making distinctions of statements by form. Notably, a+b=b+a can 
be seen as commuting the inscriptions a and b; and c=a+b can be seen as partitioning 
the inscription c. If pupils articulate such distinctions when working towards the task 
goal this would stand in contrast to children’s left-to-right computational readings of 
statements reported widely in the literature.  
I report on six trials drawn from three studies. In each trial pupils were set a sequence 
of diagrams to solve, similar to that shown in Figure 1. These studies varied in the 
specific research questions addressed and the diagrams presented. The intention here 
is to present common and contrasting findings from across the trials (for a detailed 
discussion of the first two studies see Jones 2007, 2008).  
METHOD 
The method used was paired trialling and qualitative analysis for evidence of talking 
about mathematical ideas in novel ways (Noss and Hoyles 1996). Pairs of 9 and 10 
year old pupils were presented with sequences of notational diagrams comprising 
statements of the forms a+b=c, a+b=b+a, and c=a+b. These began with simple dia-
grams comprising two or three statements of the forms a+b=c and a+b=b+a, followed 
by more complicated diagrams comprising up to nine statements and including c=a+b 
forms. Pupils were shown how to select statements and click on notation to see if a 
substitution occurs, and were given a few moments to get to grips with the software’s 
functionality. I then set the task goal of transforming the boxed term into a numeral, 
and remained present to offer encouragement and ask for verbal elaborations (“what 
do you think?”, “how did you know that would work?”, and so on). Each trial lasted 
around 30 to 40 minutes. 
Data were captured as audiovisual movies of the pupils’ onscreen interactions and 
discussion. Data were transcribed and analysed using Transana (Woods and Fass-
nacht 2007). Occurrences of pupils computing results, looking for numeral matches 
and articulating the distinctive transformational effects of statement forms (“swap”, 
“split” and so on) were coded. A trace of each trial was constructed to examine how 
such articulations arose, and how they were used by pupils in order to discuss strate-
gies when working through the diagrams. 
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The six trials reported will be referred to as Trial A through to Trial F. The pupils in 
trials A to C were deemed mathematically able by their class teachers, and the pupils 
in trials D to F were deemed average. The trials can usefully be grouped as A, B, C 
and D, E, F in terms of the extent to which pupils (i) articulated distinct statement 
forms, and (ii) used these distinctions to work strategically with the diagrams. 
FINDINGS 
The data are presented here to illustrate the similarities across all trials, and the dif-
ferences across trials A to C and D to F. I present a visual overview of the six trials, 
and offer illustrative transcript excerpts. 
Visual overview 
Figure 2 shows a time-sequenced map of codings across the six trials and was 

  

Figure 2: Time-sequenced coding of the data for computing results, looking for 
matches of numerals, and articulating commuting and partitioning transformations. 

produced using Transana. Each block shows an occurrence of pupils computing re-
sults, looking for matches of numerals or terms across statements and the boxed term 
(Figure 1), or articulating the distinctive commuting (“swapping”) or partitioning 
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(“splitting”) transformational effects of presented statements. The length of each 
block is somewhat arbitrary. For example, one block of (say) “commute” might re-
flect pupils working in a trial-and-error manner with one of them suggesting they 
“swap” numerals, but offering no reason. Another block of similar length might re-
flect pupils discussing which numerals to commute, and how and why, as part of a 
shared strategy. As such, Figure 2 provides a useful visual aid for summarising the 
trials, but does not convey the quality, or the precise quantity, of the pupils’ articula-
tions and strategising. Non-coded segments are those times when either I was speak-
ing, or pupils’ discussion was ambiguous ( “Click that one”, “Let’s try this one, no, 
that one” and so on). 
The first thing to note is how little the pupils computed results across the trials (with 
the exception of Trial C, in which the notably enthusiastic pupils appeared keen to 
impress me with their computational prowess). Conversely, the pupils did engage in 
looking for matching numerals, and articulating the commuting properties of 
a+b=b+a statements.  Figure 2 shows that “compute” was prominent in the first ten 
minutes of each trial (bar Trial A), but was less present than the other codes in the fi-
nal ten minutes. This reflects how most pupils began by computing results, as would 
be expected, but changed, sooner or later, to more diagrammatic views.  
“Partition” is less prominent across the trials, and does not appear at all in trials E and 
F. The pupils in trials A to C came, sooner or later, to articulate partitioning transfor-
mations as part of their shared strategy for achieving the task goal. After a little prac-
tice, they would generally begin a new diagram by identifying partitioning state-
ments, then using commuting statements to shunt the numerals in order to compose 
them. However, the pupils in Trials D to F rarely articulated partition if at all, and did 
not use it strategically, instead relying on a less efficient approach characterised by 
trial-and-error statement selection. It seems, then, that articulating partition is key to 
strategic discussions when working collaboratively with the diagrams. 
Illustrative transcript excerpts 
Early on in the trials, after the pupils had been introduced to the software’s function-
alities, they articulated computational readings of statements. The following is from 
Trial E: 

John: 9 add 12 add 1 equals 22. 

Derek: 21. 

John: No it’s 22. 13 add 9. 

Derek: Hm, no 9 add 12. 9, 13 add 12. No, 13 … 

John: 12 add 1 is … 

Derek: Yeah 22 because it's 9 add 12 add 1 is 22 
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Searching for matches of numerals arose across all the trials as the pupils discussed 
why the software sometimes allowed a selected statement to make a substitution and 
other times did not. Often they looked for matches of single numerals, rather than 
terms. The following is from Trial C: 

Barbara: 31 plus 19. 

Nadine: 19. What’s that? 

Barbara: 31 ...  look for a 31 somewhere.  

Nadine: Well I found a 19 and another 19.  

Barbara: But we need something that will equal 19. Aha, I found a 31. 

At other times pupils attempted near matches, such as trying to use 5+18=23 to trans-
form 5+8+18 (Trial C). However, often these near matches were attempted doubtfully 
when pupils were momentarily stuck, and, overall, they showed greater confidence 
when attempting exact matches. With prompting, the pupils were often able to ex-
plain why a given substitution did not work. From Trial A: 

Researcher: Why do you think that wasn’t working? 

Terry: Maybe because ... 1 and 9 is ... 

Arthur: Oh, because it hasn’t got that sum in it. 

Researcher: What do you mean? 

Arthur: Well, because that’s got 1 add 9 but then the end of that’s got 9 add 1.  

Pupils across all the trials readily came to articulate the observed or predicted trans-
formational effects of a+b=b+a statements as “swapping” or “switching” or “chang-
ing round”. Some pupils did not initially see that this could be helpful for achieving 
the task goal. For example, when the pupils in Trial F used 31+35=35+31 to trans-
form 31+35+8 → 35+31+8 they commented: 

Colin: That just swapped it. 

Imogen: Swapped it around. 

However, most pupils came to see a use for commuting numerals sooner or later, as 
articulated by John (Trial E) when prompted to explain why 16+32=48 would not 
transform 13+32+16: 

Researcher: It’s not working. Why not? 

John: Because we haven’t got a 13 yet. 

Derek: Yeah we have look.  

John: No, in these. 

Derek: No. 

John: It equals 48. But there is 48 in some things. Yeah, there is in this one. 
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Researcher: That’s not actually the reason. It’s not because of that 13.  

John: Hm. [Doubtfully] Is it because we went wrong on one of these? 

Researcher: No, no. 

John: Is it because it’s the wrong way round? The 16 and the 32? 

Researcher: Is there anything you could do about that? 

John: Oh yes, yeah, yeah, yeah, yeah. I thought this was useless but now it’s use-
ful. These bits. Okay. Right, now we’ve just changed it round. Now try. 
There we go. Now, 13 add 48. Now that one. 

All pupils, to a greater or lesser degree, came to articulate potential commutations one 
or more steps ahead in order to use further statements to make transformations.  From 
trial B: 

Yuri: If we can swap them two around. 

Linda: Yeah. 

Yuri: And swap them with the 33 so we can get the 50 and 11. Go on, that one. 

Linda: Huh? 

Yuri: That one. Now swap them two around. Now you can get 50 add 11. 

At times, some pupils commented on the physical appearance of the boxed term when 
transformed by c=a+b forms. From Trial C:   

Barbara: Now change the 53 into 41 plus 12. 

Nadine: Okay now it’s a big sum. 

However, partition was explicitly articulated only in trials A to D. For example, in 
Trial A, when the pupils first encountered a diagram containing the form c=a+b, 
Terry inferred its transformational effect, and its use for achieving the task goal: 

Terry: Oh! That’s the one that you do first! It has to be. 

Researcher: Why? 

Terry: Because it’s splitting up the 40 and the 1. 

In trials A to C, the pupils adopted a strategy of starting with c=a+b forms to partition 
the numerals in the box, then using a+b=b+a and a+b=c forms to commute and com-
pose the term into a single numeral. From trial B: 

Yuri: Try splitting the 37 first. Um, you have to click on that. No, hit [i.e. click] 
all the numbers ... 

Linda: 29 add 8. 

Yuri: So, 73. 29 add 73 that said so, split, no wait. How do you get that for... 
Unless you got to switch them two around. So it’s... 
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Linda: Which two around? 

Yuri: Them two. Go, go on that. Now switch them two. Now you got that one. 

Linda: 29. 

However, in trials D to F, this start-with-partitioning strategy was not discovered or 
adopted by the pupils. They relied on trial-and-error when selecting statements to a 
greater extent than the pupils in trials A to C. The following example is from Trial D:  

Zoë: Try that on the other one. 

Kitty: No, it’s just swapped them. 

Zoë: Shall we try swapping and then we can try ... 

Kitty: What shall we try? 

Zoë: That one. 

Researcher: Why that one Zoë? 

Zoë: I don’t know. 

The contrast across trials was most marked in the later stages when the diagrams are 
more complicated and so strategic approaches are significantly more efficient. 
DISCUSSION AND FURTHER WORK 
The data show that the presentation of equality statements as transformational rules 
enables pupils to explore and talk about arithmetic notation in non-computational 
ways. Left-to-right readings of individual statements, as widely reported in the litera-
ture, are replaced by looking for matches of numerals across statements and terms. 
The task offered pupils a utility (Ainley, Pratt and Hansen 2006) for equality state-
ments, namely making substitutions of notation towards a specified task goal. This 
utility arose because statements were presented as reusable rules for diagrammatic ac-
tivity rather than isolated questions of numerical balance. 
All the pupils distinguished the commuting transformational effects of a+b=b+a 
forms, and used this distinction to discuss possible transformations one or two steps 
ahead. Only half the pupils distinguished the partitioning transformational effects of 
c=a+b forms, and these pupils were able to use this distinction as part of a strategy 
that proved advantageous for later, more complicated diagrams.  
When the pupils articulated commuting and partitioning effects this does not mean 
they had a conception of the underlying arithmetic principles. Baroody and Gannon 
(1984) found that young children can appear to exploit commutation to reduce com-
putational burden, but are often merely indifferent to consistency of outcome. Trial B 
came from a study in which the last few diagrams contained some false statements, 
such as 77=11+33, and the value of the boxed term was not conserved across trans-
formations. Interestingly, the pupils did not comment on this, and when asked after-
wards if diagrams had contained false statements were unable to say (Jones, 2008). 
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This suggests pupils do not coordinate ‘sameness’ and ‘exchanging’ meanings for the 
equals sign when working with the task.  
Current work is exploring how these two meanings for the equals sign might be coor-
dinated using a constructionist approach to task design. Trials C, E and F are from a 
study in which the pupils subsequently went on to make their own diagrams using 
provided keypad tools. This requires ensuring numerical balance when inputting 
statements, and testing that these statements can be used to make substitutions when 
placing them into a diagram. A second aim of this current work is to find out whether 
pupils can translate verbalised calculations into notational diagrams. These calcula-
tions usually contain implicit partitioning and commuting (as in “34+23. 3 plus 4 is 7, 
and 30 plus 20 is 50, and 50 add 7 is 57”), which learners must identify and make ex-
plicit as statements on the screen in order to achieve the task goals. Early analysis 
suggests that again articulating partition is key to success. 
A future aim, then, is to explore how the selection and sequencing of arithmetic dia-
grams can help all pupils to notice and articulate partitioning effects. 
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APPROACHING FUNCTIONS VIA MULTIPLE 
REPRESENTATIONS: A TEACHING EXPERIMENT WITH 

CASYOPEE 

Jean-Baptiste LAGRANGE, Laboratoire DIDIREM, Université Paris 7, France 

Tran Kiem MINH, Laboratoire DIDIREM, Université Paris 7, France 

Abstract: Casyopée is an evolving project focusing on the development of both soft-
ware and classroom situations to teach algebra and analysis at upper secondary 
level. This paper draws on our current research in the ReMath European project fo-
cusing on the approach to functions via multiple representations. In this paper, we 
present the design of an experimental teaching unit for the 11th grade and some pre-
liminary results.  

INTRODUCTION 

The notion of function plays a central role in mathematics and for many authors tech-
nology can help students to learn about this notion especially because of the represen-
tational capabilities of digital environments.  Recently, authors extended the range of 
representations by considering functional dependencies in a non symbolic domain. 
Falcade and al. (2007) proposed for instance to use Dynamic Geometry as an envi-
ronment providing a qualitative experience of covariation and of functional depend-
ency in geometry.  
An aim of our team in the ReMath project is to develop a teaching unit taking advan-
tage of a wealth of representations of functions offered by technology. In this aim, 
our software environment - Casyopée - has been extended, adding to the existing 
symbolic window a geometrical window with strong connections between them. Ca-
syopée’s symbolic window is a computer environment for upper secondary students. 
The fundamental objects in this window are functions, defined by their expressions 
and domain of definition. Other objects are parameters and values of the variable. Ca-
syopée allows students to work with the usual operations on functions like: algebraic 
manipulations (factoring and developing expressions, solving equations ...); analytic 
calculations (differentiating and integrating functions); graphical representations; 
supports for proof …. The new window offers the usual dynamic geometry capabili-
ties, like defining fixed and free geometrical objects (points, lines, circles, curves) 
and constructing others. It also offers distinctive features: geometrical objects can de-
pend on algebraic objects and it is possible to export geometrical dependencies into 
the symbolic window, in order to build algebraic models of geometrical situations 
(Lagrange & Chiappini, 2007).  
 

SOLVING A PROBLEM OF FUNCTIONAL DEPENDENCY WITH 
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CASYOPEE 

In order to explain this extension, we expose now the type of problem whose resolu-
tion can take advantage of Casyopée, and how. This is an example:  

Consider a triangle ABC. Find a rectangle MNPQ with M on [oA], N on [AB], P on 
[BC], Q on [oC] and with the maximum area 

 

Fig. 1: The geometrical window of Casyopée 

 

Fig. 2: The symbolic window of Casyopée 

. 

Constructing a generic triangle ABC in the geometrical window can be done after 
creating parameters in the symbolic window. For instance, the points can be A(-a;0), 
B(0;b) and C(c;0), a, b and c being three parameters. Then one can create a free point 
M on the segment [oA] (o being the origin) and the rectangle can be constructed us-
ing dynamic geometry capabilities.  

In the Geometric Calculation tab (Fig.1) one can create a calculation for the area of 
the rectangle MNPQ and then define an independent variable. Numerical values of 
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calculations and of the variable are displayed dynamically when the user moves free 
points. The user can then explore the co-dependency between these values. If this co-
dependency is functional (i.e., the calculation depends properly on the variable) it can 
be exported into the symbolic window and Casyopée automatically computes the 
domain and the algebraic expression of the resulting function. Otherwise, Casyopée 
gives adequate feedback. 

After exporting into the symbolic window, one can work on various algebraic expres-
sions of the function and on graphs. For instance, one can use properties of parabolas, 
or algebraic transformations or Casyopée’s functionality of derivate to find the an-
swer to the question. One can also use the graph of the function to conjecture about 
the area maximum.  

QUESTIONS AND THEORETICAL FRAMEWORKS 

As the above example shows, Casyopée offers very varied functionalities and repre-
sentation of functions: 

• means for creating generic dynamic figures, 

• geometrical calculations to express a range of quantities that can be considered 
as dependant variables, 

• possibilities of choosing an independent variable like a distance or an abscissa 
involving free points,… feedbacks about this choice of a variable,  

• means to observe numerical covariation between points and calculations, or be-
tween an independent variable and a calculation,  

• means to export a functional dependency between the chosen variable and a 
calculation to the symbolic window, resulting in an algebraic form of the func-
tion, 

• means for treating this algebraic form in various registers. 

The overarching question addressed by the Casyopée team is: how to exploit these 
varied functionalities of representation in order to develop students’ understanding of 
a functional dependency, particularly by articulating a geometrical situation with its 
algebraic model? 

To investigate this question, we built an experimental teaching unit at 11th grade. In 
this paper, we present first the frameworks that helped us to build this experiment and 
to interpret our observations. Then we present the experiment and we report on the 
observation of the last session where students used the wider range of representations.  

The first framework is based upon the notion of “setting” introduced by Douady 
(1986). According to Douady, a setting is constituted of objects from a branch of 
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mathematics, of relationship between these objects, their various expressions and the 
mental images associated with. When students solve a problem, they can consider this 
problem in different settings. Switching from a setting to another is important in or-
der that students progress and that their conceptions evolve. Students can operate 
these changes of setting spontaneously or they can be helped by the teacher. The set-
ting distinguished here are geometry and algebra,  

We also rely upon the notion of registers of representations from Duval (1993). Du-
val stresses that a mathematical object is generally perceived and treated in several 
registers of representation. He distinguishes two types of transformations of semiotic 
representations: treatments and conversions. A treatment is an internal transformation 
inside a register. A conversion is a transformation of representation that consists of 
changing of a register of representation, without changing the objects being denoted. 
It is important that students recognize the same mathematical objects in different reg-
isters and they get able to perform both treatments and conversions. 

Here we distinguish the geometric and the algebraic settings corresponding to Ca-
syopée’s two main windows. In these two settings, the functions modeling a depend-
ency are different objects: a relationship between geometric objects or measures in 
the geometric setting, and an algebraic form involving a domain and an expression in 
the algebraic window. In the above problem, students have to switch from the geo-
metric to the algebraic settings and back, to be able to use symbolic means for solving 
questions that were formulated in the geometric setting. As explained by Lagrange & 
Chiappini (2007), we expect that, working in the geometric setting, students would 
understand the problem and the objects involved, and that after switching to algebra, 
this understanding would help them to make sense of the objects and treatments in the 
algebraic setting.  

Inside each of these two settings the functions can be expressed in several registers. 
In geometry, especially with dynamic geometry, functions can be represented and ex-
plored in different registers: covariations between points and measures, or between 
measures, or functional dependency between measures. In algebra, functions can be 
expressed and treated symbolically, by their expressions, by way of graphs and of 
numerical tables. Mastering these expressions and treatments, and flexibly changing 
of register are important for students’ ability to handle functions and acquire knowl-
edge about this notion. 

A third framework is the instrumental approach, based on the distinction between ar-
tefact and instrument. An actefact is a product of human activity, designed for spe-
cific activities. For a given individual, the artefact doest not have an instrumental 
value in itself. It becomes an instrument through a process, called instrumental gene-
sis, involving the construction of personal schemes or the appropriation of social pre-
existing schemes. Thus, an instrument consists of a part of an artefact and of some 
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psychological components. The instrumental genesis is a complex process; it requires 
time and depends on characteristics of artefacts (potentialities and constraints) and on 
the activities of the subject (Vérillon & Rabardel, 1995). 

In the case of an instrument to do or learn mathematics like Casyopée, the instrumen-
tal genesis involves interwoven knowledge in mathematics and about the artefact’s 
functionalities. Artigue (2002) showed how this genesis can be complex, even in the 
case of simple task like framing a function in the graph window. More generally, the 
many powerful functionalities of CAS tools have a counterpart in the complexity of 
the associated instrumental genesis (Guin & Trouche, 1999). We are then aware that 
we must take care of students’ genesis when bringing Casyopée into a classroom. 
Moreover, Casyopée offers a multiplicity of representations in two settings and in 
several registers. Understanding and handling these representations involves varied 
mathematical knowledge. Students have then to be progressively introduced to these 
representations, taking into account the development of their mathematical knowl-
edge.  

Constructing the sessions of the experiment, we also used the Theory of Didactical 
Situations as basis for designing tasks. According to this theory, learning happens by 
means of a continuous interaction between a subject and a milieu in an a-didactical 
situation. Each action of the subject in milieu is followed by a retro-action (feedback) 
of the milieu itself, and learning happens through an adaptation of the subject to the 
milieu. Thus, with regard to Casyopée use, learning does not depend only on the rep-
resentational capabilities of this software, but also on tasks and on the way they are 
framed by the teacher. Within this perspective, we looked for situations in which stu-
dents interact with Casyopée and receive relevant feedbacks. For example, to solve 
the above problem, students have to choose between different independent variables 
to explore functional dependencies in the geometrical window and to export a de-
pendency into the algebraic window. In case the variable is inadequate, the feedback 
they receive is a message from Casyopée. In other cases, the algebraic expression 
automatically produced by Casyopée can be more or less complex, which is another 
feedback: too complex expressions have to be avoided in order to ease the subsequent 
algebraic work. 

Concerning the methodology, we use didactical engineering (Artigue, 1989), a 
method in didactic of mathematics, to organize and evaluate the experimental teach-
ing unit, and to answer the research questions. The treatments and interpretations of 
collected data based on an internal validation which consists in confronting a priori 
analysis of the situation with a posteriori analysis. This method produces an ensem-
ble of structured teaching situations in which conditions for provoking students’ 
learning have been planned.   

THE EXPERIMENT 
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Our experimental teaching unit consisted of six sessions. It was experimented in two 
French 11th grade classes. It was organized in three parts. Consistent with our sensi-
tivity to students’ instrumental genesis, each part was designed in order that students 
learn about mathematical notions while getting acquainted with Casyopée’s associ-
ated capabilities: 

 The first part (3 sessions) focused on capabilities of Casyopée’s symbolic win-
dow and on quadratic functions. The aim was that students became familiar 
with parameter manipulation to investigate algebraic representations of family 
of functions, while understanding that a quadratic function can have several 
expressions and the meaning of coefficients in these expressions. The central 
task was a “target function game”: finding the expression of a given form for 
an unknown function by animating parameters. 

 The second part (two sessions) aimed first to consolidate students’ knowledge 
on geometrical situations and to introduce them to the geometrical window’s 
capabilities. The central task was to build geometric calculations to express ar-
eas and to choose relevant independent variables to express dependencies be-
tween a free point and the areas. It aimed also to introduce student to coordi-
nating representations in both algebraic and geometrical settings, by way of 
problems involving areas that could be solved by exporting a function and 
solving an equation in the symbolic window. 

 Finally, in the third part (one session) of the experimental unit, students had to 
take advantage of all features of Casyopée and to activate all their algebraic 
knowledge for solving the optimization problem presented above.  

Below, we give some insight on how we are currently exploiting this experiment with 
regard to our question about Casyopée’ potential for multi-representation. We limit 
ourselves to the final session for which the problem and the students’ instrumental 
genesis should allow to take full advantage of this potential. We draw some elements 
of a priori analysis of this session and we compare with the a posteriori analysis of 
the functioning of a two student team. 

THE SITUATION IN THE FINAL SESSION: ELEMENTS OF A PRIORI 
ANALYSIS 

Tasks 

The problem is presented by the teacher by animating a figure in Casyopée’s geomet-
rical window:  

Let a, b and c be three positive parameters. We consider the points A(-a;0), B(0;b) 
and C(c;0). We construct the rectangle MNPQ with M on [oA], N on [AB], P on 
[BC] and Q on [oC]. Can we build a rectangle MNPQ with the maximum area? 
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Fig. 3: The figure built in Casyopée 

The tasks proposed to students are then: 

- The construction of the rectangle MNPQ: students are required to load a Ca-
syopée file with the parameters’ definition and the triangle, then to complete 
the figure by building the segments [oA], [AB], [BC] and [oC] and to create 
the free point M and the rectangle’s vertexes. 

- To create a geometrical calculation for the area of the rectangle MNPQ: this 
can be obtained by the product of the lengths of two adjacent sides, e.g. 
MNxMQ 

- To explore the situation by moving the point M on the segment [oA].   

- To prove the conjecture by algebraic means.  

The teacher also asks students to write the proof, indicating their choice of variable 
and using results displayed by Casyopée. Finally, students are expected to visualize 
the answer in the geometrical window. 

Covariations and representation of functional dependencies 

This situation involves two settings and different registers. Students can conjecture 
the answer to the question by exploring numerical values of the area in the geometri-
cal setting. They can explore the variation of the area in different ways corresponding 
to different registers of representation. First, they can observe co variation between 
the point M and the area, looking at the values of the calculation they created for the 
area of the rectangle, noting that when M moves from A to B the value grows then 
decreases, with a maximum value when M is the middle of [oA]. They can also ob-
serve co variation between a measure involving the free point M and the area. For in-
stance, they can observe together the values of the distance oM and of the area. Fi-
nally, they can choose an independent variable involving M and observe the func-
tional dependency between this variable and the area.  

In the algebraic setting students can apply different algebraic techniques to the alge-
braic form of the function in order to find a proof. Exporting a function with Ca-
syopée, one obtains a more or les complex algebraic expression reflecting the calcula-
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tion’s structure. Students then need to expand this expression to recognize a quadratic 
function. They can then apply their knowledge about these functions to prove the 
maximum. It is possibly not easy for them, because of the three parameter involved. 

They can also use the graphical representation in this algebraic setting to explore the 
curve, complementing the exploration they did in the geometrical setting: the parab-
ola is familiar to the students and they can easily recognize a maximum.   

The situation is partly a-didactical. In each setting, students interact freely with Ca-
syopée and use the feedbacks to understand the situation. Nevertheless, some key 
points like passing from a co variation to a functional dependency are expected to be 
difficult for students, although the corresponding action (choosing an independent 
variable) has been presented in the preceding sessions. Passing from one setting to 
the other is expected to be far from obvious for students. The corresponding actions 
in Casyopée (exporting a function in the symbolic window, interpreting a symbolic 
value in terms of position of a point) have also been presented before, but it is the 
first time that students have to do it by themselves.  

Students can choose their own independent variable between possible choices (oM, 
xM, MN, MQ…) with consequences upon the algebraic expression of function. They 
can do it alone but it is expected that the teacher mediation will be necessary. It is 
also possible that they will want to change their choice of a variable in order to obtain 
a simpler algebraic expression of the function.  

We expect a great variety of uses of representations reflecting students’ free interac-
tions with the situation. Some students can stay a long time exploring co variations 
and need teacher mediation to go to functional dependency while others pass more or 
less quickly to the algebraic setting to consider the function. In this setting, some can 
prefer to explore graphs, while others prefer working on algebraic expressions. It is 
possible that some students find too difficult to apply algebraic techniques to the gen-
eral expression (i.e. with parameters) and prefer to work by replacing these parame-
ters by numbers. In any case, we expect that students will consider several representa-
tions, make sense of them and make links between them. 

ELEMENTS OF A POSTERIORI ANALYSIS: THE CASE OF A TEAM  

During the experiment, we observed selected teams of students. In this paper, we fo-
cus on a team of two students, which according to the observation in the first five ses-
sions had a favorable instrumental genesis. According to their teacher they were good 
students. 

The explorations in different settings and registers 
Creating a geometrical calculation for the area of the rectangle, they typed MNxMP 
instead of MNxMQ by mistake. They moved M and observed growing numerical 
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values of this calculation, while, for some positions of M the area was visibly de-
creasing. This first feedback allowed them to correct the geometrical calculation. 
Like most students they had difficulties in choosing an appropriate independent vari-
able, confusing the independent variable and the calculation. They needed help from 
the teacher to activate the correct button. They chose at first NP. They moved for a 
long time the point M and observed how numerical values of this variable and of the 
area MN×MQ changed. They found an optimal value and interpreted it: "(the opti-
mum) is when N is the midpoint of [AB] I believe, and P is the midpoint of [BC]". 
The teacher asked them for a proof. A student suggested an equation in an interroga-
tive tone. Actually, the problems solved in sessions 4 and 5 were about equalities of 
areas and have been solved by way of an equation. 
The teacher guided them to export the function, but they found the resulting expres-
sion too complicated. Then they choose another independent variable MQ, and got 
the same expression after exporting again the function. Finally, they chose xM as an 
independent variable, obtained the algebraic expression b(x-1/ax)(a+c-a(x-1/ax)-c(x-
1/ax)) and expanded it into a quadratic polynomial. 

Proving the maximum 

The team graphed the function, recognized a parabola, and said that they do not know 
how to determine the maximum’s x-coordinate. Then they wanted to apply an alge-
braic formula to get this x-coordinate and used Casyopée to expand the expression. 
For some reason they got a non parametric expanded expression, the parameters be-
ing instantiated. Then it was easy for them to obtain by paper/pencil a numerical 
value of the maximum’s x-coordinate. Then they returned to the geometrical window, 
checked this result and generalized, saying that the maximum is for xM=a/2. 

They did not attempt to prove this generalized property by working on the parametric 
expression and then they only partially solved the problem. Other teams did, but had 
much difficulty to apply the formula to the parametric quadratic expression.  

SYNTHESIS 

The observation reported above is globally consistent with the a priori analysis. The 
students used more or less all registers of representation. The independent variable 
was recognized as the central feature of the solution, allowing connections between 
registers. Casyopée offered means for exploration and various feedbacks that helped 
this recognition. The students’ instrumental genesis helped them globally to interact 
with Casyopée, but important actions like choosing a variable and exporting a func-
tion were still unfamiliar. They were influenced by the problems they solved before 
and it was difficult for them to have a clear approach of an optimization problem. Al-
though they used parameters before and they understood the generalized problem, us-
ing parametric expressions was still difficult.    

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 567



 

 

 

 

With regard to our question on how to exploit Casyopée’s varied functionalities of 
representation, we can say that, in spite of remaining difficulties, the teaching ex-
periment helped this team to develop an understanding of a functional dependency. 
We have of course not now a more definite conclusion and we are currently analysing 
the other teams’ observation as well as productions after the experiment. We are es-
pecially sensible to the teacher’s help to students. In the above observation, we saw 
this help in crucial episodes, like changing settings and we want to know whether this 
help was efficient for students’ learning, beyond the solution of the problem. 

REFERENCES 
Artigue, M. (1989). Ingénierie didactique. Recherches en Didactique des Mathémati-

ques, 9(3), 281-308. 
Artigue, M. (2002). Learning Mathematics in a CAS environment: The genesis of a 

reflection about instrumentation and the dialectic between technical and concep-
tual work. International Journal of Computers for Mathematical Learning, 7(3), 
245–274. 

Douady, R. (1986). Jeux de cadres et dialectique outil-objet. Recherches en Didacti-
que des Mathématiques, 7(2), 5-31. 

Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif 
de la pensée. Annales de Didactique et de Sciences cognitives, 5, 37-65. 

Falcade, R., Laborde, C., & Mariotti, M. A. (2007). Approaching functions: Cabri 
tools as instruments of semiotic mediation. Educational Studies in Mathematics, 
66, 317-333. 

Guin, D. & Trouche, L. (1999). The complex process of converting tools into mathe-
matical instruments: the case of calculators. International Journal of Computers 
for Mathematical Learning, 3(3), 195–227. 

Lagrange, J. B. (2005). Curriculum, classroom practices and tool design in the learn-
ing of functions through technology-aided experimental approaches. International 
Journal of Computers for Mathematical Learning, 10, 143–189. 

Lagrange, J. B. & Chiappini, G. (2007). Integrating the learning of algebra with tech-
nology at the European level: two examples in the ReMath project. In Proceedings 
of 5th Congress of the European Society for Research in Mathematics Education, 
Larnaca, Cyprus.  

Vérillon, P. & Rabardel, P. (1995). Cognition and artifacts: a contribution to the 
study of thought in relation to instrumented activity. European Journal of Psy-
chology of Education, 10(1), 77-101 

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 568



 

 

 

 

EQUALITY RELATION AND STRUCTURAL PROPERTIES [1] 

Marchini Carlo a, Cockburn Anne b, Parslow-Williams Paul b, Vighi Paola a 
a Mathematics Department University of Parma - ITALY ; b School of Education and 

Lifelong Learning University of East Anglia, Norwich -U.K.  

We present the results of a questionnaire on equality we administrated to a large and 
vertical sample of Italian students. Some of the questions were devised to investigate 
the presence of relational thinking.  

INTRODUCTION – THE SCENARIO OF THE RESEARCH 
This paper emanated from an international study of arithmetical misconceptions in 
primary schools (Cockburn & Littler, 2008) part of which considered equality 
(Parslow-Williams & Cockburn, 2008). One way to detect whether a wrong answer 
can be attributed to a misconception or a slip (Schlöglmann, 2007), is to analyse the 
persistence of the same wrong answer through a range of school grades. Here we fo-
cus on a questionnaire on equality administered to 1,147 Italian seven to sixteen and a 
group of university students in their first year. (cf. table 1 below). 
THEORETICAL FRAMEWORK AND THE AIM OF RESEARCH 
It has been well documented that an understanding of equality is crucial to the devel-
opment of algebraic thinking (Alexandrou-Leonidou & Philippou, 2007; Attorps & 
Tossavainen, 2007; Puig, Ainley, Arcavi & Bagni, 2007). ). Here we focus on formal 
number sentences, building on the work of Molina, Castro & Mason (2007) and, in 
particular, relational thinking – a term that Molina et al. (2007) borrow from Car-
penter, Franke & Levi (2003). The student employs relational thinking if s/he 

 “makes use of relations between the elements in the sentence and relations which consti-
tute the structure of arithmetic. Students who solved number sentences by using rela-
tional thinking (RT) employ their number sense and what Slavit (1999) called “operation 
sense” to consider arithmetic expressions from a structural perspective rather than simply 
a procedural one. When using relational thinking, sentences are considered as wholes in-
stead of as processes to carry out step by step.” (Molina et al., 2007, p. 925) 

The term relational thinking here is the opposite of procedural thinking. Although it 
sounds similar to Skemp’s (1976) relational understanding, i.e. “knowing what to do 
and why” (Skemp, 1976, p. 21), in this context it focuses on different aspects of learn-
ing. In our opinion relational thinking is very similar to relational interpretation of 
equality detected by Alexandrou-Leonidou & Philippou (2007) and very closely re-
lated to conceptual knowledge, as proposed by Attorps & Tossavainen (2007) as op-
posed to procedural knowledge. The latter adopted the framework of Sfard (1991) 
and focused on the mathematical properties of the equality relation, i.e. reflexivity, 
symmetry and transitivity and, using a sample of 10 qualified and 75 pre-service sec-
ondary mathematics teachers, concluded that a lack of understanding of these proper-
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ties impairs the development of the concept of equation. In Italy the structural ap-
proaches to arithmetic and algebra, together with equations, are usually introduced in 
grade 9. Early structural approaches and equations are, however, in the curricula for 
grades 6, 7 and 8. In the light of the above, this study investigated  

- whether there was evidence of relational thinking in grades 2 - 5; 
- how the structural notions taught of pupils in grades 6 - 11 influenced the re-

sponses;  
- misconceptions about aspects surrounding equality amongst the students.  

METHODOLOGY 
The questionnaire 
All pupils were given a written questionnaire containing a series of equality prob-
lems. Our questionnaire comprised simple number sentences using similar questions 
and symbols to those found in the literature (cf. Radford (2000), Hejný & Slezáková 
(2007), and Behr, Erlwanger & Nichols (1980)). 
Zan (2000) suggested that misconceptions may exist in a sort of ‘grey’ zone beneath 
the complete consciousness of the person. Our questions were intended therefore to 
be sensitive enough to reveal misconceptions  and relational thinking without being 
too direct, since this can make the subjects aware of their errors, resulting in an im-
mediate correction before they commit themselves to writing an answer.  
We decided to avoid the issue of having both signs ‘+’ and ‘-‘, in the same calcula-
tion, as an awareness of both algorithms was required to find the solution. The ques-
tionnaire was four pages in length [2]: 2a and 2s presented addition and subtraction 
problems respectively, using mainly single digit numbers; in 3a and 3s numbers were 
between 20 and 100. The first six questions on each page were designed to build con-
fidence and involve two given numbers, one operational sign, ‘+’ or ‘-’. On all pages 
a firm knowledge of symmetry of equal relation can help solve the first six questions; 
in 2a form, two of them focus explicitly on the symmetry of the equality relation. The 
next four questions have three given numbers, two operational signs (cf. Behr et al. 
(1980), Sáenz-Ludlow & Walgamuth (1998) and Alexandrou-Leonidou & Philippou 
(2007)). These were followed by ‘open’ questions [3] with two operational sign, two 
boxes and two given numbers, as a+� = �+b; �+a = �+b; a-� = b-� (we have yet to 
come across such examples in the literature). These were intended to reveal the pos-
sible use of reflexivity of equality, the commutative property of addition and aware-
ness of 0 and its formal properties. We also tested the presence of the ‘commutative 
property’ of subtraction. Other less common open and closed questions were devised 
to detect the possible awareness of the transitive property of equality, with two-
equality schema such as a±b = c±� = � or with three-equality schemas such as a±b = 
c±� = d±� = � and a±�= b±� =c±� = �. These can be solved correctly by direct cal-
culation showing the non-RT behaviour or by the use of structural properties, ap-
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plying the different RT behaviours of Molina et al. (2007). For the reflexivity of 
equality in forms 2a and 3a we included a question of the schema a = �.  
The questionnaire instructions were intentionally open-ended: we asked “Can you 
complete these number sentences?”, without specifying which type of number could 
be used (naturals, relative integers, rationals or reals), thus leaving the possibility that 
older students could apply their knowledge about the various numbers systems. 
The sample 
As we had to rely on volunteers teachers, our sample was determined by their re-
sponse. The number of returned questionnaires was as shown in Table 1.  

Grade 2 3 4 5 6 7 8 9 10 11 Univ
. 

No. 76 131 58 228 282 172 161 62 22 47 112 

Table 1: The sample structure 

The size of the sample (1,147 respondents giving 62,898 answers) and its breadth (11 
different grades) allowed us to compare our data with the research literature; observe 
whether such findings might be extended to older students and detect any new phe-
nomena. Due to the scope of the study, the conditions of the test administration were 
largely un-specified (time, day, duration of the test, surveillance during the proof, and 
so on) except in case of university students who were given 15 minutes to complete 
the questionnaire. 
THE RESULTS 
Interestingly, regardless of age, the majority of solvers only used natural numbers. 
Due to the lack of space we focus on sample questions (while retaining the original 
questionnaire ‘numbering’).  
1. The first six questions on each page and symmetry of equal relation. 

A-priori analysis. In the questions 2a. (b) 5+�=8 and 2a. (f) 8=5+� the role of symme-
try is evident, since the numbers involved are the same (‘strict’). In other examples we 
can speak of a symmetry ‘at large’ for the structure of the number statements, but not 
for the numbers involved. This gave us the opportunity to examine whether some pu-
pils were ‘blind to the symmetric property of the equality’ (Attorps & Tossavainen, 
2007), in the  ‘strict’ sense and/or the ‘at large’ meaning. For each pair the correct an-
swers to both questions can be obtained by computation; in case of 2a. (b) and 2a. (f), 
the result is 3, for both. For this pair, a difference in the result or the lack of one an-
swer can be attributed to an incomplete mastery of the formal property of equality. 
For the remaining pairs we presume that a right answer to one question of the pair 
and the firm awareness of equality relation symmetry may suggest a good strategy for 
solving the other question of the couple, even if the numbers are different: a solver of 
79-�=25 who has trouble with 53=78-�, can think of this second task in the form 
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78-�=53 to find the right answer. A right answer of only one question of these cou-
ples can suggest an ‘at large’ non-application of the symmetry in the pair. 
A-posteriori analysis. The case simplicity of 2a. (b) and 2a.(f) resulted in high success 
rates: 98,14% and 95,40% respectively. People responding differently to the two 
tasks, certainly gave an incorrect answer. Individuals who responded incorrectly, are 
highly likely to a lack of their understanding of symmetry. However, in the case of 
the other pairs, the situation is more complex since we cannot exclude wrong com-
putations even if symmetry was being used. In table 2 we distinguish between the 
‘strict’ symmetry non-application and the ‘at large’ non-application. Data in the latter 
case are obtained cumulatively for the other eleven pairs (sample no. 12,993). 

number of at least one 
wrong or missing an-

swer 

rate of symmetry 
non-application 

rate of contemporary 
success  

strict large strict large strict large 
Grades 2-5 [4] 46 891 93.48% 79,91% 90.67% 78.33% 

Grades 6-8 18 1090 83.33% 74,86% 97.07% 83.90% 
Grades 9-11 4 231 75.00% 62,77% 96.95% 83.94% 
University  47  89,36%  93.01% 
χ -test 8.68E-6 3.38E-94 0.29 1.27E-7 3.29E-6 3.04E-24 

Global sample 68 2259 89.71% 75,92% 94.51% 82.61% 
Table 2: The non-application of symmetry of equality.  

Values of the χ-test less than 0.05 (0.01) show that difference among grade classes 
are statistically significant; the result 0.29 is consequence of small numbers. 
Reference the sum of the numbers of all the wrong and missing answers to at least 
one of two tasks  suggests that a lack of awareness of the formal property is the 
greater source of error.  

2. The task 2a. (k)  5 + � = � + 7 
A-priori analysis. The task is open with the choice of one of two missing numbers de-
termining the other. The location of the boxes invites, possibly, the reflexive property 
of equality without the need for any sort of calculation e.g. 5+7 = 5+7. The neutral 
role of 0 with addition could inspire the answer 5+2 = 0+7. Other structural answers 
using the formal property of negative numbers (and 0) are 5+0 = (-2)+7 and 5+(-5) = 
(-7)+7. Relational thinking offers a criterion for revealing a wrong answer: the given 
numbers are odd, therefore the two inserted numbers must have the same even parity. 
The repetition of a box could prompt (wrongly) younger pupils, in particular, into 
thinking that the numbers they are required to insert must be the same.  
A-posteriori analysis. Of 1,143 students that were given this question, 1,057 re-
sponded, of which 842 gave the right answer (73.76%) suggesting that the task was 
relatively easy. Each answer given (right or wrong) used natural numbers. It is inter-
esting to note the distribution of the structural answers by age of pupils. We suspect 
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that the infrequent use of zero to solve the problems e.g. 5+2 = 0+7 could be due to a 
‘fear’ of 0 - i.e. the complex acknowledgment of 0 as a number - or, simply reflect 
that individuals were unacquainted with this mathematical character. 

2a. (k)   
5 + � = � + 7 

correct 
response 

presence of the  
answer      

5+7 = 5+7 

presence 
of the  answer    

5+2 = 0+7 

commonest correct re-
sponse 

 (with frequency) 
Grades 2-5 62.47% 7.26% 7.66% 5+4=2+7 (26.21%) 
Grades 6-8 78.21% 6.86% 6.24% 5+3=1+7 (34.93%) 
Grades 9-11 86.26% 2.65% 0.88% 5+3=1+7 (46.02%) 

χ -test 4.79E-10 0.21 0.04  
Global sample 73.67% 6.41% 5.94% 5+3=1+7 (32.30%) 

Table 3: The relational thinking presence and the commonest right answers to 2a.(k).  

The commonest incorrect response was 5+2 = 7+7 (with 18.14% of the 215 wrong 
answers). To interpret this we can consider the application of  “Three First Numbers – 
TFN” and then “Answer After Equal Sign–AAES” modalities of Alexandrou-Leonidou 
& Philippou, (2007). The presence of two equal boxes, did not appear to be highly 
relevant as only the 8.37% of incorrect responses used the same number twice: 5+a = 
a+7 (a=1 or a=2 having the greatest frequency). The even parity criterion was found 
in all of the 842 exact answerers and in 26.98% of the wrong answers, giving a total 
rate of 85.15% of the answers. We have also an echo effect: when the given numbers 
are odd, the percentage of correct answers using a pair of odd numbers is 62.59%. 

3. The task 2s.  (k)  6 - � = 8 - � 
A-priori analysis. This task is also open with the first number determining the second. 
Moreover, if restricted to natural numbers, the subtrahend must be less than minuend. 
The location of boxes may invite the following answer 6-6 = 8-8, a solution using 0 
as result of both members of equality. Alternatively the neutral role of 0 when sub-
tracting could be employed e.g. 6-0 = 8-2. For other aspects the a-priori analysis of 
this task is similar to the previous one. We expected a wrong relational thinking an-
swer in the ‘commutativity’ of subtraction, i.e. the answer 6-8 = 8-6.  
A-posteriori analysis. 1,056 students were given the question; 953 responded, 762  

Table 4: The relational thinking presence and the commonest right answers to 2s. (k). 

2s.k)      
6 - � = 8 - � 

rate of 
success 

rate of  re-
sponse     6-6 

= 8-8 

rate of re-
sponse     6-0 

= 8-2 

rates of commonest 
right answer 

6-2=8-4  
Grades 2-5 61.09% 3.16% 2.76% 31.58% 
 Grades 6-8  76.06% 2.78% 1.05% 38.12% 
Grades 9-11 80.15% 1.90% 3.43% 28.57% 

χ-test 9.33E-7 0.24 0.24 0.09 
Global sample 72.16% 2.76% 2.86% 35.17% 
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did so correctly (success rate 72.16%), suggesting that this task was relatively easy 
even if slightly harder than 2a. (k). Table 4 summarises the use of relational thinking. 
The echo effect appeared to be present as 56.17% of the right answers used pairs of even 
numbers. The even parity criterion is present in 87.20% cases. In this case the common-
est correct answer is similar for all grades. Again we could argue that the commonest 
right answers were influenced by the fear of using 0 combined with the echo effect. The 
commonest wrong answer was 6-2=8-2 (12.04% of the 191 wrong answers) and we 
could consider this kind of response motivated by application of TFN twice assuming 
that the second box is filled in first. Of the wrong answers, the structural, but incor-
rect, response 6-8=8-6 was given in 4.19% cases. The value 0.09 of the χ-test show 
that the differences among grades classes are not statistically significant. 

4. The task 3a.  (k)  � + 21 = � + 11 
A-priori analysis. As above the task is open and has ‘freedom grade one’. The location 

of boxes may invite the use of commutative property of addition, i.e. 11+21 = 21+11. 
Moreover the neutral element of addition could reduce computation e.g. 0+21 = 10+11. 
Questions 2a.(k) and 3a.(k) have the same quantity of given numbers and addition 
symbols, but the boxes are differently placed: in 2a.(k) reflexivity of equality is at 
stake while in 3a.(k) the commutativity of addition is involved. 

3a.k)            
� + 21 = � + 11 

rate of 
success 

rate of response   
11+21 = 21+11 

rate of response  
0+21 = 10+11 

rate of commonest 
right answer  

10+21 = 20+11 
Grades 3-5 60.52% 9.22% 2.84% 26.24% 
Grades 6-8 72.17% 10.76% 4.48% 28.92% 
Grades 9-11 80.92% 11.32% 4.72% 31.13% 
University 94.64% 11.32% 6.60% 42.45% 

χ-test 1.04E-10 0.94 0.57 0.03 
Global sample 73.03% 9.14% 4.51% 30.54% 

Table 5: The relational thinking presence and the commonest right answers to 3a. (k). 

A-posteriori analysis. This task was administered to 1,094 students from grade 3 to 
first year of University: 979 responded with 799 of them giving the right answer 
(success rate 73.03%), comparable with the success rate for 2a. (k). Here RT appears 
to become more evident with increasing age. The use of 0 as the neutral element in addi-
tion is similar to that in task 2a. (k) but the commutativity of addition is more prevalent. 
Multiples of ten - excluding 0 - were found in 53.82% of the correct answers. The even 
parity criterion occurred in 83.86% responses. In 3a. (k) question the echo effect was 
not evident as 60.33% of the right answers had a pair of even numbers. The commonest 
wrong answer is 32+21 = 53+11 (6.11%). We hypothesize that the first box is filled 
in when the task is interpreted as � = 21+11, in a sort of “Left Side Sum-LSS” modal-
ity. The completion of the second box is suggested by AAES modality (Alexandrou-
Leonidou & Philippou, 2007). 
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In our opinion, the presence of two digit numbers had a double effect: the attempts 
decrease from 92.48% of 2a. (k) to 89.49% of 3a. (k) and this may be significant as 
the latter sample excluded 2nd graders but included first year university students. Sec-
ondly it may be that the presence of two digit number in this task activates a more at-
tentive approach to the computation (the answers to other questions support this) and 
we could attribute to this attitude the greater presence of RT. 

5. The tasks of type a = �. 
A-priori analysis. Behr et al. (1980) include examples of the type a = a, with given 
numbers and so we incorporated 2a. (l), 9 = �, and 3a. (n), 42 = �. To solve them one 
needs only apply the reflexive property of equality. These are closed tasks and do not 
require computation.  

 We anticipated that the absence of operational symbols would be destabilizing and 

Table 6: Comparison of results of the tasks 2a. (l) and 3a. (n). 

The result in no answer or the use of operational symbols (cf. Behr et al., 1980). loca-
tion of the two tasks in their form allowed us to explore if there was a tiredness effect, 
influencing the rates of answer and success. 
 A-posteriori analysis. Task 2a. (l) was given to grades 2 - 11 (1,239) with 1,151 re-
sponding with 917 of correct (74.01%). The majority of incorrect answers (54.70%) 
express the result with operational symbols and the computation on the proposed 
numbers gives 9, showing a procedural interpretation of the sign =. The commonest 
answer of this kind is 9 = 32, in 44.53% of all ‘operational’ answers and was given by 
the majority of 6th graders and above.  

Task 3a. (n), 42 = �, was given 1,190 grade 3-11 and 1st year university students, 
1,049 responded with 877 of them giving the right answer (73.70%). The ‘opera-
tional’ answer rate is 44.77% and the commonest ‘operational’ responses were, glob-
ally, 40+2 (19.48%) and 21+21 (18.18%).  

6. The task 2a. (m)  5 + 4 = � + 6 = � 
A-priori analysis. This task is the first which presents more than one equality sign. It 
is a closed task. The ‘chain’ of equality asks for the transitive property of equality. 

 9=� suc-
cess rate 

9=� with opera-
tional signs 

42=� suc-
cess rate 

42=� with opera-
tional signs 

Grades 3-5  76.67% 35.00% 70.82% 43.48% 
Grades 6-8 73.17% 59.68% 72.98% 39.60% 
Grades 9-11 67.94% 86.67% 67.94% 57.89% 
University   92.86% 100% 

χ-test 0.10 2.11E-6 1.53E-5 0.02 
Global sample 74.01% 54.70% 73.70% 44.77% 
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Wrong answers suggest a lack of awareness of it. The most probable incorrect re-
sponse is 5+4 = 9+6 = 15 (cf. Alexandrou-Leonidou & Philippou, 2007). 
A-posteriori analysis. 1,104 students responded with 718 giving the right answer 
(62.82%). As was expected the commonest wrong answer (70,47%) was 5+4 = 9+6 = 
15. This suggests either the pupils filled in the second box before completing the first 
or that they worked step by step from left to right. In either cases such results bring 
into question their  intuition as Semadeni (2008) states: 

“The transitivity of equality: “if A = B and B = C then A = C” was regarded by Fischbein 
(1987, pp. 24, 44, 59) as intuitively true. Piaget et al. (1987b, p.4) regards transitivity as 
an example of a systematic type of necessity…Transitivity is part of the deep intuition of 
equality (for numbers, for geometric points, for sets), involved in a multitude of deduc-
tive inferences.” (p.10) 

7. The task 3s. (m)   48 - � = 47 - � = 46 - � = � 
A-priori analysis. This task is complex: it is open-ended, involves two-digit numbers, 
three subtraction signs and three equalities. Despite having four boxes to fill, it has 
‘freedom grade one’. 

3s.m)          
48-�=47-�=46-�=� 

rate of 
success 48-48=47-47=46-46=0 48-2=47-1=46-0=46 

commonest right 
answer rate 

48-3=47-2=46-1=45 
Grades 3-5 56.99% 2.73% 9.09% 20.00% 
Grades 6-8 56.91% 4.29% 12.29%  27.14% 

Grades 9-11 60.77% 0% 7.59% 48.10% 
University 83.04% 2.15% 6.45% 61.29% 

χ-test 3.64E-6 0.22 0.29 6.5E-12 
Global sample 60.19% 3.16% 10.28% 33.54% 

Table 7: The presence of relational thinking regarding 0 and the commonest right an-
swers to 3s.m). 

To solve these questions correctly an explicit awareness of transitive property seems 
to be required.  The task allows simple solutions involving RT and formal properties 
of 0 in many ways: 48–48 = 47 – 47 = 46 – 46 = 0, or 48 – 2 = 47 – 1 = 46 – 0 = 46. 
It is also possible to apply negative numbers, or fraction and so on, but no one did.  
A-posteriori analysis. 896 – out of a possible 1,050 - responded with 632 giving the 
right answer (60.19%). The commonest correct answer reveals that the learners are at 
different levels of understanding, growing with age, taking care of the additive  de-
composition of numbers by fives: 48 = 45+3, 47 = 45+2 and so on. The structural 
properties of zero were most common in first eight grades of schooling. 41 pupils 
gave incorrect answers (22.65%) applying the transitive property of equality only 
once. 47.51% of those who were incorrect responded 48-1 = 47-1 = 46-1 = 45. 
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CONCLUSIONS 
The questionnaire enabled us to explore a phenomenology linked to relational thinking 
expressed by the reflexive, symmetric and transitive property of equality, the roles of 
zero respect to addition and subtraction and the commutativity of addition.  
Our study is peculiar in the variety of schools and age range sampled. In this sense 
other similar experience known in literature took place in smaller school, segments. 
Another feature of our paper is that we are interested here in the right answers, even 
if sometimes we quote, also, wrong answers. Our research would have been more 
rigorous had we selected the sample statistically. Therefore our paper cannot be used 
for drawing general conclusions, statistically sound, about relational thinking, never-
theless in our feeling it might open a new trend of study about the equality, pointing 
out that this subject needs an attentive reflection regarding the way and the time in 
which the concept of equality is presented (in itself), let it grant that is introduced 
somewhere and somehow. 
Overall primary school pupils were slightly better (even if in many cases differences 
are not statistically significant) than the older respondents in their application of rela-
tional thinking in specific tasks, but the presence of two-digit numbers appeared to 
hindered them. Nevertheless, a small but significant group demonstrated structural 
thinking  provoking the question of how to extend such thinking to others. The 
transmissive teaching methods in Italy may explain why relational thinking does not 
appear to improve between grades 6 and 11 even if the structural properties of opera-
tions are taught explicitly, suggesting a parallel presence of relational and procedural 
thinking, independent from teaching. For symmetry our pupils confirmed the Attorps 
& Tossavainen (2007) results with prospective teachers. 
There was a global score progression with increasing age. Addition questions were 
easier than subtraction; generally, pupils responded more appropriately to one digit 
answers than to two digit problems. Answering more complex questions under con-
ditions of stress (e.g. tiredness) suggests that the students possessing a ‘reified under-
standing’ (described by Sfard (1991) as ‘being able to see something familiar in a differ-
ent light’) of formal properties have an important tool which saves time and mental 
energies. Students who were aware of formal properties tended to cope better than 
others under conditions of complexity and stress. The prevalence of such knowledge 
was low however and in some cases appeared to decrease with age despite such top-
ics being introduced in Italian Secondary School. Few participants (even from Uni-
versity) reificated the reflexive property of equality, and the function of zero in addi-
tion and subtraction. The commutative property of addition was more apparent. The 
more complex nature of the statements of symmetry and transitivity of equality do 
not necessarily indicate their presence, but only their absence. The sub-sample of 
university students appeared to have the awareness of these arithmetic tasks, but, sur-
prisingly, more than 1/5  of the sub-sample responded to 3s. (m) incorrectly with 
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more than 1/3 of them revealing a lack of a global view, answering 48-1 = 47-1 = 46-
1 = 45, and of the transitive property of equality! 
NOTES 
[1] The authors gratefully acknowledge the support of the British Academy (Grant no. LRG-42447) which provided a 
platform for this study. 
[2] The questionnaire presents 54 questions divided in four forms: 2a, 2s, 3a, 3s (the digit refers the grade of primary 
school and the letter ‘a’ is for addition and ‘s’ is for subtraction). The integral version of questionnaire and the report of 
results are available at the web-site http://www.unipr.it/arpa/urdidmat/M2ip.  
[3] When a solution is uniquely determined, e.g. 32 + 25 =  + 16 =  we use the adjective ‘close’; whenever the solver 
is free to choose the suitable numbers, e.g. 48 -  = 47 -  = 46 -  =  we use ‘open’. 
[4] Italian children start school 6-years-old. Primary school comprises five grades; stage one of secondary school, grade 
6, 7 and 8, and the final stage of secondary school 9 to 13. 
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STRUCTURE OF ALGEBRAIC COMPETENCIES 
Reinhard Oldenburg 

Institut für Didaktik der Mathematik und Informatik 
 Universität Frankfurt/M., Germany 

This paper reports a research study that aims at understanding interrelationships be-
tween algebraic abilities. Theoretical considerations drawn from the literature sug-
gest various interconnections. To gain empirical evidence a test was developed and 
the findings analyzed by fitting different statistical models. 
INTRODUCTION 
Ideally, algebra lessons lead students to develop a profound understanding of alge-
braic concepts and the ability to see algebra as a central and connected branch of 
mathematics and the ability to apply algebra to a wide range of topics. If this hap-
pens, then students can be said to have a high algebraic competency. Even with this 
aim in mind, it is not clear how to design algebra courses. There are many approaches 
to the teaching of algebra (see e.g. Bednarz et al. 1996) and they obviously differ in 
the algebraic concepts that are given priority. The field of algebraic concepts is very 
broad, e.g. mastering the concept of an equation is a long process in which various 
aspects of the equation concepts are learned and they all interact with other algebraic 
concepts. To help in planning the algebraic learning process, it would thus be useful 
to gain more insight into the inner structure and dependencies of these algebraic con-
cepts.  
Such insight can be expected from empirical studies of various designs. Interpretative 
studies are valuable and some have been performed, especially as they allow to link 
theory and observations. However, they usually focus on a small number of students 
and it often remains unclear, how representative they are. Quantitative studies, on the 
other hand, often lack a deeper connection to theories.  
The quantitative study reported here tries to apply advanced statistical models on a 
test that was developed to reflect certain theoretical assertions about the learning of 
algebra. In this paper, only results from a single use of the test are reported but this 
study is part of a larger research project that will collect longitudinal data as well.  
THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 
Algebra deals with a lot of objects, including numbers, variables, expressions, func-
tions and relations, and each of these can play many different roles. School algebra 
thus is composed of many ingredients. Several theories have been developed that give 
some structure to this large field and we will mention some of them that were used 
implicitly in our study.  
Variables play the central role in our investigation because they are a link between 
most of the other objects mentioned.  Variables are used in many different ways in 
algebra. Küchemann (1979) gave six ways of using variables. From the perspective of 
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integrating these modes of variable usage into a scheme we found that these modes, 
although useful in explaining students results, are  bit unhandy.,When looking at al-
gebra problems from textbooks we found that his “Letter ignored” is not of great im-
portance and test items regarding it seem always a bit artificial. Moreover, it may be 
subsumed to the aspect of a variable as generalized number. The use of a variable as a 
reference to a non-arithmetical object “Letter as object” is  (which restricts itself to 
standard school algebra) an important misconception that is viable only in a very lim-
ited subset of algebra. As a misconception it should not be included into the structure 
of abilities that are to be mastered by the students. Malle (1993) gave a short list of 
three aspects which proved a bit coarse when classifying textbook problems and test 
items.  A synthesis of these approaches that works well for the classification of the 
role of variables in different problems turned out to be very similar to the one found 
by Drijvers (2003) in his empirical study, see below. It is worth to make explicit the 
operations that are linked with the different roles of variables. This shall emphasize 
the fact that the role of a variable is not only determined by the algebraic context but 
also by the subject working with it, e.g. the x in 2x+1=4 may be viewed as an un-
known which is to be determined or as a placeholder were one can insert numbers or 
expressions. 

• Placeholder P (operation: substitute (not only numbers but general expres-
sions)) 

• Unknown U (operation: determine) 
• General number G (undetermined; operation: expressing relations) 

o Ga: General number used in analyzing expressions 
o Gm: General number used for modeling (describing) 

• Variable as changing quantity V (operation: change the value) 
o Vi: independent variable (operation: change at will) 
o Vd: dependent variable (operation: observe change) 
o Vr: variable in a relation without predetermination what variables is 

changed independently as in Ohm’s law U=RI.   
• Variable as a symbolic element of the symbolic algebraic calculus: C (i.e. op-

eration: use as structure-less object in symbolic manipulations) 
Different researchers have advocated the point of view that mathematical objects are 
constructed from operations (Sfard 1991, Dubinsky 1991, Gray & Tall 1994). While 
the theories of these authors differ in detail, the broad picture seems similar and natu-
rally explains e.g. the creation of symbolic expressions as encapsulated calculation 
sequences. It is not as clear to which processes the concept of a variable is linked. 
Therefore, we associated the above mentioned processes to each aspect of variables. 
Obviously, different operations lead to different objects, but nevertheless, mathemati-
cians look at variable as a single concept which can be used under different aspects. It 
is therefore interesting to note that the operation of substitution has tight relations to 
all the other operations except those operations associated with the last aspect of the 
above list. We therefore formulate the hollowing hypothesis: 
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Substitution is a central operation in algebra and the competence to use it properly is 
at the heart of algebra in the sense that it makes other operations easy as well, with 
the exception of the symbolic calculus aspect. Put in more technical language, this 
states that the ability to use substitutions should be a good indicator variable for per-
formance in other algebraic tasks.  
Checking the validity of this hypothesis is one of our research questions. The next 
question is much more open: To what extent do these aspects of ,variable’ depend on 
each other?  
METHODOLOGY 
There exist many tests for algebraic achievement but most items test syntactic term 
rewriting or formal equation solving capabilities. Far fewer test items exist that assess 
algebraic understanding and algebraic concepts developed by the students. A notable 
exception is Küchemann’s work in the late 70s and early 80s. For this study we de-
veloped a new test that is somewhat in the spirit of Küchemann and uses many of his 
items, but most items were developed to reflect the various aspects of variables de-
scribed above. In addition, there were test items on the relation between equations 
and functions.  
The study was conducted at the beginning of grade 11 (age approximately 16 years) 
of a German high school (Gymnasium).There were 141 students from six classrooms 
in the study. Unlike most other German schools this particular high school starts at 
grade 11 and thus collects students who were recently at a large number of different 
schools. Although this sample is not representative of German students, it can be ex-
pected to span the breadth of the population better than samples from classes that had 
the homogenizing effect of a common school culture. However, the mean achieve-
ment level is supposed to be below that of an average grade 11 high school. 
The test was compiled for this study but most of the items had been used in our re-
search group before. The test consists of 43 items, two of which are multiple choice 
items, while the others ask for a free form response. The answers were rated on a 
point scale as the following example of a rating rule indicated: 

Item 2a (from Küchemann 1979): Give a short answer and explanation: What is greater? n+2 or 2n?  
0 Points= no response; false response without argumentation  
1 Points= example; some explanation;   wrong answer with detailed explanation 
2 Points= example with explanation; detailed explanation without case distinction 
3 Points= almost correct with case distinction 
4 Points= completely correct  

Some examples of the test items are shown below; their association to aspects of 
variable’ are shown in square brackets: 
Item  4:  (based on Küchemann 1979) Let r be the number of  rolls and c the number 
of croissants bought at a bakery. A roll costs 30ct, a croissant is 70ct.  
a) What is the meaning of 30r+70c?  [G] 
b) How many parts have been bought all together? [G] 
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Item 6a,b,c (from Küchemann 1979): Work out the circumference of the following 
figures: 

[G] 
Item 9: a) Assume that the equation a=b+3 always holds. What happens to a if b is 
increased by 2? [V] (from Küchemann 1979) 
c) Assume that the equation a=2b+3 always holds. What happens to b if a is in-
creased by 2? [V]  
Item 13: It is known that x=6 is a solution of 349)1( 3 =++ xx . How then can one get a 
solution of 3495)15( 3 =++ xx ? [G] (from Küchemann 1979) 
Item 14: Simplify the following expressions a) ²)²3( aa −−     b) )()( 33 xxxx +⋅−  c) 

²436 a+   d) 
1

11
+

−
nn

[C] 
Item 16: Given the examples 7⋅9=8²-1 and 11⋅13=12²-1, formulate a general rule and 
justify it. [G] 
Item 17: A function is defined by: f(x)=x³-2. Determine 
a) f (2)=  b) f(y)=  c)  f(x+1)=  d) x⋅f(x)=  
 [P] 
Item 19: What must be substitute for x in the expression 2(x²-1) to obtain the desired 
result? [P] 

Desired Result Substitute x=…. 
6  
-2  
2((a+1)²-1)  
2(b²+2b)  

 
The test items were classified by the aspects of variables they involve and by the 
relevance of the abilities to handle functions (Fun), relations (Rel), syntactical ex-
pression manipulation (Syn), working with unknowns (Unk), handling substitutions 
(Sub) and translating between algebra and geometry (Geo). Of course, this classifica-
tion is build upon assumptions about typical solution strategies.  
Besides more traditional statistical methods, this study uses structural equational 
modeling as a tool to model dependencies. While this technique is frequently used in 
many empirical sciences, it seems that its use in the mathematics education commu-
nity not as widespread and I know of no application of this technique to gain insight 
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into concepts of algebra. However, I believe that this statistical tool is appropriate 
here, because it allows us to work with hidden variables that cannot be observed di-
rectly (e.g. the person’s understanding of a variable as a general number) and to 
model relations among latent and observed variables.  
RESULTS AND INTERPRETATION 
The test contained several items developed and used by Küchemann 30 years ago. 
Despite the passage of time, our results were very similar, thereby underpinning the 
validity of his study. The order of empirical difficulty of the items turned out to be 
precisely the same as that found by Küchemann. Also the percentage of students that 
solved the items were remarkable close (despite the fact that we tested 16 year old 
students while Küchemann tested 14 year olds), with one interesting difference re-
garding the ‘letter as object’ aspect. We found Item 6a was solved by 74% while 
Küchemann found 94% (for 6b and 6c we found 74%, 58%, Küchemann found 68%, 
64%).  These numbers become interesting when combining with the result that item 
4a was solved only by 14% and 4b only by 7%. Most students that failed on 4a 
showed a clear object interpretation reading 30r+70c to mean 30 rolls and 70 crois-
sants. However, many more students were able to solve 6a and 6b, which are de-
scribed by Küchemann as items that can be solved successfully using ‘letter as ob-
ject’. Using a variable as reference to an object should be differentiated into two as-
pects: The misconception that a variable can stand as shorthand for any object, and 
the conception that a variable stands for some measureable quantity, such as the 
length of a segment. This latter interpretation is at the heart of an approach to algebra 
by Davydov, Dougherty and others (see Gerhard 2008) that is suitable also for 
younger children. Interestingly, the sum of points of 6a and 6b show a correlation 
with the total test score of r=0.62 indicating that the ability to solve these items show 
much more than a misconception.  
Next we gather some results from analyzing cumulative variables as described above. 
Together, these variables accounted for approximately 70% of all test items. Accord-
ing to the Kolmogorov-Smirnov-Test they can be considered to be normally distrib-
uted. Then a multivariate regression of the total score to these Variables was per-
formed.  The standardized beta-weights (with standard errors) were: 

Variable Standard. Beta(SE) 
Syn (syntactic manipulation) 0.15(0.03) 
Geo (geometry) 0.28(0.03) 
Sub (substitution) 0.26(0.04) 
Gen (working with general 
numbers) 

0.22(0.04) 

Fun (functions) 0.07(0.04) 
Rel (relations) 0.38 (0.04) 
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The interpretation of these numbers must of course take into account that they reflect 
to some extend the composition of the test. There were eight items that were taken 
together to form the Rel variable, but only four that formed the Fun variable. Yet this 
can’t explain the dramatic difference in beta weights. We conclude that understanding 
of algebraic relations is an important component of algebraic competency. It is also 
interesting that the Geo variable that consists of only five items is that important. One 
may draw the conclusion that expressing relations among quantities is at the heart of 
algebra. It is therefore justified to exercise this extensively in introductory algebra 
lessons. 
Then an analysis of covariance gave first insight into interdependences. The interest-
ing findings were: There is almost no correlation between the syntactic manipulation 
(Syn) and Geo (r=0.09), Sub (r=0.09), Gen (r=0.10), Fun (r=0.13), Rel (r=0.02).  The 
scale Syn consists of item 14 (which has two more sub-items than shown) on the 
simplification of expressions and of two items on solving linear equations. The result 
means that syntactic manipulation and conceptual understanding are two different 
dimensions. The assumption implicit in some teachers position on teaching algebra 
that learning the symbolic algorithms will lead to insight seems thus to be false.  To 
further support this point we give the following two-way table:  

Score on syntactical items Number of students 
Above average Below average 

Above average 37 27 Score on 
other items Below average 36 41 

The χ²-test gives p=0.19 on that, compatible with the assumption of independence 
(which is certainly not correct, but there is only a very weak relationship.)  
This almost-independence result was stronger than expected and future studies should 
investigate this again. An interesting observation is that the connection is somewhat 
stronger for higher achieving students.  
On the other hand the highest correlation (r=0.63) is between Rel and Subs. Subs also 
correlates with Geo (r=0.44), Gen (r=0.54) and Fun (r=0.54). All of these correlations 
are highly significant (p<0.01). This supports the hypothesis about the fundamental 
role of substitution given above. 
Next, we report some results from the path model study. Although this interpretation 
was not intended by Drijvers (2003) we made up a structural equational model (more 
specific, a path diagram) from his diagram given below (Fig. 1). The model fit was 
acceptable according to Hair’s (Hair et al. 1998) recommendations with 
CMIN/df=1.96<2.0 and Parsimony-Adjusted Measure PCFI=0.56 . We found that the 
concept of placeholder loads most on the changing quantity (our role V of a variable; 
path weight and standard error: 1.14(0.48)), then on Unkown (U, weight 0.37(0.12)) 
and negligible on the generalizing aspect (G, weight 0.08(0.04)). The other arrows 
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carry small weights as well. While the first two results are plausible, the question 
arises what influences the important aspect of a variable as a generalized number if 
not the placeholder aspect. 

Fig. 1 
The following model (Fig. 2) includes all of our five variable aspects. The latent vari-
ables are named by the short cuts of the variable aspects defined in the theory section. 
This model provides almost good model fit CMIN/df=1.53, PCFI=0.67. Nevertheless 
many of the estimates for regression weights are rather small and we will refine and 
modify the model shortly to get better results. Nevertheless this model shows some 
interesting results. First the arrows that relate the calculus aspect C with other aspects 
carry small weights. This feature is common to all models we tried and reflects the 
fact mentioned above, that syntactic manipulation is almost independent from the rest 
of the test. Another interesting fact is that there is a substantial (and significant) 
weight for the arrow from G to V. This is naturally interpreted as the implication that 
a general number can be viewed as standing for changing numbers. On the other 
hand, students learning algebra may first master the aspect of changing quantities and 
only later develop the general concept of a variable that stands for a general number 
without reference to a particular number. Therefore we omit this arrow in later mod-
els.   

 Fig. 2 
The above path-model can be refined by splitting the aspect of general number as in-
dicated in the theory section into the aspect of using the general number for analyzing 

1.1 0.3

0.0
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or for modeling. Furthermore, we will omit the syntactic aspect of a variable as an 
element of algebraic calculus, because it is essentially independent from the rest. 
With these decisions made we tried out many linear structural equational models but 
concluded that the following one is the best choice. Some other models provide a 
slightly better model fit, but this model (Fig. 3) has two important properties: It is 
plausible from the theoretical point of view and can therefore be easily interpreted. Its 
advantage from the statistical point of view is that most of its path coefficients are ei-
ther significant or close to significant. The model fit is adequate with CMIN/df=1.92 
and PCFI=0.55. The estimates for regression weights (with standard errors in paren-
theses) are: 
 Place holder P  → Unknown UK   0.15 (0.07)   
 Place holder P  → General Number Ga 0.031  (0.024)   
 Place holder P  → General Number Gm -0.003 (0.341)   
 ≈0 
 Place holder P  → Variable V   -0.76(0.42) 
 Unknown UK  → General Number Ga 0.30 (0.16) 
 Unknown UK  → General Number Gm -0.64(2.8)  
 ≈0 
 Unknown UK  → Variable V   6.6 (2.0)  
 General Number Ga → General Number Gm 2.5  (1.9)   
 Variable V   → General Number Gm 0.077  (0.44) 
 ≈0   

Fig. 3 
Compared to the above model based on Drijvers diagram it may seem strange that the 
arrow P→V has a negative weight. This result does not claim that there is a negative 
correlation between these abilities but only that the direct influence is negative taking 
into account the large influence from the arrows P→UK and UK→V which both have 
positive weights. In fact, when omitting the UK→V arrow from the model, the arrow 
P→V gets massively positive (1.6). The negative weight in our model is therefore 
plausible: Learning to handle variables as placeholders may pave the way to seeing 

Ga 

Gm
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variable as unknowns and this in turn helps develop the full concept; however stu-
dents who can only deal with placeholders are unlikely to see variables as quantities 
that can change because a placeholder once filled with a number is constant. 
The path weight for Ga→Gm was 2.5(1.9). When reversing the arrow it became neg-
ligible. This can be interpreted to mean that learning to analyze situations with vari-
ables is a prerequisite to modeling situations that are initially free of algebraic sym-
bolization. On the other hand the aspect V is not helpful for algebraic modeling. This 
may give a hint that at the level of modeling situations by algebraic equations one is 
working at a rather high level where individual values of variables and their change is 
not considered. We hypothesize that the aspect of change is not important in forming 
the model but in its validation. But this conclusion can’t be drawn from the data of 
this study.  
Is it possible to assign students a single latent variable “algebraic competence”? To 
test this we fitted two simple models to the data. One model with only one latent 
variable “algebraic competence” and one model with latent variables “Univariate” 
and “Multivariate”. The model with two latent variables has a model fit of 
CMIN/df=1.78, while the model with a single latent variable has a model fit of 
CMIN/df=2.99.  This substantial difference may be seen as support for the hypothesis 
that algebraic competency is a higher dimensional construct, because here we have a 
higher dimensional modeling that fits the data better. Nevertheless, the test as a whole 
fits the assumptions of the one-dimensional Rasch model. Hence we conclude, that 
structural equational models can reveal detailed results. 
CONCLUSION AND OUTLOOK 
The findings of this study lead to two different kinds of conclusions. The first kind 
concerns the results from analysis of covariance and fitting the structural models. 
They indicate that the activities of describing general geometric situations algebrai-
cally are good indicators for overall performance. Similarly, substitution is a funda-
mental operation in algebra that shapes the meaning of algebraic constructs. 
The second kind of conclusion concerns the level of algebraic competency reached in 
grade 11 and this is more specific to the situation in Germany (although the study 
does not claim to be representative for all German schools). While some areas (in par-
ticular, solving linear equations and using binomial formulas) show acceptable re-
sults, other parts of algebraic thinking, especially those that serve as a backbone in 
introductory calculus courses, reveal a serious lack of competence. Either a solution 
has to be found to cure the algebra decease or one should consider curricular changes 
in grades 11 and later that eliminate the need for those kinds of algebraic thinking; 
however, this would mean dropping calculus from the curriculum.  
The future work of this research project is aimed at improving the situation. In col-
laboration with schools we aim to use this test as diagnostic instrument to help us as-
sign tasks that will improve the construction of algebraic meaning. This includes the 
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use of new algebraic technology (Oldenburg 2007) and the use of experiments 
(Ludwig & Oldenburg 2006). 
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GENERALIZATION AND CONTROL IN ALGEBRA 
Mabel Panizza26 

Universidad de Buenos Aires (CBC), Argentina 
This study addresses the importance of a pedagogical approach that contemplates 
generalizations students make spontaneously, due to the high value generalizations 
have in the learning of algebra and the construction of mathematical rationality. I 
consider the problem of the control of spontaneous generalizations, from the perspec-
tive of both didactic interventions and student’s learning. I analyze the problem of the 
internal validation in the case of algebraic writings. I show various examples of pre-
university students’ (17-18 years) spontaneous generalizations and handling of con-
trol. The study suggests the necessity to face this problem from the beginning of the 
secondary school. 
INTRODUCTION 
Algebra constitutes a domain which favours the progress of mathematical rationality 
from the beginning of secondary school, through reasoning involving generalization. 
Moreover, generalization processes are of a great value in the production of knowl-
edge (personal and scientific) (Garnham & Oakhill, 1993).  
The ability to generalize is a common faculty of human reasoning, not specific of any 
content, which raises (not content-specific) learning questions. However, the ability 
to generalize in a particular domain involves specific learning problems within this 
domain. Various authors have considered the question of generalization in algebra, 
and favouring generalization activities is now seen as being an approach to algebra 
(see Bednarz, Kieran, Lee, 1996). Specially, justification related to generalization 
processes has been considered by Radford (1996) and, from a different perspective, 
by Balacheff (1987, 1991), amongst others.  
However, students do not generalize only when faced to generalization activities (so 
as to find numerical or geometrical patterns, laws governing numbers, or the con-
struction of formulas, etc). They also make generalizations in the context of tasks 
which do not require finding any regularity. This is what we call spontaneous gen-
eralizations (Panizza 2005a, 2005b). 
From the point of view of the teacher's interventions, this sets the problem of antici-
pation. How can the teacher be attentive to the emergence of such spontaneous proc-
esses? Moreover, the student perceives differently the necessity to justify generaliza-
tion, according to the more or less spontaneous character of the generalization, inas-
much as mathematical rationality is under construction.  

                                           
26 mpanizza@mail.retina.ar 
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On the other hand, algebraic environment differs clearly from numerical and geomet-
rical environments from the point of view of the feedback given to the student's ac-
tivities.  
It is important to consider this question in a systematic way through the various ap-
proaches to algebra (described in Bernardz, Kieran, Lee, 1996), which provide very 
different contexts for the emergence of such processes; in particular, from the point of 
view of the possibilities of control within algebraic environment or by means of con-
version to other semiotic 'registers' (Duval, 1995, 2006). 
I claim that such a pedagogical approach in the domain of algebra may favour the 
construction of mathematical rationality in secondary school. 

RESEARCH METHODS 
The data presented in this paper were obtained trough qualitative methods: 
observation of regular classrooms and case studies, focusing on student’s reasoning 
when analysing statements written in symbolic language. The research was conducted 
within four different pre-university (17-18 years) algebra courses. 
The observations were conducted in a systematic way. A set of tasks was selected to 
be administrated in class by the teacher, in order to observe the procedures of stu-
dents when analysing statements written in symbolic language, especially when try-
ing to determine conditions under which algebraic statements are true. Special atten-
tion was directed to: the verbal and symbolic descriptions students produced, based 
on their observations and descriptions of objects of reference of statements (instantia-
tions);  its influence on the processes of statements (re)formulation; the treatments (in 
the sense of Duval) they do within the algebraic writings register and the capacity for 
going over from the formulation of  statements in symbolic language to a representa-
tion of the statement in other register (conversions, in the sense of Duval), very  espe-
cially the  use of this capacity for control. The data consisted of notes from classroom 
observations and the student’s written works.  
The study allowed identifying some phenomena among which the different kinds (ac-
cording to its origin) of spontaneous generalizations presented in this paper. 
For the case studies, four students that were considered representatives of the studied 
phenomenon were chosen from the algebra courses (their real names have been 
changed in this paper). The intention was to find specific features related to sponta-
neous generalizations, through mini-clinical interviews, all of them audio recorded. 
The reactions of students facing counterexamples provided by the interviewer in the 
context of their spontaneous generalizations, together with their perception (or lack of 
it) of the necessity of control and their processes of control inside or outside the regis-
ter of algebraic writings, were observed.  
The study showed that students often do (new) spontaneous generalizations based on 
the counterexamples provided by the interviewer and that their spontaneous generali-
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zations are based on local associations of few examples which are not representatives 
of the objects of reference of the statements. 

SPONTANEOUS GENERALIZATIONS: WHICH? WHY? WHAT? WHERE? 
HOW?  
What are the spontaneous generalizations? Why it is important to take them into ac-
count in the class of mathematics? In what contexts do they emerge? How? 
Spontaneous generalizations: which? 
Let us see some examples, taken from the observations in the algebra courses: 

Faced to the problem “Find the real values of x such that x2 ≥ x”, Belén and María an-
swered that “x2 ≥ x is true for every real number” without solving the equation, but 
they arrived there by different ways. Inquired by the teacher, Belén argued “it is evi-
dent, the square of any number is always greater than the number itself!”. María, in-
stead, argued “I have tried with several examples, 1, 2, 3, -1, -2, -3, and so…” 
Belén seems to have generalized to real numbers the property valid for natural and 
integer numbers (extension of schemes of knowledge, see Vergnaud, 1996). María 
seems to have done an induction process. 
I wish to point out that both have done a generalization even if the activity was not a 
generalization one. It is also important to notice that both arrived to the same con-
clusion by different ways of reasoning. I will come back to this point. Nevertheless, 
both examples are very familiar. But let us turn to another one.  
The problem:  
“Decide if the following implication is true or false:  

∀x ∈ R: (2x2 > x (x+1) ⇒ x > 1)”  
was given in class in order to analyze the algebraic competence of students to decide 
the relation between the solution sets of two inequalities - in an implication context -. 
Brenda’s production is especially illustrative of the “problem” of spontaneous gen-
eralizations arising within the frame of a task. 
When solving it, Brenda considers diverse examples, x = 0, x = 1, x = 2, x = 3, x = -1, 
x = -2, x = -3, x = -4 analyzing the value of truth of the antecedent and the consequent 
in each case. She concludes, correctly, that the statement is false, because “it is possi-
ble to find values of x smaller than 1 that fulfil 2x2 > x(x+1)”  
The professor asks her to explain how she arrived at the answer. 
Brenda says that “–2, –3, -4 are counterexamples, because for them the antecedent is 
true and the consequent is false”. 
According to the task, Brenda could have finished there, but she adds, immediately: 
“Ah, it was |x| what we should have put!, what is true is:  
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∀ x ∈ R: (2x2 > x(x+1) ⇒ |x| > 1)”. 
According to my interpretation, Brenda makes a spontaneous generalization of the set 
of counterexamples used by her to argue (x = -4, x = -3, x = -2), and proposes a state-
ment that she considers true. It is to note that the task did not require to find any regu-
larity. Brenda does it spontaneously, perhaps with the intention of finding a true 
statement (Balacheff, 1987).  
I want to draw attention to the fact that from the point of view of the logical complex-
ity, Brenda could have analyzed the value of truth of her statement, since the original 
task was correctly solved and both statements required the same logical competences. 
Even though we can think about a greater difficulty to find the counterexamples - in 
as much these are in the interval [-1,0)-, I want to point out that Brenda does not con-
sider it necessary to analyze her statement, she does not even consider it at all. She 
displays her affirmation beyond. So? 
So, spontaneous generalizations: why?  
Because a large part of the learning achievements resides in the capacity to general-
ize. By generalizing students construct knowledge. The emergence of these processes 
in the class is most important, as much for the learning of algebra as for the develop-
ment of the mathematical rationality.  
But conclusions require validation. This necessity –as it is well known -, is acquired, 
if it ever is, in the very long term.  
On the other hand, when the generalization is a spontaneous one and therefore it is 
not directly related to the task to be solved- as in the cases of Brenda, María and 
Belén- it is difficult for the professor to anticipate it. In addition, a same result can 
come from different processes of generalization, as in the case of María and Belén. 
This is about something that usually occurs in the class of mathematics, and it is dif-
ficult for the teachers to have appropriate resources of intervention. So?  
So, spontaneous generalizations: what?  
This problem has led me to consider the generalization trying to deal with this phe-
nomenon in its diverse manifestations. To do so, I tried to find the student’s processes 
of generalization in there amplest sense, such as those of transference of a domain to 
another one (see Sierpinska, 1995). I also consider extension of knowledge schemes 
as generalization, as it has been studied by Vergnaud (1996) in the domain of mathe-
matics, by Leonard and Sackur (1990) through the notion of local bits of knowledge; 
and by Harel and Tall, -quoted by Mason (1996)- through expansive, reconstructive, 
and disjunctive generalization. So? 
So, spontaneous generalizations: where?  
I consider that the different contexts of use, the nature of the task, the forms that are 
used for representation, the meaning granted to the letters, can originate different 
types of spontaneous generalizations.  
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The contexts provided by different approaches to algebra must be studied from this 
point of view: these contexts, give rise to specific spontaneous generalizations? Are 
there particularities of these contexts in relation to the control possibilities? (Bala-
cheff, 2001). So? 
So, spontaneous generalizations: how?  
Up to now, I have found a lot of spontaneous generalizations, and I find it fruitful to 
consider them as of different kinds. According to its origin (for a particular student in 
a particular moment), a spontaneous generalization may be of nature: 

2. conceptual (based on the content to which the statement refers to), as Belén did 
in extending the range of an existing scheme (“it is evident, the square of any 
number is always greater than such a number!”); 

3. logic (based on an inadequate understanding of logical connectors or rules of 
reasoning), as María did when considering that with several examples she had 
arrived at a true conjecture (“I have proved it with several examples, 1, 2, 3, -1, 
-2, -3, and so…”) 

4. semiotic (based on an analysis of the content of the semiotic representation 
(Duval, 1995, 2006).  

I think that this typology is interesting because it helps the teacher in the identifica-
tion of leading elements of spontaneous generalizations on the part of the students, in 
the possibility of interpreting them and making them evolve.  
Let us see an example of the later (semiotic) kind 
Problem: Study the properties of the function 

 
f(x)=

−x+3ifx<1
x+7ifx≥1

⎧ 
⎨ 
⎩    

Taking into account the habitual scales that students use to plot functions I posed the 
hypothesis that -looking at those graphs- :  

 
 
students would decide the injective character of the function. And it is what 40% of 
the group of students actually did. They generalized the content of the graphic semi-
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otic representation and decided that it was representative of the function in its com-
plete domain. 
As in the case of Brenda, the students who responded to the problem in agreement 
with our anticipation did not consider it even necessary to make a control.  
In order to advance in this point, clinical interviews were made. Let us see the proc-
essing of control that Ana Paula makes, faced to a counterexample provided by the 
interviewer. Ana Paula had stated that the function is injective, having done an in-
complete analytical study (she analyzed each branch (x < 1 and x ≥ 1) of the function 
in isolation) and looking at the plot.  
Let us see (minor episodes have been skipped): 
The researcher suggests her to analyze the pair of values x1= -6, x2 = 2  
Ana Paula does some calculations 

Ana Paula: Oh, yes, it’s true...it is not injective... (she thinks)…What should I have put 
to see it was not injective? A  negative number and a positive one?  

Researcher: I don’t know, you find out. 

Ana Paula: I am searching so that they are the same... (she thinks) 

Ana Paula: Of course, as –x changes the sign it is as if I had two positives, one adds up 
3 and the other 7, I must get the same result... (she equals to 10, she thinks 
and finds –7 and 3)  

Ana Paula:  -7 and 3...-(-7) +3 = 3 + 7, and thus I prove it is not injective  

Researcher:  Wasn’t it proved with –6 and 2?... 
Ana Paula:    Yes, of course I had already verified it (she still searches for 
       counterexamples) 

Researcher:  Why are you searching other counterexamples? 

Ana Paula: Because if I had to do it again I would do it wrongly once again, because 
before I did it analytically, I verified it in the plot and I got the same result 
in both of them. Even more, I did a value table and I didn’t put –6 and 2. I 
don’t understand where was my mistake (reviewing her previous works). 

Researcher: aha... 

Ana Paula: Has the difference between x1 and x2 to be constant?  

 Let’s see, x1 –x2 equals to image 

Researcher: Which image? 

Ana Paula: Of both!… (she gets at a loss in the calculations). 

Ana Paula: Oh no! There are going to be infinite providing the image is greater or equal 
to 8. What can I do to find them? 
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Researcher: The image of x1 has to be the same as that of x2. 

Ana Paula: I’ve already said it, it is the definition. 

Researcher: You’ve said it but you didn’t use it... 

Ana Paula: Aha! (she finally does some calculations and arrives to the equation). 

 -x1 + 3 = x2 + 7 

 x2 + x1 = -4, x1 < 1, x2 ≥ 1  

To make control, Ana Paula analyzes the problem in various representations (graphi-
cal, algebraic, by tables) without integrating them. This example is representative of 
what happens with many students. Next I set out to analyze this problem, specially 
the problem of control related to the algebraic writings. 

PROBLEMS OF CONTROL  
Two aspects seem essential; on the one hand, the problem of the recognition of the 
necessity of control of the conclusions; on the other hand, supposing that the student 
has this ability, the problem of the possibility of making this control is posed 
(Panizza 2005b).  
The problem of the necessity of control  
In relation to the first point, perceiving the necessity of control is different according 
to whether generalization is a spontaneous one or it is obtained as asked for by the 
task. In the latter case, necessity of control is intrinsic to the task. Indeed, when 
someone must make a generalization, a suitable representation of the task should in-
clude the control necessity, that is to say the need to adjust the conjecture to the data. 
In addition, as Radford (1996) indicates “representations (in generalization) as 
mathematical symbols are not independent of the goal. They require a certain antici-
pation of the goal”. That means, according to my interpretation, that in the generali-
zation activities the control occurs like a process, during the resolution itself, 
through the re-representations that are made on the data, based on the analysis of the 
goal. On the contrary, for spontaneous generalizations the necessity of control is not 
intrinsic to the task, since generalization is not directly related to the goal. The exam-
ples of María, Belén, Brenda and Ana Paula are representative of this claim. How-
ever, many students may perceive this necessity. Ana Paula, faced to a counterexam-
ple provided by the interviewer, tries to control by shifting to other representations 
(graphical, algebraic, by tables). Anyway she does not succeed. This leads us to the 
problem of the possibility of control. 
The possibility of control within the algebraic writings register 
I claim that the possibility of control within the algebraic writings register is difficult 
as the retroaction does not work in the same way that in the arithmetical writings reg-
ister or the material geometrical figures domain (Panizza & Drouhard, 2002). 
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In fact, in the arithmetical writings register, when students arrive by reasoning at an 
equality of the type 2 = 3, this writing in itself gives them information that plays the 
role of an element of control. 
In the same way, in the material geometrical figures domain, when, faced to the fa-
mous problem of extension of a puzzle of Nadine and Guy Brousseau (1987), the pu-
pils make inadequate extensions, the fact that the resulting pieces do not fit, consti-
tutes an element of control.  
Algebra is quite different. As Drouhard (1995) shows, when students arrive at 
(a + b)2 = a2 + b2 they believe that the teacher just “prefers another rule”, for instance 
(a + b)2 = a2 + 2ab + b2 (“You made a transformation and I made another one...”). 
This example illustrates a general problem: that the register of the algebraic writings 
does not offer the students good elements of feedback and control.  
Rojano (1994) establishes a similar conclusion (quoting Freudenthal), when analyz-
ing the differences of feedback of the errors in arithmetic and natural language - pro-
vided by numerical contexts and daily communication -, unlike the feedback in the 
register of algebra. However, these characteristics of algebra are not sufficient to de-
termine the conduct of control of a particular student in a particular context. The pos-
sibility that certain information can act as a feedback also depends on: 

3. the student’s abilities to “see” such information;  
4. his possibilities to enter in contradiction (see Balacheff, 1987);  
5. his capacity to deal with different types of statements (of existence, 

individuals, generals); 
6. his linguistic skills on letters (syntax and semantics) (see Kirshner, 1989, 

Duval, 1995, Durand Guerrier, 1996, Panizza, Sadovsky & Sessa, 1998, 
Drouhard, Panizza, Puig & Radford, 2006);  

7. his conceptual and operating skills on numbers, variables, unknowns and 
parameters (see Janvier, 1996).  

I consider that an education that contemplates the fact that these skills are developed 
in parallel and in an interrelated way, must find didactic strategies for helping stu-
dents to develop control means inside and outside the register of the algebraic writ-
ings. I adhere to the didactic frame of reference provided by Duval (ibidem) with the 
notion of conversion between different semiotic representation registers, especially 
for what control possibilities concerns. 

CONCLUSIONS AND PERSPECTIVES 
This study shows that pre-university students make different types of spontaneous 
generalizations in contexts of explanation, proof or discovery, without neither having 
acquired conscience of the necessity of justification of the conclusions, nor abilities 
for making control. From my point of view, this suggests the need of a pedagogical 
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approach at secondary school that considers educational interventions in front of the 
students' spontaneous generalizations, in order to help them to improve mathematical 
reasoning.  
I think that much more research is still needed for that. Specially, concerning the 
spontaneous transferences -such as analogies and metaphors- of algebra domain to 
another one, and the different approaches to algebra as contexts of emergence of 
spontaneous generalizations, their particularities and problems of control.  

REFERENCES 
Balacheff, N. (1987). Processus de preuve et situations de validation. ESM, 18 (2). 

147-176.  
Balacheff, N. (1991). Treatment of refutations: aspects of the complexity of a con-

structivist approach to mathematic learning. In E. von Glasersfeld (Ed.), Radical 
Constructivism in Mathematical Education (pp. 89-110). Dordrecht: Kluwer. 

Balacheff, N. (2001). Symbolic arithmetic vs. algebra. In R. Sutherland, T. Rojano, 
A. Bell & R. Lins (Eds.), Perspectives in school algebra (pp. 249-260). Dordrecht: 
Kluwer.  

Bernardz, N., Kieran, C. & Lee, L. (Eds.). (1996). Approaches to algebra. Dordrecht: 
Kluwer.  

Brousseau, N. & Brousseau, G. (1987). Rationnels et décimaux dans la scolarité 
obligatoire. Bordeaux: IREM de Bordeaux. 

Kirshner, D. (1989). The Visual Syntax of Algebra. Journal for the Research in 
Mathematics Education, 20 (3). 276-287. 

Drouhard, J-Ph. (1995). Blind calculators in algebra: 'So what?' attitude. In E. Co-
hors-Fresenborg (Ed.), Proceedings of the European Research Conference on the 
psychology of Mathematics Education. (ERCME '95). Osnabrück (Germany): Uni-
versity of Osnabrück. 

Drouhard, J-Ph. & Panizza, M. (2003). What do the students need to know, in order 
to be able to actually do algebra? The three orders of knowledge. In M-A. Mariotti 
(Ed.), Proceedings of the 3rd European Conference on Research on Mathematics 
Education (CERME3). Bellaria, Italy. CD. Pisa: Università di Pisa. 

Drouhard, J-Ph., Panizza, M., Puig, L. & Radford, L. (2006). Algebraic Thinking. In 
M. Bosch (Ed.), Proceedings of the 4th Conference of the European Society on the 
Research on Mathematics Education (CERME4) (pp. 631-642). Barcelona: 
FUNDEMI IQS – Universitat Ramon Llull. CD-ROM. 

Durand-Guerrier, V. (1996). Logique et raisonnement mathématique: défense et illus-
tration de la pertinence du calcul des prédicats pour une approche didactique des 
difficultés liées à l’implication. Doctoral dissertation. Lyon: Université Claude 
Bernard, Lyon I.  

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 597



 

 

 

 

Duval, R. (1995). Sémiosis et pensée humaine. Registres sémiotiques et apprentissa-
ges intellectuels. Bern: Peter Lang. 

Duval, R. (2006). A Cognitive Analysis of Problems of Comprehension in a Learning 
of Mathematics. Educational Studies in Mathematics, 61, 103-131. 

Garnham, A. & Oakhill, J. (1993). Thinking and reasoning. Oxford: Blackwell.  
Janvier, C. (1996). Modeling and the initiation into Algebra. In Bednarz et al. (Eds), 

Approaches to Algebra (pp. 225-236). Dordrecht: Kluwer. 
Léonard, F. & Sackur, C. (1994). Connaissances locales et triple approche, une mé-

thodologie de recherche, Recherches en Didactique des Mathématiques. 10-2/3, 
pp. 205-240. 

Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. 
Kieran & L. Lee (Eds), Approaches to Algebra. Dordrecht: Kluwer. pp. 65-86. 
Panizza, M. (2005a). Razonar y conocer. Aportes a la comprensión de la 

racionalidad matemática de los alumnos. Buenos Aires: El Zorzal. 
Panizza, M. (2005b). Fenómenos ligados a la validación en álgebra. Acta 

Latinoamericana de Matemática Educativa, 19, 310-316. 
Panizza, M. & Drouhard, J-Ph. (2002). Producciones escritas y tratamientos de 

control en álgebra: algunas evidencias para pensar en interacciones posibles para 
guiar su evolución. In C. Crespo Crespo (Ed.), Acta Latinoamericana de 
Matemática Educativa, 15 (pp 207-212). México: Grupo Editorial Iberoamérica. 

Panizza, M., Sadovsky, P. & Sessa, C. (1999). La ecuación lineal con dos variables: 
entre la unicidad y el infinito. Enseñanza de las Ciencias, 17(3), 453-461. 

Sierpinska, A. (1995). La compréhension en mathématiques. De Boeck Université. 
Radford, L. (1996). Some reflections on teahing algebra trough generalization. In 

Bednarz et al. (Eds), Approaches to Algebra (pp.107-113). Dordrecht: Kluwer. 
Rojano, T. (1994). La matemática escolar como lenguaje. Nuevas perspectivas de 

investigación y enseñanza. Enseñanza de las Ciencias, 12(1), 45-56. 
Vergnaud, G (1996). Theories of conceptual fields. In L. Steffe &  P. Nesher (Eds.), 

Theories of Mathematical learning (pp. 219-239). Mahwah, NJ: Erlbaum. 

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 598



 

 

 

 

FROM AREA TO NUMBER THEORY: A CASE STUDY 
Maria Iatridou*  Ioannis Papadopoulos** 

*Hellenic Secondary Education  **University of Patras 
In this paper we examine the way two 10th graders cope with a tiling problem that in-
volves elementary concepts of number theory (more specifically linear Diophantine 
equations) in the geometrical context of a rectangle’s area. The students’ problem 
solving process is considered from two perspectives: the interplay between different 
approaches relevant to the conceptual backdrop of the task and the range of execu-
tive control skills showed by the students. Finally the issue of the setting of modeling 
problem solving situations into number theory tasks is also commented.  

INTRODUCTION 
Modeling problem solving situations into generalization tasks related to number the-
ory is useful for learning mathematics and includes two stages: modeling and solving 
the number theory tasks that emerge. On the one hand, solving generalization tasks 
dealing with number theory serves as a tool for developing patterns, as a vehicle to-
wards appreciation of structure, as a gateway to algebra, as a rich domain for investi-
gating and conjecturing at any level of experience (Zazkis, 2007). However despite of 
their significance number theory related concepts are not sufficiently featured in 
mathematics education. Consequently many issues related to the structure of natural 
numbers and the relationships among numbers are not well grasped by learners (Sin-
clair, Zazkis & Liljedahl, 2004). On the other hand according to Mamona-Downs and 
Papadopoulos (2006) when students have an accumulated experience on problem 
solving they can affect changes in approach and are able to take advantage of overt 
structural features appearing within the task environment. Moreover they can show a 
deeper understanding of the nature of mathematical generalizations. In their work 
which lasted 3 years they followed some students from the 5th grade up to their 7th 
with emphasis on problem solving techniques relevant to area. Three years later we 
follow two of these students who currently attend the 10th grade (15 years old) during 
their effort to cope with a non-standard task concerning problem solving activity 
relevant to elementary number theory concepts. The case is interesting since it dis-
plays executive control skills related to the way the students proceed when they have 
to work on a new domain and to the handling and establishment of a ‘model’ that 
could lead to the generalization. This is why we try to explore in this paper the inter-
play of the students among different approaches during their problem solving path 
towards generalization and at the same time to refer to the actions of the students 
concerning decision making and executive control. In the next section we present the 
task and describe the students’ background. After that in the next two sections we 
present the problem solving approaches followed by our students (Katerina for the 
first, Nikos for the second). These are followed by a discussion section trying to shed 
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light on these two axes (i.e., the interplay and the control issues) and finally the con-
clusions. 

DESCRIPTION OF THE STUDY AND STUDENTS’ BACKGROUND 
Katerina and Nikos were 10th graders and they had participated in an earlier study 
conducted by Mamona-Downs and Papadopoulos (2006) aiming to explore and en-
hance the students’ comprehension of the concept of area with an emphasis on prob-
lem solving techniques for the estimation of the area of irregular shapes. Their par-
ticipation in this resulted in the creation of a “tool-bag” of available techniques as 
well as in an accumulated experience on the usage of these techniques. The concep-
tual framework now mainly lies in number theory. However in the official curricula 
(for 10th graders in Greece) the only reference to number theory concepts is a tiny one 
commenting the divisibility rules for the numbers 2, 3, 5, 9, 10.  
This is the problem we posed to the students: 

Which of the rectangles below could be covered completely using an integral number of 
tiles each of dimensions 5cm by 7cm but without breaking any tile? 
Rectangle A: dimensions 30cm by 42cm 
Rectangle B: dimensions 30cm by 40cm 
Rectangle C: dimensions 23cm by 35cm 
Rectangle D: dimensions 26cm by 35cm. 
For each rectangle that could be covered according to the above condition show how the 
tiles would be placed inside the rectangle. 
Now, we want to cover a rectangle with an integer number of (rectangular) tiles. Each tile 
is of dimensions 5cm by 7cm. What could be the possible dimensions of the rectangle? 

The mathematical problem is: define a set of necessary and sufficient conditions on a, 
b so that there exists a rectangle of dimensions a by b, that can be covered completely 
with tiles of dimensions 5 by 7. Look at the side of length a: if there are s tiles that 
touch it with the side of length 5 and k tiles that touch it with the side of length 7, 
then a= 5s+7k.  The same reasoning applied to b gives b=5s΄+7k΄, where s, k, s΄, k΄, 
are non negative integers. Now if c denotes the total number of tiles used then the 
area ab of the rectangle should be 35c. Therefore 35 divides ab. Thus, there are three 
cases: i) 35 divides a, ii) 35 divides b, or  iii) non of the previous, but since 35 divides 
ab, 7 must divides a and 5 divides b (or vice versa). Consequently, a and b should sat-
isfy one of the following necessary conditions: i) a = 35 m, b=5s΄+7k΄, ii) b=35n , a= 
5s+7k ii) a=7q, b=5t (or vice versa). It easy then to be shown, that these conditions 
are also sufficient. Thus, even though the context of the task seems to be geometrical 
with its relevance to area, however a crucial aspect in solving the task is the usage of 
a Diophantine linear equation ax+by=c where the unknowns x and y are allowed to 
take only natural numbers as solutions. The task consists of two parts. In the first part 
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four rectangles have been carefully selected to help the solver when finishing the first 
part to be able to reach the generalization asked in the second part. 
The problem solving session lasted one hour, without any intervention from the re-
searchers, and the students were asked to vocalize their thoughts while performing 
the task (for thinking aloud protocol and protocol analysis, see Schoenfeld, 1985). 
Protocol analysis gathered in non-intervention problem-solving session is considered 
especially appropriate for documenting the presence or absence of executive control 
decisions in problem solving and demonstrating the consequences of those executive 
decisions (Schoenfeld, 1985). The students’ effort was tape-recorded, transcribed, 
and translated from Greek into English for the purpose of the paper. 

THE FIRST PROBLEM SOLVING APPROACH - KATERINA 
Katerina’s first criterion for deciding whether the four rectangles can be covered 
completely by the tile was based on whether the dimensions of the four rectangles 
were multiples of the dimensions of the tile. This is why her answer was positive only 
for the rectangle A (since 30=5*6 and 42=7*6) and negative for the remaining three 
ones. She used the quotient of their areas (E1/E2, E1 the area of rectangle A and E2 
the area of the tile) as a way to determine the number of the tiles required for the cov-
ering and not as a criterion to decide whether the tiling is possible). She tried then 
(according to the task) to show how the tiles will be placed inside the rectangle. The 
visual aspect of this action made the student to realize her mistake and to re-examine 
the four rectangles: 

K.1.23. The tiles could be placed in any orientation in the interior of the big rectangle. 
K.1.24. It is not necessary to be placed all of them in a similar orientation. 

After that she verified that the rectangle A could be covered according to the task’s 
statement. For the rectangle B she worked with an interplay between an arithmetical 
and geometrical-visual approach and she realized that the case of tiles with different 
orientation could mean that she could work with an ‘equation’ since she was not able 
to proceed geometrically. Now, it is the first time a linear combination is involved: 

K.1.37. It could be ….. 5x+7y=30 
K.1.38. It must be a rectangle with length of 30cm and this has to be expressed with tiles 

of length 5cm and 7cm. 
She was not able to express her thought using proper mathematical terms. Her inten-
tion was to say that this equation did not have integer solutions (the case for an un-
known to be equal with zero is excluded). So she decided to use terms such as ‘round 
numbers’ to show that it is needed for x and y to be integer numbers: 

K.1.42. However this case is not possible… (the above mentioned equation) 
K.1.43. We could not expect to have ‘round’ numbers for x and y. 

For the rectangle C she decided to rely on the question whether the length of the side 
of the rectangle could be written as a linear combination of the dimensions of the tile. 
The lack of relevant knowledge on this domain provoked a certain technique for 
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overcoming this difficulty. She worked with successive multiples of 7 plus the re-
mainder (expressed in multiples of 5). She followed the same line of thought for the 
rectangle D. The criterion of the linear combination was already established and by 
the technique of the successive multiples she founded that: 

K.1.67. For the side of 26cm it is necessary to have 3 tiles of length 7cm and 1 tile of 
5cm. 

Immediately she turned to the visualization in order to verify that indeed this can be 
done, working independently on each dimension of the rectangle D (Fig. 1, left). 
For the second part of the task she started with two steps that according to her opin-
ion could help her: 

K.1.74. I will use drawings because it seems to me easier in that way 
K.1.76. How could I use the findings of the first part of the task? 

She rejects the condition of E1 being an integer multiple of E2 as the unique criterion 
since: 

K.1.87. …it might be necessary for a tile (or some tiles) to be split.      
Her model for finding the possible dimensions of any rectangle that could be covered 
by tiling using an area unit (tile) with dimensions 5 by 7 includes two cases exploit-
ing her previous findings of the first part of the task. 

    

Fig.1 Katerina’s (left) and Nikos’s (right) visual approach on rectangle D 

So, in the first case: 
K.1.92. If all the tiles are oriented uniformly then the asked dimensions of the rectangle 

could be multiples of 5 or 7. 
K.1.93. I will make a draw 
K.1.94. It is a shape whose length is multiple of 7 and its width multiple of 5. 

The second case resulted mainly as a consequence of the rectangle D and two con-
ditions must be satisfied: one side must be multiple of the Least Common Multiple of 
the dimensions of the tile and the second dimension linear combination of them. 

K.1.101. Length must be common multiple of 7 and 5 whereas width must be sum of tiles 
that are oriented some of them horizontally and some vertically. 

She tried then to refine her model asking for a rule that governs the common multi-
ples of 5 and 7 (i.e., of 35). For the number 5 she knew the divisibility rule (the last 
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digit must be 0 or 5). However she could not give any rule for the 7 or the 35. Finally 
she concluded with a recapitulation of her model trying to describe in a more formal 
way the second case of the model: 

K.1.110. The rectangle in the second case should have one of its dimensions common 
multiple of both 5 and 7 and the other one sum of multiples of 5 and 7 at the 
same time. 

THE SECOND PROBLEM SOLVING APPROACH - NIKOS 
Nikos’s first step was to interpret the statement of the problem in terms of conditions 
for the correct tiling: a) there is a rectangular region that has to be covered and b) the 
tile is a structural element of the task: 

N.1.5. It means that each rectangle must be covered and for the measurement I must use 
an integer number of tiles 

N.1.6. So we could consider this rectangle of 5 by 7 as a measurement unit 
In his work and for each one of the four rectangles we can distinguish a concrete line 
of thought. For the rectangle A, his criterion was (as in Katerina’s case) the propor-
tionality of the sides, i.e. whether the dimensions of the rectangle were multiples of 
the dimensions of the tile. We have to mention here that his way of reading the task 
was non-linear in the sense that he did not follow the instructions of the task in the 
given order. Thus, he did not initially give answers for all the rectangles but after de-
ciding for each rectangle, he proceeded to the specification of the way the tiles could 
be placed in the rectangle. In case there was not proportionality among the lengths of 
the sides of the rectangle and the tile -as it happened in the rectangle B- he used the 
criterion of E1/E2 as a way to ensure a negative answer. This quotient was not an in-
teger number and this meant that there could not be coverage according to the task’s 
statement. As he explained: 

N.1.20. Because the ratio of their areas is not an integer 
Now, in the rectangle C, the E1/E2 was an integer but the dimensions were not pro-
portional. It is interesting the fact that his decision about E1/E2 is justified by the fact 
that E2(=35cm2) is a factor of E1(=23*35), a relationship often overlooked even by 
pre-service elementary school teachers (Zazkis & Campbell, 1996). In their study and 
in an analogous quotient, teachers first calculated the product and then divided. At 
that point, Nikos asked for the linear combination that satisfies one of the dimensions 
since the second is multiple of 5: 

N.1.24. When the area is 23 by 35, then obviously this product is divided by 35 which is 
the area of the unit (tile)  

Ν.1.27. The point is the way the tiles must be placed 
N.1.29. We could have 3*7+2, 2*7+9 
N.1.34. 5+5+5+8, 4*5+3,…. 
N.1.35. For the 23 cm I can’t make any combination of 5s and 7s. 
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In the rectangle D, he applied directly the rule of the linear combination that could 
satisfy the side of 26cm since the other one (35cm) was multiple of 5 (Fig.1, right). 
Trying to describe how the tiling will take place he worked initially independently on 
each side. However the way the tiles will be placed in one dimension affects the way 
the tiles will be placed in the second. This made him to turn towards a consideration 
of both dimensions at the same time. Despite this method could be considered ade-
quate for him to give an answer for each rectangle, he preferred to re-check all the 
given rectangles, to verify his answers before making his final decision. 
For the second part of the task he started with an impressive conjecture: 

N.1.83. Obviously, if we want to cover a rectangle with this specific unit of dimensions 5 
by 7, then the rectangle’s sides must be the sum of multiples of 5 and 7 at the 
same time. 

N.1.84. The case of 0*5 and 0*7 must be included in this. 
However he still considers the two dimensions separately. Trying to figure out what 
would be the general case for the asked dimensions of the rectangle he created some 
arithmetical examples, fulfilling the need for linear combination for each dimension, 
without considering the fact that there is an interrelationship among the two dimen-
sions since the area of the rectangle must be a multiple of 35: 

N.1.102. We could say that a=5x+7y (where ‘a’ is one of the rectangle’s dimensions) 
N.1.103. and similarly b=5z+7w 
N.1.104. The product of these dimensions a and b will be the area 
N.1.105. I can choose for a and b any sum of multiples. For example, a=5+14=19, 

b=15+28=43. So, the area is 19*43 
N.1.106. However in that case I have for the area a number that is not divided by 35. 
N.1.107. So, 35 must divide the product a*b which is the area of the rectangle. 
N.1.112. Thus, a=5x+7y, b=5z+7w and the quotient ab/35 must be an integer. 

Trying to establish a model that would describe all the possible cases he was also in-
fluenced by the four rectangles of the first part of the task. He decided that his model 
would include two types of rectangles: 

N.1.141. The first type concerns rectangles with one side multiple of 5 and the other mul-
tiple of 7. So, a=5x and b=7y, which is a=5x+0*7 and similarly b=0*5+7y. 

N.1.142.  Consequently the area of such a rectangle divided by 35 gives an integer num-
ber as quotient. 

N.1.154.   And it is in accordance with the general form I conjectured earlier 
For the second type he decided that: 

N.1.159. One of the rectangle’s side will be a sum of multiples of 5 and 7 at the same 
time 

N.1.160. whereas the second side will be a multiple of 35 
N.1.171. that is a=5x+7y and b=35z 
N.1.172. I think that these latter conditions form the most general form for the dimen-

sions of any rectangle able to be covered with rectangular tiles 5 by 7. 
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After that, Nikos applied this most general form for each of the four rectangles exam-
ined in the first part to check the validity of this form. Furthermore he made clear that 
the first type of rectangles could be incorporated in the second: 

N.1.188. …to incorporate the first type which essentially is a special case in the second 
type which is more general.. 

Finally Nikos proceeded to a refinement of his model determining the circumstances 
that do not allow a rectangle to be covered according to the task giving a certain 
counterexample: 

N.1.213. The second side must be always multiple of 35 and it can be constructed using 
either 5s or 7s. 

N.1.218. This is the only solution because 35 is the Least Common Multiple of 5 and 7 
N.1.219. This means that it is not possible to have a rectangle for which both its dimen-

sions are linear combinations of 5s and 7s. 
N.1.220. When I say that a is a linear combination of 5s and 7s, I mean that a=5x+7y but 

not a multiple of 5 or 7. 

DISCUSSION 
In relevance to our research questions we could make some comments on our field-
work. 
1. Interplay among differing modes of thinking 
During their attempts to solve the problem the students worked in tandem with two 
pairs of modes. The first pair included the arithmetical mode and visualization. Both 
students started arithmetically even though the context of the task was relevant to 
area that is geometrical. Katerina from the very beginning used the visual aspect as a 
tool. She started arithmetically but when she was unable to proceed with numbers she 
preferred to make drawings that would help her (K.1.74). In the same spirit some 
times she moved from the visual context to algebra. At some point she clarified that 
the tiles could be posed not necessarily with the same orientation. However she was 
not able to proceed geometrically and she preferred to turn to algebra asking for an 
equation (K.1.37). Nikos did not choose to work with this pair of modes. He mainly 
worked arithmetically and he turned to the visual aspect only to show the way the 
tiles could be placed in the interior of the four rectangles in the first part of the task. 
The second pair of modes has to do with the way students dealt with the dimensions 
of each rectangle. Working with the first mode dimensions were considered by the 
students separately as two unconnected objects (arithmetical mode). Thus, they made 
calculations (they summed, multiplied, divided) to determine the way the tiles should 
be placed in one dimension. In the second mode the dimensions were interrelated 
(geometrical mode, relevant to area). The fact is that the way the tiles will be placed 
in the first dimension influences the way the tiles will be placed in the second dimen-
sion. Working independently in two dimensions does not guarantee that the total area 
of the rectangle will be integer multiple of 35 which is the tile’s area. Both students 
made successive movements between these two modes. Their initial approach was to 
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work separately for each dimension and only then they made the connection about the 
interrelation of the two dimensions. For example in Nikos’s work (N.1.102-N.1.112) 
it is clear that his working on the two dimensions separately resulted in a rectangle 
that could not be covered with integer number of tiles since its area was not multiple 
of 35.  
As a result of this interplay emerges -for Nikos in particular- the issue of putting for-
ward a set of conditions (N.1.112) that are evidently realized as being necessary and 
later an equivalent set of conditions (N.1.172) that are seen as sufficient (because the 
covering of the relevant rectangles can be explicitly constructed).  
2. Executive control and decision making issues 
The students realized many actions that indicate interesting executive control and de-
cision making skills. Katerina rejected her initial approach which was based only on 
the criterion of proportionality among the rectangle’s and the tile’s dimensions. This 
was because her turn to visualization made her to realize that it was not necessary for 
the tiles to be placed in a uniform orientation. This turn seemed to be in practice an 
important act of control. The task’s statement did not give any direction concerning 
the way the tiles could be placed inside the rectangle. It was up to her to interpret cor-
rectly the statement. Later when she tried to solve the Diophantine equation she ap-
plied the technique of the successive multiples. According to this technique if one has 
to solve the equation ax+by=c starts with positive multiples of a and then examines 
whether c minus ax is multiple of b or vice versa (i.e., one starts with multiples of b). 
This is an act of control since the solving of the equation was dealing with the task’s 
limitation to use an integer number of tiles without breaking any of them. When she 
decided to deal with the second part of the task her first thought was to use her previ-
ous results (K.1.76). Moreover, an important act of control was the ‘model’ she pro-
posed for estimating the possible dimensions of any rectangle that could be covered 
with an integer number of tiles according to the statement of the task (K.1.92, 
K.1.110). She exploited her previous findings (the four rectangles of the first part), 
and progressively she established this ‘model’ checking step by step its accordance 
with these rectangles as also with examples generated by herself. The choice of ex-
amples is especially important since not every example facilitates a successful gener-
alization. Nikos also made an analogous proposition of a ‘model’. He was also based 
on the four rectangles of the first part of the task. The steps followed by his line of 
thought reveal presence of control: First look if there is proportionality among the 
dimensions. See also whether E1/E2 is not an integer. This means that your answer 
has to be negative. It is not necessary always to make the long division E1/E2. In-
stead, see whether E2 is factor of the E1(N.1.24). Now if sides are not proportional 
and E1/E2 is an integer, then construct the Diophantine equation and apply a strategy 
to find integer solutions. He also used to check always the consistency of his gener-
alization model against particular examples and this is important. The continuous 
checking of their steps that both students showed is especially significant as an act of 
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control since students checking is not usually part of the algebraic thinking of the 
students when they make generalizations (Lee and Wheeler, 1987). A capable prob-
lem solver recognizes a correct approach and insists on it. This evaluation of a spe-
cific approach could also be considered as an act of control. Nikos recognized the ap-
plicability of the linear combination and he used it to check the plausibility of his an-
swers always according to task conditions (N.1.154). This often turn to the tasks’ 
statement was a common pattern for both students. However, perhaps the most im-
portant act of control of both students was their effort to refine their model regardless 
of whether they succeeded. Katerina tried without success to achieve a condition for 
the second side to be common multiple of 5 and 7. Nikos however did manage to re-
fine his ‘model’ determining whether it is impossible for a rectangle to be covered 
according to the task’s requirements (N.1. 219). Such an asking for a counterexample 
actually is an important act of control. 

CONCLUSIONS 
According to Douady and Parzysz (1998) when a problem allows the solver to move 
between different modes during the problem solving process then an interplay be-
tween these different modes is caused. They claim that the effort of the solver to 
reach the solution results to the relations of these modes as well as to the usage of 
some tools that belong to each of them. Additionally “...this interaction provides new 
questions, conjectures, solving strategies, by appealing to tools or techniques whose 
relevance was not predictable under the initial formulation...” (p. 176). Both of our 
students were able to apply this interplay among two pairs of modes. In the first pair 
(arithmetical-visual) this interplay was used as a way that allowed overcoming diffi-
culties about how to proceed or for verifying or checking the validity of an argument. 
In the second pair of modes the one mode (arithmetical, working on one dimension) 
was indicative of a surface understanding of the structural elements of the task. How-
ever it seemed that finally the students did show a deeper understanding of these ele-
ments through the other mode considering both dimensions at the same time (geomet-
ric, interrelated dimensions). 
‘Executive control’ and ‘decision making’ constitute in general the issue of control in 
problem solving. Executive control is concerned with the solver’s evaluation of the 
status of his/her current working vis-à-vis the solver’s aims (Schoenfeld, 1985).  In 
general, this requires mature deliberation in projecting the potential of the present line 
of thought, married with an anticipation how this might fit in with the system sug-
gested from the task. In our study and despite their age, these 15-years old students 
showed considerable control skills in relation to the task’s requirements on the one 
hand and the specification of the ‘model’ they proposed for solving the task on the 
other. The existed experience enabled students becoming capable to make generaliza-
tions. 
Concluding we could refer to some final remarks that emphasize the significance of 
our results. It is common thesis that the task design is a crucial parameter for teaching 
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and learning algebra at every level. So, in reference to our work, we could claim that 
the setting of modelling problem solving situations into number theory tasks allows 
students to: 
5. transfer knowledge from one domain to another during their successful interplay 

among different modes of thinking (algebraic thinking and geometrical one). 
6. construct and propose a ‘model’ that possibly describes the situation and 

facilitates the generalization 
7. generate examples that check the consistency of their model, and 
8. generate counterexamples that result to the refinement of the proposed ‘model’. 
Obviously it would be an exaggeration for these conclusions to be generalized since 
we dealt with two students and this study could be better considered as a case study. 
However these finding were encouraging enough to call for a design of a future re-
search on these aspects of problem solving. 
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ALLEGORIES IN THE TEACHING AND LEARNING OF 
MATHEMATICS 

Reinert A. Rinvold 
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NLA College of Teacher Education, Norway 

This paper explores how the concept allegory from literature theory can be used in 
the teaching and learning of mathematics. A cognitive allegory theory is developed in 
analogy with the metaphor theory of Lakoff and Johnson (1980). The theory differs 
from the traditional view. For instance an allegory is also a cognitive mapping and 
not only a narrative. The paper draws upon data from a study of how teacher train-
ing students learn the concept of linear congruence equations. The students are given 
word problems which were translated to congruence equations and later used to 
solve other word problems. 

INTRODUCTION 
Researchers like Lakoff, Núñez, Sfard and Presmeg have elaborated the role of meta-
phors in mathematics and mathematics education, see for instance Lakoff and Núñez 
(2000), Sfard (1994) and Presmeg (1997). Allegory is another concept from literature 
theory which so far has been sparsely used in mathematics education. In this paper 
we suggest that the concept of allegory can be applied to this field. Our contribution 
is to develop allegory as a part of mathematics education theory, in a way similar to 
how metaphors have been used in the tradition initiated by Lakoff and Johnson 
(1980).  

METAPHORS AND ALLEGORIES 
Traditionally a metaphor is a figure of speech in which a phrase denoting one kind of 
object or idea is used in place of another. An example is “You are straight on target 
with your reply.” In this view of metaphors “straight on target” is a figure which 
means something else. The phrase can be translated to literal speech, for instance 
“precise and relevant”. In cognitive metaphor theory metaphors are not as in the old 
traditional view, seen as isolated phrases, but as systems structuring concepts and 
thought. Such systems map one domain into another such that the target domain in-
herits structure from the source domain. An example is “argument is war”, Lakoff 
and Johnson (1980, p. 4).  
 
 
Target is a concept from warfare. If an argument is compared to an arrow or a bullet, 
we can characterize the argument by describing how the arrow aims at the target. But, 

Warfare Argument or discussion
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the metaphorical mapping can also express lots of other things. An example is “The 
teacher went into a defensive position when faced with critique”. ‘Defensive’ is also 
part of military jargon, just like ‘targets’ is. In the tradition initiated by Lakoff and 
Johnson it is stressed that metaphors create or modify abstract concepts. The meta-
phor “argument is war”, is modifying or giving a special interpretation of what argu-
ment is. In other cases metaphors create a complete new concept.  
Allegories are similar to metaphors, but have the structure of narratives and are usu-
ally more extensive. The New Encyclopædia Britannica has this definition: 

...allegories are forms of imaginative literature or spoken utterance constructed in such a 
way that their readers or listeners are encouraged to look for meanings hidden beneath 
the literal surface of the fiction. A story is told or perhaps enacted whose details when in-
terpreted – are found to correspond to the details of some other system of relation (its 
hidden, allegorical sense) (Fadiman, 1986, p.110) 

Like metaphors, an allegory maps one domain onto another one, but the source do-
main is a narrative. Different parts of the source narrative are mapped into different 
parts of the target domain. An example from the Bible is Galatians 4:24, in which the 
word ‘allegory’ appears in the King James Version of the Bible. Two covenants are 
compared to the first two sons of Abraham by a freewoman and a bondwoman. An 
allegory maps objects and persons of a narrative to a more abstract domain.  Each 
woman is mapped to a covenant, and the story told by the Apostle Paul gives flesh 
and meaning to the rather abstract concepts of a new and an old covenant. Both this 
allegory of Paul and the parables of Jesus have clear didactical purposes. They are 
designed by a teacher. These kinds of allegories are the focus of this paper, but of 
course mathematical ideas and conceptions are the goal, not spiritual ones. The word 
‘conception’ is used to avoid non-cognitive interpretations of the alternative word 
‘concept’, see Sfard (1991, p. 3) and Rinvold (2007, p. 4). A conception is a cognitive 
network in which several allegories and metaphors can be nodes. It isn’t uncommon 
to think that concepts are primarily given by formal definitions. Such definitions are 
just an aspect of conceptions and not at all a complete description.  
We restrict our attention to allegories which include a timeline. This means that the 
narratives move in time. All the parables of Jesus are like that and so are most narra-
tives. In mathematics education many text problems have the form of narratives. Such 
problems will be called narrative text problems. In this paper ‘text problem’ will al-
ways mean ‘narrative text problem’. On the other hand, narrative is a wider concept 
than text problem. A narrative is neither necessarily a problem nor given by a text.  
Not all narrative text problems are allegories. This is only the case if a narrative text 
problem is going to represent or create something else, which usually is more ab-
stract. Consider the following text problem: “John was hiking in the mountains. The 
first day he walked 20 km and the next day 25 km. What is the total distance he 
walked these two days?” This problem isn’t likely to represent something outside it-
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self. Most students will solve the problem, forget it, and go on to the next one. The 
following narrative is different: 

Peter has an urn containing balls. On each ball it’s written a prime number. The urn may 
contain more than one ball with the same number. Peter asks Andrew to draw as many 
balls as he wants. Then Andrew is asked to find the product of the numbers on the drawn 
balls. When Andrew has told what the product is, Peter starts calculating. After a while 
he says: “I know which balls you have drawn”. How is this possible? What would hap-
pen if composite numbers had been written on the balls? 

With possible guidance from a teacher, this story can help the students to understand 
unique factorization in prime numbers and the role of such numbers. Drawing of a 
ball represents a factor. The information that Peter is able to tell which balls Andrew 
has drawn, corresponds to uniqueness of prime factorization. The fact that he isn’t 
able to tell the order the balls were drawn, represents the commutative law. The nar-
rative is used to create understanding of an abstract property of numbers. The prob-
lem isn’t just a problem among many, but may have a lasting effect.   
Even if the teacher tells a story intended to be an allegory, the learners don’t always 
understand it in this way. Relating to a constructivist epistemology, it is the learners 
themselves who develop allegories. An allegory may be idiosyncratic and has ele-
ments of individual variation. 

METHOD 
This paper uses data from a study of how teacher training students learn the mathe-
matical concept of linear congruence equations. The study was conducted in March 
2008 by the authors on our own students. The data consist of participant observation 
of a teaching and learning session and three videotaped and partially transcribed in-
terviews. One of the researchers interviews the teacher of the lesson, who at the same 
time is the other researcher. Both researchers together interview groups of either two 
or three students. As part of the sessions, students work together with a text problem. 
The researchers then ask questions helping the students to describe their reasoning 
process. The student interviews were conducted two days after the lesson, and the 
teacher interview the day after that. The transcriptions, descriptions and interpreta-
tions of the teacher interview were read by the interviewee, discussed with the re-
searcher and then adjusted. Later, in the process of writing the paper, the teacher 
sometimes remembered thoughts and events from the lesson which can’t directly be 
read from the data. Such thoughts aren’t presented as data, but have without doubt in-
fluenced interpretations and directions of the paper.    
CONGRUENCE CALCULUS 
The lesson is based on several text problems given to the students. The first problems 
concern week days. Exercise 1 asked them to calculate the weekday of 31st March, 
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given that 1st January was a Tuesday. The teacher gave comments and discussed so-
lutions in between. The students themselves made tables resembling calendars.  

0 1 2 3 4 5 6 
7 8 9 10 11 12 13 
14 15 16 17 18 19 20 
21 22 23 24 25 26 27 
28 29 30     

 
After their work the teacher showed them the table above on a blackboard. Then he 
introduced the signs ‘≡’ and ‘mod’ for congruent numbers.  From 1st January to 31st 
January is 30 days. He pointed to the numerals 2 and 30 in the table and connected 
them with a red line. Then the teacher said that 2 and 30 are in the same column and 
wrote 30 ≡ 2 (mod 7). Mathematically this means that 30 and 2 have the same re-
mainder upon division by seven. In other words, the difference between 30 and 2 is 
an integer multiple of 7. Practically, the meaning is that 30 days from now and 2 days 
from now differs with a number of integer weeks. The identity was followed by 29 ≡ 
1 (mod 7) and 31 ≡ 3 (mod 7) since 2008 is a leap year and March has 31 days. Fi-
nally the teacher wrote 

30 + 29 + 31 ≡ 2 + 1 + 3 ≡ 6 (mod 7).  
The move of six days forwards from a Tuesday gives a Monday, so that is the week-
day of 31st March. 

NARRATIVE TEXT PROBLEMS 
After three other text problems having to do with calculation of week days, the stu-
dents were given what we call the Duckburg problem: 

A ship arrives at the harbour of Duckburg today, which is a Monday. Then the ship ar-
rives at the harbour every third day. Some days later the ship arrives at Duckburg harbour 
on a Wednesday (two weekdays later). How many arrivals later can this be? 

According to our observations, all students made a table with the weekdays from 
Monday to Sunday in the first row. There was some variation in the content of the ta-
bles, but in some way all students marked the days when the ship arrived. They all 
discovered the first solution of the problem, and some even found a formula for the 
number of arrivals when the ship arrives on a Wednesday. The student work was fol-
lowed up by the teacher in a plenary session. As support for the introduction of con-
gruence equations, he made a protocol for the arrivals of the ship by writing the iden-
tities 

3 · 1 ≡ 3 (mod 7), 3 · 2 ≡ 6 (mod 7), 3 · 3 ≡ 2 (mod 7), 3 · 4 ≡ 5 (mod 7), … 
He simultaneously said things like “three times four is in the same column as five”, 
referring to the table. Then the teacher related the text problem to the mathematical 
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formulation “which multiplies of three are in the same column as two when divided 
by seven”. Finally the congruence equation 3x ≡ 2 (mod 7) was presented as a trans-
lation of the Duckburg text problem. The lesson continued with the demonstration of 
algebraic techniques for solving the equation. These techniques are part of the moti-
vation for the translation, but we don’t discuss the solving process in the paper. 
The Duckburg narrative is built upon the culturally shared concepts of days, weeks 
and calendars and the well-known phenomenon of ships regularly arriving at harbour 
cities. The name Duckburg, which is the domicile of the Disney figure Donald Duck, 
is used to make it clear that we are talking about a fantasy world in which details can 
be changed. Duckburg is a name which is easy to remember and with positive asso-
ciations for most students. Also, this cartoon city is placed close to the sea, Grøsfjeld 
(2007), so arrivals of ships are relevant. 
Later in the lesson the students were given the running track problem:   

An athlete runs intervals of 300 m on a 400 meters running track. She starts at the starting 
line, runs 300 meters and stops. She continues this way. After a while she stops 100 me-
ters after the starting line. How many 300 meter intervals has she run? 

The students at first worked with the task themselves using a table. A drawing of the 
track was introduced afterwards by the teacher in the plenary. He used the drawing to 
simulate the intervals of the runner. This problem also corresponds to a linear con-
gruence equation, but the situation is sufficiently different from the Duckburg prob-
lem to supplement it. 
FROM NARRATIVE TO PROTOTYPE 
Lakoff and Johnson (1980) claim that usually we place things and phenomena in 
categories by comparing with a typical or prototypical member. A prototypical bird 
has wings, is able to fly, lay eggs and has a beak. A picture of a blue jay is used by 
some dictionaries when defining birds. The blue jay is a candidate for a prototypical 
bird in countries where this bird is well known. We will use interview data to argue 
that the Duckburg problem has the potential to be a prototypical text problem for lin-
ear congruence equations. The argument is based on the way the Duckburg problem 
is used by the group of three students to solve the following text problem which also 
corresponds to a linear congruence equation:  

Oda is sick and has to take a tablet every fifth hour, both day and night, in order to get 
well. She takes the first tablet at five in the morning. A friend calls her when her watch 
has just passed one o’clock. Her watch is analogue, that is, has rotating hands. How many 
tablets has Oda taken? There are several correct answers. 

The students work for about twenty minutes with the problem and are then inter-
viewed. In the interview one of the students was passive and seemed to participate 
only to a restricted degree. The active ones were Kari and Lise. A reason why they 
used so much time is that the problem is structurally more different from the Duck-
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burg problem than we intended. In particular, Lise mentioned several times in the in-
terview that she was confused because the problem was unclear. In fact, one of the 
researchers had forgotten to specify that Oda had just taken a tablet when the friend 
called. However, the students demonstrated understanding of the problem and were 
able to solve it with the extra constraint when asked to. Some statements by Kari sup-
port the claim that the Duckburg problem and some of its structure were used in the 
solution process. One example appears when Kari and Lise had written the congru-
ence equation 5x ≡ 8 (mod 12) on their sheets. When asked why the right hand side is 
8, Kari said: 

Kari: I remember when we worked on the problem with the ships which arrived at 
the harbour, we started with a Monday. Then we were going to find Wednes-
day, which was two days later, so we would have two there. 

The student refers to the Duckburg problem which corresponds to the equation 3x ≡ 2 
(mod 7). The numeral 2 on the right hand side corresponds to 2 days later. In analogy, 
one o’clock is 8 hours later than five. We think this is the reason why the students 
wrote 8 on the right hand side of the equation 5x ≡ 8 (mod 12). This is supported by 
another statement from the interview: 

Kari: Then we draw a table with 12 columns. We started with the hour she took the 
first tablet, which was at five o’clock. (...) Then we counted every fifth hour... 

The students made the same type of table as in the Duckburg problem. Five was the 
first column in the tablet case, as Monday was the first in the Duckburg problem. 
They counted how many hours after the first tablet she takes the next and would have 
got the same result if the first one was taken at for instance two o’clock. Another ar-
gument is this mentioning of the running track case: 

Kari: Recognizing the running track task. Then 0 and 12 were the same. It was the 
starting line. Do we have to start with 0 then? But, now 0 is at 5 o’clock. If 
she starts at 5 there, then… 

Without doubt, Kari now uses five o’clock as the zero point. The students however, 
didn’t notice a minor difference between the questions in the problems. In the Duck-
burg problem the question is how many days after the first arrival the ship arrives at 
Wednesday. In the tablet case we asked how many tablets she has taken, including 
the first one. If Oda had taken the first tablet at hospital, and we had asked how many 
tablets Oda has taken at home, their equation had been correct. Then 5 · 1 ≡ 5 would 
have meant that she took the first tablet at home 5 hours after the one at hospital. The 
identity 5 · 4 ≡ 20 ≡ 8 would have meant that she took the fourth tablet at home 20 
hours after the one at hospital. In some sense the wrong equation is more convincing 
than 5x ≡ 1 (mod 12), which has x ≡ 5 as solution. In the latter case the students could 
just have put in the numbers 5, 1 and 12 given in the problem, without any under-
standing.  
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The students’ use of the Duckburg problem and its structure is an argument that the 
Duckburg problem is on its way to becoming a prototype for a category of narratives. 
A more thorough study would have been necessary in order to claim with strength 
that some text problem has been established as a prototype. A possible weakness in 
our study is that only one student orally indicates this kind of reasoning. However, 
the students wrote the equation 5x ≡ 8 (mod 12) collaboratively and Kari said that 
“we worked with the problem”. This may indicate that at least Lise also shared her 
ideas. 
ALLEGORIES AND GENERALIZATION 
The transformation of a narrative text problem to a prototype for a class of such prob-
lems is an important step in giving a problem lasting value in mathematical thinking. 
This is one aspect of making the special case represent something general. In the 
Duckburg problem we can change the involved numbers without changing the struc-
ture of the narrative. Clearly, there is nothing special in “every third day” or “two 
weekdays later”. The general is represented by the special case. The related “principle 
of generalization” is investigated in Rinvold (2007). To change the numbers of week-
days from seven to something else is also possible, but needs more imagination be-
cause weeks with seven days are so deeply established in our culture. 
We think that the narrative of Duckburg has the potential of becoming an allegory for 
linear congruence equations with one unknown. When the narrative is turned into a 
prototype, each part of the narrative represents a part of a generalized narrative. For 
instance “arrives every third day” represents “a tablet every fifth hour” and “runs an 
interval of 300 meter” in the two other example problems. But, the parts of the Duck-
burg narrative also represent parts of a formal linear congruence equation. These rep-
resentations can be made clearer with the help of mappings. In the latter case the 
source domain is the Duckburg problem and the target domain is the class of congru-
ence equations.  
    
 
“Every third day” is mapped onto 3x, “two days later” onto 2 and the number of 
weekdays is mapped onto 7 in the equation 3x ≡ 2 (mod 7).  
In the lesson the students were given some context free congruence equations and 
told how to translate these into Duckburg problems. When given the equation  
2x ≡ 3 (mod 8), one of the groups introduced a new weekday and drew a table. They 
quickly realized that the problem had no solution. With eight columns, steps of two 
weekdays can’t lead to the same place as a change of three weekdays. The students 
said that it was a cheating exercise since there was no solution. In the beginning of 
the interview the students were asked about their experience of the lesson.  

Duckburg narrative Congruence equations 
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Kari: When we used the practical situations as starting points, we could in the end 
see a congruence equation, and then the numbers gave meaning. We could 
know what 4x really represents. When I recalled the ships, it gave meaning. 

This could refer to the equation 4x ≡ 1 (mod 7) which was one of the translation 
problems from the lesson. The formal congruence equation in the beginning seems to 
give little meaning to the students. The ships were part of the Duckburg problem and 
are used by the student to refer to that problem. We infer that translation of context 
free congruence equations into variants of the Duckburg problem was a main source 
of the meaning which emerged. 

ALLEGORIES AND THE SOLVING OF TEXT PROBLEMS 
When solving text problems allegories can be intermediate stages between the given 
narrative and a mathematical model. 
 
 
The idea of prototypes means that new text problems given to the students won’t be 
directly mapped to a mathematical model, but first to a prototype like the Duckburg 
problem.  
 
 
A prototypical narrative in the learning of mathematics is a mathematized narrative. 
The given text problem or narrative also has to be mathematized to some degree in 
order to be mapped onto the prototype.  
A crucial question is which qualities these mappings have for the students. Certainly, 
their versions of the mappings can differ from the intentions of the teacher. At best, 
the mappings reflect the mathematical structures effectively, but the mappings may 
also be based on superficial aspects of the text problems. Clement (1982) identified a 
syntactic and a semantic way of thinking when students tried to solve word problems 
for equations. The syntactic variant consists of a word by word translation of the text 
problem to algebraic language. Another kind of syntactic translation is based on pos-
sibly superficial similarities between the text problem and other text problems known 
to give a specific mathematical model. When working with the tablet problem, the 
student Kari made the following utterance: 

Kari: We thought that it was 5x because it was every fifth hour she had to take the 
tablet and that was because the ship arrived every fifth day. 

We see that the phrase “every fifth” appears in both problems. This may be inter-
preted as a sign that the student compared the appearance of words in the two prob-
lems. However, the ship in the Duckburg problem arrives every third day, not every 
fifth. If fact, some of the students, certainly including Kari, during the lesson also 

Text problem Allegory Mathematical model

Narrative Prototypical narrative Mathematical model
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solved a variation of the Duckburg problem corresponding to the congruence equa-
tion 5x ≡ 3 (mod 7). This at least indicates that she compared with the appropriate 
version. Another argument that the translation has a semantic flavour is that in the 
lesson Kari, together with a group of students, generalized the Duckburg problem. 
They investigated what happens when the interval between arrivals or the number of 
weekdays ahead were changed.  
Part of our theoretical thinking is that allegories are one of the sources for semantic 
meaning. When one text problem has been transformed to an allegory, the compari-
son with other text problems will no longer be just syntactical. Clement’s semantic 
way of thinking means a mapping from a narrative or text problem to a mathematized 
version of the problem, and then a mapping to the congruence equation.  
 
 
This is similar to the mappings of Parzysz (1999): 
 
 
In the case of the Duckburg problem, the emphasis on the table, the columns and the 
introduction of mathematical signs means that the teacher intended to support the de-
velopment of a mathematical structuring of the narrative. In the lesson the teacher ex-
plicitly sets up a mapping from the pseudo-concrete model to the congruence equa-
tion. For instance “the numbers which are multiples of three” was translated to ‘3x’. 
The text problem is still a real situation for the student, but mathematical language 
has been introduced in order to change the students’ interpretation of the situation, 
making the translation to formal mathematics precise and smooth. 
The term “real situation” is not as clear as commonsense language may suggest. We 
interpret ‘real’ as “real for the student”, as in RME, the Dutch approach to mathemat-
ics education (see van den Heuvel-Panhuizen, 2003). One point is that ‘real’ doesn’t 
have to mean practical or related to everyday life. The student Kari used the phrase 
‘practical situation’ referring to the Duckburg problem, but imagined situations such 
as weeks with eight days can also be ‘real’. A situation isn’t something objective, but 
an experienced or imagined phenomenon. A narrative may create a situation in the 
mind of the student, but the process of mathematization also has a role in shaping the 
situation for the student. The degree of mathematization and semantic interpretation 
decides the quality of the mappings. 

QUESTIONS FOR RESEARCH 
This paper introduces the idea of cognitive allegories in mathematics education and 
supports this by discussions based on one limited empirical study. Obviously there is 
a need for more studies to establish that the concept of allegories is a fruitful one for 

Real situation Pseudo-contrete model Mathematical model

Narrative Mathematized narrative Mathematical model
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the use of narratives and text problems for conceptual learning in mathematics.  It is 
necessary to have more thorough studies to establish that students transform intro-
duced narratives into prototypes and allegories and how they do this. Other mathe-
matical concepts and other potential allegories have to be studied. We also need to 
develop criteria for the design of such narratives. Another interesting task is to study 
how several allegories can be used for the same concept. We think that a single alle-
gory usually isn’t enough to develop a rich intuition. In our study the running track 
problem is a candidate for a complementing allegory, but only very limited evidence 
for this can be inferred from the data. 
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In this contribution, we explore the impact of Alnuset, an artefact of dynamic alge-
bra, on the conceptualisation of algebraic equality. Many research works report 
about obstacles to conceptualise this notion due to interference of the previous 
arithmetic knowledge. New meanings need to be assigned to the equal sign and to let-
ters used in algebraic expressions. Based on the hypothesis that Alnuset can be effec-
tively used to mediate the conceptual development necessary to master the algebraic 
equality notion, two experiments have been designed and implemented in Italy and in 
France. They are reported in the second part of this paper. 
Keywords: Alnuset, semiotic mediation, conceptualisation of algebraic equality 

INTRODUCTION 
The research reported in this paper is carried out in the framework of the ReMath 
project (http://remath.cti.gr) addressing the issue of using technologies in mathemat-
ics classes “taking a ‘learning through representing’ approach and focusing on the 
didactical functionality of digital media”. The work is “based on evidence from ex-
perience involving a cyclical process of a) developing six state-of-the-art dynamic 
digital artefacts [DDA] for representing mathematics […], b) developing scenarios 
for the use of these artefacts for educational added value, and c) carrying out empiri-
cal research involving cross-experimentation in realistic educational contexts”. This 
paper presents the research concerning Alnuset, one of the 6 DDA developed within 
the project. First, some theoretical considerations related to the notion of algebraic 
equality, at stake in this paper, are presented. Next, our research hypotheses are dis-
cussed and Alnuset is briefly presented. Finally, two experiments involving this arte-
fact are described and the main results are discussed.  
THE NOTION OF ALGEBRAIC EQUALITY 
Important conceptual developments are needed to pass from numerical expressions 
and arithmetic propositions to literal expressions and elementary algebra proposi-
tions. As a matter of fact, in arithmetic only numbers and symbols of operations are 
used and the control of what expressions and propositions denote can be realized 
through some simple computations. In elementary algebra, instead, letters are used to 
denote numbers in indeterminate way and new conceptualisations are necessary to 
maintain an operative, semantic and structural control on what expressions and 
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propositions denote (Drouhard 1995; Arzarello et al. 2002). The necessity of this 
conceptual development emerges clearly with the construction of the notion of alge-
braic equality. On the morphological plan, equality is a writing composed by two ex-
pressions or by an expression and a number connected by the “=” sign. On the seman-
tic plan, equality denotes a truth value (true/false) related to the statement of a com-
parison. When the expression(s) composing the equality is (are) strictly numerical, it 
is easy verifying its truth value through some simple calculations (e.g., 2*3+2=8 is 
true while 2*3+2=9 is false). Experiences with numerical equality contribute to struc-
ture a sense of computational result for the “=” sign. This sense can be an obstacle in 
the conceptualisation of algebraic equality as relation between two terms, as high-
lighted by several researches (Kieran 1989, Filloy et al. 2000). When the expres-
sion(s) composing the equality is (are) literal the equality can present different senses 
because the value assumed by the letter can condition differently its truth value. In 
these cases the “=” sign should suggest to verify numerical conditions of the variable 
for which its two terms are equal. There are cases where the two terms could never be 
equal whatever the value of the letter is, as in 2(x+3)=4x-2(x-1). In other cases to in-
terpret equality on the semantic plane, it is necessary to distinguish if it has to be con-
sidered as equation or as identity. The “=” sign assigns to the equality the sense of 
equation when its two members are equal only for specific values of the letter. For 
example, the equality 2x-5=x-1 is true only for x=4 and it is false for all other values. 
Instead, the “=” sign gives to the equality the sense of identity when its two members 
are equal whatever the numerical value of the letter is, as in 2x+1=x+(x+1). In order 
to master algebraic equality, a conceptual development of notions of equation, iden-
tity, truth value, truth set and equivalent equation is necessary. Moreover, to express 
the way in which a letter can condition the truth value of an equality, it is necessary to 
develop a capability to use universal and existential quantifiers, even though in im-
plicit way. 

RESEARCH HYPOTHESIS 
Traditionally, conceptual construction of algebraic equality is pursued through solv-
ing equations using techniques of symbolic manipulation. Empirical evidence and re-
sults of research have highlighted that in many cases this approach does not favour a 
construction of an appropriate sense either for the notion of algebraic equality or for 
that of solution of equation. In more recent years, a functional approach to algebra 
has been introduced within the didactical practice allowing to articulate algebraic and 
graphical registers of representations (Duval 1993). Even in this approach difficulties 
emerge. These regard the interpretation of a graph. For example, for the solution of 
equations of the type ax+b=cx+d, the intersection of the two lines in the graph has to 
be interpreted as indicator of the fact that the equation has a solution. Moreover this 
solution has to be read on the x-axis in correspondence of the intersection point of the 
lines. As Yerushalmy and Chazan (2002) observed, this approach is not devoid of ob-
stacles: students can interpret the graph as comparing two functions (y=ax+b and 
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y=cx+d) or as a solution set of a system of two equations in two unknowns, instead of 
an equation in a single variable.  Our research hypothesis is that Alnuset, an artefact 
of dynamic algebra recently developed, can be effectively used to mediate conceptual 
development necessary to master the notion of algebraic equality. Further in the paper 
we discuss this hypothesis referring to some results of two experimentations. 

SHORT DESCRIPTION OF ALNUSET 
Alnuset is constituted of three components, Algebraic Line, Symbolic Manipulator 
and Functions, strictly integrated with each other. They enable quantitative, symbolic 
and functional techniques to operate with algebraic expressions and propositions. 
The main characteristic of Algebraic Line component is the representation of an alge-
braic variable as a mobile point on the numerical line,  which can be dragged with the 
mouse along the line. This feature has transformed the number line into an algebraic 
line where it is possible to operate with algebraic expressions and propositions 
through techniques of quantitative and dynamic nature. These techniques focus on 
numerical quantities indicated by an expression when its variable is dragged along the 
line or on numerical quantities that make true a proposition. These techniques make a 
dynamic algebra possible. The main characteristic of Symbolic Manipulator compo-
nent is the possibility to transform algebraic expressions and propositions through a 
set of particular commands. These commands correspond to basic properties of op-
erations, properties of equality and inequality, logic operations among propositions, 
operations among sets. Another characteristic is the possibility to create a new trans-
formation rule once it has been proved. These characteristics support the development 
of skills regarding the algebraic transformation and they contribute to assign a mean-
ing of proof to it. The main characteristic of Functions component is the possibility to 
operatively integrate Algebraic Line with Cartesian Plane, where graphs of expres-
sions can be represented automatically. Moreover, dragging the point corresponding 
to the variable on the algebraic line makes the expression containing the variable 
move accordingly on the line. On Cartesian Plane, the point defined by the couple of 
values of the variable and of the expression moves on the graph. These characteristics 
support two integrated conceptions about the notion of function: a dynamic concep-
tion developed on Algebraic Line and a static one associated to the graph on Carte-
sian Plane. For a more detailed description of Alnuset, we refer to the work of Chiap-
pini and Pedemonte presented in this edition of CERME within the working group 7. 

EXPERIMENTATIONS 
As we mentioned above, the development of DDAs was followed by a design of 
learning scenarios involving these tools and the implementation of these scenarios “in 
realistic contexts”. ReMath partners decided that each DDA would be experimented 
not only by the designer team, but also by an other team that did not participate to the 
DDA development. Such “cross-experimentation” of the DDA was intended to high-
light the impact of theoretical frameworks and of contextual issues on the design of 
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both DDA and learning scenarios. Indeed, each team was free to set up educational 
goals taking account of institutional constraints and to choose theoretical approaches 
to frame the scenario design process. Thus, the experiments involving a given DDA 
were not meant to be compared, but rather to validate design choices related both to 
the DDA and the learning scenarios.  
Italian experimentation 
The experimentation activity reported below, lasting 1h40, has involved a class of 15-
16 year-old students (Grade 10) attending a Classic Lyceum. The students worked in 
pairs using Alnuset. Previously, they had carried out 6 activities with Alnuset centred 
on notions concerning algebraic expressions. The whole teaching experiment lasted 
about 20 hours. The activity considered in this paper is centred on solving a 2nd de-
gree equation. In the previous school year, students had learnt to solve 1st degree 
equations through symbolic manipulation. In this activity notions of conditioned 
equality, solution of an equation, equivalent equations, truth value of an equality and 
truth set of an equation are addressed. The didactical goal is the conceptual develop-
ment of these notions while the research goal is the study of Alnuset mediation in this 
conceptual development. The activity comprises several tasks. The first task aims at 
allowing students to explicit their own conception of the algebraic equality notion. 
Task: Consider the following two polynomials: x2+2; 2x+3. Explain what it means 
putting the equal sign between them, or, in other words, how you interpret the follow-
ing writing x2+2=2x+3. 
Many students attribute to the “=” sign the meaning of computation result. 
Nevertheless they were already faced with 1st degree equations. A typical students’ 
answer is: “To put the equal sign between two polynomial expressions means that 
these expressions have the same result”. For many students inserting the equal sign 
between two expressions suggests the idea that the computation result of the two 
terms has to be equal when a value is assigned to the letter.  
In the following task students were asked to represent the two expressions on the al-
gebraic line of Alnuset to verify their answers. Dragging 
the mobile point x along the line (and observing that the 
points corresponding to the two expressions move ac-
cordingly), all students noted that there are only two val-
ues of x for which the points of the two expressions are 
close to each other, almost coincident. Through this exploration students experienced 
that equality of two expressions is conditioned by numerical values of the variable, 
which is crucial to develop the conditioned equality notion. In previous activities with 
Alnuset, students experienced that every point of the algebraic line is associated to a 
post-it that contains all expressions constructed by the user denoting that point. In or-
der to verify equality of two expressions, the students tried to find values of x for 
which the two expressions belong to the same post-it. Since these irrational values 
had to be constructed on the line, the students could not verify this directly: “we don’t 
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understand what is the number…it will be 2 point something…even if we use zoom in 
we don’t understand …”. The technique mediated by Alnuset to find these irrational 
numbers requires transforming the equation into its canonical form (x2-2x-1=0), rep-
resenting its associated polynomial on the line and using a specific command to find 
roots of this polynomial. Our hypothesis was that this technique could favour a con-
ceptual development of notions of equivalent equations and of truth value of an equa-
tion. The transformation was realized in the Symbolic Manipulator and was guided 
by the following task: 

Task: Select the equation and use the rule A=B ⇔ A-B=0 to transform it. Translate 
the result produced by this rule into natural language.  

This task focuses on the rule A=B ⇔ A-B=0 of the manipulator through which it is 
possible to transform the equality preserving the equivalence. We report two stu-
dents’ answers: “If two terms are equal, then their difference is zero”; “it means that 
if two expressions are equal, subtracting them the result will be zero”. The condi-
tional form of these sentences reflects a construction of an idea for the notion of con-
ditioned equality used to justify the result produced by the rule. This does not mean 
that the students have understood the equivalence between the two equations in terms 
of preservation of the same truth set. Such understanding is the aim of the whole ac-
tivity and its achievement requires several conceptual developments. First of all, stu-
dents have to understand that the values of x for which x2+2 is equal to 2x+3 are the 
same for which x2-2x-1 is equal to 0. 
The following task was assigned to favour exploring such quantitative relations: 
Task: Make a hypothesis about the relationship among the three polynomials x2+2; 
2x+3; x2-2x-1 imagining what you could observe if you represented them on the al-
gebraic line and if you dragged x. Use algebraic line to verify your hypothesis. 
A posteriori, we realized that the formulation of this task was misleading since it ori-
ented the students to search for a relation among the three polynomials rather then be-
tween couples of terms of the two equations. Some students dragged the variable to 
explore if there were values of x for which the three polynomials could denote the 
same value on the line. They verified that such a value does not exist. Even if this ex-
ploration was not expected, it proved an important reference to overcome the follow-
ing misconception, quite common in the students, concerning the equivalence of 
equations: two equations are equivalent if all their terms are equal for some values of 
the variable. A new formulation of the task by the experimenters allowed students to 
focus on couples of terms of the two equations. Exploiting the drag of the variable x 
they understood that, in order to find values of x for which x2+2 is equal to 2x+3, it is 
sufficient to find values of x for which x2-2x-1 is equal to 0. Subsequently they used 
the command E=0 to find the irrational roots of the polynomial x2-2x-1 and to auto-
matically represent them on the line (the student drags x to approximate the polyno-
mial to 0 and the system automatically produces the exact value of the root). Through 
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this experience an idea of equivalent equation begin to emerge. This idea will be con-
solidated through the exploitation of a new dynamic feedback offered by the system. 
We note that in the algebraic line environment expressions are represented on the line 
while equalities are represented in a specific window named “sets” and they are asso-
ciated to a marker (a little dot) whose colour is managed automatically by the system. 
The marker is green if, for the current value of the variable on the line, the equality is 
true and, conversely, it is red if the equality is false. Dragging the variable allowed 
students to explore the truth of equalities and to construct a meaning for this notion, 
as shown in the following dialogue. 

 

 
Student: If I drag x on 21+  and 
on 21− , the expressions of the 
first equation belong to the same 
post-it, namely x2-2x-1 and 0 are 
coincident for these values of x. 

For the same values of x even x2+2 and 
2x+3 belong to a same post-it. 

Student 1: When x is 21−  the two ex-
pressions are equal and these [dots] are 
green. So, since the solution of this 
equation is 21−  then also for the other 
equation is the same.  

Student 2: and for the other value 
[ 21+ ] it is true the same  

Student 1: yes, for these values the two 
equations are true 

To support the conceptual development necessary to master the notion of truth set of 
an equation, two other operative and representative possibilities of the algebraic line 
were exploited: a graphic editor to construct the truth set of an equality and a new 
feedback of the system to validate it. The graphic editor allows to operate on the line 
to define a numerical set that the system automatically translates into the formal set 
language associating it to a coloured marker. We note that the green/red colour of the 
marker means that the current variable value on the line is/is not an element of the set. 
As expected, students used this feedback to validate the defined numerical set as truth 
set of the equation, verifying the green colour accordance between equation marker 
and set marker during the drag of the variable on the line: “for the values   

21+ and 21−  the two equations x2+2=2x+3 and  x2-2x-1=0 have the same truth 
set. In our opinion, the two expressions from one side and the other side of the = sign 
belong to the same post-it when x assumes the values of their solutions”. 
French experimentation 

Let us remind that the French team that experimented activities described in this sec-
tion was not involved in the development of Alnuset. Therefore, a preliminary step 
before designing a learning scenario with Alnuset consisted in an analysis of the tool 
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from the usability and acceptability point of view (Tricot et al. 2003). This analysis 
brought to light main functionalities supposed to enhance learning of functions and 
equations, notions at the core of the Grade 10 math curriculum: dynamic representa-
tion of the relationship between a variable and an expression involving this variable 
and possibility to articulate different registers of representation of algebraic expres-
sions (Krotoff 2008). In addition, praxeological analysis (Chevallard 1992) of the 
above mentioned mathematical objects allowed identifying types of tasks and com-
paring techniques available in Alnuset with institutional techniques identified in the 
Grade 10 textbook. This analysis shows that while institutional techniques are based 
on algebraic transformations on algebraic expressions, Alnuset techniques rely on 
visual observations of expressions (their position on the algebraic line, colour feed-
back…), and (almost) no algebraic treatment is needed when applying these tech-
niques (Krotoff 2008). Thus, Alnuset seemed to be an appropriate tool to help stu-
dents develop conceptual understanding of notions of function and equation, without 
adding difficulties linked to algebraic treatment that many students do not master well 
enough. 

Although the French experiment was designed independently from the Italian one 
presented above, both experiments shared some didactic goals, in particular concep-
tual understanding of notions related to the notion of equation: meaning of a letter as 
variable or as unknown and of the “=” sign, understanding of what a solution of an 
equation means. Therefore, below we present only activities and results related to 
these common concerns. Our research goal was both to investigate to what extent the 
new representation of algebraic expressions provided by Alnuset contributes to the 
conceptual understanding of the notions at stake, and to study instrumental geneses 
(Rabardel, 1995) in students when interacting with Alnuset.  
The experiment took place in a Grade 10 class with 34 students (15-16 years old), 
during two sessions lasting 3 hours altogether, held in a computer lab where students 
worked in pairs on a computer. Their work was framed by worksheets describing 
tasks and asking questions the students had to answer. Written productions are one 
kind of gathered data. Moreover, a few student pairs’ verbal exchanges were audio 
recorded and this data provided us with the possibility to carry out case studies, 
namely as regards studying instrumental genesis in students. Results reported below 
draw mostly on these case studies.    
The first task involving equations was finding solutions of f(x)=4, with f(x)=x², after 
having studied the function f with Alnuset. The task was intentionally quite simple: 
the students could either solve the equation algebraically and verify the result with 
Alnuset, or solve the equation with the tool by dragging x along the algebraic line and 
looking for values for which x² coincides with 4. Both strategies appeared to almost 
the same extent. However, students who used the exploration strategy to find solu-
tions with Alnuset succeeded better than those who used the tool just to verify the re-
sults found by solving the equation algebraically, since these often provided only one, 
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positive, solution. Alnuset turned out to be an efficient tool helping students to over-
come their conception x²=k² ⇔ x=k. 
The next task, solving the equation x²=3x+4, was proposed to prompt students to use 
Alnuset technique of dragging x on the line and searching for values for which the 
equality is true. Indeed, the students did not know yet algebraic techniques for solv-
ing such 2nd degree equation. Using the Alnuset technique requires to make sense of 
the “=” sign as meaning that the two expressions have the same value for some value 
of x, and thus also to distinguish between a letter standing for a variable and for an 
unknown. The students were first asked to determine whether 1, –1 and 2 are solu-
tions of the equation. This question was intended to reveal students’ conceptions of 
the notion of solution of an equation. Almost all students succeeded the activity. 
However, the following dialogue between two students reveals the student’s S1 con-
ception of a solution linked to the arithmetic sense of the “=” sign: 

S1:  You have to find 1. No, 3x+4 must be equal to 1, the solution. 

S2:  No, you have to put x on 1 and the… what do you call it [pointing at 3x+4]… Be-
cause x² should be equal to… the thing, equation and this isn’t the case (Fig. 2a). 

S1:  But it’s the result this [pointing at 1]. 

Indeed, it seems that S1 considers a solution of an equation to be the “result” or the 
value of the expressions: if 1 is a solution of x²=3x+4, then (x²=) 3x+4=1. This con-
ception emerged also when the students checked for -1. The student S2 grasped the 
targeted technique: “On the other hand, -1 is the solution since f(-1) equals this 
equals this equals this” (Fig. 2b), and explains it to S1: “To find the solutions, you 
drag x until x² and 3x+4 overlap”.  

(a)      (b)
 Figure 2. (a) 1 is not a solution since x² and 3x+4 do not overlap when x is on 1; (b) –1 

is the solution.
 
 

The students were then asked to find other solutions of the equation if there are any. 
This task was much more difficult for the students. Only half of the pairs succeeded 
it. The main obstacle was the fact that when x=4 (the other solution), the expressions 
x² and 3x+4 went out of the screen. The students did not spontaneously resort to us-
ing “tracking” functionality allowing to keep visualising the expressions taking big-
ger values, which the students had used previously. Teacher’s intervention was nec-
essary to remind the availability of this functionality, which helped the students to 
successfully finish the task. Such observations point to the issue of instrumental 
genesis in students, which can be a rather long-term process, especially in the case of 
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innovative functionalities such as “tracking” or “E=0” command as we will see in the 
following example.  
Next, the students were asked to find solutions of the equation x²=x+3. This equation has irrational 
roots, therefore the technique based on dragging x and making the expressions overlap is not effi-
cient anymore. The aim was to introduce the E=0 command allowing to find irrational roots of the 
expression x²-x-3 and thus bring the idea of equivalent equations A=B and A-B=0. Most students 
used first the strategy relying on dragging x on the line and either provided approximate values of 
solutions (e.g., 2,3 and –1,3) or framed the solutions by integers (e.g., -2<x<0 and 2<x<4). Teacher 
intervention was necessary to clarify that exact solutions were to be found and suggest using the 
E=0 command. Students encountered two main difficulties with using this command. The first dif-
ficulty was making a link between the expression E(x) they needed to find to be able to solve the 
given equation of the type A=B (the question intended to guide them was “What equation of the 
type E(x)=0 allows solving the given equation? Explain.”). The teacher had to state more precisely 
that Alnuset only provides a tool for solving equations with the right side equal to 0, and that it is 
then necessary to transform the given equation in a way to have 0 on the right side. Such interven-
tion helped most students to find an adequate expression and use the E=0 command. The other dif-
ficulty was linked to the use of the E=0 command. In fact, to solve an equation with Alnuset, one 
has to use this command as many times as the equation has solutions. Although the students were 
aware that the equation has two solutions (most of them provided two approximate values at the 
beginning of the task), they did not think of using the command twice in order to find both solu-
tions, and thus provided only a single solution. This difficulty is linked to the development of a 
scheme of using the E=0 command, which supposes to anticipate the number of solutions of a given 
equation and to be aware of the fact that applying the command gives a single solution at a time. 
This is quite unusual comparing to traditional algebraic techniques. 

CONCLUSION 
These two experimentations enable a first evaluation of the mediation offered by Al-
nuset. In both experiments Alnuset was exploited both as a tool to verify already de-
veloped conjectures and as a tool to explore algebraic phenomena in order to arise 
and validate new conjectures. It allows designing learning scenarios with characteris-
tics that are deeply different, according to given contexts (institutional, cultural, so-
cial…) and educational goals to be pursued. The two experimentations lasted differ-
ently and this allowed to evidence that: (i) the instrumental genesis of the Alnuset in-
strumental techniques may be quite short for some of them (e.g., using drag mode for 
determining equivalence of two expressions) and longer for others (e.g., using E=0 
command to solve polynomial equations and interpreting associated feedback); (ii) 
the instrumented techniques can be controlled by mathematical justifications and pre-
vious knowledge, correct or not. On the other hand, the French experiment showed 
that when the previous mathematical knowledge is rather fragile and the students are 
not very confident with it, resorting to the tool can help them carry out successfully 
the tasks they would not succeed without using the tool; (iii) the instrumented tech-
niques produce representative dynamic events that can be easily related to algebraic 
notions and meaning involved in the activity.  
Both experiments evidenced the importance of teacher’s role in supporting the devel-
opment of students’ instrumental genesis at the beginning of the activity with Al-
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nuset. Moreover, the role of the teacher remains very important during the whole ac-
tivity to orient discussions and considerations about instrumental issues that have to 
be intertwined with algebraic knowledge involved in the activity. 
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COMMUNICATING A SENSE OF ELEMENTARY ALGEBRA TO 
PRESERVICE PRIMARY TEACHERS 

Franziska Siebel and Astrid Fischer  
Goethe Universität Frankfurt 

This article reports on a university course for preservice primary teachers on ‘pat-
terns and structures in primary school to prepare algebraic thinking’. We believe, if 
arithmetic is taught with an algebraic awareness, e.g. looking for patterns within 
arithmetic problems, algebraic thinking could be enhanced in primary school and the 
‘cognitive gap’ between arithmetic and algebra would be reduced. In order to teach 
with an algebraic awareness the teachers must have developed such awareness them-
selves. We present the design of a course with which we contributed to this. The 
course serves us as a pilot experience for gaining hypotheses on the needs of teacher 
students and on good teaching interventions. We conclude the article with research 
questions in this field of teacher education. 
THEORETICAL FRAMEWORK AND FOCUS OF THE PAPER  
It is well known that there are many-facetted difficulties in learning algebra (see for 
example the contributions in Bednarz et al., 1996). Also the working group on alge-
braic thinking of CERME 5 has considered many features constituting elementary al-
gebra and problems of learners. Some of the contributions are concerned with prob-
lems of constructing new mathematical objects (as formal or as abstract, cognitive ob-
jects) when dealing with algebraic expressions (e.g. Dörfler, 2007; Fischer, 2007a; 
Lagrange, 2007). Others point to students’ often limited or inappropriate ways of in-
terpreting symbolic arithmetic or algebraic expressions (e.g. Alexandrou-Leonidou 
and Philippou, 2007; Molina et al., 2007; Papaieronymou, 2007). What do these 
many-faced difficulties have in common with the learning of algebra? The working 
group agreed on one central theme of algebra underlying all other aspects discussed: 
‘expressing generality’ (Puig et al., 2007). However, students often do not experience 
this feature in their algebra classes.  
One reason for these difficulties is the so-called ‘cognitive gap’ between arithmetic 
and algebra. Herscovics and Linchevski (1994) highlight some aspects of it. Features 
like the manipulation of variables occurring twice or more in a formal expression 
demand truly new cognitive abilities or constructions as compared to an arithmetic 
viewpoint. Similarly, they suggest a new viewpoint is required to comprehend formal 
arithmetic expressions as entities in their own right, or to look for patterns and struc-
tures in arithmetic problems. As a consequence of the observed gap, students have to 
cope with several changes to their habit of solving problems, their ways of interpret-
ing signs, their ideas on what mathematics is about.  
In this article we propose that some of the features of this gap between arithmetic and 
algebra are not so much due to the given characteristics of the two areas of mathemat-
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ics, but to a tradition of teaching arithmetic common to many countries. This tradition 
focuses on ways of interpreting arithmetic expressions and treating them, which can-
not be extended to the algebraic sign system. What is more, the tradition of teaching 
arithmetic narrows the focus of mathematics to calculations and results, giving little 
scope for the search for general patterns and the discussion of structures. Things can 
be done differently. The way formal expressions are interpreted in algebra can also be 
used for interpreting arithmetic expressions. For example the expression 3+4 need not 
only be understood as a description of an activity but also as a sign for a number. 
Many other characteristics of algebra could effectively first be established within 
arithmetic contexts. A lot of research exists on including algebraic activities in 
mathematical learning environments for primary school children. For example several 
studies (e.g. Carraher et al., 2008; Fischer, 2007b; Söbbeke, 2005) report on the un-
derstanding of arithmetic or geometric patterns by young children who are not yet 
familiar with the conventions of the formal algebraic sign system. When they become 
familiar with activities of this kind in primary school children might be better pre-
pared for the step to algebra.  
But how can primary school teachers be persuaded to teach these issues? For a pilot 
experience we designed a university course aimed at preparing (future) primary 
teachers for integrating algebraic aspects in the math classes. In this article we will 
explain our grounds for the design of the course and report on our experiences. At the 
end we suggest ideas for further research to help evaluate the course and develop it 
further. 
A central issue for our course was how to persuade primary school teachers to engage 
in algebraic ideas. Understandably, primary school teachers tend to focus on the goals 
set by curricula for the first school years. Often they are not aware of the conse-
quences of their attitudes for the children’s learning of further mathematical concepts. 
Moreover, many of them do not see a connection between learning mathematics in 
primary school and algebra in secondary schools. And those who do are not aware of 
different ways of dealing with arithmetic. Therefore, we consider it a necessary pre-
requisite to help (future) primary teachers look at the mathematics in primary school 
from an algebraic perspective and to show them how they can integrate pre-algebraic 
thinking without loosing track of their primary goals.  
Mason (2007) gives some ideas on how teachers can learn to deal with the subject of 
expressing generality. One central point is the highlighting of typical mathematical 
processes involved in the search for general patterns and in their representation and 
use. This is one important connection between the general goals of mathematics and 
our specific interest in advancing algebraic thinking in primary school. We recog-
nised different though interwoven aspects of ‘algebraic awareness’:  

 Experience with problem solving activities, e.g. analysing and describing 
patterns and structures, continuing patterns, using structures for calculations 
and problem solving,  
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 Knowledge of different mode of representations and structures of problems, 
solution methods and solutions,  

 The disposition to look for patterns and structures in arithmetic problems and 
to argue with them and to perceive arithmetic expressions as processes and as 
objects. 

All of these aspects can be provoked within arithmetic and geometric contexts in 
primary school (grade 1 to 4). 

CONCEPTUAL DESIGN OF THE COURSE 
In the course we had four main goals: 

 The students experience algebraic thinking within arithmetic and geometric 
contexts. They are encouraged by personal success and gain a broadened view 
on mathematical tasks. 

 The students understand challenges of (pre)algebraic thinking as part of 
mathematics fitting in the goals of primary school. 

 The students design and analyse mathematical problems concerning arithmetic 
or geometric patterns in a context of primary school either within a case study 
or while analysing schoolbooks.  

 The students reflect upon learning mathematics themselves and by children. 
Organisational frame 
The class met three hours each week for one semester (14 weeks) and was open for 
advanced students who had already taken some mathematics and mathematics educa-
tion for primary school. Twenty three students attended the course. To obtain credits 
each student had either to undertake and write a report of a short empirical study with 
one or more children, or write a theoretical theses comparing two series of school-
books.  
Progression 
1. Introducing the course subject 
During the first weeks of the course the students were presented with mathematical 
problems, which comprised different aspects of algebra and algebraic thinking. With 
this activate approach the students experienced algebraic thinking instead of dealing 
with a theoretical definition. We chose problems which highlighted characteristic as-
pects of algebraic thinking. Quite a number of these problems dealt with the discov-
ery and expression of patterns. The students had to solve them with their preferred 
problem solving strategy and with at least one strategy that children in primary school 
might use. The class reflected upon the solutions, the solution methods and different 
ways of presenting both. Furthermore, problem solving strategies were elaborated and 

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 631



 

 

 

 

differences were highlighted between problems which appeared to be very similar at 
first sight but turned out to have very different algebraic potentials.  

 

figure 1 figure 2 

Figure 1 shows problems from a worksheet on “number walls”. Three-layer number 
walls involving additive structures within integers are an often used format in Ger-
man school books. They are constructed as indicated in figure 2 (where a, b, and c are 
integers). 
The first task on the worksheet presents a typical arithmetic task: the sum of integers 
has to be calculated. Note, however, that if used to introduce number walls, this al-
ready demands some degree of structural analysis. The second task also starts of with 
the calculation of sums. But the request to write down observations leads to a closer 
examination; the different walls have to be compared. Describing differences and 
commonalities of the six walls with the same integers in the bottom bricks demands a 
careful study of the walls. Verbalising the observation and explaining the findings 
helps the discovery of a mathematical pattern. Finally, the number walls of the third 
task cannot be worked out in the same straightforward way. They present discon-
nected problems (one of them is not solvable within integers) which can be tackled in 
different ways. Asking for the approach implies an explicit reflection on it; asking for 
other solutions and for the number of other solutions guides students towards a struc-
tural approach to the task.  
Other problems given to the students offer different views of symbolical terms like 
the equal sign and expressions like the sums of two numbers. Given “3+4=”, say, 
whereas one view sees the equal sign as an instruction to calculate (3+4 adds up to 7), 
another promotes the view of the equal sign as a balance and of the sum as being a 
number (3+4 is the same number as 2+5). Cognitively the latter demands a view of an 
arithmetical expression as a number as well as a process (cf. Gray and Tall, 1994). 
Furthermore, the students were given problems on number sequences, geometric 
visualisations of such, arithmetic laws and (dis)connected arithmetic word problems. 

a c 
a+b

b

a+2b+c 

b+c
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Although the problems were basically taken from German schoolbooks for classes 1 
to 4, the students had numerous difficulties solving them. Many of them made very 
formal use of variables, often with little or no understanding of the meaning. This 
caused mistakes on the one hand and impeded discussion of mathematical relations 
on the other hand. Moreover, the students frequently had difficulties to think of 
strategies without using variables. Often they thought of only one alternative strategy: 
systematic trial and improvement. Yet, they did not always acknowledge this as a 
valuable mathematical strategy.  
Working on the given problems, the students were surprised by their experiences:  

8. There are mathematical tasks with different ways of solving them, some 
problems can even have different solutions. 

9. Strategies can be found which do not involve the formal algebraic sign system 
are possible. But to find such strategies requires insight into the structure.  

10. The inherent structure of similar looking problems can be very different.  
11. These problems offer challenges on different levels. Some of these challenges 

are revealed to the students only when working on them.  
These experiences were facilitated by questions attached to the mathematical prob-
lems, which emphasised mathematical activities like visualising, comparing and argu-
ing.  
Besides solving the problems the students reflected upon the mathematical activities 
required by the children. Through this, we raised ideas of what algebraic thinking is 
about. 
We concluded the introductory unit by taking a more theoretical standpoint. In class 
we discussed the paper of Lorenz (2006) on possibilities and challenges in using 
geometric representations of arithmetic patterns for illuminating the structure and 
solving problems about them. The claims of the text could well be investigated 
through some of the examples the class had worked on in the previous weeks.  
The class then developed a notion of ‘good’ mathematical problems in general and in 
respect to algebraic thinking. The class agreed on the following features to constitute 
‘good’ problems:  
A ‘good’ mathematical problem must be 

9. open to different approaches or different solutions, 
10. given with a mathematical goal, 
11. easy enough for every child in class to start solving the problem and to obtain a 

(partial) result, but also 
12. challenging even for high achieving children. 
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The feature specifically relevant for the course is the encouragement of algebraic 
thinking. We listed the following characteristics of algebraic thought which can be 
found within arithmetic or geometric contexts: 

 unknowns not only at the end of an expression, 
 equal sign as balance sign, 
 arithmetic expressions as representations of numbers, 
 describing patterns,  
 calculating big numbers effectively using structures instead of extensive 

calculations. 
These criteria are neither original or exhaustive. But they reflect the views the stu-
dents had developed at this point on the course and used as basis for their own work. 
Throughout the rest of the course these criteria served as an orientation for the stu-
dents when developing and evaluating mathematical problems for primary school.  

2. Preparing and realizing the individual projects 
The students then started with their own projects. Seven carried out a case study with 
a child in primary school. Each of them prepared a short sequence of problems he or 
she was going to use in the interview. This sequence had to be analysed with respect 
to its algebraic potential. There was opportunity in class to have these sequences dis-
cussed in small groups and to work them through before they were used in the inter-
views.  
After the interviews were accomplished the students had to transcribe interesting 
parts and analyse the children’s performance. The students in Frankfurt have plenty 
of experience with carrying out interviews and analysing them with respect to interac-
tion. Therefore we decided not to elaborate on these issues. Nevertheless we devoted 
one lesson to tools for analysing transcripts. We focused on gaining mathematical 
knowledge through working on representations. For this we read a paper on the epis-
temological triangle of Steinbring (2000). In this text two analyses are presented in 
which students explain and develop ideas on a mathematical problem. However this 
text turned out to be very difficult. It is too theory laden for our students to enable 
them to extract general principles and apply them for their own analyses.  
Students who aimed for a theoretical thesis each had to analyse two series of school-
books for classes 1 to 4. Each student had to select two formats of problems like a se-
quence of problems with a common pattern or number walls recurring in his or her 
schoolbooks in different classes. He or she had to give an analysis of these formats 
pointing to their algebraic potential. On the ground of this analysis he or she had to 
evaluate the way the schoolbook makes use of these formats and compare the two se-
ries of schoolbooks. The students of this group, too, were given the opportunity to 
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have some examples from their schoolbooks discussed in class. In addition, through-
out the whole course such formats served as examples for different aspects.  
The individual projects were mainly worked on at home. Meanwhile, we were able to 
introduce several theoretical articles on mathematics education which discuss issues 
related to our subject. Our main focus was to interrelate educational theories with the 
students’ own mathematical activities as well as with their design and analysis of 
problems. Through this, we also deepened the students’ algebraic understanding.  
We covered topics like learning, practising and problem categories. In particular, we 
compared learning mathematics via instruction to learning via discovery (cp. Witt-
mann, 1994) and related the findings to previous class sessions. Practising – not only 
algorithms of calculation but also mathematical processes like problem solving, rep-
resenting mathematical ideas, argumentation – was connected to the different learning 
theories (cp. Winter, 1984) and discussed for one specific problem. The task of de-
termining whether problems are open (for different solutions and solution methods) 
informative (regarding the learner’s thinking) and process-oriented (which means, if 
they support mathematical activities like discovering, arguing and further elabora-
tions; Sundermann and Selter, 2006), leads to reflecting on problems, varying and 
exploring them.  
These articles addressed general principles of teaching mathematics in primary 
school. We found plenty of opportunities to interpret and understand them in respect 
to our subject of inducing algebraic thinking. Thus this subject appeared in the gen-
eral context of teaching mathematics in primary school not as an exotic theme but as 
one way of complying with these general goals that are commonly shared.  

3. Presenting the students’ projects 
In the last unit of the course the students presented some of their results. Those writ-
ing a theoretical thesis chose examples of their analytical work and some theoretical 
aspects related to it. Those doing an empirical analyses presented crucial aspects of 
their interview analyses. All of them were asked to look for ways of presentation that 
would actively involve the class. 
The students who analysed schoolbooks had to think of criteria for their analysis first. 
It turned out that they used the criteria listed in the introduction only as a starting 
point. In order to build their criteria most of them chose one or more topics on learn-
ing mathematics we discussed during the second part of the course. It is pleasant to 
see that they altogether made careful analyses covering important aspects of algebraic 
thinking which proved a good insight into the formats.  
For example one student gave an overview on which pages the formats occur in the 
schoolbooks before she went into quantitative and qualitative analyses. She did not 
only list the pages but stated the type of task linked to it, like discussing calculation 
rules, completing the format and comparing numbers of neighboured formats. This 
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affected her quantitative analysis: She put the frequency of a format into perspective 
with the aligned task. While she noted that in one book the format was used more of-
ten she also claimed that a lot of the tasks merely practise calculating.  
At the beginning of the term another student commented on a schoolbook she had 
seen in use in primary school. She reported that the school children would love to 
work on the book and do their work autonomously. Her submitted analysis of this 
schoolbook shows that she gained a broadened view on mathematics teaching. She 
stated that this particular schoolbook is based on a theory of mathematics education 
of tiny steps but little structural understanding of mathematics problems.  

CONCLUSION AND FUTURE PROSPECTIVES 
Overall we are satisfied with this course since we met our goals for most part. The 
students gained (more) competencies solving mathematical problems with an alge-
braic notion. They intend to integrate (pre-)algebraic thinking in their mathematics 
classes through designing adequate mathematical tasks and an appropriate attitude. 
They gained competencies in judging maths problems in school books and their own, 
as well as reflecting on their interventions. Our evaluation corresponds well with the 
students’ feedback.  
It turned out that the aspects of algebraic thinking were best understood when they 
were directly linked to their own experiences – and more than once – and reflected 
upon afterwards. For example the students had to solve a variety of problems with 
patterns during the first sessions which were originally designed for primary school. 
We reflected upon them: The students had to present their results, find different solu-
tion methods, vary the tasks, compare it with other tasks, etc. The attitude to look for 
patterns became an important issue for the group and the focus on patterns can be 
traced to the students’ projects. In contrast some algebraic characteristics were not 
understood quite as well, like the notion of the equal sign as a balance sign. This is 
perhaps because we did not mention those characteristics quite as often, or because 
we looked at them from a more theoretical perspective.  
We believe that it was not only the students who learnt a lot about (pre-)algebraic 
thinking: we also benefited from this course. We learnt something about the thinking 
of university students, gained perspectives on teaching them and at the same time got 
deeper insight of the potential of mathematical tasks for teaching algebraic thinking.  
This teaching experience serves as a pilot study for us. On the basis of this experience 
we see several research questions that would be worth following up.  

 The course seems to indicate that student teachers do need help to get an 
algebraic awareness, even though they have used much algebra in their own 
time at school. A quantitative empirical study of teachers’ performances in 
observing patterns and structures in geometric or arithmetic contexts should 
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give hard evidence on this issue. One could also investigate how, during a 
course like ours, students’ ideas about arithmetic lessons change. 

 We do not know very much about the inner representations student teachers 
have of principles of algebraic notation and algebraic argumentation. A 
qualitative empirical investigation on this issue might help us to better 
understand some of the underlying difficulties. In connection with this, the 
effects of some of the principles we applied during the course should be 
evaluated by empirical studies. The results of these studies might inform the 
development of curricula for teacher education. 

 An underlying assumption of our course is that children who work on 
describing and using patterns in the context of arithmetic problems will be 
better prepared for algebra than students who only do calculations in their 
arithmetic classes in primary school. This conforms with theoretical positions 
on the nature of algebraic thinking in scientific literature. However, more 
empirical evidence is needed to investigate this claim. 
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CONCEPTION OF VARIANCE AND INVARIANCE AS A 
POSSIBLE PASSAGE FROM EARLY SCHOOL MATHEMATICS 

TO ALGEBRA 
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Change and invariance appear at the very early stages of learning mathematics. In 
this theoretical paper, examples of topics and tasks from primary school mathematics 
with various kinds of interplay between variation and invariants are presented. Ap-
plication of this approach might be a tool that helps to improve non-formal algebraic 
thinking of students. We present some examples of pre-service teachers’ reasoning in 
terms of variances and invariance. 

INTRODUCTION 
For over fifty years, mathematics educators have studied ways of teaching algebra. 
Beyond viewing algebra as generalized arithmetic, various classifications for mean-
ing of algebra, algebraic symbolism, procedures and skills have been proposed 
(Usiskin, 1988). In algebra, students have to manipulate letters of different natures 
such as unknown numbers (Tahta, 1972), parameters, and variables. Required skills 
include specific rules for manipulating expressions and an ability to construct and 
analyze patterns. These components form the basis for the structure of school algebra, 
which appears to students to be abstract and rather artificial. Through dealing with 
transformation of algebraic expressions, students can hardly recognize the core ideas 
of algebra, such as application of standard arithmetic procedures to unknown or un-
specified numbers. 
From the point of view of primary school teachers, algebra is comprised of letters, 
rules of operations with expressions, and formulas to solve equations. Moreover, the 
term pre-algebra in the school math curricula stands for some “advanced arithmetic” 
topics that are linked with future algebra, mostly chronologically but not conceptu-
ally. 
Since 2005, the awareness of pre- and in-service teachers about algebra has been one 
of the “hot” issues of annual conferences on training primary school math teachers in 
Israel. In order to match the course Algebraic Thinking to the needs of pre-service 
primary school mathematics teachers, a systematic study on their vision of algebra 
has been initiated. Preliminary results of this research show that only a few of these 
students are aware of non-formal components of algebra (Sinitsky, Ilany, & Guber-
man, 2009). 
What mathematical concept could help pre- and in-service teachers to construct rele-
vant algebraic comprehension?  School algebra is a combination of generalized 
arithmetic, calculations with letters, and properties of operations (Merzlyakov & 
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Shirshov, 1977). In general, it requires reasoning on connections and relations be-
tween objects, for example, finding similarities and dissimilarities between objects. 
The question “what changes and what does not change?” seems to be fruitful in a 
meta-cognitive discourse that concerns problem-solving activity (Mason, 2007; Me-
varech & Kramarski, 2003). We propose to apply this question at the very early 
stages of mathematical learning as a possible tool to connect primary school mathe-
matics with algebra. 

WHY VARIANCE AND INVARIANCE? 
The two notions of variance and invariance are strongly linked, since “invariance 
only makes sense and is only detectable when there is variation” (Mason, 2007). Ma-
son claims that “invariance in the midst of change” is one of three pervasive mathe-
matical themes. Watson and Mason (2005) have elaborated the theory of possible 
variation and permissible change for the needs of mathematical pedagogy. The use of 
the concept of variance and invariance with pre-service teachers can develop their al-
gebraic thinking and provide them with tools to construct examples.  
The issue of learning processes is related to the human ability to associate and to dis-
tinguish between different characteristics of the same object. Research (Stavy & Ti-
rosh, 2000; Stavy, Tsamir, & Tirosh, 2002) shows that reasoning patterns “same A 
then same B” and “more A then more B” are prevalent among students, and direct 
analogy causes deep misconceptions in the learning of mathematics. Refining com-
prehension of various types of interconnections between change and invariance may 
be fruitful for improving cognitive schemes of students.  
Starting from secondary school, students systematically face algebraic notation and 
formalism. The most significant feature of algebra for students is manipulating with 
letters. It seems to them (and to their teachers) as a switch from four arithmetic opera-
tions with numeric operands into terra incognita of some quantities that are both un-
known and tend to change.   
Although the abilities to deal with varying objects, to explain, and to formulate are 
the very essence of secondary school algebra, students are expected to grapple with 
these based on their experience in primary school. In the framework of systematic 
construction of formal algebraic concepts, pre-algebra is responsible for the devel-
opment of pre-abstract apprehensions of algebra (Linchevski, 1995).   
In this paper, we bring up some issues from primary school mathematics and observe 
these problems in terms of change and invariance. We refer, at a non-formal level, to 
the main components of school algebra mentioned by Linchevski, i.e. using variables 
and algebraic transformations, generalization, structuring, and equations.  
We proposed related mathematical activities for pre-service primary school mathe-
matics teachers, and discuss some relevant classroom findings in the last paragraph 
and in the appendix.  
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VARIANCE AND INVARIANCE INTERPLAY IN PRIMARY SCHOOL  
Word problems and algorithms of school algebra often have an origin, or an analogy, 
in primary school mathematics. Despite the concrete numerical form of arithmetic 
problems, they usually enable some algebraic generalizations into patterns for several 
number sets with suitable restrictions. For example, the property of  being divisible 
by 9 is invariant in relation to any change in order of digits. Analysis of mathematical 
problems of primary school from the point of view of algebraic concepts may be 
fruitful for students as a step to constructing their algebraic thinking.       
A consideration of variation, change, and invariance may help to provide a non-
formal algebraic vision of arithmetic issues. Every mathematical situation provides a 
variety of variance–invariance links. Moreover, a suitable set of variations and related 
invariants that describe a task may provide a way to solve it. We illustrate the appear-
ance and application of the “change and invariance” concept in a number of topics 
from primary school mathematics.   
Quantities and numbers 
The most fundamental example of invariant is human ability to count (Invariant, n. 
d.). It starts with the transition from objects to quantities and develops through nu-
merous activities of counting objects of different nature. At this stage, quantity is in-
variant of physical properties of specific objects. Children also learn to count a given 
set of objects in different ways, and discover that the result is invariant of various 
(correct) counting procedures.  
Thus, a basic conception of equality of quantities arises: the equality represents the 
fact that the same quantity is obtained or described in two different ways. There is 
also the possibility of inverting the problem: which changes are allowed within a 
given quantity? This question seems concerns a misconception of equality. 
Linchevski and Herscovics (1996) have connected cognitive difficulties in the transi-
tion from arithmetic to algebra to dual procedural-structural algebraic thinking. A 
well-known example of such difficulties is the comprehension of the expression 
34+7= as a command to carry out an action (Gray & Tall, 1991). Accordingly, in the 
equation 8+4=∆+5 the unknown is interpreted by students as the result of adding 
8+4. In contrast, the idea of equality as an idiom of invariance invites possible 
changes. 
An appropriate didactical scheme for primary school students is to focus on problems 
of decomposition of given number into a sum of two addends. Typical questions re-
quire producing additional presentations based on a given one as demonstrated in this 
activity: 

- 8=3+5 How can you split the same number 8 into another sum of two ad-
dends? 

- How does a change in the first addend influence the second one? 
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- How does the change of addends of two “adjacent” decompositions vary? (At a 
higher level this leads to a conclusion on invariance of parity for differences of 
addends for several decompositions of the same number)  

- For a given odd (or even) number, what can you say about the parity of ad-
dends in each decomposition? 

This activity invites students to discover the role of invariant quantities in a game of 
changing in.  

In discussions with pre-service teachers, the same questions were followed by further 
generalizations. For instance, the last question on parity leads to a conclusion on the 
invariance of parity of algebraic sums of numbers, with arbitrary distribution of +/- 
signs, through an analogy to the arithmetic expression. A choice of signs +/- does not 
influence the parity of the expression a1 ± a2 ±…±ak (for integers a1, a2,…ak).At an 
advanced level, the same mathematical situation leads to combinatorial tasks, such as:  

- In how many ways can we split a given natural number into the sum of equal 
addends?  

- Can you arrange any presentation of an arbitrary multiple of three as a sum of 
consecutive addends by first splitting it into a sum of equal addends?   

- In how many ways can we split a given natural number into sum of consecutive 
addends? 

In the appendix, we present examples of pre-service primary school math teachers’ 
response to some of these questions.  

With this cluster of problems, we explored the concept of permissible changes within 
a given invariant in a variety of mathematical questions and levels.   
Comparison of quantities in terms of change and invariance 
In addition to invariance, the very basic process of counting deals with variation of 
quantity. Adding each new object to a given set of objects generates a new quantity 
that is greater than the given one. These examples are taken from the Curricula for 
Primary School in Israel (Curriculum, 2006): the sum 5+1 is greater than 5, and the 
sum 67+2 is less by1 than the sum 67+3.   
From the point of view of invariance and change, students try “to find the same” in a 
pair of arithmetic expressions. The same operand plays a role of a parameter, i.e. arbi-
trary but the same number. The only cause for different values of given expressions is 
the difference in second operands. Therefore, to compare two quantities one looks at 
them in a structural manner: namely, noting the similarity and the difference between 
them. For example, comparing the results of other arithmetic operations when one of 
the operands is the same for both expressions: 

- Which one of the differences is greater: 856 – 47 or 856 – 44? 
- What is the difference between the two products:  84 X 123 and 83 X 123?  
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- Shirli arranged dolls in nine rows with the same number in every row. She 
added two dolls to each row. By how many dolls did the total number of dolls 
increase?  

In school algebra, the presence of an unknown quantity typically turns the simple 
problem of comparing two similar expressions into a difficult one for students. For 
example, the comparing the pair a-7 and a+7 as opposed to the pair 7-a and 7+a.  

Further, in order to compare more “remote” arithmetic expressions, one can try to in-
terpret them as a different change of the same connecting expression. When pre-
service teachers discussed how to compare two differences, i.e. 1234-528 and1243-
516, they constructed intermediate expressions, 1234-516 or 1243-528.  In a similar 
way, they proposed using the product  for comparison of products 

 and . This method of comparison is also an algebraic one: two 
expressions a*b and c*d are interpreted as changes of the same basic structure a*d or 
c*b. 
Computational algorithms and techniques  
In school algebra, most procedures cause changes in algebraic expressions yet pre-
serve equality or inequality. This issue is not new for students. Almost every process 
of computation includes some transformation of a given arithmetic expression to an-
other one. The transformation is valid provided it keeps invariant the value of the ex-
pression. In fact, both the rules of arithmetic operations and standard computational 
algorithms preserve the invariants: 

- To calculate the sum 123+456, one groups similar units of addends, 
123+456=(100+400)+(20+50)+(3+6) – this is a direct analogy of gathering 
similar terms in algebraic expressions. 

- The difference 123-49 can be replaced by a new expression that retains the 
value of the given one: 123–49=124–50.  

Fraction reduction and expansion are additional examples in elementary school of 
variation that preserves value. 

The ability to find a suitable variation of a given expression that preserves its value is 
a useful starting point for oral calculations. A necessary condition to apply is the in-
variance of the value under the change of form of the calculated expression.  

 We have studied the strategies pre-service primary school math teachers apply to 
calculate sums of arithmetic progressions (Sinitsky & Ilany, 2008). Only 5% of the 
students succeeded in recalling a suitable formula and applying it correctly. After tak-
ing part in series of assignments concerning interplay of change and invariance, the 
students were given similar tasks.  They tried to calculate sums by reducing them to 
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known series in various ways 
(2+3+...+26→1+2+...+25;  3+6+9+...+60=[2+4+...+40]+[1+2+...+20]).  

Number properties and range of generalization 
When students manipulate algebraic expressions, the application of natural intuitive 
reasoning schemes “same A then same B” or “more A then more B” leads them to 
false reasoning: “x2 = y2 implies x = y”, “ –x > 2, therefore x > − 2”. In terms of 
change and invariance, this is a problem of connection between different invariants.    
There are numerous examples of correct ways of reasoning when letters A and B 
stand for the property of numbers. Examples of correct propositions concerning 
squares of natural numbers: “If the unit digits of two numbers are the same their 
squares have the same unit digit”; “The squares of numbers with the same parity are 
also of the same parity”`; “As natural numbers increase so do their squares”.  
Such a convenient tie between invariants and changes invites a wide generalizing. 
Accordingly, questions that lead to counter examples and determination of range of 
possible changes or invariants are crucial: “Does changing the order of a sum change 
the result?”; “Does equal square/rectangle/parallelogram area imply the same perime-
ter?”; “Does multiplying a number by 2 increase the number of its divisors?” 
Generalizing regularities and solving problems without algebraic formalism 
An equation composed to solve a word problem algebraically expresses an invariance 
of some (typically unknown) value. For example, in problems that concerns motion, 
the same distance that two vehicles cover in different manners is the invariant of the 
two processes involved. Hence, the ability to identify invariance through some 
changes is useful for solving mathematical problems.  
At primary school level, the search for invariance is an effective tool to discover 
regularities in numerical tables and in tables of arithmetic operations. For example, in 
the hundred table (see appendix, example 2) numbers increase constantly, but the 
change between adjacent cells in any row or column is invariant of the cell position. 
Similarly, the difference of products of diagonals of any   square is an invariant 
of the choice of square. 
The next stage of proving those propositions typically involves some algebraic ma-
nipulation. Detecting a proper invariant for the problem can help avoiding formal al-
gebra and provide a transparent proof with a generic example (Mason & Pimm, 
1984). This type of reasoning is presented in the appendix.     
Coming back to word problems and relevant equations, we illustrate another aspect of 
interaction between variation and invariance in pre-algebra mathematics. This inter-
play may provide non-algebraic solutions for some word problems. For example:  
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John bought two kinds of items: pencils that cost 30 cents each and pens that 
cost 50 cents each. He paid 6.20 euro for 16 items. How many pencils and how 
many pens did John buy?  

We restate here a well-known arithmetic solution of the problem with an emphasis on 
variation and invariance. We start with the possibility that John bought 16 pencils at a 
cost of 4.80 euro. Now we need to vary the cost, keeping invariant the number of 
items. The answer to the question “How many pencils do we need to exchange for 
pens to increase the total price by 1.40?” provides the solution of the problem. In this 
approach, the total number of items is an invariant of the process. An alternative 
method of solution starts from any combination of items that provides the desirable 
cost (for example, 10 pens and 4 pencils). The next step is to vary the number of 
items keeping the total cost invariant. 
A taxonomy of change and invariants 
Due to many characteristics of each object or process, every variance results in sev-
eral changes and introduces invariants as well. Alternatively, preserving some invari-
ant permits variances of other properties. Thus, there are many possibilities of interre-
lation between change and invariance. The same sort of connection can occur in vari-
ous mathematical problems and topics.  
From the above and other examples, we have derived a suggested taxonomy for 
change, variance, and invariance:  

- An invariant is given a priori, and the focus is on possible changes and related 
invariants. 

- To understand the action of prescribed change, we look for imposed variations 
and for given invariants. 

- To solve a problem, it is necessary to find some key invariant of all the proce-
dures involved. 

- To treat a mathematical situation, we introduce a suitable variation or a se-
quence of variations.  

Within this classification, the two latter cases seem to be more complicated since they 
involve construction of relevant objects or procedures. On the other hand, a specific 
kind of relation between variation and invariance is connected more with the method 
of solving the problem than with the problem itself. Thus, various solutions of the 
same problem may bring into play different kinds of interaction of change and invari-
ance or even a combination of those interactions. 

PEDAGOGICAL ASPECTS OF THE APPROACH  
We require that primary school mathematics teachers be competent to recognize rele-
vant kinds of variations and invariants in various issues and problems of elementary 
mathematics. We need to start introducing this concept in teachers’ education to en-
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sure that they can construct an additional didactical tool for mathematical discourse in 
a classroom.  
To test the influence of discourse in terms of interplay between variance and invari-
ance on algebraic thinking of students, we designed an experimental study. The re-
search involved future and current teachers of mathematics at elementary school. We 
tried to learn if, and to what extent, discourse on variance and invariance influenced 
beliefs and knowledge on the ability of further application of non-formal algebraic 
reasoning. In addition to checking the validity of our conjectures, we would like to 
improve the awareness of school educators about the use of variation and invariance 
at primary school level.  
So far, pre-service teachers have participated in the study through problem solving 
activities in the framework of their courses in pedagogical colleges. Throughout these 
activities, they have discussed the ideas of variance and invariance with specific 
mathematical issues. We have found that future teachers have begun to construct ex-
amples for teaching in elementary school that invite algebraic thinking and argumen-
tation in terms of change, comparison and invariants (Sinitsky & Ilany, 2008). 
To promote this concept, we designed additional mathematical assignments. Each 
task includes a cluster of math problems on different issues at various levels of diffi-
culty united by the same relation of variance and invariance. The starting point is 
part of the school curriculum, should be familiar to every pre-service teacher, and is a 
basis for further generalizations and analogies. The style of all the assignments is that 
of open problems in order to stimulate various approaches and strategies. 

CONCLUSION 
In this paper, we discussed applications of conception of changes and invariants in 
primary school mathematics. We looked at numerical problems from a point of view 
that is general and in many cases algebraic. The same types of connection can be de-
tected in different mathematical issues. The ability to recognize variation and invari-
ants may be an effective tool in constructing non-formal algebraic thinking of stu-
dents. However, as a necessary stage, it requires the awareness of teachers on the sub-
ject. Some preliminary evidence on pre-service teachers’ activities seems encourag-
ing and invites further wide-scale research. 
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APPENDIX: IT LOOKS LIKE ALGEBRA 
Two samples of reasoning involving variance and invariance interplay are presented.  

1. Representations of natural number as a sum of consequent addends – fragment of 
transcript of discussion with pre-service primary school mathematics teachers 

Students wrote down all the pairs with the given product, 30, and constructed sample sums 
of equal addends.   
Student A: “I start with equal addends. Now, for 30=10+10+10, I keep the total sum but 
vary the addends: (she moves a finger from the first term to the third one and has marked it 
with an arrow) 30=10+10+10. We get 30=9+10+11, and it is possible to do this for each of 
these sums of equal addends! For example, I can derive from this sum (she points 
30=6+6+6+6+6) another sum of consequent addends: 30=4+5+6+7+8 and... No, it does 
not work with 30=15+15: we need the sum to be invariant but also keep a middle term, and 
there is no middle addend here. Ah, I can try to split each one of 15s, but it changes the 
number of addends...”  
Students also obtained representation of 30 as a sum of four consequent addends: 
30=6+7+8+9, and tried to derive sum of consequent addends from the sum of fifteen equal 
ones.  
Student B: “But we need negative numbers. Aha, after the cancellation we get exactly the 
same sum! It means that for every presentation of natural number as a sum of consequent 
natural numbers we can make more sums if we use  integer numbers that will be cancelled 
after that, for example, 12=3+4+5 and also 12=(-2)+(-1)+0+1+2+3+4+5, because 
 (-2)+(-1)+0+1+2=0”  

2. Divisibility of differences of two-digit numbers with “inverted” digits – sample proof 
Conjecture: The difference of two two-digit numbers, where the second number has the 
same digits as the first one but in inverted order, is a multiple of 9.  
How can we introduce the justification of this proposition without algebraic formalism in 
the framework of discussion with the students?  
Let us check, what is the same in each pair of these num-
bers? They have the same digits, therefore also the same 
sum of digits. Now, let us mark an arbitrary pair of these 
numbers in a hundred table, for instance, 62 and 26. Their 
difference is just a distance between cells. Can we con-
struct the route from 26 to 62 that keeps invariant the 
sum of digits? The route passes through 35, 44 and 53 
before reaching 62. Each step increases the number by 9 
(see “decomposition” of one of the steps in the table), 
therefore the total difference is a multiple of 9. Moreover, 
the difference between inverted two-digit numbers equals 
the number of such steps multiplied by 9. 

...6 5 4 3 2 1 

...16 15 14 13 12 11 

...26 25 24 23 22 21 

...36 35 34 33 32 31 

...46 45 44 43 42 41 

...56 55 54 53 52 51 

...66 65 64 63 62 61 

...... ... ... ... ... ... 
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GROWING PATTERNS AS EXAMPLES FOR DEVELOPING 
A NEW VIEW ONTO ALGEBRA AND ARITHMETIC 

Claudia Böttinger & Elke Söbbeke 
University of Duisburg-Essen, Germany 

Sequences of growing patterns play an increasing role in the context of introducing 
terms. In this paper we reflect a new view onto the role of those particular visualisa-
tions for arithmetic and as well for algebra. By using a pupil’s document we illustrate 
in this paper the theoretical framework of our concept. 
Keywords:  representation/growing pattern, pre-algebra, children’s interpretation,   
 building structures and relations into diagrams  

1 Perspectives on the Mathematical Knowledge on the Way to Algebra 
On their way from arithmetic to algebra, students have to develop a new awareness 
for the general, for the variation and the variable. At this period a new way of think-
ing, a new understanding of the previously acquired mathematical concepts, symbols 
and operations and thus a new interpretation of old knowledge becomes necessary. 
Students of elementary school become acquainted with equations in arithmetic les-
sons primarily in the context of calculating. In a special kind of lesson culture they 
learn more or less subconsciously that by dealing with equations they have to calcu-
late the part on the left of the equal sign and after that to note the result on the right 
(“Task-Result-Interpretation“; Winter 1982). In many cases the equal sign is inter-
preted as a sign demanding to calculate. In many cases its function as a symbol of 
equality is not spoken about or used in every day arithmetic lessons. Such restriction 
in the interpretation, understanding and use of arithmetic terms and symbols is an ob-
stacle not only for the later algebraic comprehension, but also for developing success-
ful calculation strategies for the elementary arithmetical operations in the following 
school years.  
Today algebra is seen as the lingua franca of higher mathematics (Hefendehl-Hebeker 
& Oldenburg 2008). However, algebra does not obtain the meaning and power of 
such a superior language if its status is restricted to the transformation and calculation 
of terms. Algebra has to be a “system characterised by indeterminacy of objects, an 
analytic nature of thinking and symbolic ways of designating objects” (Cooper & 
Warren 2008, 24). Therefore it is indispensable for the construction of algebraic 
comprehension not merely to calculate terms, but increasingly to see them in their 
structures, in order to understand formulae and principles. “The equation (or formula) 
must not be perceived as a sort of calculation shorthand note but rather as a type of 
scheme, which can in different ways be rearranged and be filled with concrete con-
tent” (Winter 1982, 210). 
Various studies are concerned with the transition from arithmetic to algebra, which is 
accompanied by ruptures and discontinuities from the arithmetical to the algebraical 
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view (cf. Bednarz & Janvier 1996). In our paper we focus not only on ruptures in the 
transition from one view (e. g. arithmetic, geometric) to another but also on reinter-
pretations and developments within one view in the context of growing patterns. 
2  Growing Patterns and Mathematical Visualizations as Mediators between 
  old and new Mathematical Knowledge  
If the substance of algebra is seen in the way it represents the principles and struc-
tures of mathematics and not in terms of the “behaviours“ of algebra (such as simpli-
fication and factorisation) (…) (cf. Cooper &Warren 2008, 24), then it is important 
for the introduction to algebra to make meaningful learning possible for the students, 
which at the same time constructs basic ideas that are sustainable in the long term. 
That means that such learning and exploring of algebraic ideas is always situated in 
the difficult balance between a rather empirical view on concrete objects and actions 
on the one hand and a certainly more challenging but in the long run necessary and 
profitable view on relations and structures on the other hand. 
On their way to algebra it is necessary especially for young students to open a learn-
ing arrangement and an exploring field in which they can move between these poles 
of an empirical view on concrete objects and actions and a more abstract view on re-
lations and structures. Structured mathematical visualization and growing patterns  
constitute such a learning environment, which merges those poles in a natural way. 
Mathematical visualization and growing patterns - as a special type of mathematical 
visualization (for example to represent mathematical principles) - can mediate be-
tween the mathematical structure and the student’s thinking because of their special 
“double nature” (they are on the one hand concrete objects, which can be dealt with, 
which can be pointed at and counted, which can be manipulatively changed, and at 
the same time they are symbolic representatives of abstract mathematical ideas).  
Mathematical visualizations and growing patterns are well-known to elementary and 
secondary school children from their daily mathematics classes. Geometrical patterns, 
which must be interpreted arithmetically, are used in class for various purposes. 
Steinweg (2002) notes that in text books dot patterns appear to practice calculating 
skills and thus function as visualizations, while sequences of dot patterns are to be 
explored as a separate and independent subject (cf. Steinweg 2002, 129-151). It is 
obvious that in everyday mathematics lessons dot patterns have predominantly the 
function of a methodological-didactical aid. Here is a parallel to the restricted view 
on equations and the equal sign mentioned above. Only in rare and isolated instances 
the structures incorporated in mathematical visualizations and growing patterns as 
well as equations are being purposefully explored and mentioned by the children. 
Against this backdrop Schwank and Novinska (2008) complain that didactic materials 
must be rescued from their shadow existence as mere aids and acquire a role as play-
ing fields, in which genuine thinking processes can develop. Central questions such 
as “How many” and “if … then” in dealing with this type of materials open a smooth 
transition to algebraic thinking - at first based on representations which become ac-
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cessible through interaction, speech and graphics (cf. Schwank und Novinska 2007, 
121). 
3  Features in the exploration of growing patterns on the way to Algebra 
If sequences of patterns support this new view – not only to figure out arithmetic 
terms, but to notice the underlying structure, transpose, re-organize and reinterpret 
them in a positive manner, then the following five aspects seem to be of particular 
importance. These categories were devel-
oped by connecting first results of a case 
study in progress (cf. Böttinger 2007) and 
the results of a completed case study (cf. 
Söbbeke 2005). In order to interpret repre-
sentations more and more in the function as a 
representative of relations and structures and 
thus to focus on the abstract and generaliz-
able “pre-algebraic aspects” it was necessary 
to connect in this paper two analysis instru-
ments and to use them both to analyse the 
interpretations of student Ron. In order to 
describe the interplay between the geometri-
cal, the arithmetical and the algebraic view it 
was necessary to develop an analysis instru-
ment (cf. Böttinger 2007) by analysing the 
transcriptions of the interviews. While the 
analysis instrument “Four levels of VISA” 
(cf. 3.5) combines various aspects of struc-
turing and interpreting a visual representa-
tion, in the analysis instrument “Model of categories” (cf. 3.1-3.4) these particular 
features were separated, adapted to sequences of growing patterns and the gradation 
was worked out by analysing the interviews. 
The aim of the first case study (cf. Böttinger 2007) is to describe more precise on the 
basis of 20 interviews with 4th-grade children, in which way children translate geo-
metrical relations in a sequence of growing patterns into arithmetic terms and in 
which way generalisations are carried out. The hypothesis is that there is no direct 
way from the geometrical representation to an arithmetical one and finally to an alge-
braic view. Instead there will be an interplay between these different views. In order 
to describe this interplay an analysis instrument (cf. Model of categories, Fig. 1; cf. 
Böttinger 2007) had been developed on the basis of the interview data.  
 
 
3.1 Features concerning the structuring of single patterns  

Model of categories  

3.1 Structuring a single pattern 

• No subdivision 
• Not intended subdivision 
• Intended substructure 
• Examination of several substructures  

3.2 Flexibility 

• No change of view 
• Change of view without new structuring 
• Change of view with new structuring  

3.3 Relation geometry - arithmetic 

• Pure geometric view 
• Pure arithmetic view 
• Relation is established by a number of 

points 
• Additive relation 
• More complex structural relation  

3.4 Relations within the series 

• No relations

Fig. 1
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In order to continue and examine the sequence a single pattern has to be structured. A 
subdivision can correspond to the intended structure of that person who composed the 
assignment on the one hand. On the other hand it can be an individual one, which 
does not correspond to a priori intended ideas.  
3.2 Features concerning the flexible re-organisation of single patterns 
In order to generate the idea of an equation one must be aware of different percep-
tions of a single pattern in the sequence. The aim is to identify the equality of arith-
metic or algebraic expressions on the basis of the corresponding underlying geomet-
ric structure. Closely connected to this view is that transformations of equations cor-
respond to changing the view on geometric structures. In analysing the children’s in-
terpretation one has to consider the flexibility during the process of work. It is essen-
tial to draw a comparison to the preceding interpretations of the child and to verify, to 
what extent a change of view occurs. This can be without new arrangement within the 
single pattern, e. g. when the number of dots is solely calculated in different ways. On 
the other hand a proper structural reinterpretation and re-organization exists, when 
the child builds fundamentally different structures into the diagram as in the step be-
fore.  
3.3 Features concerning the relation between geometric and arithmetic  struc-

tures.   
Within her study Steinweg (2002) has worked out by what criteria children continue 
sequences of growing patterns. She distinguishes between a continuation by a figural 
aspect or by an arithmetical aspect. The figural aspect is concerned with the location 
of the dots and the external form built by the dots and the arithmetical aspect with the 
total number of dots in a single pattern. Steinweg accents that only the combination 
of figural and cardinal aspects lead to the intended continuation. Besides the distinc-
tion between a pure geometric view and a pure arithmetic view one has to regard the 
possible connections between both parameters. This can happen by a number of 
points, but also additive or more complex relations (e. g. multiplicative ones) can be 
identified.  
3.4 Features concerning relations within the patterns 
If sequences of patterns are used for algebraic investigation, one has to distinguish 
two totally different views. While the explicit formula uses the inner structure of a 
single figure, which must be suitable for all following figures, a recursive formula 
uses relations between consecutive patterns (cf. Carraher & Schliemann 2006). With 
the help of recursive formulas it is described, how the number of points changes from 
one pattern to the next. This view can be a great obstruction if the number of points in 
the 10th pattern is to be figured out. The student has to calculate step by step each par-
ticular pattern and simultaneously he has to control the number of steps. In addition, 
the indication of the recursion alone is incomplete to describe the building principle, 
because an initial condition is needed (Carraher, Schliemann, 2007, 697). From the 
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union of both perspectives interesting formulas can arise. Furthermore a dependence 
e. g. between the width and the height of a figure leads to dependent variables that 
describe exactly these features of the pattern.  
3.5 Features concerning the interpretation visualizations (VISA) 
In the second study (cf. Söbbeke) on the basis of detailed case studies with children 
of elementary school four levels of children’s ability to build structures into mathe-
matical representation (ViSA) had been distinguished. The underlying assumption of 
the study was that learning of mathematics has to be understood as a process of the 
children’s more and more differentiated way of understanding and interpreting ab-
stract patterns and structures (cf. Steinbring 2005). Visual representations are a tool 
to represent abstract mathematical concepts as well as to think about them or to talk 
about these with children. Growing patterns, as a special type of visualization, are of-
ten used to represent structures and relations in order to understand elementary 
mathematical principles (for example triangle numbers as an example to explore sums 
of odd numbers, etc.). The important information is not based in the concrete features 
of the material, but on the abstract, the relations and the structures within the mate-
rial. Thus, what is decisive for a mathematical cognition in the figures is not the col-
ours or the number of points; it is rather the function, which the concrete feature of 
the material takes for something. This means, the structure of the representation 
makes the understanding of a mathematical legality possible, but it cannot be read di-
rectly or immediately perceived with one’s senses; it must be actively interpreted into 
the representation. In the empirical study (cf. Söbbeke 2005) it had been analyzed in 
how far the learning child succeeded in building such abstract structures and relations 
into the diagram. On this basis Four Levels of Visual Structurizing Ability had been 
distinguished. These four levels characterize the children’s interpretations in a spread 
of concrete and empirical interpretations on the one hand (cf. level one, left pole of 
the spread) and relational und structural interpretations on the other hand (cf. level 
IV, right pole of the spread) (cf. Söbbeke 2005). 
 
 
 
 
 
 
 
 
Fig. 2: Four Levels of Visual Structurizing Ability (ViSA). 

4  Using Growing patterns to Support Students’ Way to Algebra 

Spread of Interpretation 

Level I:     
Level of concrete 
and empirical In-
terpretation 

 

Level IV:   
Level of Structural 
and Relational In-
terpretations, with 
Extensive Use of 
Relations and 
Flexible Re-
Organisations 

Level III:  

Level of Structural 
Interpretation with 
Increasing and 
Flexible Use of 
R l ti d R

Level II:   
Level of Mediation 
between partial 
Empirical Interpre-
tation and first 
Structural Interpre-
tation  
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  - Ron on his Way to an Abstract and Multi-relational View of the Pattern - 
The following examples are to show how the student Ron (4th grade) deals with the 
challenge to use growing patterns and to interpret them more and more in the function 
as a representative of relations and structures and thus to focus on the abstract and 
generalizable “pre-algebraic aspects” in the representation. For this we connect in this 
paper for the first time two different analysis instruments and use them both to ana-
lyse the interpretations of student Ron. The scenes presented are not to deliver a thor-
ough methodical analysis. Instead the analyse in this paper can be seen as a first ap-
proximation to grasp and to describe the fundamental elements of the children’s way 
to algebra by using growing patterns, which had been pointed out in 3.1 to 3.5. The 
analysis is not extracted from a finalized study, but it is an example of a new ap-
proach to the theme, to the underling structure and to a more detailed view onto se-
quences of growing patterns. In the first part of the different interview phases (begin-
ning, in course, end) the elements of the aspects 3.1 to 3.4 had been described with 
the instrument “Model of Categories of Changing Modes of Representation“ (see fig. 
1). In the second part of the interview phases Ron`s inter-
pretations had been assigned to the “Four Levels of Visual 
Structurizing Ability (ViSA)” (cf. 3.5, fig. 2).  
At the beginning of this interview scene, Ron is presented 
the first three figures of the growing pattern and he is asked 
to describe what he can see (Fig. 3) 
Ron (16 seconds break) Mhm. (5 seconds break) Mhm (laughing). (10 seconds break) There at the 

bottom there is always one more (he points to lowest the row of dots in the first, the second, the 
third pattern). Five, six, seven (he touches the lower part of the first, the second, the third pattern) 
This next row. There are always some more.  

Ron Here there are, there are three more (he touches with his pencil the upper part of the second 
pattern). Here there are five more (he touches the third pattern with his pencil). (..) Since those I 
can remove (he puts his forefinger onto the third pattern), I can take away, because these are 
still there (he touches with the pencil the second pattern, afterwards he points to the not covered 
points of the third pattern). ( … ) Three, five. (6 sec. break, he moves the left forefinger to both 
left points of the bottom row in the third pattern, stops for a moment and takes the finger away 
from the paper) Mhm.  

After 30 seconds reflecting about this task Ron starts to compare the three patterns. 
He structures the three figures into two parts: the horizontal row of dots at the bottom 
of the pattern and the field of dots placed at the top. In his first approach Ron does 
not pay attention to the part at the top of the pattern, but describes that the row of dots 
increases from one figure to the next and names the numbers “five”, “six”, “seven”. 
In the analysis, considering the aspects 3.1 - 3.4, Ron shows that at the beginning of 
the interview he had developed an idea of the structure of the lower part of the pat-
tern. Ron determines the number of dots in this part of the pattern and finds a recur-
sive relation between the figures: ”five, six, seven. … There are always some more”. 
He builds a relation between the geometrical figure and the arithmetic in finding out 
the number of dots in the lower part of the pattern. Ron does not make it explicit, but 

Fig. 
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his repetition of the number series can be seen as an indication that the number series 
and in association the structure of the lower part could always go on in this way. 
Against the background of his first interpretations, the number series can be under-
stood as a preliminary stage of a recursive building principle: from one figure to the 
next you always have to add one point. Already at this early stage of the examination 
of the pattern you can see a first level of generalization. 
After reflecting about 30 seconds about the upper part of the figures, Ron starts to de-
scribe the increasing of dots from the second to the third 
pattern. Ron structures the upper part into two groups: on 
the one hand, he sees the group of dots that had been seen 
in the previous figure, and on the other hand those, that 
had been added in the new following one: “Since those I 
can remove (he puts his forefinger onto the third pattern), I can take away, because 
these are still there”. In his approaches to understand the structure of the upper part, 
Ron shows a first re-organization of the pattern. He does not analyse the two parts of 
the figures separate, but tries to understand in what way the first pattern could be 
identified in the second one and the second one in the third one. In the meantime he 
points with his finger on special areas of the lower part of the pattern, which he had 
described before in his first analysis of the pattern (the vertical row of dots). The 
numbers “three” and “five”, he denominates, correspond presumably to the numbers 
of dots in the upper part of the pattern, marked for a better understanding here in 
white colour (see Fig. 4). Ron uses the numbers of dots and structures and builds first 
elemental relations between the different patterns into the diagram (he covers with his 
hands parts of the previous patterns etc.). As a kind of arithmetical information, Ron 
determines the number of dots in the particular figures. At the beginning of this inter-
view the analyse shows a first recursive view on the pattern; however, Ron does not 
generalize this recursive view further, but applies it solely to the partly figures. 
Altogether Ron’s interpretation of the pattern could be attributed to the 2nd level of 
ViSA (cf. 3.5). The child moves away from the concrete aspects of the representation 
(numbers of dots) and focuses increasingly on abstract relations and structures (two 
parts of the pattern; angle-structure of the added dots in the new figure). But the ele-
ments of interpretation often stand isolated as concrete objects, without building rich 
relations between them (for example relations between the structure of the part at the 
bottom and at the top of the pattern; relations between the different figures). Some-
times only sections of the diagram are taken into consideration. In interpretations on 
this level there is a typical mediation between partial empirical interpretations and 
first structural interpretations. But often the children’s interpretations are still inflexi-
ble and they do not look at the representation as a multi-faceted structural diagram.  
In the course of the interview, Ron notices that he had always forgotten to pay atten-
tion to one point in the lower part of the pattern, while analysing the increasing of the 
patterns: 

Fig. 
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After that Ron constructs a recursive geometrical building principle into the growing 
pattern and tries to translate it into an arithmetical building principle. In the course of 
the interview Ron has been asked to find an arithmetical task, which corresponds to 
the given pattern. For this he finds calculation tasks, which correspond with the result 
(“16”) to the number of given dots in the third pattern. Ron interpretes and explains 
the proposal of the potential task “3·3+7“, given by the interviewer, solely against the 
background of the calculating result und does not indicate a relation between the 
structure of the arithmetic task and the structur of the pattern. For Ron it is crucial 
that the number of the dots corresponds with the result of the calucating task. 
He finds the calculating task “10·3+4” in the 5th pattern, that can be seen als an 
analogon to the proposal of the interviewer in the 3th pattern (“3·3+7“). Presumably 
Ron takes the aspect “number of dots” on and tries to build an analog construction 
(second factor of multiplication is “3” or a task with a multiplative term) like in the 
task of the interviewer. Finally, at the end of the interview Ron is asked to determine 
the number of dots in the sixth pattern. He starts to draw the sixth pattern onto the 
interview sheet. 
Ron 
 

Five, six, seven, eight, nine, ten (in the meantime he draws 10 points in a row beside the 5th pat-
tern).  
The first new points, this would be here, one, two, three, four, five, six (while speaking he draws 
a row of 6 points directly over the row of 10 points; cf. Fig 5). One, two, three, four five, six, (he 
draws - always counting until six - four further rows consisting of 6 points). One, two, three, four, 
five (with his pencil he touches the dots of the first column, but omits the corresponding dot at 
the bottom). Now another one (he draws a further row consisting of 6 points over the 5th 6-row). 
Six. Ready.  
One, two, three, four, five, six, seven (he touches the dots of the first column including the cor-
responding dot at the bottom), seven. Six times seven is 42 plus four, 44. 

At first Ron divides the 
6th pattern into two parts: 
At the bottom he builds a 
long horizontal row con-
sisting of 10 dots, in the 
upper part a rectangular 
field consisting of six 
rows of six dots. Subse-
quently he carries out an 
interesting new interpreta-
tion of the pattern. He 
structures it into a rectan-
gle of seven rows of six 
dots, which reaches into the horizontal line at the bottom. Beside this 6x7-field of 
dots he regards two points at the left and two at the right-hand side – at whole 4 

Ron O no, I didn’t count those (he taps the bottom row of points in the second pattern). That means, 
there would be four new ones (he touches the second pattern) and here there would be six new 
ones (he touches the third pattern). 

Fig. 5 
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points. To figure out the total amount of numbers in the 6th pattern Ron uses for the 
first time the inner structure of a single pattern. In comparison to his proceeding be-
fore this represents a change of view in connection with a new structuring. The rela-
tion between the geometric arrangement of the dots is no longer determined by the 
cardinality of a set of points but by a complex structural relation – namely a multipli-
cative one. By that Ron changes from his formerly recursive view onto the sequence 
and considers a single pattern in an explicit manner. The structure he uses is an in-
tended one and in principle it is applicable to all patterns. But at this stage of the in-
terview Ron does not express or indicate this generalisation.  

Ron’s interpretation of the pattern could be attributed to the third level of ViSA. In in-
terpretations on this level intended structures and relations can be identified (for ex-
ample relation between the part of the bottom and at the top of the figure; field of 6x7 
dots; constancy of 4 dots in the part at the bottom). On this occasion different and 
multi-faceted aspects of the representation are recognised. In comparison to level II, 
the structures are manifoldly coordinated and more flexibly re-organised. The struc-
tures are no longer isolated, but seen as part of the whole and separated and put to-
gether in a structural way. You always find the use of structural relations, coordina-
tion and re-organisation of elements. In all, this level III of ViSA can be character-
ized by the combination of building structures with the increasing use of relations and 
re-organisations. 
5  Conclusion 
For a fundamental pre-algebraic comprehension it is indispensable to focus on struc-
tures, on the abstract and the general, right from the start of children’s mathematics 
education. In this paper, growing patterns have been discussed and analysed as ex-
ploring fields on the way to focus on structures and relations. Structure sense seems 
to be a fundamental requirement to interpret sequences of growing patterns in an al-
gebraical manner. Both analysing instruments examine in different ways how young 
children deal with the challenge to interpret this special visualization in a more struc-
tured, generalized and elementary “algebraic” way.  
The examples of Ron indicate that this kind of structuring, translation and generaliza-
tion does not take place in a direct and straight way. The child can partly understand 
the geometrical structures, translate them into arithmetic ones. It can change the view 
back to the geometric pattern and re-organise and re-structure the diagram. It seems 
that generalization is not always the “end” of this process; in fact ideas of generaliza-
tion can be developed before comprehending the whole structure of the patterns.  
An analysis of selected parts of the interview shows that in the process of the exami-
nation and the interaction between the student and the interviewer the child gradually 
develops a more differentiated, relational and generalized view onto the used dia-
grams, which can be described in detail by the system of categories and in a more 
summarising manner by means of ViSA (see e.g. the development of Ron’s interpre-
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tation from level II to level III). Altogether the excerpts of the interview with Ron 
serve to demonstrate the change in children’s interpretations in a exemplary way and 
to accompany and better understand their way – to an increasingly open, general and 
flexible view onto relations and structures within diagrams.  
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STEPS TOWARDS A STRUCTURAL CONCEPTION OF THE 
NOTION OF VARIABLE 

Annika M. Wille 
University of Bremen 

 
If students acquire a new mathematical notion, according to Sfard (1991), they pass 
through different phases: an operational and a structural phase. At a grammar 
school in Bremen, Germany, students of age 12 to 14 first came into contact with the 
notion of variable using a simple programming language without a computer. As a 
part of the learning environment the students wrote imaginary dialogues in which 
they let two protagonists talk about different tasks. The imaginary dialogues of the 
students are analysed against the background of Sfard's theory of the dual nature of 
mathematical conception. In particular, the different steps towards a structural con-
ception of the notion of variable in the context of the programming learning environ-
ment are elaborated.  

INTRODUCTION  
If we look at a mathematical notion, we can think about what it is in the mathematical 
world, how it is defined, which properties it has, and how it relates to other parts of 
mathematics or we can consider how a human being thinks about it and what kind of 
inner picture has been built. Anna Sfard (1991) distinguishes here between the word 
notion or concept on the one hand and conception on the other hand.  

The whole cluster of internal representations and associations evoked by the concept - the 
concept's counterpart in the internal, subjective "universe of human knowing" - will be 
referred to as a "conception". (Sfard, 1991, p. 3)  

According to Sfard, a conception of a mathematical notion has two complementary 
sides, an operational and a structural one, in which a learner first passes through op-
erational phases until a structural conception can be developed. She also points out 
that  

without the abstract objects all our mental activity would be more difficult. (Sfard, 1991, 
p. 28)  

In this article the development of the conception of variable is considered. The under-
lying question of the presented analysis is: what are steps towards a structural con-
ception of the notion of variable? To approach an answer the findings of a qualitative 
analysis of imaginary dialogues written by students of age 12 to 14 from one class 
will be presented.  
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THEORETICAL FRAMEWORK  
The theory of reification 
Sfard (1991) presents a theoretical framework for the acquisition of a mathematical 
notion. She distinguishes between an operational and a structural conception of the 
same mathematical notion. If a learner has acquired an operational conception, she or 
he will know how to operate with the notion, i.e. with algorithms, processes and ac-
tions. For a structural conception it is necessary to recognise the notion as a mathe-
matical object. Sfard expects that the operational conception precedes the structural. 
In this process from operational to structural three steps occur: interiorization, a 
process with familiar objects, condensation, where the former processes become 
separate entities and reification:  

to see this new entity as an integrated, object-like whole. (Sfard, 1991, p. 18)  

While a learner can come gradually from interiorization to condensation, Sfard 
speaks of a leap when it comes to reification:  

“Reification (...) is defined as an ontological shift – a sudden ability to see something fa-
miliar in a totally new light. Thus, whereas interiorization and condensation are gradual, 
quantitative rather than qualitative changes, reification is an instantaneous quantum leap: 
a process solidifies into object, into a static structure.” (Sfard, 1991, p. 19-20)  

Sfard & Linchevski (1994) used the framework of the theory of reification to study 
the case of algebra. In particular, they focused on the transition from operational to 
structural regarding a variable as a fixed unknown on the one hand and in a functional 
context on the other hand. Sfard (1991) asks the question how to diagnose the stages 
towards a conceptual development and proposes:  

"It seems that we have no choice but to describe each phase in the formation of abstract 
objects in terms of such external characteristics as student's behaviour, attitudes and 
skills." (Sfard, 1991, p. 18)  

Mathematical writing 
Mathematical writing by students has been the issue of several studies, compare 
Borasi & Rose (1989), Clarke, Waywood & Stephens (1993), Gallin & Ruf (1998), 
and Shield & Galbraith (1998). Gallin & Ruf investigated the use of journals (in 
German: Reisetagebücher) in order to establish a written dialogue between the stu-
dents and the teacher. While writing their journals the students can approach the regu-
lar mathematics in their singular way.  
Imaginary dialogues are a different type of mathematical writing (Wille, 2008). In an 
imaginary dialogue the student lets two protagonists solve a mathematical task or talk 
about a mathematical question. Usually one protagonist understands the task better 
than the other. In this way the student can decide what particular themes she or he 
addresses. Unlike in journal writing, in an imaginary dialogue, one finds a lot of ex-
ploratory writing. On the other hand, in contrast to pure exploratory writing, like 
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writing a letter to someone and explaining something, in imaginary dialogues the pro-
tagonists can develop a solution of a task and the protagonists can point at possible 
learning difficulties.  

 LEARNING ENVIRONMENT  
The learning environment is designed for first experiences with the notion of vari-
able. The students do not start with a single variable as a fixed unknown. Instead, 
they get to know a simple programming language which is executed by the students 
without a computer but with a little wooden robot on a sheet of paper with a coordi-
nate grid. The programming language has similarities to LOGO (Papert, 1980). Here, 
as a “memory” each robot needs matchboxes on which letters for the names of vari-
ables like “a” and “b” are written. These matchboxes serve as preset reifications of 
the notion of variable, which the students fill by hand instead of assigning a number 
to a symbolic variable. For example to move three steps forward, the program will 
look like this  

a ← 3 

forward(a)  

While executing the first line it must be assured that exactly three matches are in the 
matchbox named “a”. In the second line, the robot will be moved into the direction it 
faces. The matchboxes must be used in order to move a robot, since the direct com-
mand “forward(3)” is not part of the programming language. Next to these commands 
there is also the command “turnaround()”, which lets the robot turn by 180°. Fur-
thermore there are a right and a left turn, commands to place the robot on a certain 
intersection point on the coordinate grid and different command loops. That way stu-
dents can write and execute programs in order to move their robot on the grid while 
assigning variable by filling matchboxes with matches. 
In the learning environment the programming of the robot can be combined with 
writing imaginary dialogues. One of the first tasks can be the following: The students 
get a sheet of paper with “a ← “ and “b ← “ on top and “turnaround()” in the middle. 
On another sheet of paper eight paper commands “forward(a)” and eight paper com-
mands “forward(b)” can be cut out. The students get the following exercise with the 
name “cut out and explore”:  

On the next sheet of paper you see a program that is not finished yet. You can use com-
mands out of a construction kit and put them above and below the command “turn-
around()”. 1. Cut out as many commands as you need and write a program with them. 2. 
Execute your program with the matchboxes and the robot. 3. Try to write such a program 
that the robot comes back to his starting point. 4. For which values a and b does your pro-
gram function? Are there different possible values? 5. Write your favourite program and 
name many values with which it works.  

Right after this lesson the students get the following homework (dialogue A):  
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Two students talk about the last task “cut out and explore”. One of the students can do it 
easily, the other has more difficulties. Write a dialogue in which the two students talk 
about the task. Write at least one page. 

In the next task a simple program is presented, where over the turnaround command 
there are two commands “forward(a)” and under it one command “forward(b)”. There 
is also a table given for a and b with values (1,2), (2,4), (3,6) and (4,7). A beginning 
of a dialogue is also part of the task where two students talk about whether the num-
bers in the table should be switched. One protagonist draws also the following pic-
ture: 
 

 
Figure 1 

The students are asked to work with the program first, decide, if the table is correct 
and finish the dialogue (dialogue B). After further tasks with the robot a third imagi-
nary dialogue task (dialogue C) is given. The students get the following picture: 

 

 

 

 

 

Fig
ure 2

Now the students are asked to think of an interesting program of a similar form, find 
the proper presentations like in Figure 2 and write an imaginary dialogue about it.  

METHOD  
The study was carried out in a class of a grammar school (Gymnasium) in Bremen, 
Germany, in 2008 with the above mentioned learning environment. The students 
wrote three different dialogues A, B and C. Dialogue A was written after the second 
lesson, dialogue B after three more days and dialogue C after about three weeks. The 
imaginary dialogues A and B were given as homework, dialogue C was written in the 
classroom. Since not all students did their homework or some let the protagonists talk 
about only non-mathematical tasks, for the analysis 16 A-dialogues, 15 B-dialogues 
and 22 C-dialogues could be used. For the qualitative analysis of the imaginary dia-
logues the framework of Sfard's theory of reification was used. The analysis was car-
ried out in three steps:  
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13. examination by four criteria: recognised structures, occurring aspects of the 
notion of variable, phase in which the student is (i.e. interiorization, 
condensation, mixed form/indistinct, or reification), mentioned preset 
reification  

14. creation of a mind map of the seen structures for each dialogue A, B, and C 
15. creation of tables that includes the information of the mind maps and the 

phases 
In order to examine by the four criteria, most dialogues were first transcribed and 
than interpreted in detail. The students’ development was classified according to the 
phases according to these criteria: 

 interiorization: the student can handle the program: processing the program, 
filling matchboxes with matches, etc. 

 condensation: the student deals with variables as with objects but does not see 
them as objects, the input and output is more important than the process itself 

 mixed form/indistinct: it cannot be decided if the student already reificated the 
notion of variable, variables are used in a tight relation to preset reifications 

 reification: variables are seen as independent objects 

FINDINGS  
All imaginary dialogues mentioned here were written in German and translated by the 
author. 
Mini-statistics 
We can observe a shift of the students of this class from interiorization to reification 
as Sfard predicted. It must be mentioned that the tasks for the dialogues A, B and C 
were similar, but different. Thus, there is the possibility that the observed shift also 
depends on the different tasks. In the following table, the number of students in a cer-
tain phase of a certain dialogue is denoted: 
 

 i c m r Total 
A 11 2 2 1 16 
B 5 5 3 2 15 
C 4 5 6 7 22 

Table 1: number of students in a certain phase 

Structures recognised by the students 
The structures that were recognised by the students are shown in the tables of the 
Figures 3 and 4. The tables should be read like a tree from left to right where each 
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row is a branch. It is also listed which phase is assigned to the specific imaginary dia-
logue, in which the student recognised the structure. The letters i, c, m and r stand for 
the phases interiorization, condensation, mixed form/indistinct and reification. There 
are several crosses, if several students see the same structure. Some of the structures 
that can be seen as examples of preliminary steps of reification are discussed below. 
In the following, for example “Figure 3, structures in A, 7” refers to the seen structure 
in A written in row 7 which is here “segmentation of the distance – in segments a and 
b”.  

 

Figure 3: structures in A and B 
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Figure 4: structures in C 

Independence of the notion 
In the imaginary dialogue of a student (Figure 3, structures in A, 2) we can read that 
for him the name of the matchbox is free to choose. One of his protagonists explains: 

“You put arbitrarily many matches of the 16 and label the matchbox with a letter, let me 
say an example: “N”. You position the robot on the sea bottom and now you must give 
commands to the robot: for example: forward (for example N). Hence, he goes forward 
as much as you have put matches into the matchbox.” 
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The students writes “forward(for example N)” which shows that he points out that he 
could have chosen another name for the matchbox. If we transfer this to variables, we 
can call it an aspect of the independence of the name of variable. This aspect has its 
relevance, if we think about students who might know for example the binomial for-
mulas with a and b, but have difficulties, when different variable names are used.  
Name of variable as a generic term for multiple objects 
Variables can simultaneously represent multiple values and can be abstracted from 
multiple real objects, like distances or the quantity of something. Hence, a prelimi-
nary step for this abstraction is to use different objects synonymously or to use a vari-
able as a generic term for multiple objects. We can see the use of different objects 
synonymously in a dialogue by a student (Figure 3, structures in A, 8) who first 
wrote: 

“because (a) and (b) are most probable of different size.” 

After this she inserted the words “forward” from above, such that the sentence looks 
like this: 

“because forward(a) and forward(b) are most probable of different size.” 

We do not know, if she means by “(a)” the box content or a value of an abstract a, but 
we might consider that she uses the command “forward(a)” and whatever she thinks 
of as “(a)” synonymously. 
The next step is to use a variable as a generic term for multiple objects as in the fol-
lowing dialogue (Figure 4, structures in C, 7). Here, the protagonists are named “S” 
and “D”. 

S: Well, the table has two columns. A+b. As the two matchboxes. In >a< are 
two matches, and in b 8. In column >a< 2 are added in each row. In column 
>b< it is the same. 

D: Like a times table? Where in each row it increases by 2 or 8 respectively? 

S: Yes! Precisely. Now to the matchbox diagram. The field >a< stands for the 
number >2<. The field >b< stands for >8<. That way the diagram is even-
tually: 2+2+2+2=8. 

When the student mentions her notation “>a<” the first time it means a matchbox. Af-
ter this it is a column and the end a field which can be substituted. We can also ob-
serve that the student does not use the letter a without relating it to an object. It does 
not appear in a complete abstract manner. 
A different student (Figure 4, structures in C, 8) uses variables as a generic term for 
commands,  

“We have the commands A, B, & turnaround.”  

values,  

WORKING GROUP 4

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 666



 

 

 

 

“But how do I know, what is the value of A & B?” 

and distances: 
“If you go the distance a() + b(), then it makes no difference, if you go back a() + b() or 
b() + a().”  

Talking about a and b as talking about objects 
A student talks in his dialogue (Figure 3, structures in A, 11) about a and b as if they 
were objects. Possibly he thinks about the paper commands while talking about them. 

“If a is equal to 1 and b is equal to 2: First you must (you can) go with all a’s forward and 
with the half of the b’s backward and you are again on the same point.” 

Since he says “with the half of the b’s”, the “b’s” are some kind of objects to him. 
Correlation of different variables 
Several students discuss the correlation between different variables (compare Figure 
3, structures in B, 7-9 and Figure 4, structures in C, 9-13). One example is where the 
student recognises that b must be the double of a (Figure 3, structures in B, 9): 

“If the robot moves two half steps (a) and he must go back steps which are bigger, then b 
must have the double, thus an entire step.” 

A different student formulates the correlation by fitting a number of a into b (Figure 
4, structures in C, 12): 

S2:  Well, if a and b stand for the number of steps and you can turnaround only 
once, then you must find out how many of a yield b. 

S1:  Thus, if a is 1 and b 4 then one must find out how often a fits in b. 

S2: Exactly! 

What are a and b? 
Some students discussed the topic of what the letters a and b are. Most often they 
used the words “stands for” instead of “is”. We find passages, all in dialogue C, say-
ing for example that a or b stand for a number of steps (compare the preceding exam-
ple), or for numbers (Figure 4, structures in C, 18): 

2:  Exactly and for the equation you must do this in a multiplication exercise. 

1: Without numbers? 

2: The letters stand for numbers, for example out of the table. 

1: But there are multiple numbers. Which ones do I take? 

2: That is easy. You can take every number you like. Just make sure that a has 
the double value. 
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SUMMARY  
The analysis of the imaginary dialogues written by the students indicates the process 
from the phase interiorization, passing condensation to reification, as predicted by 
Sfard (1991). In the tables we see all structures that were recognised by the students. 
Among those structures we can also identify several preliminary steps toward a struc-
tural conception of the notion of variable: the independence of the notion, using the 
name of variable as a generic term for multiple objects, talking about variables as 
about objects, recognising correlations between different variables, and actually dis-
cussing what a letter stands for. Whether these preliminary steps eventually lead to a 
complete reification or not, we cannot predict. But we can observe that several stu-
dents in dialogue A are tight to the preset reification of the notion of variable in form 
of the matchboxes or paper commands, while reading the dialogues B and C, the pre-
set reifications disappear in many writings and the language use becomes more and 
more regular.  
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INTRODUCTION 
GEOMETRICAL THINKING 

 
Kuzniak Alain 

Laboratoire André Revuz, University Paris-Diderot France 
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Filip Roubicek 
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The Working Group 5 on Geometrical Thinking had around 30 participants from 14 
countries all over Europe and from America too (Mexico, USA and Canada). During 
its sessions, the participants discussed 16 papers prepared for the Working Group and 
selected among 23 initial proposals and 15 have been retained for publication. The 
participants, and it's a strength of the group, worked within the continuity of the 
former sessions of Cerme. Some points can be considered as a common background 
known by ancient participants to the Working Group and the discussions among 
people were facilitated by this common culture. The readers are invited to have a look 
on the former general reports made at Bellaria (Dorier et al., 2003) and Larnaca 
(Kuzniak and al, 2007) when they want to know more about the common 
background.  
This report insists on the questions of theoretical supports in Geometry, which can be 
seen as local theory in comparison of more general theoretical frameworks used in 
Mathematics Education. It would be interesting to explore the relationships between 
both local and global viewpoints. This part results from a collective work of a small 
group managed by Iliada Elia.  
Then, all the accepted papers are briefly introduced for giving an idea of problems the 
group was concerned by.  
 
Theoretical and methodological aspects of research in geometry 
 
During the working group, we distinguished two approaches of using theory in 
research: First, theory can serve as a starting point for initiating a research study. For 
instance, the need to empirically validate or extend specific theories may motivate an 
investigation. Second, theory can act as a lens to look into the data. For example, 
different phenomena and behaviours observed in mathematics classes may evoke 
ideas to the teacher or the researcher for starting research. To start from phenomena 
or data is a valid first approach to research. In this case, theory may enable the 
teacher or the researcher to better understand and interpret the collected data.  
Certainly, if one has a dual approach to research (data or theory) s/he can start with 
theory or data. This has methodological implications, that is, the methodology has to 
be appropriate to a chosen theory or to the collected data. The collection of data is 
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very important, though, for both types of research. But to have substantial and long-
standing effects to the research community’s endeavour, the data, their use and 
interpretation should have a theoretical contribution (e.g. add or suggest 
modifications to an existing theory or develop new theory).  
The most important theories in geometry education that were identified and discussed 
are the following: Van Hiele’s levels, Geometrical Working Space and Geometrical 
paradigms and Duval’s semiotic approach. Each line of theory approaches geometry 
learning from a different perspective and thus is helpful for different purposes. Van 
Hiele’s theory is mainly helpful for evaluating students’ reactions, productions and 
solutions to problems (phenomenological approach). Houdement and Kuzniak’s 
(2003) theory about Geometrical Working Space and Geometrical Paradigms (e.g. 
Geometry I: Natural Geometry, Geometry II: Natural Axiomatic Geometry and 
Geometry III: Formal Axiomatic Geometry) is mainly helpful for classifying 
approaches, e.g. the types of argumentation used and to understand students’ 
difficulties and errors (epistemological approach). Duval’s (2005) theory is mainly 
helpful for examining the registers (e.g. geometrical figures, verbal representations-
language) used in the field of geometry and their treatment in geometry tasks 
(semiotic approach).   
Furthermore, there are psychological approaches to geometry that are often linked to 
spatial abilities, e.g. Gestalt and Piaget’s theories, but are not very well taken into 
account in the mathematics education research community. Connecting these 
approaches with geometry theories and/or using them as a tool to look into the data in 
future studies could be a first step towards addressing this gap.   
Future research on geometry theories and their articulation could use Geometrical 
Paradigms in a more operationalized manner to analyze existing curricula, to analyze 
students’ behaviour and in investigating modelling and problem solving. Van Hiele’s 
levels could be extended by proposing and empirically validating new (sub-)levels 
within their scale.  
 
Educational goals and curriculum in geometry 
 
The discussion on this general and fundamental topic was introduced by two papers. 
Using an epistemological approach, Boris Girnat criticized some present approaches 
in the learning of Geometry (especially in Germany) which leave aside the classical 
ontological aspect of Geometry. . He claims that there are two different types of 
applications in geometry and that they both are necessary and not exchangeable by 
each other: The first one contains simple applications which are paradigmatic 
examples to learn basic geometrical concepts; the second one includes more complex 
ones and refers to transcendental aspects.   
 
Then Laurent Vivier and Alain Kuzniak described a French viewpoint on the Greek 
Geometrical Work at Secondary level. Beyond some similarities between France and 
Greece, it appears that the Euclidean tradition stays stronger in Greece but only for 
cultural reasons. Due to the lack of evaluation at the entrance on the university, the 
teaching of geometry is not viewed as important by the students and we can notice 
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again the effects of evaluation on the real curriculum. In their study, the authors used 
a theoretical frame based on paradigms and geometrical working spaces and Greek 
people present in the group reacted and agreed with the conclusions. The presentation 
made at Cerme was thought as an important part of the research project. 
 
Understanding and use of geometrical figures and diagrams  
 
The study presented by Eleni Deliyianni investigated the role of various aspects of 
apprehension, i.e., perceptual, operative and discursive apprehension, in geometrical 
figure understanding. Based on a statistical exploration of data collected from 1086 
primary and secondary school students, the existence of six main factors revealing the 
differential effect of perceptual and recognition abilities, the ways of figure 
modification and measurement concepts. However, findings revealed differences 
between primary and secondary school students’ performance and in the way they 
behaved during the solution of the tasks. 
 
In her presentation Claudia Acuna used the old but always pertinent viewpoint on the 
treatment of geometric diagrams as Gestalt configurations. In geometry, the figural 
aspects of diagrams as symbols are used to solve problems. When figural information 
are treated, Gestalt configurations emerge: auxiliary figural configurations, real or 
virtual, that give meaning and substance to an idea that facilitates the proof or 
solution to the problem. In the paper, some arguments are given to acknowledge the 
existence of these resources. 
 
Understanding and use of concepts and “proof” in geometry.  
 
The work presented by Paola Vighi is concerned by the comparison of surfaces which 
need some mereological transformations in the sense of Duval. The same problems 
were given to two groups of pupils 10-11 years old having followed different ways of 
learning geometry: one traditional and the second more “experimental”. She 
concludes with some observations about teaching geometry and suggestions for its 
improvement. 
Caroline Bulf studied some symmetry’s effects on conceptualization of new 
mathematical concept at two different levels at French secondary school, with 
students who are 12-13 years old and 14-15 y.o. From the study, the concept of 
symmetry makes students confused with the transformations of the plan introduced at 
the beginning of secondary school. Students seem to be more familiar with metrical 
properties relative to the symmetry and develop mathematical reasoning at the end of 
secondary school.  
Mattheou Kallia investigated the basic geometrical knowledge of students of the 
Pedagogical Department of Education. She investigated mainly how they define 
similarity of shapes and how the intuitive knowledge affects their perception of 
similar shapes. The results showed that a large percentage of students are not in a 
position to correctly define the similarity of shapes and that initial intuition affects 
their responses and their mathematical achievement. 
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Two other papers were focused on the question of geometrical reasoning. Georgia 
Panoura and Athanasios Gagatsis underlined that the geometrical reasoning of 
primary and secondary school students can be compared mainly on the way students 
confronted and solved specific geometrical tasks: the strategies they used and the 
common errors appearing in their solutions. This comparison shed light to students’ 
difficulties and phenomena related to the transition from Natural Geometry (the 
objects of this paradigm of geometry are material objects) to Natural Axiomatic 
Geometry (definitions and axioms are necessary to create the objects in this paradigm 
of geometry). They stressed the inconsistency of the didactical contract implied in 
primary and secondary school education and they conclude on the need for helping 
students progressively move from the geometry of observation to the geometry of 
deduction. 
Based on a different framework, Taro Fujita seems to study the same problem in the 
case of geometry in Japan. This paper reports findings that indicate that as many as 
80% of lower secondary age students can continue to consider that experimental 
verifications are enough to demonstrate that geometrical statements are true - even 
while, at the same time, understanding that proof is required to demonstrate that 
geometrical statements are true. Further data show that attending more closely to the 
matter of the ‘Generality of proof’ can disturb students’ beliefs about experimental 
verification and make deductive proof meaningful for them. It could be interesting to 
interpret these results with the same tools as Panoura and Gagatsis: didactical 
contract and geometrical paradigms. It seems that the conclusions are very close but 
in different context. 
 
Communication and assessment in geometry 
 
In the two following papers, original tools were used to assess geometrical abilities 
and in the same time to help students in developing their skills in argumentation. 
Silvia Semana examined how the written report, within the context of assessment for 
learning, helps students in learning geometry and in developing their explanation and 
argumentation skills at the 8th grade in Portugal. This study suggests that using 
written reports improves those capabilities and, therefore, the comprehension of 
geometric concepts and processes. These benefits for learning are enhanced through 
the implementation of some assessment strategies, namely oral and written feedback.  
 
Anat Levav developed an approach based on the presumption that solving 
mathematical problems in different ways may serve as a double role tool - didactical 
and diagnostic. She described a tool for the evaluation of the performance on multiple 
solution tasks (MST) in geometry. The tool is designed to enable the evaluation of 
subject's geometry knowledge and creativity as reflected from his solutions for a 
problem. The example provided for such evaluation is taken from an ongoing large-
scale research aimed to examine the effectiveness of MSTs as a didactical tool. Anat 
Levav argued that this method could be extended to other domains in mathematics. 
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3D Geometry: Teaching, thinking and learning 
 
The working group was concerned by some studies on 3D Geometry with new 
viewpoints due to the use of dynamical software in the learning of these specific parts 
of geometry which is often left aside in the real curriculum. Dynamic Geometry 
Environments (DGEs) in 2D are one of the well researched topics in mathematics 
education. DGEs for 3D-environments (Archimedes, Geo3D and Cabri 3D) were 
designed in Germany and France. Mathias Hattermann studied the specific drag-
mode in 3D Geometry environments. He showed that pre-service teachers with 
previous knowledge in 2D-systems prefer to work with a real model of a cube instead 
of the 3D-system to solve certain problems. Previous knowledge in 2D-systems 
seems to be insufficient to handle the drag-mode in an appropriate way in 3D-
environments. In a second study, he introduced the students to the special software 
before the investigation and distinguished different dragging modalities during the 
solution processes of two tasks.  
The approach of Joris Mithalal is more on the transition to formal proof in 3D 
Geometry. Teaching mathematical proof is a great issue of mathematics education, 
and geometry is a traditional context for it. Nevertheless, especially in plane 
geometry, the students often focus on the drawings. As they can see results, they 
don’t need to use neither axiomatic geometry nor formal proof. He tried to analyse 
how space geometry situations could incite students to use axiomatic geometry. 
Using Duval’s distinctions between iconic and non-iconic visualization, he discussed 
the potentialities of situations based on a 3D dynamic geometry software. 
 
In the two last papers, the authors focused on the traditional way of teaching and 
learning 3D Geometry. Edna Gonzalez presented part of the analysis of a Teaching 
Model for the geometry of solids of an initial Education Plan for elementary school 
teachers, and its implementation in the University School of Teaching of the 
Universitat de València in Spain.  
In a statistical analysis of the results of 269 students (5th to 9th grade) in Cyprus, 
Marios Pittalis tried to show that 3D geometry thinking can be described across the 
following factors: (a) recognition and construction of nets, (b) representation of 3D 
objects, (c) structuring of 3D arrays of cubes, (d) recognition of 3D shapes’ 
properties, (e) calculation of the volume and the area of solids, and (f) comparison of 
the properties of 3D shapes. With these factors, he identified four different profiles of 
students. In the future, it would be useful to make these kinds of studies in various 
contexts with other theoretical frameworks to validate the conclusions.  
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THE NECESSITY OF TWO DIFFERENT TYPES OF APPLICA-
TIONS IN ELEMENTARY GEOMETRY

Boris Girnat

University of Münster, Germany

This article connects the results of an ontological investigation on elementary geo-
metry to normative questions on educational goals of  modelling.  The main thesis  
consists in the assumption that there are two different types of applications in geo-
metry and that they both are necessary and not exchangeable by each other: The first  
one contains simple applications which are paradigmatic examples to learn basic 
geometrical concepts; the second one includes more complex ones. It is claimed that  
a normative discussion on education goals of modelling is only possible as far as the  
second type is concerned. As a result, the debate on modelling differs in the scope of  
geometry significantly from similar considerations relative to other parts of mathem-
atics, and that by an ontological and not normative reason.

A CASE STUDY TO RETHINK THE ROLE OF APPLICATIONS

This article is a result of a qualitative study concerning teachers’ beliefs (Calderhead 
1996) about teaching geometry at German higher level secondary schools (the so-
called Gymnasien) including goals, contents, methods and connections to the teach-
ers’ broader understanding of mathematics as a whole system. The theoretical frame-
work follows the psychological construct of subjective theories which are defined as 
systems of cognitions containing a rationale which is, at least, implicit (Groeben et al. 
1988). The method depends on case studies. Data are collected by semi-structured in-
terviews and interpreted according to the principles of classical hermeneutics. The 
construct of subjective theories and its adaption to the didactics of mathematics are 
briefly summed up by Eichler (2006).

In the following, a small part of this study will be presented. We will describe the dif-
ficulty of making sense of a teacher’s utterances concerning geometrical applications. 
This difficulty was the initial point to rethink the role of applications in elementary 
geometry in general. Such a way of rethinking is one of the typical goals intended by 
the construct of subjective theories: This approach proposes, amongst others, to es-
tablish an exchange between individual opinions of “practising semi-specialists” and 
the theories of the scientific community.

A TEACHER’S OPINION ON APPLICATIONS IN GEOMETRY

The teacher of the case study presented here – let us call him Mr. B – has been taught 
mathematics,  physical  education,  and  computer  science  at  a  German  secondary 
school for approximately 25 years. The age of his pupils ranges from 10 to 19 years. 
He seems to be well grounded in mathematics education and equipped with an elab-
orated concept of school-compatible mathematical applications. As a part of his posi-
tion, he is involved in the education of trainee teachers in mathematics. This may be a 
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further indication for the assumption that he is familiar with recent theories and per-
spectives of didactics.

As far as applied mathematics is concerned, his criteria for “good” applications match 
a lot of the attributes which are discussed and accepted by professional didacts (cf. 
Jablonka 1999). He demands that “the result [of a model building process] has to be 
useful for practical acting and reasoning” and that the real-world problems have to be 
“authentic and realistic, and not artificial and constructed” fulfilling their educational 
functions by being “challenging, but solvable – possibly after and due to simplifica-
tion” (all quotations are translated by the author). He mentions the concepts of mod-
elling and model building processes explicitly and approves the new style of arguing 
which is  introduced to  mathematics  education by mathematization.  He concludes: 
“Modelling and mathematical applications – these are things for which I would never 
abandon just a minute to discuss an automorphism instead.”

AMIDST A STRUGGLE OF TENDENCIES?

At first sight, Mr. B seems to be a true advocate of model building processes and 
mathematization. But later, when asked how significant applications are for his every-
day lessons taught in geometry, he admits that it is “not easy to find good geometrical 
applications.” He refers to some examples taken from computer-aided design, naviga-
tion and traffic routing, but – as the main surprise – he does not expect that these ap-
plications are the ones his students should keep in mind. They should rather gain “an 
understanding of spatial relations” and forms and symmetries and they ought to deal 
with “rather simple applications” like drawing and folding figures or “reading a city 
map”; and finally, he does not ask which abilities can be conveyed by modelling and 
mathematization, but, instead, in which cases modelling is “more necessary for the 
students” – and one can add: to understand geometry.

At this point, there appears to be a rupture, possibly an inconsistency in Mr. B’s per-
spectives concerning geometrical applications. On the one hand, he stresses the abilit-
ies and capacities in modelling and problem solving, which could be enforced by us-
ing authentic and challenging real-world problems; on the other  hand,  he regards 
“simple” geometrical applications as a tool to understand the concepts and theorems 
of elementary geometry – highlighting the knowledge of geometrical objects, of their 
attributes and dependencies as an educational goal on its own, and not as a device to 
manage practical challenges and to build up general skills beyond the scope of math-
ematics. The parts of goals and means seem to be suddenly switched over.

At first sight, there might be a simple and obvious explanation for Mr. B’s ambivalent 
statements: He could be influenced by two different schools which Kaiser claims to 
have located within the discussion on mathematical applications (Kaiser 1995). She 
distinguishes between a pragmatic and a scientific-humanistic approach: In the prag-
matic  view,  mathematics  is  a  tool  to  solve  practical  problems.  Applications  are 
deemed as practices to achieve problem solving capacities in managing real-world is-
sues (Kaiser 1995, p. 72). Therefore, applied mathematics is seen from a procedural 
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point of view and modelling and model building processes are stressed as a content of 
the curriculum. The scientific-humanistic school,  in contrast,  emphasizes the prin-
ciple of “conceptual mathematization”, that means that real-world situations are used 
to discover and develop mathematical concepts and insights and to receive mathemat-
ical ideas based on manifold associations (Kaiser 1995, p. 72).

GEOMETRICAL WORKING SPACES

To clarify the ideas of the scientific-humanistic school as far as geometry is con-
cerned, it is suitable to use the theoretical framework of geometrical working spaces 
(summed up by Houdement 2007). By this approach, geometry is split into three dif-
ferent paradigms (Houdement & Kuzniak 2003):

1) Geometry I (Natural Geometry): Geometry is seen as an empirical science which 
refers to physical objects. To proof or to refute conjectures, both deduction and ex-
periments are  allowed,  whereas  measurement  is  the main  experimental  technique. 
This theory is not axiomatic, and its type of deduction is similar to inferential argu-
ments between “local ordered” propositions in ordinary language discussions.

2) Geometry II (Natural Axiomatic Geometry): Geometry is treated as an axiomatic 
theory. The axioms are supposed to refer to the real world and, therefore, to describe 
physical figure and objects (with some idealization). Insofar, Geometry II is empiric-
al, too. But to proof or to reject propositions, no empirical argument is permitted, but 
only a deductive one based on the axioms.

3) Geometry III (Formalist Axiomatic Geometry): Geometry is seen as an axiomatic 
and deductive theory, and no connection to the real world is intended.

With reference to this approach, the main goal of the scientific-humanistic school can 
be described as the project to prevent a sudden transition from Geometry I in primary 
school to Geometry III in the higher level secondary school in Germany. Such a sud-
den transition was enforced by the scientific tradition of this type of school and even 
increased by the New Maths movement until the early 1980s (Schupp 1994).

The alternative drift of the scientific-humanistic school was to fortify Geometry II, to 
establish a tender segue from Geometry I to II, and finally to achieve Geometry III or, 
at least, an idealistic interpretation of Geometry II which replaces the reference to 
physical objects by the platonic idea of  idealistic objects not being present in the 
physical world. This project was mainly motivated by two reasons (cf. Kaiser 1995, 
p. 73): On the one hand, the ontological binding to real-world objects should be an 
intermediate stage on the way to an idealistic or formalist view of geometry to pre-
vent a not understood formalism. On the other hand, it should establish an under-
standing of the role geometry plays as a tool in natural sciences. In both cases, the on-
tological foundation in real-world objects was primarily not intended to enforce mod-
el building processes and skills, but to build up a “field of associations” in order to 
understand geometry or natural science more proficiently.
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NORMATIVE ISSUES OF APPLIED MATHEMATICS

Concerning applied mathematics, the pragmatic and scientific-humanistic approach 
differ in weighting normative parameters: One of them sets priorities in practical rel-
evance und abilities to deal with model building processes; the other one stresses the 
theoretical aspects of mathematics (and natural sciences) and uses the associations to 
real-world situations  as  a  tool  to  achieve a  deep and connected understanding of 
mathematical concepts. The origin of this controversy appears to be nothing else but a 
disagreement about educational goals; and the different role of applications does not 
seem to arise from a specific character of geometry or geometrical applications, but 
only from disparate normative points of view – a situation which seems to have the 
same consequences in every part of mathematics and mathematics education, and not 
only in matters of geometry.

Exactly this opinion is called into question by our following considerations. We will 
propose an alternative assumption to explain the main statements of Mr. B. Our ex-
planation is based on two arguments: Firstly, we will discuss an investigation on the 
ontology of geometry to clarify the question whether geometrical applications can be 
treated in the same way as other ones. Secondly, we will concern transcendental argu-
ments to elaborate the issue to what extend the use and choice of geometrical applica-
tions are within the scope of normative deliberations.

THE STRUCTURAL THEORY OF EMPIRICAL SCIENCES

Our ontological consideration is influenced by a particular kind of philosophy of sci-
ence which is called the “structuralist theory of empirical sciences”, primarily estab-
lished by Sneed and later elaborated by Stegmüller and others (Sneed 1979 and Steg-
müller 1973/1985). The core assumption of this approach is the idea that empirical 
theories can be described by two components, namely by a set-theoretical predicate 
and a set of intended applications (Stegmüller 1973/1985, pp. 27–42). The set-theor-
etical predicate contains all of the formal and axiomatic aspects and is defined by the 
same method used by mathematicians in succession of Bourbaki: In the same manner, 
how it is possible to define the concept of a group as a pair (G,*) so that every ele-
ment of G fulfils certain axioms relative to *, the axiomatic background of classical 
mechanics can be expressed by a quintuplet so that every element of the carrier set 
fulfils the well-known Newtonian axioms (Stegmüller 1973/1985, pp. 106–119).

At this stage, there is no difference between an empirical and a non-empirical theory 
(for example a mathematical theory from a formalistic point of view): They both can 
be defined by set-theoretical predicates. The difference arises from the set of intended 
applications: In case of non-empirical theories, this set is empty. In case of an empir-
ical theory, it contains the applications which are claimed to be describable and ex-
plainable by the concerned theory. For instance, some of the intended applications of 
classical mechanics are pendulums, solar systems and especially apples falling from a 
tree. The set of intended applications cannot defined extensionally, but only by enu-
merating paradigmatic examples and by declaring that every entity also belongs to 
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this set which is “sufficiently similar” to the paradigmatic examples – leaving vague 
what “sufficiently similar” means (Stegmüller 1973/1985, pp. 207–215).

The concept of geometrical working spaces is a useful framework to establish a con-
nection between geometry and the structuralist theory of science: Geometry I and II 
are empirical theories insofar they are intended to refer to real-world objects, and they 
even share the same set of intended applications: physical objects of middle dimen-
sion, especially drawing figures and tinkered matters which are used at school. But 
despite sharing the same set of intended applications, these theories fundamentally 
differ in their set-theoretical predicates: Whereas Geometry II is assumed to fulfil an 
axiomatic system of Euclidean Geometry, the propositions of Geometry I may be so 
vague and psychologically motivated and so variable relative to different times and 
persons that they certainly cannot be transferred to a system of axioms and accord-
ingly to a defining set-theoretical predicate. In contrast, Geometry III is not an empir-
ical theory, since it is regarded in a formalist manner, presupposing not to have any 
applications; that means, in this case the set of intended application is empty. But on 
the other hand, Geometry III shares the same defining set-theoretical predicate with 
Geometry II: They both are intended to be a Euclidean Geometry.

The set of intended applications is not just an “illustration”, a nice, but useless thing 
which can be left out; it rather fulfils two indispensable functions: From a logical 
point of view, the set of intended applications is a conceptual attribute and a part of 
the definition of an empirical theory. It distinguishes an empirical theory from a non-
empirical one und declares the “part of the world” to which the theory is connected. 
Exactly this is the difference between Geometry II and III.

The second function results from the fact that every non-trivial empirical theory is 
based on idealization. For example, classical mechanics presupposes the existence of 
point particles without any spatial dimension. However, such entities do not exist in a 
strict sense of the word, but only “approximately” – and this is the second task of the 
set of intended applications: Since there is no way to explain explicitly under which 
condition and to what extent an approximation is allowed to make an empirical the-
ory applicable (Stegmüller 1973/1985, pp. 207–215), i. e. under which condition an 
application belongs to the set of intended application, the paradigmatic examples of 
this set provides a number of “case studies” by which the limits of approximation are 
implicitly defined and novices of the scientific community can become familiar with 
the scope and borders of their coming occupation.

In geometry, the problem of approximation will typically arise, if infinity or dimen-
sion zero occurs; straight lines, planes, and angles are paradigmatic examples of this 
case (Struve 1990, p. 43). For instance, if there is a line drawn on a paper, there will 
be two ways to deal with the question “Is this a straight line, a segment of a straight 
line or neither of them?”: From a formalist or idealistic view of geometry, this is a 
trivial question, since geometry does not refer to physical objects; a physical line is 
neither a segment nor straight line; at most, drawings could be symbolic tools to think 
about geometrical objects or propositions. But if it is taken serious that geometry can 
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be interpreted as an empirical theory (as supposed in Geometry I and II and as being 
common and necessary for geometrical applications as we will see later), the pupils 
will have to learn to treat a line sometimes as a segment and sometimes as a straight 
line. To deal with these decisions is a notorious problem in geometry. The intended 
applications like drawing figures are the paradigmatic examples by which pupils are 
supposed to learn to manage these questions.

Hence,  the knowledge of  the set  of  indented applications and the handling of  its 
vagueness is not optional, but an integral part of a particular empirical theory and, 
therefore, one of the aspects of “possessing” and being able to apply a certain theory. 
The educational task of paradigmatic examples is primarily described by Kuhn as far 
as philosophy of science is concerned (Kuhn 1962/1976, pp. 59–62). It is also a com-
mon thesis in psychology that paradigmatic examples play a major role in learning a 
theory (e. g. Seiler 2001, pp. 144–225).

ONTOLOGICAL ASPECTS OF ELEMENTARY GEOMETRY AT SCHOOL

At this point, we will come back to didactics. Struve has investigated how elementary 
geometry is presented in secondary school following the philosophy of science struc-
turalism sketched above (Struve 1990, p. 6). Expressed in terms of the theory of geo-
metrical  working  spaces,  he  comes  to  the  conclusion  that  the  didactical  changes 
which were established to avoid a sudden switch from Geometry I to Geometry III by 
stressing Geometry II (as mentioned above) factually took the effect that the new 
textbooks present rather Geometry I than Geometry II and (even if Geometry II is 
reached) geometry is continuously taught as an empirical theory, and never as a form-
alistic or idealistic one as intended: “students learn an empirical theory in the geo-
metry lessons held at secondary school” and “concerning the empirical theory, as we 
want to call the theory the students learn in their geometry lessons according to our 
investigation, figures created by folding and drawing are the paradigmatic examples” 
(Struve 1990, pp. 38–39).

THE ISSUE OF MODELLING

Struve has mentioned some of the consequences of his result – foremost some consid-
eration on the fact that proofs have different functions in empirical and non-empirical 
theories observing that students typically treat proofs in the same manner as they are 
used in empirical sciences (Struve 1990, pp. 38–49). In this article, we will add a con-
sideration concerning modelling. If we can follow Struve’s results, Mr. B’s distinction 
between two types of geometrical applications is not confusing, but an obvious im-
plication of the empirical character of geometry as it is taught in secondary school: 
The figures created by drawing and folding and the “simple” applications based on 
these figures can be regarded as the paradigmatic examples which define the set of in-
tended applications and constitute geometry as the empirical science of the spatial en-
vironment surrounding us in everyday life.
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In this view, the supremacy of simple applications is not based on a normative de-
cision about the role of application in mathematics education, but on the specific on-
tology of geometry: The knowledge of and the familiarity to these examples of applic-
ations are defining attributes of geometry as an empirical science. Hence, with regard 
to these “basic” applications, geometry differs from the other parts of mathematics 
taught at school. In the other cases, the amount and choice of applications is a norm-
ative question guided by arguments which Kaiser has combed through. In geometry, 
however, the task of normative deliberations begins not before the set of intended ap-
plications is left. Therefore, it is not astonishing that the (rare) cases which Mr. B 
mentions as “real” examples of modelling in geometry are quite different from the 
paradigmatic examples of folding and drawing: computer-aided design,  navigation 
and traffic routing. In these cases and after some basic courses based on “simple” ap-
plications, geometry may no longer differ in modelling and mathematization.

TRANSCENDENTAL ASPECTS OF GEOMETRY

Our last task concerns the question if the dominance of an empirical view of geo-
metry at school (as Geometry I or II) is an aberration caused by psychological cir-
cumstances and enforced by “misguided” textbooks or if there are good reasons to 
teach geometry as an empirical theory (to some extend). We will argue for the latter, 
accentuating a special role of geometry in contrast to other parts of mathematics and 
aiming  for  the  conclusion  that  therefore  two  different  types  of  applications  are 
needed.

Let us start with an example: In 2003, a new national curriculum framework called 
“Bildungsstandards” (educational standards) was established in Germany. In contrast 
to former resolutions, this declaration stresses general skills, abilities and competen-
cies – and among others, abilities in mathematical modelling. The relevant paragraph 
closes with the following sentence: “This includes translating the situation which is to 
be modelled into mathematical concepts, structures and relations” (KMK 2004, p. 8). 
This  is  a  formulation  ranging  over  all  parts  of  mathematics  taught  at  secondary 
school. A specific statement focussing on geometry is not declared.

Let  us  deliberate  what  this  sentence  presupposes:  There  is  a  real-world  situation 
which can be described by mathematical concepts, but need not to be treated in this 
way. For instance, you can cross the road without thinking about the probability to be 
knocked over and you can look at the carps in a lake without having a function in 
mind to describe their growth process. Normally, a mathematical description is  not 
necessary and will only be introduced, if it promises deeper insights as a description 
in ordinary language. Besides the general skills, this is a typical educational goal of 
modelling: the awareness that mathematics is a useful tool to achieve knowledge of 
the external world and to formulate this knowledge in a very precise manner.

In geometry, the case is quite different. If geometry could be treated like other math-
ematical theories, it would be possible to describe a situation geometrically only on 
demand. But this assumption fails since it is inevitable to use, at least, rudimental 
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geometrical concepts to describe a situation at all. You cannot cross the road or look 
at the carps in the lake without possessing, at least, a broad understanding of basic 
geometrical concepts. For instance, a (vague) understanding of relative positions is 
necessary to individuate the different things, persons or objects which are part of a 
specific situation.

The idea that space is not a thing of human perception among others, but the concep-
tual framework which allows to describe real-world phenomena was primarily intro-
duced by Kant as a part of his transcendental philosophy (Kant 1781/1998). In con-
temporary ontology the conceptual framework of space (and time) is broadly accep-
ted as  a  condition to  describe real-world situations  (for  everyday perceptions  see 
Runggaldier and Kanzian 1998, pp. 17–52, as a condition of empirical sciences see 
Bartels 1996, pp. 23–71, or Stegmüller 1973/85, p. 60).

CONCLUSION: TWO TYPES OF GEOMETRICAL APPLICATIONS

Now, it is possible to connect both arguments: Following transcendental considera-
tions, it is necessary to possess basic concepts to describe real-world situation and to 
establish  the conditions  under  which model  building  processes  are  possible.  That 
means, for mathematical reasons it may be passable to interpret geometry as a formal-
ist or idealistic theory; but for model building processes or in contexts of natural sci-
ences, it is necessary to understand geometry as an empirical theory. For some simple 
model building processes, an understanding on the level of Geometry I may be suffi-
cient,  but  for  more elaborated tasks or  as a tool  of natural sciences,  Geometry II 
seems to be indispensable.

Against this background, we attain a “two step view” of geometrical applications: 
Since concepts of an empirical geometry are necessary to apply mathematics and, in a 
structuralist view of science, these concepts correspond to a set of intended applica-
tions taken from the world of folding and drawing, the first type of applications con-
sists of very “simple” applications whose function is completely defined by learning 
and applying elementary geometry, especially by learning to manage the reference of 
concepts like “straight line” which can only be applied due to approximation. Hence, 
geometrical  applications of a “simple” kind are  inevitable ingredients of teaching 
geometry; and there is no reason to criticize the simplicity of these applications. At 
this stage, a normative debate about goals of teaching “applied geometry” is inad-
equate, since according to the empirical character of school geometry, there is no dif-
ference between teaching applied geometry and teaching geometry at all. This shall 
be our first conclusion: To some extend, it is necessary to deal with simple geometric-
al applications; and this necessity is not an inference from a normative decision about 
the goals of teaching applied mathematics, but a consequence of the specific ontolo-
gical situation of geometry and it transcendental function as a condition of natural 
science and ordinary perception. No other part of secondary school mathematics pos-
sesses this ontological and transcendental function. For this reason, the status of geo-
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metry is unique, and the debate on geometrical applications cannot be held in the 
same way as it is possible in the scope of other parts of mathematics.

The second conclusion is related to the other type of geometrical applications: If the 
“simple” and intended applications are the only ones which students get to know, 
there will be an obvious deficit in teaching general skills and model building capacit-
ies in the sense of the pragmatic view of applied mathematics.  Exactly this is the 
function of the second type of geometrical applications. It is comprehensible that ap-
plications which are intended to fulfil this task are quite different from the first ones. 
Mr. B mentions examples taken from computer-aided design, navigation and traffic 
routing. A list of similar examples is collected by Graumann (1994). Applications of 
this kind are typically not “pure geometrical”, but includes concepts or hypotheses 
taken from natural or social sciences, basic economics or empirical tedium platitudes. 
This fact can be regarded as a further indication for our claim that there two different 
types of applications with distinct functions: Whereas the simple ones are used to 
built up geometrical concepts and to manage the vagueness of applying geometrical 
concepts to real-world situations, the more complex ones are intended to use pre-ex-
isting geometrical concepts and insights to reach some of the many educational goals 
which Kaiser sums up for model building processes in general (Kaiser 1995). For this 
purpose, a real-world problem only providing geometrical aspects often does not ap-
pear to be multifarious enough to allow a model building process whose challenges 
lie in this process (including mathematization, simplification, validation and hypo-
thesis testing), and not in geometrical deliberations and calculations.
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A FRENCH LOOK ON THE GREEK GEOMETRICAL WORKING 
SPACE AT SECONDARY SCHOOL LEVEL 

Alain Kuzniak and Laurent Vivier

Equipe Didirem Université Paris-Diderot, France

Based on the geometrical  paradigms approach,  various studies have shown some  
tension in French Geometrical Working Space between institutional expectation and  
effective implementation. In this paper, we examine the Greek system from this point  
of view and we find the same kind of tension but in a certain sense stronger than in  
France even if both countries have an ancient Euclidean tradition. 

FROM SPECIFIC FRENCH CASE TO THE PARTICULAR GREEK CASE

Since several years, it seems that curricula and syllabi converge to promote a close 
link between mathematics teaching and the “real world”. The idea of “mathematical 
literacy” is  especially  strong  in  the  PISA evaluation  which  aims  to  organize  this 
general  trend  among  European  countries.  At  the  same  time  and  close  to  this 
conception  of  mathematics,  the  constructivist  approach  is  favoured  by  national 
educational  institutions  and teachers  are  asked to substitute  “bottom up” teaching 
methods to the traditional “top down” entrance in mathematics.

In  France,  till  today,  and  at  lower  secondary  school  level  the  prominent  way 
suggested by the intended curriculum is based on “inquiry methods” and “activities” 
and relationships between mathematics and other scientific or technological domains 
are  always pointed up.  But  the link to  sensible  world is  only mentioned and the 
emphasis is put on the logical rigour of mathematics. The relationship to the “real 
world” seems really far off and into everyday classroom, inquiry based methods are 
left aside. 

In the special case of geometry, we were concerned with the contradiction between 
official expectation and the crude reality of the classroom. To understand and explain 
the  phenomenon,  the  notion  of  geometrical  paradigms  (Houdement  and  Kuzniak, 
1999) and of geometrical working spaces (Kuzniak, 2007) have been used to explicit 
the different meanings of the term geometry. The field of geometry can be mapped 
out  according  to  three  paradigms,  two of  which  –  Geometry  I  and  II  –  play  an 
important role in today’s secondary education. Each paradigm is global and coherent 
enough to  define  and structure  geometry  as  a  discipline  and to  set  up  respective 
working spaces suitable to solve a wide class of problems.

This first idea is completed by the following hypothesis on the possible influence of 
these  paradigms  in  geometry  education  and  on  the  poor  implementation  of  new 
teaching method.  The spontaneous  geometrical  epistemology of  teachers enters in 
contradiction  with  mathematical  epistemology  embedded  in  the  new  teaching 
methods. In other words: the geometrical work done and aimed by teachers could be 
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of  another  nature  than  the  institutional  expected  one.  The  teacher’s  geometrical 
thinking is led by another geometrical paradigm as the paradigm promoted by the 
institution.  Moreover this way of thinking leads to prefer pedagogical  methods in 
contradiction with inquiry based methods.

Our investigation  work has its  roots  in the French context  but  some comparative 
studies  showed us  that  such a  tension  could  exist  in  other  countries.  Houdement 
(2007)  has  presented  in  CERME  5  a  comparison  of  magnitude  measurement 
problems  in  Chile  and  in  France.  The  social  and  economical  contexts  are  quite 
different  in  both  countries  and  so,  we  were  interested  to  have  a  look  on  other 
European countries  to  verify  if  this  kind of  tension  really  exists  and how it  was 
managed.  We have had the opportunity  to work with Greek colleagues and to be 
aware of a great change in the curriculum based on the real world and turning back to 
the Euclidean tradition. We present the first part of our work which gives our analysis 
of the Greek situation through our viewpoint.

GENERAL FRAME OF THE STUDY

The theoretical frame we used has been soon described in detail in former CERME 
sessions (Houdement  and Kuzniak 2003, Houdement 2007) and we refer to these 
papers for complements. We retain only here some particular elements used in our 
description of the Greek situation.

As we are interested in the awkward relationships between reality and mathematics 
education, we will focus on the role the reality plays in the different paradigms. In the 
first one, Natural Geometry or Geometry I (GI), the validation depends on reality and 
the  sensible  world.  In  this  Geometry,  an  assertion  is  accepted  as  valid  using 
arguments based upon experiment and deduction. The confusion between the model 
and reality is great and any argument is allowed to justify an assertion and convince. 
This  Geometry  could be  seen as  an empirical  science and it  is  possible  to  build 
empirical  concepts  depending  on  the  experience  of  the  “real  world”.  Natural 
Axiomatic  Geometry,  or  Geometry  II  (GII),  whose archetype is  classic  Euclidean 
Geometry is built on a model that approaches reality. Once the axioms are set up, 
proofs have to be developed within the system of axioms to be valid. In the formal 
Axiomatic  Geometry,  or  Geometry  III  (GIII),  the  system  of  axioms,  which  is 
disconnected from reality, is central and leads how to argue. The system of axioms is 
complete and unconcerned with any possible applications in the world. In that case, 
the system creates its reality. Concepts are given a priori and come “from the Book” 
and  so  “top  down”  form  of  mathematics  education  seems  well  fitted  to  this 
conception.  The  study  of  Greek  mathematical  education  will  show  that  this 
dichotomy GII / GIII is not so simple.

To find a possible tension or contradiction between the institutional expectation and 
the  teacher's  approaches,  we  will  describe  what  we  call  the  personal  teacher's 
Geometrical Working Space (GWS) faced to the GWS expected and promoted by the 
national  institution  in  charge  of  mathematics  education.  More  precisely  (Kuzniak 

 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 687



2006), the Geometrical Working Space (GWS) is the place organized to ensure the 
geometrical work. It makes networking the three following components:  the real and 
local space as material support, the artefacts as drawings tools and computers put in 
the  service  of  the  geometrician  and  a  theoretical  system  of  reference  possibly 
organized in a theoretical model depending on the geometrical paradigm. To ensure 
that the components are well used, we need to focus on some cognitive processes 
involved into the geometrical activity and particularly the visualization process with 
regard  to  space  representation  and  the  material  support,  the  construction  process 
depending on the used tools (rulers,  compass,  etc.)  and on the configuration,  and 
finally reasoning in relation to a discursive process.

THE NEW CURRICULUM IN GREECE

Since  2007,  a  new  curriculum  for  compulsory  education  is  implemented  in 
gymnasium (grades 7 to 9) in Greece and summarised in a list of ten highlights. It is 
presented as cross-thematic (1st and 5th highlights) and aims to connect the academic 
disciplines, everyday life, working world, history, technological improvement,  etc. 
Within the flexible zone (4th highlight),  some hours are planned for reaching this 
specific goal. Primary school learning explicitly rests on the Bruner's constructivist 
theory and assessment is now an essential part of the learning process (8th highlight). 
Sources  and  goals  of  connection  with  realty  are  in  the  9th highlight,  “A  Broad 
Spectrum of Literacies”:

Successful living in post-modern times presupposes that one is  fully  literate in many 
areas, such as reading, science, technology and mathematics in order to face international 
evaluation  (PISA,  TIMS,  etc.)  which  demand  more  connections  between  school 
knowledge and the life reality.

The present mathematical syllabus expands the ancient one with no change in the 
content. It is written in a three columns table where some more detailed mathematical 
sections  appear  into  the  traditional  blocks  (arithmetic,  algebra,  geometry). 
Mathematical skills,  which have to be learned by pupils, are described in the first 
column, the main mathematical notions are in the second and in the third one some 
activities are proposed, often to introduce some mathematical notions.

New textbooks are conformed to syllabus with no surprise since they are chosen by 
the curriculum designer Pedagogical Institute, one for each level. Textbooks structure 
is quite the same as the syllabus structure and activities coming from the syllabus 
third  column  can  be  found  with  few  changes  in  textbooks.  For  these  reasons, 
institutional GWS means the GWS presented by the curriculum including the official 
textbooks.

A SO FAR REALITY

We will highlight some internal slides into the institutional GWS itself. First, in spite 
of the curriculum demand, new technologies have to be used (7th highlight), syllabus 
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and textbooks do not mention software, computers or Internet. Beside this slide inside 
the curriculum, the reality is concerned by a second and less obvious one.

According  to  the  cross-thematic  curriculum,  reality  and everyday  life  have  to  be 
embedded in the learning process. But when everyday life is mentioned in syllabus it 
is  without  any details  and only one syllabus activity could be described as real : 
measure the width of the street and pavement in front of the school. But the difficulty 
to follow this curriculum directive is more obvious in textbooks. This real activity in 
syllabus does not  appear in the A’ textbook (grade 7),  and if there are numerous 
activities based on a “real picture”, they are not relevant for this purpose for several 
reasons:

- The 3D/2D problem: angles and distances on the textbook are not the good ones. 
For these kind of  activities,  geometry  does not  seem to be able to give the right 
answer!

- A lot of activities refer to the macro-space but authors represent reality – probably 
under editorial constraint – with an image or photography. On these pictures, most of 
the time, some geometric element are placed and the reality is already mathematized. 
However, we often find activities and exercises with geographic maps, as it is stated 
in syllabus. But reality is once more already mathematized.

         

       

- Activities and exercises are most of the time based on a picture of a real problem 
with a geometric diagram with all the measures needed to solve the problem, no more 

ΓΑ=6371 km, Α Γ Σ =89,05°, find 
ΓΣ. (B’ page 151)

Why an airplane realize a lower distance 
than a boat to go from Athens to Samos? 

(A’ page 164)

Students have to find the lower distance between the point A at the house to the 
water. (A’ page 184)
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no less. Reality is not the point and is viewed through a picture already turned into a 
geometrical task support. 

As we notice it, the geometrical local space is almost always the micro-space of a 
sheet  of  paper  which  is  sometimes  a  representation  of  a  macro-space  problem 
(geographic maps, pictures, etc.). Actually, the reality in textbooks appears from a 
relevant point of view only in the GI paradigm [1], on a sheet of paper. And so we 
can characterize this internal slide: everyday life is not taking into account and reality 
is only treated within the GI paradigm, inside geometry.

GYMNASIUM INSTITUTIONAL GWS

Since  reality  is  not  actually  present  in  institutional  GWS,  except  within  the  GI 
paradigm, we study the institutional GWS all along the gymnasium.

Artefacts, visualization and diagrams constructions: the GI paradigm

Geometric tools (ruler, compass, protractor, square, tracing paper) are only mentioned 
in syllabus at the A’ class (grade 7). However, construction activities are present all 
along the gymnasium (much more at the first class). In the A’ textbook, tools are 
pictured in many places, especially for showing how to construct. Tracing paper is 
used in many geometry sections, often to introduce a new concept. In the B’ and G’ 
textbooks (grades 8, 9) geometric tools are never drawn, sometimes mentioned.

There is no freehand construction in syllabus, no freehand diagram in textbooks and 
we do not find any exercise where pupils have to draw such a kind of diagram. Some 
activities proposed in syllabus (third column of A’ class) are in GI, excluding, or not, 
visualization:                

An aim of syllabus, at B’ class (grade 8), section trigonometry, is to construct an 
angle whose sinus, cosine or tangent are known. But we do not find any activity on 

Why it is not horizontal? 
(G’ page 209)Find ΔΓ. (G’ page 223)Find ΔΕ. (B’ page 139)

How many angles? Find in measuring the 
lower distance between A 

and B.

Draw the perpendiculars to ε 
passing by these points.
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this topic in textbook. At the final class (grade 9) the section on dilation is directed by 
the GI paradigm with numerous drawing activities (7 exercises of the 9 at the end of 
the section ask for drawing).

Formal proofs: the GII paradigm

Proof process should start as it is written in syllabus preamble, but no formal proof is 
mentioned in the detailed table of mathematics syllabus. There are some theorems, 
definitions, properties.

Very few examples of formal proofs are given in the A’ textbook (grade 7) and their 
solutions  are  always  completely  written.  It  is  quite  the  same  situation  in  the  B’ 
textbook (grade 8), except the proof that a dodecagon is regular (exercise 8, page 
185). In the B’ area section, a lot of exercises ask to “show that” but, in fact, the 
solution is always given by a calculation of an area or a length.

In G’ textbook (grade 9) there is a great change with a lot of exercises where pupils 
have to prove. At the section on triangle congruence, the 21 exercises at the end of 
the section ask for a formal proof and the theoretic system of reference, with the three 
criteria of triangle congruence, is clearly directed by the GII paradigm. In this section, 
there are four solved exercises (pages 191, 192) which ask for a formal proof on 
triangle congruence (see below, for example, the figure on the left). At the end of the 
section (pages 194-196) some similarly exercises are given (see below, for example, 
the  figure  on  the  right).  One could  thought  that  the  solutions  of  the  four  solved 
exercises could give a proof model to students to solve exercises at the section end.

The diagrams similarity section is also in GII paradigm (half of the exercises ask for a 
formal proof, the others are on ratio and length calculation).

Gymnasium paradigm

At the first class A’, both in curriculum and textbook, the main paradigm is GI and it 
is generally well assumed. However, the paradigm in which pupils have to work is 
not  always  clear.  For  example,  the  following  syllabus  activity  starts  in  GI  and 
finishes, with questions g) and h), necessarily in GII:

a) Let O a point and a line ε and the point A so that OA is the distance from O to ε.

 

Prove that ΔΒ=ΔΓ (ΑΔ is the bisector of 
Â). With solution. (G’ page 191)

Prove that AΣ=BΣ (OA=OB, Oδ is 
bisector of Ô ). Exercise without 

solution. (G’ page 194)
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b) Let B another point on ε, find the symmetrics A' and B' of A and B through O and let 
ε' the line A'B'.

c) Which is the symmetric of ε through O ?

d) Which is the symmetric of the angle OÂB ?

e) How are the angles OÂB and OÂ'B'?

f) How is the angle OÂ'B'?

g) How are ε and ε' with respect to AA'?

h) How are ε and ε'?

Didactic contract is not very clear for the intermediate questions c), d) and e): GI, 
with tools or visualization, or GII paradigm? This activity is given in textbook with 
only one question and a complete solution below. The task paradigm is clearly GII: 
the answers corresponding to questions e) to h) are formal proofs. This example is a 
non explicit slide from GI to GII in a class where GI is the main paradigm [2].

Artefacts  and  diagrams  constructions  are  used  in  many  activities  to  discover 
geometrical properties, as it is written in the curriculum according to the bottom-up 
point of view: from the GI paradigm arises the GII paradigms. Some activities given 
in  the  third  column  of  syllabus  are  in  GI,  to  construct,  to  observe  a  property 
(sometimes in first  class  with the use of tracing paper and folding).  This  kind of 
activities can be find in all gymnasium textbooks (grades 7 to 9).

In gymnasium, from grade 7 to 9, geometrical tasks are very different. The GWS 
depends on the class and the section. In the first class GWS is clearly directed by GI 
but there are some slides in favour of the GII paradigm. In the last class, the GWS of 
the triangle congruence section is directed by GII while it is directed by GI in the 
section on dilation.  In this last  class,  there are several very different GWS which 
seem not to be connected.

EUCLIDEAN PRESSURE ON TEACHER’S PERSONAL GWS

This section is supported by six secondary teachers’ interviews where we focussed on 
the  new  curriculum and  more  specifically  on  reality,  geometrical  tools,  diagram 
constructions  and  formal  proofs  in  textbooks  and  in  classrooms.  We  turn  out  to 
teacher’s personal GWS which is quite different from the institutional one as we will 
show it. Before studying the GWS teachers, we point out the particular importance of 
Euclidean Geometry in the Greek syllabus and for Greek teachers.

The paradoxical place of Euclidean geometry

According  to  the  Lyceum syllabus,  students  have  to  learn  a  geometry  based  on 
axioms with formal reasoning (grade 10) and measurement of magnitudes becomes 
the  main  geometric  topic  at  grade  11.  The  unique  geometry  textbook  is  entitled 
“Euclidean Geometry” and it is used in the two first classes (grade 10 and 11). Its 
content is close to the syllabus and to the classical Euclidean Geometry with a strong 
axiomatic  point  of  view,  except  for  measurement.  In  textbook,  and  for  lyceum 
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teachers, geometry starts from zero with Euclidean axioms. Construction problems 
are  of  theoretical  nature  with  letters  and magnitude,  such  as  AB=a,  without  any 
measure: geometrical tools are virtual and consist of compass and ruler according to 
the Euclidean tradition.

If  Geometry  is  taught  in  compulsory  education  and  during  the  two  first  lyceum 
classes (till  grade 11), geometric knowledge is not assessed at the very important 
lyceum final test: the University where students will enter depends of this final test. 
Students  know  this  fact  and  are  less  concerned  with  geometry  than  the  others 
mathematics domains and do not work geometry especially in the numerous private 
institutes  (frontystiria)  where  they  could  follow additional  and expensive  courses 
after the class time. It is a quite great contrast: a lot of geometry teaching times for 
nothing at the end? Teachers we interviewed told us that geometry is not important in 
the curriculum because of the hidden curriculum and, finally, “geometry is taught for 
culture, for Euclid”.

Teachers’ personal GWS

Gymnasium teachers  think  that  pupils  have  to  learn  how to  construct  geometric 
diagrams,  but  they  think  that  it  is  not  the  main  point  of  mathematics  learned in 
gymnasium. So as they have no time to teach all the syllabus, teachers often choose 
to teach very quickly diagrams constructions despite its importance and the fact that 
students have troubles with the use of drawing tools (especially the protractor) and 
with constructions.  In  the personal  teacher's  GWS,  directed by  GII,  the  aim of  a 
diagram is to set a conjecture and the proof do not need an exact figure. That explains 
why  teachers  think  that  a  freehand  drawing  is  equivalent  to  a  drawing  with 
geometrical tools and the first one is done more quickly. Teachers’ local space could 
be anywhere they can draw a freehand diagram, for example a pack of cigarettes as 
two teachers told us. We see here a great difference between teachers’ beliefs and 
institutional content: in syllabus, nor in textbooks, there is none freehand drawing.

Another  example  of  the  prominence  of  GII  in  the  personal  teacher  GWS  is  the 
importance they give to properties of quadrilaterals and triangles. They all think that 
these properties are fundamental even if they do not know the role of these geometric 
objects  in  mathematics  class.  As  teachers  rate  highly  Euclidean  Geometry,  a 
sufficient reason to teach triangles and quadrilaterals is given by their importance in 
the theoretic system of reference.

To conclude this part, we can say that the teachers’ GWS is clearly directed by a 
strong GII, almost GIII because of the axiomatic theoretic system of reference.

GWS TENSION

The new Greek curriculum demands to take into account reality. But the interviewed 
teachers told us how it  is difficult  for them: they do not know how to teach in a 
constructive way which is often opposite to their top-down learning conception. They 
concluded  that  Greek  teachers  do  not  like  this  new way  of  teaching  and  do  not 
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understand it. Teachers’ learning beliefs agree with the internal slide we pointed out 
about the everyday life in curriculum.

In  the  case  of  diagrams  constructions,  teachers'  GWS  is  clearly  against  the 
institutional GWS, and not only in considering freehand drawing. Teachers do not 
only prefer teaching others geometric topics but they give all the diagrams in tests too 
to go over the lack of their pupils [3]. The same opposition to the institutional GWS 
can be seen with the use of tracing paper. According to syllabus, tracing paper has to 
be used as a geometric tool in A’ class (grade 7). It is used in many places with a 
particular and original graphical representation in the A’ textbook and it is explained 
how to use it. But creativity stops at the school border and tracing paper is never used 
in class!

In gymnasium, formal proof is usually taught during the last class year (grade 9), 
more specifically, in a Euclidean section about triangle congruence. In order to know 
how teachers could initiate their students to the formal proof in one year, we asked 
them about  the  possible  use  of  the  four  solved  activities  we  spoke  about  in  the 
“Formal proofs: the GII paradigm” section. They are indeed proof models and, for 
assessment, students have to learn ten lesson proofs by heart which one of them is 
asked  in  test.  This  proof  process  initiation  is  again  opposite  to  the  curriculum 
expectation.

In  gymnasium,  there  is  a  distance  between institutional  and teachers  GWS.  That 
creates a tension which is supported by the different beliefs on learning and geometry 
among teachers and curriculum writers. Moreover, teachers do not really deal with 
the existing and remaining students' difficulties with diagram constructions and the 
proof  process  initiation  is  based  on  a  learning  by  heart.  This  tension  between 
institutional and teachers’ GWS is specific to gymnasium, it completely disappears at 
lyceum, but what about pupils?

CONCLUSION

Geometry positions in Greece and in France are closed even if we point out some 
main differences. In both countries, even if curriculum emphasizes its place, reality is 
not taken into account. Similarly, the transitions between paradigms GI and GII are 
most of the times ambiguous and implicit and give rise to fuzzy GWS.

The GI paradigm seems to be more assumed in Greece than in France and in France 
formal proofs are taught all along the junior high school. But the main curriculum 
difference takes place at  the lyceum: in Greece,  axiomatic  Euclidean geometry is 
taught,  not  in  France,  and  in  France  geometry  is  assessed  in  final  test  for  some 
sections, not in Greece. Geometry is taught in Greece only for cultural reasons, for 
Euclid, whereas in France the geometrical work is oriented by the GII paradigm and 
university  studies.  However,  according  to  the  six  teachers’  interviews,  the  Greek 
teachers’  GWS is  quite  different  from the  French teachers’  GWS because  of  the 
axiomatic theoretic system of reference: GII paradigm is well structured and stronger 
in Greece than in France. In Greece, the cultural tradition of Euclid is more important 
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than in France and geometry knowledge seems to come from the Book [4]. This last 
point strengthens the GWS tension in junior high school which seems to be stronger 
in Greece than in France.

NOTE

1. The exercise on a map are in GI, but it could be solved by visualization or measurement, pupils have to choose.

2. This non explicit slide can also be seen, for example, at page 227 of A’ textbook, examples 1 and 2.

3. In  the A’ final  test  we studied there is no construction;  lyceum pupils have problems with geometric  diagrams 

constructions, even for the equilateral triangle whereas it is a skill of the A’ gymnasium class (grade 7). 

4. According to Toumasis (1990) the Book is not Euclid’s Elements but Legendre’s geometry elements.
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This study investigated the role of various aspects of apprehension, i.e., perceptual, 
operative and discursive apprehension, in geometrical figure understanding. Data 
were collected from 1086 primary and secondary school students. Structural 
equation modelling affirmed the existence of six first-order factors revealing the 
differential effect of perceptual and recognition abilities, the ways of figure 
modification and measurement concepts, three second-order factors indicating the 
differential effects of the various aspects of geometrical figure apprehension and a 
third-order factor representing the geometrical figure understanding. It also 
provided support for the invariance of this structure across the two age groups. 
However, findings revealed differences between primary and secondary school 
students’ performance and in the way they behaved during the solution of the tasks.  
 

INTRODUCTION AND THEORETICAL FRAMEWORK  
In geometry three registers are used: the register of natural language, the register of 
symbolic language and the figurative register. In fact, a figure constitutes the external 
and iconical representation of a concept or a situation in geometry. It belongs to a 
specific semiotic system, which is linked to the perceptual visual system, following 
internal organization laws. As a representation, it becomes more economically 
perceptible compared to the corresponding verbal one because in a figure various 
relations of an object with other objects are depicted. However, the simultaneous 
mobilization of multiple relationships makes the distinction between what is given 
and what is required difficult. At the same time, the visual reinforcement of intuition 
can be so strong that it may narrow the concept image (Mesquita, 1998). Geometrical 
figures are simultaneously concepts and spatial representations. Generality, 
abstractness, lack of material substance and ideality reflect conceptual characteristics. 
A geometrical figure is also possesses spatial properties like shape, location and 
magnitude. In this symbiosis, it is the figural facet that is the source of invention, 
while the conceptual side guarantees the logical consistency of the operations 
(Fischbein & Nachlieli, 1998). Therefore the double status of external representation 
in geometry often causes difficulties to students when dealing with geometrical 
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problems due to the interactions between concepts and images in geometrical 
reasoning (e.g. Mesquita, 1998). 
Duval (1995, 1999) distinguishes four apprehensions for a “geometrical figure”: 
perceptual, sequential, discursive and operative. To function as a geometrical figure, 
a drawing must evoke perceptual apprehension and at least one of the other three. 
Each has its specific laws of organization and processing of the visual stimulus array. 
Particularly, perceptual apprehension refers to the recognition of a shape in a plane 
or in depth. In fact, one’s perception about what the figure shows is determined by 
figural organization laws and pictorial cues. Perceptual apprehension indicates the 
ability to name figures and the ability to recognize in the perceived figure several 
sub-figures. Sequential apprehension is required whenever one must construct a 
figure or describe its construction. The organization of the elementary figural units 
does not depend on perceptual laws and cues, but on technical constraints and on 
mathematical properties. Discursive apprehension is related with the fact that 
mathematical properties represented in a drawing cannot be determined through 
perceptual apprehension. In any geometrical representation the perceptual recognition 
of geometrical properties must remain under the control of statements (e.g. 
denomination, definition, primitive commands in a menu). However, it is through 
operative apprehension that we can get an insight to a problem solution when looking 
at a figure. Operative apprehension depends on the various ways of modifying a 
given figure: the mereologic, the optic and the place way. The mereologic way refer 
to the division of the whole given figure into parts of various shapes and the 
combination of them in another figure or sub-figures (reconfiguration), the optic way 
is when one made the figure larger or narrower, or slant, while the place way refer to 
its position or orientation variation. Each of these different modifications can be 
performed mentally or physically, through various operations. These operations 
constitute a specific figural processing which provides figures with a heuristic 
function. In a problem of geometry, one or more of these operations can highlight a 
figural modification that gives an insight to the solution of a problem. 
Even though previous research studies investigated extensively the role of external 
representations in geometry (e.g. Duval, 1998; Kurina, 2003), the cognitive processes 
underline the four apprehensions for a “geometrical figure” proposed by Duval 
(1995, 1999) have not empirically verified yet. Keeping in mind the transition 
problem from one educational level to another universally (Mullins & Irvin, 2000), 
our main aim was to confirm a three-order theoretical model concerning the primary 
and secondary school students’ geometrical figure understanding.  

HYPOTHESES AND METHOD   
In the present paper four hypotheses were examined: (a) Perceptual, discursive and 
operative apprehension influence primary and secondary students’ geometrical figure 
understanding, (b) There are similarities between primary and secondary school 
students in regard with the structure of their geometrical figure understanding, (c) 
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Differences exist in the geometrical figure understanding performance of primary and 
secondary school students and (d) Differences exist in the way primary and secondary 
school students behave during the solution of the perceptual, discursive and operative 
apprehension tasks. It should be mentioned that the influence of sequential 
apprehension in geometrical figure understanding is not investigated since the figure 
construction is not given much emphasis in the Cypriot curriculum.     
The study was conducted among 1086 students, aged 10 to 14, of elementary (Grade 
5 and 6) and secondary (Grade 7 and 8) schools in Cyprus (250 in Grade 5, 278 in 
Grade 6, 230 in Grade 7, 328 in Grade 8). The a priori analysis of the test that was 
constructed in order to examine the hypotheses of this study is the following: 
1. The first group of tasks includes task 1 (Pe1a, Pe1b, Pe1c, Pe1d, Pe1e, Pe1f, Pe1g) 

and 2 (Pe2a, Pe2b, Pe2c, Pe2d, Pe2e, Pe2f) concerning students’ geometrical 
figure perceptual ability and their recognition ability, respectively.  

2. The second group of tasks includes area and perimeter measurement tasks, namely 
task 3 (Op3), 4 (Op4), 5 (Op5) and 6 (Op6a, Op6b, Op6c). These tasks examine 
students’ operative apprehension of a geometrical figure. The tasks 3, 4 and 5 
require a reconfiguration of a given figure, while task 6 demands the place way of 
modifying two given figures in a new one in order to be solved.    

3.  The third group of tasks includes the verbal problems 7 (Ve7), 8 (Ve8), 9 (Ve9), 
10 (Ve10) and 11 (Ve11) that correspond to discursive figure apprehension. On 
the one hand, the verbal problems 7 and 8 demand increased perceptual ability of 
geometrical figure relations and basic geometrical reasoning. On the other hand, 
tasks 9, 10 and 11 are verbal area and perimeter measurement problems. In verbal 
problem 9 visualization (e.g. Presmeg, 2007) facilitates its solution process, while 
in verbal problems 10 and 11 the concept of epistemological obstacles (Brousseau, 
1997) may interfere the way of solving them.  

Representative samples of the tasks used in the test appear in the Appendix. Right 
and wrong or no answers to the tasks were scored as 1 and 0, respectively. The results 
concerning students’ answers to the tasks were codified with Pe, Op and Ve 
corresponding to perceptual, operative and verbal problem tasks, respectively, 
followed by the number indicating the exercise number.  
In order to explore the structure of the various geometrical figure understanding 
dimensions a third-order confirmatory factor analysis (CFA) model for the total 
sample was designed and verified. Bentler’s (1995) EQS programme was used for the 
analysis. The tenability of a model can be determined by using the following 
measures of goodness-of-fit: 2x , CFI and RMSEA. The following values of the three 
indices are needed to hold true for supporting an adequate fit of the model: 2x /df < 2, 
CFI > 0.9, RMSEA < 0.06. The a priori model hypothesized that the variables of all 
the measurements would be explained by a specific number of factors and each item 
would have a nonzero loading on the factor it was supposed to measure. The model 
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was tested under the constraint that the error variances of some pair of scores 
associated with the same factor would have to be equal. A multivariate analysis of 
variance (MANOVA) was also performed to examine if there were statistically 
significant differences between primary and secondary school students concerning 
their understanding in the various geometrical figure dimensions. For the analysis of 
the collected data the similarity statistical method (Lerman, 1981) was conducted 
using the statistical software C.H.I.C. (Bodin, Coutourier, & Gras, 2000). A similarity 
diagram of primary and secondary school students’ responses at each task or problem 
of the test was constructed. The similarity diagram allows for the arrangement of the 
tasks into groups according to the homogeneity by which they were handled by the 
students.  
RESULTS 
Confirmatory factor analysis model. Figure 1 presents the results of the elaborated 
model, which fitted the data reasonably well [ 2x (220) = 436.86, CFI = 0.99, RMSEA 
=0.03, 90%, confidence interval for RMSEA 0.026-0.034]. The first, second and third 
coefficients of each factor stand for the application of the model in the whole sample 
(Grade 5 to 8), primary (Grade 5 and 6) and secondary (Grade 7 and 8) school 
students, respectively. The errors of variables are omitted.  
The third-order model which is considered appropriate for interpreting geometrical 
figure understanding, involves six first-order factors, three second-order factors and 
one third-order factor. The three second-order factors that correspond to the 
geometrical figure perceptual (PEA), operative (OPA) and discursive (DIA) 
apprehension, respectively, are regressed on a third-order factor that stands for the 
geometrical figure understanding (GFU). Therefore, it is suggested that the type of 
geometric figure apprehension does have an effect on geometrical figure 
understanding, verifying our first hypothesis. On the second-order factor that stands 
for perceptual apprehension the first-order factors F1 and F2 are regressed. The first-
order factor F1 refers to the perceptual tasks, while the first-order factor F2 to the 
recognition tasks. Thus, the findings reveal that perceptual and recognition abilities 
have a differential effect on geometrical figure perceptual apprehension. On the 
second-order factor that corresponds to operative apprehension the first-order factors 
F3 and F4 are regressed. The first-order factor F3 consists of the tasks which require 
a reconfiguration of a given figure, while the tasks demanding the place way of 
modifying two given figures in a new one in order to be solved constitute the first-
order factor F4. Therefore the results indicate that the ways of figure modification 
have an effect on operative figure understanding. The first-order factors F5 and F6 
are regressed on the second-order factor that stands for discursive apprehension, 
indicating the effect measurement concept exerts on this type of geometric figure 
apprehension. To be specific, the first-order factor F5 refers to the verbal problems 
which demand increased perceptual ability of geometrical figure relations and basic 
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geometrical reasoning, while the first-order factor F6 consists of the verbal perimeter 
and area problems.  

 
Figure 1. The CFA model of the geometrical figure understanding. 
To test for possible similarities between the two educational level groups’ 
geometrical figure understanding, multiple group analysis is applied, where the 
proposed three-order factor model is validated for elementary and secondary school 
students separately. The model is tested under the assumption that the relations of the 
observed variables to the first-order factors, of the six first-order factors to the three 
second-order factors and of the three second-order factors to the third-order factor 
will be equal across the two educational levels. The fit indices of the model tested are 
acceptable [x2 (485) = 903.78, CFI= 0.97, RMSEA= 0.04, 90% confidence interval 
for RMSEA= 0.036, 0.044]. Thus, the results are in line with our second hypothesis 
that the same geometrical figure understanding structure holds for both the 
elementary and the secondary school students. It is noteworthy that some factor 
loadings are higher in the group of the secondary school students suggesting that the 
specific structural organization potency increases across the ages.   
The effect of students’ educational level. In order to determine whether there are 
significant differences between primary and secondary school students concerning 
their performance in the different aspects of geometrical figure understanding, a 
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multivariate analysis of variance (MANOVA) is performed. Table 1 presents the 
means and the standard deviations for these dimensions in the two educational levels.  
Overall, the effect of students’ educational level (primary or secondary) is significant 
(Pillai’s F(6,1079)=34.43, p<0.001). In particular, the mean value of secondary school 
students’ geometrical figure perceptual ability (F1) is statistically significant higher 
(F(1,1079)=79.51, p<0.001) than the mean value of primary school students. Similarly, 
the mean value of secondary school students’ recognition ability (F2) is statistically 
significant higher (F(1,1079)=38.81, p<0.001) than the mean value of primary school 
students. 
In tasks demanding reconfiguration (F3) secondary school students’ performance is 
statistically significant higher (F(1,1079)=74.34, p<0.001) than primary school students’ 
performance. In the same way, the mean value of secondary school students’ 
performance in place way modification tasks (F4) is statistically significant higher in 
comparison with primary school students’ performance (F(1,1079)=36.03, p<0.001).  
Concerning primary and secondary school students’ performance in verbal problems 
the results are quite different in the two dimensions. Particularly, in verbal problems 
7 and 8 (F5) the performance of secondary school students is statistically significant 
higher (F(1,1079) =105.38, p<0.001) than the performance of primary school students. 
In contrast, although the performance of secondary school students in verbal 
problems 9, 10 and 11 (F6) is also higher than the performance of primary school 
students this difference is not statistically significant (F(1,1079)=0.03, p=0.85).  
Therefore, the above findings verify the third hypothesis stating that differences exist 
in the geometrical figure understanding performance of primary and secondary school 
students. In particular, secondary school students’ performance is higher in all the 
dimensions of the geometrical figure understanding relative to the primary school 
students’ performance.  
Level  F1 F2 F3 F4 F5 F6 

 X  SD X  SD X  SD X  SD X  SD X  SD 

Primary 0.45 0.41 0.62 0.26 0.32 0.31 0.31 0.38 0.38 0.40 0.247 0.28

Secondary 0.66 0.38 0.72 0.27 0.49 0.35 0.45 0.42 0.63 0.40 0.251 0.31

Table 1: Means and standard deviations in geometrical figure apprehension 
dimensions in primary and secondary school students 

Similarity diagrams. Figure 2 and 3 present the similarity diagrams of primary and 
secondary school students’ responses to the tasks of the test. Particularly, in Figure 2 
two clusters (i.e., groups of variables) can be distinctively identified. The first cluster 
consists of the variables corresponding to the perceptual tasks (Pe1a, Pe1b, Pe1c, 
Pe1d, Pe1e, Pe1f, Pe1g). In the second cluster the variables representing the 
recognition, operative and verbal problem solving tasks are included (Pe2a, Pe2c, 
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Pe2b, Pe2e, Ve11, Pe2d, Pe2f, Op6c, Ve7, Ve8, Ve9, Ve10, Op6a, Op6b, Op3, Op5, 
Op4). 

  
Figure 2. Similarity diagram of primary 
school students’ responses to the test 

Figure 3. Similarity diagram of secondary 
school students’ responses to the test 

In Figure 3, three clusters can be identified. The first cluster includes the perceptual 
tasks and an operative task (Pe1a, Pe1b, Pe1c, Pe1d, Pe1e, Pe1f, Pe1g, Op6c). The 
second cluster consists of an operative task and the verbal problem solving tasks 
(Op5, Ve8, Ve9, Ve10, Ve11, Ve7). The third cluster involves the recognition tasks 
and some of the operative tasks (Pe2a, Pe2b, Pe2c, Pe2d, Pe2e, Pe2f, Op6a, Op6b, 
Op3, Op4). Comparing the two diagrams some relations between the variables remain 
invariant indicating a stability of the way the primary and secondary school students 
behave during their solution process (e.g. Pe1a, Pe1b, Pe1c, Pe1d, Pe1e, Pe1f, Pe1g 
and Ve8, Ve9, Ve10).  
However, differences are observed in many relations of variables. For instance, 
primary school students behave in a similar way during the solution of the 
recognition and verbal problem solving tasks, while secondary school students 
behave in a similar way during the perceptual, some operative and verbal problem 
solving tasks. Furthermore, in Figure 3 the three clusters are strongly connected with 
each other indicating that secondary school students behave in a consistent way 
during the solution of the perceptual, operative and discursive tasks. In contrast, 
primary school students deal with perceptual tasks in isolation indicating a 
compartmentalized way of thinking (Duval, 2002). The similarity diagrams’ results 
provide evidence for differences in the way primary and secondary school students 
behave during the solution of the perceptual, discursive and operative apprehension 
tasks, verifying the fourth hypothesis.     
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CONCLUSIONS 
This study investigated the role of perceptual, operative and discursive apprehension 
in geometrical figure understanding. Structural equations modelling affirmed the 
existence of six first-order factors indicating the differential effect of perceptual and 
recognition abilities, the ways of figure modification and measurement concept, three 
second-order factors representing perceptual, operative and discursive apprehension 
and a third-order factor that corresponded to the geometrical figure understanding. It 
also suggested the invariance of this structure across elementary and secondary 
school students. Thus, emphasis should be given in all the aspects of geometrical 
figure apprehension in both educational levels concerning teaching and learning.  
Furthermore, differences existed in the geometrical figure understanding performance 
of primary and secondary school students. Particularly, secondary school students’ 
performance was higher in all the dimensions of the geometrical figure understanding 
relative to the primary school students’ performance. The performance improvement 
can be attributed to the general cognitive development and learning take place during 
secondary school. In fact, secondary school curriculum in Cyprus involves many 
concepts already known and mastered during primary school. This repetition of 
concepts leads to higher performance even though primary and secondary school 
instructional practices differ. 
Concerning the way students behaved during geometrical tasks solution process it 
was observed that the behaviour of primary and secondary school students was 
similar during the solution process of some of the tasks. This finding revealed that 
geometrical figure understanding stability existed to a certain extent in these students’ 
behaviour. However, in some cases differences were observed in the way the two age 
groups of students dealt with geometrical figure understanding tasks. To be specific, 
secondary school students behaved in a consistent way during the solution of the 
perceptual, operative and discursive tasks. In contrast, primary school students dealt 
with perceptual tasks in isolation indicating a compartmentalized way of thinking. In 
fact, the results provided evidence for the existence of three forms of elementary 
geometry, proposed by Houdement and Kuzniak (2003). We may assume that in this 
research study, primary school teaching is mainly focused on Geometry I (Natural 
Geometry) that is closely linked to the perception, is enriched by the experiment and 
privileges self-evidence and construction. On the other hand, secondary school 
teaching gives emphasis to Geometry II (Natural Axiomatic Geometry) that it is 
closely linked to the figures and privileges the knowledge of properties and 
demonstration. As a result, in the case of primary school students geometrical figure 
is an object of study and of validation, while in the case of secondary school students 
geometrical figure supports reasoning and “figural concept” (Fischbein, 1993).        
It seems that there is a need for further investigation into the subject with the 
inclusion of a more extended qualitative and quantitative analysis. In the future an 
investigation of the way students who master perceptual, operative and discursive 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 703



  
apprehension behave in complex activities that require a coordinated approach to 
these geometrical figure understanding dimensions should be conducted. It would be 
also interesting to compare the strategies primary and secondary school students use 
in order to solve perceptual, operative and discursive apprehension tasks. Besides, 
longitudinal performance investigation in geometrical figure understanding tasks for 
specific groups of students (e.g. low achievers) as they move from elementary to 
secondary education should be carried out. 
 
REFERENCES 
Bentler, M. P.: 1995, EQS Structural equations program manual, Encino, CA, 

Multivariate Software Inc.  
Bodin, A., Coutourier, R., & Gras, R.: 2000, CHIC : Classification Hiérarchique 

Implicative et Cohésive-Version sous Windows – CHIC 1.2, Rennes, Association 
pour la Recherche en Didactique des Mathématiques. 

Brousseau, G.: 1997, Theory of didactical situations in mathematics, Dordrecht, The 
Netherlands, Kluwer. 

Duval, R.: 1995, ‘Geometrical Pictures: Kinds of Representation and Specific 
Processes’, in R. Sutherland & J. Mason (eds.), Exploiting mental imagery with 
computers in mathematical education, Berlin, Springer, pp. 142- 157. 

Duval, R. : 1998, ‘Geometry from a cognitive point of view’, in C. Mammana & V. 
Villani (eds.), Perspectives on the Teaching of Geometry for the 21st century, 
Dordrecht, Kluwer Academic, pp. 37-51. 

Duval, R.: 1999, Representation, Vision and Visualization: Cognitive Functions in 
Mathematical Thinking. Basic Issues for learning, Retrieved from ERIC ED 466 
379. 

Duval, R.: 2002, ‘The cognitive analysis of problems of comprehension in the 
learning of mathematics’, Mediterranean Journal for Research in Mathematics 
Education 1(2), 1-16. 

Fischbein, E.: 1993, ‘The theory of figural concepts’, Educational Studies in 
Mathematics 24(2), 139-162.  

Fischbein, E., & Nachlieli, T.: 1998, ‘Concepts and figures in geometrical reasoning’, 
International Journal of Science Education 20(10), 1193- 1211.  

Houdement, C., & Kuzniak, A.: 2003, ‘Elementary geometry split into different 
geometrical paradigms’, in M. Mariotti (ed.), Proceedings of CERME 3, Bellaria, 
Italy, [On line] 
http://www.dm.unipi.it/~didattica/CERME3/draft/proceedings_draft  

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 704



  
Kurina, F.: 2003, ‘Geometry - The resource of opportunities’, in M. Mariotti (ed.), 

Proceedings of CERME 3, Bellaria, Italy, [On line] 
http://www.dm.unipi.it/~didattica/CERME3/draft/proceedings_draft  

Lerman,  I.C.: 1981, Classification et analyse ordinale des données, Paris, Dunod. 
Mesquita, A. L.: 1998, ‘On conceptual obstacles linked with external representation 

in geometry’, Journal of mathematical behavior 17(2), 183-195.  
Mullins, E. R., & Irvin, J. L.: 2000, ‘Transition into middle school’, Middle School 

Journal 31 (3), 57 -60. 

Presmeg, N.: 2007, ‘The power and perils of metaphor in making internal 
connections in trigonometry and geometry’, in D. Pitta-Pantazi & G. Philippou 
(eds.), Proceedings of the Fifth Congress of the European Society for Research in 
Mathematics Education: Working Group 1, The role of images and metaphors in 
the learning and understanding of mathematics, Larnaka, Cyprus, ERME, 
http://www.cyprusisland.com/cerme/, pp. 161-170. 

APPENDIX 
1. Name the squares in the given figure: 

 
(Pe1a, Pe1b, Pe1c, Pe1d, Pe1e, Pe1f, Pe1g) 

2. Recognize the figures in the parenthesis 
(KEZL, IEZU, EZHL, IKGU, LGU, 
BIL) 

 
(Pe2a, Pe2b, Pe2c, Pe2d, Pe2e, Pe2f) 

3. Underline the right sentence: 

(Op4) 
a) Fig. 1 has equal perimeter with Fig. 2 
b) Fig. 1 has smaller perimeter than Fig. 2 
c) Fig. 1 has bigger perimeter than Fig. 2  

4.Peter combines 
Triangle 1 and 
Triangle 2 
making Figure 
A. Calculate the 
perimeter of 
Figure A. (Op6a) 
 

5. In the following figure the rectangle 
ABCD and the circle with centre A are 
given. Find the length of EB.  

      (Ve7) 

6. Themistoklis has a square field with side 
40m. He wants to construct a square 
swimming pool which is far from each side 
of the field 15m. Find the swimming pool 
perimeter.  (Ve9)   
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GESTALT CONFIGURATIONS IN GEOMETRY 
LEARNING 

Claudia Acuña 

Cinvestav-IPN, Mexico

ABSTRACT

The treatment of geometric diagrams requires the handling of the figural  
aspects of the drawing as much as the conceptual aspects contained in the 
figure1. In geometry we use the figural aspects of diagrams as symbols to  
prove or resolve problems.  When we interpret figural information, what  
we call  Gestalt  configurations  emerge:  auxiliary  figural  configurations,  
real or virtual, that give meaning and substance to an idea that facilitates  
the proof or solution to the problem.  In this work we give arguments to  
acknowledge  the  existence  of  these  resources,  identify  their  symbolic 
nature  and  consider  the  reasons  behind  their  existence,  sometimes 
ingrained, sometimes superficial.   

INTRODUCTION 

To conceive representation as “one thing in place of another, for someone” 
Pierce (1903) allows us to interpret it as a semiotic mediator between the 
abstract object of study and the cognizant individual.

In  this  sense  the  symbolic  aspect  in  terms  of  the  syntax  of  the 
representation must be considered as much as its semantics.  The semantics 
are grasped by the individual through meaningful problematic practices.

In  this  work  our  aim  is  to  identify  the  role  played  by  the  auxiliary 
constructions  related  to  the  use  of  diagrams,  which  we  call  Gestalt 
constructions and which are built by the users when they figural manipulate 
drawings in order to treat them as figures, Laborde and Caponni2, (1994). 

We hold that these configurations are profoundly ingrained in our students, 
that  they  are  intentional  but  often  unstable.  They  can  be  a  particularly 
valuable resource in heuristic tasks of figural investigation.  

THEORIC FRAMEWORK 

From the point of view of Duval (1995): 

1 In the sense of  Laborde and Caponni

2 The treatment of the graph as a drawing or figure, is based, firstly, on observing its properties as an 

actual pictorial representation or, secondly, considering the mathematical properties associated with the 

graphical representation.  
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One figure3 is an organization in marked contrast to the shine.  It emerges 
from the background through the presence of lines or points, governed by 
Gestalt law and perceptual indications p.142 

In  terms  of  the  Gestalt  relationship  the  figure  has  “form,  contour,  and 
organization,” while its preceding appears as an “amorphous and infinite 
continuity”, Guillaume (1979) p. 67.
Pictorial representations may be considered external and iconic, Mesquita 
(1998); they are also defined as inscriptions, Roth & McGinn (1998); or 
diagrams, Pyke (2003).  The unifying idea is that the graph is an external 
representation that is materialized through the use of pencil and paper, the 
computer or other means and is, therefore, available through these means, 
in contrast to mental representations which are not accessible, op cit.
Below  we  consider  the  graphic  representation  as  a  diagrammatic 
representation or  diagram that  preserves  the relationships  of  the objects 
involved.   Diagrams  from  the  viewpoint  of  sense  will  be  observed  in 
themselves and interpreted from the point of view of the reference between 
them. 
On the  other  hand,  diagrams  are  figural  concepts  that,  in  the  words  of 
Fischbein (1993) can be thought of as concepts and as objects: this duality 
emphasizes  the  different  interpretations  associated  with  graphic 
representations. 
Thinking  of  a  diagram  as  an  object  means  associating  specific  figural 
properties with it, such as position or form.  These considerations on what 
thinking  about  it  as  an  object  means,  in  Fischbein’s  way,  refer  to  a 
mathematical  object,  this is abstract. The dichotomy between object and 
concept  is  related  more  to  a  theory  need  to  include  non-formalized 
mathematical aspects, such as position or form, than to the mathematical 
objects in themselves.

For the purposes of this work we refer to the treatment of representations in 
geometry  based  on their  iconic  or  figural  properties  centered  on  visual 
image and to their external nature as embodied materially on paper or other 
support. 

The  nature  of  diagrams  in  geometry  learning  is  ruled  by  two  types  of 
properties as Laborde (2005), observes:

Diagrams in two-dimensional geometry play an ambiguous role: on one 
hand they refer to theoretical geometrical properties, while on the other, 
they offer  spatial-graphical  properties  that  can give rise to a student’s 
perceptual activity p. 159

The treatment given to the diagram as an object in geometry learning is 
closer  to  that  given  to  a  drawing  as  a  current  instance,  and  not  as  an 

3 The word “figure” in this quote has a meaning close to diagram, distinct from how we use it in the rest 
of the work.
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abstract mathematical object in the concept-object duality.  It takes students 
some  time,  in  fact,  to  incorporate  the  idea  that  drawn  objects 
(representations) have properties which are distinct from those of real life 
objects.

In terms of learning, Laborde op cit. warns:

The distinction of the two domains, the spatial-graphical domain and the 
geometrical one, allowed us to show that the intertwining of the spatial 
aspects of diagrams with the theoretical aspects of geometry is especially 
important at the beginning of learning geometry op. cit. p. 177. 

It is in the spatial-graphical domain where spatial and figural relations are 
developed  that  give  shape  to  the  thought  structures  that  are  developed 
around the Gestalt.   First,  as a relation between the background and the 
form and later, as resources in the explanation, construction or solution of 
problems, they give rise to Gestalt configurations.  

Studies related to visualization and, most recently, visual perception, have 
addressed  the  role  played by  Gestalt  relations  between background and 
form in the pictorial representation that accompanies the mathematics, and 
the importance of considering it on a certain type of perceptive perception, 
Duval (1995)
In  the  work  of  Nemirovsky and  Tierney (2001),  regarding  spaces  of 
representation, we observe a special interest in establishing the existence of 
distinct ways of interpreting the same space of representation based on its 
use and meaning relative to the objects represented. 
From the above we can say that the use of diagrams depends not only on 
what is represented in them, but also on the relations we can establish from 
them, including spatial information which includes Gestalt relations.

Gestalt configurations 

In the work of Dvora and Dreyfus (2004) we have unjustified assumptions 
based on diagrams in geometry due to students confusing a mathematical 
motive and a purely visual motive.  In addition, when problem solving they 
base themselves more on their beliefs about the topic in question than on 
the available propositions.  The authors find that diagrams affect students’ 
way  of  thinking  because,  among  other  things,  they  use  diagrams  as 
evidence.  

The Gestalt configurations dealt with here have no evidential connotation, 
they are, instead, auxiliary constructions that complete or give shape to an 
idea and have their origin in the need to solve problems which involve a 
diagram.
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Gestalt configurations are not related to all the possible pictorial tests that 
claim  to  find  a  solution  helped  by  the  drawing,  whether  the  lead  is 
promising or not.   

A  Gestalt-type  configuration,  as  well  as  the  intentionality  of  solution, 
should contain a reference to the relation between background and form, 
that is, Gestalt configuration “adjusts” to the general composition of the 
diagram.  In other words, Gestalt  configuration manifests as a cognitive 
resource to give substance to a thought and is distinguished by its figural 
relation between the background and the form of the diagram in question.   

The  symbolic  relations  of  a  Gestalt  configuration  are  determinant:  it  is 
dependent on them whether this configuration can be built or not.  By way 
of example, Acuña (2004), we have the case in which without the presence 
of a graphic reference the very existence of the geometric or graphic object 
is in doubt, as in the following cases:

Fig. 1 Point A is the only one with equal ordinate and smaller abscissa than 
P, in this plane

In the student’s answer to the question about the number of points that have 
an equal ordinate and smaller abscissa than the point (-2,3) in which he (or 
she) affirms:  1 on this plane, we can see that he is trapped by the actual 
representation since the picture offers only one unit mark on the abscissa 
axis.  The student does not consider alternative solutions other than that 
point located above the mark of the whole abscissa unit.  The absence of 
the mark combines with the idea that a point should have a whole abscissa 
unit.  This student was unable to build neither of a suitable configuration 
for the solution or a Gestalt configuration.  

In the following case,  Acuña (1997) we have (see Figure 2)  a question 
about whether the suggested points are on the drawn straight lines or not. 
If we look at the point (-2, 3) we see that the straight line proposed does not 
reach the position where a perceptive solution could be given, that is, one 
perceived “by eye”.  This fact makes the student doubtful and answers that 
if we lengthen the straight lines, the point is on it, otherwise it isn’t. 

Our student is unsure of the existence of the point in spite of knowing its 
coordinates, thus the Gestalt configuration cannot be built because of the 
absence of the graphic reference that gives it substance.  In this case, if the 
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straight line does not reach the indicated place, there is no security about its 
existence,  which  impedes  the  acceptance  of  the  relation  between  the 
straight line and the point.

Fig. 2 Problem of points on the straight lines 

Constructions with appropriate Gestalt configuration 

In relation to the construction and use of geometric figures, Maracci (2001) 
has  observed  that  students  insist  on  making  constructions  that  possess 
certain, from their point of view, appropriate aspect. 
This insistence is accompanied by the preference for the horizontal-vertical 
position, or the choice of graphs that appear to be, for example, a straight 
line Mavarech and Kramarsky, (1997) or a segment of a straight line with 
an slope equal to 1, Acuña (2001), as well as students’ penchant for using 
prototypes4  Hershkowitz (1989), or the use of the “best” examples from 
among one same category of possible cases, Mesquita (1998). 

This phenomenon can be explained by the students’ need to find a good 
orientation and familiar representation.  In other words, they prefer to build 
“appropriate”  configurations  in  general  and  Gestalt  configurations  in 
particular that give meaning to the actual figural relation.   

In  some  tasks  with  qualitative  instructions,  as  in  figure  3,  we  have 
identified a tendency to recognize and build graphs in a certain position and 
with a certain peculiarity, forming prototypes, Acuña (2001).   A large part 
of the students surveyed with the question for draw straight line with only 
points with positive abscissa, responded with a half-line that reaches the 
origin, with a slope of 1.  This answer was more frequent than any other, 
correct or incorrect, in high school students.  

4 We call prototypical figures those which correspond to a regular organization of contour, orientation and 

form;  prototype  figures  tend  to  respect  laws  of  enclosure  (closed  limits  are  preferably  perceived), 

favoring some directions (such as horizontal and vertical) and forms (that tend to be regular, simple, and 

symmetrical); the components of the figure (sides, angles for example) have approximate dimensions.
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5.  Draw a straight line where all the 
points have a positive abscissa, that 
is, where x > 0 is true for all points 
on the line.

Fig. 3 Answer to a qualitative-type construction task

The students’ answer presupposes that the straight line built does not cross 
to the other side of the vertical axis, as if it were a barrier, so that it will not 
take negative values for the abscissa.   
The non-ostensive nature of the straight line related to the infinite extension 
of its extremes contributes to the incorrect interpretation of the answer that, 
in  strictly  figural  terms,  has a  plausible  logic,  especially  since  it  is  not 
possible have a representation of a straight line, only parts of it.  
The  non-ostensive  aspect  on  the  infinite  extension  of  the  line  can  be 
accepted  theoretically  by  the  students,  but  the  impossibility  of  building 
theoretical straight lines leads them to accept the segments of a straight line 
as if they were straight lines themselves. 
In figure 4,  Acuña,  (2002) students  are asked to  draw the graph of  the 
straight line that would have an ordinate equal to the origin of the original 
straight line that appears on the left.

Original straight 
line 

Majority answer

Fig. 4  Gestalt configuration combining figure and form

The majority of our students drew the graph on the far right. Many of them 
had correctly recognized the ordinate of the origin in straight lines given 
earlier; nevertheless, here they choose to conserve the “triangular” image 
formed in both graphs, preferring to relate the two graphs with a similar 
Gestalt.   
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This type of answer is strongly conditioned by the situation of the exercise, 
in particular given that this perception is unstable, as we can see in other 
exercises.  
 In the following exercise, Sosa (2008) two high school students have been 
asked to build the height corresponding to the side marked with X in each 
case.  

Fig. 5  Exercises on height construction

In these two cases, we have the application of a Gestalt configuration to 
solve the problem of the construction of the height of the marked side.  In 
the answer on the left, the height is thought of as a conformation formed by 
the vertex of the obtuse angle, or what looks like it. The student also uses 
an auxiliary parallel line which we suppose was in the image the student 
recalled.

In the case of  the constructions on the right  (see figure 3)  we have an 
auxiliary construction that includes the line marked with X but where this 
is  a  part  of  another  auxiliary  construction  that  presents  a  right-angle 
triangle where we observe some of the characteristics relevant to height, 
but  its  construction  is  unknown.   The  marked  line  is  included  in  his 
construction, but its role in the construction is reinterpreted and he does 
everything he can to make it look good.   
In the following case  we ask students  to  mark the straight  lines with a 
different slope to that of the one given. 

The formation of this configuration not only appears when the definitions 
of  the  geometric  objects  are  unknown or  is  recalled  inexactly,  but  also 
when globalizing an idea of position, as in the following  example. In the 
case of figure 6 and 7, we ask high school students to choose from the 
lower graphs that which have a different slope to the one proposed initially. 

The results allow us to see their idea of a slope in this exercise.  Despite 
having correctly  compared,  based  on perception,  the slope  of  the  given 
lines,  here  they  conceive  it  as  the  Gestalt  configuration  formed  by  the 
position of the straight line relative to the axes, that is, the line is positioned 
from left to right and from up to down.    
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Fig. 6 Straight line with given slope

   

   

Fig. 7 Gestalt configuration on a slope

The 19.3 % of our sample only marked the straight line that is positioned 
from left to right, leaving aside the idea of slope that they used before. 

The preference towards a “good” Gestalt appears to impose itself in tasks 
of  identification  of  figural  properties.   This  recourse  may  signify  an 
advance or a backward step for solution strategies. What does appear to be 
constant is the use of this type of configuration to test solutions to problems 
with diagrams.    

These  configurations  may  disappear  quickly  with  better  instruction,  but 
they also have aspects of profound rooted as in the case of Moschkovich’s 
(1999) investigation, regarding the use of the y-intercept.  She finds that 
when observing the graph of  a  straight  line students  may expect  the x-
intercept to appear in the equation because on the graph it is a salient as y-
intercept  although  this  is  not  necessarily  convenient  in  the  case  of  the 
equation  y = m x + b however, they are important for the equation that 
considers two points on the straight line. The appeal of the x-intercept is so 
big than could think it as a preconception; in her investigation she affirms 
that: 

The use of x-intercept is not merely the result of choosing or emphasizing 
the  form  y =  m x +  b  over  other  forms but  is  instead an instance  of 
students making sense of the connection between the two representations 
and reflection on the conceptual complexity of this domain p. 182 
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We believe from the above that it is possible to suppose the existence of 
figural resources that take the form of Gestalt configurations that respond 
on one hand, to the necessity of giving substance to figural ideas, and on 
the  other,  that  these  configurations  are  ruled  by  the  relations  between 
background  and  form  on  which  rests  the  figural  representation  of 
mathematical and, more concretely, geometric diagrams. 

CONCLUSIONS

A Gestalt configuration is a mental or real construction utilized by the user 
to resolve, complete or give meaning to a given problem through a diagram 
that can be treated as a drawing or figure.  

Gestalt configurations have a personal character, but on occasions reflect 
epistemological obstacles that are supported by the non-ostensive nature of 
the properties of the objects represented by the diagrams, as in the case of 
the infinite character of some of these representations.

The formation of some Gestalt configurations is characterized by having an 
ephemeral life, although there are some that persist; as they are personal 
productions of the user.   In general,  they are considered productive and 
reliable  for  confronting  familiar  graphic  settings  towards  resolving 
problems that include diagrams.    

In all cases, the construction of the Gestalt configurations is intentional in 
spite of the inability to ensure its pertinence. Gestalt configurations do not 
only appear as visual traps but as a diversity of resources to solve figural 
problems or proving.
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INVESTIGATING COMPARISON BETWEEN SURFACES

Paola Vighi

Mathematics Department – University of Parma – Italy

This  work  is  based  on  a  geometrical  problem  concerning  comparison  between  
surfaces, presented to 58 pupils 10-11 years old. We present a worksheet aimed at  
revealing  children’s  reasoning  about  visualisation  in  geometry.  We  compare  the  
ways in which various problems are tackled by two different  groups of  students:  
Group  E  (experimental)  and  Group  T  (traditional).  We  conclude  with  some  
observations about teaching geometry and suggestions for its improvement.

INTRODUCTION

During a lecture to future teachers about fractions, I observed as they were analysing 
suitable  geometric  figures,  drawn  using  computer  graphics.  I  realised  that  these 
drawings could be useful for investigating geometrical learning. My attention was 
particularly  attracted  by  different  representations  of  the  half  of  a  rectangle.  I 
mentioned my idea to a group of experienced Primary School teachers, and one of 
them, when she saw figures A, B and C (Figure 1), said: “If the pupils have already 
worked with fractions, they will certainly use and recognize the concept of half.” As 
in  my  experience  this  conclusion  is  rash  and  not  entirely  obvious,  I  decided  to 
investigate it. Working with the teachers, we prepared a worksheet based on Figures 
A, B, and C and on a fourth Figure D, expressly created. 

The aim of the research is twofold: to investigate the use of the concept of ‘half,’ and 
chiefly  to study geometrical  thinking observing pupils  behaviours,  with particular 
reference  to  registers  of  representation  (Duval,  1998-2006),  especially  the  figural 
register.

THEORETICAL FRAMEWORK

The  concept  of  half and  related  notations  are  present  in  five  and  six-year-old 
children  (Brizuela,  2006).  At  this  age,  children  use  different  semiotic 
representations  (Duval,  1995),  but  it  is  difficult  for  them  recognise  a  half  in 
different representations (Sbaragli, 2008). According to Duval, the passage from a 
semiotic  representation  to  a  different representation  is  fundamental  for  a 
conceptual learning of objects. In particular, he distinguishes two possible kinds of 
transformation  of  representation:  conversion (from a  semiotic  representation  to 
another, in a different register) and treatment (from one semiotic representation to 
another, in the same register). The half of a geometrical figure is usually presented 
to  children  when  we  introduce  fractions,  as  one  of  the  first  examples. 
Subsequently, teachers move on to writing fractions and to calculating with them, 
moving from conversions to treatments.

Traditionally in Primary School we use geometrical figures as a suitable tool for 
teaching  and  learning  geometry.  Figures  involve  a  fundamental  action  for  the 
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pupil:  looking.  The  didactical  contract  (Brousseau,  1986)  based  on  showing 
requires that 

“the  pupil  understands  what  the  teacher  expects  that  s/he  will  see,  with  the  false 
illusion that both must see the same” (Chamorro, 2006).

If both parties do not see the same, the contract is broken and learning does not take 
place. So we need to … “teach to see”. In geometry, a first problem is created by 
perception,  which may  hinder  the  ways  of  seeing  figures.  In  other  words,  the 
perceptive  indicators  may  be  misleading  for  the  qualitative evaluation  of  the 
extension  of  surface  or  of  other  magnitudes.  Gestalt theory  deals  with  laws  of 
organisation of visual data that lead us to see certain figures rather than others in a 
picture.

More recent researches show that

“…it is the task that determines the relation with figures. The way of seeing a figure 
depends on the activity in which it is involved.” (Duval, 2006).

Duval (2006) analyses and classifies the different ways of seeing a figure depending 
on  the  geometrical  activities  presented  to  pupils.  He  distinguishes  four  ways  of 
visualising a figure: by a botanist, a surveyor, a builder or an inventor. Botanists and 
surveyors  have  ‘iconic  visualisation’,  and  perceive  the  resemblance  between  a 
drawing and the shape of an object. Builders and inventors on the other hand have 
‘non-iconic  visualisation’,  and their  perception  is  based  on the  deconstruction  of  
shapes.  Duval analyses the introduction of supplementary outlines, which he thinks 
fundamental  in ‘non-iconic visualisation’,  in particular  he discusses  re-organising 
outlines which allow to reorganise a figure and thus to reveal in it parts and shapes 
that are not immediately recognizable. .

He also discusses  the  méréological  decomposition1 of shapes,  a  division of  the 
whole  into  parts  which  can  be  juxtaposed  or  superimposed,  with  the  aim  of 
reconstructing  another  figure,  often  very  different  to  the  starting  figure.  This 
allows the detection of geometrical properties needed to solve a problem, using an 
exploration  purely  visual  of  the  figure  initial.  He  distinguishes  three  kinds  of 
méréological decomposition: material (with cutting and rebuilding as in a jigsaw 
puzzle), graphic (using reorganising outlines) and by looking (with the eyes, not 
“mentally”).  We tackled  the  problem of  “which  is  ‘visual’  in  geometry?” in  a 
research paper (Marchini et al., 2009) where we analysed in-dept the literature on 
this argument. 

In  Italian  Primary  School,  comparison  between  surfaces is  often  reduced  to 
evaluating areas (measurements of extension of surfaces) and to comparing numbers. 
Teachers tend to determine equivalence of the magnitude of two objects by means of 
measurement. But “transferring the comparison to the numerical field, we are in fact 
working with numerical  order  which doesn’t  consider  the criterion of  quantity  of 
1  In mathematical logic, mereology is a theory dealing with parts and their respective whole. The 

term was coined by Łésniewski in 1927, from the Greek word μέρος (méros, "part").
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magnitude” (Chamorro, 2001). An epistemological slide from geometry to arithmetic 
occurs.  The  comparison  between  surfaces  and,  in  particular,  the  “equivalence  of 
magnitude” is a fundamental but difficult concept, which requires specific teaching. 
In previous research we wrote:

“We did not predict that determining shapes of the same area would be difficult, …. But 
in fact there were cases where pupils failed to recognise that two congruent rectangles, 
set at a different way on the sheet of paper, had the same extension.”  (Marchetti et al., 
2005).

The  comparison  between  surfaces  is  also  influenced  by  the  relationship  between 
shape and surface:  when we  present  a  surface,  we  present  something  that  has  a 
specific shape.  If the shape changes,  a younger child might think that the surface 
changes  too.  Research  shows  clearly  that  pupils  under  12  have  difficulty  in 
understanding that the shape and the surface of a figure are different (Bang Vinh & 
Lunzer E., 1965).

RESEARCH METHODOLOGY

We presented the worksheet at the end of the last year of Primary School, to three 
classes of students 10-11 years old, which had followed two different approaches to 
geometry. One class had already taken part in an experimental project and the other 
two  classes  had  received  only  traditional  teaching.  We  named  the  first  group 
‘Experimental’ (Group E) and the second group ‘Traditional’ (Group T). Group E 
consisted of 26 pupils; they had followed a Mathematics Laboratory Project (MLP)2, 
during the last three years of Primary School. It focussed on activities that started 
from a practical problem, such as fencing in a field or tiling a room, and led to the 
introduction of specific instruments by the teacher as the children perceived the need 
for them. The early activities involved concrete materials and children using their 
hands, and geometric instruments and theoretical concepts were introduced in later 
activities. So Group E did not follow traditional curricular teaching; we presented 
new activities that were different in terms of both methodology and content. Group T 
consisted  of  32  students  from  two  classes  which  had  followed  the  traditional 
mathematics  curriculum.  Both  groups  had  previously  studied  and  worked  with 
fractions and areas.  For Group E, however,  the project  had opted to present  area 
before perimeter, which is unusual in Italian schools.

Pupils’  behaviours  were  observed  as  follows:  when  the  teacher  presented  the 
worksheet,  s/he explained that  not  was possible  to use a  rubber,  but  if  necessary 
children  could  write  their  notes  and  opinions  on  another  sheet  of  paper.  I  then 
analysed the protocols.

2 The project was carried out by two researchers, D. Medici and P. Vighi, and two teacher-researchers, P. Marchetti and 
E. Zaccomer.
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THE TASK AND ITS ANALYSIS

In the following pages we present and discuss the worksheet. 

A pizza-maker with a lively imagination displays these slices of pizza. 

All  the  slices  have  one  part  with  only  tomato  (dark)  and  one  part  with  only 
mozzarella (light).

One child wants a slice of pizza with a lot of tomato.

Which slice do you think he or she should choose? Why? ..........................................

Does the slice of pizza below have more mozzarella or more tomato? .......................

Why? ............................................................................................................................

This  activity  on geometrical  figures  in  the  first  part  lies  on the first  level  of  van 
Hiele’s  theory,  in  the  final  part  it  lies  on  the  second  level,  which  involves  the 
possibility  of  seeing  inside  geometrical  figures  and  seeing  and/or  making  a 
subdivision into parts (van Hiele, 1986). In the paradigmatic perspective introduced 
by Houdement and Kusniak (2003), the activity is situated in Geometry I.

Notice that the passage from A to B or C requires ‘treatments’ inside the register of 
visual representations. The first question is deliberately ambiguous; the form of the 
question could lead the child to opt for only one of the slices and, consequently, give 
a wrong answer. In other words,  the question could lead the child to exclude the 
equivalence of surfaces. The second part of the task presents an unusual geometrical 
problem. The slice is divided into three parts and the comparison concerns only two 
quantities of food (two surfaces). There is a different subdivision in half of the same 
rectangle as before. The question is formulated differently from the first: the problem 

Figure 1: the worksheet
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is the comparison between tomato and mozzarella.  Using a supplementary outline 
helps to find the answer. The main information is in the drawings: rectangles A, B, C 
and D are congruent (8 cm  ×  5.3 cm) and, in particular, in A and B we used the 
middle point of a side, without specifying this; in other words, we gave implicit data. 
Figures play an essential role: they are shown against a grey background, with the 
aim of distinguishing between the whole slice and its parts.

The context of the problem is intended to focus attention on surfaces. The figures in 
the first part, rectangles and triangles, are familiar; the pupils know the formulas for the 
calculation of their areas. The last ‘slice’ is made up of a dark triangle, representing 
tomato, and two other white triangles, not contiguous, representing just mozzarella. It 
is an unusual figure which does not appear in textbooks (it may not in fact appear in 
pizza shops either),  but if  the sheet  of paper is rotated,  it  probably becomes more 
familiar as a drawing related to the formula of area of a triangle. For Figure D too, 
children need to use the concept of half, or they need to “see” congruent parts, or draw 
supplementary outlines, or calculate areas and verify their equality. 

The analysis of A and B by  méréological decomposition is simpler than for C. In 
effect  there  is  a  difference  in  the  geometry  of  transformations:  in  A and B it  is 
sufficient to translate some pieces, while in C rotation is also required. As we saw, D 
implies cutting the figure and reconstructing congruent parts. We present slice D to 
investigate pupils’ strategies.  We want to establish whether children use the same 
methods  for  answering  both  questions,  or  if  D  encourages  them to  try  different 
methods. We also want to observe whether solving the second problem leads pupils 
to rethink their answers to the first.

RESEARCH RESULTS

The activity is presented in a geometrical context, which often seems to imply the use of 
specific geometrical tools. In many of the protocols the shift from the geometric register 
to the numerical register of fractions does not occur: ‘conversion’ between the registers 
does not take place.

Only a few answers to the first question (12% in Group E, 6% in Group T) use the 
concept of “half”: “Figures are divided in half”, or “Half the space is filled with 
tomato”. The question draws pupils’ attention only to the black shapes, or tomato. 
In other words, children focus on and compare particular parts, rather than looking 
at the slices globally. It is not by chance that the few answers which are based on 
“half”  make  recourse  to  the  relation  part-whole  (Hart,  1985):  “All  slices  are 
perfectly divided in the middle and the whole is equal for all figures”. Notice that 
the children use words that are usual in speaking about fractions, not the symbol 
1/2. In some cases the concept of half is questionable and ‘relative’: “I choose 
pizza C because tomato occupies the “biggest half.” The relation shape-surface also 
emerges: “Even if the pizzas are divided into different shapes, it is still half a slice 
and the slices are equal”.
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The “equal extension” of tomato surfaces in A, B, C was recognised by only 6 pupils in 
Group E and 4 in Group T. 

We now analyse different procedures observed for the first part of worksheet.

- by perception: children choose slice C because the tomato appears bigger (or “It 
looks like a piece of pizza”) (30% in E and 37% in T). In some cases, the choice is 
based on exclusion, which may be due to the question: some children verify that A 
and B have equal quantities of tomato, and they conclude that C must be bigger, 
without checking. Two pupils choose A because “it is larger,” taking account of 
one dimension only.

- by subdivision: here we notice very different behaviours according to the teaching 
methods  adopted.  In  Group T,  only  1  pupil  uses  méréological  decomposition, 
while in Group E 6 do so. Pupils divide figures B and C by drawing (graphic 
decomposition) or imagining (decomposition by looking) a continuation of the 
horizontal line present in slice A which divides the white and black parts. They 
observe that it is possible to shift some black pieces of B or C in order to obtain A. 
It is significant that some of them write “If I cut in half …”, although they did not 
see the half in Figures A, B and C.

- by calculation of area: only 4 pupils in Group E and 3 in Group T calculate 21.20 
cm2 as measure of three surfaces covered by tomato. There is also a problem of 
approximation: for figure B, in calculating 5.3 : 2 they stop at the first digit after 
the decimal point obtaining 2.6 and 2.6 ×  8 make 20.8. Slice B thus seems to have 
less tomato.

- by  calculation  of  perimeter:  6  children  in  Group  E  use  this  method  (maybe 
because perimeter was most recently studied) and 5 in Group T. Their procedures 
are based on measuring the sides of the black figures and their addition: in this 
way  C  appears  biggest.  This  is  a  manifestation  of  perimeter-area  conflict. 
(Chamorro, 2002), (Marchetti et al. 2005).

- by flooring with squares: based on reproduction of figures on squared paper, often 
without respect for shapes and measurements, or based on the superimposition of 
a squared grid, often not regular. Answers are based on counting the number of 
squares.

In the second part of the worksheet, we recorded 58% correct answers in Group E, 
and 34% in Group T.  Obviously the use of  half in the first  part  of the task is a 
successful strategy, as it is for the second part.

In Group E, previous methodological decisions and their experience of manipulation 
led children to tackle the problem in different ways. Some children took scissors, cut 
the pieces and superimposed two white pieces on the black. They still worked with 
real and not geometrical objects. Their conclusions may be “They are equal,” or not, 
because  there  is  a  problem of  approximation:  “They  differ  by  a  small  amount”. 
Recourse to  méréological decomposition promotes fast  and correct answers, based 
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simply on the drawing of a horizontal segment, and the height of the dark triangle. An 
interesting observation is that a few pupils use the expressions “triangle” or “height 
of triangle” in their explanations; they write: “I connected the vertex of triangle with 
the opposite side …” or “I drew a horizontal line …”. 

Some pupils make a rough estimate, and make recourse only to perception (26% in 
Group E, 40 % in Group T). They support their answers as follows: “I can see it,” 
“The part with tomato is slightly bigger.” In some answers the decision is based on 
the number of pieces, not on areas: “Mozzarella, because two pieces occupy more 
space than one.” 

Both groups make little use of calculation. One girl wrote: 5.3 ×  8 = 42.4 and 42.4 : 2 
= 21.2 tomato piece; 5.3 ×  5 = 26.5 and 26.5 : 2 = 13.25; 5.3 ×  3 = 15.9 and 15.9 : 2 
= 7.95; so 13.25 + 7.95 = 21.20 mozzarella piece. This is an example of rigorous 
application of rules, without geometrical reasoning.

Another boy uses ‘pre-algebraic’ notation and reaches an incorrect conclusion based 
only  on  intuition  or  perception.  He  tries  to 
explain (Figure 2) that, starting from the area of 
the rectangle, we can subtract the areas of two 
white triangles and we obtain the area of the big 
triangle (black). In the second part, he observes 
that the sum of the areas of the white triangles is 
bigger than the area of the ‘big triangle’, but he 
doesn’t explain why.

Some pupils measure two or all sides and multiply them: the idea of multiplication in 
area calculation is strong, which may be a result of the didactical contract, but there is 
no understanding of its meaning. We also find mixed procedures: (8 ×  5.3) – (8 + 6 + 
7) = 42.4–21 = 21.4  area tomato, 42.4–21.4 = 21.0 area mozzarella; the idea is to 
subtract from the rectangle area the dark triangle area, but the formula for finding the 
area of a triangle seems  not to be known and the pupil calculates the perimeter. 
Nevertheless one child has a good idea: to obtain the white area as complementary to 
the black in the rectangle. Only this one boy used this strategy: in fact in school we 
usually present exercises involving only one shape, and the possibility of calculating 
an area by subtraction is not introduced.
The solution  based  on  méréological  decomposition appears  the  best,  and  is  a 
successful strategy especially in Group E. We presume that the previous work with 
Tangram and a different methodological approach helps in the case of Figure D and 
its parts. Reasoning is based on the use of a supplementary outline (Figure 3).

Figure 2: pre-algebraic notation

Figure 3: méréological decomposition Figure 4: flooring with squares
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The idea of measuring with squared paper also appears. In particular, in the protocol 
reproduced in Figure 4 there is evidence of a lack of understanding: the child counts 
both  squares  and pieces  of  squares  and he  concludes  that  the  mozzarella  area  is 
bigger. In the case of surface measurement, schools usually make use of subdivision 
with squares; there is often no explanation of this method.  Moreover it is not suitable 
for figures with sides that are neither ‘horizontal’ nor ‘vertical’.

Perimeter is used a lot by Group T (18%), but only two pupils use it in Group E 
(0,07%). It seems that Figure D, which is unusual in traditional teaching, causes the 
“perimeter-area conflict” and reveals this hidden misconception. 

GENERAL CONCLUSIONS

In both groups there were pupils who made no use of geometrical reasoning, but only 
their eyes. The pizza problem is in fact unusual in that it requires observation of more 
than one shape and no explicit calculation of its perimeter or area. Often in real life 
we compare two quantities and we choose the bigger, using common sense rather 
than mathematics. So one child wrote: “From shapes A, B, and C, I choose C, since it 
looks  like  a  slice.  He was  maybe thinking of  the  shape  of  a  slice  of  cake.  One 
significant  answer  came  from a  child  imagining  a  real  pizza,  who  observed that 
comparison is impossible, because there is no information about the thickness of the 
tomato  and  mozzarella.  The  analysis  of  answers  confirmed  the  gap  between 
‘scholastic’  and  ‘real’  problems  (Zan,  1998).  In  other  words,  the  same  problem 
presented in the school or a snack bar may have different solutions. Canapés, in fact, 
are triangular, obtained by cutting a square along the diagonal, and it could well be 
that we think we are eating more than if the square of bread were cut in other way.

One week later, the teacher of Group E re-presented the worksheet to her class and 
encouraged  a  discussion  of  pupils’  own  solutions.  Many  quickly  recognized  the 
concept  of  half  as  a  key  to  the  problem and  modified  their  answers.  But  some 
children wrote an explanation clearly without conviction. As we wrote previously, in 
our experience the concept of half does not seem to have been acquired by pupils 10-
11 years old. In our opinion, the concept of half needs to be constructed gradually and 
it is important to work on it with regularity so that it can successfully prepare the 
ground for introducing fractions.

We also notice that children often use whole numbers as measures of triangle sides: 
unfortunately  in  Italy  the  problem of  approximation  is  neglected.  In  some  cases 
pupils  understand  that  different  numerical  results,  can  be  given  simply  by 
approximated  measurements,  but  in  other  cases  the  children  are  closely  tied  to 
numerical results, even where this conflicts with common sense.

The global analysis of protocols reveals the influence of different teaching methods. 
Comparison between the protocols of two groups shows clearly the existence of two 
different behaviours, closely connected to the “social norm” established in classroom 
(Yackel,  Cobb,  1996)  according  to  the  “didactical  contract”.  In  Group  T,  the 
necessity of following the rules leads to measurement by ruler and the calculation of 
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perimeters and areas. But in Group E, familiarity with manipulation, scissors and so 
on encourages the use of hands (and the head) (Chamorro, 2008). We observe the 
presence of an explicit, real geometrical aptitude in Group E, which was probably a 
result of the MLP. In Group T, traditional geometry and its formulas are prevalent. 
We surmise that the better results in Group E are closely connected with didactic 
choices.  In  other  words,  the fact  that  Group E children worked as  ‘builders’  and 
‘inventors’  supports  the  use  of  a  ‘supplementary  outline,’  which  for  Duval  is 
fundamental in seeing figures; our experiment confirms his  theory of different kinds 
of visualisation in geometry. Future research will feature an activity based on the 
same figures but focussing on ‘dimensional deconstruction,’ defined by Duval as a 
‘cognitive revolution’ for visualisation.

Another  important  suggestion  arises  from pupil’s  approach to  the  task.  Protocol 
analysis shows that children who use the half or decomposition in shapes A, B and C, 
use the same concept to investigate D, with the same tools. Vice versa, those who 
‘found’ the half in D, maybe by calculating the area, do not go back to modify their 
answer to the first part of the task. This points to another critical aspect of traditional 
teaching, not only in the field of mathematics: exercise books always have be tidy, 
with no rough work or  scribbling,  and children are  not  encouraged to  rethink or 
reflect  on work or activities carried out previously. But often sketches and rough 
drafts can in fact help develop reasoning. We also feel that there should be more 
encouragement to write up reasoning in the classroom.
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THE EFFECTS OF THE CONCEPT OF SYMMETRY ON 
LEARNING GEOMETRY AT FRENCH SECONDARY SCHOOL 

Caroline Bulf 

University of Paris Diderot, Laboratoire André Revuz, France

This paper relates a part of a bigger research from my Phd (Bulf, 2008) about the 
symmetry’s effects on conceptualization of new mathematical concept. We focus here  
on the results from students’ productions at two different levels at French secondary  
school, with students who are 12-13 years old and 14-15 y.o. We find out different  
figural treatments according to the transformation at stake. The results work out the  
concept of symmetry makes students confused with the transformations of the plan at  
the  beginning  of  secondary  school  whereas  students  seem  more  familiar  with 
metrical properties relative to the symmetry and develop mathematical reasoning at 
the end of secondary school. 

Key  word:  secondary  school,  geometry,  transformations  of  the  plan,  symmetry,  
Geometrical Working Space, conceptualization.

INTRODUCTION 

The constructivist  wave suggests that a new knowledge is built  from the old one. 
According to the French curricula (1),  the symmetry (reflection through a line) is 
taught since primary school (through folding and paving), and more deeply during 
the  first  year  of  the  secondary  school  (students  are  11-12  years  old).  Next,  the 
rotational symmetry (reflection through a point) is taught during the second year of 
the  secondary  school;  the  translation  is  taught  during  the  third  year  and  finally 
rotation is taught during the last  year of the secondary school (students are 14-15 
y.o.). One of the specificity of the French curricula is to teach the symmetry as a 
transformation of the plan even if the term “transformation” is mentioned only at the 
end  of  secondary  school.  Others  countries  (Italy  as  for  instance)  deal  with 
transformations  of  the  plan  in  the frame of  the  analytic  geometry  at  high  school 
(students are older than 15 y.o). Then, in this French context, we suppose the concept 
of symmetry takes part into the learning of the new transformations of the plan. The 
question is  what are the effects of the symmetry on this learning process?  This 
paper is the rest of our research, already introduced in CERME 5 (Bulf, 2007).

We do not need to argue that symmetry is part of our “real world” but it is a scientific 
concept too. Bachelard (1934) points out that “nothing is done, all is building”, he 
adds the notion of obstacles “to set down the problem of scientific knowledge”. He 
describes different kind of obstacles: the obstacle of “the excessive use of familiar 
images”,  or  the  obstacle  of  “common  meaning”  and  “social  representations”. 
Nevertheless,  we  can  not  ignore  the  “real  world”  may  be  a  help  for  empirical 
reasoning. As far as our work is concerned, we wonder if the concept of symmetry 
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may  be  an  “obstacle”  or  a  “help”  into  the  learning  process  of  the  new 
transformations  of  the  plan  at  secondary  school. Several  French  authors  have 
already  pointed  out  some  resistant  misunderstandings  linked  with  the  concept  of 
symmetry (Grenier & Laborde, 1988) (Grenier, 1990) (Lima, 2006) or linked with the 
others  transformations  of  the  plan,  and  in  particular  deal  with  the  dialectic 
global/punctual (Bkouche, 1992) (Jahn, 1998). 

THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 

Our research focuses on the process of conceptualization during the learning of the 
transformations  of  the  plan.  The  Vergnaud’s  theory  (Vergnaud,  1991),  “the 
conceptual field theory”, analyses the human component of a concept in action. We 
refer  to  this  framework  in  order  to  analyse  the  students  who solve  mathematical 
problem.  We  focus  on  the  adaptation  of  the  “operational  invariants” which  are 
actually  defined  by  the  concept-in-action  (“relevant  or  irrelevant  notion  naturally 
involved in the mathematics at stake”) and theorem-in-action (“proposition assumed 
right  or  wrong,  used instinctively  in the mathematics  at  stake”).  The set  of  these 
invariants makes the schemes (notion inspired by Piaget) operate. A scheme is the 
“invariant organization of behaviour for  a class of given situation.  The scheme is 
acting as a whole: it is a functional and dynamical whole, a kind of module finalized 
by the subject’s intention and organized by the way used to reach his goal”. The 
“signifiers” s (according to Pressmeg’s translation of Saussure’s meaning (Presmeg, 
2006)  is  the set  of  representations  of  the concept,  its  properties,  and its  ways  of 
treatment  (language,  signs,  diagrams,  etc.).  According  to  Vergnaud,  learning  is 
defined as the adaptation of the schemes from students in a situation of reference. 

In  order  to  complete  the  analysis  of  students’  activities  through  geometrical 
problems,  we  refer  to  the  Houdement  and  Kuzniak’s  theoretical  framework  of 
Paradigm of Geometry I and Geometry II, and the notion of  Geometrical Working 
Space (Houdement  & Kuzniak,  2006).  Geometry  I  (GI)  is  the  naive  and  natural 
geometry  and  its  validity  is  the  real  and  sensible  world.  The  deduction  operates 
mainly  on  material  objects  through  perception  and  experimentation.  Geometry  II 
(GII) is the natural and axiomatic geometry, and its validity operates on an axiomatic 
system (Euclid).  This  geometry  is  modelling  reality.  The  notion  of  Geometrical 
Working Space (GWS) is the study of the environment, organized on a suitable way to 
articulate  these  three  components:  the  real  and  local  space,  the  artefacts  (as  for 
instance geometrical tools),  and the theoretical references (organized on a model). 
This GWS is used by people who organise it into different aims: the reference GWS is 
seen as  the institutional  GWS  from the community  of  mathematicians,  the  idoine 
GWS is the efficient one in order to reach a definite goal and the personal GWS is the 
one built with its own knowledge and personal experiments. 

Then the main research question is: How does the concept of symmetry set up the 
organization and the inferences between the operational invariants relatives to 

 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 727



the others transformations of the plan into the student’s  personal GWS?  And 
how does this personal GWS evolute during secondary school?

METHODOLOGY

We propose a common test to students at two different levels: at the second year, 
after the teaching of the reflection through a point and, at the fourth year, after the 
teaching of the rotation. The students are 12-13 y.o. and 14-15 y.o. and have the same 
mathematics’  teacher.  We  chose  the  situation  of  recognition  of  transformations 
because it is a usual task all along French secondary school. We define two different 
tasks from a same configuration with triangles but with different kind of graphical 
support. These tasks are given to students at two different times. The first task (Fig. 
1) suggests a “Global Perception” (we will note GP) because triangles are indicated 
as a whole with numbers and the transformations are indicated with arrows. This does 
not  mean the students  are  only  involved on a  global  perception;  they  may  use  a 
punctual perception too. The terms of the problem are: In each fallow case, indicate 
which reflection(s),  translation(s),  rotation(s)  transform:  a)  12 b)  23 and c)  
14. Justify yours answers. If you add marks on the figure, please do not rub out.  
The last question  c) is only given to the students from the last year but we do not 
analysis  the  results  because  we  are  devoted  to  the  case  with  reflection(s)  and 
rotation(s). Furthermore, it  is only indicated  which reflection(s)  (and not the other 
transformations) with the students from second year. 

Fig 1: “The triangle situation” in the case called “Global Perception” (GP).

The second task, given one week later, is the same as previously but the terms of the 
problem suggest a “Punctual Perception” (we will note PP) to the students (Fig. 2). 
The configuration is given with a squaring and the triangles’ tops are called by letters 
on the pattern and in the terms of the problem (ABC in EDC). 
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Fig 2: “The triangle situation” in the case called “punctual perception”.

These tasks are quite  easy for  these students  (they have to recognize a reflection 
through a point or a rotation of 180° at the question  a) and a reflection through an 
axis at the question b)). Different didactical variables are convened and then different 
students’ strategies are implied in both tasks. In particular, the graphical support is 
different  in  both  case,  in  the  GP one,  students’  adaptations  are  wider:  they  may 
involve arguments based on superimposition (folding or half-turn) or build strategies 
based  on  metrics’  arguments  (Euclidian  Affine  Geometry)  with  measurement  or 
perception.  We suppose these latter  strategies (with metrical arguments)  are more 
effective  in  the  task  PP  since  there  is  a  squaring  and  figures  are  nominated. 
Mathematical properties are not given as hypothesis in the term of the problems, so 
different  types of metrical  properties  are acceptable (as  for  instance “AC=CE” or 
“AC and CE are almost equals” or even “AC is not equal to CE”) but it is assumed a 
transformation  has  to  be  recognized.  Moreover,  the  figural  position  is  actually  a 
didactical  variable  to  consider  and  we  should  consider  intermediate  task  (as  for 
instance, without common point, etc.) in order to consolidate the results already got 
here. However, considering that, we show that students’ behaviour changes according 
to the perception suggested by the task (as expected) but the adaptations imply a 
different  way  of  figural  treatment  according  to  the  transformation  at  stake  and 
according to the students’ grade. The aim of this paper is describe the differences 
between transformations and the influence from the concept of symmetry on these 
adaptations at these both levels at secondary school.

RESULTS AND DISCUSSION

Student’s category according to stability of student’s achievement 

We collected 29x2=58 productions from students who are 14-15 y.o. and 26x2=52 
productions from students who are 12-13 y.o. We classified students’ productions 
according to the stability of their performance on both tasks, i.e. if student proposes a 
correct answer in the task GP and next if he changes or not his answer in the task 
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called PP. We will write RIGHT (R) or WRONG (W) the student’s finale issue on 
these  both  tasks.  Then,  different  profiles  are  exhibited  according to  the student’s 
achievement at the question a) (the correct transformation is the reflection through a 
point - or a rotation of 180°) and at the question b) (the correct transformation is a 
reflection through an axis). Finally, the main student’s profiles are presented on the 
table 3 and table 4, and count at least two students.

Recognition  of  the 
reflection  through  a 
point (question a)

Recognition  of  the 
reflection  through  an 
axis (question b)

Number  of 
students

Indicative 
percentage  of 
pupils

%GP PP GP PP

R R R R 16 ≈ 55 

W R W R 2 6,9

R R W W 4 13,8

R W R R 4 13,8

At least one WRONG 10 ≈ 34,5

Tab. 3: Student’s profile from the last year of secondary school (14-15 y.o) depending 
on whether student is successful.

Recognition  of  the 
reflection  through  a 
point (question a.)

Recognition  of  the 
reflection  through  an 
axis (question b.)

Number  of 
students

Indicative 
percentage 

%
GP PP GP PP

R R R R 9 ≈ 34,7 

R R W W 3 11,6

W W W W 3 11,6

R W W W 4 15,4

W R

R R R W 3 11,6

W R

At least one WRONG 13 ≈ 50

Tab.  4:  Student’s  profile  from  the  second  year  of  secondary  school  (12-13  y.o.) 
depending on whether student is successful.

According to these results, only 34,7 % students from the second year recognize both 
transformations with successful, whatever the perception suggested by the task; and 
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only 55 % students among students from the last year of secondary school recognize 
both transformations with successful, whatever the perception suggested by the task. 

The  students’  profiles  from  the  second  year  are  more  fragmented  than  the 
students’ones from the last year. Therefore, we suppose the student’s  Geometrical 
Working Space (GWS) from the last year is more stabilized. What we need now is to 
determine  what  did  each  profile  (especially  what  mistakes)  and  what  kind  of 
adaptations they made according to the perception and the transformation at stake. 

Local analysis of the Geometrical Working Space through the figural treatment 
according to Duval’s meaning

We analyse the GWS through its organization between the real space (marks on sheet 
of paper), the objects of reference from a mathematical model (Euclidian one), and 
the artefacts (tools,  schemes).  Inspired by Duval (2005),  we focus on the way of 
treatment of the figure in order to describe these links into the GWS. Duval defines 
different kinds of “figural deconstruction”. He opposes “instrumental deconstruction” 
which implies the use of tools to build the figure and “dimensional deconstruction” 
which  implies  links  between  figural  units  (for  example  the  points  A  and  B  - 
dimension  0D  -  indicate  the  measure  AB  -  dimension  1D)  in  order  to  exhibit 
mathematical  properties.  The  latter  deconstruction  may  imply  a  mathematical 
reasoning and suggests a geometrical paradigm closer to GII. Finally, we assume the 
fact the GWS is a favourable environment to analyse the process of conceptualization 
at stake because, according to Vergnaud’s meaning, the notion of representation of 
the  real  world  is  at  the  heart  of  the  process  of  conceptualization.  Therefore,  an 
analysis of students’ productions in term of figural treatment (according to Duval’s 
meaning) is a relevant way to describe the connection between the component of the 
GWS (Object of real world / tools / models of reference) and therefore allows us to 
approach the process of conceptualization at stake.

Results about students’ productions at the end of secondary school (14-15 y.o.)

The student’s  personal GWS  is adapted to the perception suggested by the task, as 
expected  a  priori.  The  operational  invariants  relative  to  the  recognition  of  the 
reflection  through  an  axis  are  different  according  to  the  task.  The  strategies  of 
superimposition,  folding or the use of common references are more present in the 
case GP than in the case PP. 

Students may develop arguments from the Euclidian affine geometry with different 
kinds of “signifier” (Presmeg, 2006): 

- signifier from an “instrumental deconstruction” (Duval, 2005), as for instance the 
theorem-in-action of cocyclicity : pupils use their compasses to test if a couple {point; 
image} of the figure belong to the same circle and therefore they infer it is a rotation. 
The language allows the denomination or describes the action.
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- signifier from a “dimensional deconstruction” (Duval, 2005) through mathematical 
symbolism on the drawing (equality of measure, orthogonally, etc.). The language is 
used to announce the mathematical properties and make deduction. 

These adaptations are used not only by students who propose correct answers but 
with students who propose wrong answers too. At the end of secondary school, we 
identify only one main kind of mistake made by students in these tasks.  Students 
apply the  theorem-in-action of cocyclicity at the question b) to recognize a rotation 
whereas it is actually a reflection through an axis (document 5). 

Doc. 5: student’s production with a wrong use of the theorem-in-action of cocyclicity.

We suppose this mistake is from a “cognitive conflict” about the dimension of the 
mathematical objects at stake with different transformations (between rotation and 
symmetry). With this theorem-in-action, students do not control the conservation of 
the measure of the angle with other couples {point; image}. They only refer to an 
instrumental deconstruction and not to relevant mathematical properties to recognize 
a  rotation.  This  mistake  could  be  expected  if  we  consider  the  relative  position 
between triangles (with a common top) but in the case PP, the transformation is given 
point by point (“CDE in GFE”) and several cases show stronger relation with the 
figure (because they still  use this  theorem-in-action) whereas these same students 
may adapt their strategies according to the task if the recognition of reflection occurs 
(namely  they  use  a  dimensional  deconstruction  in  order  to  refer  to  mathematical 
properties in the case PP). We have already noticed this mistake, called ‘theorem-in-
action of  cocyclicity” in  a  pre-test  with others  students  with the same age (Bulf, 
2007).
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Results about students’ productions at the second year of secondary school

If  we  compare  the  tab.  3  and  tab.  4,  students’  profiles  of  12-13  y.o.  are  more 
diversified. The personal GWS is still adapted to the perception suggested by the task 
but not as distinctly as for the students older, i.e. students use references to the real 
world mainly in the case GP but in the case PP too. On the other hand, they do refer 
to the Euclidian geometry in the case PP but sometimes in GP too. The mistakes are 
also more diversified because the adaptations to the perception suggested by the task 
are different than previously. We distinguish two main sorts of mistake: 

-  mistakes  caused by “contract’s  effect”  in  the case  PP.  The notion  of  didactical 
“contract”  is  designed  by  Brousseau  (1997)  as  a  “relationship  […]  [which] 
determines - explicitly to some extent, but mainly implicitly - what each partner, the 
teacher and the student, will have the responsibility for managing and, in some way 
or other, be responsible to the other person for managing and, in some way or other, 
be responsible to the other person for. This system of reciprocal obligation resembles 
a contract”. In our research, students propose mainly exhaustive explanations to solve 
the task in the case PP. They give too much mathematical properties to justify the 
transformation. Or, students change their mind and propose “institutional” properties 
on a wrong way to justify their choice in the case PP whereas their choice in the case 
GP was correct with naïve arguments from the real word. As for instance, one student 
justifies correctly the reflection through an axis (question b) in the case GP because 
he  writes  “it  is  possible  to  fold”  but  this  same  student  writes,  for  the  same 
transformation  in  the  case  PP,  it  is  a  reflection  through  a  point  because  “in  the 
reflection through a point, the image of a segment is a segment with the same length”. 
This student proposes this same “argument” at the question a) too, but in this case it 
is coherent. This “institutional” sentence is exactly the same which is given during 
the classroom. This kind of mistake lets think that the “dimensional deconstruction” 
(he  mentions  segments)  suggested  by  students’  activity  is  artificial,  and  confirm 
Duval’s point of view who pretend this cognitive operation is not self-evident.

- mistakes caused by “amalgam between notion on the same support” according to 
Artigue’s meaning (Artigue, 1990). Students are confused with the reflection through 
a point and the reflection through an axis, because these both transformations imply 
the same schemes as for  example the global  superimposition,  cutting in two both 
sides, the properties of equal distances, etc. In particular, some students recognize a 
reflection  through an axis  instead  of  a  reflection  through a  point  in  the case  GP 
(question a). Some other students recognize a reflection through a point instead of a 
reflection through an axis in the task called PP (question b). This kind of amalgam 
suggests the reflection through an axis is crystallized in a “global perception”, at least 
at the beginning of secondary school.

CONCLUSION AND DISCUSSION

This research is devoted to the analysis of students’ productions from two different 
levels at French secondary school. The students solved the same task given under two 
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different forms (one is called “Global Perception” (GP) and the other one is called 
“Punctual Perception” (PP)). This research points out that the personal Geometrical  
Working Space is more stabilized for a student at the end of secondary school than for 
a  student  at  the  beginning  of  secondary  school.  The  schemes  of  the  concept  of 
symmetry  are  more  flexible  and  can  be  adapted  to  the  task  (arguments  can  be 
empirical or from deduction in the frame of Euclidian Affine Geometry according to 
the perception suggested by the task). These adaptations show a relevant expertise of 
the dialectic of paradigms GI-GII when the reflection through an axis is involved, for 
the older students. However, the analyses of the mistakes of these students show a 
difference of conceptualization between the rotation and symmetry. Rotation involves 
an  “instrumental  deconstruction”  only,  whereas  the  symmetry  may  involve 
“dimensional deconstruction”. 

The  mistakes  made  by  younger  students  imply  a  sort  of  amalgam  between  the 
different symmetries or imply the use of an artificial “dimensional deconstruction”. 
These mistakes make unstable the GWS of these students.

This variation of the use and the effects of the concept of symmetry in the personal  
Geometrical Working Space leave questions about how is managed the concept of 
symmetry by the teacher during secondary school and how is managed the figural 
deconstruction.  Duval  has  already  mentioned  the  problem of  transmission  of  the 
different crossing of figural deconstruction (2D, 1D, 0D) in classroom (Duval, 2005). 
He  points  out  these  different  crossings  are  not  so  obvious  for  students,  and  the 
difficulty of these crossings are underestimated by teachers and curricula. This point 
concerns the rest of our research. 

NOTES

1. Official instructions: http://eduscol.education.fr/. BO n°10 Hors-Série, 15/10/1998, pp. 106-114 (3e ’s 
instructions).  BO  n°5  Hors-Série,  09/09/04,  pp.  4-16  (6e ’s  instructions).  BO  n°5  Hors-Série, 
25/08/2005, pp. 9-16 (5e ’s instructions).
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ABSTRACT
In this research we investigate whether students of the Pedagogical Department of  
Education have the basic geometrical knowledge which is related mainly with the 
similarity of shapes. We also investigate how they define similarity of shapes and if  
the intuitive knowledge affects their perception of similar shapes. The results showed  
that  students  have  developed  certain  structures  in  regard  to  some  concepts  in  
geometry  based  on  the  teaching  that  they  have  received  in  school.  The  results  
showed, as well, that a large percentage of students are not in a position to correctly  
define the similarity of shapes. Finally, research shown, that intuition affects their  
responses and their mathematical achievement.

INTRODUCTION

The role of geometry in the development of mathematical idea is very important. The 
geometrical skills and visual icons are basic instruments and source of inspiration for 
many mathematicians (Chazan & Yeryshalmy,1998 in Protopapas,2003). The content 
of geometry is appropriate both for the development of lower level of mathematical 
thinking, (i.e. the recognition of shape), as well as for higher order thinking, (i.e. the 
discovery of the properties of shapes), the construction of geometrical models and the 
solution of mathematical problems (NCTM, 1999). The representation of geometrical 
objects and the relationships between geometrical objects and their representations 
constitute important problems in geometry (Mesquita, 1998).

Geometry constitutes a basic part of the National Curriculum for Primary as well as 
Secondary Education. The concept of similarity between two shapes is taught in the 
3rd grade in Secondary School and in the 1st grade in higher Secondary School, with 
special  emphasis  on  the  similarity  of  triangles.  The teaching mainly concerns, 
understanding of the concept of similar shapes,  i.e.  that similar  shapes  are  those 
which their sides are proportional and their angles that are created by the respective 
angles are equal. 

Literature review has shown the concept of similarity is presented and taught through 
the environment of dynamic geometry and mainly through the use of applets. The 
concept is taught in coordination to the teaching of symmetry and transformations 
that can occur in a shape (http  ://  standards  .  nctm  .  org  /  document  /  eexamples  /  chap  6/6.4  ). 
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In addition, the properties of similar shapes are presented and in the proof of Thalis 
theorem.  This theorem has some applications and proofs with the use of  the 
Geometer Sketchpad. Although there are no relationships presented in regard to the 
results  and  consequences  (proportion  of  relationships  of  line  segments)  of  Thalis 
Theorem and the concept of similarity of shapes (beyond quadrilaterals). 

The common teaching environment of geometry is very limited in formal education. 
For example, the constructions that the children are asked to deal with, the shapes are 
placed in a horizontal position, i.e. the sides are parallel to the sides of the object on 
which the construction is done. As a result  most students develop an holistic and 
stereotype view of the geometrical  shapes which is very affected  by the intuitive 
rules. 

At  the  university  level,  the  students  of  the  Department  of  Education  are  taught 
geometry through its historic evolution. In order to be able to follow and understand 
these lectures basic knowledge of geometry is required. This knowledge is mainly 
provided at the 3rd year of secondary school.  Unfortunately, students appear to be 
lacking knowledge. This may be due to the long interval that has transpired since they 
dealt with geometry or due to the teaching in higher secondary school where it is 
mainly expected by the student to memorize relationships instead of understanding 
and applying them.

It  is  possible that  the level  of mathematical  thinking may be influenced by some 
factors  which  are  mathematics  specific,  such  as  the  specific  mathematical 
terminology which may be in conflict with the meaning we give to these terms in 
every  day  life  or  the  conclusions  that  we  reach  based  on  the  intuitive  view  of 
mathematical knowledge.  

The aim of the present study is to investigate whether the students participating in 
EPA 171 (Basic concepts in mathematics) have the basic geometrical knowledge that 
is  required for  this  specific  course.  It  aims  to  investigate  students’  knowledge in 
regard to the similarity of shapes and how their intuitive knowledge may affect their 
perceptions about similar shapes.

THEORETICAL BACKGROUND
Geometry is comprised by three kinds of cognitive procedures which carry out 
specific epistemological functions (Duval, 1998):

a)  Visualization: Is the procedure which is related to the representation of space in 
order to explain a verbal comment, for the investigation of more complex situations 
and for a more holistic view of space and subjective confirmation. 

b)  Construction with the use of apparatus. The construction of shapes can act as a 
model. 

c)  Reasoning:  Is investigated in relation to verbal procedures and the extension of 
knowledge for proof and explanation. 
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These different procedures can be carried out separately. Thus the visualization is not 
based on the construction. There is however access on the shapes and the way that 
they  have  been  constructed.  Even  if  the  construction  leads  to  visualization,  the 
construction is based only on the connections between mathematical properties and 
technical  restriction  of  the  apparatus  which  are  used.   Furthermore  although  the 
visualization is an intuitive aid, necessary in is some instances for the development of 
proof, still the justification is solely depended on a group of sentences (definitions, 
axioms, theorems) which are available. In addition to this visualization is sometimes 
more deceptive or impossible.  Still these three kinds of cognitive procedures are 
closely linked and  their cooperation is necessary for any progress in geometry 
(Protopapas, 2003).

The concept of similarity:
Similarity constitutes a basic link between algebra and geometry and it also has a 
close  relationship  to  trigonometry.  The theorem which expresses  that  two similar 
triangles have their sides proportional and Pythagoras theorem constitute two basic 
links  between  geometry  and  algebra.  The  connection  of  geometry  and algebra  is 
particularly construction as it allows using the visualization of geometry in algebraic 
problems and the flexibility of algebraic operations in geometrical problems. Similar 
triangles and the Pythagoras theorem constitute the cornerstone of Trigonometry. By 
using  similar  triangles  we  can  calculate  the  sides  and  angles  of  an  object  by 
measuring the lengths of a smaller model. 

According  to  Vollrath  (1977)  in  geometry  similarity  constitutes  a  relationship 
between  shapes/figures.  A shape F1  is similar to a shape F2  if there is a 
transformation s such as s(F1) = F2. i.e. the square is similar to another one only when 
the  ration  of  their  sides  is  the  same.  In a didactical situation this constitutes a 
conclusion. Similar conclusions may be reached in regard to triangles and polygons. 
The  proof  is  given  based  on  the  definition,  using  the  properties  of  similar 
transformation. For a spiral approach of geometry it is important to know when it is 
possible to extract conclusions in regard to the understanding of similarity as it is 
defined through geometry or based on everyday language before teaching definition. 
Nevertheless, students do not seem to use the idea of sides’ proportion to secure an 
exact answer about the similarity of shapes in enlargement or deduction in size of a 
shape (Kospentaris and Spyrou, 2005).

This can form the basis for a general definition of the concept of similarity. For the 
teaching of similarity at University level it is necessary, the lecturers to know in what 
extent the link between representation and expression of the concept of similarity can 
support  or  inhibit  the  cognitive  procedure  for  this  relationship.  Furthermore  it  is 
important to know the explanation that the students give to similarity as it is used in 
everyday life or in a geometrical model (Vollrath, 1977). Kospentaris and Spyrou 
(2005) confirms in their study that the term similarity in everyday language does not 
in any way coincide with geometrical similarity, being more close to the meaning of 
having the same size.
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The  understanding  of  the  concepts  of  similarity  can  be  tested  with  exercises  of 
classifying geometrical objects due to the fact that similarity constitutes a relationship 
of similarity between shapes/figures. In the teaching of mathematical the exercises of 
classification  direct  students  in  the  study  of  properties  and  the  properties  that 
characterize  concept  and  lead  them  to  the  extraction  of  definitions  and  they 
coordinate the understanding of definitions.  Due to their importance we use exercises 
on  classification  to  investigate  students’  understanding  related  to  similarity 
irrespective of the mathematical definition. (Vollrath, 1977).

Intuition – and how it affects the teaching in mathematics:
As  suggested  by  Fischbein (1999) intuition  constitutes  a  theme  that  mostly 
philosophers are interested in. According to Descartes  (1967) and Spinoza (1967) 
intuition appears to be a genuine source of pure knowledge. Kant (1980) describes 
intuition as the ability which leads directly to your goals and indirectly to the basic 
knowledge.  Bergson (1954) made a distinction between intelligence and intuition. 
Intelligence is the way in which one may know the physical world,  the world of 
stability, the extent of the properties of statistical phenomena. Through intuition we 
have a direct perception of the essence of spiritual life and control of the phenomena, 
time and motion (Fischbein, 1999).

Some philosophers,  such as  Hans Hahn (1956)  and Burge (1968),  have criticized 
intuition and its effect, in its scientific explanation. They believe that intuition leads 
to deceptive results and this has to be avoided in the scientific procedure.

The investigation of intuitive knowledge appears mainly in the work of people that 
are interested in scientific and mathematical understanding of students (for example 
Clement et al., 1989; DiSessa, 1988; Gelman and Gallistel, 1978; McCloskey et al., 
1983;  Resnick,  1987;  Stavy and Tirosh,  1996;  Tirosh,  1991 in Sierpinska,  2000). 
There is not an accepted definition of intuitive knowledge. The term: “intuition” is 
used mainly as a mathematical basic term such as the point or line (Sierpinska, 2000).

The importance of  definition is probably respected just  like the elements  that  are 
based on intuition. The basic common properties of these are based on individual 
proofs which are in conflict to logical and analytic attempts. 

The  problem of  intuitive  knowledge  has  earned  an  important  place  in  scientific 
attempts.  On  one  hand  scientists  need  intuition  in  their  attempt  to  discover  new 
strategies, new theoretical and empirical models and on the other hand they need to 
be acquainted with what does not constitutes intuitionν– according to Descartes and 
Spinoza – basic guarantee, fundamental basis for objective truth.

The  interest  in  regard  to  intuition  also  stems  from  the  teaching  of  science  and 
mathematics. When you need to teach a chapter in science or mathematics you often 
discover that what was already a fact for you – after university level studies – comes 
in  conflict  with  basic  cognitive  obstacles  that  the  students  exhibit  in  their 
understanding. As a teacher you often believe that students are ready to memorize 
what  they  have  been  taught,  actually  they  understand  and  memories  relative 
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knowledge. Intuitive perception of phenomena is often different that to their scientific 
explanation.

In mathematics, the belief that a square is a parallelogram is intuitively very strange 
for many children. The belief that by multiplying two numbers we may get a result 
that is smaller than one or both the numbers which we have multiplied is also difficult 
to be accepted. Intuition affects many of our perceptions. The educator discovers that 
the knowledge which s/he is supposed to transfer to the students is in conflict, very 
often, with the beliefs and explanations which are direct and solid and at the same 
time in conflict with the scientifically accepted perceptions. 

THE STUDY
Aim:

The aim of the study is to investigate whether the students participating in EPA171 
(Basic concepts in mathematics) have the basic geometrical knowledge that is related 
mainly with the similarity of shapes. How do they perceive the concept of similarity 
of  shapes  and  how  their  intuitive  knowledge  may  affect  their  understanding  of 
similarity of shapes?

The three hypothesis of the study were:

1. The students have specific difficulties in basic concepts in geometry. 

2. The students define similarity of shapes based on similar triangles or intuitive 
knowledge. 

3. Intuitive knowledge affects their perception of similar shapes. 

Subjects:

The participants in this study were 85  students of the Pedagogical Department  of 
Education. 42 had mathematics as a major subject in higher secondary school, 39 had 
mathematics as a core subject and 4 did not specify. 

Design of the study:

In order to examine the hypothesis of this study a test was administered to all the 
students that took part in the study. The students had 40 minutes available to respond 
to  the  test.  The  tasks  of  the  tests  were  related  with  basic  geometrical  concepts 
(definition and construction of obtuse angle, application of properties of parallel lines 
and of the Pythagoras theorem in the solution of relevant exercises),  definition of 
similarity of shapes, recognition of similar shapes as well as tasks which were used to 
examine whether the students had the necessary knowledge which is required to teach 
the lesson.

For the analysis of the results descriptive statistic as well as the implicative analysis 
have been used.  More specifically for the data analysis the following elements of 
implicative analysis have been utilized: (a) The similarity tree-diagram which shows 
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the variables according to the similarity they show (b) the hierarchical tree-diagram 
which presents the implicative relationships according to the order of significance. 

Results:

The first hypothesis is confirmed in that  basic knowledge of geometry where no 
special attention is given in school,  such as the ability  to  give  the  definition  of 
concepts. For the examination of this hypothesis which concerns basic geometrical 
concepts four questions were posed. 

The first two questions were related mainly to the mathematical terminology which 
the students use. Students were asked to give a definition and construct an acute angle 
and it’s  supplementary.  The analysis of the results shows that 83%  can draw an 
obtuse angle but they only refer to the fact that it has to be bigger than 90ο but they do 
not specify that it has to be smaller than 180ο. 14% of the students who are mostly the 
ones that had mathematics as a major subject in higher secondary give a complete 
answer,  whereas 3% of  the students  can not  answer  this  basic  question at  all.  In 
regard  to  the  question  related  to  the  supplementary  angles 95%  give  a  complete 
answer  since  only  one  condition  is  requested  (sum  180ο)  and  only  5% does  not 
answer or gives a wrong answer.

The third question of the test concerns the use of basic relationship between angles 
and is based on parallel lines and the solution of a problem. These relationships are 
used  quite  extensively  in  secondary  education  something  that  leads  students  to  a 
direct recognition and use of the relationships. This is illustrated by the results in the 
test since the majority (90%) that dealt with the task in question 3 managed to give 
correct answers.

The forth  question  of  the test  require  a  direct  application  of  Pythagoras  theorem 
twice. The application of  Pythagoras’s theorem without its proof constitutes a basic 
chapter in the teaching of geometry in secondary school. Thus 82,5% of the students 
were able to solve the exercise, 4,5% were able to solve only half of the task and 13% 
either gave a wrong answer or did not provide a response. 

The second hypothesis was not fully confirmed. More than a third of the students 
could give a complete answer and a significant percentage of students referred to the 
similarity of the appearance of the shapes or the similarity of triangles. In order to 
examine this hypothesis the questions 5a and 5b were given. 

In the question 5a, which asked students to answer “what are similar shapes?” only 
36,5% of the students were able to give a complete answer (5iv). 21% referred to the 
similarity in the appearance of the shapes (5iii) and 14% referred to the similarity of 
triangles (5ii) which plays a significant role in the teaching of similarity in secondary 
education.  A significant  percentage  of  the students  12%  referred to  equality  (5i), 
whereas 16% of the students either did not provide any answer or gave a wrong 
response (5i).

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 741



In order to examine whether the students have the ability to use the definition of 
similarity of shapes in an exercise regarding similar triangles, the second part (5b) of 
exercise 5 was asking students to find the relationship of similarity between given 
triangles. Differently to their responses in the 1st part of the exercise where 53% could 
give a complete answer, only 30% were able to reach a mid way to the solution. 17% 
could not solve the problem or did not give any response. 

For the application of the theory regarding the relationships of similarity and also for 
the examination  of  the third hypothesis,  exercise  8  was  presented where students 
were asked to find which polygons are similar. In contrast to exercise 5b where they 
had to write some relationships algebraically in order to prove the similarity of the 
shapes, in this exercise, they needed mental representations of the relationships so 
that the right choices could be made. Just like in question 5, some students confuse 
similarity  with  the  relationships  regarding  the  appearance  of  the  shape.  That  is 
probably why 87% responded that the parallelograms that have equal angles one side 
proportional  and  one  side  equal  are  similar  (8i).  It is very likely that they have 
reached this answer because both of them are parallelograms. 13%  of the students 
believe that the rectangles are similar to the square (8iv)  in the shape. This may be 
due to the fact that all three of them are parallelograms (appearance of the shape). 
Similarly 6%  believe that the right angle triangle is similar to the scalene triangle 
(8v),  most probably because both of the triangles have the same appearance. 80% 
recognize the similarity of the rectangles that are presented (8iii) and of the right 
angle triangles (8ii).
 

Figure 1: similarity tree diagram

5i 8iv 5iii 8v 5iv5ii 8ii8i8iii

Question 5: What are similar shapes?
5i:  referred to equality or no answer or wrong response.
5ii: referred to the similarity of triangles 
5iii:  referred to the similarity in the appearance of the 
shapes
5iv: complete answer  

Exercise 8: students were asked to find which polygons are similar. 
8i: responded that the parallelograms that have equal angles one side 
proportional and one side equal are similar. 
8ii: recognize the similarity of the right angle triangles 
8iii: recognize the similarity of the rectangles 
8iv: believe that the rectangles are similar to the square  in the shape. 
8v: believe that the right angle triangle is similar to the scalene triangle 

Wrong responses 8iv and 8v seemed to be 
grouped  with  wrong  definitions  of 
similarity 5i and 5iii Correct definition of similarity 5iv and the definition of similarity of 

shapes as the similarity of triangles 5ii are grouped and they are also 
grouped with the correct answers 8ii and 8iii respectively.
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In order to examine whether the definition that students give for the similarity of 
shapes affects their answer in exercise 8 where they are asked to recognize similar 
shapes we have used the similarity tree diagram (Figure 1). In the tree diagram the 
wrong responses in exercise 8 seemed to be grouped with the variables 8iv and 8v 
(similar shapes: square-rectangle, variable  8iv and right angle triangle and scalene 
triangle 8v) with the variables 5i and  5iii respectively of exercise 5 which refer to 
wrong definitions  of  similarity  (5i:  equality  of  shapes  or  wrong answer  and 5iii: 
similarity in the appearance of the shape). In addition to this, the correct definition of 
similarity (variable 5iv) and the definition of similarity of shapes as the similarity of 
triangles (variable 5ii) are grouped and they are also grouped with the correct answers 
in exercise 8, and the variables 8ii and 8iii respectively. The variable 8i which is the 
wrong answer in 8  since it presents the similarity of two parallelograms that their 
sides are not proportional appear to be grouped with the correct definitions (mainly 
with the definition of similar triangles and the correct answer in regard to rectangles) 
and the correct answers. This may be due to the fact that most students perceive as 
the  correct  answer,  something  that  indicates  that  students  are  depending  on  the 
perception of shapes and not the definitions and the properties of the shapes. 

Figure 2: hierarchical diagram

The hierarchical diagram (Figure 2)  shows that success in the definition constitutes 
success in the tasks in exercise 8, whereas in the wrong responses higher in line are 

5ii 8iii 5iv 8ii 8v8i 5iii5i8iv
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the tasks in exercise 8,  something that results  to  difficulty  in  giving  a  correct 
definition for the similarity concept. 

CONCLUSIONS

The data of the study suggest that students have developed certain structures in regard 
to  some  concepts  in  geometry  based  on  the  teaching  that  they  have  received  in 
school. The fact that in secondary education more emphasis is placed on the practical 
application of theory and less on the understanding of concept,  leads to students´ 
difficulty in giving complete definitions that require conditions, which in the practical 
application are implied without being presented (for example, the representation of an 
obtuse angle is never presented opposite to angles bigger than 180ο and that is why 
students never refer to the condition that an obtuse angle needs to be smaller than 
180ο). 

Based on this it appears that students are in a position to carry out operations by using 
certain formulas (Pythagoras’s theorem)  or recognize relationships in shapes which 
they were taught in school and they are expected to apply these in exercises similar to 
exercises 3 and 4 of this test. 

For a spiral approach and development of geometry, it is important to know when it 
is possible to extract conclusions in regard to the concept of similarity as it is defined 
in geometry. As it appears from the data, a large percentage of students are not in a 
position to correctly define the similarity of shapes. However they are able to apply 
the relationships of similarity in triangles since teaching in secondary education is 
related to the similarity of triangles 

In the search for similarity relationships in exercise 8 students influenced by their 
intuition found relationships that were based on the similarity of the appearance of 
the  shape  but  they  were  not  mathematically  similar.  This  indicates  that  intuition 
affects their responses and their mathematical achievement since a number of these 
students  have  not  received  adequate  mathematical  training  in  order  to  base  their 
answers on definitions, properties of the shapes and not on the perceptual appearance 
of the shape. 

The data suggest that the wrong similarity definition leads to wrong responses in the 
practical applications, whereas the wrong representations of concepts create students’ 
erroneous structures and definitions of the specific concepts. 

In conclusion, in regard to the teaching of geometry at University level it is important 
to give more attention in the teaching of basic geometrical concepts and skills. As it 
was shown by the results in this study the teaching that many students receive in 
secondary  school  is  inadequate,  something  that  affects  their  perception  and 
achievement in geometry. The lack or limited knowledge that students have, lead, to 
the  use  and  translation  of  mathematical  definitions  based  on  wrong  mental 
representations  which  are  affected  by  intuitive  knowledge and not  by  the correct 
mathematical definitions and correct representations.
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THE GEOMETRICAL REASONING 
OF PRIMARY AND SECONDARY SCHOOL STUDENTS

Georgia Panaoura and Athanasios Gagatsis

University of Cyprus, Department of Education

In the present paper comparing the geometrical reasoning of primary and secondary  
school students was mainly based on the way students confronted and solved specific  
geometrical tasks: the strategies they used and the common errors appearing in their  
solutions. This comparison shed light to students’ difficulties and phenomena related  
to the transition from Natural Geometry (the objects of this paradigm of geometry 
are material  objects) to Natural  Axiomatic Geometry (definitions and axioms are  
necessary  to  create  the  objects  in  this  paradigm  of  geometry)  and  to  the 
inconsistency of  the didactical  contract  implied in primary and secondary school  
education. These findings stress  the need for helping students  progressively move 
from the geometry of observation to the geometry of deduction.

INTRODUCTION

Teaching geometry so that students learn it meaningfully requires an understanding 
of  how students  construct  their  knowledge  of  various  geometric  topics  (Battista, 
1999).  This  means  it  is  necessary  that  mathematics  educators  investigate  and 
mathematics teachers understand how students construct geometrical knowledge as a 
result of their learning experiences in school. An important aspect of this research 
direction is the study of the strategies that students use in different geometrical tasks 
as well as the identification of their mistakes. In the work of Piaget and in the Geneva 
School we see that errors were for the first time viewed positively, in the sense that 
they allow the tracing of the reasoning mechanisms adopted by students.

The  literature  review  reveals  that  the  investigation  of  various  issues  related  to 
students’  geometrical  reasoning (knowledge,  abilities,  strategies,  difficulties)  is  in 
most cases restricted to the study of groups that come from one educational level. We 
believe  that  it  is  necessary  to  gather  empirical  data  which  would  allow  the 
comparison  between  groups  of  students  in  primary  and  secondary  education  and 
would be valuable sources of information regarding aspects of teaching in the two 
educational levels as well as the difficulties met by students of different age groups.

The transition from elementary to secondary school is recognized as a critical life 
event,  since,  progressing  from one  level  of  education  to  the  next,  students  may 
experience  major  changes  in  school  climate,  educational  practices,  and  social 
structures (Rice, 2001).  Research results reveal substantial  agreement that there is 
often a decline in students’ achievement following this transition, but achievement 
scores tend to recover in the year following the transition (Alspaugh, 1998). In the 
case of Cyprus, students experience difficulty during the transition from elementary 
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to secondary school which is evident in their performance in most topics, especially 
in mathematics.

This paper is based upon a research project which investigated the transition from 
elementary  to  secondary  school  geometry  in  Cyprus,  gathering  data  concerning 
students’ performance in tasks involving two-dimensional geometrical figures, three-
dimensional geometrical figures and net-representations of geometrical solids, as well 
as the students’ spatial abilities. In the present paper we focus on the strategies the 
students used to solve specific geometrical tasks involving two-dimensional figures 
and we study the kinds of errors that we identified in the students’ solutions.

THEORETICAL BACKGROUND

In the present paper we use as explanatory framework Duval’s cognitive approach to 
geometry  (Duval,  1995,  1998)  and  the  framework  of  Geometrical  Paradigms 
proposed by Houdement and Kuzniak (Houdement & Kuzniak, 2003; Houdement, 
2007). We also use the concept of the didactical contract, introduced by Brousseau 
(1984)  to  interpret  some  of  the  students’  wrong  answers.  According  to  him,  the 
didactical contract is defined as a system of reciprocal expectancies between teacher 
and pupils, concerning mathematical knowledge. The didactical contract is in large 
part implicit and is established by the teacher in her teaching practice. The students 
may interpret the situation put before them and the questions asked to them on the 
basis of the didactical contract and act accordingly.

A cognitive approach to geometry

Duval  (1998)  argues  that  geometry  involves  three  kinds  of  different  cognitive 
processes – visualization processes, construction processes and reasoning in relation 
to  discursive  processes  –  the  synergy  of  which  is  necessary  for  proficiency  in 
geometry.  Approaching  geometry  from  a  cognitive  point  of  view,  he  has 
distinguished four cognitive apprehensions connected to the way a person looks at the 
drawing  of  a  geometrical  figure:  perceptual,  sequential,  discursive  and  operative 
(Duval, 1995). Briefly, perceptual apprehension refers to what a person recognizes at 
first glance when looking at a geometrical figure, while sequential apprehension is 
required  whenever  the  construction  or  description  of  construction  of  a  figure  is 
involved. Discursive apprehension refers to the mathematical properties that cannot 
be  determined  through  perceptual  apprehension  of  a  figure,  but  must  be  given 
through speech or can be derived from the given properties. Operative apprehension 
depends  on  the  various  ways  of  modifying  a  given  figure.  Solving  geometrical 
problems often requires the interactions of these different apprehensions, and “what is 
called  a  ‘geometrical  figure’  always  associates  both  discursive  and  visual 
representations, even if only one of them can be explicitly highlighted according to 
the mathematical activity that is required” (Duval, 2006, p.108).
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The framework of Geometrical Paradigms

Keeping the idea of ‘paradigm’ from Kuhn, who used it to explain the development 
of  science,  Houdement  and  Kuzniak  (2003)  proposed  that  elementary  geometry 
appears to be split into three various paradigms,  characterizing different forms of 
geometry: Geometry 1 (natural geometry), Geometry 2 (natural axiomatic geometry) 
and Geometry 3 (formalist axiomatic geometry). The theoretical framework they have 
developed  specifies  the  nature  of  the  geometrical  objects,  the  use  of  different 
techniques and the validation mode accepted in each of the three paradigms. Here we 
briefly describe the first two geometrical paradigms distinguished by Houdement and 
Kuzniak (Houdement & Kuzniak, 2003; Houdement, 2007), which mainly concern 
primary and secondary school students that participated in the present study.

Geometry 1 is intimately related to reality and reasoning is close to experience and 
intuition. The objects of Geometry 1 are material objects, graphic lines on a paper 
sheet or virtual lines on a computer screen. Drawing and measurement techniques 
with  ordinary  geometrical  tools  (ruler,  set  square,  compass)  as  well  as 
experimentation in the sensible world (using techniques such as folding, superposing) 
are  used  in  this  paradigm.  New knowledge may  be produced based on evidence, 
experience or reasoning, while a permanent motion between the model and the reality 
enables the student to ‘prove’ the assertions.

In  Geometry  2  the  objects  are  ideal,  so  reasoning  relies  on  the  mathematical 
properties of the abstract geometrical objects. A system of definitions and axioms is 
necessary for the creation of the objects. In this system the axioms are as close as 
possible  to  intuition,  but  making  progress  and  reaching  certainty  demands 
demonstrations  inside  the  system.  Hypothetical  deductive  laws  are  the  source  of 
validation.

THE PRESENT STUDY

As noted  in  the  introduction,  this  paper  is  based  upon  a  research  project  which 
examined  primary  and  secondary  school  students’  geometrical  knowledge  and 
abilities  related  to  tasks  involving  different  geometrical  figures,  as  well  as  their 
spatial  abilities  in  micro-space.  Participants  in  our  study  were  1000 primary  and 
secondary  school  students  (488  males  and  512  females)  from  29  classes  of  9 
elementary schools and 12 classes of 8 secondary schools in four different districts of 
Cyprus. Specifically, the sample involved students from three grades (fourth grade – 
primary school: 332, sixth grade – primary school: 333 and, eighth grade – second 
grade of secondary school: 335). The mean age of the three grades was as follows: 
fourth grade, 9.8 years; sixth grade, 11.7 years; eighth grade, 13.9 years. Information 
concerning the instrument we constructed for the purpose of our research project and 
the procedure we followed can be found in Panaoura and Gagatsis (2008).

In the present paper we attempt to compare the geometrical reasoning of primary and 
secondary school students (the three age groups in our study) based on their solutions 
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to three specific geometrical tasks which involved two-dimensional figures (the three 
tasks are shown in the Appendix). At this point we have to stress that the comparison 
attempted here does not refer to the levels of success of the three groups of students, 
since  we  study  students  of  different  age,  from different  educational  levels,  with 
different learning experiences and different cognitive abilities.  Using as explanatory 
framework the theoretical notions presented above, we focus on the strategies and the 
common errors we identified in students’ solutions. In this direction first we present 
part of the results from our study concerning students’ solutions of three geometrical 
items included in the test and then we discuss these results and students’ difficulties 
under the light of didactic phenomena rising from our research. 

RESULTS ON SPECIFIC GEOMETRICAL ITEMS

Item [A] 

On the geometrical figure presented in item [A] a square and a right triangle can be 
identified. In order to give the correct answer, the students had to (a) identify, within 
the figure presented, the subfigures of the square and the right triangle, (b) pass from 
2D to 1D and ‘see’ that the unknown segment [AC] is one of the square’s sides and 
(c) recall and apply the cognitive unit referring to the property of equal sides in a 
square. At this point we must note that in the geometry test we included a multiple 
choice item to examine whether students possess the cognitive unit referring to the 
property of equal sides in a square. The results presented in Table 1 showed that 
while a high percentage of the students answered correctly to the specific multiple 
choice item (61.7% of 4th graders, 85.9% of 6th graders and 86.9% of 8th graders) – 
indicating they know that the four sides of a square are equal – a smaller number of 
students (especially from primary school)  eventually gave a correct answer to the 
geometrical item [A]. 

Item Answer 4th graders 6th graders 8th graders

Multiple 
choice 

Correct 61.7 85.9 86.9

Item [A]

Correct – using properties 36.4 71.8 66.9

Correct – applying theorem --- --- 18.5

Wrong – using ruler 8.4 2.1 ---

Wrong  –  arithmetical 
operations

6.0 4.8 2.4

Table 1: Students’ answers to multiple choice item and item [A] by age group

Crosstabs tables of performance to the multiple choice item by performance to item 
[A] were obtained for each age group in order to examine what percentage of the 
students who answered correctly to the specific multiple choice item, did actually 
solve the geometrical item [A]. The crosstabs results indicated that half of the 4th 
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grade students and a percentage of 22% of the 6th grade students who gave the correct 
answer to the multiple choice item (know that the sides of a square are equal) were 
not able to produce a correct answer to item [A]. The corresponding percentage was 
10% in the case of 8th grade students. So it seems that the secondary school students, 
working in the Natural Axiomatic Geometry paradigm, generally felt the need to use 
the properties and recalled the right one to solve item [A].

On  the  other  hand,  examining  at  the  common  errors  identified  in  the  students’ 
solutions  (Table  1),  we  notice  some  primary  school  students  who  gave  (wrong) 
answers after using their ruler to measure the unknown segment on the geometrical 
figure presented on their paper. Additionally, a small number of students of the three 
age groups tried to combine the arithmetical data of the problem in a random way in 
arithmetical operations in order to come to an answer.

At this point it is interesting to state that, while the students could give the correct 
answer to item [A] by simply applying the property of equal sides in a square, we 
identified  18.5%  of  the  secondary  school  students  who  solved  the  specific 
geometrical problem by applying Pythagoras’ theorem in the subfigure of the right 
triangle. This performance is probably influenced by a part of the didactical contract 
according to which they are expected to apply Pythagoras’ theorem any time a right 
triangle  is  involved  in  a  geometrical  figure.  On  the  other  hand,  the  specific 
performance  indicates  a  difficulty  concerning  the  transition  from  primary  to 
secondary  school.  Specifically,  the emphasis  put  on  the use  of  algorithms  during 
mathematics  teaching  in  the  secondary  school  seems  to  gradually  result  to  the 
phenomenon that the students feel the safe of using an algorithm to be greater than 
that of a simple application of a geometrical property.

Items [B] and [C]

In Table 2 we present the results of students’ attempts to solve two other geometrical 
tasks included in our test (item B and item C). Item [B] is a problem given to French 
students  entering  middle  school  (Duval,  2006).  Item [C]  was  constructed  for  the 
present study, as an analogous problem to item [B], with two basic differences. First, 
on  the geometrical  figure  presented  in  item [B],  the  subfigures  of  a  circle  and a 
rectangle  appear,  while  on  the  geometrical  figure  presented  in  item [C]  the  two 
subfigures  identified are a square and a rectangle.   Second, the ‘visibility’  of the 
geometrical  figure  (and its  subfigures)  is  less  in  the case  of  item [B] due to  the 
specific configuration.

Facing the geometrical problem presented in item [B] a number of students in the 
present  study  relied  only  on  a  visual  perception  of  the  figure  (perceptual 
apprehension) and either considered point  E as the middle of [AB] (16.5% of 6th 

grade students and 9.3% of 8th grade students), or answered that the length of segment 
[EB] is equal to the circle’s ray, “because it seems to be equal to the ray” (11.1% of 
6th grade students and 9.0% of 8th grade students). 
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Item [B]  Item [C] 

Answer 4th 

graders
6th 

graders
8th 

graders
4th 

graders
6th 

graders
8th 

graders

Correct – using 
properties

15.1 33.3 51.9 46.1 62.2 81.5

Wrong – visual 
perception (i)

Wrong  -  visual 
perception (ii)

6.6

8.7

16.5

11.1

9.3

9.0

3.3 4.5 0.6

Wrong  –  using 
algorithms 

10.2 5.4 0.9 11.4 9.9 2.1

Table 2: Students’ answers to item [B] and item [C] by age group 

In order to solve the item [C], the solver had to identify the two subfigures, to possess 
and to use the cognitive unit referring to the property of equal sides of a square. As in 
the case of item [B], a number of students relied only on the visual perception of the 
given figure and considering point E as the middle of [AB] answered that the length 
of segment [EB] is equal to 3.5 cm. In both cases perceived features of the geometric 
figures (relying on a perceptual apprehension of the given figure in each problem) 
have misled the students as to the mathematical properties involved in the problem 
solution and have obstructed appreciation of the need for discursive apprehension of 
the presented geometrical figure. 

Finally, it  is interesting to note that, as in the case of item [A], there are (mainly 
primary  school)  students  who  tried  to  give  an  answer  to  the  items  [B]  and  [C] 
combining in arithmetical operations the data presented in the geometrical problems. 
A possible explanation to the specific students’ performance is that, according to the 
implicit  didactical  contract  (Brousseau,  1984)  established during the teaching and 
learning processes in the mathematics classroom – especially the aspect concerning 
the solution of routine arithmetical word problems – when those students are given a 
geometrical  problem which involves  arithmetical  data,  they suppose  that  they  are 
expected to combine them in order to give an answer. They probably consider that in 
this way not only they can give an answer, but they also demonstrate that they have 
tried to solve the problem by identifying and using the data given in the problem. So, 
they assume that their teacher will be pleased with their performance!

DISCUSSION

Research about the learning of mathematics and its difficulties “must be based on 
what students do really by themselves, on their productions, on their voices” (Duval, 
2006, p. 104). In this paper we presented some results from our research referring to 
the solutions of primary and secondary school students in three geometrical items, 
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focusing on the strategies they used and their common errors. Once again we stress 
that we did not seek to compare students’ levels of success, since it is obvious that the 
students participating in our study have different learning experiences (as far as the 
amount of experiences and the teaching methods are concerned) and differ in their 
cognitive development.  The comparison of the solutions of the different age groups 
students shed light to phenomena related to the transition from Natural Geometry to 
Natural  Axiomatic  Geometry  and  to  the  inconsistency  of  the  didactical  contract 
implied in primary and secondary school education.

The transition from Natural Geometry to Natural Axiomatic Geometry

The passage from Geometry 1 to Geometry 2 is  a complex,  sensitive and crucial 
matter (Houdement & Kuzniak, 2003), since these two paradigms are different as far 
as  objects,  techniques  and  validation  mode  are  concerned  (Houdement,  2007). 
Moving from Natural  Geometry to Natural  Axiomatic  Geometry students  have to 
change their theory concerning the nature of the objects and of the space. They are 
forced to adopt the notion of conceptual objects, the existence of which is based on a 
definition in an axiomatic system. Consequently, they have to foster new techniques 
to work relying on the mathematical properties of each abstract geometrical figure.

The findings of the present study indicate that students working in the paradigm of 
Natural  Geometry (mainly primary school students  in our study) tend to consider 
geometrical objects as material objects and specific pictures rather than as theoretical, 
ideal objects which bear specific properties. This difficulty results to the phenomenon 
of  students  trying  to  solve  geometrical  problems  often  relying  on  the  visual 
perception of the given geometrical figure rather on a mathematical deduction based 
on the properties of the geometrical objects involved. This phenomenon is related to 
the  students’  difficulty  to  work  with  geometrical  figures  as  ‘figural  concepts’ 
(Fischbein, 1993). We call it  ‘geometrical figure to figural concept’ difficulty. As 
Mariotti  (1995)  has  noted,  correct  and  effective  geometrical  reasoning  is 
characterized  by  the interaction  and the harmony  between figural  and conceptual 
aspects of geometrical entities. In the present study, students working in the Natural 
Geometry  paradigm  (mainly  primary  school  students)  base  their  geometrical 
reasoning on the perceptual apprehension of the geometrical figure presented in a 
given task and this results to erroneous solutions, since the geometrical properties 
cannot be determined only through the specific  type of apprehension. The perceptual 
apprehension  of  a  geometrical  figure  must  be  under  the  control  of  the  verbal 
propositions (discursive apprehension) which are presented in a geometrical problem 
(Duval, 1998), in such a way that correct geometrical reasoning results through the 
combination and interaction of the verbal propositions and the geometrical figure. In 
contrast  to  the  students  working  under  the  Natural  Geometry  paradigm,  students 
working in the Natural Axiomatic Geometry paradigm (mainly amongst secondary 
school  students)  focus  their  efforts  on  geometrical  relations  and  they  confront 
geometrical  tasks  based  on  the  properties  of  geometrical  figures  (Houdement  & 
Kuzniak, 2003).
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Inconsistency of the didactical contract in primary and secondary education

The strategies used by the students in the solution of the presented tasks indicate that 
the didactical contract which is established among teachers and students concerning 
geometry learning in primary school education does not discourage all the students 
from (a) extracting conclusions based on the visual perception of a geometrical figure 
and (b) giving an answer extracted from random combination of the arithmetical data 
given in a geometrical problem. These aspects of the didactical contract were not 
identified to be present in the secondary school education, in the Natural Axiomatic 
Geometry paradigm, where the emphasis is on the properties of geometrical objects. 
We call this phenomenon “inconsistency of the didactical contract” among the two 
education levels  concerning the teaching of  geometry  and further  investigation  is 
needed in order to gather information regarding the actual teaching of geometry in 
primary and secondary schools. 

The power of the didactical contract of Natural Axiomatic Geometry 

In the case of geometry teaching in the secondary school, the emphasis on learning 
theorems  and  continuous  practice  with  close  tasks  demanding  the  application  of 
theorems may result in the application of these theorems even in cases that this is not 
necessary.  For  example,  as  a  consequence  of  the  continuous  practice  of  the 
Pythagoras’  theorem and  the  didactical  contract  formed  during  teaching,  students 
consider that they are expected to apply Pythagoras’ theorem any time a right triangle 
is  involved  in  a  geometrical  figure.  As  we  have  noted  in  the  results  section, 
attempting to solve a task which could be solved with the mere application of the 
property of equal sides in a square, almost one fifth of the 8th graders in the present 
study applied Pythagoras’ theorem in the rectangular triangle they identified in the 
given geometrical figure. The power of the didactical contract in secondary school 
geometry  concerning  the  application  of  theorems,  leads  students  to  mechanically 
apply the theorems, especially those that involve an algorithm, feeling safer to use an 
algorithm than a geometrical property.

Teaching implications and further research

Most of the difficulties that have been identified and discussed in the present study 
concerning primary  and secondary  school  students’  attempts  to  solve  geometrical 
problems are centred around the issue of the difficulties raised during the transition 
from Natural Geometry paradigm (where the objects are real,  material)  to Natural 
Axiomatic Geometry paradigm (where the objects are conceptual). Subsequently, one 
of  the  main  goals  during  the  teaching  of  geometry  should  be  to  help  students 
progressively pass from a geometry where objects and their properties are controlled 
by perception to a geometry where they are controlled by explicitation of properties. 
But,  as  Houdement  and Kuzniak (2003)  note,  students  and their  teachers  are  not 
necessarily  situated  in  the  same  geometrical  paradigm,  so  this  is  a  source  of 
educational  misunderstanding.  Therefore,  we  consider  essentially  important  that 
(prospective) primary and secondary school mathematics teachers are aware of the 
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existence  of  the  different  geometrical  paradigms  (Houdement,  2007)  and  of  the 
difficulties  arising  from the  fact  that  plane  geometrical  figures  on  paper  may  be 
considered by the students in the teaching process during elementary school as if they 
were real objects (Berthelot & Salin, 1998). Further research is needed in order to 
prescribe  and  compare  the  way  mathematics  teachers  in  primary  and  secondary 
school approach geometry in their classrooms.
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APPENDIX

Item A        Item C

On  the  right  triangle  ΑΒC, 
ΒC=10cm and ΑΒ=8cm. ΑCDΕ is a 
square (CD=6cm) . Find the length 
of segment ΑC.

On  the  rectangle  ABCD,  DC=7cm  and 
AD=3  cm.  AEFD  is  a  square.  Find  the 
length of segment EB.

Item B

On the figure sketched freehand here (the 
real  lengths  are  written  in  cm),  are 
represented  a  rectangle  ABCD  and  a 
circle with center A, passing through D. 

Find the length of segment EB.
4 cm

7cm

B

C

4cm

A E

D

10 cm

E

A

B

C

D

8 cm

6 cm

A B

D C

E

F

3 cm

7 cm
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STRENGTHENING STUDENTS’ UNDERSTANDING OF 
‘PROOF’ IN GEOMETRY IN LOWER SECONDARY SCHOOL

Susumu Kunimune, Taro Fujita & Keith Jones

Shizuoka University, Japan; University of Plymouth, UK; University of 
Southampton, UK

This  paper  reports  findings  that  indicate  that  as  many  as  80%  of  lower  
secondary age students can continue to consider that experimental verifications 
are enough to demonstrate that geometrical statements are true - even while, at  
the  same  time,  understanding  that  proof  is  required  to  demonstrate  that  
geometrical statements are true. Further data show that attending more closely  
to the matter of the ‘Generality of proof’ can disturb students’ beliefs about 
experimental verification and make deductive proof meaningful for them.

Key words: Geometrical reasoning, generality of proof, cognitive development, 
lower secondary school, curriculum design

INTRODUCTION

School geometry is commonly regarded as a key topic within which to teach 
mathematical  argumentation  and  proof  and  to  develop  students’  deductive 
reasoning and creative thinking.  Yet  while  deductive  reasoning and proof  is 
central to making progress in mathematics, it remains the case that students at 
the  lower  secondary  school  level  have  great  difficulty  in  constructing  and 
understanding  proof  in  geometry  (Battista,  2007;  Mariotti,  2007).  Our  work 
focuses on researching, and comparing, the teaching of geometry at the lower 
secondary school  level  in countries  in the East  and in the West,  specifically 
China, Japan and the UK (see, for example, Ding, Fujita, & Jones, 2005; Ding & 
Jones,  2007;  Jones,  Fujita  &  Ding,  2004,  2005).  In  our  research  we  are 
interested in students’ cognitive needs in the learning of geometrical concepts 
and thinking, and in principles for classroom practice which would satisfy such 
needs of students. 

In this paper we report selected findings from a series of research projects on the 
learning and teaching of geometrical proof carried out in Japan where formal 
proof is intensively taught in the lower secondary school grades (Grades 7-9). 
We address the issue of students’ cognitive needs for conviction and verification 
and how these  needs  might  be  changed and developed through instructional 
activity.  We first  present  how students  in  lower  secondary  schools  perceive 
‘proof’ in geometry in terms of the levels of understanding of geometrical proof. 
We do this by using data collected in 2005 from 418 Japanese students (206 
from Grade 8, and 212 from Grade 9). We then offer some suggestions that we 
have  developed from classroom-based research  (undertaken since  the  1980s) 
about  how  we  might  encourage  students’  geometrical  thinking  and 
understanding of deductive proof in geometry. 

Given  our  data  is  from studies  conducted  in  Japan,  we  begin  with  a  short 
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account of the teaching of proof in geometry in Japan.

THE TEACHING OF PROOF IN GEOMETRY IN JAPAN

The  specification  of  the  mathematics  curriculum  for  Japan,  the  ‘Course  of 
Study’, can be found in the Mathematics Programme in Japan (English edition 
published by the Japanese Society of Mathematics Education, 2000). It should 
be noted that no differentiation is required in the ‘Course of Study’, and mixed-
attainment classes are common in Japan.  ‘Geometry’ is  one of the important 
topics (the other topics are ‘Number and Algebra’ and ‘Quantitative Relations’). 
The curriculum states that, in geometry, students must be taught to “understand 
the significance and methodology of proof” (JSME, 2000, p. 24). In terms of the 
Paradigm of Geometry proposed by  Houdement and Kuzniak (Houdement & 
Kuzniak, 2003), Japanese geometry teaching may be characterized as within the 
Geometry II paradigm (in that axioms are not necessarily explicit  and are as 
close as possible to natural intuition of space as experienced by students in their 
normal lives). 

In terms of Japanese curriculum materials (such as textbooks for Grade 8 and 
Grade  9  students)  our  analysis  indicates  a  varying  amount  of  emphasis  on 
‘justifying and proving’ (see, for example, Fujita and Jones, 2003; Fujita, Jones 
and Kunimune, 2008). While the curriculum requires that the principles of how 
to  proceed  with  mathematical  proof  are  explained  in  detail,  including 
explanations of ‘definitions’ and ‘mathematical proof’, our research repeatedly 
shows  that  many  students  difficulties  to  understand  proof  in  geometry  (for 
example, Kunimune, 1987; 20001).

In what follows we provide an analytical framework for students’ understanding 
of proof in geometry and then report on our data from three from surveys carried 
out in 1987, 2000 and 2005.

ASPECTS OF STUDENTS’ UNDERSTANDING OF PROOF IN 
GEOMETRY

In our research, as summarized in this paper, we capture students’ understanding 
of proof in terms of two components: ‘Generality of proof’ and ‘Construction of 
proof’. The first one these, ‘Generality of proof in geometry’, recognizes that, on 
the one hand, students have to understand the generality of proof in geometry, 
including  the  universality  and  generality  of  geometrical  theorems  (proved 
statements),  the  roles  of  figures,  the  difference  between  formal  proof  and 
experimental  verification,  and  so  on.  The  second  of  these  two  components, 
‘Construction of proof in geometry’, recognizes that, on the other hand, students 
also  have  to  learn  how  to  ‘construct’  deductive  arguments  in  geometry  by 
knowing  sufficient  about  definitions,  assumptions,  proofs,  theorems,  logical 
circularity, and so on.

Considering these two aspects,  we work with the following levels of student 
understanding (we do not have space in this paper to relate these levels to the 
van Hiele model):
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Level I: at this level, students consider experimental verifications are enough to 
demonstrate that geometrical statements are true. This level is sub-divided into 
two  sub-levels:  Level  Ia:  Do  not  achieve  both  ‘Generality  of  proof’  and 
‘Construction of proof’, and Level Ib: Achieved ‘Construction of proof’ but not 
‘Generality of proof’

Level II: at this level, students understand that proof is required to demonstrate 
geometrical statements are true. This level is sub-divided into two sub-levels: 
Level  IIa:  Achieved   ‘Generality  of  proof’,  but  not  understand  logical 
circularity, and Level IIb: Understood logical circularity 

Level III: at this level, students can understand simple logical chains between 
theorems

We used the following questions to measure students’ levels of understanding:

Q1 Read the following explanations by three students who demonstrate why the sum 
of inner angles of triangle is 180 degree. 

Student A ‘I measured each angle, and they are 50, 53 and 77. 50+53+77=180. 
Therefore, the sum is 180 degree.’ Accept/Not accept

Student B ‘I drew a triangle and cut each angle and put them together. They formed 
a straight line. Therefore, the sum is 180 degree.’ Accept/Not accept

Student C Demonstration by using properties of parallel line (an acceptable proof) 
Accept/Not accept

Q2 In Figure Q2, prove AD = CB when ∠ A = ∠ C, and AE=CE.

Q3The following argument carefully demonstrates that the diagonals of a 
parallelogram intersect at their middle points (see Figure Q3). ‘In a parallelogram 
ABCD, let O be the intersection of its diagonals. In ∆ ABO and ∆ CDO, AB // 
DC. Therefore, ∠ BAO = ∠ DCO and ∠ ABO = ∠ CDO. Also, AB = CD. 
Therefore ∆ ABO ≡  ∆ CDO. Therefore, AO = CO and BO = DO, i.e. the 
diagonals of a parallelogram intersect at their middle points’

Now, why can we say a) AB // DC, b) AB = CD, and c) ∆ ABO ≡  ∆ CDO?

Q4 Do you accept the following argument which demonstrates that in an isosceles 
triangle ABC, the base angles are equal? (see Figure Q4). ‘Draw an angle bisector 
AD from ∠ A. In ∆ ABD and ∆ ACD, AB = AC, ∠ BAD = ∠ CAD and ∠ B = 
∠ C. Therefore, ∆ ABD ≡  ∆ ACD and hence ∠ B = ∠ C’. If you do not accept, 
then write down your reason.

A

D B

C

E

     

A D

B C

O

     

A

DB C

Q2                           Q3                                  Q4
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In the above items,  Question 1 (Q1) checks whether learners can understand 
difference  between  experimental  verification  and  formal  proof  in  geometry. 
Question 2 (Q2) checks whether  learners can understand a simple proof.  Q3 
checks  whether  learners  can  identify  assumptions,  conclusions  and  so  on  in 
formal proof. Finally, Q4 checks whether learners can identify logical circularity 
within a formal proof (proof is invalid as ‘∠ B = ∠ C’ is used to prove ‘∠ B = 
∠ C’). To achieve Level II, students have to answer Q1 correctly. Students who 
perform well in Q2 and Q3 can be considered at least at Level Ib as they achieve 
good understanding in ‘Construction of proof’. Figure 1 summarizes the criteria 
and levels.

Level IaLevel Ib

Level IIa

Level IIb

Generality of proof

Construction of proof

Understand assumptions, 
conclusions, proof etc.

Measu
rement/E

xperim
ental 

verifi
ca

tio
n is

 enough

Fo
rm

al p
roof is

 nece
ss

ary

C: Correct, IC: Incorrect

Q1 A&B: IC

Q1 A or B: C

Q2&3: ICQ2&3: C
Q1: C

Q4: C Q4: IC

Figure 1: Criteria and levels of generality and proof construction

STUDENTS’ UNDERSTANDING OF PROOF IN GEOMETRY 

Student surveys were carried out in 1987, 2000 and 2005. One consistent result 
from  these  surveys  is  that  over  60%  students  consider  that  experimental 
verification is enough to say it is true that the sum of the inner angles of triangle 
is 180 degree. Tables 1 and 2 show data collected in 2005 (with 206 students 
from Grade 8,  and 212 students  from Grade 9,  collected from five  different 
schools).

Empirical 
argument using 
measures
(Student A 
explanation)

Empirical 
argument using 
tearing corners
(Student B 
explanation)

Proof
(Student C 
explanation)

Accept
Not 
accept

Accept
Not 
accept

Accept
Not 
accept

Grade 8 62% 32% 70% 21% 74% 15%

Grade 9 36% 58% 52% 38% 80% 6%

Table 1: Results of Q1
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The results in Table 1 indicate that, whereas students can accept (or understand) 
that  a  formal  proof  (‘Student  C’  explanation)  is  a  valid  way of  verification, 
many  also  consider  experimental  verification  (‘Student  A’  or  ‘Student  B’ 
explanation) as acceptable. There are, however, changes from Grade 8 to Grade 
9,  as,  by  the  later  grade,  more  students  reject  empirical  arguments  or 
demonstrations. The likely reason for this is that Grade 9 students have more 
experience with formal  proof,  whereas in Grade 8 the students  are  only just 
started studying proof (for more on this, see Fujita and Jones, 2003).

Turning  now  to  students’  understanding  of  ‘Generality  of  proof’  and 
‘Construction of proof’, the results in Table 2 indicate the following: 

• More than half of students can construct a simple proof (Q2).

• Students (in Q3) show relatively good performance for Q3a and Q3b, and 
these indicate that students have good understanding about deductive 
arguments of simple properties. Q3c is more difficult as students are 
required to have knowledge about the conditions of congruent triangles. 

• The results of Q4 suggest that more than half of students cannot ‘see’ why 
the proof in Q4 is invalid; that is they cannot understand the logical 
circularity in this proof. 

Q2 Q3a Q3b Q3c Q4

Grade 8 57% 82% 80% 53% 34%

Grade 9 63% 85% 81% 59% 49%

Table 2: Result of Q2-4

In summary, as shown in Table 3, some 90% of Grade 8 and 77% of Grade 9 
students were found to be at level I. Data from surveys carried out in 1987 and 
2000 show similar results (see Kunimune, 1987, 2000). 

Level Ia Ib IIa or above

Grade 8 33% 57% 9%

Grade 9 28% 49% 22%

Table 3: levels of understanding

The result from Grade 9 shows a sight improvement from Grade 8. Using a 2x2 
cross-table in which the numbers of level Ia+Ib and IIa or above are considered, 
the chi-square value is 13.185 (df=1, p<0.01), and this indicates that the 
significant improvement can be observed between Grade 8 and Grade 9. 

Level Ia+Ib Level IIa or above

Grade 8 185 19

Grade 9 163 47

Table 4: comparing Grade 8 and Grade 9
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MOVING STUDENTS TO DEDUCTIVE THINKING

As evident  in a  recent  review of research  on proof and proving by Mariotti 
(2007,  p181),  the  ‘discrepancy’  between  experimental  verifications  and 
deductive reasoning is now a recognized problem. Japan is not an exception to 
this. Our findings given above indicate that Japanese Grade 8 and 9 students are 
achieving  reasonably  well  in  terms  of  ‘Construction  of  proof’,  but  not 
necessarily as well in terms of ‘Generality of proof’ in geometry. There is a gap 
between the two aspects. This means that students might be able to ‘construct’ a 
formal proof, yet they may not appreciate the significance of such formal proof 
in geometry. They may believe that a formal proof is a valid argument, while, at 
the same time, they also believe experimental verification is equally acceptable 
to ‘ensure’ universality and generality of geometrical theorems.  

Our data for Grade 9 students can be considered as quite concerning, given 80% 
of students remain at level I in terms of their understanding of proof even after 
they  have  studied  formal  proof  at  Grade  8  using  textbooks  where  90%  of 
relevant  intended  lessons  can  be  devoted  for  ‘justifying  and  proving’ 
geometrical facts’ (Fujita and Jones, 2003). However, we would like to stress 
that we are still encouraged by the result that 20% of Japanese students achieve 
relatively sound understanding of proof through everyday mathematics lessons.  

Hence, in our research, we turn to the question of working with students on why 
formal proof is needed. Based on over 10 years of classroom-based research, 
Kunimune  et  al (2007) propose the following principles for  lower secondary 
school geometry (Grades 7-9) designed to help students appreciate the need for 
formal proofs (in addition to the students being able to construct such proofs):

• Grade 7 lessons to start from problem solving situations such as ‘consider 
how to draw diagonals of a cuboid’, and so on;  this develops students’  
geometrical thinking and provides experiences of mathematical processes 
that are useful in studying deductive proofs in Grades 8 and 9; 

• Geometrical  constructions  to  be  taught  in  Grade  8;  this  replaces  the 
practice  of  teaching constructions  in Grade 7,  and then proving these 
same constructions in Grade 8, as such a gap between the teaching of  
constructions and their proofs has been found by classroom research to 
be unhelpful;

• Grade 8 lessons to provide students with explicit opportunities to examine 
differences between experimental verifications and deductive proof;  this  
helps students to appreciate such differences;

• Grade  8  lessons  to  start  the  teaching  of  the  teaching  of  deductive 
geometry  with a  set  of  already learnt  properties  which are shared and 
discussed within the classroom, and used as a form of axioms (a similar 
idea  to  that  of  the  ‘germ  theorems’  of  Bartolini  Bussi,  1996);  this  
provides students with known starting points for their proofs.

While we do not have space in this paper to provide data to support all these 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 761



principles, in what follows we substantiate those related to differences between 
experimental verifications and deductive proof in geometry. 

Constructions and proofs 

In  our  experience  (Shinba,  Sonoda and Kunimune,  2004),  while  geometrical 
constructions  (with  ruler  and  compasses)  can  be  taught  in  Grade  7,  these 
constructions are often not proved until Grade 8 (after students have learnt how 
to prove simple geometrical statements). In a series of teaching experiments, we 
investigated  the  use  of  more  complex  geometrical  constructions  (and  their 
proofs) in Grade 8. As an example, one of our lessons in Grade 8 started from 
the more challenging construction problem ‘Let us consider how we can trisect a 
given straight line AB’. 

In our classroom studies, we observed that such lessons are more active for the 
students. The students could also experience some important processes which 
bridge  between  conjecturing  and  proving.  Students  could  first  investigate 
theorems/properties of geometrical figures through construction activities, and 
this  led  them  to  consider  why the  construction  worked.  By  appropriate 
instructions by the teachers, the students then started proving the constructions. 
For example:

Student C: I thought that I could trisect AB when I constructed this (No. 11 in Figure 
2), but I think I found this is not true. So I prove that we cannot trisect the 
line AB. We just saw the construction No. 8 is true, so I use this approach 
in my proof. Now, I draw an equilateral triangle on AB (No. 11’), and by 
doing this,  we can trisect  the  AB, and proof  is  similar  to  No.  8.  Now, 
compare to this (No. 11’) to my construction, and C and D are not in the 
same place, as the height of the triangle ACB is shorter than the height of 
the square. We know we can trisect the AB by using this approach, and 
therefore, my method (No. 11) does not work.

No. 8 No. 11 No. 11’

Figure 2: Constructions proposed by students2

The data extract  above shows that  some students  in this class  start  using an 
already proved statement (i.e. a theorem) to justify why the construction (No. 11 
in Figure 2) does not work to trisect the line AB. 

Making explicit the differences amongst various argumentations

In  a  series  of  lessons  for  41  Grade  8  students,  tasks  were  designed  and 
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implemented to disturb students’ beliefs about experimental verification. In the 
lessons, students were asked, for example, to compare and discuss various ways 
of  verifying  the  geometrical  statement  that  the  sum  of  the  inner  angles  of 
triangles is 180 degrees (this relates to Q1 in the research questionnaire). The 
angle sum statement was chosen as way of trying to bridge the gap between 
empirical  and  deductive  approaches,  given  that  students  often  encounter  the 
angle sum statement in primary schools and they study this again with deductive 
proof in lower secondary school. While we do not have space in this paper to 
provide the data from the study, we can provide a summary of ways which can 
be useful  in  encouraging students  to  develop an appreciation of  why formal 
proof is necessary in geometry (for more details, see Kunimune, 1987; 2000).

• Students first exchange their ideas on various ways of verification; they 
comment  on  accuracy  or  generality  of  experimental  verification;  they 
discuss the advantages/disadvantages of experimental verifications.

• Students’ comments such as ‘A protractor is not always accurate ...’, ‘It 
takes time to measure angles, and we cannot see the reason why’, ‘The 
triangle is not general’, and so on, often cause a state of disequilibrium in 
students  (viz Piaget),  and  make  students  doubt  the  universality  and 
generality of experimental verification.

• Students made various comment s on the argument based on ‘cutting each 
angles and fitting them together’ (Q1-b). For example, ‘I think this is an 
excellent method as I cannot see any problems in this method’, ‘This is an 
easy method to check (whether the sum of inner angles of triangles is 180 
degree), ‘I think this is a good way, but because we use a piece of paper, I 
think it can be sometimes inaccurate’, and so on.

• Advice  from  teachers  is  necessary  to  encourage  students  to  reflect 
critically on different ways of verifications (viz establishment of ‘social 
norm’ in classrooms, Yackel and Cobb, 1996).

Kunimune (1987; 2000) found that, after such lessons, around 40% of students 
previously  at  Level  Ib have moved to  Level  II  (post-test  I).  They no longer 
accept experimental verification and start considering that deductive proof as the 
only acceptable argument in geometry. A later post-test (post-test II) carried out 
one month after the lessons found that about 60% of students are at Level IIa. 
Table 4 (below) summarises the result of the pre and post-tests with five types of 
cognitive  changes  observed  among  students  in  terms  of  the  levels  of 
understanding of proof in geometry. 

An interesting observation is the type d in which three students show unexpected 
behaviour in terms of their cognitive development in that there was a regression 
from level IIa to Ib. A detailed reason for this is unknown, but, unlike the 
majority of students, it might be that their states of disequilibrium created rather 
a ‘negative’ effect for these students. 

In summary,  we conclude that  the matter  of  the ‘Generality  of  proof’  could 
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usefully be explicitly addressed in geometry lessons in lower secondary schools. 

Type Pre-test Post-test I Post-test II N

a

b

c

Level II

Level I

Level I

Level II

Level II

Level I

Level II

Level II

Level II

2

13

9

d

e

Level I

Level I

Level II

Level I

Level I

Level I

3

14

Level II 2 18 24

Table 4: Results from Pre- and Post tests

CONCLUDING COMMENTS

This paper outlines research findings from Japan suggesting that, in terms of 
‘Generality  of  proof’  and  ‘Construction  of  proof’,  many  students  in  lower 
secondary school remain at Level I where they hold the view that experimental 
verifications  are  enough to  demonstrate  that  geometrical  statements  are  true, 
even  after  intensive  instruction  in  how to  proceed  with  proofs  in  geometry. 
Classroom studies have tested ways of challenging such views about empirical 
ways of verification which indicate that it is necessary to establish classroom 
discussions to disturb students’ beliefs about experimental  verification and to 
make deductive proof meaningful for them.

NOTES
1.   Some papers  by  Kunimune  (1987;  2000)  are  written  in  Japanese;  this  paper,  one  of  outcomes  of  our 

collaborative work over five years, contains his main ideas. 

2.  In No 8 AB is trisected by constructing a square whose diagonal is AB, and joining a vertex and midpoints; In 

No 11, an equilateral triangle and a square are constructed on AB; In No. 11’, AB is trisected by constructing 

equilateral triangles on AB, and joining a vertex and midpoints. 
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WRITTEN REPORT IN LEARNING GEOMETRY: 
EXPLANATION AND ARGUMENTATION

Sílvia Semana, Projecto AREA

Leonor Santos, DEFCUL, CIE, DIFMAT, Projecto AREA

In this article, we examine how the written report, within the context of assessment  
for learning, helps students in learning geometry and in developing their explanation  
and argumentation skills. We present the results of a qualitative case study involving 
Portuguese students of the 8th grade. This study suggests that using written reports  
improves those capabilities and, therefore, the comprehension of geometric concepts  
and processes. These benefits for learning are enhanced through the implementation  
of some assessment strategies, namely oral and written feedback. 

Key-words: Geometric thinking, explanation, argumentation, assessment for learning, 
written reports.

INTRODUCTION

Explanation, argumentation and proof are mathematics activities that assume a main 
role  in the teaching and learning of  geometry,  but  present  a  lot  of  difficulties  to 
students (Battista, 2007). The need to implement an assessment that contributes to 
students’ learning is also widely recognized: an assessment that guides the students 
and helps them to improve their learning (Wiliam, 2007). As such, in this study, we 
attempted to understand how the written report, as a tool of assessment for learning, 
contributes  to learning geometry and,  in particular,  reinforces the development  of 
students’ explanation and argumentation processes.

The present study follows a wider one that aimed at understanding the key role of the 
written report as an assessment tool supporting the learning of 8th grade students 
(aged thirteen) in mathematics. The larger study was developed during the academic 
year 2007/2008 under the scope of project AREA [1].

EXPLANATION,  ARGUMENTATION  AND  PROOF  IN  TEACHING  AND 
LEARNING GEOMETRY

All  over  the  world  and  in  Portugal,  in  particular,  the  mathematics  curriculum 
recognizes  geometry  as  a  privileged  field  for  the  development  of  explanation, 
argumentation  and  proof  (NCTM,  2000;  DGIDC,  2007).  Battista  and  Clements 
(1995)  notice  the  need  to  shape  the  curriculum  in  order  to  develop  students’ 
explanation  and  argumentation  skills  and  so  that  students  use  proof  to  justify 
powerful  ideas.  According  to  Polya  (1957)  mathematical  proof  should  be  taught 
because it helps in: (i) acquiring the notion of intuitive proof and logical reasoning; 
(ii) understanding a logical system; and (iii) keeping what is learnt in one’s memory.
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Many authors have addressed geometrical thought based on Van Hiele’s model. This 
model proposes a sequential progression in learning geometry through five discrete 
and qualitatively different levels of geometrical thinking: visual, descriptive/analytic, 
abstract/relational, formal deduction and rigor. However, according to Freudenthal 
(1991), these are relative levels, not absolute ones. Nevertheless, “the levels can help 
to find and further develop appropriate tasks (…) and they are obviously helpful for 
explorative activities to come across new, maybe even innovative ideas” (Dorier  et  
al.,  2003,  p.  2).  This  progression is determined by the teaching process,  thus the 
teacher has a key role in setting appropriate tasks so that students may progress to 
higher levels of thought and walk towards proof. The learning of deductive proof in 
mathematics  is  complex  and its  progress  is  neither  linear  nor  free  of  difficulties 
(Küchemann & Hoyle, 2002, 2003). As regards explanation, we may consider several 
modes,  including  non-explanations  (where,  for  example,  students  refer  to  the 
teacher's authority), explaining how, explaining to someone else (spontaneously) and 
explaining to oneself (in response to a question) (Reid, 1999). Argumentation is view 
as an intentional  explication of  the reasonings  used during the development  of  a 
mathematical task (Forman et al., 1998).

ASSESSMENT FOR LEARNING

Current  mathematics  curriculum documents  advocate  an  assessment  whose  main 
purpose is to support students' learning, and whose forms constitute, at the same time, 
learning situations (DGIDC, 2007; NCTM, 1995, 2000). “Assessment in education 
must, first and foremost, serve the purpose of supporting learning” (Black & Wiliam, 
2006, p. 9). In this study, assessment for learning is seen as “all the intent that, acting 
on  the  mechanisms  of  learning,  directly  contributes  to  the  progression  and/or 
redirection of learning” (Santos, 2002, p. 77). Several studies show that the focus on 
assessment  for  learning,  as  opposed  to  an  assessment  of  learning,  may  produce 
substantial improvement in the performance of students (Black & William, 1998). 

In order to develop their own knowledge about thinking mathematically,  students 
need to develop a conscious, reflective practice, which encompasses the processes of 
self-assessment. According to Hadji (1997), self-assessment is an activity of reflected 
self-control over actions and behaviours on behalf of the individual who is learning. 
Santos (2002) stresses that self-assessment implies that one becomes aware of the 
different moments and aspects of his/her cognitive activity, therefore it is a meta-
cognitive process. A non-conscious self-control action is a tacit, spontaneous activity 
that is natural in the activity of any individual (Nunziati, 1990), and in this sense all 
human  beings  self-assess  themselves.  Meta-cognition  goes  beyond  non-conscious 
self-control, for it is a conscious and reflective action (Nunziati, 1990).

Some assessment strategies can be adopted to promote learning, including: a positive 
approach  of  the  error;  oral  questioning  of  students;  feedback;  negotiation  of 
assessment criteria; and the use of alternative and diversified assessment instruments 
(Black  et al.,  2003; Santos, 2002). In particular, the written report is a privileged 
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instrument  to  monitor  students’  learning.  Students’  work  on  written  reports  has 
advantages in terms of developing their explanation and argumentation skills, which 
are two intrinsic requests of this instrument; furthermore, written reports may help 
students to reflect upon their work, because time and space are given (Mason, Burton 
& Stacey, 1982). “Intensive approach to argumentative skills, relevant 
for mathematical argumentation, seems to be possible through an 
interactive management of students’ approach to writing” (Douek & 
Pichat, 2003). The description of thinking processes, with the identification of the 
strategies used to solve a given task, including the difficulties that were encountered 
and the mistakes that were made, allows students to rethink their learning process. 
However, it is desirable that a report be done in “two stages” to allow for an effective 
opportunity for learning. This means that a first version of the report is subject to the 
teacher’s feedback and then the student develops a new version, a second one, taking 
into account the feedback received (Pinto & Santos, 2006).

METHODOLOGY

This study was based on an interpretative paradigm and on a qualitative approach. 
We chose the case study for the design research, given the nature of the problem to 
study and the desired final product (Yin, 2002).

The research involved an 8th grade class, with 24 students. We selected four of these 
students based on different mathematical performances, and taking into account their 
mathematics  communication skills.  These students  were Maria,  Rute,  Duarte,  and 
Telmo, and they constituted a working group in the classroom. 

Data were collected through lesson observation, namely, the lesson dedicated to the 
discussion of the guidelines for preparing the report and of the assessment criteria, 
and the lessons dedicated to carrying out tasks as well as the first and second versions 
of the reports. Three individual interviews to each of the four students were made, the 
first one at the beginning of the school year and the others after the establishment of 
the second version of each report. Two tasks led to the development of two written 
reports, each one with two versions.

The data were subjected to several  levels  of  analysis  that  took place periodically 
(Miles & Huberman, 1994), based on categories defined a posteriori that arose from 
the  data  gathered,  keeping  in  mind  the  focus  of  the  study  and  the  theoretical 
framework.

PEDAGOGICAL CONTEXT

Since the writing of a report was a novelty for the students, they were given a set of 
guidelines for writing the report and the assessment criteria. These two documents 
were discussed with the students. According to the guidelines, the organization of the 
report should include three parts:  introduction, development,  and conclusion. Both 
first two parts, and the tasks that originated the report, should be produced within the 
group.  The  last  part  should  be  held  individually  and  it  included  students’  self-
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assessment. The reports were produced in two "stages", the students benefiting from 
the teacher’s comments to the first stage in order to improve the second one. Students 
were not required to do any proof, but were asked to provide explanations for their 
thinking (Küchemann & Hoyle, 2003).

The  first  task  proposed  an  investigation  of  possible  generalizations  of  the 
Pythagorean  theorem.  Students  were  asked  to  remember  and  to  reflect  upon  the 
relationship  between the  areas  of  the  squares  constructed  on  the  sides  of  a  right 
triangle, and to investigate what happens if they construct other geometric figures on 
the  sides  of  a  right  triangle.  The  second  task  was  a  problem  that  involves  the 
application of the Pythagorean theorem in space. Students were asked to construct a 
cone  based  on  one  of  the  three  equal  sectors  of  a  circle,  with  a  radius  of  six 
centimetres,  and to determine the height of the constructed cone.  They were also 
encouraged to explain how they could determine the height of a cone obtained from a 
circle  with  a  radius  r.  These  tasks  were  chosen  based  on  the  assumption  that 
presenting  students  with  unfamiliar  questions  can  provide  a  rich  context  for 
classroom discussion which helps students  in  developing mathematical  arguments 
(Küchemann & Hoyle, 2003).

The first report

In the first task, students reflect on the meaning and implications of the Pythagorean 
theorem  and  review  some  geometric  concepts  and  procedures  (such  as  what  an 
equilateral triangle is and how it can be constructed with ruler and compass). Due to 
the nature of the task, the group is still required to formulate and test conjectures, and 
to argue in favour of their ideas, thus appealing to students’ mathematical reasoning 
skills. In particular, when writing the report, the students, in group, explain how they 
exploited the first situation proposed in the task, concerning equilateral triangles built 
on the sides of a right triangle.

In  the  first  version  of  their  report,  students  described  how  they  had  built  the 
equilateral triangles and stated how they had determined the areas of those triangles:

We started by making a right triangle, with the help of a compass we drew around it (at 
the  endpoints  of  the  right  triangle)  three  equilateral  triangles,  because  we  couldn’t 
obtain equilateral triangles nor a good graphic design by using rules. We determined the 
area of the triangles.

The justification for the use of compass comes in the wake of some oral feedback 
provided during the preparation of the report. This feedback may have helped the 
students to explain their options:

Rute: We did it like this: with the help of the compass, we made around it three 
equilateral triangles. Then we can put… ah…

Teacher: Why did you use the compass?

Rute: Because we couldn’t complete the task with the ruler only.
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Teacher: So, couldn’t you draw a triangle with the ruler only?

Rute: Yes, but in order to be an equilateral triangle, it had to have all equal sides.

In an attached document to their report, the 
group  presented  the  construction  of 
equilateral triangles, as well as the values of 
the basis and the height considered in each 
one. It also presented the calculations that 
were made to determine the corresponding 
areas.

However, in any part of the report, did the 
students  explain  how  they  had  found  the 
values of the bases and heights,  nor what 
conclusions  they  obtained  from  the  areas 
determined. Two different comments were 
provided to  the  first  version  of  the  report.  On the  one  hand,  the  teacher  praised 
students for their use of a compass and the reasons for their choice: "You did an 
excellent option. It’s a good way to answer a problem that you had to overcome." In 
this way, the teacher identified positive aspects of the report, so that knowledge could 
be consciously recognized by students and their self confidence could be promoted 
(Santos,  2003).  On  the  other  hand,  the  teacher  questioned  students  about  the 
conclusions  they  had drawn from the  areas  obtained:  "And what  did  you find?". 
Furthermore, the teacher still posed some questions written near the construction of 
the triangles,  which sought to guide the work of  students  in order  to include the 
missing  information  in  the  report:  "How did  you  come  to  these  figures?  Which 
relationship may you establish?"

While working on the second version of their report, the students kept the description 
that had been praised and tried to answer the questions. They explained in more detail 
how they had proceeded, namely in finding the values of the basis and height of the 
triangles, in determining the corresponding areas in each equilateral triangle, and in 
making explicit the conclusions they had obtained for the first situation:

We determined the area of the triangles. We know that in order to determine the area of 

a triangle:  basis×height
2  

, we measured the height and the basis, we multiplied  and 

then we divided by 2 (and likewise for the three triangles). We concluded that the sum 
of area A and area B is equal to area C.

In the final version, the students determined and identified the value of the area of 
each one of the considered triangles and explained the relationship found among the 
areas of the equilateral triangles constructed on the sides of the right triangle. This 
work was based on the figure of the first version:
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Students  still  added  a  comment.  They  identified  the  negative  aspects  of  the  first 
version and they improved them in the second stage: “[In the first stage] we didn’t 
present  the value for  the areas,  we messed  up the computations,  and we did not 
present the conclusions.” The students identified and corrected their own mistakes.

The second report

In the second task, the students review and apply the Pythagorean theorem as well as 
some mathematical  concepts and procedures (such as,  the height of a cone or the 
perimeter of a circle given its radius). Due to the nature of the task, it calls, mostly, 
for problem-solving and mathematical reasoning skills.

In the report, the students explained how they had built the cones and sought reasons 
for their actions. In particular, they explain how to determine the angle of each of the 
three circular sectors:

We started by reading the task and answering to what had been requested. We drew a 
circle of radius 6 cm. To divide the angle into three equal parts, we know that the angle 

measures 360º: (so  
360º

3
=120º ). With the help of a protractor, we measured, on the 

radius, 120º three times and joined the points and we got 3 equal parts. Then, we cut the 
three parts, and with the help of some tape, we constructed three cones.

Then, the students described the strategy implemented to determine the height of the 
cones. Before moving to the resolution itself, they made a brief description of how 
the  group  had  addressed  the  issue,  referring  various  ideas  discussed  and  some 
difficulties  encountered, 
which  they  sought  to 
overcome with the help of the 
teacher. Then they determined 
the radius of the basis of the 
cone,  giving  the  necessary 
calculations  (determining  the 
perimeter  of  the  original 
circle, the perimeter of the basis of the cone and, finally, the radius of the basis of the 
cone).

The  sum  of  area  A  and 
area  B  is  equivalent  to 
area C.
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However they did not explain the calculations nor did they give reasons for those 
calculations; they did not distinguish the two circles involved (the original one and 
the basis of the cone), nor did they present units of measurement. Written feedback 
was provided with the intention of alerting students to these aspects: "Why did you 
do these calculations? You refer the perimeter of the circle several times. Maybe it 
would be better to distinguish which circle you are talking about in each situation. 
Attention to the lack of measurement units". The importance of students’ explanation 
and justification of their calculations was further strengthened through oral feedback:

Teacher: “(...) you must try to explain the calculations you presented better and why 
you have done them”. You presented these calculations,  didn’t you? For 
what? When? How?

Rute: The teacher wants to know everything!

Teacher: I want to know everything, no… Imagine that I’m teaching a lesson and I 
write something on the blackboard, and then you ask me “teacher, what is 
that?” and I say “You want to know everything!”, right?

Rute: Teacher, but, here, we already know that this is the perimeter...

Teacher: You know, but you must write what you mean. I am not going to take Rute 
home to explain it to me, right?

It was also necessary to complement the written feedback with new clues, so that the 
students could distinguish the different circles considerered in the resolution of the 
problem:

Rute: Teacher, how do we distinguish the circles?

Teacher: Which circles did you work with?

Rute: With the one with radius six.

Teacher: Yes. And didn’t you work with any other circle?

Rute: With the basis.

Teacher: The basis?

Rute: Yes, of the cone.

Teacher: So, in the report, you only have to say which one you are referring to when 
you explain what you did.

The students took into account the feedback received, both oral and written. In the 
final version of the report, besides adding the measurement units, they described how 
they had proceeded to determine the radius of the basis of the cone. They clarified the 
context, they explained the purpose of the calculations they had presented, and they 
also identified the circle referred in each case:

First  we  found  the  perimeter  of  the  circle  of  the  problem.  Then  we  divided  the 
perimeter of the circle of the problem into three equal parts, and we got the perimeter of 
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the basis of a cone. Knowing that to find the perimeter of the circle is 2π r , to find the 
radius is the other way around: P÷2π = r . And then, we obtained 1,9 cm.

In the first version of the report, students had already tried to describe in detail the 
right triangle used to determine the height of the cone and they explained how they 
had determined the length of the hypotenuse (which they refer to as diagonal) of that 
triangle: 

If we draw the height of the cone, it will coincide with the radius 
forming an angle of 90º. If, at the endpoints of the lines, we draw a 
line segment, it will form a right triangle and, for our own luck, it 
was the diagonal, which we knew about.

We know that the diagonal measures 6 cm because the diagonal is 
the radius of the circle when we open the cone, and, as the radius of the circle is 6 cm, we 
got to know the diagonal.

Finally, the students presented the necessary calculations to determine the height of 
the cone, but they did not mention how they had concluded that “height of the cone² 
= diagonal² - radius²”. They were reminded of this fact through written feedback: 
"How do you achieve this equality?" In the final version of the report, the students 
considered  the  feedback  received  and  stated  that  they  had  used  the  Pythagorean 
theorem to obtain the height of the cone.

DISCUSSION OF RESULTS

In this study, students were asked to describe and explain the strategies used in the 
implementation of two tasks and to submit the results, duly substantiated, under the 
form  of  written  reports.  Students,  working  in  a  group,  were  given  constructive 
comments on the first version of their reports so that they could improve their work 
and develop a  second version.  In  many cases,  in  the  first  version of  the reports, 
students  gave  procedural  explanations  instead  of  providing  a  mathematical 
justification (Hoyle & Küchemann, 2003). In other words, they presented how they 
had done their work, but not why. For example,  in the first  version of the report 
regarding the first task, students described how they had built the equilateral triangle, 
but they did not mention the characteristics of this figure. In the second version of the 
report, students presented mathematical arguments for the choices made and for the 
results  found  in  performing  the  tasks.  They  also  used  symbolic  language  of 
mathematics when necessary (it happened, for example, when they obtained the area 
of equilateral triangles in the first task or when they obtained the height of the cone in 
the  second  task).  However,  in  both  cases,  they  seemed  to  be,  mainly,  at  the 
descriptive/analytic level of Van Hiele’s geometrical thinking model.

Feedback, both oral and written, allowed students to identify aspects to improve in 
the reports and provided clues about what students could do to develop their first 
productions.  Indeed,  feedback seems to have enabled students to produce a better 
report in the second version, especially regarding explanation and justification of the 
strategies adopted (it should be noted, for example, the explanation given, in the final 
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version, to the operation performed in the first phase to obtain the radius of the basis 
of the cone, starting from its perimeter). In addition, the feedback did not contain any 
information about errors; it only included guiding questions and comments (Black et  
al., 2003; Santos, 2003). This led students to identify mistakes and to correct them (as 
is evident in the first task, in which the students relate what they had done wrong in 
the  first  version).  Thus,  feedback  also  promoted  the  development  of  students’ 
reflection and self-assessment skills (Nunziati, 1990).

The  need  for  students  to  explain  and  justify,  in  written  form,  the  mathematical 
procedures and results involved in performing mathematically  rich tasks caused a 
high level of demand and consequently of learning. These situations, which involve 
knowledge that students possibly know, but which they need to explain and justify, 
have a strong didactic purpose (Küchemann & Hoyle, 2003). The identified benefits 
associated with the written reports seem to be enhanced by investing on a type of 
report in "two stages", in which oral and written feedback gain prominence.

NOTES

1.  The  project  AREA  (Monitoring  Assessment  in  Teaching  and  Learning)  is  a  research  project  funded  by  the 

Foundation for Science and Technology (PTDC/CED/64970/2006). The main objectives of the project are to develop, 

implement  and  study  practices  of  assessment  that  contribute  for  learning.  Further  information  can  be  found  in 

http://area.fc.ul.
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MULTIPLE SOLUTIONS FOR A PROBLEM: A TOOL FOR 
EVALUATION OF MATHEMATICAL THINKING IN 

GEOMETRY 
Anat Levav-Waynberg & Roza Leikin 

University of Haifa - Israel 
Based on the presumption that solving mathematical problems in different ways may 
serve as a double role tool - didactical and diagnostic, this paper describes a tool 
for the evaluation of the performance on multiple solution tasks (MST) in geometry. 
The tool is designed to enable the evaluation of subject's geometry knowledge and 
creativity as reflected from his solutions for a problem. The example provided for 
such evaluation is taken from an ongoing large-scale research aimed to examine the 
effectiveness of MSTs as a didactical tool. Geometry is a gold mine for MSTs and 
therefore an ideal focus for the present research, but the suggested tool could be 
used for different mathematical fields and different diagnostic purposes as well. 
 Introduction 
The study described in this paper is a part of ongoing large-scale research (Anat 
Levav-Waynberg; in progress). The study is based on the position that solving 
mathematical problems in different ways is a tool for constructing mathematical 
connections, on the one hand (Polya, 1973, 1981; Schoenfeld, 1988; NCTM, 2000) 
and on the other hand it may serve as a diagnostic tool for evaluation of such 
knowledge (Krutetskii, 1976). In the larger study we attempt to examine how 
employment of Multiple-solution tasks (MSTs) in school practice develops students' 
knowledge of geometry and their creativity in the field. In this paper we present the 
way in which students' knowledge and creativity are evaluated. 
Definition: MSTs are tasks that contain an explicit requirement for solving a 
problem in multiple ways. Based on Leikin & Levav-Waynberg (2007), the 
difference between the solutions may be reflected in using: (a) Different 
representations of a mathematical concept; (b) Different properties (definitions or 
theorems) of mathematical concepts from a particular mathematical topic; or (c) 
Different mathematics tools and theorems from different branches of mathematics. 
Note that in the case of MSTs in geometry we consider different auxiliary 
constructions as a difference of type (b).  
Solution spaces 
Leikin (2007) suggested the notion of "solution spaces" in order to examine 
mathematical creativity when solving problems with multiple solution approaches as 
follows: Expert solution space is the collection of solutions for a problem known to 
the researcher or an expert mathematician at a certain time. This space may expand 
as new solutions to a problem may be produced. There are two types of sub-sets of 
expert solution spaces: The first is individual solution spaces which are of two 
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kinds. The distinction is related to an individual’s ability to find solutions 
independently. Available solution space includes solutions that the individual may 
present on the spot or after some attempt without help from others. These solutions 
are triggered by a problem and may be performed by a solver independently. 
Potential solution space include solutions that solver produce with the help of 
others. The solutions correspond to the personal zone of proximal development 
(ZPD) (Vygotsky, 1978). The second subset of an expert space is a collective 
solution space characterizes solutions produced by a group of individuals.  
In the present study solution spaces are used as a tool for exploring the students' 
mathematical knowledge and creativity. By comparing the individual solution 
spaces with the collective and expert solution spaces we evaluate the students' 
mathematical knowledge and creativity. 
MST and mathematics understanding 
The present study stems from the theoretical assumption that mathematical 
connections, including connections between different mathematical concepts, their 
properties, and representations form an essential part of mathematical understanding 
(e.g., Skemp, 1987; Hiebert & Carpenter, 1992; Sierpinska, 1994). Skemp (1987) 
described understanding as the connection and assimilation of new knowledge into a 
known suitable schema. Hiebert & Carpenter (1992) expanded this idea by 
describing mathematical understanding as “networks” of mathematical concepts, 
their properties, and their representations. Without connections, one must rely on his 
memory and remember many isolated concepts and procedures. Connecting 
mathematical ideas means linking new ideas to related ones and solving challenging 
mathematical tasks by seeking familiar concepts and procedures that may help in 
new situations. Showing that mathematical understanding is related to 
connectedness plays a double role: it strengthens the importance of MSTs as a tool 
for mathematics education and it justifies measuring mathematics understanding by 
means of observing the subjects' mathematical connections reflected from one 
performance on MSTs.. 
Why geometry 
The fact that proving is a major component of geometry activity makes work in this 
field similar to that of mathematicians. The essence of mathematics is to make 
abstract arguments about general objects and to verify these arguments by proofs 
(Herbst & Brach, 2006; Schoenfeld, 1994).  
If proving is the main activity in geometry, deductive reasoning is its main source. 
Mathematics educators claim that the deductive approach to mathematics deserves a 
prominent place in the curriculum as a dominant method for verification and 
validation of mathematical arguments, and because of its contribution to the 
development of logical reasoning and mathematics understanding (Hanna, 1996; 
Herbst & Brach, 2006). In addition to these attributes of geometry, which make it a 
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meaningful subject for research in mathematics education, geometry is a gold mine 
for MSTs and therefore an ideal focus for the present research. 
Assessment of creativity by using MST 
Mathematical creativity is the ability to solve problems and/or to develop thinking in 
structures taking account of the peculiar logico-deductive nature of the discipline, 
and of the fitness of the generated concepts to integrate into the core of what is 
important in mathematics (Ervynck ,1991, p.47) 
Ervynck (1991) describes creativity in mathematics as a meta-process, external to 
the theory of mathematics, leading to the creation of new mathematics. He maintains 
that the appearance of creativity in mathematics depends on the presence of some 
preliminary conditions. Learners need to have basic knowledge of mathematical 
tools and rules and should be able to relate previously unrelated concepts to generate 
a new product. The integration of existing knowledge with mathematical intuition, 
imagination, and inspiration, resulting in a mathematically accepted solution, is a 
creative act. 
Krutetskii (1976), Ervynck (1991), and Silver (1997) connected the concept of 
creativity in mathematics with MSTs. Krutetskii (1976) used MSTs as a diagnostic 
tool for the assessment of creativity as part of the evaluation of mathematical ability. 
Dreyfus & Eisenberg (1986) linked the aesthetic aspects of mathematics (e.g., 
elegance of a proof/ a solution) to creativity. They claim that being familiar with the 
possibility of solving problems in different ways and with their assessment could 
serve as a drive for creativity. In sum, MSTs can serve as a medium for encouraging 
creativity on one hand and as a diagnostic tool for evaluating creativity on the other. 
According to the Torrance Tests of Creative Thinking (TTCT) (Torrance, 1974), 
there are three assessable key components of creativity: fluency, flexibility, and 
originality. Leikin & Lev (2007) employed these components for detecting 
differences in mathematical creativity between gifted, proficient and regular students 
in order to explain how MSTs allow analysing students' mathematical creativity, and 
thus serve as an effective tool for identification of mathematical creativity.  
Fluency refers to the number of ideas generated in response to a prompt, flexibility 
refers to the ability to shift from one approach to another, and originality is the 
rareness of the responses.  
In order to assess mathematical thinking in the Hiebert & Carpenter (1992) and 
Skemp (1987) sense, while evaluating problem solving performance of the 
participants on MSTs, we added the criterion of connectedness of mathematical 
knowledge which is reflected in the overall number of concepts/theorems used in 
multiple solutions of a MST.  
In this paper we outline the use of MSTs as a research tool for evaluation of 
mathematical knowledge and creativity in geometry. 
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Method  
Following MST instructional approach, three 60 minutes tests were given to 3 
groups of 10th grade, high-level students during geometry course (total number of 52 
students). The first test was admitted in the beginning, the second in the middle and 
the third in the end of the course. Each test included 2 problems on which students 
were asked to give as many solutions as they can.  

Example of the task 
The following is one of the MSTs used for the tests 
TASK: 
AB is a diameter on circle with center O. D and E are 
points on circle O so that DO||EB . 
C is the intersection point of AD and BE (see figure).  

Prove in as many ways as you can that CB=AB 
Examples of the solutions 

Solution 1: 

 ABDO
2
1

=  (Equal radiuses in a circle) ⇒ DO is a midline in triangle ABC (parallel to BC 

and bisecting AB) ⇒ BCABDO
2
1

2
1

== ⇒ AB=BC 

Solution 2: 

 DO=AO (Equal radiuses in a circle) ⇒ ABCAOD ∠=∠ (Equal corresponding angles within 
parallel lines) ⇒ AA ∠=∠  (Shared angle) ⇒ ABCAOD ΔΔ ~  (2 equal angles) ⇒                     
AB=BC (a triangle similar to an isosceles triangle is also isosceles) 

Solution 3: 

 DO=AO (Equal radiuses in a circle) ⇒ AADO ∠=∠ (Base angles in an isosceles triangle) 

 ACBADO ∠=∠  (Equal corresponding angles within parallel lines), AACB ∠=∠ ⇒ 

 AB=BC (a triangle with 2 equal angles in isosceles) 

Solution 4: 

 Auxiliary construction: continue DO till point F so that DF is a diameter. Draw the line FB (as 
shown in the figure) 

 DO=AO (Equal radiuses in a circle) ⇒ AADO ∠=∠ (Base angles in an isosceles triangle) 

 AF ∠=∠  (Inscribed angles that subtend the same arc) ⇒ 

  ADOF ∠=∠ ⇒ CD|| BF (equal alternate angles) 

 DFBC is a parallelogram (2 pairs of parallel sides) ⇒ 

 DF=CB (opposite sides of a parallelogram), DF=AB (diameters) ⇒ AB=BC 

Figure 1: Example of MST 

A

O

B

D

C E

 

 A 

D O 

C 

F 

B 
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Figure 2: The map of an expert solution space for the task (see Figure 1)
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Figure 1 presents an example of a task used in this study. Figure 2 depicts a map of 
the expert solution space for this task. The map outlines concepts and properties 
used in all the solutions as well as the order of their use in each particular solution 
(for additional maps of MSTs see Leikin, Levav-Waynberg, Gurevich and 
Mednikov, 2006). 
The bold path in the map (Figure 2) represents Solution 1 of the task (see Figure 1).  
Data analysis 
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T
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n×∑ (Fli ×Ori) 

n: number of solutions in the individual solution space 
N: number of the students in a group 

T:  number of concepts and their properties used  in the expert 
solution space 

t:  number of concepts and their properties used in the individual 
solution space 

mi: the number of students who used 
the strategy i 

P= %100
N
mi  

Figure 3:  Scoring scheme for the evaluation of problem-solving performance 
on a particular MST based on Leikin (forthcoming) 
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The analysis of data focuses on the student's individual solution spaces for each 
particular problem. The spaces are analyzed with respect to (a) Correctness; (b) 
Connectedness; (c) Creativity including fluency, flexibility, and originality. 
The maximal correctness score for a solution is 100. It is scored according to the 
preciseness of the solution. When solution is imprecise but lead to a correct 
conclusion we consider it as appropriate (cf. Zazkis & Leikin, 2008). The highest 
correctness score in an individual solution space serves as the individual's total 
correctness score on the task. This way a student who presented only 1 correct 
solution (scored 100) does not get a higher correctness score than a student with 
more solutions but not all correct. Connectedness of knowledge associated with the 
task is determined by the total number of concepts and theorems in the individual 
solution space. Figure 3 depicts scoring scheme for the evaluation of problem-
solving performance from the point of view of correctness, connectedness and 
creativity. The scoring of creativity of a solutions space is borrowed from Leikin 
(forthcoming). In order to use this scheme the expert solution space for the specific 
MST has to be divided into groups of solutions according to the amount of variation 
between them so that similar solutions are classified to the same group. The number 
of all the appropriate solutions in one's individual solution space indicates one's 
fluency while flexibility is measured by the differences among acceptable solutions 
in one's individual solution space. Originality of students' solution is measured by 
the rareness of the solution group in the mathematics class to which the student 
belongs. In this way a minor variation in a solution does not make it original since 
two solutions with minor differences belong to the same solution group.  
Note that evaluation of creativity is independent of the evaluation of correctness and 
connectedness. In order to systematize the analysis and scoring of creativity and 
connectedness of one's mathematical knowledge we use the map of an expert 
solution space constructed for each problem (see Figure 2).  
Results – example 
In the space constrains of this paper we shortly exemplify evaluation of the problem-
solving performance of three 10th graders – Ben, Beth and Jo -- from a particular 
mathematics class. The analysis provided is for their performance on Task in Figure 
1. Their solutions are also presented in this figure. We present these students' results 
because they demonstrate differences in fluency, flexibility and originality. 
Solutions 1, 2 and 3 are classified as part of the same solutions group whereas 
solution 4 which uses a special auxiliary construction is classified as part of a 
different group. 
Ben performed solutions 1, 3 and 4, Beth produced solutions 1, 2 and 3, and Jo 
succeeded to solve the problem in two ways: solutions 1 and 3 (Figure 1). Figure 4 
demonstrates connectedness and creativity scores these students got on the Task 
when the scoring scheme was applied (Figure 3). Their correctness score for all the 
solutions they presented was 100.   
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We observed the following properties of the individual solution spaces for Ben and 
Beth: they were of the same sizes; they included the same number of concepts and 
theorems and contained two common solutions (solutions 1 and 3). However Ben's 
creativity score was much higher then Beth's one as a result of the originality of 
Solution 4 that was performed only by Ben, and his higher flexibility scores.  
Beth and Jo differed mainly in their fluency: Beth gave 3 solutions and Jo only 2. 
Since their solutions had similar flexibility and originality scores their creativity 
scores are proportional to their fluency scores. 
 

Creativity 

    

So
lu

tio
n 

Ty
pe

  
(in

 o
rd

er
 o

f 
pr

es
en

ta
tio

n 
in

 th
e 

te
st

) 

gr
ou

p 

C
on

ne
ct

ed
ne

ss
 

Fl
ue

nc
y

 Fl
ex

ib
ili

ty
 

O
rig

in
al

ity
 

cr
ea

tiv
ity

 

1 1  10 0.1 1 
3 1  1 0.1 0.1 

Scores 
per 
solution 4 3 

  
 10 10 100 

Ben 

Final    50 3   303.3 
2 1  10 0.1 1 
3 1  1 0.1 0.1 

Scores 
per 
solution 1 1 

  
 1 0.1 0.1 

Beth 

Final    50 3   3.6 

3 1  10 0.1 1 Scores 
per 
solution 1 1 

  
 1 0.1 0.1 

Jo 

Final    30 2   2.2 

Figure 4:  Evaluation of the solutions on the task for three students  
Concluding remarks 
MSTs are presented in this paper as a research tool for the analysis of students' 
mathematical knowledge and creativity. The tasks are further used in the ongoing 
study in order to examine their effectiveness as a didactical tool. The larger study 
will perform a comparative analysis of students' knowledge and creativity along 
employment of MST in geometry classroom on the regular basis. The scoring 
scheme presented herein can be considered as an upgrading of the scoring scheme 
suggested by Leikin and Lev (2007). Correspondingly we suggest that the scoring 
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scheme presented herein can be used for examination of individual differences in 
students' mathematical creativity and students' mathematical knowledge in different 
fields. We are also interested in employment of this tool for the analysis of the 
effectiveness of different types of mathematical classes in the development of 
students' mathematical knowledge and creativity. 
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THE DRAG-MODE IN THREE DIMENSIONAL DYNAMIC 
GEOMETRY ENVIRONMENTS – TWO STUDIES 

Mathias Hattermann 
University of Giessen, Germany 

Dynamic Geometry Environments (DGEs) in 2D are one of the well researched top-
ics in mathematics education. DGEs for 3D-environments (Archimedes Geo3D and 
Cabri 3D) were designed in Germany and France. In a first study we could show that 
pre-service teachers with previous knowledge in 2D-systems prefer to work with a 
real model of a cube instead of the 3D-system to solve certain problems. Furthermore 
we could find out that previous knowledge in 2D-systems seems to be insufficient to 
handle the drag-mode in an appropriate way in 3D-environments. In a second study 
we introduced the students to the special software before the investigation and distin-
guished different dragging modalities during the solution processes of two tasks.  

 THEORETICAL FRAMEWORK 
During the last three decades, several 2D-Dynamic Geometry Environments (DGEs) 
have been created to enrich and further the learning process in the mathematics class-
room. The most popular DGEs are Cabri-géomètre, GEOLOG, Geometer’s Sketch-
pad, Geometry Inventor, Geometric Supposer and Thales. In Germany, Euklid-
DynaGeo, Cinderella, GeoGebra, Geonext and Zirkel-und-Lineal are popular, with 
Euklid-DynaGeo being the most widespread software in German schools. DGEs are 
powerful tools, in which the user is able to exactly construct geometrically, discover 
dependencies, develop or refute conjectures or to get ideas for proofs.  
DGEs are characterised by three central properties: the ”drag-mode”, the functional-
ity ”locus of points” and the ability to construct ”macros”. The drag-mode is the most 
important feature available in these environments, because it allows to introduce 
movement into static Euclidean Geometry (Sträßer 2002). It is possible to drag basic 
points (points which are neither intersection points nor points with given coordi-
nates). During this dragging process, the construction is updated, according to the 
construction commands which were used in the drawing. To the user, it looks as if the 
drawing is respecting the laws of geometry while the dragging process is in progress. 
2D-DGEs are one of the best researched topics in mathematics education and espe-
cially within the PME-group (Laborde et al. 2006). For example, we find research on 
”DGE and the move from the spatial to the theoretical” (Arzarello et al. 1998, 2002) 
or ”construction tasks” (Soury-Lavergne 1998). Noss (1994) has shown that begin-
ners have problems to construct drawings, which are resistant to the drag-mode and it 
is reported that for pupils there exist two separate worlds, the theoretical one and the 
world of the computer. ”The notion of dependency and functional relationship” 
(Hoyles 1998 and Jones 1996) is another interesting theme and it has been shown that 
pupils have heavy problems in understanding the notion of dependency. They have to 
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be encouraged to use the drag-mode to support the understanding of the spatial-
graphical and the theoretical level, serving as a tool for externalising the notion of 
dependency. Several researchers showed that students do not use the drag-mode 
spontaneously and they have to be encouraged to do it. Most of the students are afraid 
to destroy the construction by using the drag-mode and they do not like to use the 
drag-mode on a wide zone (Rolet 1996 and Sinclair 2003). Arzarello and his group 
elaborated a hierarchy of several dragging modalities, which were linked to ”ascend-
ing” and ”descending” processes and reveal students’ cognitive shifts from the per-
ceptual level to the theoretical one (Arzarello 1998, 2002 and Olivero 2002). There is 
a great variety and number of research reports concerning the use of the drag-mode in 
proving and justifying processes (for example Jones 2000 and Mariotti 2000). Other 
fields of study were ”the design of tasks” (Laborde 2001), ”the role of feedback” 
(Hadas 2000) and ”the use of geometry technology by teachers” (Noss, Hoyles 1996). 

 THE FIRST STUDY IN 2007 
In the following we will give a brief summary of the research design and the results 
of our first study. For details see Hattermann, 2008. In July 2007, 15 pre-service 
teachers with previous knowledge in Euklid DynaGeo (2D-DGE) took part in our in-
vestigation. Some groups worked with Archimedes Geo 3D and others with Cabri 
3D, their actions on the screen and their discussions and interactions were recorded 
by a screen-recording software called “Camtasia” and a webcam. We used a qualita-
tive approach to get ideas about students’ behaviour in 3D-DGEs. Some important 
research questions were the following: 

• Do the students use spatial constructions like spheres or do they prefer ele-
ments from plane geometry? (Task 1) 

• What are the preferred tools to work with (paper and pencil, real model, imagi-
nation, DGE) to work with? (Task 2) 

• Do students use the drag-mode to validate a construction and to find solutions 
to problems? (Task 1 and 2) 

• How do participants behave in 3D-environments and how do they use the drag-
mode? (Task 1 and 2) 

Task 1 and Results 
The first task was: “Construct a cube without using the existing macro!” Five of 
seven groups constructed the cube. The Cabri groups needed between 20 and 25 min-
utes to construct the cube, whereas the Archimedes groups needed about 40 minutes. 
Different groupes tried to utilise transformations as reflections or rotations. While the 
realisation of a reflection is quite easy in Cabri, rotations seem not to be easy to han-
dle without any instructions. In the Archimedes environment students had problems 
with every transformation. The majority of the students used the drag-mode to vali-
date their construction only on demand. This result is comparable to the results ob-
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tained by Rolet and Sinclair who worked with school children in 2D-environments. 
Our probands preferred to measure several segments of the cube instead of dragging a 
basic point. During the construction, elements from plane geometry (circles, seg-
ments, straight lines) were preferred. Some groups used spheres to construct intersec-
tion points or to construct equidistant segments, but the majority of the groups 
worked with circles. 
 Task 2 and Results 
The second task was: “A student affirms: The slice plane between a cube and a plane 
can be: 

• an equilateral triangle 

• an isosceles triangle 

• a right-angled isosceles triangle 

• a regular hexagon. 
Construct (with the help of the function “cube”) a cube, check the student’s affirma-
tions and justify your results!” 
Every group tried to find validations for their conjectures with the help of the real 
model, the utilisation of the real model prevailed the use of the computer environ-
ment. Students preferred ”the old strategy” to examine the cube and to try to imagine 
the intersection figure. The software was used to validate the conjectures, which were 
mostly generated outside the software environment. The students defined a plane with 
the help of three fixed points, so that no dragging was possible. Furthermore, the 
drag-mode was not understood and it is not sure, if these students did not understand 
it in the 2D-case or if they could not negotiate it to the 3D-environments. The possi-
bilities of the drag-mode were not understandable to most students. They did not use 
the drag-mode in an expected manner (to use draggable points on an edge of the cube 
to define the intersection plane and to drag it to scrutinise different intersection fig-
ures). The approach of one group could illustrate this result: The students defined 
many fixed points on every edge of the cube and defined a plane with the help of 
three points. After verification, they deleted the plane and constructed another one 
with the help of other points. Only in exceptional cases the drag-mode was used and 
more often than not in a manner that a controlled dragging of the plane was impossi-
ble, which is the case when students used three arbitrary points in space to define the 
intersection plane. Students’ statements support the assertion that the “drag-mode” 
was not understood and previous knowledge in 2D seems to be insufficient to handle 
3D-systems! 
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 THE SECOND STUDY IN 2008 
 Methodology 
Our second study took place in February 2008 at the University of Giessen and 15 
pre-service teacher students participated in it. The participants had previous knowl-
edge in Euklid DynaGeo (the most widespread 2D-DGE in Germany), but their ex-
periences with DGEs were less than those from students who participated in our first 
study, because of changes concerning the content of different lectures following new 
study regulations. There were seven groups (six groups of two students and one 
group of three students). Three groups worked with Archimedes Geo3D while four 
groups utilised Cabri 3D to solve the given tasks. Each group worked in a separate 
room, the actions on the screen were recorded by utilising the screen-recording soft-
ware “Camtasia”. Furthermore, a webcam and a microphone were used to record stu-
dents’ voices and interactions. 
In our second study we tried to create an environment in which we could observe dif-
ferent dragging modalities. Due to the results of our first study we opted for an ap-
proach with a preparation session in which students were introduced to the special 
software environment and were encouraged to use the drag-mode. Both groups were 
taught in: 

• dragging basic points in 3D-space in the special software environment with the 
help of the keyboard 

• the distinction between basic points, semi-draggable points and fixed points 

• the construction of a midpoint of two points 

• the construction of a “perpendicular plane” to a straight line through a given 
point beyond the straight line  

• the construction of a “perpendicular line” in the x-y-plane to a given straight 
line in the x-y-plane through a given point , beyond the straight line 

• in the construction of a circle in an arbitrary plane, devoid of the x-y-plane, 
with a given centre and through a new point on the plane  

• in reflecting the circle on an arbitrary point devoid of the circle’s centre 

• in constructing a plane which contains a given straight line 

• in constructing a plane with the help of three points in such a way that one of 
these points can be dragged on a straight line 

Archimedes-groups were especially introduced to the utilisation of transformations 
which is quite complicated in this environment. After the first introduction students 
were urged to solve five task which forced students to use the drag-mode. Here, we 
followed suggestions from the Centre informatique pédagogique (CIP 1996) for 2D-
environments and adapted the ideas to our 3D-environment. There were five files and 
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every file contained a special task. Every task consisted of a body and one or several 
yellow points which had been constructed by the researchers before. The task was to 
find hypotheses concerning the construction of the yellow point(s) by dragging a spe-
cial point which was marked in blue colour. With the help of these preparation tasks, 
we intended to weaken students’ constraints to use the drag-mode and to encourage 
them. Because of the domination of the real model compared to the software envi-
ronment in our first study, we decided to forbid paper and pencil and not to provide a 
real model of the cube. 
In our preparation session, we tried to provide students with competencies to solve 
the tasks which were given in our study without giving them exact hints. So we 
broached the issue of constructing a perpendicular line to a straight line through a 
given point on a special plane without mentioning that this construction could be use-
ful to construct a cube. For another example, students had to construct a plane in such 
a way that one point of this plane could be dragged on a straight line. The idea behind 
was to show students how to construct a “draggable plane” without telling them that 
it could be an appropriate way to scrutinise different intersection figures of a plane 
and another body by using three defining points of the plane on appropriate segments 
of the body, which seems to be a reasonable way to solve our second task in the 
study.  
 Research questions 
First of all we are interested in the general behaviour of our students in a 3D-
environment; especially we looked for differences in students’ behaviour during the 
solution process of different tasks compared to the first group in July 2007 which had 
no preparation session. Are there important differences among the two DGEs? Be-
cause of the importance of the drag-mode in DGEs, we want to know more about the 
utilisation of it, especially we are interested in different dragging modalities in 3D-
environments. Do students use the drag-mode to validate their construction in task 
one (construction of a cube)? A validation of the construction with the help of the 
drag-mode assumed, how do they use it? Are they more “courageous” than their 
predecessors in July 2007 and do they use the drag-mode on a “wider zone”? What 
are the preferred tools to construct a cube? Is one preparation session enough to get 
students familiar with a 3D-DGE in such a way that elements like spheres or 3D-
reflections will be used to construct a cube or do constructions like circles (elements 
from planar geometry) prevail the construction? 
Do students use the drag-mode to discover different intersection figures of a cube and 
a plane or do they try to avoid the utilisation of the drag-mode in task two? Is it pos-
sible to identify different “ways of dragging”? What solving strategies are preferred 
by students who do not possess neither a real model of a cube nor a paper and pencil 
environment?     
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 Task one and Results 
We used the same task as in our first study in July 2007:”Construct a cube without 
using the existing macro!” 
Every group constructed the cube. The Cabri-groups needed 17, 19, 26 and 41 min-
utes for the construction, whereas the Archimedes-groups needed 34, 37 and 45 min-
utes. Furthermore every group utilised the drag-mode to validate their construction 
and two Cabri-groups did it in a “courageous way” so to say, they used it on a wider 
zone. One Archimedes-Group was very careful by dragging basic points. Every group 
was very happy by observing the invariance of the constructed cube under dragging 
and jubilation and pleasure were recognisable in nearly every group. This fact shows 
that dragging can motivate and emotionally affect students which underlines the im-
portance of this feature. 
By comparing the periods of construction it seems as if Cabri-Groups work faster. In 
our first study we came to the same statement and argued that one reason for this 
could be the “base plane (x-y-plane)” which exists in Cabri. In Archimedes this plane 
has to be constructed first. We can’t support this hypothesis with our actual data, be-
cause during the preparation session the construction of the x-y-plane in Archimedes 
was mentioned and every Archimedes-group had no problems to construct it in a 
short time not exceeding 3 minutes. 
No group tried to construct the cube with the help of spheres, only circles, planes and 
perpendicular lines were used to construct cube vertexes. An explanation for this re-
sult lies in the preparation session, in which circles, but no spheres were explicitly 
mentioned. 
One Archimedes-group utilised reflections on a plane and reflections on a straight to 
construct cube vertexes. One Cabri-group utilised the function of a parallel plane to a 
given plane but furthermore no reflections were used by students. In our first study no 
Archimedes-group used reflections to construct the cube. Due to the fact that “trans-
formations” are not easy to handle without instructions, this fact was not surprising to 
us. After an introduction in defining and utilising transformations in Archimedes, one 
of three groups used “reflections”, but the size of the sample seems to be too small to 
interpret this fact in more detail. 
Besides we observed students who had problems with “parent-child-relations” (see 
also Talmon 2004). Several situations occurred, which prove that dependencies of 
construction objects are not understood completely. Some groups did not understand 
that objects disappear by deleting an object on which they depend on. 
Furthermore we could identify several dragging modalities in 3D-environments. Stu-
dents used the drag-mode in our first task to 

• validate the construction at the end of the construction process. 
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• see that there are only two draggable points (the points that define the first 
edge of the cube) and to see that the other points are fixed. 

• find out the function of a semi-draggable point on the edge of the cube that had 
been constructed before. (Students forgot for what reason they had it con-
structed) 

• adapt the length of a segment to the measure of the first edge. (students did not 
really construct a cube in this attempt, they created a cube which was not in-
variant under dragging) 

• find out more about the degrees of freedom of draggable points, for instance to 
scrutinise if points are draggable on a plane or only on a straight line. 

• find an error in the construction. (Actually the construction was correct, only 
one point was wrong and this fact was discovered by dragging) 

 Task two and Results 
The second task was changed compared to the version used in July 2007. Task two 
was the following: “Construct with the help of the function “cube” a cube and try to 
find by experiment all Polygons (n = 3, 4... n = number of vertexes) which exist as 
intersection figures between the cube and a plane.” The second task was changed 
slightly in comparison to the first study, because we intended to further the need for 
the utilisation of the drag-mode. In the first study we gave four intersection figures 
and asked students to confirm or refute our statements, whereas the assignment is 
more open in our second study. We hoped that trying to discover new intersection 
figures would motivate students and moreover we tried to create an environment in 
which dragging could help students to find solutions. Finally we intended to observe 
and distinguish different “ways of dragging” during the solution process. 
Except of one group, everybody found the equilateral triangle and the isosceles trian-
gle as an intersection figure. Approximately the half of the participants mentioned an 
arbitrary triangle as intersection figure, whereas only one group could find a paral-
lelogram. The rectangle and the square were the easiest figures which were found by 
every group. Half of the groups found the trapezoid as intersection figure, whereas 
the other participants found it was well, but did not identify this quadrilateral as a 
trapezoid. Nobody looked for an isosceles trapezoid. Three groups found a pentagon, 
four groups found a hexagon and four groups found the regular hexagon. There were 
groups that found the hexagon and not the regular hexagon and vice versa. 
During the solution process we observed different dragging modalities. Students used 
the drag-mode by 

• defining the intersection plane by one point on an edge of the cube and two 
vertexes. 
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• choosing two points in a Cabri-environment to define the plane (now a plane 
appears) and to observe the behaviour of this plane by moving the cursor on 
the screen. (a special type of dragging only available in Cabri-environments) 

• defining three points on different edges of the cube to define the plane. 

• using three arbitrary points in space to define the intersection plane. 

• defining one draggable point on a straight line that is defined by two vertexes 
of the cube and to use two other points in space to define the plane. 

Students used the drag-mode to: 

• find out the function of a special point which had been constructed before. (a 
point was used to define a plane for example) 

• vary the volume of the cube so that the intersection points between the cube 
and the plane become visible (which is not always the case). 

• identify new intersection figures. 

• get an idea how to construct the intersection figure afterwards with the help of 
fixed points to define the plane. 

• identify more special figures/more general intersection figures from an existent 
figure. (find an equilateral triangle from an arbitrary triangle or vice versa) 

• scrutinise if there are intersection figures with more than 4 vertexes. (with the 
special type of dragging in Cabri) 

• move the cube, instead of varying the plane, to scrutinise different intersection 
figures. 

• identify draggable and non draggable points. 
It is really worth mentioning that we could observe happiness in every group by real-
ising different intersection figures with the help of the drag-mode. “Wow” or “that’s 
really great” are only two short examples that underline our affirmation. 
 Conclusion 
We succeeded in our second study to get the probands more familiar with the special 
DGE and to observe different dragging modalities in task one and two. There are still 
situations in which students utilised the drag-mode very careful and not on a wider 
zone, but the majority of our participants utilised the drag-mode to validate and to 
discover in a “courageous” manner without hesitation. So we claim that it is possible 
to prepare students in an appropriate time to use the drag-mode in 3D-systems and to 
encourage them.  
For a classification of different dragging modalities it will be interesting to categorise 
them theoretically and to analyse the “instrumental genesis” of the drag-mode accord-
ing to Rabardel’s theory (Rabardel 1995). It will be an exciting task for further re-
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search to observe the progress of the utilisation of the drag-mode. It should be possi-
ble to define different theoretical stages in the utilisation of the drag-mode from a 
“beginner’s stage” which will be characterised by nearly no dragging or careful drag-
ging up to an “expert’s stage”. 
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Teaching mathematical proof is a great issue of mathematics education, and 
geometry is a traditional context for it. Nevertheless, especially in plane geometry, 
the students often focus on the drawings. As they can see results, they don’t need to 
use neither axiomatic geometry nor formal proof. 
In this thesis work, we tried to analyse how space geometry situations could incite 
students to use axiomatic geometry. Using Duval’s distinctions between iconic and 
non-iconic visualization, we will discuss here of the potentialities of situations based 
on a 3D dynamic geometry software, and show a few experimental results.  
 
In mathematics education, resolving geometry problems is a usual way of teaching 
mathematical proof, and plane geometry is mainly used. 
Nevertheless the students often focus on the properties of drawings — which are 
physical objects — instead of figures — the theoretical ones. In this case they may 
solve geometry problems by using empirical solutions, based on their own action on 
the drawing: One can read the property on the drawing. That is why using drawings 
as regards plane geometry is very confusing for many of them: since they are able to 
see results on the drawings, since they can work easily on it, mathematical proof 
seems to be useless, and may appear as a didactical contract effect (Parzysz, 2006). 
On the contrary, in space geometry, it seems to be much harder for them to be certain 
of a visual noticing, and they may need new tools to study representations and to 
solve problems.  
Our hypothesis is that it is possible, with specific situations, to make the students use 
tools concerning theoretical objects: working on figures, using geometrical 
properties… In order to control these new tools, mathematical proof is a very useful 
process the students can use to solve problems. This is why we assume that 3D 
geometry could be very helpful for proof teaching. 
Nevertheless, formal proof is a complex process that not only involves hypothetico – 
deductive reasoning, but also (for instance) specific formal rules (Balacheff, 1999) 
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we will not study here. Therefore, we will only focus in this paper on the first 
hypothesis we mentioned.  
We will present here a preliminary study in order to illustrate and test our theoretical 
hypothesis. 

THEORETICAL FRAMEWORK 
Resolving problems of geometry  

As it is said in Parzysz (2006): 
The resolution of a problem of elementary geometry consists of the successive working 
with G1 and G2, focusing on the “figure”. The figure has a central part in the process: 
even if it is very helpful in order to make conjectures, it may be an obstacle to the 
demonstrating process, as the pupils don’t know how to use data because of the 
“obviousness of the visual phenomenon”. 

Parzysz refers to Houdement&Kuzniak’s geometrical paradigms, in so far as G1 is a 
“natural geometry” — where geometry and reality are merged — and G2 is a “natural 
axiomatic geometry”, an axiomatic model of the reality, based on hypothetico-
deductive rules (Houdement, Kuzniak, 2006). 
As we can see, demonstrating is really meaningful when working with both G1 and 
G2, but the sensitive experience may encourage the pupils to work only with G1. In 
order to describe more precisely what can be this sensitive experience, and the ways it 
is related to using — or not — G2, we chose to use the distinctions that Duval (2005) 
makes between the different functions of the drawing, and the different ways of 
seeing it. 
A first way of using representations is the iconic visualization: in this case the 
drawing is a true physical object, and its shape is a graphic icon that cannot be 
modified. All its properties are related to this shape, and so it seems to be very 
difficult to work on the constitutive parts of it — such as points, lines, etc. Then, the 
drawing does not represent the object that is studied, it is this object, and the results 
of geometrical activities inform on physical properties. 
The other way is the non-iconic visualization, where the figure is analysed as a 
theoretical object represented by the drawing, using three main processes: 
Instrumental deconstruction: in order to find how to build the representation with 
given instruments. 
Heuristic breaking down of the shapes: the shape is split up into subparts, as if it 
was a puzzle. 
Dimensional deconstruction: the figure is broken down into figural units — lower 
dimension units that figures are composed of —, and the links between these units are 
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the geometrical properties. It is an axiomatic reconstruction of the figures, based on 
hypothetico-deductive reasoning. 
These different possible ways of using the drawings lead us to two important 
consequences. 
On the one hand, using G2 makes no sense with only iconic visualization, as 
geometry problems concern nothing but the drawings to the student’s eyes. 
On the other hand, carrying out the dimensional deconstruction means isolating 
subparts of the drawing and, at the same time, describing how these subparts are 
linked: this last part has no sense when using only G1. Therefore this operation 
implies a more axiomatical point of view, and the figure — described by the 
dimensional deconstruction — is likely to be used. 
Finally, we assume that dimensional deconstruction would become an efficient tool if 
the iconic visualization weren’t reliable any longer, as the pupil would have to make 
up for the lack of information in order to solve geometry problems. Using graphic 
representations is much more complex in space geometry, and then it seems to be an 
appropriate environment for the teaching of axiomatic geometry. 
3D geometry 
Using physical representations is very different in space geometry: there are various 
ways of representing figures, such as models or plane projections, and each kind of 
representation has specific properties and constraints. As the physical models are too 
restricting — for instance, adding new lines is generally impossible, and constructing 
models takes much time —, cavalier perspective representations are generally used. 
Then, visual information is no longer reliable: for instance, it is impossible to know 
whether two lines intersect or not, or whether a point is on a plane, without further 
information. 
So in space geometry iconic visualization fails, and it is necessary to analyse the 
drawings in other ways. The problem is that using drawings is generally too difficult 
for the pupils. Chaachoua (1997) mentions that this involves the students’ 
interpretation, based on their mathematical and cultural knowledge. They have to 
break down the drawing into various components, so that they can imagine the shape 
of the object. In fact, they would have to carry out dimensional deconstruction before 
any visual exploration. Therefore they are unable to understand that iconic 
visualization is not sufficient to solve geometry problems, as they only think that they 
see nothing. 
Using 3D geometry computer environments may balance these difficulties, since the 
students could get more visual information, for instance by using various viewpoints 
as if the representations were models. It has to be noticed that, even in this kind of 
environment, visual information is usually not reliable, so that iconic visualization 
remains inadequate to solve geometry problems. 
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Hypothesis about Cabri 3D 
With Cabri 3D, the user can watch the representation as if they were models. It is 
possible to adjust viewing angles by turning around the scene, to look at the drawing 
from various viewpoints, and then to be more easily conscious of the visual issues. 
For instance, it becomes possible to see that a point belongs to a plan, when the point 
visually belongs to it. Actually the user can get visual information to determine the 
shape and some properties of the figures, but generally this information is not 
sufficient to carry out geometrical works. For instance, as the representations are not 
infinite in Cabri 3D, two secant lines could have no intersection point on the screen, 
then it would be impossible to determine visually whether these lines are secant or 
not. Some operations are almost impossible too, like moving a point to reach a given 
line with no other tools than visual perception. 
Then, the feedback from a Cabri 3D - based milieu — as described in Brousseau 
(1997) — may emphasize that, even if visual information is available, this 
information is partial. A Cabri3D drawing does not permit to see all the specificities 
of the object the student has to study – which is clearly not the drawing itself.  
It seems that a problem any student would have to deal with, when using Cabri3D, is 
“How can I get information from the drawing, and how may I use it in order to 
deduce information I cannot see, and solve geometry problems?”. We showed that 
there are two main kinds of answers: the iconic visualization based ones, and the non-
iconic visualization based ones.  
Our first hypothesis is that with Cabri 3D it is much easier for the students to get 
information about the drawings, and then to start a research process, even if they only 
use iconic visualization. This research process may evolve because of the dynamic 
geometry software properties of Cabri3D. 
 
Cabri 3D not only produces representations, it is a dynamic geometry software. In 
this way it is possible to use hard geometric constructions: these drawings are based 
on geometric properties, and keep it when the user drags a part of it. As an example, a 
hard square remains to be a square — with different size — when one of its vertexes 
is dragged. Therefore, the students may assume that the reason of simultaneous 
movements of figural units is the relation between them: if a point moves when 
another one is dragged, it may seem that they are linked, in a way that has to be 
elucidated by the students. 
We can guess that this point is stressed in 3D dynamic geometry situations, since 
other visual information is generally not reliable: one can be sure of the simultaneous 
movement of two figural units, even if it can be quite difficult to determine how these 
units are linked. These links are in fact invariant properties when points are dragged, 
and then direct results in Cabri3D of geometrical properties (Jahn, 1998). 
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Our second hypothesis is that with dynamic geometry it is possible to stress the 
inefficiency of iconic visualization, and to support experimental studies of the 
properties of the figure. Therefore dimensional deconstruction and axiomatic 
geometry would become very efficient tools for the students to design research 
processes, to study a given representation and to solve geometry problems. 
 
Nevertheless, these theoretical tools are not sufficient: any experimental work in 
Cabri 3D has to involve Cabri 3D’s tools. Therefore we have to study their role and 
the way they could interact with the theoretical ones. 
First, many tools are very linked to visual perception: changing viewpoint tools, 
drawing and measuring tools. If they are not used with other tools, there is no need 
for the student to control her/his work with G2. S/he can measure drawings, watch 
their shape and construct objects as soft, and not hard constructions. When a part of 
such a drawing is dragged, the shape changes and so do the geometric properties the 
user can see. Then the feedback from Cabri 3D invalidate this kind of construction to 
the user’s eyes (Laborde, Capponi, 1994). 
Secondly, other tools are more strongly linked to a theoretical control of the 
constructions: construction primitives — intersection, parallel, perpendicular, 
tetrahedron, etc. — and transformations. Even if using axiomatic geometry is not 
necessary to control the use of these tools, an empirical control may be very difficult 
in many situations (for instance, in order to use a transformation, the user generally 
has to choose the values of several arguments before any visual control). So using G2 
would become an economical way of controlling it. Furthermore, these tools would 
be very helpful for the process of instrumental deconstruction, as they are designed 
with axiomatic definitions. Actually, for this reason, instrumental and dimensional 
deconstructions would be very linked in this case. 
Eventually, we have to point out that the designer of a situation (teacher, 
researcher…) can choose the toolset available in Cabri 3D. This is a way for him to 
delete specific tools in order to design feedbacks. For instance, if the students have to 
construct hard squares, there is no feedback about the hardness of constructions when 
using the “square” tool. Therefore choosing the available toolset is often a very 
important choice for this didactical variable, to make strategies inefficient or 
impossible. 
Then, our third hypothesis is that in some specific situations, with a specific Cabri 3D 
toolset, it is possible to provoke a particular instrumental deconstruction, strongly 
linked to dimensional deconstruction. 
Research problem 
As a consequence of our theoretical framework, it is now possible to make the 
problem mentioned in the introduction clearer and more accurate: is it possible to 
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design adidactical situations with Cabri 3D that make iconic visualization inefficient 
and in which dimensional deconstruction can be a tool to analyse figures and solve 
problems?  Then we have to wonder whether using dimensional deconstruction could 
be liable to make the students using G2. 
The following example is a situation we designed in order to test our hypothesis, in 
which a student has to analyse a Cabri3D-drawing in order to explain to another 
student how to construct the same object with Cabri 3D. 

AN EXAMPLE OF A RECONSTRUCTION SITUATION 
Methodology 
We used a qualitative approach to analyse the students dealing with this task. We 
refered to our theoretical study in order to distinguish different strategies they were 
likely to use. It was possible to foresee how they would analyse the drawings, as 
shapes or as geometrical constructions... Moreover we had to analyse how they 
design their construction strategies. For instance, anticipating the properties of the 
object constructed would reveal G2-based strategies. We will only detail below the 
three main kind of strategies we distinguished. 
In order to analyse the students’ work, we used a screen-recorder software 
(Camtasia), microphones, and a video camera. Then we could observe at the same 
time their dialog, their gestures (for instance to describe physical objects), and the 
way they used Cabri 3D. 
The situation. 

This situation involves 10th French graders (15 to 16 year-old students), working in 
pairs. Each student works on a computer. The first one (S1) has to analyse a model, a 
Cabri3D-drawing, and describe orally to the second student (S2) a way of 
reconstructing it. Using S2’s computer is forbidden to S1, and S2 cannot see S1’s 
screen. 

There are four distinct phases, from the simple to the complex one (see Fig.1): first a 
prism with a rhombus as a base, and then are successively added its symmetrical with 
respect to a vertex, an edge and a lateral face. All these prisms are constructed from 
three directly movable points: a and b are in the base plane, and c is on the line 
perpendicular to the base plane at point O (the centre of the bottom face of the prism). 
All the other points are constructed using symmetries, so that the constructions are 
robust ones. 

S2 is given a file with the three points, a, b and c, and the two students have to 
validate their constructions by themselves. The only condition is that the behaviour of 
the new object has to be the same as the model’s one when point a, b or c are moved. 
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S2 doesn’t see the prism and the polyhedron tool is not available, so it is much harder 
to solve empirically the three last problems by constructing symmetricals of the first 
prism. 

 

Fig. 1: Figure to analyse and reproduce in phase 4 (in previous phase, parts of the 
figure have been reconstructed)  

 
Three strategies 

First, if they worked using only G1, they would analyse the shapes and sizes of the 
models, and try to reproduce it by creating points and dragging it to the right 
positions. This is very difficult in a 3D space represented in 2D, and we can guess 
that construction primitives may be used as stands on which a visual control of the 
positions is possible. This is a basic strategy, and it fails in Cabri 3D whereas it 
wouldn’t in a paper/pencil environment. We call it R1. 

The second strategy (R2) is based on the use of construction primitives controlled by 
knowledge about “basis configurations” (Robert, 1998) learnt before. For instance, 
point O may be recognized as the centre of symmetry of the bottom rhombus not 
because a and a’ seem to be symmetrical with respect to it, but because the student 
already know that the “centre” of a rhombus is its centre of symmetry. Therefore the 
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students may use locally plane transformations (on some planes). But in space, as 
they have no previous knowledge about symmetry in a prism, their strategy may be 
similar to R1. We expect that in this case, in the model analysis phase and in the 
interaction with S2 phase, S1 may focus at the same time on geometric properties and 
on size information. This strategy does not necessarily require dimensional 
deconstruction. The result of it is a partial failure, as the dynamic properties exist in 
planes, but not in space. 

The third strategy (R3) may be based on transformations. In this case, we assume that 
the student use axiomatic geometry and dimensional deconstruction, then we can 
guess that their analysis would focus on invariant properties when they drag points, 
and their reconstruction strategy would be designed in order to reproduce these 
properties. 

Experimental results 
We experimented this task with three pairs of 10th French graders, who had been just 
introduced to Cabri 3D before. Our following analyse will mainly focus on the 
“reconstruction phases”, and not on S1’s analysis of the drawings.  
First of all, it seems that the students could get information about the drawings by 
manipulating it. They were able to determine, visually, shapes and basic physical 
properties, and to try to find a solution to the problem. For instance, the Group 3 
students only used iconic visualization, and they could construct the prism shape – 
but a soft construction, based on the length of the edges. They tried something, and 
their failure was not the consequence of the too high complexity but was linked to the 
expected properties: some points “don’t move”. 
Secondly, all the students realized that iconic visualization was not sufficient to carry 
out the expected construction. We have to distinguish to main cases. 
Groups 1 and 2 first used only R1, but they realised that this strategy was no longer 
efficient in 3D geometry. As they were able to use – more or less easily – non-iconic 
visualisation, they tried other strategies and could reproduce the dynamic properties. 
It has to be noticed that they used R2 and R3 because it was easier that R1, and not in 
order to make hard constructions (even if this was a consequence). 
On the contrary, at the beginning, Group 3 students were not able to use anything but 
iconic visualisation. They constructed the first prism with R1, which led them to a 
failure: the points “didn't move”. Iconic visualisation couldn’t help them to analyse 
this:  

S1: Try to make the point move 

S2: I can’t, there is no line [on which the point could move] 
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 Then they started to use iconic and non-iconic visualisation at the same time, 
depending on their aim. For instance, they first tried to make b', b1 and b1' while 
dragging b, but didn't care about a, a'... They kept constructing a, a', a1, etc., by 
measuring lengths, but constructed b1 and b1' by using geometrical properties, such as 
“parallel”, instead of adjusting positions. This second case underlines that using non-
iconic visualisation can be strongly linked to the dynamic properties of the drawing. 
Eventually, we have to point out that the students didn’t use easily dimensional 
deconstruction, and then they first tried to use it as little as possible. For instance, it 
seemed to Group 2 students that ded’e’ and ed2’e2’d’ (see Fig. 1) were linked, and 
that (ed’) had something to do with this link: “a rotation”. They tried to use the tool 
without any further analysis (basic instrumental deconstruction), and couldn’t 
succeed. Then, they analysed more precisely the link, and discovered that they had to 
use “symmetry”. Actually, as instrumental deconstruction was not precise enough, 
thay used dimensional deconstruction in order to control more precisely the way they 
used the tools. 

CONCLUSION 

Finally, our experimental results have a global consistency with the three hypothesis 
we mentionned. 

The students used the representations as if they were models, and could get 
information from it. Even if they wanted to draw shapes, without any dynamical 
properties, they were able to get enough information by looking and measuring the 
models. Moreover, we could observe that, even to draw shapes, non-iconic 
visualization led them to more efficient strategies (Groups 1 and 2). 

Nevertheless, because of the dynamic geometry, this process was inefficient, and they 
had to find a way of reproducing dynamical effects. With this new research process, 
they had not only to use iconic visualization but to find something else. Depending on 
the students’ knowledge, most of them tried to use dimensional deconstruction and an 
axiomatical point of view, as the most efficient strategy – efficient for analysing, 
giving oral information, reconstructing, arguing... In every group, the strategies used 
by the students evolved and dimensional deconstruction was more and more 
involved, so that they were able to give an interpretation to dynamical effects. 

It seems that Cabri3D’s tools were very important in the evolution of strategies. 
Using of transformations appeared to be a way of solving the problems, but an 
empirical control was very difficult in most cases. Then, the students changed their 
strategies, and tried to find new ways of controlling it, by using dimensional 
deconstruction. 

Therefore, these results give us informations about our research question: iconic 
visualisation failed, and dimensional deconstruction was necessary to solve the 
problem. Moreover, even the weakest students started using dimensional 
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deconstruction, whereas they were unable to do so at the begining of the exercise. 
Then we could ask two new questions, more accurate. One the one hand, how did 
dimensional deconstruction appear, and how is it related both to the task and to 
instrumental deconstruction? On the other hand, we will have to study wether using 
dimensional deconstruction is liable to make the students use G2 in geometry, and not 
only in 3D geometry. 
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ABSTRACT

In this paper we present part of the analysis of a Teaching Model for the geometry of  
solids  of  an  initial  Education  Plan  for  elementary  school  teachers,  and  its  
implementation in the University School of Teaching of the Universitat de València,  
Spain.  We  have  focused  our  attention  on  how the  establishment  of  relationships  
among geometric concepts have been worked on. For this analysis we considered  
theoretical contents related to geometric contents (concepts, mathematical processes  
and different types of relationships). This study is part of a more extensive work that  
tried  to  elaborate  the  competent  conduct  features  for  a  teacher  teaching  solid 
geometry in elementary school.

PRESENTATION

This  work  is  part  of  a  more  extensive  research  project  which  uses  as  a 
methodological  framework  the  theory  of  the  “Modelos  Teóricos  Locales”  (MTL) 
(Local Theoretical Models) (Filloy, 1999). According to Filloy and col. (1999), to be 
able to take into account the complexity  of the phenomena that take place in the 
educative systems, the MTL incorporate several interrelated theoretical components: 
1) Competence Model; 2) Teaching Model; 3) Cognitive Processes Model, and 4) 
Communication Processes Model. Our work is focused on the first  component  in 
relation with the training process of elementary school teachers in the subject of solid 
geometry.

De Ponte and Chapman (2006) point out that this research line has given priority to 
the analysis of teachers knowledge or practice paying less attention to the analysis of 
the programs for their training. In our work we analyze a solid geometry training 
Program for  elementary  school  teachers  and its  putting into practice;  we want  to 
establish some elements for the Initial Competence Model (ICM) in relation with the 
training  of  elementary  education  teachers  in  the  geometry  of  solids.  In  previous 
papers we have presented elements of this competence model that show a competent 
conduct  for  teaching  mathematical  processes  related  with  describing,  classifying, 
generalizing  and  particularizing.  In  the  present  paper  we  focus  on  the  elements 
related to the establishment of relationships among geometrical contents.
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BACKGROUND AND FRAMEWORK

The analysis we present in this paper is part of a more extensive work -  González 
(2006)1-, which had the purpose of elaborating the elements for an ICM that can be 
used  as  a  reference  to  interpret  the  teaching  models  proposed  for  teaching  solid 
geometry in training programs for elementary school teachers. This work belongs to a 
project that aimed for the creation of a "Virtual Library”2 that could help to teachers' 
permanent education. 

In previous works (González and col. 2006, 2008; González, E. and Guillén, G. 2008) 
we have  presented  some  results  of  the  analysis.  To  group these  results  we have 
followed  the  distinction  made  by  Climent  and  Carrillo  (2003),  who  take  into 
consideration  teacher’s  knowledge  and  distinguish  as  different  components  the 
mathematical content knowledge (in our case contents  of  and  about geometry) and 
the knowledge of the subject for its teaching. 

In  previous  papers  above mentioned we refer  to  results  that  have  to  do with the 
contents  of  “solid  geometry”  related  to  mathematical  processes  of  classifying, 
describing, generalizing, and particularizing. We show how the attempt of organizing 
the surrounding objects  and their  construction,  by  means  of  different  procedures, 
provides very rich contexts to develop these mathematical processes. We also present 
some of the reflections encouraged by the teacher concerning the learning process of 
both children and teachers,  questions  having to  do with preparing the lesson,  are 
related  to  the  use  of  language,  or  the  way  to  respond  to  the  appearance  of 
misconceptions.

The observations we present in this paper belong to the first group of contents of and 
about geometry,  and complete  the study; these  observations  refer  to  relationships 
among geometric objects of the same and different dimension; that is, relationships 
among solids, among their elements or among plane and space elements.

As  we  advanced  in  the  presentation,  we  follow  the  Theory  of  the  MTL  as 
experimental  methodological  framework. We have commented that in this Theory 
four interrelated theoretical components can be distinguished. What differences each 
component  from the  others  is,  among  others,  the  phenomena  taken  into  account 

1 Work carried out to obtain the “Diploma de Estudios Avanzados” (Certificate of Avanced Studies) 
of the PhD program of Mathematics Education. Universitat de València, Spain.
2  Project  "Procesos  de  transferencia  de  resultados  de  investigación  al  aula:  el  caso  del  bajo 
rendimiento escolar en matemáticas".  Research project, co­financed by the  Consejo Nacional de 
Ciencia  y  Tecnología  (CONACYT-G37301-S)  (Nacional  Council  for  Science  and Technology). 
México.

http://www.pernodis.com/ptria/index.htm. In the site dedicated to geometry, section  "Descubrir y 
matematizar a partir del mundo de las formas", chapter ¿Cómo enseñan otros? we present extracts 
of  the  class  sessions  with  the  corresponding  analysis 
(http://hipatia.matedu.cinvestav.mx/~descubrirymat/).
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regarding the concept subject of analysis. In this work in particular, the ICM includes 
elements of the knowledge of an ideal person, capable of carrying out tasks related to 
the teaching of solid geometry at elementary school level.  This is,  it  includes the 
elements  which  should  be  part  of  the  competent  conduct  of  elementary  school 
teachers when teaching the geometric topics regarding solids in their classes.  We 
have  already  pointed  out  that  the  elements  commented  in  this  work  refer  to  the 
establishment of relationships among geometric contents.

When we focus on solids, our theoretical framework is based on the studies made in 
Didactics of solid geometry  (Guillén, 1991, 1997; Guillén and Figueras, 2005), we 
continue  reorganizing  these  contents  as  referred  to:  a)  geometric  concepts,  b) 
mathematical processes (to analyze, to describe, to classify, to generalize, etc.), c) 
relations among geometric contents. When we studied how these geometric contents 
were  taught,  we  also  paid  attention  on  how the  skills  are  used  (to  construct,  to 
modify, to transform) to work the mathematical  processes indicated or to develop 
skills (to communicate and/or to represent forms). The reorganization of the school 
contents has leaded to organize the observations as related to the teaching/learning of 
concepts, of mathematical processes, or of the establishment of relationships among 
different geometric contents. The observations made are detailed in Guillén (1991, 
1997). These works take into account, on the one hand, relationships among solids 
and/or families of solids. These refer to inscription and duality relationships among 
families  of  solids,  to  composition  or  decomposition relationships,  or  to inclusion, 
exclusion  or  overlapping  relationships  among  different  classes  established  with 
different  classification  types  (hierarchic  partitions  or  classifications)  taking  into 
account several universes and criteria for classifying. On the other hand, we stand out 
the relationships among the  solids elements  that  can  be either  of  parallelism and 
perpendicularity  or  numerical  relationships  among  them.  Also  were  taken  into 
account  the  relationships  among  geometric  contents  of  several  dimensions  that 
emerge when solids truncate or  during the construction of models  parting from a 
plane surface. Moreover, attention has been paid to the establishment of relationships 
by analogy. In the work of González and Guillén (2006) the inclusion, exclusion or 
overlapping relationships among families of solids were studied. The rest of types of 
relationships  are  the  ones  that  have  been  taken  as  reference  to  organize  the 
observations that this report presents.

The studies above mentioned have been developed taking as a reference the works of 
Freudenthal (1973, 1983) and others, that have been carried out at the Freudenthal 
Institute (for example Treffers 1987). These works are the theoretical basis for our 
concepts over geometry and its teaching, over the relationships among the different 
geometric  contents,  and also  provides  us  with  information  to  organize  the  solids 
geometry teaching. In this framework one of the aims of geometry teaching is the 
development of mathematization through mathematical practice.

To carry out the analysis we have also taken as a reference other studies about the 
appropriate  contents  for  the  teachers  training  plans,  emphasizing  on the  different 
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contents that should be discussed on a reflective level (Shulman, 1986; Climent y 
Carrillo, 2003; De Ponte y Chapman, 2006; González et. al. 2006).

DATA COLLECTION AND ANALYSIS

To create the MCI, we analyzed the available literature related to the mathematical 
content analysis and observation of the learning process for mathematical processes 
and  the  literature  related  to  teachers’  education,  this  enabled  us  to  elaborate  the 
Theoretical Framework of the work and define the criteria used to analyze the design 
and  implementation  of   a  Teaching  Model  of  the  teacher  of  Teaching  with  an 
extensive experience in introducing to the study of geometry having as  a support 
solids geometry.

The  work  has  been  developed  in  several  stages.  In  the  first  one,  we  examine 
theoretical works of the research lines we mentioned in the previous section and the 
teachers'  training plan of the teacher who constitutes the study scope of our work 
(Guillen, 2000). In a second stage we analyzed the implementation of this training 
plan. 

The data for this experimental study was obtained during the 2005-2006 school year. 
We attended and took notes of 22 class sessions the training teacher dedicated to 
solid geometry during the course she gave to a group of students belonging to the 
foreign language specialty at the University School of Teaching of the Universitat de 
València (Spain). Each session lasted 50 minutes approximately.

To control all the information that emerged during the teaching, the sessions were 
recorded  in  video  and  audio.  These  recordings  were  transcribed  and  from them, 
together with the notes taken during the classes, were obtained the extracts to carry 
out the analysis. These were considered the essential element and were defined taking 
as a reference the theoretical analyses performed during the first stage. They could be 
a sentence or a set of sentences that not necessarily had to match the answers or 
individual interventions of the teacher or of the students.

These  extracts  were  organized  in  groups  as  it  follows:  i)  On  geometry  and  its 
teaching. Student and teacher; ii) On geometric contents; iii) How do some of those 
students learn? What for?; iv) The class planning; v) Interacting in the class and ... vi) 
What about language? In Gonzalez et al. (2006) we briefly detail observations related 
to each of them.

The school contents organization we carried out, mentioned in the previous section, 
show the  distinction  we  made  in  the  observations  we  included  in  group  ii).  We 
separated  them  as  follows:  ii.1)  relative  to  concepts  learning;  ii.2)  relative  to 
mathematical processes; ii.3) relative to the establishment of relationships. We have 
already mentioned that in the following section we will refer to group ii.3).

To analyze the corresponding extracts for the establishment of relationships we used, 
on one hand, the diagram presented by Olvera (2007) and showed in figure 1. This 
diagram was constructed starting from the characteristics  of  Van Hiele  levels  for 
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solid geometry determined in the study by Guillén (1997). On the other hand, in its 
organization the families of solids and polygons implicated and the relations among 
flat  geometric  objects  and space geometric  objects  were taken into account.  Also 
different  representations  of  the  solids  used  as  a  context  were  considered  and 
numerical relations were also underlined.

Figure 1

IMPLEMENTATION OF A TEACHING MODEL FOR SOLID GEOMETRY. 
OBSERVATIONS  RELATED  TO  THE  RELATIONSHIPS  AMONG  THE 
GEOMETRIC CONTENTS 

In Figure 1 we show how the observations of relationships among geometric contents 
during the implementation of the analyzed training plan are grouped. Following, we 
present some examples. 

Establishment of relationships

The observations that  we present  in  this  section  have been organized taking into 
account, on the one hand, the solid families used as a support to develop the activity. 
On the other one, that the context can also consist of the different representations of 
solids. It is also necessary to take into account that the relations established could also 
be numerical.

1. Relations of inscription and duality among regular polyhedrons. When numerical 
relations are exposed in a table as shown in Figure 2, in which the number of faces, 
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vertexes, edges, order of the vertexes and number of sides of the polygons of the 
faces  have  been  registered,  it  leads  to  the  establishment  of  a  wide  variety  of 
relationships.

For example, it  comes to express that the number of faces of the dodecahedron is 
equal to the number of vertexes of the icosahedron; or that the number of vertexes of 
the  octahedron  is  equal  to  the  number  of  faces  in  the  cube.  From this  type  of 
relationships, it can be concluded that some polyhedrons can be inscribed in others. 
For  example,  the  cube  can  be  inscribed  in  a  octahedron  in  such  a  way  that  the 
vertexes of the cube are in the center of the faces of the octahedron, or vice versa.

Figure 2 Octahedron inscribed in the cube

There are also relations established among elements of the 
dual  regular  polyhedrons  when  instead  of  considering 
models  of  pairs  of  dual  regular  polyhedrons  inscribed, 
compound models are considered, which are intersections 
of pairs of dual polyhedrons. For example, the cube and 
the octahedron.   

After  encouraging students  to  imagine  in  a  dynamic  way  how to  pass  from the 
inscribed model to the compound model when the size of the inscribed polyhedron is 
increased, the attention is focused on the fact that the edges of both polyhedrons cut 
perpendicularly at their midpoint.

2. Relations among regular polyhedrons and other solid families. 
When  trying  to  analyze  regular  polyhedrons,  they  have 
repeatedly  been  studied  in  relation  to  other  families.  For 
example, in the analysis of the icosahedron it is emphasized that 
it  can  be  seen,  on  the  one  hand,  as  the  composition  of  two 
pentagonal pyramids of regular faces and a pentagonal antiprism 
of regular faces or as the fitting of two caps that correspond, 
each  of  them,  to  a  pentagonal  bipyramid of  regular  faces,  in 
which one of the pyramids has been opened. 

3. Cylinders and Prisms. Cones and pyramids. Immersed in the 
situation of generating models with different procedures, in first 
place, the family of straight prisms was introduced through the 
truncation of a straight cylinder.

      

For  example,  questions  raise  such  as:  What  form  do  we  obtain  if  we  cut 
perpendicularly the base? How many cuts, perpendicular to the base, should be done 
for the circle of the base to turn into a 5-sided polygon? What does the cylindrical 
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surface turn into? How are the cylinders obtained with parallel to the base cuts? Can 
we also obtain oblique prisms?  And this problem extends to the establishment  of 
relations between cones and pyramids.

Likewise,  comparisons  among  naive  ideas  and  properties  of  both  families  are 
established. For example, it is pointed out that with parallel cuts to the bases in both 
families (cylinders and prisms) the shape of the sections is maintained (same form of 
the bases), and these cuts divide the corresponding solid into other solids with the 
same  form,  with  the  same  bases  as  the  original  one;  and,  when  adding  the 
corresponding heights, the original solid height is obtained. Immersed in this matter, 
it is concluded that some prisms can be inscribed in cylinders raising the question of 
which polygons can be inscribed in a circumference?

4. Comparing  cylinders  and  cones.  Prisms  and  pyramids.  When  considering  a 
dynamic transformation of one family into another, this transformation is profited to 
establish relations among the elements of the families of implied solids. For example, 
when the attention is focused on the transition from a prism into a pyramid, one of the 
bases  of  the  prism  is  reduced  to  a  point  in  the  pyramid  and  it  results  in  the 
transformation of the lateral faces of the prism into triangles, or that the number of 
faces in prisms is reduced by one in the number of faces of pyramids, etc.

5. Families of solids and flat shapes. When we focus on counting the elements of 
regular polyhedrons paying attention to their layout in space, relations are established 
among this layout and the form of the cuts sections equidistant from opposite faces, 
vertices  or  edges.  The study is  completed  with the determination  of  the different 
types of planes of symmetry and axes of rotation of each regular polyhedron and the 
number of planes and axes of each type.

In  a  context  of  truncation  in  cylinders,  cones,  spheres,  prisms  and  pyramids  the 
relations among the direction of the cut and the form of the sections are established. 
The process is also considered in a dynamic way; that is, it starts with the observation 
of a section shape and this is compared with the other sections obtained by parallel 
cuttings done to the original.

6. Different representations of the solids as a starting point. This situation enables 
setting relations among different representations or among the corresponding models 
and  their  representation.  For  example,  when  disassembling  the  straight  cylinder 
model, the cylinder edges are related to the sides of the rectangle in the flat pattern, 
and to the length of the circumferences of the bases.

When comparing a model with its flat pattern, problems arise such as the following: 
To  which  vertex  of  the  model  corresponds  a  given  vertex  of  its  flat  pattern? 
Observing the flat pattern of a cube, can we know the number of faces? Observing at 
the flat pattern of a solid, can we know the number of faces? How many cuts do we 
need to make to a model to obtain the flat pattern? Which sides of the flat pattern 
form an edge in the model?
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In order to work on the establishment of relations among the different representations 
the teacher compares the model properties maintained and the properties that “are 
broken” in each of them. For example, in a perspective representation of a cylinder, 
the property of bases being circles is “broken”, or in a perspective representation of 
the cube, the property of all edges being equal and all angles being equal is “broken”, 
property that does show on the corresponding flat patterns.

7. Numerical relations. These types of relationships are studied in several contexts. 
For example,  when finding the numerical  characteristics  of the prisms,  we obtain 
certain relations such as: the number of edges of a n-agonal prism is equal to 4 times 
the number of lateral faces plus 2 times the number of sides of the polygon of the 
base; for regular polyhedrons: the number of edges (sides of polygons of the faces) is 
equal to number of polygons of the sides of faces multiplied by the number of faces 
and divided into two.

CONCLUSIONS

In Gonzalez et. al. (2006; 2008) we already pointed out that solids constitute a very 
important  context  for  the  development  of  mathematical  activity  and  we  have 
presented  some  features  that  characterize  a  competent  conduct  to  teach  solid 
geometry  in  primary  school.  These  results  complement  those  deduced  from 
observations that we will refer to in the following paragraphs. To introduce the study 
of geometry in primary school, the competent conduct implies putting into practice 
the different  contents  recommended  in  a  training  plan for  teachers  related  to  the 
establishment of relationships among geometric contents:

-  The  use  of  different  contexts  with  all  the  possibilities  they  offer  for  the 
establishment  of  relations  among  geometric  contents  of  the  same  and  different 
dimension. 

-  The establishment  of relations among geometric  contents  of one,  tow and three 
dimensions.

-  To emphasize  about  the multitude  of  relations  among geometric  contents.   For 
example,  those  that  arise  when  considering  different  solids  families  and/or  their 
elements: i) cylinders and prisms, cones and pyramids; ii) some polyhedra families 
(prisms, pyramids); iii) solids families and flat figures, etc; iv) regular polyhedrons 
and  other  solids  families;  v)  relations  of  inscription  and  duality  among  regular 
polyhedrons. 

- To work on the transformation of some solid families  into others with different 
objectives, such as: i) focusing attention on seeing  them in a more dynamic way; ii) 
discovering  the  properties  maintained  and  lost  along  the  transformation;  iii) 
discovering new knowledge; iv) using knowledge that we already have in order to 
discover new; v) working on the same geometric content in different contexts and 
times.
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- To  present the contents regarding the subject knowledge for its teaching without 
overlooking  the  contents  of  the  subject  itself.  For  example,  to  propose  different 
questions with the intention of generating mathematical activity, emphasizing on the 
relations expressed and paying attention to the type of language used for this purpose; 
the use of different materials,  diagrams and tables with the aim of facilitating the 
discovery and verbalization with a each time more specific geometric language of the 
relationships that arise.
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STUDENTS’ 3D GEOMETRY THINKING PROFILES

Marios Pittalis, Nicholas Mousoulides & Constantinos Christou

Department of Education, University of Cyprus 

This  article  focuses  on  the  construction,  description  and  testing  of  a  theoretical  
model  for  the  structure  of  3D  geometry  thinking.  We  tested  the  validity  and  
applicability of the model with 269 students (5th to 9th grade) in Cyprus. The results of  
the study showed that 3D geometry thinking can be described across the following 
factors: (a) recognition and construction of nets, (b) representation of 3D objects, (c)  
structuring  of  3D arrays  of  cubes,  (d)  recognition  of  3D shapes’  properties,  (e)  
calculation of the volume and the area of solids, and (f) comparison of the properties  
of 3D shapes. The analysis showed that four different profiles of students can be  
identified. 

INTRODUCTION

Geometry and three-dimensional (3D) thinking is connected to every strand in the 
mathematics curriculum and to a multitude of situations in real life (Jones & Mooney, 
2004,  Presmeg  2006).  The  reasons  for  including  3D  geometry  in  the  school 
mathematics  curriculum  are  myriad  and  encompass  providing  opportunities  for 
learners not only to develop spatial awareness, geometrical intuition and the ability to 
visualise, but also to develop knowledge and understanding of, and the ability to use, 
geometrical properties and theorems (Jones, 2002). However, it is widely accepted 
that the 3D geometry research domain has been neglected and efforts to establish an 
empirical  link  between spatial  ability  and 3D geometry  ability  have been few in 
number  and  generally  inconclusive  (Presmeg,  2006).  Moreover,  3d  geometry 
teaching gets little attention in most mathematics curriculum and students are only 
engaged  in  plane  representations  of  solids  (Battista  1999;  Ben-Haim,  Lappan  & 
Houang,  1989).  Thus,  there  is  neither  a  well-accepted  theory  on  3D  geometry 
learning and teaching, nor a well-substantial knowledge on student’s 3D thinking.

The purpose of the present study is twofold. First, it examines the structure of 3D 
geometry  abilities  by  proposing  a  model  that  encompasses  most  of  the  previous 
research in 3D geometry abilities and describes 3D geometry thinking across several 
dimensions. Second, the study may provide a worthwhile starting point for tracing 
students’ 3D geometry thinking profiles based on empirical data with the purpose of 
improving instructional practices. 

THEORETICAL CONSIDERATIONS

3D Geometry Abilities

For a long time studies on 3D geometry have concentrated mainly on the abilities of 
students to processes and tasks directly related to school curriculum (NCTM, 2000; 
Lawrie, Pegg, & Gutierrez, 2000). Following, we describe the main research findings 
on these 3D geometry abilities.
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(a) The ability to represent 3D objects: Plane representations are the most frequent 
type  of  representation  modes  used  to  represent  3D geometrical  objects  in  school 
textbooks.  However,  students  have  great  difficulties  in  conceptualizing  them 
(Gutierrez, 1992; Ben-Chaim, Lappan, & Houang, 1989). Specifically, students and 
adults  have great  difficulties  in  drawing 3D objects  and representing parallel  and 
perpendicular lines in space. Parzysz (1988) pointed out that the representation of a 
3D object by means of a 2D figure demands considerable conventionalizing which is 
not trivial and not learned in school. He concluded that there is a need to explicitly 
interpret  and  utilize  drawing  3D  objects  conventions,  otherwise,  students  may 
misread a drawing and do not understand whether it represents a 2D or a 3D object. 
(b) The ability to recognise and construct nets: Net construction requires students’ 
ability to make translations between 3D objects and 2D nets by focusing and studying 
the  component  parts  of  the  objects  in  both  representation  modes.  Cohen  (2003) 
supported that the visualization of nets involves mental processes that students do not 
have, but they can develop through appropriate instruction. The transition from the 
perception of a 3D object to the perception of its net, requires the activation of an 
appropriate mental act that coordinates the different perspectives of the object. (c) 
The ability to structure 3D arrays of cubes: Tasks related to enumeration of cubes 
in  3D arrays  appear  in  many  school  textbooks.  For  example,  images  of  cuboids 
composed by unit-sized cubes are used to introduce students to the concept of volume 
(Ben-Chaim et al., 1989). The development of this ability is not a simple procedure 
and as a result primary and middle school students fail in these tasks (Battista 1999; 
Ben-Chaim  et  al.,  1989).  Battista  (1999)  support  that  students’  difficulties  to 
enumerate the cubes that fit  in a box can by explained by the lack of the spatial 
structuring ability and the inability of students to coordinate and integrate to a unified 
mental model the different views of the structure.  (d) The ability to recognise 3D 
shapes’ properties and compare 3D shapes: Understanding the properties of a solid 
equals  to  understanding  how  the  elements  of  the  solid  are  interrelated.  This 
understanding may refer to the same object or between objects. The properties of the 
composing parts, the comparative relations between the same composing parts and 
the relations between different composing parts compose altogether the properties of 
a  3D object  that  students  should  conceptualize.  Although the composing parts  of 
polyhedrons  are  almost  the  same,  the  special  characteristics  of  these  parts  vary 
between  the  different  types  of  polyhedrons  (Gutierrez,  1992).  (e)  The  ability  to 
calculate  the  volume  and  the  area  of  solids: 3D  geometry  ability  is  closely 
connected to students’  ability  to  calculate the volume and surface area of  a solid 
(Owens & Outhred, 2006). Research findings showed that students focus only on the 
formulas and the numerical operations required to calculate the volume or surface 
area of a solid and completely ignore the structure of the unit measures (Owens & 
Outhred, 2006). Based on these findings, researchers affirmed that students should 
develop two necessary skills to calculate the volume and surface area of a solid: (i) 
the conceptualization of the numerical operations and the link of the formulas with 
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the structure of the solid, and (ii) the understanding and visualization of the internal 
structure of the solid. 

3D Geometry Levels of Thinking

In plane geometry systematic research efforts have described extensively progressive 
levels  of  thinking  and define  profiles  of  geometric  thinking  in  various  geometric 
situations. Most of these studies are grounded on Van Hiele’s model (Lawrie, Pegg, 
& Gutierrez, 2000). The van Hiele model of geometric thought outlines the hierarchy 
of levels through which students progress as they develop of geometric ideas. The 
model clarifies many of the shortcomings in traditional instruction and offers ways to 
improve it by focusing on getting students to the appropriate level to be successful in 
high school Geometry. Gutierrez (1992) extended Van Hiele’s model in 3D geometry 
by analyzing  students’  behaviour when solving activities of comparing or moving 
solids is the ground. Students of the first level compare solids on a global perception 
of the shapes of the solids or some particular elements (faces, edges, vertices) without 
paying  attention  to  properties  such  as  angle  sizes,  edge  lengths,  parallelism,  etc. 
When some one of these mathematical characteristics appears in their answers, it has 
just  a  visual  role.  Students  of the second level  compare solids  based on a global 
perception of the solids or their elements leading to the examination of differences in 
isolated mathematical  properties  (such as  angles  sizes,  parallelism,  etc.),  apparent 
from  the  observation  of  the  solids  or  known  from  the  solid’s  name.  Their 
explanations  are  based  on  observation.  Students  of  the  third  level  analyze 
mathematically  solids  and  their  elements.  Their  answers  include  informal 
justifications  based  on  isolated  mathematical  properties  of  the  solids.  These 
properties may be observed in the solids’ representations or known from their prior 
knowledge. Students of the fourth level analyse the solids prior to any manipulation 
and their  reasoning  is  based  on  the  mathematical  structure  of  the  solids  or  their 
elements,  including  properties  not  seen  but  formally  deduced from definitions  or 
other properties. 

THE PURPOSE OF THE STUDY AND THE PROPOSED MODEL  

The purpose of the present study is twofold: First, to examine the structure of 3D 
geometry  thinking  by  validating  a  theoretical  model  assuming  that  3D geometry 
thinking consists of the 3D geometry abilities described above. Second, to describe 
students’ 3D geometry thinking profiles by tracing a developmental trend between 
categories of students. To this end, latent profile analysis, a person-centered analytic 
strategy,  was  used  to  explore  students’  3D  geometry  abilities,  allowing  for  the 
subsequent description of those patterns in the context of dealing with different forms 
of  3D  geometry  situations.  In  this  paper,  as  it  is  highlighted  in  Figure  1,  we 
hypothesized that students’ thinking in 3D geometry can be described by six factors 
that correspond to six distinct 3D geometry abilities. Specifically, the hypothesized 
model consists of six first order factors which represent the following 3D geometry 
abilities: (a) Students’ ability to recognise and construct nets, i.e., to decide whether a 
net can be used to construct a solid when folded and to construct nets, (b) students’ 
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ability to represent 3D objects, i.e., to draw a 3D object, and to translate from one 
representational mode to another, (c) students’ ability to structure 3D arrays of cubes, 
i.e., to manipulate 3D arrays of objects, and to enumerate the cubes that fit in a shape, 
(d) students’ ability to recognise 3D shapes’ properties, i.e., to identify solids in the 
environment or in 2D sketches and to realize their structural elements and properties, 
(e) students’ ability to calculate the volume and the area of solids, i.e., to calculate the 
surface and perceptually estimate the volume of 3D objects without using formulas, 
and (f) students’ ability to compare the properties of 3D shapes.  

METHOD

Sample

The sample of this study consisted of 269 students from two primary schools and two 
middle schools in urban districts in Cyprus. More specifically, the sample consisted 
of 55 fifth grade students (11 years old), 61 sixth grade students (12 years old), 58 
seventh grade students (13 years old), 63 eighth grade students (14 years old) and 42 
ninth grade students (15 years old). 

Instrument

The 3D geometry thinking test consisted of 27 tasks measuring the six 3D geometry 
abilities: (a) Four tasks were developed to measure students’ ability to recognise and 
construct nets. Two tasks asked students to recognise the nets of specific solids while 
the other  two asked them to construct  or  complete the net of specific solids.  For 
example (see Table 1), students had to complete a net in such a manner to construct a 
triangular prism when folded. (b) Six tasks were developed to capture the nature of 
the factor “students’ ability to represent 3D objects”, based on the research conducted 
by Parzysz (1988) and Ben-Chaim, Lappan, and Houang (1989). Two tasks required 
students to translate the sketch of a solid from one representational mode to another. 
For example (see Table 1), students were asked to draw the front, top and side view 
of an object based on its side projection. (c) Four tasks were used to measure the 
factor “students’ ability to structure 3D arrays of cubes”. For example (see Table 1), 
students were asked to enumerate the cubes that could fit in open and close boxes. (d) 
Five tasks were developed to measure the factor “students’ ability to recognise 3D 
shapes’ properties”. For example (see Table 1), students were asked to identify the 
solids that had minimum eight vertices. The second task asked students to identify the 
solids that were not cuboids out of twelve objects drawn in a solid form. The other 
three  tasks  asked  students  to  enumerate  the  vertices,  edges  and  faces  of  three 
pyramids drawn in transparent view. (e) Four tasks were used as measures of the 
factor “students’ ability to calculate the volume and the area of solids”. For example, 
students were asked to calculate how much wrapping paper is needed to wrap up a 
cuboid built up by unit-sized cubes. Students should have visualized the object and 
split its surface area into parts. Two other tasks asked students to calculate the surface 
area  and the  volume of  cuboids  that  were  presented  in  a  net  form (proposed  by 
Battista,  1999).  (f)  Three  tasks  were  developed  to  measure  the  factor  “students’ 
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ability to compare the properties of 3D shapes”. For example, students were asked to 
decide whether statements referring to properties of solids were right or wrong (see 
Table 1). The other two tasks asked students to explore the Euler’s rule and extend it 
to the case of prisms.

Table 1: Examples of the 3D geometry thinking tasks. 

The ability to recognise and construct nets The ability to represent 3D objects

Complete  the  following  net  in  a  proper 
manner to construct the triangular prism (at 
the right) when folded. 

Draw  the  front,  side  and  top  view  of  the 
object.

The ability to structure 3D arrays of cubes The ability to recognise 3D shapes’ properties

How many  unit-sized  cubes  can  fit  in  the 
box?

Circle the solids that have at least 8 vertices.

The ability to calculate the volume and the area 
of solids

The ability to compare properties of 3D shapes

Find the area of the box. Which  of  the  following  statements  are 
wrong? 
-The cuboid is not a square prism.
-The  prisms’  and  cuboids’  faces  are 
rectangles.
-The  base  of  the  a prism,  a  cuboid  and a  
pyramid could be a rectangle

Data Analysis

The structural equation modelling software, MPLUS, was used (Muthen & Muthen, 
2007) and three fit indices were computed: The chi-square to its degrees of freedom 
ratio  (x2/df),  the  comparative  fit  index  (CFI),  and  the  root  mean-square  error  of 
approximation (RMSEA). The observed values for  χ2/df should be less than 2, the 
values for CFI should be higher than .9, and the RMSEA values should be lower than 
.08 to support model fit (Marcoulides & Schumacker, 1996).
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RESULTS

In this section, we refer to the main issues of the study. First, we present the results of 
the analysis,  establishing the validity  of the latent  factors and the viability  of the 
structure of the hypothesized latent factors. Second, we present the exploration of the 
data  for  meaningful  categories  with  respect  to  3D  geometry  abilities,  and  then 
working up from those categories, we present the characteristics of each 3D geometry 
thinking profile. 

The structure of 3D geometry thinking

In this study, we posited an a-priori (proposed) structure of 3D geometry thinking and 
tested the ability of a solution based on this structure to fit the data. The proposed 
model for 3D geometrical thinking consists of six first-order factors. The six first-
order  factors  represent  the dimensions  of  3D geometry  thinking described above: 
students’ ability to recognise and construct nets (F1), students’ ability to represent 3D 
objects (F2), students’ ability to structure 3D arrays of cubes (F3), students’ ability to 
recognise 3D shapes’ properties (F4), students’ ability to calculate the volume and the 
area of solids (F5), and students’ ability to compare the properties of 3D shapes (F6). 
The six factors were hypothesized to correlate between them (see Figure 1).  Figure 1 
makes easy the conceptualisation of how the various components of 3D geometry 
thinking relate to each other.

The descriptive-fit measures indicated support for the hypothesized first order latent 
factors  (CFI=.95,  χ  2  =375.88,  df=301,  χ  2  /  df  =1.25,  p<0.05,  RMSEA=.03).  The 
parameter  estimates  were  reasonable  in  that  all  factor  loadings  were  statistically 
significant  and  most  of  them  were  rather  large  (see  Figure  1).  Specifically,  the 
analysis  showed  that  each  of  the  tasks  employed  in  the  present  study  loaded 
adequately only on one of the six 3D geometry abilities (see the first order factors in 
Figure  1),  indicating  that  the  six  factors  can  represent  six  distinct  functions  of 
students’  thinking  in  3D  geometry.  The  results  of  the  study  showed  that  the 
correlations between the six factors are statistically significant and high (see Table 3). 
The correlation coefficients between F1 with F2 (r=.94,  p<.05), F1 with F3 (r=.96, 
p<.05), F2 with F4 (r=.92, p<.05), F3 with F5 (r=.97, p<.05) and F4 with F6 (r=.92, 
p<.05) were greater than .90.

Students’ 3D Geometry Thinking Profiles

To trace students’ different profiles of 3D geometry thinking we examined whether 
there  are  different  types  of  students  in  our  sample  who  could  reflect  the  six  3D 
geometry  abilities.  Mixture  growth  modeling  was  used  to  answer  this  question 
(Muthen & Muthen, 2007), because it enables specification of models in which one 
model applies to one subset of the data, and another model applies to another set. The 
modeling  here  used  a  stepwise  method-that  is,  the  model  was  tested  under  the 
assumption that there are two, three, and four categories of subjects. The best fitting 
model with the smallest AIC and BIC indices (see Muthen & Muthen, 2007) was the 
one  involving  four  categories.  Taking  into  consideration  the  average  class 
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T. 1

T. 2

T. 3

T. 4

T. 5

T. 6

T. 7

T. 8

T. 9

T. 10

T. 11

T. 12

T. 13

T. 14

T. 15

T. 16

T. 17

T. 18

T. 19

T. 20

Factor  1

Factor 2

Factor 4

Factor 3

Factor 5

0.53

0.54

0.53

0.48

0.43

0.57

0.54

0.52

0.31

0.49

0.36

0.40

0.48

0.62

0.61 

0.53

0.34

0.66 

0.72

0.38

0.40

0.22

0.25

0.41

0.76

Factor 6

T. 21

T. 22

T. 23

T. 24

T. 25

T. 26

T. 27 0.72

0.47

0.94 0.96

    0.86 

   0 .77

0 .89 

   0 .92

   0 .68 

   0 .62 

    0.77

0.88

 0.83 

0.92

probabilities  (not  presented due to space limitations),  we may conclude that  each 
category has its own characteristics. The means and standard deviations of each of the 
six 3D geometry abilities across the four categories of students are shown in Table 2, 
indicating that students in Category 4 outperformed students in Category 3, 2 and 
Category 1 in all 3D geometry ability factors, students in Category 3 outperformed 
their counterparts in Categories 2 and 1, while students in Category 2 outperformed 
their counterparts in Category 1.

Figure 1: The structure of 3D geometry thinking. 
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From Table 3, which shows the problems solved by more than 50% or 67% of the 
students in each category, it can be deduced that there is a developmental trend in 
students’ abilities to complete the assigned tasks of the six factors because success on 
any problem by more than 67% of the students in a category was associated with such 
success by more than 67% of the students in all subsequent categories.

Table 2: Means and Standard Deviations of the Four Categories of Students

Category Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Categ. 1
Categ. 2
Categ. 3
Categ. 4

Mea
n
0.28
0.54
0.76
0.88

S.D.
0.16
0.21
0.20
0.14

Mea
n
0.30
0.51
0.71
0.86

S.D.
0.1
8
0.1
7
0.1
7
0.1
3

Μea
n
0.15
0.29
0.55
0.83

S.D.
0.1
3
0.2
0
0.2
2
0.1
9

Μea
n
0.51
0.71
0.83
0.92

S.D.
0.17
0.15
0.14
0.07

Μea
n
0.24
0.40
0.49
0.77

S.D.
0.18
0.21
0.23
0.22

Μea
n
0.10
0.28
0.50
0.78

S.D.
0.17
0.24
0.26
0.22

The  data  imply  that  there  are  four  profiles  of  students’  3D  geometry  thinking 
according to the characteristics of the four categories of students. The first profile of 
3D geometry thinking represents the students that recognize in a sufficient way 3D 
shapes but fail in the other 3D geometry tasks. The second profile of 3D geometry 
thinking represents the students that do not have any problems in recognizing 3D 
shapes  and  have  some  difficulties  in  recognizing  and  constructing  nets  and 
representing 3D shapes.  Students  that  belong to the third profile of  3D geometry 
thinking grasp easily recognizing and representing 3D shapes tasks and recognizing 
and constructing nets tasks. However, students of the third profile have difficulties in 
structuring  3D arrays  of  cubes  and comparing  3D shapes’  properties.  The  fourth 
profile represents the category of students that successfully solves tasks related to the 
recognition of 3D shapes’ properties, the comparison of 3D shapes’ properties, the 
recognition and construction of nets tasks, the structuring of 3D arrays of cubes, the 
representation of 3D shapes and the calculation of volume and area of solids.

Table 3: Problems Solved by More than 50% or 67% of Students in Each Category

F1 tasks F2 tasks F3 tasks F4 tasks F5 tasks F6 tasks

Category 1 

Category 2   √

Category 3 √ √  √ 

Category 4 √ √ √ √ √ √

: Problems solved by more than 50%, √: Problems solved by more than 67%
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DISCUSSION

The results of the study suggested that 3D geometry thinking can be described across 
six  dimensions  based  on  the  following  factors  which  represent  six  distinct  3D 
geometry abilities. The first factor is students’ ability to recognise and construct nets, 
by  deciding  whether  a  net  can be  used  to  construct  a  solid  when folded and by 
constructing nets. The second factor is students’ ability to represent 3D objects, such 
as drawing a 3D object, constructing a 3D object based on its orthogonal view, and 
translating from one representational mode to another. The third factor is students’ 
ability to structure 3D arrays of cubes by manipulating 3D arrays of objects,  and 
enumerating the cubes that fit in a shape by spatially structuring the shape. The fourth 
factor is students’ ability to recognise 3D shapes’ properties, by identifying solids in 
the  environment  or  in  2D  sketches  and  realizing  their  structural  elements  and 
properties. The fifth factor is students’ ability to calculate the volume and the area of 
solids. The sixth factor is students’ ability to compare the properties of 3D shapes, by 
comparing  the  number  of  vertices,  faces  and  edges,  and  comparing  3D  shapes’ 
properties.  The  structure  of  3D geometry  thinking  suggests  that  students  need to 
develop their own 3D geometry skills that integrate the six 3D geometry parameters 
described above. Based on this assumption, we could also speculate that the most 
common definition  of 3D geometry  by  other  researchers  (Gutierrez,  1992)  as  the 
knowledge and classification of the various types of solids, in particular polyhedrons, 
is  not  sufficient.  3D  geometry  thinking  implies  a  large  variety  of  3D  geometry 
situations which do not correspond necessarily to certain school geometry tasks. The 
results  of  the  study  revealed  that  the  six  factors  are  strongly  interrelated.  The 
correlation coefficients between the first factor and the second factor, the first factor 
and the third factor and the third factor and the fifth factor were the stronger ones. 
This result could be explained by the fact that these factors are strongly related with 
spatial ability skills. 

The second aim concerned the extent to which students in the sample vary according 
to the tasks provided in the test. The analysis illustrated that four different categories 
of students can be identified representing four distinct profiles of students.  Students 
of  the  first  profile  were  able  to  respond  only  to  the  recognition  of  solids  tasks. 
Students of the second profile were able to recognize and construct nets and represent 
3D  shapes  in  a  sufficient  way.  Students  of  the  third  profile  did  not  have  any 
difficulties in the recognition and construction of nets and the representation of 3D 
shapes  and  furthermore  they  were  able  in  structuring  3D  arrays  of  cubes  and 
calculating the volume and area of solids in a sufficient way. Students of the fourth 
profile were able in all the examined tasks. 

The identification of students’ 3D geometry thinking profiles extended the literature 
in a way that  these four categories  of students  may represent  four  developmental 
levels  of  thinking in  3D geometry,  leading to  the conclusion  that  there are  some 
crucial  factors  that  determine  the  profile  of  each  student  such  as  the  ability  to 
represent  3D objects  and  the  ability  to  structure  3D arrays  of  cubes.  These  two 
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abilities  are  closely  related  to  spatial  visualization  skills  (Battista,  1991;  Parzysz, 
1988).  This  assumption promulgates  the call  to study in depth the relation of 3D 
geometry thinking with spatial ability by using a structured quantitative setting.

REFERENCES

Battista, M. (1999). Fifth graders’ enumeration of cubes in 3D arrays: Conceptual 
progress  in  an inquiry-Based Classroom.  Journal  for  Research in  Mathematics 
Education, 30(4), 417-448.

Ben-Chaim,  D.,  Lappan,  G.,  &  Houang,  R.  (1989).  Adolescent’s  ability  to 
communicate spatial information: analyzing and effecting students’ performance. 
Educational Studies in Mathematics, 20, 121-146.

Gutiérrez,  A.  (1992).  Exploring  the  links  between  Van  Hiele  levels  and  3-
dimensional geometry. Structural Topology, 18, 31-48.

Jones,  K.  (2002).  Issues  in  the  Teaching  and  Learning  of  Geometry.  In Linda 
Haggarty  (Ed),  Aspects  of  Teaching  Secondary  Mathematics  (pp  121-139). 
London: Routledge Falmer.

Jones, K., & Mooney, C. (2003). Making space for geometry in primary mathematics. 
In I.Thompson  (Ed.),  Enhancing Primary  Mathematics  Teaching and  Learning 
(pp3-15). London: Open University Press.

Lawrie C., Pegg, J., & Gutierrez, A. (2000). Coding the nature of thinking displayed 
in responses on nets of solids. In T. Nakahara & M. Koyama (Eds.), Proceedings 
of the 24th International Conference for the Psychology of Mathematics Education 
(Vol. 3, pp. 215-222). Hiroshima, Japan.

Marcoulides,  G.  A.,  & Schumacker,  R.  E.  (1996).  Advanced  structural  equation 
modelling: Issues and techniques. NJ: Lawrence Erlbaum Associates.

Muthen, L. K. & Muthen, B. O. (1998-2007).  Mplus User’s Guide. Fourth Edition. 
Los Angeles, CA: Muthen & Muthen.

National Council of Teachers of Mathematics (2000).  Principles and standards for 
school mathematics. Reston: Va, NCTM.

Owens,  K.  &  Outhred,  L.  (2006).  The  complexity  of  learning  geometry  and 
measurement.  In  A.Gutierrez & P.Boero  (Eds.),  Handbook  of  Research  on the 
Psychology  of  Mathematics  Education:  Past,  Present  and Future (pp.  83-116). 
Sense Publishers.

Parzysz, B. (1988). Problems of the plane representation of space geometry figures. 
Educational Studies in Mathematics, 19(1), 79-92.

Presmeg, N. (2006). Research on visualization in learning and teaching mathematics. 
In A.Gutierrez & P.Boero (Eds.),  Handbook of  Research on the Psychology of 
Mathematics  Education:  Past,  Present  and  Future (pp.  205-236).  Sense 
Publishers.

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 825



CERME 6 – WORKING GROUP 6 
LANGUAGE AND MATHEMATICS 

TABLE OF CONTENTS 
 
 
Introduction...................................................................................................................................... 828 
Candia Morgan 
 
Imparting the language of critical thinking while teaching probability........................................... 833 
Einav Aizikovitsh, Miriam Amit 
 
Toward an inferential approach analyzing concept formation and language processes .................. 842 
Stephan Hußmann, Florian Schacht 
 
Iconicity, objectification, and the math behind the measuring tape: 
An example from pipe-trades training ............................................................................................. 852 
Lionel LaCroix 
 
Mathematical reflection in primary school education: 
theoretical foundation and empirical analysis of a case study ......................................................... 862 
Cordula Schülke, Heinz Steinbring 
 
Surface signs of reasoning ............................................................................................................... 873 
Nathalie Sinclair, David Pimm 
 
A teacher’s use of gesture and discourse as communicative strategies 
in concluding a mathematical task ................................................................................................... 884 
Raymond Bjuland, Maria Luiza Cestari, Hans Erik Borgersen 
 
A teacher’s role in whole class mathematical discussion: facilitator of performance etiquette? .... 894 
Thérèse Dooley 
 
Use of words – Language-games in mathematics education ........................................................... 904 
Michael Meyer 
 
Speaking of mathematics – Mathematics, every-day life 
and educational mathematics discourse ........................................................................................... 914 
Eva Riesbeck 
 
Communicative positionings as identifications in mathematics teacher education......................... 924 
Hans Jørgen Braathe 
 

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 826



Teachers’ collegial reflections of their own mathematics teaching processes 
Part 1: An analytical tool for interpreting teachers` reflections....................................................... 934 
Kerstin Bräuning, Marcus Nührenbörger 
 
Teachers’ reflections of their own mathematics teaching processes 
Part 2: Examples of an active moderated collegial reflection.......................................................... 944 
Kerstin Bräuning, Marcus Nührenbörger 
 
Internet-based dialogue: a basis for reflection 
in an in-service mathematics teacher education program ................................................................ 954 
Mario Sánchez 
 
The use of algebraic language in mathematical modelling and proving 
in the perspective of Habermas’ theory of rationality...................................................................... 964 
Paolo Boero, Francesca Morselli 
 
Objects as participants in classroom interaction.............................................................................. 974 
Marei Fetzer 
 
The existence of mathematical objects in the classroom discourse ................................................. 984 
Vicenç Font, Juan D. Godino, Núria Planas, Jorge I. Acevedo 
 
Mathematical activity in a multi-semiotic environment .................................................................. 993 
Candia Morgan, Jehad Alshwaikh 
 
Engaging everyday language to enhance comprehension of fraction multiplication .................... 1003 
Andreas O. Kyriakides 
 
Tensions between an everyday solution and a school solution to a measuring problem............... 1013 
Frode Rønning 
 
Linguistic accomplishment of the learning-teaching processes 
in primary mathematics instruction................................................................................................ 1023 
Marcus Schütte 
 
Mathematical cognitive processes between the poles of mathematical technical terminology 
and the verbal expressions of pupils .............................................................................................. 1033 
Rose Vogel, Melanie Huth 

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 827



  

INTRODUCTION 
LANGUAGE AND MATHEMATICS 

 
Candia Morgan, Institute of Education, University of London 

 
The 21 papers presented to the Working Group were marked by a wide diversity of 
research focuses and theoretical perspectives. We therefore organised the discussion 
around five themes: 

• Language and thought 

• Classroom interaction 

• Teacher development 

• Theoretical perspectives to describe, analyse and interpret the semiotic aspects 
of students’ mathematical activities 

• ‘Everyday’ and mathematical language and learning 
As will be seen from summaries of each of the sections below, there is some overlap 
between the issues considered in each theme. For example, the use of gesture has 
become of increasing interest and importance in the field and is found as a focus in 
papers in several of the themes. Similarly, while the relationship between everyday 
and mathematical language is a significant theme in its own right, it also emerges as 
an issue of relevance across other themes.  

SECTION 1: ‘LANGUAGE’ AND THOUGHT 
‘Language’ has a material, and therefore public, surface: either visible (writing and 
gesture - including sign language) or audible. On the other hand, thinking is invisible 
and inaudible. Therefore there is a challenge to render it observable, which must of 
necessity be by indirect observation. This sets up two fundamental tensions: 

• Between the individual and the social 

• Between implicit and explicit expression 
The papers in this section propose different perspectives on how to make sense of the 
relation between language and thought. 

• Focus on gestures, broad view on language (LaCroix) 

• Reflection (Schülke/Steinbring) 

• Inferential approach (Hußmann/Schacht) 

• Argumentation: Toulmin model (Pimm/Sinclair) 
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• Critical thinking (Aizikovitsch/Amit) 

SECTION 2: CLASSROOM INTERACTION 
The theme “Classroom interaction” indicates that the papers in this section focus on 
the whole classroom, the relationships between teacher and students and among 
students and the role that language plays in establishing these relationships and in 
building mathematical discourse. The papers use a range of perspectives including the 
Wittgenstein’s language games, the notion of teacher as improviser, a focus on the 
use of gesture, shared thinking in group talk, and the interplay between everyday and 
mathematical discourse, aiming: 

• to get deeper insight into processes of giving meaning to words in class 
(Meyer) 

• to show how teacher and pupils co-construct new mathematical ideas using the 
improvisation metaphor (Dooley) 

• to describe the communicative strategies of an experienced teacher when 
summing up pupil solutions (Bjuland et al.) 

• to consider how discourse, as a theoretical and didactical concept, can 
contribute towards developing mathematics teaching (Riesbeck) 

SECTION 3: TEACHERS’ PROFESSIONAL DEVELOPMENT 
“Teachers’ professional development” is a major theme of the papers presented by 
HansJørgen Braathe, Kerstin Bräuning, Marcus Nührenbörger and Mario Sánchez. 
The understanding of different interaction forms of teachers` distanced view on 
communication and interaction processes is a necessary condition for their 
development, as Dewey (1916, 4) pointed out, “society not only continues to exist by 
transmission, by communication, but it may fairly be said to exist in communication.” 
Each paper analysed ideas and thoughts expressed by teachers in written and oral 
form. But each paper deals with different aspects and schemas of professional 
development. The following diagram is separated in two levels: “teacher with 
distance to communication processes in school” and “the mathematical learning and 
teaching in school”. The level “Teacher” means that teachers are integrated in two 
different activities: On the one hand their own mathematical learning activities, and 
on the other hand their joint reflections. Each teacher has biographical mathematical 
learning processes. This aspect is located in-between the levels “Teacher” and 
“School”. The 2nd level “School” includes the mathematical learning processes of 
children and the interaction between teachers and children. 
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Each paper highlights not only different aspects and methodological approaches to 
teachers` professional development, but also refers to different theoretical 
frameworks – like positioning theory, inquiry cooperation model, epistemological 
and interactional theory. The variety of the theories deepens and broadens the insights 
in the special conditions of teachers` interactions and learning processes connected to 
language and mathematics. 
References 
Dewey, J. (1916) Democracy and education. New York: The Free Press. 

SECTION 4: THEORETICAL PERSPECTIVES TO DESCRIBE, ANALYZE 
AND INTERPRET THE SEMIOTIC ASPECTS OF STUDENTS’ 
MATHEMATICAL ACTIVITIES  
A common aspect of the four papers of this theme is the fact that their structure 
consists in the presentation of a new or adapted theoretical tool (or perspective), 
followed by some examples that are chosen to illustrate (and, possibly, discuss) the 
use and the potential of the proposed tool (or perspective). A common, problematic 
situation in mathematics education is particularly relevant in the specific case of these 
papers: the plurality of theoretical references (from different disciplines: linguistics, 
epistemology, psychology, sociology…) brings a proliferation of theoretical tools. 
Two legitimate questions are related to the previous remark:  what educational 
need/problem should the theoretical tools (or perspectives) satisfy? And what 
effective educational implications do they have? 
Boero and Morselli present a comprehensive tool derived from Habermas’ construct 
of “rational behaviour” to describe and analyse student use of algebraic language. By 
integrating Blumer’s “Symbolic interactionism” and Latour’s “Actor -network - 
theory”, Fetzer offers a perspective to analyse classroom interaction and discuss 
related interpretations. Font et al. present “Objectual metaphors”, a particular kind of 
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(Lakoff & Nunez) “Grounding metaphor”, as a tool to analyze and discuss how the 
classroom discourse helps to develop students’ comprehension of the non ostensive 
mathematical objects. Morgan and Alshwaikh argue that a multi-semiotic 
environment not only affords rich potential for developing mathematical concepts, 
but may also affect more fundamentally the goals of student activity.  
The discussion of the group of papers demonstrated openness to alternative 
theoretical perspectives. Not only may we consider what we can learn from others but 
attending to different perspectives serves to sharpen our understanding of our own 
theories. However, there are problems with the proliferation of theories that need to 
be managed, showing how various perspectives may be useful while being alert to the 
possibilities and constraints of combining or ‘merging’ theories. There is also felt to 
be a need to maintain links with the original sources of theoretical perspectives. 
Theoretical ideas also have implications with respect to practice. They can provide 
language to help researchers see new aspects of practice. Moreover, through being 
introduced to theoretical ideas, teachers could develop awareness of complexities of 
the classroom 

SECTION 5: ‘EVERYDAY’ AND MATHEMATICAL LANGUAGE AND 
LEARNING  
All four papers of this theme group are in various ways occupied with links between 
everyday and mathematical concepts. Analysing classroom data the authors identify 
attempts to create such links. The discussion of the development of scientific 
concepts in children can be traced back to Vygotsky who describes this as a 
cooperative process between an adult and the child. Kyriakides discusses diagrams as 
a mediating tool in learning about fraction multiplication and points to an episode 
where the introduction of everyday language, instead of trying to remember an 
algorithm, proved to be an effective link to the scientific concept. On the other hand, 
Schütte describes an episode having to do with adding fractions, where the scientific 
concept least common multiple is lying behind. The teacher mainly uses everyday 
language, and the link to the scientific concept and her assisting function in the 
pupils’ development of mathematical language seem to be lost. In the paper by Vogel 
and Huth, the focus is on a combinatorial problem where two first graders, assisted by 
an adult, gradually start to use technical terms and the practical context become less 
and less important. Rønning studies a situation where the pupils are measuring milk, 
and where both teacher and pupils are moving back and forth between an everyday 
situation and a school situation. The two situations involve different semiotic 
representations and also different goals and actions, which can be seen to create a 
certain tension.  
The following topics for discussion were identified. 

− The function of everyday language in learning mathematics 
− The function of diagrams in learning mathematics 
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− The teacher as a model for learning technical (scientific) language. 
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IMPARTING THE LANGUAGE OF CRITICAL THINKING 
WHILE TEACHING PROBABILITY 

 
Einav Aizikovitsh, Miriam Amit 

Ben Gurion University of the Negev, Israel 
 

This paper reports a preliminary study of imparting to students a new kind of 
language, incorporating elements of critical thinking (CT), in the course of a 
mathematics (probability) lesson. In the paper, we describe and analyse one 
probability lesson, which is part of an in-depth study that comprises fifteen math 
lessons of similar constitution. The purpose of this research is to determine whether 
the teaching methods we developed can improve students’ critical thinking. Our 
approach favors immersion-teaching of CT, i.e. incorporating CT terminology and 
practice within the framework of a probability lesson, and is based on the specific 
taxonomy of CT skills proposed by Ennis. We focus specifically on critical thinking 
while distinguishing it from stochastic thinking, creative thinking and statistical 
thinking. This study involved 55 subjects. Analysis of interviews conducted with the 
students and an analysis of their submitted work indicated that students’ critical and 
analytical capabilities greatly improved. These results show that if teachers 
consistently and methodically encourage CT in their classes, by applying 
mathematics to real-life problems, encouraging debates, and planning investigative 
lessons, the students are likely to develop the language of critical thinking as a result. 
This paper is a description of an initial study, a snapshot that focuses on one lesson 
and illustrates the orientation of the entire study.  
  
INTRODUCTION AND THEORETICAL FRAMEWORK 
It has already been suggested that teachers should use a language of critical thinking 
as part of the attempt to change the method of teaching to enable meaningful learning 
of information (Perkins, 1992). This is an area in which a substantial research 
literature already exists.  
Our focus in this paper is describing our approach and its initial results. In this paper, 
we are focusing on the language of critical thinking. When defining the term critical 
thinking (CT), it is important to realize that it is not a new concept; we can find it as 
early as ancient Greek times: Socrates, as reported by Plato, used to roam the streets 
of Athens asking people all kinds of philosophical questions about the purpose of life, 
morality, justice, etc., apparently for the purpose of stimulating a form of critical 
thinking. These questions and answers were collected and recorded in the Socratic 
dialogues. In the field of education, it is generally agreed that CT capabilities are 
crucial to one’s success in the modern world, where making rational decisions is 
becoming an increasingly important part of everyday life. Students must learn to test 
reliability, raise doubts, and investigate situations and alternatives, both in school and 
in everyday life. Abundant definitions of critical thinking have been proposed, since 
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this is a multidisciplinary subject that engaged teachers, educators, sociologists, 
psychologists and philosophers in all eras, but we would like to focus on Ennis' 
taxonomy, because for our purposes we needed to employ a hierarchical set of critical 
thinking skills isolated from other definitions. Ennis (1962) defines CT as “a correct 
evaluation of statements". Twenty-three years later, Ennis broadened his definition to 
include a mental element, defining CT as “reasonable reflective thinking focused on 
deciding what to believe or do” (Ennis, 1985). Our research is based on three key 
elements: a CT taxonomy that includes CT skills (Ennis, 1987); the learning unit 
"Probability in Daily Life" (Liberman & Tversky, 2002); and the infusion approach 
of integrating subject matter with thinking skills (Swartz, 1992). 
Ennis’ Taxonomy (Ennis, 1987) 
In light of his definition, Ennis developed a CT taxonomy of skills that include 
intellectual as well as behavioural aspects, e.g. judging the credibility of sources, 
searching for clarifying questions, defining the variables, searching for alternatives 
etc. In addition to skills, Ennis's taxonomy (1987) also includes dispositions and 
abilities. Ennis claims that CT is a reflective and practical activity aiming for a 
moderate action or belief. There are five key concepts and characteristics defining CT: 
practical, reflective, moderate, involving? belief and oriented towards? action. 
Learning unit "Probability in Daily Life" (Liberman & Tversky 2002) 
In this learning unit, which is a part of the formal syllabus of the Ministry of 
Education, the students are required to analyse problems, raise questions and think 
critically about data and information. The purpose of the learning unit is to teach the 
students not to be satisfied with a numerical answer but to examine the data and its 
validity in order to arrive at a more valid answer and develop their critical thinking. 
In cases where there is no single numerical answer, the students are required to know 
what questions to ask and how to analyse the problem qualitatively, not only 
quantitatively. Along with being provided with statistical instruments, students are 
redirected to their intuitive mechanisms to help them estimate probabilities in daily 
life. Simultaneously, students examine the logical premises behind their intuitions, 
along with possible misjudgments of their application.  
The infusion approach (Swartz, 1992) 
There are two main approaches to fostering CT: the general skills approach which is 
characterized by designing special courses for instructing CT skills, and the infusion 
approach, according to Swartz (1992), is characterized by providing these skills 
through teaching the set learning material. According to this approach, there is a need 
to reprocess the set material in order to combine it with thinking skills. In this report, 
we will show, on the example of one lesson, how we combined the mathematical 
content of "probability in daily life” with CT skills from Ennis' taxonomy, and 
evaluated the subjects' CT skills. 
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METHODOLOGY 
The main paradigmatic aspects of methodology in mathematics education research 
have been broadly established (Scherer & Steinbring, 2006). Our methodological 
challenge was to investigate the development of the "language of critical thinking" 
through critical thinking skills incorporated into a structured mathematics lesson, 
such as a probability lesson. In this regard, the methodological approach is closest to 
the "Design Experiment" (as discussed by Cobb, Confrey, diSessa, Lehrer and 
Schauble, 2003). Through careful instructional design, a lesson sequence was 
constructed with the goal of consistently and methodologically encouraging and 
promoting crtitical thinking by applying mathematics to real-life problems, 
encouraging debates and using investigative lessons, in order to develop the 
"language of critical thinking". The research process examined student classroom 
products (primarily student submitted work) and post-lesson interviews with students 
to document changes in students' analytical capabilities. These changing capabilities 
could then be related to classroom activities, which were documented by video.  
Setting, Population, and Data  
Fifty-five children between the ages of fifteen and sixteen participated in an extra 
curriculum program aimed at enhancing the critical thinking skills of students from 
different cultural backgrounds and socio-economical levels. An instructional 
experiment was conducted in which probability lessons were combined with CT 
skills. The study consisted of fifteen 90 minute lessons, spread out over the course of 
an academic year, in which the teacher was also one of the researchers. 
Data sources were: Students’ products, Pre and post questionnaires, Personal 
interviews and Class transcriptions. 
The students' products (papers, homework, exams etc.) were collected. Five randomly 
selected students were interviewed at the end of each lesson and one week after. The 
personal interviews were conducted in order to identify any change in the students' 
attitudes throughout the academic year. Not only was the general attitude examined, 
attention was paid to the development of critical thinking language (e.g., by asking 
the student to define critical thinking and to explain how they viewed critical thinking 
in the scope of the lesson; furthermore, they were also asked to assess whether they 
considered themselves to be critical thinkers, and it was the answer to this question 
that was used to establish the nature and frequency of critical thinking among them). 
All lessons were video-recorded and transcribed. In addition, the teacher kept a 
journal (log) on every lesson. Data was processed by means of qualitative methods 
intended to follow the students' patterns of thinking and interpretation with regards to 
the material taught in different contexts. Following Ennis' taxonomy (Ennis, 1987), 
data was analysed by employing three principles: (1) As the student is asked to 
articulate the question dealt with in a particular lesson, the level of critical thinking 
was deciphered (as will be discussed later on); (2) students’ reactions to the teacher’s 
attempt to induce critical thinking were examined through their responses as well as 
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from the interviews; (3) proposition of alternatives was employed as an interview 
technique, in an attempt to identify critical thinking abilities.   
The Intervention- Unit Description 
As already mentioned, the probability unit combines CT skills with the mathematical 
content of "probability in daily life". This new probability unit included questions 
taken from daily life situations, newspapers and surveys, and combined CT skills. 
Each of the fifteen lessons that comprised the probability unit had a fixed structure: a 
generic (general) question written on the blackboard; the student's reference to the 
question and a discussion of the question using probability and statistical instruments; 
and, an open discussion of the question that included practicing the CT skills. The 
mathematical topics taught during the fifteen lessons were: Introduction to set theory, 
probability rules, building a 3D table, conditional probability and Bayes theorem, 
statistical connection and causal connection, Simpson's paradox, and judgment by 
representativeness. The following CT skills were incorporated in all fifteen lessons: 
A clear search for an hypothesis or question, the evaluation of reliable sources, 
identifying variables, “thinking out of the box,” and a search for alternatives 
(Aizikovitsh & Amit, 2008). Each lesson followed the same four part structure. 
1. Given Text  
At the beginning of the lesson the teacher presented a short article or text.  
2. Open Class Discussion in Small Groups  
Discussion in small groups about the article and the question. 
•Initial suggestions for the resolution of the question 
•No intervention by the teacher 
3. Further Discussion Directed by the Teacher 
Open class discussion. During the discussion the teacher asked the students different 
questions to foster the students’ thinking skills and curiosity and to encourage them to 
ask their own questions.  
• Various suggestions from students in class. 
• Interaction between groups of students. 
• Reaching a consensus across the whole class (or just across the group). 
4.  Critical Thinking Skills and Mathematical Knowledge (Teaching) 
The teacher referred to the questions raised by the students and encouraged CT, while 
instilling new mathematical knowledge: the identification of and finding a causal 
connection by a third factor and finding a statistical connection between C, and A and 
B, Simpson's paradox and Bayes Theorem. 
Case study- The Aspirin Case 
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Below, I have provided a detailed description of one lesson called the Aspirin Case. 
Following the description, I outline the analysis of the lesson using the following 
techniques: referring to information sources, raising questions, identifying variables, 
and suggesting alternatives and inferences. The lesson topic was conditional 
probability. The CT skills practiced in the lesson were evaluating source reliability, 
identifying variables, and suggesting alternatives and inference. 
 
1.  A Given Text  
Your brother woke up in the middle of the night, crying and complaining he has a 
stomachache. Your parents are not at home and you don’t know what to do.  You 
gave your brother aspirin, but an hour later he woke up again, suffering from bad 
nausea and vomiting. The doctor that takes care of your brother regularly is out of 
town and you consider whether to take your brother to the hospital, which is far from 
your home. You read from a book about children’s diseases and find out that there 
are children that suffer from a deficiency in a certain type of enzyme and as a result, 
25% of them develop a bad reaction to aspirin, which could lead to paralysis or even 
death. Thus, giving aspirin to these children is forbidden. On the other hand, the 
general percentage of cases in which bad reactions such as these occur after taking 
aspirin is 75%. 3% of children lack this enzyme.  
(Taken from “probability thinking” p. 30+slight changes made by researcher) 
2.  Open Class Discussion in Small Groups 
Discussion in small groups about the generic question: 
Should you take your brother to the emergency room? What should you do? 
Can aspirin consumption be lethal? 
3.  Further Discussion Directed by the Teacher   
The generic question on the blackboard was:  
Should you take your brother to the emergency room? What should you do? 
21 Teacher: What do you think? 
22 Student 1: Where is the information taken from? Can we see the     
          article for ourselves? 
23 S2: Is  the source reliable? How can we check it? 
24 S3: Where is the article taken from? What is its source? 
25 S1: Should I answer the identification of the sources question? 
26 T: Not yet. We are focusing on searching for questions. Please think   
          of other questions. 
27 S3: What connection does the article discuss? 
28 S2:  first we need to identify the variables!!! 
29 T: Right. First, we ask what the variables are.  
30 S4:  You can infer it from the title that suggests that a connection 
          exists between aspirin and death. 
31 T: According to the data from the article, Can we find a statistical   
          connection?  (the student already know this subject) 
32 S2: I know! We can ask: suggest at least 2 other factors that might   
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          cause the described effect. 
33 S5: The question is what causes what? 
34 S6: Can aspirin consumption be lethal? 
35 T: What do you think? 
36 T: How can you be sure? 
37 S6:  Umm… 
38 S3: Are there other factors, such as genetics!?  
39 T: Very good. What did student 3 just do? 
40 S1: He suggested an alternative!! 
41 T: How can we check it? Do you have any suggestions? Can you  
          make a connection between this problem and the material we have  
          learned in the past few lessons? Can you offer an experiment that  
          would solve the problem? 
42 S3: Of course. An observational experiment. 
 
In paragraph 21 we encounter skills such as "searching for the question"- a 
fundamental skill. First there is a need to clarify the starting point for the interaction 
with the student. We also need to clarify to ourselves what is the thesis and what is 
the main question before we approach decision making. The paragraph also 
demonstrates relevance to daily life. In paragraph 26 the students are taking a step 
back, we refer to "identifying information source and evaluating the source's 
reliability" skill. This step is crucial, as it helps us to assess the quality and the 
validity of the article discussed. This skill was practiced in past lessons. See 
paragraph that summarizes the article. In paragraph 26 we encounter "searching for 
the question" skill again. We will continue searching for the main question through 
practicing the "variables identification" skill. Raising the search for alternatives. 
Posing questions enables the practice of this skill. Paragraph 30 deals with identifying 
the variables and understanding them by a 2D table and a conditional probability 
formula. In paragraph 36 the teacher builds the students' self esteem by encouraging 
them to express their ideas and opinions (even if they are not always correct or 
relevant). She prevents any intolerance of other students. The method of instruction 
that aims at fostering the confidence and the trust of the students in their CT abilities 
and skills is, according to Ennis "referring to other peoples points of view" and 
"being sensitive towards other peoples' feelings".  In paragraph 23 the student is 
referring to other sets and finding the connection between them. Paragraph 31 depicts 
the skill of "Searching for alternatives". Paragraph 42 refers to a controlled 
experiment or an observational experiment. An additional grouping and finding the 
connection between the variables by Bayes theorem or a 2 dimensional table. 
 
4. Critical Thinking Skills and Mathematical Knowledge (Teaching)   
This phase of the lesson focused on encouraging critical thinking and instilling new 
mathematical knowledge (Bayes formula) statistical connections by referring to 
students’ questions and further discussion. 
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A teacher-led discussion focused on methods of analysis using such Critical Thinking 
skills as: Source identification: Medicine book; Source reliability: High; Variable 
identification: A – enzyme deficiency, D – adverse reaction to aspirin; Mathematical 
Knowledge: Data: P(D/A)=0.25  P(D)=0.75 P(A)=0.03, To prove: P(A/D)=? 
Using Bayes formula (or a two dimensional matrix) the result is: 
Lesson Conclusion is that only 1% of the children without the enzyme develop an 
adverse reaction to aspirin, thus there is no need to go to the hospital.   
Even so, is it worth taking the risk? What do you think? (question to the class). 
 
DISCUSSION 
Research analysis according to critical thinking skills in this case study 
Through the infusion approach, students practice their CT while acquiring technical 
probability skills. In this lesson, the following five skills are exercised: raising 
questions – asking question about the article and probing on the main question about 
the connection between aspirin and death; referring to information sources and 
evaluating the source's reliability - the text took from Medicine book; the students 
skepticism and identification of variables – students identified the enzyme deficiency 
and adverse reaction to aspirin. Following these skills, another skill, searching for 
alternatives (paragraph 38), was presented. In class the teacher and the students spoke 
about suggesting alternatives, not taking things for granted, but examining what had 
been said and suggesting other explanations. Hence, the skills that were practiced in 
the described lesson were: raising questions, evaluating the source's reliability, 
identifying variables, and suggesting alternatives and inference. In order to 
understand and monitor the students’ attitudes toward CT as manifested by the skills 
specified above, interviews were conducted with five students after the 
aforementioned lesson. In these interviews, the students acknowledged the 
importance of CT.  Moreover, students were aware of the infusion of instructional 
strategies that advance CT skills. Examples from two of the interviews follow.  
Student 4 was interviewed and was asked to define CT. His answer was: 
"I think CT is important when you study Mathematics, when you study other topics 
and when you read the paper, but it is most important when you deal with real life 
situations, and you need the right instruments in order to do so (deal with these 
situations)." 
When Student 2 was asked about important components during the last few classes 
and the present class, she answered: “first we should check the information source’s 
reliability and despite all the numerical data, I don’t accept the researcher’s 
conclusion.”  
Additional data, consistent with these two examples suggest that infusion of CT into 
the formal curriculum in mathematics can equip students with CT skills that are 
applicable to wider disciplines. 
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RESEARCH  LIMITATIONS 
This case study presents one lesson which was designed in a fixed pattern – a generic 
question, a discussion of the question, the practice of statistical connection, 
introduction to causal connection and experiencing the use of CT skills such as: 
raising questions, evaluating the source's reliability, identifying variables, and 
suggesting alternatives and inferences. On the basis of the interviews conducted and 
questionnaires that were qualitatively analyzed, it is not established, at this stage, the 
extent to which these skills have been acquired. Skill acquisition will be evaluated in 
much greater detail at a later phase in this study, using quantitative measures – the 
Cornell Critical Thinking Scale and the CCTDI (Facion, 1992) scale. At this stage we 
have provided only an introductory picture of our approach and an indication of the 
form of our analysis and results. However, this case study provides encouraging 
evidence of the effectiveness of this approach and further investigation in this 
direction is needed. 
 
CLOSING REMARKS 
The small scale research described here constitutes a small step in the direction of 
developing additional learning units within the traditional curriculum. Current 
research is exploring additional means of CT evaluation, including: the Cornell CT 
scale (Ennis, 1987), questionnaires employing various approaches, and a 
comprehensive test composed for future research. 
The general educational implications of this research suggest that we can and should 
lever the intellectual development of the student beyond the technical content of the 
course, by creating learning environments that foster CT, and which will, in turn, 
encourage the student to investigate the issue at hand, evaluate the information and 
react to it as a critical thinker. It is important to note that, in addition to the skills 
mentioned above, in the course of this lesson it appears that the students also gained 
intellectual skills such as conceptual thinking and developed a class culture (climate) 
that fostered CT.  Students practiced critical thinking by studying probability. In this 
lesson, the following skills were demonstrably practiced: referring to information 
sources (paragraph 22), encouraging open-mindedness and mental flexibility (all 
questions), a change in attitude and searching for alternatives. A very important 
intellectual skill is the fostering of cognitive determination – to be able to express 
one's attitude and present an opinion that is supported by facts. In this lesson, students 
could be seen to be searching for the truth, they were open-minded and self-confident. 
In other words, they practiced critical thinking skills. A new language was being 
created: the language of critical thinking.   
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TOWARD AN INFERENTIAL APPROACH ANALYZING 
CONCEPT FORMATION AND LANGUAGE PROCESSES 

Stephan Hußmann, Florian Schacht 
Institute for Development and Research in Mathematics Education,           

Dortmund, Germany 
This paper introduces a theoretical approach to study individual conceptual 
development in mathematics classroom. It uses the theory of a normative pragmatics 
as an epistemological framework, which Robert BRANDOM made explicit in 1994. 
There are different levels of research in mathematics education on which BRANDOM’s 
framework offers a consistent theoretical approach for describing such develop-
ments: a linguistic perspective, the theory of conceptual change and the theory of 
conceptual fields. Using that framework, we will outline an empirical example to 
describe technical language developments as well as developments of conceptual 
fields and of the students’ conceptualizations. 
INTRODUCTION 
Many results of large-scale studies monitoring the education system (PRENZEL et al. 
2007, ARTELT et al. 2000, BAUMERT et al. 1997, BAUMERT et al 1998) show for 
mathematics education that German students have difficulties with tasks that 
challenge their conceptual understanding. These difficulties seem to be caused by the 
German classroom practices, which do not challenge enough the students’ individual 
cognitive skills, which lack teachers’ diagnosis abilities, and which do not offer 
enough room for creative and individual work (e.g. PRENZEL et al. 2004).  
Research is required in both mathematical learning environments and in formation of 
concepts and conceptualizations in order to find out in how far (i) the use of the 
specific potential which certain tasks offer and (ii) the dealing with students’ 
conceptualizations have an effect on the formation of conceptual thinking. In 
Germany, there are only some studies which focus on the analysis of individual 
concept-formation (HUßMANN 2006, BARZEL 2006, HAHN / PREDIGER 2008, Prediger 
2008a/b). There is also a demand for research with regard to dealing with certain 
individual students’ conceptualizations. 
Because mathematical thinking is genuinely conceptual thinking, the formation of 
mathematical concepts has gained big interest in the mathematics education research 
community. The multiple approaches and theories for describing and explaining 
conceptual processes and developments differ a lot in terms of their theoretical 
framework, e.g. developmental psychology or cognitive psychology. In this study, we 
choose a social-constructivist approach (COBB, YACKEL 1996).  
With his theory of inferentialism, the philosopher Robert BRANDOM (1994) has 
introduced a convincing, comprehensive and coherent theoretical framework to 
analyze such language processes. 
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EPISTEMOLOGICAL FRAMEWORK: INFERENTIALISM 
In his influential book on reasoning, representing and discursive commitment 
“Making it explicit” (1994) BRANDOM chooses an inferential approach to describe 
semantic content of concepts in terms of their use in practice: it is the idea that 
propositional semantic content can be understood in terms of the inferential relations 
they play in discourse, which means for example to know what follows from a 
proposition or what is incompatible with it. BRANDOM gives an analysis of discursive 
linguistic practice, describing a model of social practice - and especially a model of 
linguistic discursive practice - as a game of giving and asking for reasons, which 
means a normative pragmatics in terms of deontic scorekeeping. Using his theory to 
describe linguistic practice and based on the theory of a normative pragmatics 
introduced by BRANDOM (1994), we will develop an analytic tool to describe the 
formation of concepts.  For BRANDOM, understanding  

can be understood, not as the turning on of a Cartesian light, but as practical mastery of a 
certain kind of inferentially articulated doing: responding differentially according to the 
circumstances of proper application of a concept, and distinguishing the proper 
inferential consequences of such application. (BRANDOM 1994, p. 120) 

In this sense, discourse can be described as a game of giving and asking for reasons, a 
term that can be traced back to WITTGENSTEIN’S ‘Sprachspiel’ (language game). 
Therefore, every ‘player’ in the game of giving and asking for reasons keeps score on 
the other players. This deontic score keeps track on the claims that every player 
(including oneself) is committed to and it keeps track on the commitments each one 
is entitled to. With every assertion – so with every move in the game of giving and 
asking for reasons - which one player is making, the score may change.  
The inferential relations are commitment - and entitlement- preservations and 
incompatibilities. BRANDOM’S normative pragmatics gives an understanding of 
conceptual content on the basis of using the concepts in practice. “The aim is to be 
able to explain in deontic scorekeeping terms what is expressed by the use of 
representational vocabulary - what we are doing and saying when we talk about what 
we are talking about.” (BRANDOM 1994, p. 496) 
BRANDOM claims that the fact that propositions have a certain (propositional) content 
should be understood in terms of inferential relations. Accordingly, propositions are 
propositions because they have the characteristic feature to function as premises and 
conclusions in inferences (that means they function as reasons).  

Thus grasping the semantic content expressed by the assertional utterance of a sentence 
requires being able to determine both what follows from the claim, given the further 
commitments the scorekeeper attributes to the assertor, and what follows from the claim, 
given the further commitments the scorekeeper undertakes. (…) In such a context, 
particular linguistic phenomena can no longer reliably be distinguished as ‘pragmatic’ or 
‘semantic’. (BRANDOM 1994, pp. 591/592)  
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It is important to note that it is not necessary for an individual to know all the 
inferential roles of a certain concept to be regarded as someone that has 
conceptualized a certain concept. “To be in the game at all, one must make enough of 
the right moves - but how much is enough is quite flexible" (BRANDOM 1994, p. 636).  
DERRY (2008) outlines the characteristics of an inferential view for education. 
Referring to BRANDOM and VYGOTSKY she notes that the  

priorisation of inference over reference entails, in terms of pedagogy, that the grasping of 
a concept (knowing) requires committing to the inferences implicit in its use in a social 
practice (…). Effective teaching involves providing the opportunity for learners to 
operate with a concept in the space of reasons within which it falls and by which its 
meaning is constituted. (DERRY 2008, p. 58) 

CONCEPTUAL DEVELOPMENT RESEARCH IN MATHEMATICS 
EDUCATION 
Using Robert BRANDOM’s ideas of a normative pragmatics, it is the aim of the project 
to develop a coherent theoretical framework within which the formation of concepts 
in mathematics education can be described. This theoretical framework uses 
inferential (instead of representational) vocabulary. There are different levels of 
research in mathematics education on which BRANDOM’s framework offers a 
consistent theoretical approach for describing such developments.  
Theory of conceptual fields 
Using Robert BRANDOM’s theory of a normative pragmatics as an epistemological 
background to describe formations of concepts, VERGNAUD’S theory of conceptual 
fields offers a consistent framework within which long- and short-term conceptual 
developments can be analyzed. Within his framework, he gives respect to both 
mathematical concepts and individual conceptualizations. 
WITTENBERG says that mathematics is “thinking in concepts” (1963). What 
distinguishes us as human beings is the fact that we are concept users (Brandom 
1994). Accordingly, not only mathematics is thinking in concepts: everything obtains 
a conceptual meaning for us and concepts are the smallest unit of thinking and acting. 
This decisive linguistic perspective of conceptual understanding was pointed out by 
SELLARS: “grasping a concept is mastering the use of a word” (see BRANDOM 2002, 
p. 87). Accordingly, it is necessary to research concept formation, which means it is 
necessary to study the classroom discourse. For that, VERGNAUD (1996, 1997) offers 
a solid theoretical framework. With his theory of conceptual fields, VERGNAUD 
developed a theoretical framework which picks up BROUSSEAU’S theory of didactical 
situations (1997) and which offers a tool to describe, to analyze and to understand 
both short- and long-term formations of concepts. For him, a conceptual field refers 
to a set of (problem) situations, conventional and individual concepts.  
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[A] conceptual field is a set of situations, the mastering of which requires several 
interconnected concepts. It is at the same time a set of concepts, with different properties, 
the meaning of which is drawn from this variety of situations. (VERGNAUD 1996, p. 225) 
A concept is a three-tuple of three sets: C = (S,I,S) where S is the set of situations that 
make it meaningful, I is the set of operational invariants contained in the schemes 
developed to deal with these situations, and S is the set of symbolic representations 
(natural language, diagrams (…)) that can be used to represent the relationships involved, 
communicate about them, and help us master the situations. (VERGNAUD 1996, p. 238) 

In the latter definition, VERGANUD points out that language is essential for focusing 
on conceptual fields. Language is the surface on which we analyze formations of 
concepts. Conceptual fields are equally related to situations, to mathematical 
concepts, to individual conceptualizations and to operational invariants such as 
theorems-in-action or concepts-in-action. On the one side, those operational 
invariants are theorems-in-action which are “held to be true by the individual subject 
for a certain range of the situation variables” (VERGNAUD 1996, p. 225). On the other 
side, they are categories- or concepts-in-action,  

that enable the subject to cut the real world into distinct elements and aspects, and pick 
up the most adequate selection of information according to the situation and scheme 
involved. Concepts-in-action are, of course, indispensable for theorems-in-action to exist, 
but they are not theorems by themselves. They cannot be true or false (VERGNAUD 1996, 
p. 225).  

In every new situation, the individual schemes develop. Because of the strong 
connection between situation and scheme, the short-term perspective on concept 
formation is important to study. At the same time, because of the individual 
development within the learning process and the different situations the individual 
deals with, the long term perspective is equally important to study.    
Linguistic approach  
Besides the theory of conceptual fields, there is a specific linguistic approach that can 
be drawn from BRANDOM’S epistemological framework. Therefore, SIEBEL (2005) 
refers to developments from colloquial to technical language by making implicit 
concepts explicit. 
Thought and language is not the same, otherwise we would not be able to form 
sentences like “I don’t know how to say it” or “that is not what I meant”. Still, we can 
only get a precise picture of conceptual developments by observing the use of 
language, the discourse, that what’s made explicit. To get an idea of what is implicit 
in use, we have to ask for reasons and commitments.  
In her linguistic approach categorizing and analyzing technical language used in 
elementary algebra books, Siebel (2005) picks up that distinction. She distinguishes 
between explicit and implicit technical terms. Explicit ones are explicitly defined, e.g. 
by “x is called variable”. Explicit technical terms are characteristic for explicit 
knowledge (‘know-that’) which can be made explicit in either words or formulas. In 
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contrast, the meaning of implicit terms is characterized by their use (SIEBEL 2005, p. 
120). Implicit technical terms are characteristic for implicit knowledge (‘know-how’) 
which can only be learnt by practical exercising. SIEBEL points out that most of our 
concepts are implicit and that we can only make some of them explicit (see SIEBEL 
2005, p. 122). Referring to BREGER (1990), SIEBEL describes how knowledge and 
concepts develop from “know-how” to “know that” knowledge, from implicit to 
explicit knowledge – by making them explicit (2005, p. 122). That linguistic 
approach offers a description of developments from colloquial to technical language, 
lining out how implicit concepts and knowledge (“know-how”) become explicit 
(“know-that”). 
Judgments as basic units 
Following BRANDOM, the linguistic perspective cannot be separated from the 
propositional content. With every commitment and every judgment, we have taken on 
a certain kind of responsibility and committed ourselves to some explanation of the 
given phenomenon. Those explanations and judgments correspond to the theoretical 
schemes (see VERGNAUD 1996) which are intimately interwoven with the specific 
situation. 
Theory of conceptual change 
Following BRANDOM and VERGNAUD, learning and formation of concepts is closely 
linked to a specific situation. The developments that proceed in these situations are 
closely connected to the conceptualizations we have. These conceptualizations maybe 
have to be revised, expanded or modified in every new situation which we have to 
commit ourselves to, for example to a certain scheme or an explanation. The theory 
of conceptual change (e.g. DUIT 1996) picks up that distinction between individual 
conceptualizations and scientific conceptions.  
The conceptual change theory is a constructivist approach to describe learning 
processes in terms of reorganization of knowledge (Duit 1996, p. 158, Prediger 2008b 
for an example in mathematics education). That means for the students to learn that 
their preinstructional concepts do not give sufficient orientation in certain scientific 
situations and for them to activate scientific conceptions in those situations (see DUIT 
1996, p. 146). Learning scientific concepts often leads to conflicts with prior 
knowledge and familiar everyday concepts because certain features of both – familiar 
and new scientific concepts - seem to be incompatible. FISCHER and AUFSCHNAITER 
(1993) for example studied developments of meaning during physics instruction, 
focusing on the terms charge, voltage and field. Against the background of different 
levels of perception, they describe how the use of certain words changes during the 
learning process: “For this reason, at the beginning of the development of a 
subjective domain of experience it might be possible that words, as properties of 
objects, are not yet generated.” (p. 165) 
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Summary 
In all the perspectives above, there is a similar line of thought concerning the analysis 
and description of conceptual developments: intuitive concepts-in-action to 
consolidated mathematical concepts, implicit meaning of use to explicit technical 
language, pre-instructional conceptualizations to scientific concepts. The aim of our 
project is to follow those lines among linguistic descriptions of expressions in 
mathematics classrooms and to develop learning environments which considering the 
formation of concepts in mathematics classrooms.  
For this purpose, we study the development of individual long- and short-term 
conceptualizations and of formations of mathematical concepts within learning 
processes: what is the connection between (problem) situations and operational 
invariants (such as theorems-in-action or concepts-in-action)? What is the connection 
between the formation of concepts and symbolic expressions? In how far is it 
possible to classify the (problem) situations against the background of individual 
operational invariants? 
Three aspects can be inferred from those questions: How does technical language 
develop? How do individual conceptualizations develop? How do conceptual fields 
develop? To examine these questions, we develop an empirical study to describe the 
individual learning processes.  
ONE EXAMPLE ON (TECHNICAL) LANGUAGE DEVELOPMENT  
To give an example of how the research questions outlined above can be approached, 
we offer some results of a small-scale study on technical language development 
(SCHACHT 2007). This example shows how technical language in chance-situations 
can develop, how individual conceptualizations develop and how the conceptual field 
of chance-situations has developed. 
Short introduction to the study 
For this purpose a fifth grade mathematics classroom of 30 students was observed 
and videotaped over a period of about six weeks. The central goal of the unit for the 
students was to develop a concept of ‘chance’. That means that in chance situations, 
the individual case will not be predictable, but focusing the long term, chance has a 
certain kind of mathematical structure (HEFENDEHL-HEBEKER 2003). Accordingly, 
one special focus of this unit was for the students to discover and experience the law 
of large numbers. 
Main features of the unit concerning the research interests of the study were the focus 
on discursive elements in mathematics classroom, the focus on reflection tasks during 
the mathematical learning process and the focus on student- rather than teacher-
activity (cf HUßMANN/PREDIGER 2009).  
Based on a functional pragmatic approach, language was analyzed in terms of its use 
(e.g. EHLICH/REHBEIN 1986, KÜGELGEN 1994). The features of the unit mentioned 
above formed a solid base to analyze language developments of some students 
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especially because they were often challenged to make their concept of chance 
explicit (either in written form or verbally).  
Some results of the study 
The results of this small scale study show some interesting phenomena which could 
be observed. We will outline one prototypical example of the study and describe its 
main features concerning technical language development as well as individual 
conceptualizations and conceptual fields development. 
In this example, the task for the student Ralf was to describe and compare results of 
dice throws in different situations (10, 100, 500 and 1000 throws). Because of the 
qualitative differences of the situations which he is working in (description of 
absolute values � description of relative values), the technical language he uses leads 
to a paradox situation (distance (“Abstand”) is ‘small’ and ‘large’ at the same time). 
A couple of days after this situation, he uses a different and new term which seems 
more sufficient and viable.  
More precisely, the student Ralf first uses the term ‘distance’ to compare some results 
of dice-throws. In the first scene, he uses the term ‘distance’ to compare absolute 
results.  

 

 

Table 1: 
Similar example of dice results in absolute values (10 and 1000 throws) 

Comparing results similar to Table 1, Ralf observes:  
102   And in the situation with small numbers of throws 
103   the distances (“Abstände”) get smaller.  

There are two aspects to point out concerning the use of the term ‘distance’. First, he 
compares the dice results by noticing that the “distances get smaller” (line 103) the 
smaller the number of throws is. In the example above, that means that there is a little 
distance between the one time ‘2’ and the two times ‘6’ but there is a greater distance 
between the 160 times ‘6’ and the 171 times ‘5’. Second, he uses the term distance to 
distinguish between situations with a high number of throws (e.g. 1000 throws) and a 
small number of throws (100 throws).  
Later in the same lesson, he uses the same term (‘distance’) again to compare dice 
results, except now they are given in relative values (in percent). The teacher asks the 
students to compare a couple of histograms which show the results of 10-100-500-
1000 throws. The histograms which show results of 10 throws of course look quite 
different to those with 1000 throws. The latter ones show the stabilization of the 
relative distribution (law of large numbers) while the others show that the results with 
for example 10 throws differ quite a lot.  
 

Number 1 2 3 4 5 6 

10 throws 3 1 0 4 0 2 
1000 
throws 165 174 169 161 171 160 

Table 2: Similar example of 
histograms showing dice results 
in relative values (10 throws) 
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The teacher asks Ralf, what he noticed. Ralf answers:  
8     Ralf:  I observed that,  
9   given a small number of throws,  
10   the distances (“Abstände”) become larger  
11   and given a large number of throws,  
12   the distances (“Abstände”) become smaller. 

In this situation Ralf describes that the distances become larger given a small number 
of throws. It seems plausible that he has a horizontal perspective and compares all 
histograms showing the results of 10 throws whereas the “distances become smaller” 
comparing the others with for example 1000 throws.  
At the same time, like in the situation above, Ralf is using the term ‘distance’ again to 
distinguish the small and the large ‘number-of-throws situations’. Except that he uses 
the term conversely: in the first situation he described the distances to become 
smaller when the number of throws becomes smaller (lines 102/103), in the latter 
situation he observes the distances to become larger when the number of throws 
becomes smaller (lines 8/9).  
Comparing both examples, the difficulty is that the quality of the situation changes: 
in the first situation, Ralf compares the absolute values of the dice results of 100 and 
of 1000 throws. He recognizes that the distances of the results with 10 throws are 
smaller than the ones with 1000 throws (lines 102/103).  
Accordingly, although the term ‘distance’ is a quite helpful and viable term in each 
situation to distinguish between small and high number of throws, it is overall not 
sufficient because it seems to lead to paradox and incompatible results.  
Some days later the students are asked to give a written comment on the following 
sentence: “You cannot predict the result of throwing a single dice, but in the long run 
you don’t have a random result.” Ralf writes:  

130 Given a small number of throws 
131  you cannot predict  
132  chance, but 
133  given a higher number of throws, that works better 
134  because it is more distributed (“verteilter”) there. 

The next day, he adds on a working sheet in a similar situation:  
 5*  in the situation of thousand throws, the distribution (“Verteilung”) is: (…) 

In both quotes, Ralf uses the term ‘distribution’ / ‘distributed’ to distinguish between 
small and large numbers of throws. For him, this term works without inconsistencies 

Table 3: Similar example of 
histograms showing dice results in 
relative values (1000 throws) 
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to distinguish both situations. He is also able to predict a distribution in the large 
number-of-throws situation (line 5*). 
Summary 
Focusing on technical language development from a linguistic perspective, this 
example describes a development of the intuitive and implicit use of the term 
‘distance’ to an explicit use of the technical term ‘distribution’ that is viable to 
distinguish between small and large number of throws.  
There are two different concepts-in-action Ralf uses: in the first situation, he has a 
binary concept for comparing the results. In the other situation, Ralf observes a 
certain structure given a high number of throws. Here, his concept-in-action is that 
given a high number of throws and a certain mathematical structure, chance is 
predictable. That effects his theorem-in-action: given a high number of throws, the 
(relative) distribution can be predicted quite precisely. 
This development shows his conceptual change regarding chance situations: whereas 
his intuitive conceptualization focuses on the term ‘distance’, he then is able to 
activate a mathematical conception on chance situation using the technical term 
‘distribution’ which focuses on the long-term perspective on chance situations. The 
conceptual change is in line with the dynamic development of Ralf’s theorem-in-
action: the new problem situation leads him to come up with a new theorem-in-
action.  
This example shows in how far all three levels are connected in terms of the 
inferential epistemological approach that BRANDOM introduces: both conceptual 
change and conceptual fields help to observe the formation of concepts. But these 
processes can only be studied because we are concept users (BRANDOM): language is 
the surface on which the linguistic analysis of the formation of concepts operates. 
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ICONICITY, OBJECTIFICATION, AND THE MATH BEHIND THE 
MEASURING TAPE: AN EXAMPLE FROM PIPE-TRADES 

TRAINING 1 
Lionel LaCroix 

Brock University, Canada 

This paper examines an adult student’s efforts as he works intensely, with the help of 
the researcher, to make sense of the fraction patterns on a measuring tape marked in 
inches. The multi-semiotic analysis of this encounter is framed using Radford’s 
Theory of Knowledge Objectification. From this socio-cultural perspective, 
mathematics learning involves the social and semiotically mediated process of 
objectification, i.e. a process in which one becomes progressively aware and 
conversant, through one’s own actions and interpretations, of the cultural logic of 
mathematical objects. This paper contributes to Radford’s notion of iconicity by 
showing, through fine-grained analysis, relevant aspects of its dynamics as well as by 
calling attention to a form of iconicity that, to my knowledge, has not been reported 
elsewhere. 

INTRODUCTION AND THEORETICAL FRAMEWORK 
This paper is based upon a small part of an impromptu tutorial session involving a 
pre-apprentice in the pipe-trades with the researcher serving as mathematics tutor. It 
is part of a larger case study that focuses on the manner in which the pre-apprentice 
attempts to make sense of, and become fluent with, the mathematics embedded in a 
measuring tape marked in feet and inches–an essential skill for the pre-apprentice’s 
chosen vocation. While Canada has officially adopted the metric system and most 
students study measurement exclusively using metric units in their mathematics 
courses in elementary and secondary school, the use of imperial units of linear 
measure (e.g. feet and inches) remains common practice in the construction trades. 
Consequently, is it not unusual to find students at the start of workplace training in 
the construction trades who struggle with the cultural practice of measuring lengths in 
fractions of an inch using a measuring tape.  
The study draws upon Radford’s (2002, 2008a, 2008b) socio-cultural theory of 
knowledge objectification (TO) to examine the manner in which the pre-apprentice 
begins to notice the mathematics embedded within the inscriptions on a measuring 
tape. In this theory, learning is conceptualized as the active and creative acquisition 
of historically constituted forms of thinking. Such an acquisition is thematized as a 
problem of objectification, that is, as a problem of becoming conscious of, and 
                                           
1 This paper is the result of a research program funded by The Social Sciences and Humanities 
Research Council of Canada / Le Conseil de recherches en sciences humaines du Canada 
(SSHRC/CRCH). 
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critically conversant with, the cultural-historical logic with which mathematical and 
other objects have been endowed. One of the aspects that makes the idea of 
objectification distinctive is the close relationship that it bears with the Vygotskian 
concept of consciousness and the mediated nature of it (Vygotsky, 1979, also 
Leont’ev, 1978). Consciousness is formed through encounters with other voices and 
the historical intelligence embodied in artifacts and signs with which we mediate our 
own actions and reflections. Within this context the efforts that the pipe-trade pre-
apprentice undertakes to make sense of the mathematics of a measuring tape are seen 
as a process of objectification. One of the questions is to investigate how the cultural 
meaning of the mathematics behind the measuring tape becomes “recognized” by the 
pre-apprentice. The question is not only the manner in which personal and cultural 
meanings become tuned, for personal meanings can only arise and evolve against the 
backdrop of forms of activity. Here the TO departs from other approaches. The 
problem is precisely the very social formation and evolution of personal meanings as 
they evolve within goal directed activity and are framed by the cultural meanings 
conveyed by socio-cultural contexts. 
Several contemporary approaches emphasize, for various theoretical reasons, the 
embodied dimension of thinking (see, e.g. Arzarello, 2006; Lakoff & Núñez, 2000; 
Nemirovsky & Ferrara, 2008) and the role of artifacts (Bartolini Bussi & Mariotti, 
2008). In the TO, the sensuous and artifact mediated nature of thinking leads, 
methodologically, to paying attention to the semiotic means through which 
objectification is accomplished. These means are called semiotic means of 
objectification. Much more than being simple aids to thinking, semiotic means of 
objectification are constitutive and consubstantial parts of thinking and include 
kinesthetic actions, gestures, artifacts (e.g. rulers, tools), and/or signs, e.g. 
mathematical symbols, inscriptions, written and spoken language (see Radford, 
2008c); they allow one to draw one’s own attention and/or the attention of another to 
particular aspects of cultural objects (Radford, 2003; Radford, L., Miranda, I. & 
Guzmán, 2008).  
In his recent work, Radford has identified two main (and interrelated) processes of 
objectification, namely iconicity and contraction (2008a). While contraction refers to 
the process of making semiotic actions compact, simplified and routine as a result of 
acquaintance with conceptual traits of the objects under objectification and their 
stabilization in consciousness, iconicity is a link between past and present action: it 
refers to the process of noticing and re-enacting significant parts of previous semiotic 
activity for the purpose of orienting one’s actions and deepening one’s own 
objectification (Radford, personal communication, September 29, 2008). One of the 
goals of this paper is to contribute to this idea of iconicity by showing, through fine-
grained analysis, some relevant aspects of its dynamics as well as to call attention to a 
new form of iconicity that, to my knowledge, has not been reported elsewhere. 
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METHODOLOGY 
Data collection 
The data for this study was collected in a pipe-trades pre-apprenticeship training class 
being conducted at a trade-union run school in British Columbia, Canada. This 
program involved pencil and paper work in the classroom as well as practical work in 
the workshop. It was designed to give the pre-apprentices a head start with important 
skills that would be addressed subsequently in the early years of their formal 
apprenticeship training in a number of different pipe-trades.  
Throughout this pre-apprenticeship course the researcher served as a math tutor for 
any pre-apprentices who sought out his help. At other times, the researcher observed 
pre-apprentices and engaged them in discussion about their mathematics related 
coursework as they were working on it. The activity of individual and groups of pre-
apprentices, working either with the researcher or working on their own, was 
documented using a video camera. Copies of the course print materials and copies of 
pre-apprentices’ written work were also retained for analysis. The data for this paper 
was selected from this collection of data. 
The individual who is the focus of this analysis, was a secondary school graduate. He 
had been in the workforce and completed a small number of courses in an electronics-
technician training program at a community college during the three and a half years 
between the time that he finished secondary school and the time he began the pre-
apprenticeship program in the pipe-trades. Throughout the pre-apprenticeship course 
he actively sought out the researcher for help with his mathematics related work. 
Data analysis 
A multi-semiotic analysis was conducted of the pre-apprentice’s and the researcher-
as-tutor’s joint activity during their one-on-one tutoring session to investigate process 
of knowledge objectification. This involved the construction of a transcript of the 
dialogue from the video-recording of the session, along with a detailed account of 
significant actions, semiotic systems, and artifacts used. This process required, at 
times, a slow-motion and frame-by-frame analysis of video tape to assess the role and 
coordination of spoken language with the use of artifacts and gestures during the 
encounter. 
The analysis to be discussed here focuses on an excerpt from the beginning of the 
tutoring session with the pre-apprentice, who will henceforth be referred to as “C”. 
The researcher will henceforth be referred to as “L”. This session took place at a table 
in the classroom immediately after L discovered that C was having difficulty reading 
fractions of-an-inch from his measuring tape while working on a pipe-fitting project 
with his colleagues in the workshop. The focus here is on C’s objectification of the 
difference in the fraction marking patterns on the measuring tape below and above 12 
inches, or one foot, where they are marked to thirty-seconds of an inch and sixteenths 
of an inch respectively. These two marking patterns can be seen in figure one. This is 
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one of a number of mathematical patterns inscribed on the measuring tape that C 
comes to notice and coordinate as he becomes proficient with reading the measuring 
tape over the course of the entire thirty-two minute tutorial. 

Figure 1. The marking lines to the left of 
one foot indicate fractions to thirty-
seconds of an inch. On the right side of 
one foot the markings indicate fractions 
to sixteenths of an inch. (C has inscribed 
a line across the measuring tape with his 
pencil at 11 1/8”, partly obscuring the 
measuring tape inscriptions, and 
another short line over the marking at 
11 5/32”.) 

RESULTS AND DISCUSSION 
The shared goal of C and L’s work together in the tutoring session is for C to learn 
how to read fractions on the measuring tape to sixteenths of an inch or, using the 
language of the TO, to objectify the system of fractions-of-an-inch crystallized within 
this cultural artifact (the measuring tape). C needs to learn this to be able to complete 
a pipe-fitting project that he is working on, as well as for his ongoing training, and for 
his future work as a trades person. L’s immediate goal in this particular episode is for 
C to begin noticing differences and similarities in the marking patterns on the 
measuring tape.  
Semiotic means of objectification using gestures and signs 
The measuring tape from C’s tool box is extended on the table top in front of both C 
and L and the session begins with L asking C what difference he notices between the 
pattern of spaces on his measuring tape below 12 inches and above 12 inches.  

75.  L:    … What do you notice here between the spaces here, up to twelve  
[Gesture-uses the index finger of his left hand to sweep up from the 
zero end of the measuring tape and pauses at 12” just before saying 
“up to twelve”] 

76.  C:  Yeah its, 
77.  L:   and the spaces after twelve?  [G-now pointing with the fourth finger 

of his left hand to sweep through the exposed interval of the tape 
measure above 12”] 

Here L asks C to explain what he notices while using two distinct sweeping gestures 
separated by a static pointing gesture at the twelve inch point. This in an attempt to 
draw C’s attention to, and initiate his objectification of, these two intervals as distinct 
regions of the measuring tape. L emphasizes this distinction by using different 
pointing fingers to sweep through each of the intervals and a contrasting static 
pointing gesture at the end of his sweep up to 12 inches to highlight the boundary 
point between them. As every educator knows, posing a question like this one is an 
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effective means of drawing a student’s attention to, and having him or her engage in a 
more critical way with, an object at hand. In this short excerpt L’s question is framed 
through the coordinated use of spoken language to describe the two regions of the 
measuring tape, and the use of a static pointing gesture and two different forms of 
sweeping gestures. Together, spoken language and gesture serve as semiotic means of 
objectification for C. 
Gestures dominate C’s response to L’s question. This is clear by considering his 
spoken words alone, which provide only a vague and partial response. It is only 
through C’s use of spoken language, interspersed with an elaborate and coordinated 
sequence of ten gestures, each positioned in a precise way relative to the measuring 
tape that it becomes clear that he is, indeed, becoming consciously aware of the way 
in which the marking patterns on the measuring tape are different from one another. 
(Transcript note: The spoken words in the transcript below are printed in bold to 
assist the reader to differentiate these from the descriptions of the accompanying 
actions.) 

78  C: There’s, [G(Video frame 1, 26:52)–sweeps up through the first few 
inches of the tape measure with the fourth finger of his left hand in a 
manner similar to the gesture just enacted by L]  

  there’s more. [G(Video frame 2, 26:53)–makes two chopping 
motions aligned with the markings on the tape measure with his left 
hand, the first significantly larger than the second just before he says 
“there’s more” in reference to the markings inscribed on the 
measuring tape.   

  G(Video frame 3, 26:54)–points to the 12” mark with the fourth finger 
of this left hand before withdrawing it from the measuring tape].  

  
Video frame 1 (26:52). C 
sweeps up through the 
first few inches of the 
measuring tape. 

Video frame 2 (26:53). C 
makes two chopping motions 
aligned with the markings on the 
measuring tape. 

Video frame 3 (26:54). C 
points to the 12” mark. 

 
In line 78, C begins his description of the difference between the two marking 
patterns on the measuring tape. He starts by sweeping the fourth finger of his left 
hand upwards through the first few inches of the measuring tape (Video frame 1). 
This is the same type of one finger indexical sweeping gesture that L had just used 
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(albeit using a different finger) to draw attention to this region of the measuring tape. 
C embellishes L’s original gesture sequence by including a chopping gesture midway 
up this interval. This chopping gesture is aligned with the series of parallel markings 
inscribed on the measuring tape and reflects the familiar action of physically dividing 
or chopping up the interval on the measuring tape in the same way as is indicated by 
the inscribed measuring tape markings (Video frame 2, 26:53). Immediately 
following this gesture C says “there’s more” (line 78), a confirmation that he is, 
indeed, referring to the closely packed markings inscribed on this region of the tape 
measure. C resumes and finishes his sweep through this region of the tape measure by 
pointing with the same finger of his left hand to the 12 inch point, the endpoint of this 
interval (Video frame 3, 26:54), before taking this hand away from the measuring 
tape. This use of a static single-finger pointing gesture at the 12 inch point separating 
the two regions of the measuring tape is the same type of gesture that L used a few 
seconds earlier to separate his sweeping gestures at the 12 inch point as well.  
 

(line 78 continues) It’s like it’s more spread out (in reference to the markings on the 
tape measure after the 12 inch point.) [G(Video frame 4, 26:55a)–
points briefly to the 12” mark on the tape measure now with the first 
finger of his right hand, replacing the previous pointing gesture 
expressed by the fourth finger of his left hand. 

  G(Video frame 5, 26:55b and Video frame 6, 26:56a)–starting with 
his thumb positioned at the 12 inch point, sweeps his right hand up the 
measuring tape a short distance while holding an approximately 2.5” 
wide interval between the thumb and first finger.]  

 

Video frame 4 (26:55a). 
C points again to the 
12” mark on the 
measuring tape. 

Video frame 5 (26:55b). C begins to 
sweep an approximately 2.5” wide 
interval up the measuring tape 
starting with his right thumb at 12”. 

Video frame 6 (26:56a). 
C continues his wide- 
interval sweep up the 
measuring tape. 

(line 78 continues) when [G(Video frame 7, 25:56b)–grasps the tape measure with his 
right thumb and first finger on opposite edges at the 12” point and 
G(Video frame 8, 26:57)–sweeps his hand in this configuration 
upwards a short distance from 12”] you pass one, 

79 L:   Yeah, 
80 C: one foot [G(not shown)–while maintaining the same grasping 

position, repeats this sweep upwards for a second time] 
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When line 78 continues, C replaces, briefly, his left hand pointing gesture at the 12 
inch point with the first finger of his right hand (Video frame 4). This reflects, in part, 
L’s earlier set of indexical gestures, i.e. using different pointing fingers to distinguish 
between the two different regions of the measuring tape. C then forms a wide-interval 
gesture using his right thumb and first finger and without hesitation sweeps this up 
the measuring tape with his right thumb starting from the 12 inch point (Video frame 
5 to Video frame 6). As he does this he says “it’s more spread out” (line 78). This 
reflects the wider interval spacings between adjacent fraction markings inscribed 
here. C then grasps the measuring tape at 12 inches with his right thumb and first 
finger in a position that looks like he is grasping or pinching it (Video frame 7), and 
then sweeps his hand up the measuring tape from 12 inches and Video frame 8) and 
then repeats this a second time (not shown). This series of three sweeps up the 
measuring tape from the 12 inch point (one wide-interval sweep and two grasping 
sweeps) serves to sustain both his own and L’s attention on this region of the 
measuring tape. 

(line 80 continues) and when you’re before one foot its more um, [G(Video frame 9, 
27:01)–makes a very brief and narrow-interval gesture with the thumb 
and first finger of his right hand with this hand now positioned above 
the region of the tape measure between 0” and 12”.] 

 

 
Video frame 9 (27:01) C makes a very brief narrow-interval 
gesture with the thumb and first finger of his right hand with this 
hand now positioned above the region on the tape measure 
between 0” and 12”. 

81 L:   Okay. 
82 C:   [silence] 

C’s explanation comes to an end as he says “below one foot its more um” (line 80) 
while making a very brief but distinct narrow-interval gesture with the thumb and 
first finger of his right hand (Video frame 9). This gesture is positioned above the 
region of the measuring tape between 0 and 12 inches and reflects the narrower 

 
Video frame 7 (26:56b) C grasps 
the measuring tape at the 12” point. 

  
Video frame 8 (26:57) C sweeps his hand in 
this configuration upwards a short distance from 
12” and then repeats this motion a second time. 
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intervals between adjacent markings on this region of the measuring tape in 
comparison to the intervals above 12 inches that C had described using a wide-
interval gesture seconds earlier.  
By responding to L’s question in lines 78 and 80, C enacts a coordinated series of 
semiotic actions that serve to draw his own awareness to the marking patterns on the 
tape measure and thus mediate his thinking and deepen his consciousness of these 
patterns. This was, after all, the outcome L was aiming for by posing his initial 
question in lines 75 and 77. C’s use of gestures and spoken language in this excerpt 
are examples of semiotic means of objectification for oneself. 
Forms of iconicity and mathematics as reflexive praxis 
Radford describes iconicity as the process of noticing and re-enacting significant 
parts of previous semiotic activity for the purpose of orienting one’s actions and 
deepening one’s own objectification. We can find three forms of iconicity within this 
brief and intense exchange between L and C. 
 The first form of iconicity involves C noticing and re-enacting all of the hand 
gestures and corresponding hand positions that L had used while posing the question 
to him at the start of their exchange. These included his use of different fingers for 
pointing at the different regions of the measuring tape in line 79–Video frames 1 and 
4, the sweeping gesture for identifying the region of the measuring tape below 12 
inches in line 78–Video frame 1, and the static one-finger pointing gesture directed at 
the 12 inch point in line 78–Video frame 3.  
The second form of iconicity involves C noticing the different inscription patterns on 
his measuring tape below and above 12 inches and re-enacting these using different 
forms of semiotic actions, in this case using hand gestures. The examples here 
include C’s chopping gesture to describe the closely packed pattern of marking lines 
below 12 inches in line 78–Video frame 2, his wide-interval gesture to describe the 
relatively wide intervals between markings above 12 inches also in line 78–Video 
frame 6, and his narrow-interval gesture to describe the relatively narrow intervals 
between the markings below 12 inches in line 80–Video frame 9.  
The third form of iconicity to be found coincides with the second form of iconicity 
just described in this set of data. It involves C noticing a form of gesture that he has 
enacted himself and then re-enacting this within a different context. I refer here to C’s 
use of a narrow-interval gesture using this thumb and first finger to describe the 
marking pattern below 12 inches on the measuring tape in line 80–Video clip 9. This 
occurs after he has enacted a similar wide-interval gesture using his thumb and first 
finger in reference to the marking pattern above 12 inches in line 78–Video frame 6.  
We can infer that C became consciously aware of the possibility and/or usefulness of 
utilizing this form of interval gesture as a result of using it to describe the intervals 
above 12 inches because he then backtracked to elaborate on his previous description 
of the region of the measuring tape below 12 inches using this same form of gesture. 
The finding of this third form of iconicity–noticing and re-enacting parts of one’s 
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own semiotic activity in a new context–is a new contribution to the theory of 
knowledge objectification. 
CONCLUDING REMARKS 
The brief excerpt that is the focus of this paper is taken from the beginning of a 
tutoring session involving a pre-apprentice in the pipe-trades learning to read the 
mathematical meaning embedded within a measuring tape marked in inches with the 
researcher serving in the role of tutor. This analysis illustrates the sensuous and 
artifact mediated nature of mathematical thinking and knowledge objectification. 
Particular features of the theory of knowledge objectification were evident including: 
examples of semiotic means of objectification–for another as well as for oneself–and 
three forms of iconicity: re-enactment using matching semiotic actions, re-enactment 
using different forms of semiotic action, and a newly reported form of iconicity, re-
enactment of one’s own previous form of semiotic actions in a different context.   
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MATHEMATICAL REFLECTION IN PRIMARY  
SCHOOL EDUCATION 

Theoretical Foundation and Empirical Analysis of a Case Study 

Cordula Schülke & Heinz Steinbring,  
Universität Duisburg–Essen, Campus Essen 

Abstract. The paper presents the theoretical construct “mathematical reflection“ and 
elaborates its specificity with regard to the epistemological conditions of 
mathematical knowledge. This construct of “mathematical reflection” is the key 
concept in a wider research project. A conceptual grid with fundamental categories 
is developed that serves to carefully characterize the important components of 
“mathematical reflection” and that is used as an instrument for qualitatively 
analyzing students' mathematical collaboration in clinical interviews and for 
identifying different types of “mathematical reflection” in interaction. 
Key words: reflection, mathematical interaction, qualitative analysis, epistemology 
1. INTRODUCTION: THE CENTRAL CONCEPT OF THE RESEARCH 
PROJECT – MATHEMATICAL REFLECTION 
In several primary schools in Germany – also in North Rhine-Westphalia – teaching 
in grades 1 & 2 is organised comprehensively in the frame of experimental trials. It is 
assumed that “learning in grade-comprehensive groups [...][offers] a lot of 
opportunities of using the different learning potentials for the mutual stimulation and 
support for the students as a whole” (North Rhine-Westphalia State Ministry for 
School, Youth and Children 2004) 
The research project presented here refers to age-mixed mathematics learning and is 
oriented on the paradigm of interpretative instruction research. On the basis of the 
interaction-theoretic perspective (developed by Bauersfeld 1994) and the specific 
research approach of social epistemology of mathematical knowledge (developed by 
Steinbring 2005), this project deals in particular with the socio-interactive learning of 
mathematics in grade-heterogeneous learning groups in the flexible entrance phase of 
elementary schooling. The analyses of mathematical interactions, elaborated in this 
project, refer in a complementary way to individual-psychological and social 
processes and at the same time to the particularity of mathematical knowledge as the 
object of the interaction.  
The fundamental concept of the analyses attempts to theoretically capture the 
reflective mathematical thinking of the children. We proceed on the assumption that, 
by means of the collaboration of younger and older children on mathematical 
problems, particularly the older children receive manifold opportunities of reflecting 
mathematically. With his concept of observed mathematics, Freudenthal 
characterized the (reflective) moment of thinking, where mathematics carried out and 
used on a lower level becomes observed mathematics on a higher level (cf. 
Freudenthal 1978, 64). In addition, Nührenbörger and Pust (2006) pointed out that, in 
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the interaction with the younger children, the older children, already used to school, 
are challenged to “verbalize their own thoughts and insights. In this process, existing 
knowledge is reflected and newly organized before it is handed on to others, and 
becomes further differentiated during the explanation process. For the children who 
are already used to school, a possible retrospection onto a previous learning process 
opens up opportunities for reflection on the meta-level” (Nührenbörger/Pust 2006, 
24). 
But how can reflective thinking in mathematical interaction processes be identified 
and what can be understood by reflective mathematical thinking as a conceptual 
element of an epistemologically oriented interaction-theoretical point of view onto 
learning mathematics and the nature of mathematical knowledge? 
An initial foundation of the concept of “reflection” took place on the basis of already 
existing descriptions of “reflection” within the existing research literature, 
particularly in (actual) mathematics education literature. The examination of the 
status of research clearly showed the necessity of a precision of the theoretical 
construct “mathematical reflection”. 
The elaboration of a broadened conceptual understanding of mathematical reflection 
is based on the (particular) epistemological nature and the conditions of the 
development of mathematical knowledge (cf. Steinbring 2005) as well as on the 
concept of reflection as a “change of standpoint”, which Freudenthal has developed 
in his article “How does reflective thinking develop?”: “The unfolding reflection 
shows different traits. One of them, I would like to call standpoint change – a mental 
standpoint change, where the standpoint itself can be local or mental, while the 
change can take place in space, time, or another, for instance mental, dimension” 
(Freudenthal 1983, 492). 
Thus, by mathematical reflection, we understand a cognitive activity, a process of 
thinking, in the sense of a change of standpoint or perspective, on the basis of which 
processes of re-interpretation take place. Old, common mathematical knowledge and 
familiar ways of proceeding are thought through again intentionally, they are 
scrutinized and newly or re-interpreted. The construct “reflective mathematical 
thinking” corresponds with the epistemological character of mathematical knowledge 
as pattern-like, relational structures. With the assumption that stimulating reflective 
thinking aims at the development of mathematical knowledge, mathematical 
reflective thinking is not merely a repeated consideration, a remembrance, or a 
reference to familiar contents. 
This specific characterization of mathematical reflection requires to take into 
consideration the following essential issues when trying to analyze whether one can 
observe within a mathematical interaction this kind of mathematical reflection. First, 
when analyzing a change of standpoint or perspective (in the sense of Freudenthal) 
within an observed mathematical interaction, we use the epistemological analysis and 
apply the epistemological triangle (see Steinbring 2005) to figure out whether one 
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can speak in a proper epistemological sense of a change of standpoint that introduces 
new mathematical relations or that generalizes mathematical relations. The second 
analysis instrument is the “analysis grid“ that tries to characterize the specific type of 
change of standpoint; this basic instrument is developed in the following section. 

2. A GRID FOR THE ANALYSIS OF MATHEMATICAL REFLECTIONS 
WITHIN INTERACTION PROCESSES 
The analysis grid (see Fig. 1) is divided into four fields, labelled “trigger”, 
“response”, “reaction” and “reflective level” together with sub-categories. The two 
fields “trigger” and “reaction” are descriptive elements in the analysis grid, and the 
fields “reaction” and the central category of the “reflective level” are characterized as 
interpretative elements. 
In an interaction sequence, the question to which extent a new or re-interpretation of 
a mathematical content on the basis of a standpoint change becomes apparent, can 
only be examined in an exclusively interpretative way. In the frame of a sequential 
analysis of the scope of possible interpretation hypotheses, the convincing 
possibilities of interpretation, which can be justified by the direct reference to the 
transcript, are elaborated.  

 
Fig. 1: Analysis grid 

The allocation to the descriptive elements of the analysis grid is exclusively oriented 
on the linguistic format of a remark and has a purely descriptive character. 
The grid serves for the purpose of being able to focus on the central research 
questions and it allows on the basis of an epistemological analysis to examine the 
interactive processes taking place during a partner interview in a purposive and 
careful way. Even if, at first sight, the analysis grid might seem to present a 
chronological sequence of the fields, it is expressly not the aim of the grid to simply 
be used for the description of a temporal sequence. 
During the real interaction proceedings, different sub-categories can overlap. For 
instance, a mathematical remark, which on the basis of its linguistic format is 
allocated to the sub-category of recapitulation, can at the same time contain a hint 
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towards a moment of irritation. The following more detailed explanations of the 
categories and sub-categories will further clarify the analysis grid. 
The different elements of the analysis grid 
• The element “trigger”: On a descriptive level, several possible triggers for 
reflection or thinking activities can be identified in the interviews. Examples: a 
question, a discovery or a way of proceeding can represent a triggering moment. 
For the research it is important which person stimulates reflections. Is this rather true 
for the remarks by the interviewer, for one's own discoveries and ways of proceeding, 
or the remarks of a cooperating partner child? This relevant aspect is allowed for by 
the distinction of the three sub-categories.  
• The element “response”: A first central research question concerns the 
identification of possible clues in the analysis of interactive processes, which suggest 
reflective thinking. When does a question or a mathematical problem not only initiate 
recapitulation or imitation, but a reflective process? 
The research results up to now show that irritation or a moment of surprise is an 
important indicator in this context. If, for example, an exercise cannot be done 
spontaneously, if one does not agree with the previous proceeding of the answer or 
with the ways of proceeding, ideas or remarks by another participant, and if one 
shows irritation or surprise, that means that it is not possible to simply resort to 
common knowledge or familiar ways of proceeding. An irritating exercise can 
challenge to engage in a foreign perspective. 
• The element “reaction” (descriptive element): Children can react differently to the 
different triggers. In this regard, we distinguish between the sub-categories “no 
remark”, “imitation”, “recapitulation” and “construction”. 
Besides “not remarking”, a possible reaction is “imitation”, which means the literal 
repetition of one's own or someone else's remarks or the direct imitation of familiar 
ways of proceeding or the partner child's strategies. 
By “recapitulation”, we understand resorting to knowledge or ways of proceeding 
already familiar from the previous context, or the reference to remarks and strategies 
of a partner child in one's own words. 
If the children also refer to mathematical knowledge, which had not been introduced 
by any of the interaction participants in the previous contexts, the category of 
“construction” is fulfilled. 
The allocation of the children's reaction to one of the given categories takes place 
depending on the format of the remark and is oriented on the linguistic elements used, 
on a purely descriptive level. 
If the children only refer to common knowledge or familiar ways of proceeding in 
phases of cooperation, the interaction remains on the level of reaction. But if new or 
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re-interpretations of old knowledge or new constructions take place, the level of 
“mathematical reflection” is addressed as well. 
• “Reflective level” (interpretative element): The question whether new or re-
interpretations are carried out within interactions or if new mathematical knowledge 
is constructed, can only be examined interpretatively. In order to do so, the 
epistemological triangle (Steinbring 2005) is used in the analysis. 
The identification of the standpoint changes, which might follow, takes place with the 
help of the developed characteristics and features of differentiation. 
Three levels of changes of standpoint or perspective: The point of view developed by 
Freudenthal about reflective thinking as a standpoint or perspective change made it 
possible to characterize and distinguish three different forms of possible standpoint 
changes from the data material. Besides the theoretical clarification of the concept 
mathematical reflection, these represent an essential result of this research. 
An important feature of the three levels of standpoint changes consists in the new or 
re-interpretation of a mathematical exercise, a mathematical content or a 
mathematical sign / symbol. A distinction is made with regard to the different 
possibilities or ways of changing one's own standpoint. 

• Standpoint change “foreign perspective”: The children take a foreign perspective, 
someone else's standpoint, for instance they relate the ways of proceedings, 
discoveries and views of their partner child to their own points of view and ways 
of proceeding, test and evaluate these and are stimulated to newly or re-interpret 
their own mathematical knowledge. 

• Standpoint change “context”: A mathematical challenge is put into and observed 
within another context and thus is subject to a new or re-interpretation. In contrast 
to the standpoint change “foreign perspective”, no concrete possibility of 
interpretation is given, which then might be followed, but rather the change of 
context allows for a new point of view. If, by means of such a context change, one 
of the participants develops a new interpretation perspective, a mathematical 
reflection according to the standpoint change “context” has taken place. 

• Standpoint change “retrospection”: If there is an intentional resort to common 
knowledge and familiar ways of proceeding from a previous context in order to 
thus new or re-interpret a mathematical content, a standpoint change 
“retrospection” has taken place. Such a standpoint change can only be spoken of if 
a remark by a participant presents a way of proceeding or a mathematical context 
as familiar and relates this with the current exercise. 

3. Analysis of an Exemplary episode: Gina & Sharon discuss a “Number line”–
Problem 
1 Int (places the number cards 0 and 10 at the number line) I am placing the number cards at the number line, … 
2 S [incomprehensible] 
3 Int Put this card, (places the number card “5” between Gina and Sharon onto the table)  

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 866



4 G (Gina takes the number card “5” with her left hand) 
5 Int at the number line. 
6 G # (leans forward / holds the number card “5” with both hands / looks at the number line) 
7 S # In fact the zero belongs in front  

# (places her left hand onto the left end of the number line) 
8 G # (holds the number card in her right hand / looks at Sharon”s left hand) 
9 S or shall we now, well shall that now be like that the number line begins with this? (puts the edge of her left 

hand on the left of the number card zero on the table) 
10 Int Think about it together, how you can do that now. 
11 S You now certainly have (looks at I.) well. (…) (turns to Gina) She probably has chosen such a place (points 

over the section of the number line which is marked by the number cards 0 and 10 / Gina looks at the 
number line) where one could add that, so that we well that this, that this is supposed to be the beginning 
(places the edge of her right hand to the left of the number card “0” on the table) that this piece is then 
practically gone, (moves her right hand in the direction of the left edge of the table over the number line) in 
your mind, right? (looks at Gina / Gina continues to look at the number line) Well such a place, then the five 
would go here, right? (puts a finger between the numbers 0 and 10 onto the number line, see below. / looks at 
Gina / Gina continues to look at the number line) (…) 

  

 
 because one two three four five. (while counting the numbers, she points at the spots marked in the diagram, 

see below) 
 

 

This short episode originates from an interview about the topic “number line”, which 
was conducted with Sharon and her classmate Gina in the second project year. For 
Sharon, this was the fifth interview during the research project, for Gina it was the 
first. 
Before the children were introduced to the number line, which they had never used as 
means of visualisation. This scene of positioning of “5” takes 5 minutes. 
 

 
Fig. 2: Section of the number line 

On the children's desk, a string was attached as a number line. The interviewer had 
positioned the “0” and “10” (cf. Fig. 2) when asking the exercise question. 
Analysis of the interview sequence 
The exercise is opened by the interviewer. She positions the “0” and “10” thus 
providing the initial situation. This task of the interviewer is emphasised by the 
remark (“I am placing the number cards at the number line” (1)). 
Sharon directly reacts to this action or remark (2). Maybe she already shows a first 
reaction to the positioning of the number cards. As Sharon's remark is 
incomprehensible, therefore this guess cannot clarified definitively. 
Gina immediately takes up the number card “5” and at the same time watches the 
number line (4, 6). While doing this, she shows that she is engaging with the exercise 
question and is considering where to put the number card “5”. 
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Sharon exclusively refers to the current position of the number card “0” and wonders 
about the position of the “0” and “10” at the number line in her following remarks (7, 
9, 11). 
Sharon's remarks are of essential importance for the central research question and the 
identification of reflective mathematical thinking and thus represent the main focus 
and the starting point of the following interpretations. The clarification of the position 
of the number card “0” as an element of the number line (by Sharon) is at the centre 
of analysis. 
In her first remark after the exercise question, Sharon points at the left end of the 
number line and explains that the “0” should be placed directly at the beginning of 
the number line (7 “In fact the zero belongs in front”). The positioning of the “0” by 
the interviewer does not correspond with her idea of the “correct position”. Her 
remark suggests that, according to her previous point of view, the position of the “0” 
on the number line is fixed and cannot be chosen freely. 
The possible previous consideration of changing the position of the number card in 
the frame of the work on the exercise can be seen in particular in remark (9) “or shall 
we now, well shall that now be like that the number line begins with this?”. This is 
supported by the use of the words “in fact”, which underlines the discrepancy 
between the current and Sharon's “correct positioning” of the “0”. 
The interviewer gives the question raised by Sharon back to the two students (10 
“Think about it together, how you can do that now.”). 
Sharon's remark (11) suggests that she now assumes an intentional positioning of the 
“0” by the interviewer and is challenged to find an explanation for the “unusual 
position” of the number card at the number line (“She probably has chosen such a 
place where one could add that, so that we well that this, that this is supposed to be 
the beginning”).  
Applying the analysis grid “mathematical reflection” to the episode 
The element trigger: The exercise question given by the interviewer as well as the 
given positioning of the number cards 0 and 10 at the number line (1, 3, 5) represents 
the trigger for the following cognitive activities by the two students. 
The element response: Sharon makes a remark about the current position of the 
number card “0” at the number line directly after the explanation of the exercise 
question by the interviewer. The position of the number card does not correspond 
with her idea and she is probably surprised or irritated by the interviewer's way of 
proceeding. A clue for a possible moment of irritation becomes apparent in her 
remark (7): “In fact the zero belongs in front”. Sharon points out an alternative 
possibility of positioning the number card. Her remark “In fact” can be seen as an 
indicator for her not agreeing with the current position of the number card. 
The element reaction: In her reaction to the triggering moment, which is the exercise 
question and the localization of the section of the number line to be observed, Sharon 
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refers to the positioning of the number card “0” and discusses this (not verbally 
expressed) action of the interviewer with her own words. Thus Sharon's reaction can 
be allocated to the sub-category recapitulation. 
The levels of mathematical reflection 
The question to which extent Sharon performs a change of view and carries out a new 
or re-orientation of her mathematical knowledge regarding the positioning of the “0” 
at the number line is examined with the epistemological triangle (Steinbring 2005) as 
an analysis instrument of relations between signs, reference contexts and concept. 
If a change of standpoint or perspective can be identified, this will be allocated to one 
of the three levels of mathematical reflection on the basis of the characteristics 
described in the presentation of the analysis grid.  
The analysis instrument “epistemological triangle” 
Conventional interpretation: The sign to be clarified in the present interview 
sequence is the position of the number card “0” at the number line. In this first 
representation the original, conventional interpretation by Sharon regarding the 
position of the number card is made clear by referring to a familiar reference context. 
In her remark (7) “In fact the zero belongs in front”, Sharon probably refers to the 
known “familiar” position of the number card “0” at the beginning of the number 
line. Maybe she remembers the positioning carried out previously to the interview 
and points at the left end of the number line as the only possible position for the 
number card up until this point. Two different aspects become manifest in her 
remarks. On the one hand, there seems to be a fixed position for the number card at 
the number line for Sharon, on the other hand the number card “0” belongs to the 
beginning of the number line, i. e. left of this number, neither does the number line 
continue nor can there be further number cards.  

 
Fig. 3: Epistemological triangle: The original interpretation of the position of the number card “0”  

Beginning of a relational interpretation: Besides the originally conventional view 
concerning the position of the number card “0”, a beginning mentally more flexible 
interpretation becomes apparent in this scene. Sharon tries to conciliate her previous 
point of view with the current position of the number card. In doing so, she refers to 
the reference context presented in Fig. 4. She explains the – for her point of view – 
still unfamiliar position of the number card “0” by placing her hand to the left of the 
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number card and remarking in the one hand (9): “or shall we now, well shall that now 
be like that the number line begins with this?”, on the other hand (11): (“She 
probably has chosen such a place where one could add that, so that we well that this, 
that this is supposed to be the beginning”. 
The mentally changed number line thus forms the reference context, i. e. the current 
position of the number card is interpreted by referring to the theoretical picture of the 
number line, which Sharon has developed and in which the sequence in front of the 
number line is mentally ignored. 
In this interaction of sign and reference context the beginning of a detachment from a 
purely empirical point of view concentrated on the concrete, towards a stronger 
mental use and change of the number line becomes apparent. The following remarks 
by Sharon can serve as concrete indicators of this more flexible point of view “in 
your mind” (11) and “would” (11: “then the five would go here, right?”). The 
positioning of the “5” which she suggests takes place depending on the current 
position of the “0” and “10”. 
While at the beginning of the interview sequence Sharon still allocates a fixed 
position at the beginning of the number line to the number card “0”, she ultimately 
takes a more flexible point of view about this: By means of the possibility of putting 
the number card “0” at a random position of the number line, sections of the number 
line can be realized variably. 
Still, the number card “0” remains the first card for Sharon, however, thus left of this 
number card there can be no other number cards. Furthermore, her way of proceeding 
when positioning the number card “5” (11) indicates that she continues to pay 
attention to the sequence and distance of the number cards. 

 
Fig. 4: Epistemological triangle: Beginning of a relational interpretation 

Characterization of the standpoint change  
As has already become clear in the first step of the analysis, Sharon performs a new 
or re-interpretation of the number line regarding the positioning of the number card 
“0” during the course of the interaction. 
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As previously to the present interview sequence, the number card was always placed 
at the beginning of the number line, its current position represents a changed context 
in this regard. 
Concerning the position of the number card “0”, Sharon develops a new 
interpretation perspective and thus carries out a standpoint change “context” on the 
basis of this changed context given by the interviewer. 
 

 
Fig. 5: Application of the analysis grid 

4 SHORT RÉSUMÉ 
The analysis grid developed in the course of the research project offers the possibility 
of presenting the results of the analyses and interpretations cohesively. The central 
element of the grid is the “reflective level”. The distinction of the three categories of 
standpoint changes is a fundamental result of the research up until now and allows for 
the analysis to pursue the question which specific form of a standpoint change 
provokes and stimulates the process of new interpretation of mathematical 
knowledge, which is essential for the learning of mathematics. 
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SURFACE SIGNS OF REASONING 
Nathalie Sinclair, David Pimm 

Simon Fraser University, University of Alberta 
Abstract 
In this paper, we explore forms of verbal expression undergraduate mathematics 
students employ while working in pairs on geometric tasks in a computer 
environment, focusing in particular on the connectives (notably ‘because’) they use 
as well as the modal expressions in their talk as they discuss ideas with their partner. 
We use this data to bring together C. S. Peirce’s idea of abduction, the linguistic 
notion of hedging and Toulmin’s argumentation scheme, and argue that in trying to 
identify abductions, the presence of hedges (of which Toulmin’s ‘modal qualifiers’ 
are an instance) or a particular use of ‘because’ may provide some evidence. 

It is a commonplace of philosophical logic that there are, or appear to be, divergences in 
meaning between, on the one hand, at least some of what I shall call the formal devices—
∼, ∧, ∨, ⊃, (∀x), (∃x) (ιx) (when these are given a standard two-value interpretation)—
and, on the other, what are taken to be their analogues or counterparts in natural 
language—such expressions such as not, and, or, if, all, some (or at least one), the. 
(Grice, 1975/1989, p. 22) 

In this paper, we wish to explore some of the natural language markers (in English) 
that are employed in students’ spoken mathematical reasoning. One motivation for 
doing so is a realisation of how different, on occasion, even experienced 
mathematical undergraduates speak when working on problems in pairs, from the 
conventional way formal mathematics is supposed to be written (e.g. Morgan, 1998). 
A second was the difficulty we had at times in identifying the nature of the reasoning 
from the speech of the participants. A third arose from our growing interest in the 
notion of abduction, which has been receiving attention in the past few years within 
mathematics education (e.g. Mason, 1995; Pedemonte, 2007; Reid, 2003; Rivera, 
2008; Sinclair, Lee and Strickland, under review), as well as possible connections to 
the linguistic notion of hedging (see, e.g., Rowland, 1995) and Toulmin’s 
argumentation scheme (see, e.g., Inglis et al., 2007).  
In mathematical discourse, there are significant differences between speech and 
writing. We are not claiming that there are disjoint vocabularies, but there are some 
words that are usually only spoken (including a few that require invented spellings 
for transcription e.g. ‘cuz’, ‘gonna’, ‘gotta’) and some that are much more comonly 
written (hence, therefore, consequently). The formal written mathematical register is 
quite tightly specified in terms of particular conjunctions to be used in proofs, 
particularly at the beginnings of sentences to mark the relation between the preceding 
and subsequent comments (e.g., ‘let’, ‘hence’, ‘therefore’, ‘if’, ‘since’, ‘conversely’). 
This is another level of difference beyond that to which Grice is drawing attention.  
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However, one linguistic challenge arises from the fact that mathematical purposes are 
not the only functions that these words encode. The language of ‘if …, then …’, for 
instance, so common in written mathematics, is also the language of threats. Many of 
the conventional connectives in other circumstances carry a space, time or sequencing 
connotation (e.g. then, since, when, hence) – for more on mathematics and time, see 
Pimm (2006). In conversation, the then of ‘if …, then …’ is often elided, and there 
are occasions when even the if marker can be absent. 
In this paper we wish to go further than Paul Grice in differentiating logical operators 
from what he terms ‘natural language’, by distinguishing spoken from written natural 
language. Unlike Grice, however, we will offer attested speech data for consideration 
rather than invented data. In the opening chapter to his book Text and Corpus 
Analysis, linguist Michael Stubbs (1996) criticises the dominant tradition since 
Chomsky (and including Grice) for basing extensive theoretical arguments on no real 
language data. Nevertheless, Stubbs (see below) supports Grice’s specific claim about 
the non-congruence between logical connectives and English words and goes further, 
paying close attention to the role of modality in verbal communication.  
This paper draws on data collected within a larger study of mathematical reasoning in 
undergraduate students. The data consist of twenty videotaped episodes (ranging 
from ten to twenty minutes in length) in which pairs of students are working at 
computers, using The Geometer's Sketchpad (Jackiw, 1991) to solve geometric tasks. 
These tasks include, among many others, using Sketchpad to construct a parabola, to 
identify the particular transformation that relates two given shapes, to solve the 
Apollonius problem and to figure out the fractal dimension of given curves. 

SPOKEN MARKERS OF REASONING 
A third case of the interaction of pragmatic and syntactic matters is provided by the so-
called logical connectors (e.g. and, but, or, if, because). Their uses in everyday English 
are not reducible to their logical functions in the propositional calculus, but have to do 
with speakers justifying their confidence in the truth of assertions, or justifying other 
speech acts. (Stubbs, 1996, p. 224)  

Any modal utterance contains both propositional information and the speaker’s 
attitude towards the information. Echoing Grice, Stubbs uses modality to distinguish 
between different functions of connectives. He claims because is representative in 
having two distinguishable uses, which he terms logical and pragmatic: the first has 
the structure of ‘effect plus cause’, the second ‘assertion plus justification’. Stubbs 
notes that the pragmatic use of because is often signalled by the addition of epistemic 
must (‘he must have been drunk because he fell down the steps’). In addition, He 
provides a number of syntactic criteria to help distinguish the two uses. He claims 
these points are also true for the pragmatic use of if, or, but, and and. 
An example of the logical use comes from Birkhoff and Mac Lane (1941/1956) 
“Because of the correspondence between matrices and linear transformation, we need 
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supply the proof only for one case” (p. 227). Similarly, in Spivak (1967), we find: 
“Because this sequence varies so erratically near zero, our primitive mathematical 
instincts might suggest that lim

n→∞
fn (x)  does not always exist” (p. 414).  

There is no scope within this paper for a detailed corpus analysis of connectives in 
our data, though we wish to remark on the prevalence of ‘so’ and ‘which means’ as 
markers of deductive utterances. From our data, we find very few logical uses of 
because.  

A: Well, because those two don't, for sure, lie in the circle, so if we rotate it 
around that point, it's not gonna be exact.  

In A’s statement above, the cause is signalled by ‘so if.’ Far more often, the uses of 
because are pragmatic, as in the following two examples. 

D:  No, because the rotation point is gonna be over here. 

E: Yeah, the original one because then O1 will convert to a line and through 
… never mind. That didn’t work. We did it wrong. 

In both these and other similar instances, what we find is students hypothesising or 
positing justifications for claims they are making. This connects in an interesting 
manner to the theme we turn to in the next section, namely abduction as a form of 
inferring, which is proving challenging to us to identify confidently. This brief look 
at ‘because’ suggests that one place to look for abductions is in pragmatic uses of the 
connective ‘because’.  

TWO SHORT EPISODES OF STUDENT REASONING  
Here are two episodes of student mathematical problem solving where we found the 
form of reasoning less clearly identifiable, less likely to be deductive, and replete 
with modal utterances. We provide a brief contextualisation of each episode in this 
section, and then offer two tentative analyses—one using Peircean abduction and the 
other Toulmin’s model of argumentation— of each episode in the following section.  
Example 1 
Two students (Lucie and Brad) are trying to solve the problem of geometrically 
constructing a parabola in Sketchpad given a focus point P and a directrix line j. The 
students have already constructed the envelope of the parabola by tracing the 
perpendicular bisector of PB where B is a point on j that can be dragged back and 
forth along the line. The students begin looking for ways to construct a point that 
depends on B so as they move B along j it will trace out the parabola.  
At first, they place a point on the segment PB right where the segment first touches 
the envelope edge. When Lucie drags B, they both realise that this point does not 
always lie on the curve, so they delete this point. In turn 1 below, Brad notices that if 
the solution point is placed on PB, then it could never reach the upper parts of the 
parabola (given that PB is a segment). This seems to give rise to an anomaly for Brad 
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– that the point will have to be able to travel high up the sides of the parabola. Indeed, 
his expression is emphatic and strong-voiced and the modal verb ‘can’t’ is also 
strong: “We can’t have …”. Indeed, he tries to convince Lucie of what he’s noticing: 
“see that point”. In turn 3, Brad makes a deductive inference, first using the word ‘so’ 
and then “which means” to indicate the implication that the point cannot be on PB.  

1 Brad: We can’t have [..] [1] Well, like, [….] like, see that point has to be 
able to get up here, right? (He points to j with his pen and then points 
to the top left of the curve with his pen and then his finger.) 

2 Lucie: Uhuh. 
3 Brad: So, which means it can’t touch the line. 

Lucie then proposes that this point lies on a line passing through P perpendicular to j. 
4 Lucie: Yep [….] So then [….....] Let’s say […………] (Constructs the line 

through P perpendicular to j, as in Figure 1.) Maybe that’s the line 
[…] ‘cause um [..] the distance from like [..] here to here would be the 
same as that one? (Points to distance between the envelope of the 
curve on the left and her new line.) But I don’t know if that’s right. 
(Points to her new line and the curve on the right.) 

5 Brad: So what line did you just create? 
6 Lucie: The perpendicular line to the bottom through P. But I don’t think it’s 

right.  

 
Figure 1: The envelope of a parabola with focus P and directrix j 

Brad seems to think that Lucie’s line “couldn’t be” the right one, but acknowledges 
her statement about equidistance. At this point, the instructor intervenes and redirects 
the students’ attention to the more pertinent equidistance relationship (to point P and 
line j). The students eventually figure out how to construct the point on the parabola 
as the intersection between the perpendicular bisector of PB and the line 
perpendicular to j, passing through B. 
Example 2 
Two students (Gloria and Peter) are trying to figure out which isometry maps a given 
shape on the computer screen onto another and then to construct the specific 
transformation. The students have studied the composition of reflections (and found 
that the composition of two reflections gives a rotation, unless the two lines of 
reflection are parallel). In turn 1, Gloria has already identified two corresponding 
segments of the shape and asks “can we continue these two lines?” 
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1 Gloria: Rotation right? [..] Which is two reflections but I don’t know how to 

do that. (Points to the right edge of top figure and top edge of bottom 
one – see Figure 2 below.) OK, can we continue these two lines? 

2 Peter: Probably two reflections. 
3 Gloria: Can we, yeah, or a rotation, same difference. 
4 Peter: [inaudible]. (Gloria draws a straight line extending the right-hand 

vertical edge of the top figure.) 
5 Gloria: Can we make this a straight line and find out what this angle is, and 

then rotate it that much? [……….] Um […..] That’d work, wouldn’t 
it? 

 
Figure 2: Line extending one side of the top shape 

In turn 4, Gloria extends the line and then, in turn 5, infers that the intersection of the 
line and the horizontal side of the lower shape will form an angle that corresponds to 
the angle of rotation necessary between the two shapes. 

INTERPRETING THE EPISODES 
In each episode, we see mathematical reasoning that plays an important role in the 
problem-solving process of the pairs, but that does not fall easily into the two most 
commonly-discussed categories of inductive and deductive reasoning. We thus begin 
by interpreting the two episodes described above in terms of Peircean abduction. We 
then interpret the same episodes using Toulmin’s (1958) structure of argumentation. 
Focus on Peirce’s different types of inferences 

Deduction proves that something must be; Induction shows that something actually is 
operative; Abduction merely suggests that something may be. (Peirce, 1931/1960, 5.171) 

Peirce's description of the three forms of inference, as quoted above, marks a shift in 
interpretation away from the logical form of a given inference (how it might be 
characterised through syllogistic propositions) toward its use, by the inquirer, in the 
process of inquiry. While researchers such as Reid (2003) and Cifarelli (2000) claim 
to have identified student abductions based on these logical forms, Mason (2005) 
cautions, “The tricky part about abduction is locating at the same time the appropriate 
rule and the conjectured case” (p. 5). In many cases, neither of these propositions will 
be uttered out loud in spoken conversation – they must be inferred from context. 
While logical forms are sometimes easy to identify in written language (especially in 
mathematics texts), they can be much harder to identify in speech, which is 
frequently less planned and more emergent in real time, especially in the context of 
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pairs jointly co-constructing the talk. While some students will state that something 
“must be” (or ‘has to be’ or ‘gotta be’) true, others may choose to express their 
certainty through other means, both verbal and non-verbal. Peirce's emphasis on the 
uses of deduction, induction and abduction invites attention to the intentions of the 
inquirer, but these intentions, about what must be, what actually is, and what may be, 
can’t always be clearly identified either. Thus, one challenge facing researchers is 
how to work with the surface elements of language in order to make interpretations 
about the type of inference demonstrated in particular conversational exchanges. The 
short list given by Grice in our opening quotation, which includes clear, propositional 
terms of inference, is completely insufficient when looking at real people reasoning 
in conversational pairs about mathematics. 
Considering episode 1, we can see Brad’s inference that the point cannot lie on PB as 
a deduction, since he states what must be the case. Here, the logical form is quite easy 
to identify, as are the linguistic features. By contrast, Lucie’s proposal that the point 
lies on the perpendicular to j through P can be seen as an abduction, since it indicates 
what may be true, as exemplified by her own words “Maybe that’s the line” and her 
later hedged statement of hesitation “But I don’t know if that’s right.” Lucie’s 
inference satisfies two additional characteristics of abduction: (1) it involves the 
generation of a new idea (the line she constructs did not exist before, and stands as a 
genuinely new and plausible solution); and (2) it is not logically derivable from true 
statements (and, indeed, the line she proposes is not the right one). Further, the use of 
“’cause” is a pragmatic one, in Stubbs’s sense as described above.  
We might also attempt to interpret Lucie’s abduction in the following logical form, 
where the case is the only thing Lucie knows to be true, and the result has been 
hypothesised as a plausible situation in light of the novel rule. 

case: The (solution) point has to go up 

rule: If it’s on that line, it would go up 

result: The point is on that line 

In contrast with the linguistic interpretation offered above, the logical form fails to 
capture the interlocutor’s degree of conviction when she hedges her proposal both 
with ‘maybe’ and “I don’t think that’s right’. Additionally, there is a close link 
between this formulation of abduction and Stubbs’s pragmatic category of connective 
use, as noted above in relation to “’cause”. Curiously, Stubbs’s term ‘pragmatic’ 
seems to evoke Peirce’s work on pragmatism. 
We turn now to episode 2, where Gloria and Peter are trying to identify the isometry 
relating two shapes. In turn 1, Gloria asks, after pointing to the two lines in question, 
“can we continue these two lines?” She has not explicitly stated that she is trying to 
identify the angle of rotation (or the angle between the two lines of reflection), but 
this becomes explicit in turn 5, where she asks (again): “Can we make this a straight 
line and find out what this angle is?” We see this as an abductive inference, since it 
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follows the use of what may be true, as evidenced by her questioning tone of voice, 
her use of the hedge tag phrase “can we” and the final, doubtful, tagged utterance 
“That would work, wouldn’t it?”  
We find further evidence of this as an abductive inference by the fact that it 
introduces a new idea (the technique of extending lines had not been previously used 
in class), which, in this case, turns out to be fruitful. Once again, we could offer an 
interpretation based on the ‘underlying’ logical form of the inference, but the 
preceding analysis seems to offer an identification consistent with Peirce’s 
conceptualisation of abduction in its pragmatic function. 
Focus on Toulmin’s forms of argumentation 
In work on forms of argumentation and informal logic, Toulmin’s (1958) scheme has 
had its place. But, as Inglis et al. (2007) clearly point out, it is a reduced form of 
Toulmin’s scheme that has been commonly used in mathematics education, one 
which leaves out two of the six components: the rebuttal and, of greater relevance for 
us here, modal qualifiers. Inglis et al. worked with the production of individual oral 
arguments of graduate students in mathematics, exploring a range of mathematical 
conjectures. We were struck in their paper by the fact that modal qualifiers are 
precisely hedges, those statements of propositional attitude concerning the degree of 
conviction the speaker is willing to express. This made us wonder about the 
connection between overt hedging and abduction, which suggest that the student was 
to some extent aware of the making of an abduction that consequently required a 
more tentative assertion. 
Inglis et al (2007) give a visual summary to illustrate Toulmin’s model of 
argumentation (Figure 3). The argument would read: based on the data (D) given, the 
warrant (W) – which is supported by the backing (B) – justifies the connection 
between D and the conclusion (C), unless the rebuttal (R) refutes it. The modal 
qualifier (Q) qualifies the certainty of the conclusion by expressing degrees of 
confidence. 

 
Figure 3: Toulmin’s model of argumentation 

We now run the first episode above through Toulmin’s model to obtain Figure 4. The 
data include the point P, the directrix j, the point B on j, as well as the segment PB. 
Lucie’s conclusion, that the point lies on the line perpendicular to j and passing 
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through P is qualified by her hedged utterances “Maybe” and “But I don’t know if 
that’s right”. We see her statement regarding the equidistance of the line to each side 
of the parabola functioning as the warrant, even though it is offered after the 
argument – following some hesitation and speculate that it is the presence of her 
partner that makes her verbalise this at all. The backing includes the fact that the 
point must be on some line (instead of a line segment like PB), but one that should 
somehow involve both P and j (the givens in the situation). The rebuttal is not evident 
in her argument and may not exist at all.  

?

The point must be on
a line that involves P
and j. Definition of
parabola involves
equidistance.

equidistance

The point is generated by the line
through P perpendicular to j.

"maybe," "but I don't
know"

P, j, B, PB.
envelope

 
Figure 4: Lucie’s argument expressed using Toulmin’s scheme 

Turning now to the second episode, we can also run Toulmin’s scheme on Gloria’s 
argument (in Figure 5). 

Line segments determine lines. It
looks like a 90 ° clockwise rotation

Unless it doesn't work.

"can we?", "wouldn't
it?"

Rotations are determined by a single
angle. Two intersecting lines form an
angle. A rotation takes corresponding
parts of one figure to those of the
other.

The correct angle of rotation
will be given by the angle
formed at the intersection of
two corresponding lines. 

A' is a rotation of A

 
Figure 5: Gloria’s argument expressed using Toulmin’s scheme 

This time the modal qualification is not expressed through specific words, such as 
‘maybe’ or ‘probably’, but instead in the intonation of Gloria’s statement, which is 
made in question form: “Can we […]?”. In this episode, we also find no evidence of a 
rebuttal, though presumably Gloria had an immediate and pragmatic rebuttal in mind, 
which was to actually see whether the angle of rotation created by intersecting the 
line and side segment would work to rotate the pre-image to its image. Filling in the 
scheme, Gloria’s conclusion is that the angle of rotation between the two shapes is 
the angle created by the intersection of two corresponding sides (one extended). 

CONCLUSION 
The above analyses show that it is possible to interpret the two excerpts of paired 
student reasoning in conversation using either Peirce’s idea of abduction or 
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Toulmin’s model of argumentation. Both are challenging to use as interpretational 
frameworks, and this is so for several reasons. First, both Peirce and Toulmin tended 
to work with made-up examples to illustrate their inferences or arguments; and, as we 
have seen, real speech is much messier – some phrases are omitted, others are 
communicated non-linguistically, and so on. Second, and especially for abduction, we 
have already noted that the most important component of the abductive inference – 
the stating of the general rule – must often be inferred from context. However, even 
in Toulmin’s case, what counts as data, warrant, and backing is not always obvious, 
and certainly not objectively knowable. Third, neither Peirce nor Toulmin has 
conversational reasoning in mind when articulating their theories. In some senses, 
Toulmin’s emphasis on argument is post hoc, given that the interaction between two 
students (in our own data) frequently involved negotiation of meanings, and 
subsequent attempts to explain and/or convince. 
The analyses we conducted reveal interesting similarities and differences. Most 
remarkable of the former related to the importance attached to the degree of 
confidence held by the reasoner. Toulmin includes modal qualifiers in his model in 
order to account for the variety of certainty that one might have about a claim. 
Pierce’s abductions are seen as hypothetical may be’s. Their attention to uncertainty 
might seem strange in the context of mathematics, where one frequently seeks 
precisely the opposite. Yet both Peirce and Toulmin seem to care about how the 
reasoner can make advances in inquiry, and take it as given that many advances will 
be tentative. A particular resonance such a perspective has in mathematics education 
can be found in the work of Rowland, who has studied the notion of hedging in the 
mathematics classroom. We suggest that this notion could be used productively to 
help identify and analyse and interpret student reasoning in terms of Toulmin or 
Peirce.  Lastly, the pragmatic use of ‘because’ also appeared as a surface marker in 
one of the two episodes that may help identify abductions in some cases.  
Toulmin is concerned with trying to identify the structure and form of an existing 
argument, whereas Peirce is more concerned with examining the process of scientific 
discovery. Peirce draws attention to the way in which problem solving may require 
abductive ‘leaps of faith’, where one is reasoning ahead of more explicit or 
acknowledged deductive or inductive means. This seems to us an important 
awareness in educators involved in supporting and eliciting mathematical problem 
solving. Toulmin’s analysis of an argument acknowledges the qualification involved 
in any emergent complex argument, and serves to draw attention to argument 
structures and resources that may not have been apparent in the more ‘logical’ 
literature analyzing the form and nature of mathematical arguments.  
By juxtaposing the results of each analysis of the same two mathematical episodes, as 
well as identifying hedging as one surface linguistic phenomenon common to both, 
we have attempted to highlight how one might ground each theoretical account in the 
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specifics of moment-to-moment conversation, as well as thereby drawing attention to 
commonalities across the two accounts that have not been made before. 
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A TEACHER’S USE OF GESTURE AND DISCOURSE 
AS COMMUNICATIVE STRATEGIES IN CONCLUDING 

A MATHEMATICAL TASK 
Raymond Bjuland, Maria Luiza Cestari & Hans Erik Borgersen 

University of Agder, Kristiansand, Norway 
An experienced teacher has been observed in dialogue with her sixth-grade pupils 
when summing up their solutions to a mathematical task. The pupils have worked in 
small groups on this task, which is related to a transposition of data (age and height) 
from a figure to a Cartesian diagram and to a written text. The teacher’s discourse 
has been analysed, using the dialogical approach to communication and cognition. 
Analyses of gestures are based on McNeill’s classification expanded by Edwards, 
using the concept of embodied cognition and complemented by the work of Goodwin, 
taking into account the contribution of the environment to the organisation of the 
gesture. Some communicative strategies used by the teacher have been identified, for 
example, questioning (who, how, why, asking for other suggestions). Pointing 
gestures are used, but they are not prominent. Our findings suggest that gestures are 
more used and connected to the teacher’s explanations than to other procedures.     

INTRODUCTION 
Gesture and discourse have, for a long time, been seen as two distinct ways of 
conveying meaning. The tendency today is to conceive these two modalities of 
expression of meaning as complementary. In teaching-learning situations, gestures 
can be considered as carriers of meaning having the function to locate ideas in space, 
to make them visually perceived. Meanwhile, discourse has the function of 
transforming/making ideas in words. These are privileged tools used by teachers 
when communicating, explaining, and discussing mathematical concepts in the 
classroom. The aim of this paper is to focus on a teacher’s communicative strategies 
while summing up, in dialogue with her pupils, the solutions from the pupils’ small-
group discussion on a mathematical task (called the diagram task), emphasising the 
transition between three semiotic representations: figure, diagram and written text.  
This study is related to the research and developmental project, Learning 
Communities in Mathematics1 (LCM) which was designed at the University of Agder 
(UiA) in Norway. The project was implemented in the period from 2004-2007, and 
the theoretical framework for it was presented at Cerme 4 (Cestari, Daland, Eriksen, 
& Jaworski, 2006). The project aimed to “create inquiry communities of teachers and 
didacticians to both develop and explore the development of mathematics teaching 
and learning” (Jaworski, Fuglestad, Bjuland, Breiteig, Goodchild, & Grevholm, 2007, 
p. 7).  
Inspired by ideas and discussions at workshops in the LCM project, the experienced 
teacher in focus (about 35 years in service, spring 2005) organised workshops in the 
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classroom with her pupils during one lesson a week. It is in such a workshop context 
that the diagram task was used in the classroom with the following structure in three 
parts: 1. Introduction of activities (00:00-04:28), 2. Working in groups of two and 
three (04:28-13:47), and 3. Summing up with the whole class (13:47-18:47). In 
Bjuland, Cestari and Borgersen (2008c) we identified the teacher’s communicative 
strategies while presenting the task in a dialogue with her pupils (part 1). The teacher 
used both speech and gestures when focusing on the transition from the two different 
semiotic representations, figure and diagram. More specifically, she posed open 
questions while simultaneously “pointing to the diagram followed by a gradually 
decreasing circular sliding between the diagram and the picture” (op. cit., p. 190).  
We were also concerned with the difficulties the pupils met in the solution process. 
One group (two girls) made incorrect suggestions without being attuned to each 
other, and they had difficulties in focusing on two dimensions in the diagram. The 
teacher visited the girls twice during the solution process (part 2). She posed different 
questions (yes-no, open, specific) in order to help them to express their difficulties. 
The teacher gave verbal explanations simultaneously with using gestures like 
pointing and circular slidings to make connections between figure and diagram 
(Bjuland et al., 2008c). 
After having reported from the first two parts of the work on the diagram task, we are 
now concerned with the way the teacher sums up and concludes the mathematical 
activity (part 3). This paper addresses the following research question: What kinds of 
communicative strategies does an experienced teacher use in her dialogues with 
sixth-grade pupils, while summing up the pupils’ solutions to a task that involves 
moving between different semiotic representations? In Bjuland et al. (2008c), we 
have illustrated that gesture and speech are natural mediating devices when this 
teacher introduced the diagram task and when she visited the girls’ group. It is 
therefore important to ask how gestures are used in connection with speech in part 3.  

THEORETICAL FRAMEWORK 
Gestures and discourses are fundamental modalities in the interpretation of 
communicative strategies used by teachers in the classroom. According to Roth 
(2001), teachers employ many gestural resources crucial for understanding a concept. 
So, pupils need to attend to both their teachers’ speech and their gestures in order to 
access information presented in a lesson. In Bjuland et al. (2008b), we have revealed 
how the multimodal components of expression, speech, gesture, and written 
inscriptions develop synchronically. These major components of the objectification 
process (Radford, 2003) have stimulated the pupils to come up with a solution. We 
have in our work mostly observed deictic gestures. These are defined by Mc Neill as 
“pointing movements, which are prototypically performed with the pointing finger” 
(1992, p. 80). This kind of gestures has an important function of locating in space the 
referent of the discussion. Likewise, Edwards (2005) reported that almost all gestures 
produced in the solution of a problem, related to fractions, by prospective teachers 
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were deictic.  According to Edwards (2009), they constitute a particular modality of 
embodied cognition. 
In this paper we take a complementary approach, inspired by the work of Goodwin 
(2003), and include the analysis of the structure of the task. He has introduced the 
concept of symbiotic gesture when investigating how gesture is related to the 
physical, semiotic, social and cultural components of the context where it is 
embedded. An example provided by Goodwin (op. cit.) refers to archaeological 
analysis related to patterns of earth. He explains that the finger of the archaeologist 
pointing to the ground shows the graphic structure in the dirt, and, at the same time, 
that structure provides the context, the place, for the precise movement of the gesture. 
Another example of a football player is a classic one: if taken in isolation, it is not 
evident what he is doing. However, if the player is placed in the context of the game, 
the meaning emerges naturally. According to Goodwin (op. cit.), the nature of 
embodied practices which promote the competence to act as a member of a 
community is basically interactive. So, instead of taking as an analytical focus the 
gesture and discourse by themselves, we include the object which gestures are 
referring to as part of the analysis. We include as well the activity where this object is 
inserted in a sequential organisation, taking into account contributions from 
participants assuming different roles at different moments in the lesson. We illustrate 
how the teacher makes use of these components in the dialogues with her pupils.  

METHOD 
For analysing the discourses we have used a dialogical approach to communication 
and cognition (Bjuland, 2002; Cestari, 1997; Linell, 1998; Marková & Foppa, 1990) 
in order to identify an experienced teacher’s communicative strategies used in the 
dialogue with her pupils. In this approach, there are some important principles: the 
sequentiality, joint construction, and act-activity interdependency (Linell, 1998). As 
far as the sequential organisation of discourse is concerned, “each constituent action, 
contribution or sequence, gets significant parts of its meaning from the position in a 
sequence. That means that one can never fully understand an utterance or an extract, 
if taken out of the sequence which provides its context” (op. cit., p. 85). In this case 
we have to take into account how a particular utterance is related to the previous 
utterance as well as to the subsequent one. The teacher’s gestures are identified 
within a theoretical framework that considers cognition as an embodied phenomenon 
(Edwards, 2009) and as an interactional process (Goodwin, 2003). Further details 
about this multimodal approach can be found in Borgersen, Cestari, and Bjuland (in 
press) and in Bjuland et al. (2008b).  
The dialogues presented in this paper are situated in a particular instructional context 
where the teacher, in dialogue with her pupils, sums up the mathematical solutions 
(part 3). In our analysis, we focus on the teacher’s speech and gestures embodied and 
situated in the lesson. Part 3 of the selected 19-minutes video clip has been 
transcribed line by line, and we have divided the transcribed material into numbered 
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utterances/turns. “An utterance lasts as long as a speaker holds the floor” (op. cit., p. 
281).  The gestures are described in italics inside brackets [ ] within the 
utterances/turns where they occurred. 
The task 
The following task was given to the pupils: Write down which person corresponds to 
each of the points in the diagram (the Norwegian words alder and høyde mean age 
and height respectively). 

 
 

Liv corresponds to point  …………………. 
Gry corresponds to point   …………………. 
Ole corresponds to point  …………………. 
Hans corresponds to point …………………. 
In earlier papers (Bjuland et al., 2008a; Bjuland et al., 2008b) we presented a detailed 
analysis of the proposed task, emphasising the characteristics of the three 
mathematical representations figure, diagram and written text respectively. Here, we 
only present the task as a background for understanding the dialogue between the 
teacher and her pupils while summing up the mathematical solutions. The teacher-
pupil dialogues therefore focus particularly on the third representation (written text), 
including questions asking for the number in the diagram corresponding to every 
person in the figure.   
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SUMMING UP IN THE CLASSROOM  
The plenary discussion (part 3) could be summarised in one ongoing episode, 
consisting of five thematic sequences:  
Sequence                                Communicative Strategies                    Time     Turns 
1. The location of 
Ole – explanation  

Open question: Who is number one, two, three and 
four respectively? Two how-questions, trigger pupil 
explanation. The answer is visualised on the 
overhead projector. One further how-question, and 
the pupil repeats his explanation. Question asking 
for other suggestions. The teacher uses gestures by 
pointing to point 1, 2, 3 and 4 on the transparency.  

1.13 
min 

162– 
172a  
 

2. The location of 
Gry – 
explanation and 
justification  

Open question: What about the other points? How-
question – triggers an explanation. The answer is 
visualised on the overhead. Why-question related to 
the two variables, height and age. Gestures are not 
identified.  

0.43 
min 

172b– 
179   

3. The location of 
Hans – 
explanation and 
justification 
 

Open question: Other answers? The answer is 
visualised on the overhead. How-question – triggers 
an explanation. Question asking for other 
suggestions in combination with gestures, pointing 
to point 1.  Why could Hans not be point 1?  

1.21 
min 

180– 
200a   

4. The location of 
Liv – explanation 
and justification   
 

Question directed to a pupil, Do you have the last 
solution? The answer is visualised on the overhead. 
How-question – triggers an explanation. One 
further question, Was it just a guess or should it be  
like this?  Gestures are not identified. 

0.40 
min 

200b– 
206a  

5. Teacher 
summing up 
  

Do all of you agree with these answers? Other 
solutions? Give praise to the pupils. Focus on the 
unusual – height at the horizontal axis. 
Recapitulation of the two dimensions, height and 
age. Gestures are not identified. 

0.54 
min 

206b 

Table 1: Plenary discussion after the small-group work 

In our analysis we have focused on the first sequence of the dialogue since it 
illustrates how the teacher initiates the discussion. We have also chosen an extract 
from the third sequence since this dialogue shows how the teacher focuses on the 
pupils’ argumentation, emphasising the connection between the two dimensions, 
height and age in the diagram. This third sequence also shows how one of the pupils 
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(from the group with the two girls) that seemed to have most difficulties in 
understanding the task (Bjuland et al., 2008a; Bjuland et al., 2008b) responds to one 
of the teacher’s questions, giving us some impressions of her understanding of the 
problem at this moment.   
These sequences show the direction of the mathematical discussion between the 
teacher and her pupils, from a discussion of the location of Ole to the location of Gry 
and so on. This is based on the pupils’ responses to the questions posed by their 
teacher.  
The location of Ole 
The dialogue below illustrates the first utterances in the teacher-pupil discussion of 
the mathematical solutions which have resulted from the collaborative small-group 
work.  The teacher (Tea) initiates the dialogue, inviting her pupils of both sexes to be 
attentive to the task:   

162 Tea: Girls and boys [Turns on the overhead projector]. What I wonder 
about, what I actually wonder about, where are the different persons? 
Who is number one? [Points at point 1, diagram], who is two? [Points 
at point 2, diagram], who is three? [Points at point 3, diagram], and 
who is four? [Points at point 4, diagram] Per?  

163 Per: We think Ole is one. 
164 Tea: Ole is number one. How can you be sure of that? How did you think 

that out? 
165 Per: Since he’s oldest, and then he is tallest [Hans] (…). 
166 Tea: Yes. 
167 Per: [Ole is] as tall as Liv. 
168 Tea: Okay. But Ole he’s then number one. Can you write it on [the 

transparency], so we know it? [Per goes to the overhead projector and 
writes “1” on the transparency] … Ole is number one. [Per gives the 
pen/Indian ink to his teacher and goes down to his seat] But what did 
you think when you found out that Ole was number one? 

169 Per: Since, when he is [oldest] 
170 Tea:                               [Ssss]      
171 Per: and then he is on the picture, then he is as tall as Liv. No one else is as  

old as him [Ole]. 
172 Tea: Okay. Mm. Did anyone think differently? Since he is oldest, okay. 
 

The teacher initiates the discussion by using the same open questions as she did when 
she presented the task before the collaborative small-group work (Bjuland et al., 
2008c). However, her gestures are a bit different. In Bjuland (op. cit.) we observed 
that she focused on the transition from the figure to the Cartesian coordinate diagram 
by making four consecutive pointings to the diagram with a gradually decreasing 
circular sliding between the diagram and the figure.  The interplay between the 
teacher’s gesture and her questions seemed to be a mediating device in her 
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presentation, showing the relationship between figure and diagram. She is here using 
the four pointing gestures to the diagram in connection with her questions without 
moving between the two representations (162). We observe from the dialogue that the 
teacher’s use of gestures in part 3 is far less prominent than in the presentation of the 
task (part 1) and in her small-group dialogue (part 2) with the two girls (Bjuland et 
al., 2008b). This indicates that the teacher uses more gestures in connection with her 
explanations to the pupils than in relation to pupils’ explanations. In the dialogue 
between the teacher and the pupil Per (162-172), he comes up with the group solution 
for Ole as a candidate for point 1 (163). This response guides the direction of the 
discussion, showing that the teacher-pupil dialogue begins to focus on one of the 
extreme locations. The two questions from the teacher (164) stimulate Per to give an 
explanation (165) by making a comparison between Hans and Ole related to both age 
and height and a comparison of Liv and Ole related to their same height (167).  
After having been concerned with the third representation (written text), showing the    
written solution on the transparency, the teacher poses a third how-question (168), 
provoking Per to repeat his explanation (169), (171). The teacher invites the pupils to 
make other suggestions (172), but she does not wait for a response. It seems that the 
teacher has observed that her pupils are satisfied with the solution putting Ole at point 
1.   
The location of Hans 
The dialogue below contains a particular extract from the third sequence.  

194 Tea: But you [singular you], what did you [plural you] think when you 
found out that Hans should be number two? 

195 Odd: We thought that he was tall, and he [Hans] was much younger than 
Ole. 

196 Tea: Mm. Yes, so therefore he should be there. Is there anyone else that 
thought about it? [Silence, 6. sec.] Leo, what did you think? 

197 Leo: Eeh, no I (…) 
198 Tea: Eeh, yes, Is there anyone else that thought about it? Let’s see, Hans is 

number two. He had to be there. Why couldn’t Hans be there [Points 
at point 1, diagram] Why couldn’t Hans be there, Eli?[The teacher 
chose Eli among several pupils who raised their hands]  

199 Eli: Since he, or if Ole, he is the oldest and then couldn’t he [Hans], since 
he [Hans] is the youngest [of these two]. 

200a Tea: Mm. Yes.  
 

In the second sequence of the episode, one of the girls chooses Gry at another 
extreme location in point 3 and gives an explanation for the location of Gry (see 
Table 1). One of the boys has responded to the teacher’s open question and told the 
class that Hans corresponds to point 2, the third extreme location. This answer has 
also been visualised on the transparency.  
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In the continuation of the dialogue, the teacher poses a question that stimulates the 
pupils to explain how they come up with this particular location for Hans (194). The 
pupils were not only to produce an answer, but they are also challenged to explain 
their thinking. Odd’s response, starting with we, (195) shows that he explains the 
group’s thinking. In his explanation Odd is concerned with the two variables, age and 
height, making a comparison between Ole and Hans. Since they have already 
discussed the location of Ole (first sequence), it is natural for Odd to explain how his 
group has discovered the relationship between the placement of Hans and Ole 
respectively.  
After having evaluated this response, the teacher goes on to pose another question 
that provokes other suggestions (196). The pause indicates that the teacher allows a 
waiting time of six seconds, giving the pupils opportunities for individual 
considerations. Since the pupils do not respond to this initiative, the teacher repeats 
her question and directs it to the individual pupil, Leo (197). His response and the 
teacher’s next question (198) show that the pupils do not have other suggestions. 
They seem to be convinced that Hans corresponds to point 2. We might wonder why 
the teacher is so focused on bringing other suggestions into the dialogue. One 
possible explanation could be that she wants to focus on possible misconceptions. 
The teacher seems to be aware of how complex it could be for pupils to realise how 
the two variables, height and age, are connected in the Cartesian coordinate system. 
By focusing on point 1 as a possible location for Hans, the teacher also triggers the 
visual misconception: the tallest person corresponds to the point, located highest in 
the diagram. In connection with this question she also uses gestures to make the 
pupils aware of the possible location of Hans at point 1. In the analysis of the 
dialogue of the two girls (Bjuland et al., 2008b), we identified this misconception.  
When the teacher poses the challenging why-question twice, provoking the pupils to 
consider the wrong location of Hans, the pupil Eli (pupil 4 from our girl group) 
responds to the teacher’s initiative (199). Eli makes a comparison of Hans and Ole 
due to their ages. In one respect, it is possible to argue that Eli is still just focusing on 
one dimension, the variable of age. However, if we situate the response in this 
particular context based on the teacher’s way of posing the question and also the 
teacher’s evaluation of the response (200), it seems as if Eli has given a proper 
explanation and developed her understanding from the group work.  

CONCLUDING REMARKS 
Through the analysis of dialogues from the teacher-pupil discussion of group 
solutions on the diagram task, we have identified the teacher’s communicative 
strategies. Her use of questioning (who, how, why, other suggestions) is the most 
prominent strategy. The analysis has also revealed that her use of gestures is more 
restricted in part 3 compared to gestures used in connection with her explanations 
while presenting the task and in a small-group dialogue with the two girls (Bjuland et 
al., 2008c). We could wonder why this restriction happens in part 3. When the teacher 
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plays the role as a presenter (part 1) and as a supervisor (part 2), she uses gestures as 
a mediating device in combination with verbal explanations. In part 3 she uses mainly 
gestures, pointing to the diagram without circular slidings between representations, to 
initiate the discussion. Here (in part 3) the teacher plays the role as a coordinator, 
opening the floor for the pupils to write their answers. The teacher-pupil discussion 
focuses on the mathematical representation, written text, in which the pupils show 
their group solutions on the transparency, making explanations and justifications.  
Concerning the contribution of the environment, supported by the concept of 
symbiotic gestures (Goodwin, 2003) we have observed that the nature of the task is 
influencing the different pointing gestures. It is indeed the pupils’ responses that 
guide the direction of the mathematical discussion. Gestures and discourses are 
conceived as meaning translators between different mathematical and pedagogical 
ideas used by the teacher as communicative strategies.  

NOTE 
1. This study was supported by the Research Council of Norway (Norges Forskningsråd): Project number 157949/S20. 
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A TEACHER’S ROLE IN WHOLE CLASS MATHEMATICAL 
DISCUSSION: FACILITATOR OF PERFORMANCE ETIQUETTE? 

Thérèse Dooley 
University of Cambridge and St. Patrick’s College, Dublin 

In the improvisation that occurs in a jazz ensemble, a soloist rarely develops a 
completely new idea but, instead, elaborates and builds on the previous player’s 
input. From an emergent perspective, classroom mathematical practice is akin to 
such improvisation. How this might happen in a whole-class situation is unclear. In 
this paper, a description is given of a whole-class discussion that took an unplanned 
trajectory. The teacher did not impose a particular structure on the lesson but 
focused pupils’ attention on productive mathematical ideas that emerged from the 
group. In the concluding discussion, it will be shown that the improvisation 
metaphor, while useful for describing mathematics as a socio-cultural activity, may 
have a different application in a whole-class situation than in small group settings.   

INTRODUCTION 
Although plenary sessions are common to mathematics lessons, they are often 
characterized by traditional approaches that endorse the position of mathematics as a 
kind of received knowledge and the teacher as sole validator of students’ 
contributions (See, for example, Boaler, 2002; Cobb, Wood, Yackel, & McNeal, 
1992) While research shows that whole-class discussion can be fertile ground for 
higher-order mathematical thinking (Cobb et al., 1992; O'Connor, 2001), the fast pace 
with which it is usually associated means that there is little scope for students to make 
comments and build on each others’ mathematical ideas (Hodgen, 2007). One 
consequence of this is that students become disengaged from the subject, perceiving 
it to be one in which they have little opportunity for participation (Boaler, 2002). 
However, the orchestration of inquiry-based discussion in mathematics is challenging 
for teachers. Sherin (2002) alludes to two key tensions whereby teachers, on the one 
hand, are expected to encourage students to share ideas and, on the other, have to 
ensure that the lesson is mathematically productive.  
In this paper the improvisation metaphor is used to show how a teacher and her pupils 
co-constructed new mathematical ideas in the context of a whole-class discussion in a 
primary school. In particular, attention is paid to the way provision can be made for 
different levels of understanding within the class. In the concluding discussion, 
reference will be made to limitations of some tools that are used to analyse such 
research. 

THE IMPROVISATION METAPHOR 
According to Lakoff and Johnson (1980), metaphors not only help us to understand 
one kind of thing in terms of another but they can also create a reality and thus act as 
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guides for future action. In relation to the teaching of mathematics the improvisation 
metaphor is one that serves both of these purposes. Consistent with a view of 
mathematics as a socially and culturally situated activity, the point of reference in 
mathematics education is the classroom mathematical practice, a perspective that has 
been described by Cobb (2000) as emergent. Sawyer (2004) maintains that this 
perspective implies that teaching must be improvisational and ‘that the most effective 
learning results when the classroom proceeds in an open, improvisational fashion, as 
children are allowed to experiment, interact, and participate in the collaborative 
construction of their own knowledge’ (p.14).  
In theatrical improvisation, a group of actors creates a performance without using a 
script. Because it is characterized by a high level of unpredictability, the performance 
has associated with it what Sawyer describes as a ‘moment-to-moment contingency’ 
(Sawyer, 2006: p.153). As the actors play their parts, several potential possibilities 
are brought into the frame. What emerges is not decided by any one person but rather 
is a phenomenon that is produced by the group. In jazz improvisation, each soloist is 
assigned a number of measures to play before the next soloist takes over. Due to the 
rapidity of the transition, a player rarely develops a completely new idea but rather 
responds to and builds on the previous player’s input (Berliner, 1994).  
Sawyer (2004) maintains that like the improvisation that occurs in theatre or in a jazz 
ensemble, creative teaching is both emergent and collaborative. It is emergent 
because the outcome cannot be predicted in advance and it is collaborative because 
the outcome is determined not by any one individual but by the participants of the 
group. Martin, Towers and Pirie (2006) used the improvisational lens to analyse 
collective mathematical understanding. They describe collective mathematical 
understanding as the kind of learning and understandings that occur when a group of 
any size work together on a mathematical activity. Central to their analysis is the idea 
of co-acting which they define as  

…a process through which mathematical ideas and actions, initially stemming from an 
individual learner, become taken up, built on, developed, reworked, and elaborated by 
others, and thus emerge as shared understandings for and across the group, rather than 
remaining located within any one individual. (p.156) 

They make a distinction between co-actions and interactions. While in interactions 
there is an emphasis on reciprocity and mutuality, co-actions concern actions that are 
dependant and contingent upon the actions of other members of the group (Towers & 
Martin, 2006). Through this co-acting, an understanding emerges that is the property 
of the group rather than any individual. It is not that all individuals bring the same 
understandings to the scene but rather that individual contributions will result in 
something greater than the sum of the parts. Neither does it preclude an individual 
making his or her own personal advancements.  
In a more fine-grained analysis of the improvisational metaphor, Martin and Towers 
(2007) have introduced the notion of performance etiquette. In jazz terms this refers 

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 895



 

 

 
to a situation where players drop their own ideas in deference to a better (in the view 
of the collective) idea if that works. It means that due attention and equal status have 
to be given to all players’ ideas and intuitions. According to Martin and Towers, ‘(in) 
mathematics, ‘better’ is likely to be defined as a mathematical idea, meriting the 
attention of the group, which appears to advance them towards the solution to the 
problem’ (p.202). Although much of the work done by Martin et al. concerns small 
groups there is evidence that the metaphor is also applicable to whole class discussion 
(See, for example, Dooley, 2007). King (2001) contends that in lessons where 
students and teachers co-create classroom discourse, ‘one can view students as other 
participants in [the] improvisation, following the direction of the lead improviser, the 
teacher’(p.11). She proposes that the teacher is rather like the soloist who must 
modulate her performance to her instrumentalists and audience. There is some danger 
that this analogy leads to the teacher’s role being perceived as centre of (as opposed 
to central to) the learning process. Sherin (2002) suggests that, in order to achieve a 
satisfactory balance between process and content, the teacher engages in filtering by 
which is meant a narrowing of ideas generated by students so that so that there is a 
focus on mathematical content. An implication for whole class discussion is that the 
teacher is more facilitator of group etiquette than lead improviser. This idea is 
pursued further in the account below. 

BACKGROUND 
The aim of my research is to investigate the factors that contribute to the development 
of mathematical insight by primary school pupils. The methodology is that of 
‘teaching experiment’ which was developed by Cobb (2000) in the context of the 
emergent perspective and in which students’ mathematical development is analysed 
in the social context of the classroom. For a period of six months, I taught 
mathematics to a class of thirty-one pupils (seven girls and twenty-four boys) aged 9 
- 10 years. The school is situated in Ireland in an area of middle socio-economic 
status. Although I taught the lessons, the class teacher played an active role as co-
researcher, advising on the suitability of lesson content, clarifying any confusion that 
arose in whole class discussions, working with pupils during group work and making 
observations in post lesson discussions. Many lessons took place over two or three 
consecutive days, each period lasting forty to fifty minutes. I visited the class on a 
total of twenty-seven occasions. All phases of the lesson were audiotaped. When 
children were working in pairs, audio tape recorders were distributed around the 
room. Each pupil maintained a reflective diary. Follow-up interviews were held with 
students who had shown some evidence of reaching new understandings over the 
course of a lesson.  
Forman and Ansell (2001) contend that analysis based on isolation and coding of 
individual turns is too limited to bridge the individual and social. Therefore, I 
conducted ethnographic microanalysis, which according to Erickson (1992) is 
especially appropriate when the character of events unfolds moment by moment. The 
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approach adopted was top-down starting with the molar units (lessons) and moving to 
progressively smaller fragments. I transcribed all lessons and isolated those in which 
pupils showed evidence of constructing new mathematical insight. Thereafter I 
identified constituent parts of the lesson, starting with major events and moving 
progressively to the actions of individuals. A comparative analysis of lessons was 
also undertaken.  
The lesson described here took place on a third consecutive visit to the class during a 
week of the Spring term. On the previous two days, the pupils had been working on a 
lesson entitled ‘Chess’, the object of which had to find the minimum number of 
games that could be played by participants in a competition where each competitor 
had to play all other players. At the conclusion of this lesson some pupils had found 
the answer for one hundred players (i.e., the sum of 1 - 99) by using a calculator 
while others had latched onto the discovery made by one pupil, David1 that the 
solution could be found ‘by multiplying by the number less than it and halving it’ 
((100 x 99) ÷2). It was my intention on the third day to begin a new lesson but first 
told the story of Gauss (the mathematician who, as a boy, had amazed his teacher by 
his rapid calculation of the sum of integers from 1 to 100) in order to see if the pupils 
would make any connections between it and the chess problem. I expected that talk 
on this problem would last no longer than five or ten minutes. However, a rich 
discussion followed in which I truly had to improvise. Although this lesson is not 
being promoted as exemplary, I learnt from it something about the power of ‘letting 
go’ and ways in which group etiquette might be facilitated. 
The focus of this paper is on the discussion that took place after I first related the 
story of Gauss. Although space does not allow the full transcript to be presented, an 
effort is made to give as full as possible a sense of the lesson trajectory (a problem 
described by O'Connor (2001: p.144) as ‘the competing requirements of data 
reduction and interpretive explicitness’). The following transcript conventions are 
used: T.D.: the researcher/teacher (myself); Ch: a child whose name I was unable to 
identify in recordings;…: a hesitation or short pause; […]: a pause longer than three 
seconds; ( ): inaudible speech; [   ]: lines omitted from transcript because they are 
extraneous to the substantive content of the lesson. 

THE IMPROVISATIONAL CREATION 
On telling the story, some pupils suggested that Gauss may have found his solution 
by adding fifty and fifty or five twenties, considering addends of rather than the sum 
to a hundred. When I focused their attention on the problem conditions, Barry had 
this idea: 

18 Barry:  Eh, you add up all the numbers that are in ten like one, two, three, 
four, five, six, seven, eight, nine, ten… 

                                           
1 Pseudonyms are used throughout the paper.  
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19 T.D.: Hmm. 
20 Barry: and then multiply by ten. 
21 T.D.: Ok, so you would add up as far as ten and then multiply the answer by 

ten? 
22 Barry: Or nine, I’m not really sure. 
23 T.D.: Ok, why do you think it might be nine? 
24 Barry: Eh, because you have already counted up to ten and it’s ten tens in a 

hundred. 
Here he was making an assumption that the sum of numbers between 1 and 10 would 
be the same for all decades. Brenda then asked if she could check the answer on the 
calculator which was interesting given that she had thus correctly established the 
solution for forty players in the Chess activity.  
Anne and Fiona then built on the idea proposed by Barry:  

48 Anne: I think it’s thirty multiplied by ten. 
49 T.D.: Sorry? 
50 Anne: Thirty multiplied by ten. 
51 T.D.: Thirty multiplied by ten, why would you say it’s thirty? [   ] 
54 Anne: Because if you add from one up to ten it’s thirty. 
55 T.D.: How do you know if you add one up to ten it’s thirty? 
56 Anne: If you add one to five, that’s fifteen… 
57 T.D.: Hm, hm 
58 Anne: and then fifteen and fifteen is thirty so then if you multiply that by ten. 
59 T.D.: Ok, possibly that would get it for you. Fiona? 
60 Fiona: Well, could you em, oh, em, do, eh, you could do one plus two and up 

to fifty and then double it...  
I chose not to correct misconceptions at this point but wrote the suggestions on the 
blackboard. This proved a good judgement in this instance because a short while later 
two pupils commented on Anne’s input: 

66 Alan: Em, well, I don’t think Anne’s one is right. 
67 T.D.: Why? 
68 Alan: Cos ninety-nine plus ninety-eight plus ninety-seven plus ninety-six to 

ninety would be around over five hundred and when… 
69 Ch: Oh! 
70 T.D.: Ok, [   ] you are thinking ninety plus ninety one plus ninety two plus 

ninety three would give you approximately how much? 
71 Alan: Em, I don’t know. 
72 T.D.: But it’s… 
73 Alan: But it would probably be over five hundred. 
74 T.D.: It would be over five hundred, so in that section, if you are thinking 

about all those numbers there that would give you about, even just 
adding ninety to a hundred so you are thinking that would give you 
about five hundred. [   ]. Barry? 

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 898



 

 

 
75 Barry: Eh, well, I disagree with Anne as well because, eh, I counted, I 

counted up all the numbers up to ten and I got fifty-five. 
Enda then said that multiplying five by twenty or adding fifty plus fifty (both ideas 
were written on the blackboard) didn’t ‘actually have much to do with this’. Anne 
now corrected her earlier idea: 

91 Anne: I don’t think…my answer wouldn’t work. 
92 T.D.: What were you thinking your answer was? 
93 Anne: I thought it would be thirty multiplied by a hundred. 
94 T.D.: Why would it not work? 
95 Anne: Em, because you would have to, cos I did eh one plus two plus three 

plus four plus five and then em I got fifteen and then I added fifteen 
and fifteen equals thirty but then it would be more because you would 
have to add six, seven and that. 

Anne seemed to have reached a new understanding about the addition of a series of 
numbers. It is possible that she began to reflect on her thinking because Barry and 
Alan disagreed with it. Colin then arrived at a new approach to the problem:  

97 Colin: It could like eh add the, say you could have ninety-nine, add the 
closest and the furthest and then the second closest and the second 
furthest. 

98 T.D.: So give me an idea what you are talking about now. Tell me, elaborate 
a bit on that. [   ] 

101 Colin: Eh if it was ninety-nine, you add one, if it was ninety-eight you add 
two, if it was… 

102 T.D.: Ok, so you are thinking - very interesting because that’s - you could 
have ninety-nine plus one, go on! 

103 Colin: Ninety-eight plus two, ninety-seven plus three, ninety-six plus four, 
eh, ninety-five plus five, ninety-six or ninety-four plus six (teacher 
records on blackboard)… 

104 T.D.: Ok, so what’s that giving you, why are you putting those numbers 
together? 

105 Colin: They all go up to a hundred. 
106 T.D.: So what’s that telling you then, what do you think it might be, have 

you any idea what the answer might be? 
107 Colin: Eh, no. 
108 T.D.: Do you see what Colin is doing there? He is matching up numbers, he 

is taking the numbers at the very beginning and he is matching them 
up with the numbers at the end. 

I was quite excited when I heard this input as this was the method used by Gauss as a 
young boy, hence my remark, on line 102, ‘very interesting because..’. I wrote his 
suggestion on the blackboard but also ‘revoiced’ his input (line 108), a teacher 
strategy that serves to repeat or expand a student’s explanation for the rest of the class 
(Forman & Ansell, 2001; O'Connor, 2001). Enda then proposed a different way of 
grouping the numbers. However, I did not grasp his idea: 
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113 Enda: Eh, well, I think one possible way it would probably would be just as 

hard, it would be harder than one plus two plus three, it’s probably not 
going to help us, what I was going to say is eh adding…when adding 
ninety plus ninety-one plus ninety-two and all that sort of stuff… 

114 T.D.: Hm, hm. 
115 Enda: It’s the same every time, you would just, all you would probably, eh, 

you would probably need to go backwards and just take way ten from 
the answer above every time. That would ( ) if you took away ten 
from the answer every time. 

116 T.D.: Hm, hm 
117 Enda: So add up the numbers going from a hundred backwards. [   ] 
120 T.D.: If you went a hundred plus ninety-nine plus ninety-eight plus ninety 

seven… 
121 Enda: Yeah 
122 T.D.: all the way back as far as one, would you still get the same answer? 
123 Enda: The same answer, even though it would just be easier to do it 

backwards with that way em you just need to take ten away from it 
every time. If you were on ninety, if you got a hundred back to ninety 
and you were on eighty, just take ten away from the answer above. 

Enda had found an interesting solution method, that is, adding from 100 to 91 and 
then finding the solution for the sum from 90 to 81 by subtracting ten. In fact this is a 
very viable method (if one hundred is subtracted each time). I had assumed he was 
talking about commencing the addition from a hundred rather than one. It is very 
possible that I did not comprehend his approach because it was one I had never 
considered. I did, however, ask him to pursue his idea in his diary. 
Liam then made another observation about Colin’s list: 

135 Liam: I don’t think like if you go back to Colin’s way…if you go back, you 
wouldn’t be able to do it, if you go back to one then you might double 
it, the whole thing. 

136 T.D.: Sorry? 
137 Liam: If you go all the way to one, then you double the whole thing. 

Neal then suggested that the list should terminate at 50 + 50 and I urged pupils to 
think about the number of ‘hundreds’ there might be. Anne then proposed that the 
answer would be a thousand and this led to an interesting contribution by Brenda: 

166 Anne: I think the answer would be a thousand. 
167 T.D.: You think it’s going to be a thousand. Do you agree with Anne that 

it’s about a thousand? Brenda? 
168 Brenda: Eh, no cos when I em added up forty for it and, em, I got more than a 

thousand. 
This is the first time in the lesson that a direct reference has been made to the chess 
activity. Fiona confirmed that the answer for 40 children (i.e., the sum from 1 to 39 
although this was not as yet clear) was 780. Anne picked up on this idea: 
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183 Anne: Well, in the one we did yesterday, when the number of children was a 

hundred, then the number of games was four thousand, nine hundred 
and fifty so that there would be the answer. 

I wrote 4950 on the blackboard as one other possibility. Hugh however noticed the 
error: 

197 Hugh: I think it would be, em, five thousand, nine hundred and fifty. 
198 T.D.: Where are you getting that from? 
199 Hugh: Em, because eh yesterday we didn’t add on the hundred. 
200 T.D.: Ok […] so 
201 Hugh: So then it would be …five thousand…and fifty. 

Liam now saw that 50 + 50 should not be included in the list: 
209 Liam: Well on the last one in Colin’s one you have to do a triple sum kind of 

( ) because it would be forty nine plus fifty one and then add fifty on 
to it. 

David confirmed that the solution was 5050 and explained his reasoning as follows: 
213 David: Em, well if you do Colin’s way and then, em, you get, em fifty ( ) and 

then when you get to forty nine plus fifty one and you have to add the 
fifty on and that gives you about five thousand and fifty. 

At this point in the discussion the class teacher indicated that a small group of pupils 
had taken out their diaries and were working on solution methods in them. In 
particular, Declan seemed to be very keen to complete the listing suggested by Colin. 
The pupils embarked on paired/individual work during which the class teacher sat 
with Declan. In the plenary session that was held at the conclusion of the lesson, 
Fiona and Clare discussed possible answers for the sum of numbers up to 200 (they 
proposed 5050 x 2). Some pupils spoke about the solution they found on the 
calculator. Declan described how he solved the problem using Colin’s method. Miles 
began to consider that the answer might be obtained by multiplying a hundred by a 
hundred and then halving it ‘to take way the pluses that you add on to get one 
hundred’. David, however, did not use the formula he had found for the chess 
problem to add the numbers from 1 to 100. 

DISCUSSION 
There is evidence that co-acting took place in this lesson. For example, in the early 
part of the lesson, Fiona and Anne picked up on Barry’s idea of adding a section of 
numbers and applying proportional reasoning (albeit incorrectly). Later Anne 
reconsidered her reasoning on the basis of input by Alan and Barry. Colin’s idea may 
well have emerged because of the discussion around addition of numbers between 1 - 
10 and 90 - 100 (see lines 68 and 75). Enda’s method could be an elaboration of that 
proposed by Colin. Brenda made the explicit connection with the previous day’s 
lesson which prompted solutions by Anne and Hugh. However, the co-acting is not as 
linear as might be the case in small group discussion. Rather there is a weaving in and 
out of ideas. Lines 135 and 209, where Liam broke the flow of conversation to 
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transform Colin’s listing, are instances of this. It also seemed that some students who 
made no contribution to the dialogue reported above were nonetheless actively 
engaged. For example, Declan, a student who is not confident about his mathematical 
ability, pursued Colin’s idea with great zeal. An implication of this is that tools used 
to analyse whole class discussion must extend to include those who are silent but 
participating in the enquiry. 
O’Connor (2001) ponders the difficulties of looking objectively at transcriptions and 
attempting to discern the motives of the teacher in taking certain actions. As the 
researcher/teacher on this lesson, I am in a position to say, at least to some extent, 
why I took certain courses of action. A primary concern was keeping things, to 
continue with the jazz metaphor ‘in the groove’, for the group while at the same time 
respecting the input of individuals. Enda’s idea (lines 115 and 123) did not become 
part of the collective because I did not understand it. Recourse to a diary allowed him 
to pursue his own investigation, however. My position in this lesson was not that of 
lead improviser because the lesson took an unexpected trajectory, but I feel that I 
facilitated group etiquette by drawing attention to ideas that would lead to solution to 
the problem.  
With regard to the future direction of this research, the ways in which whole class 
discussion can impede or facilitate pupils’ mathematical insight will be further 
analysed. In particular attention will be paid to the ways in which the making public 
of ideas by writing them on the blackboard and the revoicing of pupils’ input 
stimulates the filtering process.  
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USE OF WORDS – 
LANGUAGE-GAMES IN MATHEMATICS EDUCATION 

Michael Meyer 
TU Dortmund 

This article focuses on the introduction of new concepts in mathematics classrooms. 
A theoretical framework is presented which helps to analyse and to reflect on the 
processes of teaching and learning mathematical concepts. The framework is based 
on the theory of Ludwig Wittgenstein. His language-game model and especially its 
core, the primacy of the use of words, provide insight into the processes of giving 
meaning to words. The theoretical considerations are exemplified by the 
interpretation of a scene, in which students are introduced to the concepts of 
“perpendicular”, “parallel” and “right angle”. 

INTRODUCTION 
“Mathematics education begins and proceeds in language, it advances and stumbles 
because of language, and its outcomes are often assessed in language.” (Durkin and 
Shire, 1991, p. 3) 

A lot of research has been done on communication in the mathematics classroom. 
Mathematical interactions have been analysed from many different perspectives (cf. 
Cazden, 1986). This text will focus on the teaching and learning of mathematical 
concepts in classroom communication. The importance of introducing mathematical 
concepts is underlined by the multitude of theories used for analysing concepts. In 
this paper only a few of them can be taken into account: de Saussure (1931), Peirce 
(CP 2.92) and Steinbring (2005).  
By his concept of “language-game” Wittgenstein offers us an alternative view on the 
introduction of concepts in mathematics classrooms. His perspective has often been 
used to discuss problems concerning communication in the mathematics classroom 
(e.g., Bauersfeld, 1995; Schmidt, 1998). Sfard (2008) is using Wittgenstein’s theory 
within her “commogitive model”.  
Wittgenstein presents considerations we can use to analyse language and especially 
the meaning of words. His theory of language-games and the construction of meaning 
will be considered in this paper, which presents first results of scientific research in 
progress. According to Wittgenstein, the expression of words does not constitute their 
meaning. Words have another function in the process of constructing knowledge. The 
main aim of the research is to analyse whether Wittgenstein’s theory is useful for 
reconstructing and thus understanding communication. In spite of the multiple 
Wittgenstein references, I only know a few examples of using Wittgenstein’s theory 
for analysing communication in the mathematics classroom (cf. the examples of Sfard 
2008). More specific aims will be described in the course of this article. The core of 
the theory, the primacy of the use of words, will be exemplified. 
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USING WORDS IN LANGUAGE-GAMES 
In his later philosophy (cf. the “philosophical investigations” and the “remarks on the 
foundation of mathematics”) Wittgenstein describes a pragmatic theory of language 
and meaning. He denies every fixed relation between language and objects. Also 
Wittgenstein is no longer searching for anything, which could be taken as something 
basically shared by all linguistic acts. Language is not an objective mediator between 
human beings and objects given. Nevertheless, he considers knowledge – and thus 
mathematical knowledge – not to be transmitted objectively: 

“Language is a universal medium – thus it is impossible to describe one’s own language 
from outside: We are always and inevitable within our own language […]. Knowledge 
appears as knowing, and knowing is always performed in language games. Language as 
languaging or playing a language game is equal to constituting meaning and, thus, 
constituting objects. There are no objects without meaning, and meaning is constituted by 
a special use of language within a respective language game” (Schmidt, 1998, p. 390). 

For Wittgenstein the construction of knowledge takes place by playing language-
games. The term “game” does not imply an option for those who are involved. We 
cannot choose in the first place whether we want to play the game or not. The 
problem is that Wittgenstein does not explain in detail what he means when speaking 
of “language-games”. As we will see, this is not because he does not care. Rather it is 
due to his theory of giving meaning to words. 
Words have neither a consistent nor an objective meaning. In different language-
games various meanings of a word can occur. Following Wittgenstein there is no 
direct transformation from a word to its meaning: “[…] experiencing a word, we also 
speak of ‘the meaning’ and of ‘meaning it.’ […] Call it a dream” (Wittgenstein, 1958, 
p. 216). Moreover, it is the use of a word which determines its meaning: 

“For a large class of cases – though not for all – in which we employ the word ‘meaning’ 
it can be defined thus: the meaning of a word is its use in the language” (Wittgenstein, PI, 
§43). 

The term “use” is not limited to the application of words (e.g., in order to solve 
problems). If we exemplify a word, we also make use of it. One research-guiding 
problem will be to identify different forms of uses of mathematical words. 
A word does not mirror objects and the meaning of a word cannot be observed while 
looking at its association with a specific object. The meaning of a word is nothing but 
the role it is playing in the specific language-game and accordingly can be observed 
only by looking at the use of words. This central thesis might be the reason why 
Wittgenstein does not define what he means using the term “language-game”. He 
stays consistent: He exemplifies the words he makes use of [1]. Language-games can 
be different in character. So Wittgenstein (PI, §23) presents the following examples 
among others: 

• “Giving orders and obeying them”,  
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• “Forming and testing a hypothesis” and 

• “Solving a problem in practical arithmetic”. 
These examples may indicate that language-games are little “passages” or specific 
situations in our daily communication, but Wittgenstein also presents a larger field: 

“I shall also call the whole, consisting of language and the actions into which it is woven, 
the ‘language-game’.” (Wittgenstein, PI, §7) 

Language is constituted by a “multiplicity” (Wittgenstein, PI, §23) of language-
games. And all these language-games bear a temporal dynamic: 

“And this multiplicity is not something fixed, given once for all; but new types of 
language, new language-games, as we may say, come into existence, and others become 
obsolete and get forgotten. (We can get a rough picture of this from the changes in 
mathematics.)” (Wittgenstein, PI, §23) 

The temporal dynamic indicates once more that there is no specific meaning for 
words fixed forever. Changing the meaning of a word is accompanied by a change of 
the language-game. Learning also means to realize changing meanings of words. 
Learning includes learning how to play different language-games. Thus, learning 
implies partaking in changing and new language-games.  

USING WITTGENSTEIN 
In mathematics education there has been a lot of research to consider and to analyse 
concepts and how students get used to them. Some work (e.g., Duval, 2006) is based 
on de Saussure’s (1931) relation between signifier and signified (fig. 1). The theory 
of de Saussure provides a subject-object dualism and thus implies some problems:  

“If there would be a correspondence between language and reality, then, surely, one 
could arrive at true verbal statements about the world. Descriptions (and teaching), then, 
would become a case only of an adequate selecting and of providing for sufficient 
precision of the verbal means (denotations), as well as an adequate fit of these means 
with the object” (Bauersfeld, 1995, p. 277).  

 

Figure 1: De Saussure’s (1931) relation between signifier and signified 

Peirce (CP 2.92) offered a more detailed framework. His triadic relation between the 
sign, its object and its interpretant (fig. 2) has been used to analyse and to describe 
verbal or non-verbal interaction (e.g., Hoffmann & Roth, 2004; Presmeg, 2001; 
Sáenz-Ludow, 2006; Schreiber, 2004). The reconstruction of classroom interaction 
based on this framework has to deal with the difficulty that it is problematic to 

 signifier 

signified 
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determine the object to which the sign is related. Contrarily, Wittgenstein’s theory is 
a more pragmatic one. He does not regard any ontology of a sign. According to his 
theory words only get their meaning by their use and do not transport any given 
meaning. There is no fixed relation between words and objects. 

 

Figure 2: Peirce’s triad 

By his epistemological triangle (fig. 3) Steinbring (2006) provides a way to analyse 
static moments in the process of giving meaning to words. He presents a triadic 
relation between “sign/symbol”, “object/reference context” and “concept”: 

 

Figure 3: Steinbring’s epistemological triangle (2006, p. 135) 

The importance of the context can also be observed in Wittgenstein’s writings, as he 
is considering the use of a word in the specific language-game. And language-games 
are depending on the situation: 

“Here the term ‘language-game’ is meant to bring out into prominence the fact that the 
speaking of language is part of an activity, or of a form of life.” (PI, §23) 

Wittgenstein points out that there is no direct transport of meaning from the teacher 
to the student, nor a direct understanding. We only can analyse the meaning of a word 
by looking at the use of that word in a specific language-game, which is at the same 
time influenced by other language-games. If we take a look at the language-game 
“mathematics education”, we are also confronted with influences of every-day 
language-games of the students (and the teacher) and, all the more, of the rather 
mathematical language-games the teacher is able to participate in with mathematics 
experts outside of the classroom. 
Words can be used in more than one language-game and thus each word can exhibit 
different meanings. If the teacher is going to introduce a concept in mathematics 
education, the children might immediately associate some meaning to it – due to the 
use of that word in another language-game the student took part in. This might be an 
every-day language-game or a language-game of mathematics education of a 

object sign 

interpretant 
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previous era (e.g., subtraction means to remove things, which does not work for 
negative numbers).  
Words could be used in more than just one way. Accordingly, they can convey 
different meanings or meanings, which cannot be grasped only by knowing one form 
of their use. Thus, the use of a word in a specific situation must not lead to the whole 
range of possible meanings. Also, some concepts are restricted or expanded in the 
course of mathematics education (e.g., the concept of numbers). Therefore, this study 
is going to focus on the introduction of new concepts in the mathematics classroom 
and their development during following lessons. Some research-guiding questions 
are: How do students make use of words? What might be the meaning of a word for 
them? How do teachers influence the play of another language-game?  

METHODOLOGY 
The empirical data emerged from classroom observations in different grades (1-10) in 
Germany. Classroom communication has been videotaped by teacher students acting 
as researchers. The videographed units comprised 4-8 lessons of 45 minutes each. 
The teacher students were observers; they were told to exert no influence on the 
classroom communication and on the teachers’ way to introduce the concepts. 
Altogether eight classes were visited. 
The qualitative interpretation of the classroom communication is founded on an 
ethnomethodological and interactionist point of view (cf. Voigt, 1984; Meyer, 2007). 
Symbolic interactionism and ethnomethodology build the theoretical framework 
which is going to be combined with the concepts of “language-game” and “use”.  
According to Wittgenstein we should not ask: What is the meaning of a word? Rather 
we should analyse what kind of meaning a word gets in the classroom. Therefore, we 
have to analyse social processes. Thus, we have to follow the ethnomethodological 
premise: The explication of meaning is the constitution of meaning.  
Analysing students’ languaging for mathematical concepts, the development and the 
alteration of meaning by the use of the according words, we are able to reconstruct 
the social learning in the mathematics classroom [2]. 
The main aim of this study is to get a deeper insight into the processes of giving 
meaning to words in the mathematics classroom. Therefore, alternative ways of 
introducing concepts are going to be considered. Comparing possible and real 
language-games can help to understand the special characteristics of the actual played 
language-game.  

THE USE OF WORDS IN CLASSROOM COMMUNICATION 
The following scene emerged from a 4th grade classroom in Germany (students aged 
from 9 to 10 years). It is the first time that these students get in contact with the 
concepts of “parallel”, “perpendicular” and “right angle” in this mathematics class. 

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 908



 

 

 
The teacher starts the lessons by writing the words on the blackboard and asking the 
students to associate anything coming to their mind about these words. Afterwards a 
painting by Mondrian (cf. fig. 4) is presented on the blackboard [3]. 

 

Figure 4: Painting by Mondrian on the blackboard 

Teacher: Why do I fix such a picture on the blackboard? And why are these concepts 
written down on the blackboard? I have a reason to do so. Jonathan, it is 
your turn. 

Jonathan: Because the painter has done everything in parallel, perpendicular and in 
right angles. 

Teacher: You are right. You seem to know what parallel, perpendicular and right 
angle means. Maybe you can show it to us on the picture. 

Jonathan: Perpendicular is this here (points first at a vertical, afterwards at a 
horizontal line). Parallel is this here (points at two vertical lines). A right 
angle is this (pursues two lines he former would have called perpendicular). 

By pointing to different things on the blackboard, Jonathan makes use of the words 
“perpendicular”, “parallel” and “right angle”. He must have been in contact with 
practices of using them and thus with meanings of these words in a language-game 
outside this classroom. In this situation the words get a meaning by him pointing at 
something. This use can be described as an exemplaric use: An example is used to 
show the meaning of a word. 
The use Jonathan makes of the words need not imply that those words could also be 
used in different ways, but this use and respectively this meaning get established in 
this classroom communication.  
The teacher does not have any further questions. The teacher accepts the use of the 
words Jonathan must have known from another language-game. Thus, it seems that 
the exemplaric use is an acceptable one and that the meaning of the words is “taken-
to-be-shared” in the classroom (cf. Voigt, 1998, pp. 203). 
Certainly, in another language-game the meaning of the words “perpendicular”, 
“parallel” and “right angle” can be different. They can be defined by using other 
concepts. A right angle can be defined as an angle of 90 degrees. Also the word “right 
angle” can be used in coherence with Pythagoras’ theorem or in relation to the 
shortest distance of parallel lines. Perpendicular can be described by using the 
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concept of “right angle”. All of these uses describe other language-games and not all 
of them can be played in a 4th grade classroom. Altogether, the words can have 
different uses and, thus, different meanings. In this classroom the words are used in 
order to represent things (cf. de Saussure’s model). 
In the next few minutes the students had to create a mindmap, which should contain 
“something which can fit to the picture”. Then, afterwards “perpendicular” gets 
exemplified on the picture again. Now the classroom communication goes on with 
“parallel” and “right angle”: 

Teacher: Now we just have two problems: parallel and right angle. 

Sebastian: Right angle is easy (holds the set square at the blackboard).  

Teacher: Can you show it here (points at two lines on the painting by Mondrian 
which have been used to show “perpendicular”). (After five seconds) Doris 
just say it. Wait! Before you go ahead, let – 

Doris:        You can make out four right 
angles out of it. 

Teacher: This is the sign for the right angle (draws  on the blackboard). Maybe you 
can just draw it into the picture? (After three seconds) You can also choose 
another one. 

Doris: John 

Teacher: John and Tim come here. Doris said you would be able to find four right 
angles. 

John: You two, me two (speaks to Tim while pointing at two lines). 

Teacher: That is not right. No. Doris, show him were they are. 

John:         There is a right angle. 

Teacher: Ah, yes! 

The class is going to consider the last two “problems” (parallel and right angle), 
which have not been exemplified a second time. Doris identifies four right angles on 
those lines, which had been used before in order to show the meaning of the word 
“perpendicular”. John shows an example for a right angle. Again we can speak of an 
exemplaric use. The meaning of the word “right angle” is connected to the examples 
on the blackboard. Now and again, it seems that the meaning of “right angle” is 
“taken-to-be-shared”, but the students do not yet express characteristics of right 
angles, they only have examples. 
Now the scene is going on: 

Tim: Ah, this corner which is coming from the right side (marks the angle with 
the teachers’ sign) 

Teacher: Correct! Just make it a little bit thicker, so that the other ones can see it. 
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Tim: This is a left angle. (points at the opposite side of the vertical line) 

Teacher: No! 

Lisa: That is always a right angle. 

Tim recognizes the examples as examples for the use of the word “right angle”. He 
explains why John’s example can be called “a right angle”. Thus, he abstracts from 
the concrete example and presents a use of the word “right angle” by a kind of 
definition: The word “right angle” can be used, if a line for the angle comes from the 
right side. Tim tries to give an explicit-definitional use (cf. Winter, 1983) of the word: 
The student describes a general characteristic when and how the word “right angle” 
has to be used. He relates the word “right angle“ to other words. Contrarily to the 
former use of the word “right angle“, Tim uses another ethnomethod to constitute 
meaning. 
The concept of the word “left angle” is used by an implicit reference. It is implicit, 
because the pair of concepts “left-right” indicates that an orientation in space is 
considered – a relation between observer and object. Thus, the word “left angle” gets 
an implicit-definitional use. The exemplaric use Tim makes of the word “left angle” 
can be seen as a test of his proposal. It is a probable consequence of his first 
definition. In other words: It is a hypothetic-deductive approach of verification (cf. 
Meyer, 2008). 
Tim’s use of the word “right angle” can be explained only because there is use of the 
word “right” in common practice. Here the word “right” can be used to show a 
certain relation between observer and object. So Tim was able to combine the two 
uses of the words “right” and “angle” to establish a constructive meaning of the 
conglomerated word “right angle”. The comment of the teacher harshly shows that 
the new language-game is not acceptable.  
Tim’s use shows that the former meaning of the word “right-angle“ only seemed(!) to 
be “taken-as-shared”. It has not been shared. Tim has been trying to give a theoretical 
fixation of the concept. The language-game he initiated is not an acceptable one. Lisa 
does not take part in the new language-game. She seems to play the former game and 
to explicate a routine: We need to have more examples to grasp the meaning of the 
word “right angle”. 

FINAL REMARKS 
The episode shows that de Saussure’s model is not sufficient to analyse classroom 
communication. Mathematical concepts are in need of a fixation by other concepts (a 
theoretical fixation). An empirical way can be used to introduce words, but the 
language-game has to change afterwards. In this scene a student initiates another 
language-game, which is condensing in (not acceptable) theorems. 
The use of Wittgenstein’s theory shows that concepts can be observed by looking at 
the way teacher and students make use of the words at hand in the specific language-
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game. In this scene we have seen an exemplaric, an explicit-definitional and an 
implicit-definitional use. The exemplaric use consists of pointing at examples to 
illustrate the words. The explicit-definitional use consists in giving an explanation for 
the word in relation to other concepts. Thus, it provides a deeper insight in 
mathematical coherences: Characteristics of the underlying concept get expressed. 
The concept gets a general character, not being linked to special examples any more. 
An explicit-definitional use is also in need of a deeper mathematical insight, as it has 
to be known what counts as a definition. The implicit-definitional use in this scene 
requires a common pair of concepts (“left-right”) and an explicit-definitional use of 
the other word. 
Wittgenstein’s theory itself is not a theory of interpretation. Rather he presents a 
theoretical framework, which can be used on top of a theory of interpretation. 
Symbolic interactionism and ethnomethodology fit to Wittgenstein’s considerations 
of social processes in languaging. Future analyses have to show the fruitfulness of 
this framework. 

NOTES 
1. “ ‘The meaning of a word is what is explained by the explanation of the meaning.’ 
I.e.: if you want to understand the use of the word ‘meaning’, look for what are called 
‘explanations of meaning’.” (Wittgenstein, PI, §560). 
2. As proposed by Bauersfeld (1995) I will speak of “languaging” to accentuate the 
connotation of language use. 
3. Many thanks to Johannes Doroschewski and Philipp Heidgen for the video. The 
translation has been done and simplified by the author of this article. The original 
transcript will be sent on demand. 

REFERENCES 
Bauersfeld, H. (1995). Language games in the mathematics classroom. In: H. 

Bauersfeld & P. Cobb (Ed.), The emergence of mathematical meaning. (pp. 271-
292). Hillsdale: Lawrence Erlbaum. 

Cazden, C. (1986). Classroom discourse. In: M.C. Wittrock (Ed.), Handbook of 
research in teaching (pp. 432-462). New York: Macmillian. 

Durkin, K. & Shire, B. (1991). Language in mathematics education – research and 
practise. Milton Keynes England: Open UP. 

Duval, R. (2006). A Cognitive Analysis of Problems of Comprehension in a Learning 
of Mathematics. In: Educational Studies in Mathematics, 61(1-2), pp. 103-131. 

Hoffmann, M. & Roth, W.-M. (2004): Learning by developing knowledge networks. 
In: Zentralblatt für Didaktik der Mathematik – ZDM, 36(6), 196-205. 

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 912



 

 

 
Meyer, M. (2007). Entdecken und Begründen im Mathematikunterricht. Von der 

Abduktion zum Argument. Hildesheim: Franzbecker. 
Meyer, M. (2008). From discoveries to verifications – theoretical framework and 

inferential analyses of classroom interaction. Paper presented for ICME TSG 18 
“proof and proving”. Online: http://tsg.icme11.org/document/get/633 (23.09.08). 

Peirce, Ch. S.: Collected Papers of Charles Sanders Peirce. Volume II. Ed. by Ch. 
Hartshorne & P. Weiss (quotations according to volume and paragraph). 
Cambridge: Harvard UP. 

Presmeg, N. (2001). Progressive mathematizing using semiotic chaining. PME 25th, 
Discussion Group 3, Semiotics in Mathematics Education. Online: 
http://www.math.uncc.edu/~sae/dg3/norma-PME25DG.pdf; 23.09.08). 

Sáenz-Ludow, A. (2006). Classroom interpreting games with an illustration. In: 
Educational studies in mathematics, 61, 183-218. 

Saussure, F. de (1931). Grundfragen der allgemeinen Sprachwissenschaft. Berlin: de 
Gruyter. 

Schmidt, S. (1998). Semantic Structures of Word Problems. In: C. Alsina, J.M. 
Alvarez, B. Hodgson, C. Laborde & A. Pérez (Ed.), 8th International Congress on 
Mathematical Education, Selected Lectures (pp. 385-395). Sevilla 1996. Sevilla: 
S.A.E.M. 'Thales'. 

Schreiber, C. (2004). The interactive development of mathematical inscriptions. In: 
Zentralblatt für Didaktik der Mathematik – ZDM, 36(6), 185-195. 

Sfard, A. (2008). Thinking as communicating: Human development, the growth of 
discourses and mathematizing. Cambridge: UP. 

Steinbring, H. (2006). What makes a sign a mathematical sign? In: Educational 
studies in mathematics, 61, 133-162. 

Voigt, J. (1984). Interaktionsmuster und Routinen im Mathematikunterricht. 
Weinheim: Beltz. 

Voigt, J. (1998). The culture of the mathematics-classroom. In: F. Seeger, J. Voigt & 
U. Waschescio (Ed.), The culture of the mathematics classroom (pp.191-220). 
Cambrige: UP. 

Winter, H. (1983). Über die Entfaltung begrifflichen Denkens im 
Mathematikunterricht. In: Journal für Mathematik-Didaktik, 3, 175-204. 

Wittgenstein, L. (1963). Philosophical investigations. Oxford: Blackwell. 
Wittgenstein, L. (1978). Remarks on the foundations of mathematics. Ed. by G.H. 

von Wright, R. Rhees & G.E.M. Anscombe. Oxford: Blackwell. 

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 913



 

 

 

SPEAKING OF MATHEMATICS – MATHEMATICS, EVERY-DAY 
LIFE AND EDUCATIONAL MATHEMATICS DISCOURSE 

Eva Riesbeck 
Department of Behavioural Sciences and Learning 

 
The aim of this paper is to describe and analyze how discourse as a theoretical and 
didactical concept can help in advancing knowledge about the teaching of 
mathematics in school. The collection of empirical data was made up of video and 
audio tape recordings of the interaction of teachers and pupils in mathematics 
classrooms when they deal with problem-solving tasks. Discourse analysis was used 
as a tool to shed light upon how pupils learn and develop understanding of 
mathematics. The results underline that a specific and precise dialogue can 
contribute towards teachers’ and pupils’ conscious participation in the learning 
process. Teachers and pupils can construct a meta-language leading to new 
knowledge and new learning in mathematics. 

 

INTRODUCTION AND AIM OF THE STUDY 
This research deals with teachers and pupils discussing with each other in different 
situations within and about mathematics in school. The theoretical point of departure 
is first and foremost an in-depth study of the meaning of and relationships between 
concepts, words and signs in order to demonstrate how mathematical discussions can 
be understood. The concepts of context, mediation and artefacts are central to the 
socio-cultural perspective chosen and thus play an important role in this research, 
(Vygotsky, 1978, 1934/1986, 2004). The concept of context can be described as 
being the environment where our actions take place and thus create and re-create the 
context as such. Mediation implies that human beings interact with external tools in 
their perception of the world around them. Linguistic as well as physical artefacts are 
created by mankind to perform actions and solve problems. They are cultural 
resources which contribute towards maintaining and developing knowledge and 
abilities in society (Vygotsky, 1978, 1986). Using semiotic tools one can demonstrate 
how a linguistic element is connected to its meaning, (Ogden and Richards, 1923; 
Melin-Olsen, 1984; Johnsen-Hoines, 2002). We can picture a semiotic triangle made 
up of concept, expression and reference. If we look upon language as a medium for 
communication based on conventional signs it is by applying language that the 
reference to the world at large is created. 
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The relationship between thought and symbol is, like the one between thought and 
reference causal and direct in a semiotic triangle. The relationship between symbol 
and reference, on the other hand, is indirect and attributed. Concepts within a socio-
cultural perspective which may be applied to the semiotic triangle are expression, 
content and reference. These three functions of a sign can only be understood when 
they are applied simultaneously. Thus we can see signs such as words, numbers, 
symbols, diagrams, equations and letters. The sign expresses something separate from 
the sign itself. Signs, objects are related to the meaning or conception of them. 
Mathematical knowledge must be actively constructed in relationship to signs, words 
and symbols. 
I have chosen to describe mathematical discussions out of a discourse perspective. 
The concept of discourse can be understood in different ways. It can be interpreted as 
a set of conventional rules for discussing, understanding and conceiving the world 
and its different phenomena (Winther-Jörgensen & Phillips, 2000; Sfard, 2002). A 
discourse can be understood as a linguistic system which delineates issues of 
exclusion and inclusion, borders on what is excluded and inner standardization (Gee, 
2005; Börjesson & Palmblad, 2007).   
Foucault (1972/2002) wants to clarify how we are caught up in and blinded by lines 
of reasoning without really being conscious of what we say. We can refer to this as an 
invisible discourse. In the discourse on teaching mathematics there is an invisible 
element which is difficult to affect unless we make ourselves aware of its existence. 
From a socio-cultural perspective discourse is defined as the language which gives 
and is attributed meaning in various contexts and which excludes and includes things 
to be understood (Säljö, 1999, 2000). In this work I have chosen to metaphorically 
regard discourse as a network where signs, concepts and references make up the 
nodes. Nets can be chosen or created in such a way that meaning is constructed in 
situated action as well as socio-cultural practices which transgress defined situations. 
Thus, a discourse can also be a set of rules for talking, writing and thinking about a 
specific content. Many discourses are mixed in school which both teachers and pupils 
must learn to become involved in, understand and master. This includes knowing 
when borders between different discourses are crossed. Mathematical instruction 
means that teachers and pupils are placed in different discourses, ranging from those 
applied to every-day life to purely mathematical ones. This means that they move 
over borders and between registers all the time. An example of this occurs when 
pupils work with concrete materials and are to express themselves using numbers and 
symbols. In doing so, they will move over different borders. When working in school 
we must learn to understand when we are situated in a specific discourse. 
A mathematics lesson contains a number of words and expressions from every-day 
life. The language applied is rich and we talk departing from many different 
perspectives and towards many different aims. To be able to conduct conversations in 
a context as specific as school mathematics we have to develop a meta-language 
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which makes it possible to put what we want to express into perspective. In every-day 
life we build models in order to understand reality and we use every-day methods for 
solving problems in order to describe connections to mathematics. We seek the 
history of mathematics to be able to see how every-day application developed into 
pure mathematics. This paper mirrors how teachers and pupils apply different types 
of discussions to deal with problem-solving tasks in and about mathematics. In these 
discussions we develop our thinking and our methods for learning and it is in the 
same discussions that we shed light on the transitions required in order to move from 
concrete to abstract activities. A knowledge rendered in linguistic terms is required. 
This is something that I aim to disclose in my empirical studies. In the discussions in 
and about school mathematics an oscillating movement between reality and 
mathematical concepts and expressions is to be seen. 
Communication in a mathematics classroom can be described in terms of learning a 
mathematical register, (Duval, 2006). It can also be looked upon as a situation where 
there are two parties involved – two individuals who speak, think, write, read and 
listen. It is therefore highly interesting to study what learners and teachers have to say 
in and about mathematical practices. 
The over-riding aim here is to raise this issue: “How can discourse as a theoretical 
and didactical concept contribute towards further developing mathematical 
teaching?” 
 
Method 
I have for many years been interested in communication and interaction within and 
about mathematical teaching. In my studies I have chosen to monitor how teachers 
and pupils have generated knowledge in discussions on mathematical concepts, 
problem-solving and formal mathematics. I did so in order to be able to establish 
what happens in interaction between teachers and pupils and between pupils. 
In these studies I have made use of video and audio recordings. Video recordings 
were applied in order to make sure that it became clearly visible what went on in the 
interaction within a classroom. It also proved to be fruitful in that the activities on 
both teachers’ and pupils’ part became evident. The audio recordings were used as a 
means of analyzing the discussions as interactive situations. Group interviews are a 
well-chosen strategy for trying to capture discourse as regards what they include and 
exclude. The table below describes the environment used to acquire data in the 
respective studies. 
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Design of the Empirical Studies  
Study I             Study II              Study III          Study IV       
_________________________________________________ 
7 teachers         14 groups             26 groups          68 groups                                                              
                                                                                                           
Teacher-pupil  Pupil interaction    Group talk    Group talk  
interaction        Classroom             Three pupils   Three pupils      
Classroom                                                               
            
__________________________________________________ 
Video                 Video                   Audio tapes     Audio tapes 
__________________________________________________ 
 
Mathematical content 
  
The Area of     The Area of    Problem-solving  Rational Numbers     
a Triangle        a Triangle                          
 
Table 1. Data acquisition in the empirical studies I-IV 
 
Seven teachers took part in my first study. They were assigned to plan and carry out 
an introductory lesson on the area of the triangle in year 5 in compulsory school. 
Choosing mathematical content was a regular concept to the teachers who took part. 
Focus for these video recordings lay on documenting the public and the teacher-led 
interaction in the classrooms involved. Each recording lasted between forty and sixty 
minutes. Twenty-five occasions were recorded and focused on interaction between 
teachers and pupils. The study further describes how teachers cross discourse borders 
in teaching on the area of the triangle and in what ways they carried out their lessons 
as regards interaction between teachers and pupils, as well as what types of questions 
they used in their talks with pupils. 
The introductory lesson on the area of the triangle is carried on into this second study 
but here focus is on pupils’ interaction in a laboratory situation, where the teacher 
gives explicit directives to the groups of pupils. Varying directives from the teacher 
in the classroom lead to different trains of action and linguistic concepts on the 
pupils’ part. In total the interaction of fourteen groups has been recorded and 
analyzed in the classes involved. The groups were made up of five to six pupils. The 
laboratory situations are described as regards activity and linguistic interaction. The 
pupils are active in that they draw, cut and fold pieces of paper. Every-day language 
is used to a great extent and retains its every-day character. 
The point of departure for the third study was to monitor 26 groups of pupils when 
they set about a written mathematical task. The task is of an open variety and contains 
different pieces of information that the pupils are to decide on.  One of the concepts 
which stay in focus for the pupils is the word fairness. Pupils seek, talk, make 
guesses, test and calculate an answer. There is, however, no evident way to go about 
solving the task. On the one hand the pupils end up in an every-day discourse and on 
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the other hand in a mathematical discourse. They have difficulties making judgments 
as they reason with each other. Each group has been recorded on audio tape which 
has then been transcribed and analyzed. The pupils were put into groups on the basis 
of their mathematical skills as deemed by their teachers. The recordings took place in 
a small room next to the classroom.  
For the fourth study one of the assignments from the National Test of mathematics 
for year five was used. The assignment deals with rational numbers. Five different 
partial studies were carried out. Sixty-eight groups of three pupils each and 120 
individual pupils took part in the different studies. The first partial study was carried 
out with 30 pupils in year five who solved the assignment on their own and were 
asked to provide a written explanation. The second study took place in three classes 
of 30 pupils each. For the third partial study I used five schools from different parts 
of a large municipality. Thirty-one group interviews with pupils in year five were 
carried out, each group consisting of three pupils. When the pupils solve their 
assignment they rely on an every-day discourse. The next study involved 31 new 
groups of pupils. They were allowed to use a pocket calculator and they engaged in a 
solely mathematical discourse. The last part of this study was carried out with six 
groups of three pupils each and it deals with the issue of reasoning with the help of a 
numerical line. The results show that, depending on what tools are applied and what 
situation the pupils are in, the outcome turns out differently in different discourses. 
I have used a discourse analysis to analyse the group discussions and the discussions 
in the classroom, (Wertsch, 1985, 1998; Kozulin, 1998; Fairclough, 1992, 1995, Gee, 
2005). A discourse analysis is based on details in what is written and said in a 
particular situation. In the restricted discourse language can be seen as “language-in-
action” which is always an active process in constructing knowledge. My study 
focuses on the interaction between individuals and in what ways knowledge, 
language and mathematical skills develop. 
 
Results 
Discourse analysis can be used as a tool with help of which descriptions of how 
pupils learn and develop their understanding of mathematics can be made clear. 
Looking at my empirical material I have come to discern the discourse in school 
mathematics which can provide the bridge upon which teachers and pupils can meet 
and become mutually involved.  
In school mathematics teachers and pupils talk using every-day concepts and 
mathematical concepts, signs and words. This intercourse demands that a mutual 
understanding takes place. The analysis of what is said in the different groups shows 
that the discussions are situated somewhere on a scale between two extremes – on the 
one hand every-day concepts, on the other hand purely mathematical concepts. 
Words such as “put on” and “put together” are based in every-day practice whereas 
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words such as “add/addition” and complex numbers are situated in a purely 
mathematical discourse. Any individual is to be found somewhere in this continuum 
depending on how far this individual has come in the process of developing an 
understanding of abstract reasoning. If we consider signs and expressions the same 
thing can be said for them. 
In my empirical data where teachers talk to pupils in whole-class discussions and in 
group talks, teachers utilize different signs and change registers in their teaching. 
They go from geometrical into arithmetical/algebraic discourse and back. Analysis of 
these talks clearly reveals how pupils talk about and understand the concepts. Most 
pupils use every-day language and it demonstrates that teachers are situated in one 
discourse and pupils in another. The same thing can be seen when pupils work with 
concrete materials, performing acts but not acquiring the mathematical concepts 
which the teacher had planned. Pupils find themselves in a distanced discourse rather 
than an inclusive one as the teacher had intended. In one of my excerpts the pupils are 
engage in a group discussion of how to move from a rectangle made of red paper to a 
triangle. The teacher has told the pupils to prove that the triangle’s square is half of 
the rectangle. Here we can follow their discussion:    
          Måns:  Mine is so smeary. Nobody can think about that it is so smeary. 

Kalle:  We can fix this so it will be the half. 

Beatrice: It’ll be a square. 

Stina:  Do you know how to fold all pieces of papers. I can’t fold anything. 

Måns:  You can learn how to fold if you know how to fold. 

Kalle:  The fundamental form to fold frogs, but I can’t, they don’t jump like this. 

Stina:  I can fold aeroplanes.   

Here you can see pupils being in an every-day and distanced discourse. They try to 
follow the teacher’s goal to prove but they got into another discourse. 
In another assignment of a problem-solving character about decimals the pupils first 
had to work with an every-day picture as a point of departure and their talks are thus 
carried out in an every-day discourse. Some pupils do not arrive at the mathematical 
terms and an understanding of them. Other groups are given a formal assignment to 
be solved using a pocket calculator and they remain there, locked up in the system of 
signs and decimals. Yet another group of pupils draw lines together in order to 
understand the decimals and can accommodate the mathematical signs and words, 
which makes them involved in the discussion and solving of the assignment. They 
start to speak, think and write “Mathematish”.  

I:   Now I want you to explain why you think that this is right. 

H: Nine is a whole number, it’s one smaller, only a whole number. 9,12 is nine whole and one tenth     
and two hundredths, I think, 9,2 then there is nine whole number and two tenths. 
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E: Nine is such a whole one. 9,12 there is a tenth smaller than two tenths so then 9,2 will be bigger    
than 9,12. 

N: Nine is a whole number the second number in 9,12 is a hundredth and 9,2 the second is a tenth. 

The connections are created between every-day references and mathematical concepts 
and expressions and it becomes easier for pupils to leave the idea of “doing”. 
Meaning has been attributed to mathematical concepts and signs and these have been 
created for defined ends. But the meaning can only be understood by those who are 
able to take part in a mathematical discourse. 
By analyzing how teachers and pupils talk about mathematical phenomena in 
different situations I can use the concept of discourse to establish that connections are 
often not created between every-day concepts and their mathematical counterparts. If 
pupils cannot interact and thus form networks of concepts which assist them on their 
path to conscious mathematical thinking this becomes a major problem for them. 
Consequently teachers and pupils must develop their mathematical language in 
concord with every-day language. 
Discourse analysis can thus be used as a tool where descriptions of pupils’ learning 
processes and understanding of mathematics can be made clear. I have displayed the 
results of my documented discussions and will place discourse in focus and further 
develop it as a means of establishing a direction. 
Discussion 
If the discourse is viewed as a distinct means of establishing the direction for teaching 
mathematics, it becomes the teacher’s task to bring to a conscious level the different 
ways pupils use for passing borders between different discourses, so that pupils 
become aware of the nature of mathematical concepts. A discourse is made up of 
artefacts and products created by mankind for specific ends and the language used 
can be understood only if the discourse itself is understood (Säljö, 2005). Teaching 
should invite pupils to become participants in a mathematical discourse. 
The words speak, think and write can be viewed as parts of a discourse and when 
teachers and pupils apply them in the teaching and learning process, it can reinforce 
consciousness and participation in mathematical thinking. This could constitute the 
formative discourse. Furthermore, teachers and pupils must learn to realize what is 
changed when going from one discourse to another in mathematics. To be able to 
discern whether the discussion is carried out in an every-day or a mathematical 
discourse, to be able to recognize whether one is situated in a geometrical or an 
algebraic discourse and how the movement between registers manifests itself in 
mathematics is important knowledge for teachers, student teachers and pupils. When 
an individual speaks the way language is applied can develop qualitatively by the 
process of learning to value, scrutinize and put forth arguments in both every-day and 
mathematical discourses. In these, thinking is developed and by using linguistic and 
concrete artefacts in interplay thinking is further prompted. We can thus create a 
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connection between every-day life and mathematics. Since mathematics started in a 
culture which used conventional signs and written language it has also developed 
texts and thus reading is a part of mathematics. The concepts of listening and reading 
should also be entered into the discourse, leading onto the concept of interpreting. In 
this perspective pupils will actively form and interpret their knowledge. 
Discourse can be defined as a “way of speech” but I would prefer to widen the 
definition in so much that I view discourse as a network where teachers and pupils 
acquire knowledge by moving between and utilizing mathematical and every-day 
concepts, expressions and situations by talking, thinking, writing, listening and 
reading. 
It has been my ambition to put the concept of discourse into perspective in the 
following manner. By adopting a discourse perspective we can direct attention to 
linguistic dimensions of mathematics teaching. It would also assist us in letting 
individual, silent calculation interact with a communicative aspect. By formulating 
and interpreting their mathematical knowledge pupils can acquire new knowledge. 
We will create a recognizing nearness through experience and distancing, fostered in 
a development and a familiarity with the system of mathematical signs.  Through 
quality in the discussions which arise in a learning process we can develop the 
language concerned and thus improve understanding. In this context quality means 
that teachers and pupils use words, signs, concepts and situations in awareness of the 
specific discourse. We should also keep in mind that a mathematical discourse is 
something that develops over time. 
Current research presents many images of the existent situation – “this is what it is 
like”. My discourse perspective, however, focuses possible changes. I want to present 
a discourse theory which recognizes qualities in language and knowledge from both 
the every-day world and the mathematical sphere and in doing so clarifies both every-
day and mathematical concepts. In this context quality means that we communicate 
around a concept, a sign, a reference and a situation by looking critically at it, putting 
forth arguments for and against, and eventually arriving at understanding what I take 
with me from this learning process. It is absolutely clear that the further our 
acquisition of new knowledge develops into an issue of learning to apply abstract and 
complex intellectual and practical tools, the more essential it becomes to engage in 
communicative practices. Thus we can learn how to apply and co-ordinate these 
tools, both linguistic and physical, with an outside world to reach new mathematical 
knowledge. Models and symbolic representations can be tested critically as regards 
their connections to the every-day world and other concepts as well as their logical 
consequence and explanatory value. The table below reinforces discourse as a 
theoretical and didactical concept. 
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Model describing the passing of borders between discourses. 
 
By placing focus in learning processes on the concept of discourse our teachers and 
pupils can grow to master a meta-language for school mathematics. This will then 
constitute a specific and precise language in and about mathematics. Language is 
constructed in our actions and how we express ourselves using the appropriate signs. 
By putting forth arguments and making interpretations in a dialogical environment 
we can acquire knowledge as regards knowing when borders between discourses are 
passed, as well as regarding the interplay between thought and experience in 
mathematics. 
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COMMUNICATIVE POSITIONINGS AS IDENTIFICATIONS 
IN MATHEMATICS TEACHER EDUCATION 

Hans Jørgen Braathe 
Oslo University College, Norway 

Student teachers positioning related to own emotions and experiences, the 
mathematics and the teaching and learning of mathematics, and the classroom, 
teachers and others are theorised, and exemplified, as aspects of identifications as 
becoming mathematics teachers. 
INTRODUCTION 
As a teacher educator I have searched for signs of how the student teachers in the pre-
service mathematics courses change from seeing themselves as students of 
mathematics to seeing themselves as teachers of mathematics. That is negotiating 
identities as mathematics teachers.  
Teaching is not a knowledge base, it is an action, and teacher knowledge is only 
useful to the extent that it interacts productively and dynamically with all of the 
different variables in teaching. Therefore connecting the act of teaching and teacher 
identities focuses on identities as something people do which is embedded in social 
activities, and not something they are.  
Identifications as teachers of mathematics, through acting, or performing, as teachers 
in mathematics, are closely associated with meaning making in mathematical 
contexts. In this paper I will outline descriptive devices in order to analyse the 
properties in texts and the technical skills of mathematical communication that are 
employed in the service of mobilizing teacher identities by student teachers.  
Dewey (1916) examined the purpose of education in a democratic society. He writes: 
“society not only continues to exist by transmission, by communication, but it may 
fairly be said to exist in communication” (p. 4, emphasis in original). He further holds 
that “This transmission occurs by means of communication of habits of doing, 
thinking and feeling from the older to the younger” (p. 3, emphasis added by Ongstad 
2006). 
Conceiving teachers’ knowledge as part of a complex set of interactions involving 
action, cognition and affect, places teaching as a complex practice. A main 
perspective then is a view of teaching and learning as communication (Braathe, 2007; 
2009; Ongstad, 2006; Sfard, 2008). 
POSITIONING THEORY 
 “Positioning Theory” has been discussed and developed among others by Harré and 
van Langenhove (1999). Their concept of positioning is offered as a dynamic 
replacement of the more static concept of role. Role identity theory views society as 
made up of roles, and explains how roles are internalised, as cognitive schemes, as 
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identities that people enact and try to live up to (Stryker and Burke, 2000). 
“’Position’ will be offered as the immanentist replacement […] of transcendentalist 
concepts like ‘role’” (Harré and van Langenhove, 1999, p. 33).   
Harré argues that during communicative interactions, people use narratives, or 
“storylines”, to make their words and actions meaningful to themselves and others. 
They can be thought of as presenting themselves as actors in a drama, with different 
parts or “positions” assigned by the various participants. Positions made available in 
this way are not fixed, but fluid, and may change from one moment to the next, 
depending on the storylines through which the various participants make meaning of 
the interaction.  

In positioning theory, the concept of positioning is introduced as a metaphor to enable an 
investigator to grasp how persons are ‘located’ […] as […] participants in jointly 
produced storylines. 

One mode of positioning of particular interest to us […] is the intentional self-positioning 
in which a person express his/her personal identity (Harré and van Langenhove, 1999, pp. 
61-62).  

IDENTITIES 
Identities have been used as a strategic concept in research addressing the 
relationship between individuals and society, and, related to this, in formulating how 
selves are socially constituted, and in explaining how social structures or processes 
affect individuals’ lives.  
The kind of questions asked in traditional social science are what identities people 
have, what criteria distinguish identities from each other, and what part identities 
play in the maintenance of society and in enabling the functioning of social structures 
and institutions. In this respect social identities are assumed to have an overarching 
relevance (Stryker and Burke, 2000). 
Underlying most of these approaches, whether sociological or social psychological, 
are concepts of identities that can be characterised as essentialist and realist. The 
concepts are essentialist in the sense that identities are taken to be properties of 
individuals or society; and realist in the sense that it is assumed that there is some 
kind of correspondence between identities and some aspects of social reality (Sfard 
and Prusak, 2005).     
Across the social sciences, the main criticism of, and alternatives to, traditional 
models of identities are found in a variety of social constructionist approaches. The 
concept of identity produced is designed in part to deal with variability and flexibility 
and how even the most obvious identities are negotiable. Although they are various, 
these approaches share in common an emphasis on the multiple ways that social 
identities are constructed, negotiated and performed. Contrary to the use of identity 
for the purpose of classification, or as a causal variable related to other phenomena, 

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 925



 

 

this view of identities, it is argued, enables a social constructionist to provide a more 
dynamic view of individual-social relations.  
A social constructionist approach also draws on the idea that symbolic or cultural 
resources influence identities, and how identities are constructed through historical, 
political, cultural and discursive practices. It is argued that the symbolic or linguistic 
resources available in the discourses provide possibilities and constraints on identities 
individuals can take. Methodologically this is used empirically to identify the 
linguistic resources or repertoire available in a culture for individuals to construct 
their self-understanding. In other words, they aim to show how cultural narratives 
become a set of personalised voices and positions.  This offers alternative ‘texts of 
identities’. 
IDENTIFICATIONS 
The positioning theory developed by Harré and van Langenhove (1999) is based on 
social constructionism. They see positioning in terms of a triad of interrelated 
concepts: storyline, positions and actions/acts. The storyline is the narrative that is 
being acted out in the metaphorical drama. Within it, the positions are the parts being 
performed by the participants. The actions of the participants are given meaning by 
the storyline and the positions available, and once given meaning become social acts. 
This positioning can be seen as interactors identifying themselves as actors, and being 
identified by others, in a metaphorical drama.  
The focus on identifications as a participant’s resources generates different questions 
and a different focus. Thus, instead of asking what identities people have, the focus is 
on whether, when and how identities are used in social acts, for example performing 
as teachers of mathematics.  
In their pre-service teacher education student teachers have to produce texts 
answering different tasks and reporting from group works and from practicing 
teaching in practice schools. Text in this connection will also include mathematical 
text. These texts can be seen as utterances in a dialogic relation to their teachers in the 
teacher education, or as social acts within the storylines of mathematics teacher 
education. These social acts are seen as positionings, or identifications as becoming 
teachers of mathematics.  
I investigate student teachers’ identifications relative to the three aspects of action, 
cognition and affect. Instead of methodologically trying to identify available 
positions in these storylines as categories following a social constructionist 
methodology, I will use another related dynamic concept of communicative 
positioning derived from Bakhtinian thinking searching for these three aspects. This 
concept of positioning is used as an analytic tool to analyse the student teachers texts 
as they are seen as struggling for making meaning of teaching and learning of 
mathematics. 
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POSITIONING AS A TRIADIC DISCURSIVE CONCEPT  
The communicative positioning developed and used by Ongstad (2006) is partly 
generated from Bakhtin’s essay “The problem of speech genres” (Bakhtin, 1986, pp. 
60-102). Ongstad identifies Bakhtin’s communicative elements necessary for an 
utterance to communicate in dialogic relations. One of these is how the utterance is 
positioning, and positioned, as such by addressing someone, referring a semantic 
content, and expressing feelings and intentions. 
Methodologically the utterance is seen as the unit of analysis. We communicate 
through utterances. Utterances are any sufficiently closed use of sign that makes 
sense. All utterances are uttered and interpreted related to expectations of genres, i.e. 
contexts that helps us to understand the utterance. Genres are ideological, i.e. they 
give tacit premises for the utterances’ positioning in the communication (Bakthin, 
1986). Ideology is broadly defined as unspoken premises for communication (Braathe 
and Ongstad, 2001). It is something we think from, not on. Genres can be described 
as kinds of communication. 
The genres are to be seen as triadic in the same sense as the positioning of the 
utterance, that they simultaneously give potential for the addressing, referring and the 
expressing. The three aspects are seen as parallel, inseparable, reciprocal, 
simultaneous processes (Ongstad, 2006).  
In the mathematics teacher education context the three aspects are seen as positioning 
related to addressing the classroom, teachers and others, referring the mathematics 
and the teaching and learning of mathematics, and expressing own emotions and 
experiences. Students’ different texts relate to different components of teacher 
education. Consequently they are positioned differently with dominance either on the 
expressive, referential or the addressive aspect. However, as utterances, all three 
aspects are simultaneously present, and consequently identifying the student as 
becoming teacher of mathematics related to all three aspects. This identifying process 
focuses identities as something the student teachers do, as communicative 
positioning, which is embedded in the social activity of teacher education.  
MATHEMATICS AS GENRES 
Seeing mathematics and mathematics education as a kind of communication will be 
to see mathematics and mathematics education as genres. I will hold the view that in 
their pre-service training student teachers are parts of different genres, kinds of 
communication, including mathematical, and potentially experiencing different ways 
to act as a teacher. It is helpful to call this process ‘learning’. This will theoretically 
be connected to seeing learning as semiosis in the field of teaching mathematics. This 
connects to seeing learning as communication. This shifts seeing development from a 
psychological to a semiotic perspective so as to locate developmental principles in 
the making of meanings. As I see learning, or developing of identities, as being 
positioned in communicational genres, I locate identities as dialogically situated in, 
negotiated and formed by genres, and so can have many expressions dependent on 
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the context. Identity can then be seen dynamically combining the personal, the 
cultural and the social (Braathe, 2007). 
Sfard (2002; 2008) takes a similar “communicational approach to cognition” (2002, 
p.26), where she holds that “[t]hinking may be conceptualised as a case of 
communication” (2002, p. 26), and even constructs the concept of “commognition” 
(2008, p. 296) to emphasise the necessary connection between the two. She further 
holds that “[l]earning mathematics may […] be defined as an initiation to 
mathematical discourse, that is, initiating to a special form of communication known 
as mathematical” (2002, p. 28).  
Furthermore Sfard holds that “[c]ommunication may be defined as a person’s attempt 
to make an interlocutor act, think or feel according to her intentions” (Sfard, 2002, p. 
27, emphasis by me). Discussing factors that give discourses their distinct identities 
Sfard identifies meta-discursive rules as  

usually not something the interlocutors would be fully aware of, or would follow 
consciously, […] there are special sets of meta-rules involved in regulating interlocutors’ 
mutual positioning and shaping their identities (ibid. p. 30-31).   

TELLING IDENTITIES 
In Braathe (2007) I discuss the theoretical framework presented in Holland et al 
(1998), especially their use of the Bakhtinian diverted concept of “the authoring self”. 
I relate this Bakthinian concept to Sfard and Prusak (2005) and their conception of 
identity (Braathe, 2009). They define identities as stories about persons. In a 
communicative and dialogic sense they adhere to that “[i]dentity […] is thought of as 
man-made and as constantly created and re-created in interactions between people” 
(Sfard and Prusak, 2005, p.15). Stories about persons, the term identifying, is in their 
context to be understood as “the activity in which one uses common resources to 
create a unique, individually tailored combination” (p. 14). From seeing the processes 
of identifying as discursive activities, the activities of communication, they suggest 
that “identities may be defined as collections of stories about persons or, more 
specifically, as those stories about individuals that are reified, endorsable and 
significant” (2005, p. 16, emphasis in original). This definition is an attempt to avoid 
the problem of essentialism, the extra-discursive existence that often is either implicit 
or explicit in the use of the concept of identity in educational research.  
Discursive acts of positioning, identifying, are seen in my context as communicative 
acts for establishing meaning. In the teacher education students’ produced texts can 
be seen as utterances that communicatively position the student teacher dynamically 
combining the personal, the cultural and the social.  
These texts/stories are not about persons, but about the explorative mathematics 
activities in their pre-service training, where the students have to explain 
mathematical patterns, connections and reasoning. These texts are seen as utterances 
in the genres of teacher education, told by the students of “themselves” to their 
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teacher. Sfard and Prusak (2005) call these stories the student teacher’s first-person 
identity. On the other hand my analysis of positioning of these texts will be called 
stories about stories. These stories about stories can also be seen as the student 
teacher’s third-person identity told by me as the researcher. In teacher education the 
resources, voices, used by the student teacher when writing in the different genres of 
mathematics educational texts, are found in dialog both with practice, theory and 
experience, and as such seen as influencing the negotiation of their semiotic 
identifications as teachers of mathematics.  
The analysis of positioning, applying the triadic discursive concept to these texts, 

explores how the students position themselves 
in relation to 1) own emotions and experiences, 
2) the mathematics and the teaching and 
learning of mathematics and 3) the classroom, 
teachers and others. 
Analysis of positioning 
To illustrate the analytical tool, I give a short 
extract of a text produced by a student teacher. 
The text is translated into English by me.  
The student teacher, Ina, is solving a task on 
finding and describing the pattern of a given 
number sequence. This text is produced in her 
second semester in her teacher training.  
The number sequence is given: 2, 7, 12, 17,….  
The student teacher is asked to: 
A: Find the next two numbers in the sequences. 
B: Find the recursive and the explicit formulae 
for the sequences. 
C: Explain why the formulae are correct.  

The written text in A is:  
a) One finds the next number by adding 5 to the previous number. 

In B: The number sequence a is an arithmetic sequence and that means that the 
difference, d, between the terms is constant. Recursive respectively explicit formulae are 
as follows: 

In C: The recursive formulae are logical and are already explained in words and shows 
what we must do to find the next term in the number sequence. 

The explicit formulae functions differently because they shall help us to find any term in 
the number sequence. 
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The number sequence a shows that we must include the first number in the number 
sequence (A1), this is added to (n-1)·d (multiplication first..) and n-1 is important, 
because if we shall find f. ex. the 10. term then n=10. Here we must subtract one if not 
we are calculating the 11. term. 

Ex from the number sequence a where the 6. term is 27: 

The expressive aspects of utterances are related to form and what this form 
symptomatically can express. One can read how Ina uses the arrow connecting the 
next two numbers in a) either as a (rough) draft she does to help her own thinking, 
and/or it can be read as a communicative utterance where she explains how the next 
number in the sequence is constructed. In both cases Ina uses an informal, illustrative, 
nearly oral, genre. The written text in a) is referring to an impersonal “one”, which is 
quite familiar in mathematical texts in textbooks. We can read it as a “rule giving” 
genre; written in an impersonal voice, in present tense and in general terms (it is 
about “the next number”).  
In B Ina lists the two formulae. In her writing of the recursive formula she writes /5 
to indicate that the difference is 5 in this case. The / is kept in the explicit formula, 
but “difference” is replaced with the variable d. This form may be a symptom of 
insecurity in the mathematical terminology. It could be read as if the difference in 
meaning, expressed with written symbols, is not quite clear to her yet. In both cases, 
writing formulae, she is writing in what can be identified as from a technical genre, as 
in her mathematics textbooks. Ina seems to have grasped the ideas, but I read this as 
she has not yet acquired the genre as a cultural tool, and have difficulties in 
expressing these ideas in writing. This mix of genres could be seen as voices from her 
earlier school experiences and also from the lectures at the teacher college.  
The referential aspects of the utterance are related to the mathematics in her text. She 
has got the answers correct. The notions of pattern and generalisation, in particular 
generalisation expressed in formulae, plays an important role both in the immediate 
context of situation through the instructions given in the statement of the task to 
“Find the […] formulae” and to “Explain why the formulae are correct” as well as 
through the assessment criteria and more generally through the genre of investigation 
in which ‘spotting’ and generalising patterns is highly valued.  
Her explanation of the recursive formula refers to what she has written in a), and she 
uses ‘logical’ as a self-explaining argument. Both formulae are given an authority as 
mathematical objects that can perform activity. The recursive formula “shows what 
we must do”, and the explicit formula “help us to find any term”. However when Ina 
presents the process she is also including actors in addition to the mathematical 
objects, as inclusive “we” and “us” respectively. This is also expressed in: “One 
finds the next number”, “The number sequence a shows that we must include”, 
“because if we shall find”, “Here we must subtract one if not we are calculating the 
11. term”. These actors can also be read as a general “one” or “we”, rather than 
specific persons. Thus, the process of varying values in the problem is not shown as 
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something done by the author herself. It shifts from being a process that may be 
carried out by any mathematician, to a process performed by mathematical objects 
themselves or by some unspecified agent, and finally, using the grammatical 
metaphor of nominalization, to an object which may itself have properties and 
variations. This expression of agency in the utterance serves as construction of a 
picture of her mathematical world.  
The addressive, or relational, aspects of the utterance are related to normativity, here 
in the sense of usefulness related to role of mathematics teacher in the primary 
school. Usefulness here includes ethical values concerning teaching and learning. Her 
explaining text in a) can be identified as “rule giving” genre within mathematics, and 
as such as part of the repertoire of the becoming teacher. In C she has included in 
brackets “(multiplication first..)”. This can be read as addressing the reader as a 
reminder of the rules for the priority of the numerical operations.   
The normative claim can be understood as part of an instrumental view on teaching 
and learning mathematics. This can be seen as an element of Ina’s experience and 
praxis as part of her stories of mathematics as a subject where she has to learn the 
rules, and where you have true or false answers. That is an ideology within the genres 
of teaching mathematics. 
In the utterance Ina uses a mix of genres. However, one genre seems dominant, the 
“Explaining” or “Introduction” genre. This is demonstrated by the explicit formula in 
C as she is both explaining the general by an example and by the nearly tactile 
metaphor she uses in explaining the explicit formula. This is a genre which is 
frequently used in the mathematics texts in her study. Explaining by examples is used 
frequently both in educational texts and also in teaching sessions, both at the college 
and in the practice schools. One could see this as a sign on her appropriating the 
voices of mathematics educational genres. This appropriation, making meaning of 
mathematical communication, is seen as the negotiation of identity as becoming 
teacher of mathematics. This shifts seeing development from a psychological to a 
semiotic perspective so as to locate developmental principles in the making of 
meanings.  
THEORIES FOR RESEARCHING TEACHERS IDENTITIES 
In this paper I have presented Positioning Theory as Rom Harré and associates have 
developed it. Their concept of positioning has been interpreted as persons’ 
identifications in a social psychological sense. From seeing teaching and learning as 
communication I have inserted a semiotic related concept of positioning based on 
Bakhtinian dialogism. This triadic discursive concept of positioning is then used as an 
analytic tool in analyzing identities according to the definition of identity proposed 
by Sfard and Prusak (2005). Here the utterance, as student’s text, in the genre of 
mathematics teacher education is used as the unit of analysis.  
I see development of identities as learning, and theoretically investigating negotiation 
of identities from a semiotic perspective, not a psychological one. Therefore I explain 
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identifications exposed in student teachers’ utterances as meanings within the genres, 
and the underlying ideologies, of teacher education. In the Norwegian mathematics 
classroom there are different ideologies simultaneously represented by different 
actors (Braathe and Ongstad, 2001). Essentially these are ideological conflicts within 
which the student teachers are struggling to create and negotiate their teacher 
identities. Going back to Dewey and seeing education as communication of doing, 
feeling and thinking from the older to the younger, has given me support for 
searching within theories of communication for a triadic understanding of learning to 
become mathematics teacher. Becoming a mathematics teacher includes building 
professional identities. This again includes knowledge of and identification with both 
mathematics and teaching and learning of mathematics.   
The concern then is to focus on identities and the settings in which those can change, 
as a way of conceptualising mathematics teacher development as learning processes 
including the personal, the social and the cultural. Seeing development from a 
semiotic perspective, and learning as semiosis, all these aspects will have to be taken 
into consideration simultaneously.  
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TEACHERS’ COLLEGIAL REFLECTIONS OF THEIR OWN 
MATHEMATICS TEACHING PROCESSES 

Part 1: An analytical tool for interpreting teachers` reflections 
Kerstin Bräuning & Marcus Nührenbörger 

University of Duisburg-Essen 
Abstract. The research presented in this paper offers a theoretical approach to the 
analysis of teachers’ professional development by collegial reflection. The analysis of 
the reflections is applied to teaching episodes observed by videos and transcripts. 
The communication processes of constructing interactive mathematical knowledge 
with regard to develop together a more and more professional reflection of the 
student/ teacher mathematical interactions are seen here from a complementary 
perspective: (1) The construction process of an analytical tool for describing the 
reflection process of teachers; (2) The reflection process of mathematics teachers on 
the videos and transcripts of a diagnostic episode showing their own interviewing. 
This paper as the first of two papers concentrates on the first perspective.  
1. INTRODUCTION: THE RESEARCH PROJECT AND ESSENTIAL 
RESEARCH PERSPECTIVES  
The presented research frame deals with discussion and results of the epistemological 
analyses of mathematical interactions in different social contexts (cf. Nührenbörger 
and Steinbring, 2009). In this article, we will concentrate on the development of 
teachers’ professional learning by reflecting together their own teaching episodes. We 
will discuss an analytic tool for describing the reflection process with regard to a 
professional development of a more and more sensible interpretation and analysis of 
the students' mathematical interactions in the course of the teaching episodes 
observed. This research focus is one important element besides other research 
questions of two broader projects dealing with questions of the mathematical teaching 
and diagnosis of students’ mathematical abilities in grades 1 and 2.  
a. ›Mathematics teaching in multi-age learning groups – interaction and intervention‹ 

(Malin). The question of this larger research report is: In which way do the 
teachers professional perspectives on their own role of teaching develop during 
the interactive lesson process with regard to the collegial reflections? For two 
years, eleven teachers from four elementary schools participate in the research 
project with their multi-age classes (grades 1 & 2). All teachers have been in-
troduced to mathematics instruction in multi-age groups (cf. Nührenbörger and 
Pust, 2006). Each school year the partner work of two children (of different age) is 
video graphed in five lessons. The children work in pairs on open or structure-
analogue tasks, which are supposed to permit an interaction and reflection from 
different points of view for both of them. After each term (four times over two 
years), the teachers of each school meet for a collegial reflection, in which video 
graphed episodes are watched out of their own instruction and analysed with the 
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help of corresponding transcripts. The objects of their critical analyses are video 
episodes from their mathematical classroom that contain two types of 
mathematical communication in two different social contexts: “A short episode of 
two students interaction without the teacher's presence” and “A following short 
episode of the two students interaction with the teacher's participation”. 
These interaction settings are taken as a productive opportunity for making sense 
of the students' processes of mathematical understanding within these two sub-
settings and of constructing mathematical knowledge in view of their own 
interventions (cf. Nührenbörger and Steinbring, 2009). 

b.  “Mathematics talks with children – individual diagnosis and supporting” 
(MathKiD). The question of this research report is: In which way do the teachers` 
professional perspectives on their own role of talking with one child develop 
during a diagnostic interview by means of structured talks of reflections? For one 
year, five teachers from two elementary schools participate in the research project 
with their children (grade 1 or 2). All teachers have been introduced to diagnostic 
situations in mathematics instruction. In one year, the interaction between the 
teacher and one child of his class is video graphed about six times. The teacher 
and the child talk about “pure” math situations or playing situations with 
implemented math situations. They are supposed to permit diagnostic findings 
about the mathematics abilities of the child. In one year, the teachers of each 
school meet three times for a structured talk in which video graphed episodes out 
of their own diagnostic talks will be watched and analysed with the help of 
belonging transcripts and the intervention of a moderator (project leader). The 
objects of their critical analysis are video episodes from their diagnostic talks that 
contain interesting situations under three different analytic perspectives: 
“Analysing the understanding of the child”, “Analysing the intentions and actions 
of the teacher” and “Analysing the interactions between the teacher and the child.” 

The cooperative reflection of mathematics teachers constitutes a practice-orientated 
discourse for constructing professional teacher knowledge. This research approach 
aiming at the analysis and reflection of the teachers’ own teaching activities in the 
course of their professional development differs from those approaches that offer 
exclusively theoretically elaborated patterns of teachers’ activities for reflection and 
imitation. The main focus of this paper is on the problem of developing an adequate 
tool for describing the process of collegial reflection with regard to the construction 
of a more professional knowledge for the learning and teaching process of 
mathematics. This leads directly to the research question of this contribution: 
In which way teachers become aware of and understand carefully the students’ 
interactive mathematical interpretation processes in relation to their own intervention 
possibilities for stimulating students’ mathematical understanding processes? 
In the last decades, research studies on mathematics teachers’ professional 
development have more and more emphasized the importance of video graphed 
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episodes of mathematics teaching and interactions for sensitizing the teachers for 
their own teaching and talking activity in and about math (i.e. Maher, 2008; Benke et 
al., 2008). In this frame it is important to recognize that teaching itself is not a mere 
routine task of transferring more or less finished mathematical knowledge, which the 
teacher has prepared, to the students. Steinbring (2008, 372) points out that “school 
mathematics, as finished given knowledge, is not the actual subject of teaching in an 
unchanged way. Mathematical knowledge emerges and develops only in an 
effectively new and independent way within the instructional interaction with the 
students. Thus, finished, elaborated mathematics is not an independent input of the 
teacher into the teaching process which could then become an acquired output by 
means of students’ elaboration processes.”  
During the process of teaching, the teachers are involved directly in the interaction 
with the student(s) and cannot play the role of a distanced observer of the events. The 
teacher has to draw directly a conclusion of the situation. “Normally, whenever we 
hear anything said we spring spontaneously to an immediate conclusion, namely, that 
the speaker is referring to what we should be referring to were we speaking the words 
ourselves. In some cases this interpretation may be correct; this will prove to be what 
he has referred to. But in most discussions which attempt greater subtleties than could 
be handled in a gesture language this will not be so” (Ogden & Richards, 1972, p. 
15). But the development and change of the activity of teaching requires a critical 
consideration and thus a distance of ones own activity (cf. Krainer, 2003). Collegial 
reflections offer the teachers an “unusual” view of interaction processes. Possibly 
they will be irritated, they observe greater subtleties and thereby view the situation in 
another way (cf. Gellert 2003).  
Otherwise one cannot see a typical dilemma of mathematical teaching routines: 
Mathematical teachers know, on the one side, of the importance of interactive 
learning processes during a learning environment, supporting the active-exploring 
work of students. But on the other side, the talk of the teachers during the teaching is 
affected by an attitude that mathematical knowledge is a complete and clear product, 
which can be developed directly by the students (cf. Steinbring, 2005). Hence, it 
might be the danger that teachers act on the assumption to support the students` 
learning processes with open learning environments. But due to the direct 
involvement in the mathematical teaching process, teachers tend to their personal 
views on knowledge. Their spontaneous work bases on own experiences and 
routines: Their talk to students is characterized by leading, funnelling and product-
orientating, so the students have no choice to develop active own mathematical 
interpretations (cf. Bauersfeld, 1995). The teachers involved in the teaching process 
cannot see this dilemma. It is only noticeable in the distance and in a critical-reflected 
talk with colleagues observing by a video of their teaching. The distanced observation 
of a communication process in the classroom can highlight causal relations between 
the learning and teaching process. “During the common systematic reflection in a 
group of teachers about their own teaching processes with students thus emerges a 
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further communication system, which again has to deal with the necessary 
interrelation between one’s own consciousness and common communication. This 
communication now has communication processes as its subject and it is supposed to 
animate a professional consciousness” (Steinbring 2008, 379). However, the 
reflection of one’s own activities that temporally separates from the teaching situation 
looks to future teaching activities. These future teaching processes can relate to the 
results of the distanced reflection (cf. Krainer 2003; Sherin and Han, 2004).  
As a basis of professional teacher development we see an active, self-responsible and 
reflective elaboration of one’s own practice with colleagues (cf. Altrichter, 2003, 
Krammer et al., 2006). „Systematic reflection on mathematical interactions that focus 
on the students’ learning and understanding processes, as well as on one’s own 
interaction behavior, represents an essential professional competence of teachers” 
(Scherer & Steinbring, 2006, p. 166, cf. Mason, 2002).  
The growth of new insights refers to the active process of reflecting ones own 
teaching and learning. „If mathematics education is to be influenced in a positive way 
and ameliorated, the teachers have to be the ones who initiate these changes, and their 
reflection on their own activity is crucial“ (Scherer and Steinbring, 2006, 165). 
Professional development needs to talk with the professional group about the own 
practice. In this sense, we mean with “collegial reflection” the common discussion 
and negotiation of teachers watching a video of a teaching episode and reading the 
transcript.  
In this article, we will discuss the question, how the collegial reflections support 
teachers with the help of videos and transcripts to be sensitive to the power of the 
mathematical negotiating process of students: In which way teachers develop in the 
course of collegial reflections differentiated mathematical interpretations and 
interrelations? In which way teachers look to the possibilities to attend the students 
with open, mathematical focused and interactive orientated interventions? 
 
2. THE DESIGN OF THE COLLEGIAL REFLECTIONS 
In the context of the two research projects, the teachers take part on distanced 
collegial reflections of their own or of known (this means known lessons hold by 
colleagues) teaching lessons. In this sense, the projects do not focus on the imitation 
successful teaching and learning strategies. Both projects aim at the commonly 
constructed reflection of interaction processes with the focus on the understanding of 
the students’ mathematical thinking, on the role of interaction for constructing 
mathematical knowledge, and on the patterns of the interactive teaching and learning 
process. The collegial reflection focuses on classroom cases (Malin-Project) or 
diagnostic talks (MathKiD-Project).  
Teachers can be encouraged to reflect their own talking activities and to make 
conscious decisions by learning how to “read” and interpret a episode of talks in a 
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complex classroom situation or in a diagnostic situation. In addition, the collegial 
reflection follows some guidelines for initiating joint analyses: 
Continuity: The teachers meet more then one time a year. The long-term meetings are 
necessary to grow into and to stabilise the reflection process of exemplary cases. 
Furthermore, each teacher of the group of 3 to 5 teachers should be one or two times 
a year in the focus of the reflection.  
Collegiality: The teachers work together and reflect their view of the real teaching 
episodes in a new way.  
Familiarity: It is necessary to integrate the collegial reflection process in a trustful 
atmosphere to experience a positive learning community. A concentrate altercation of 
the teachers with the episode relates to the familiarity of the video episodes. 
Concentration on teaching and learning: The analyses focus is on the teaching and 
talking activity, not on the teachers (cf. Stigler and Hiebert, 1999) - the teachers do 
not want to evaluate the teacher, they want to understand the teaching process and the 
practice of instructing - they give only alternative teaching offers (cf. Seago, 2004).  
Concentration onto the teachers: The teachers will and should not analyse the 
transcripts like researchers. They have their own interests in working with the 
transcripts, just like the socio-cooperative possibilities of learning or the everyday 
constitutions of their practice.  
The teachers can take different roles in the course of the analyses. The results 
discussed in this article bases on the research project “Malin”. The researcher takes 
the role of a cautious moderator to initiate the collegial reflections. 
Cautious moderator  
After an empirical analysis the researcher chooses one video episode of the classroom 
teaching lessons of one participant. The video episode contains a potential for 
discussing the interactive knowledge construction of the children in relation to the 
intervention of a teacher. At the beginning the teachers get an orientation of the 
teaching episode by the teacher involved. The researcher offers the video episode and 
the corresponding transcript. Furthermore, the teachers discuss different perspectives 
for the interpretation process – such as special features of the mathematical 
understanding of a student, of the interactive construction of mathematical 
knowledge, or of the teachers` attitudes and verbal interventions and their 
consequences of the students` behaviour and knowledge construction (cf. Scherer et 
al, 2004). The video episode is structured in three sequences and each sequence is an 
“object” of the teachers’ cooperative and joint reflection:  
a. Mathematical interpretation processes of two cooperating students 
b. Mathematical interpretation processes of the intervening teacher 
c. Mathematical interpretation processes of the two cooperating students after the 

leaving of the teacher  
Firstly, the teachers see and discuss only the first sequence with the help of the 
transcript without knowing the teacher intervention. The researcher as a moderator 
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has mainly the task to choose and structure a comprehensive teaching episode and to 
moderate cautiously the collegial reflection. At the end, he animates the teachers to a 
short review – in form of a “flashlight” – on the collegial reflection and on their 
learning process. The cautious moderation guarantees a negotiation of deep structures 
that seems to be important for the professional development process of the teachers` 
group. Furthermore, the teachers have the opportunity to adopt the collegial reflection 
as a school-internal way of professional learning. In this sense, we hope that this may 
guide the teachers to understand their school as a place where also teachers can learn. 
 
3. THEORETICAL COMPONENTS OF ANALYSING TEACHERS` 
COLLEGIAL REFLECTION   
In this report we concentrate exclusively on exemplary cases in order to elaborate the 
particularities of collegial reflections that were analysed in the Malin-Project. The 
qualitative data is carefully evaluated in an interpretative way and analysed with 
regard to the classification of specific interpretation dimensions (for the research 
approach of qualitative and interpretative analyses of mathematical interaction 
processes see e.g. ZDM (2000)).  
The collegial discourse creates a new context, in which the teachers talk in a different 
way of teaching mathematics as during the lessons. The teachers` interpretations 
during the different collegial reflections of their own teaching episodes can be 
compared with the reconstruction of a “case”. Their discussions are effected by the 
search for evidences to clarify the case. The results of the analyses lead to the 
assumption that the teachers construct an understanding of the interpretation to an 
agreed case – likewise teacher and students negotiate common mathematical 
interpretation during the lessons. For a collegial reflection, we will differ three main 
analysing aspects, which relate to the professional development of the teachers:  

• The constructing of a case (What teachers are talking about the empirical event?) 
• The reading (How teachers are speaking about the case?) 
• The generation of case knowledge (Which knowledge teachers are expressing to 

make sense to their case?) 
The constructing of a case: The teachers watch a video episode of a teaching 
sequence and read the corresponding transcript. Their discussions differ from 
spontaneously reflections in or after a teaching episode. The teacher involved in the 
case gives a lecture of his thinking of the named case. In the collegial reflection, the 
teachers frame firstly the empirical event in different ways. Here, we can mainly 
distinguish between three frames, which seem to be important for a professional 
development of mathematical teaching:  
- An interactional frame containing utterances to the social learning of students, to 

their cooperative activities, to the dialogues between students or between students 
and teacher depending on their social roles (cf. Nührenbörger and Steinbring, 
2009, e.g.: “The starting situation, that [the student] Klaus decides and Sönke is 

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 939



 

 

in the role of working and writing, is changed, when a teacher comes to the 
students. Klaus is very orientated to the teacher telling him what they have 
already done”) 

- An epistemological frame containing utterances to interactive construction of 
mathematical interpretations of the students and to the mathematical 
understanding of the teachers themselves in the distanced situation of the collegial 
reflection (e.g.: “Ah, these four plus four idea.” “I think also this crux of the 
matter. Well, I mean, with six plus two and two plus six it is obvious, that they are 
exchange exercises which have the same result, but which are the other way 
round. And with four plus four. (…) It is in fact also an exchange exercise…” “But 
Ben, with your theory, well I am considering right now. If one puts them into a 
line and then you would have one plus seven, but also two exercises.”) 

- An organisational frame containing utterances to the conditions of teaching (i.e. 
presentation of a task, time management etc.) and to the development of their own 
teaching (i.e. the effects of diagnostic questions etc.) 

The relation between the empirical event and the frame of the teacher describes the 
case which the teachers construct in their collegial reflection and which is the focus 
of their understanding. The teachers pick different cases as a central theme during the 
active reflection of the different sequences. Five main cases can be differed: learning 
of mathematics with focus on results and algorithmic or on arithmetical and 
geometrical processes, social learning of the students, teaching of the teachers, 
mathematical context, diagnose of competences.  
However, the teachers construct a case in the collegial reflection, they do not discuss 
a staged case. The constructed case must be proved (on) by the empirical event. 
The reading of the case: The teachers can articulate the constructions of the cases in 
different ways. If teachers – after reading the transcript or watching the video - think 
to know and understand the interaction process, they narrate and evaluate the text in 
a biased-spontaneous way. A more open-reflected approach contains different 
paraphrase and interpretations. What will we mean with these notations indicating 
the access of the teachers to the case? 
Description: The teachers concentrate on aspects of the episode and give a detailed or 
a short description. If the teachers illustrate the attitude or the talks as a clear and 
understandable learning episode, they tend to narrate the scene in a short way. But if 
the teachers illustrate different phenomena of the teaching and learning process in a 
neutral and accurate way, they tend to paraphrase the scene.  
Evaluation: The teachers link their descriptions with personal views on the situation 
to evaluate the attitudes and talks in the teaching and learning process. 
Interpretation: The attempt to clarify the teaching and learning episode must not go 
along with an evaluation. When the teachers describe the scene in a detailed way and 
try to analyse the different acts and utterances, they begin to interpret the scene. The 
interpretation leads to different explanations without regard to own experiences. 
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The readings of the case interrelate to a different case knowledge of the teachers. The 
analysis of the collegial reflection in the Malin-Project shows three different types of 
practice case knowledge (knowledge by observation, by experience, by transfer, by 
interrelation) that the teachers activate to clarify the case. However, in this sense the 
case relates to the common professional knowledge. The following diagram shows 
the coherences between the case and the construction of professional knowledge. 

 
The generation of knowledge: During the reflection process the teachers bring in 
their knowledge to construct and understand a case. On the one hand, they use their 
common experiences and observations to clarify an utterance or an act of the students 
or of the teachers. This case knowledge relates to old knowledge (e.g.: “I think it is 
typical. The older guy tells the younger one what to do. Klaus says to Sönke, how it 
will go.”). In this sense, the interpretation of the case is used to confirm one owns 
pedagogical and mathematical beliefs. A teacher will use his case knowledge by 
observation to describe and reconstruct the empirical event. When teachers use 
experiences of their own teaching practice that relates to the empirical event observed 
by the video, they activate case knowledge by experience. This means that they 
construct retrospectively an adequate perspective to give a plausible explanation for 
the colleagues.  
On the other hand, teachers can pick the case as a central theme for constructing new 
relations dynamically. If the case provides a basis for a productive irritation, it can 
inspire the previous knowledge of mathematical topics (e.g. see the discussion of the 
teachers above, if there exist an exchange task to 4 + 4: The way of the students` 
interpretation of a mathematical task can lead to a new discussion about mathematical 
patterns), mathematical interpretations of children and mathematical interactions 
(e.g.: “The schizophrenic thing is, I as a teacher have given them a partner work, but 
I do not lead the student-teacher-conversation as a partner-work-conversation”). If a 
teacher reproduces the ideas of the other teachers in relation to his old knowledge, he 
constructs new case knowledge by transfer and interrelation.  

Teachers’ professional 
development 

Reading of the 
Case AND 

Knowledge to 
interpret the case 

Empirical 
event frame 

case 
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4. CLOSING REMARKS: THE PROFESSIONAL DEVELOPMENT OF 
TEACHERS` IN RELATION TO THE COLLEGIAL REFLECTIONS 
The teachers construct and negotiate different cases in different ways if they have the 
opportunity to reflect together their own teaching process. The analyses of the 
reflections in the Malin-Project (cf. Nührenbörger and Steinbring, 2009) showed that 
teachers activate different types of case knowledge to interpret the empirical events. 
We described a professional development of the teachers as a growth of the reading 
of a case in an open and reflected way (paraphrase and interpret). Likewise, one can 
see a growth of professional practice by the construction of relations between the case 
and the knowledge by transfer and interrelation based on a productive irritation by the 
teachers. Besides the organisational frame, the conditions and the trustful willingness 
of the teachers to open up for the exchange with their colleagues, it seems to be 
essential that the collegial reflections were founded on scenes from one’s own 
teaching. But which role has the moderator? 
The analysis of the collegial reflections showed that many times, the teachers 
discussed a scene without a mathematical orientated frame. They used the empirical 
event to talk about common pedagogical and organisational topics. What will happen 
if the moderator leaves the cautious role and takes a more active role? We have the 
hypothesis that the role of the moderator can focus on the discussions of the teachers 
on one case and can provoke a more open and reflected reading of a case with the use 
of knowledge by transfer and interrelation. An active moderator looked for special 
features which he wants to discuss with the teachers and which they shall notice. We 
will discuss a collegial reflection structured by an active moderator in the second part 
of this paper with regard to the MathKiD-Project. 
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TEACHERS’ REFLECTIONS OF THEIR OWN MATHEMATICS 
TEACHING PROCESSES 

Part 2: Examples of an active moderated collegial reflection 
Kerstin Bräuning & Marcus Nührenbörger 

University of Duisburg-Essen 
Abstract. The research presented in this paper offers a methodological approach to 
the analysis of teachers’ professional development by collegial reflection. Collegial 
reflections are professional development meetings in which teachers watch and 
discuss excerpts from talking with their pupils. We’ll present an example of collegial 
reflection based on a diagnostic talk between a teacher and a 2nd grade child. The 
instruments presented in the first part of this paper will be used for the analysis of the 
collegial reflection. Investigating the case knowledge participants’ construct in 
professional development can further our understanding of how teachers interact to 
influence one another’s learning. We’ll see how participants make inferences about 
the events they noticed and how they use videos as evidence for their interpretations. 

1. INTRODUCTION: THE RESEARCH PROJECT AND COLLEGIAL 
REFLECTIONS 
The presented research deals with the development of teachers’ professional learning 
by analyzing video episodes. In this article we will concentrate on one example of a 
collegial reflection process and we will use the analytic tool presented in the first part 
of this paper for describing the reflection process. 
Teacher professional development seems to be short-term, individualized and 
disconnected from practice (Ball & Cohen, 1999; McLaughlin & Mitra, 2002). An 
important aspect of teacher learning groups is that they engage in long-term 
collaboration with their colleagues, focusing on issues that relate to their daily 
teaching activities (Little, 2002). To promote and support teachers in attending to and 
interpreting students’ mathematical thinking there should be interplay between 
activity and reflection (figure in: Steinbring, 2003, p. 217/218). 
 
 
 
 
 
 
 
 

own learning activities of the teachers 
active processes ↔ joint reflections

are premises to understand 

mathematical learning processes of children 
discover actively ↔ reflect consciously 

necessitate the organisation of 

mathematical processes of interaction and communication between teachers and children 
involved in interaction process ↔ reserved joint reflection of the interaction process 
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Lesson study provides such a possibility for teachers where they examine 
systematically their instructional methods, teaching content and also their students’ 
processes of learning and understanding (Yoshida, 2008, p. 85). A small group of 
teachers plan together a research lesson, implement it and the other teachers observe 
this lesson. Afterwards they discuss about this research lesson. With the collegial 
reflection we try to offer the teachers of our projects a possibility to deepen and 
broaden their understanding of the teaching episode by an unusual view of the 
situation. 
Our interest is to find out what kind of readings the participants use in the collegial 
reflections and what kind of case knowledge they develop when talking about the 
video episodes. In the first part of this paper we explained the different kind of 
readings: biased – spontaneous (narrate, evaluate) than open – reflected (paraphrase, 
interpret). The teachers construct knowledge by observation, experience, transfer and 
interrelation. If the teacher just refers to his own thinking, he will develop knowledge 
by observation or experience. If he takes account of the other participants’ utterances, 
he will construct knowledge by transfer and interrelation. We also want to find out 
what impact the moderator has on the readings and the case knowledge the teachers 
develop in the structured talk. A structured talk is a collegial reflection with a 
moderator attending the meeting. 
Sherin and van Es use a related approach for analysing their video clubs (Sherin & 
van Es, 2005) which are similar to our collegial reflections. They examine the 
teachers’ role in the video club setting. In contrast to our research they do not identify 
the case knowledge the teacher construct when talking about the video episode. They 
analyse speaking turns along the dimension specificity (general or specific) and focus 
on video this means that they explore if the comments grounded in the events that 
occurred in the video or based on events outside of the video episodes. 
This article is based on two research projects (“Malin” and “MathKiD”), which both 
deal with collegial reflections, but which differ in the way of support and moderation 
(see also first part of this paper). 
- Cautious moderator („Malin-Project“) (Nührenbörger & Steinbring, 2008): The 
researcher chooses one video episode and provides the teachers with the video 
episode and the belonging transcript. Furthermore he introduces the methods of 
collegial reflection and presents a paper with analytic perspectives, which the 
teachers can use during the reflection process. The researcher moderates the 
reflection process in a cautious way. The teachers can discover and discuss 
independently the basic structures of their teaching. In the long-term they can adopt 
the collegial reflection as a school-internally way of professional learning. We hope 
that this may guide the teachers to understand their school as a place where also 
teachers can learn. 
- Active moderator and no moderator („MathKiD“): The researcher chooses one video 
episode of a diagnostic talk, which one participant conducted. In every meeting the 
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chosen episode will be discussed from a different analytic perspective. The teachers 
are provided with the video episode and the transcript to the chosen episode. In the 
structured talk, where the project leader is an active moderator, the teachers first get a 
short introduction about the following meeting. They receive a paper with several 
stimuli to the specific analytic perspective, which they can use in the interpretation 
process for their orientation (Scherer, Söbbeke, & Steinbring, 2004). The project 
leader is an active moderator in the structured talk because she analysed the whole 
transcript sensitively before the meeting and looked for special features to be 
discussed with the teachers and which they shall notice. The structured talk is like a 
supervision where the external moderator is the supervisor (Lippmann, 2005, p. 10 
ff.). In the informal talks the teachers meet each other without the project leader. You 
can compare the informal talk with intervision. If people meet each other without a 
moderator it is called intervision (Lippmann, 2005, p. 12). The structured talks and 
the informal talks are both audio taped. The informal and structured talks take place 
in an alternating fashion. In every meeting new transcript will be discussed. 
In the following we will look at one structured talk of the project MathKiD. The 
influence of the informal talk prior to the structured talk will not be discussed in this 
article. 
2. THE COMPOSITION OF THE STRUCTURED TALK 
The composition of the structured talk is the following: 
1. The teachers’ feedback on the informal talk. 
2. Analysis of the video episode with the belonging transcript from a specific 

analytic perspective: 
a. Understanding of the child (first structured talk) 
b. Intentions and actions of the teacher (second structured talk) 
c. Interaction between the teacher and the child (third structured talk) 

3. Flashlight to the new insights, which resulted from the analysis of the video 
episode. 

Different stages of the structured talk are: 
1. The teachers’ feedback on the informal talk. 
The moderator listens to the teachers and they report on the contents they discussed 
in the informal talk. 
2. Analysing the video episode with the belonging transcript from a specific analytic 

perspective (understanding of the child, intentions and actions of the teacher, 
interaction between the teacher and the child). 

First, the moderator asks the teacher who talked to the child in the video, what she 
expected from the child of her class before the diagnostic talk and what kind of 
feelings she had at the beginning of the diagnostic talk. Then all the participants 
watch the video episode and after that the teacher from the video has the possibility to 
express her first impressions of it. Then the other teachers can also express their 
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impressions. In the analysing process the moderator structures the discussion, 1) she 
encourages the others to express what they think about a statement of one teacher, 2) 
she tries to find out what every participant wants to express, 3) she points to different 
possibilities to interpret a situation and look deeper on special issues in the transcript, 
4) she refers to the given stimuli on the paper the teachers got, 5) she focuses the 
conversation on mathematical interactions, 6) she reminds the teachers to talk about 
the transcript and 7) she remarks the teachers to provide an evidence from the 
transcript for their interpretation. The moderator is not assessing the interpretations of 
the teachers, is not changing her role into the didactical expert and is not insisting on 
her stimuli, which she offered to the teachers. 
3. Flashlight to the new insights, which resulted from the analysis of the video 

episode. 
At the end of the structured talk the moderator asks every participant to express their 
own new insights after analysing the video episode and what kind of new information 
they got about the mathematical abilities of the child and the possibilities to support 
the child. 
3. THE FIRST STRUCTURED TALK ABOUT AJDIN AND MRS. WHITE 
The MathKiD project started in August 2007 and five teachers from two different 
primary schools are participating. One group consists of three teachers, the other of 
two teachers. Each of the three teachers conducted one to three diagnostic talks with 
grade 1 or 2 pupils before the first structured talk in November 2007. The first 
informal talk was in October 2007 and is not audio taped. 
The structured talk is the first meeting of the three teachers with the project leader to 
analyse a video episode and the belonging transcript under the analytic perspective 
“understanding of the child in the observed situation”. 
Content of the video episode Ajdin and Mrs. White 
The content of the chosen video episode is the talk between Ajdin (grade 2) and Mrs. 
White about a pattern of coins at the beginning of the second grade. On one side the 
coins are red and on the other side they are blue. They are playing the game 
“Collecting coins” (Hengartner, Hirt, Wälti, & Lupsingen, 2006, pp. 27-30). In this 
game you throw your dice and move forward the shown number on the playing field. 
On special fields, where you see a structured or unstructured amount of coins, you 
can win coins. The goal of the game is to structure the won coins in a way that you 
always find out very easily and quickly how many coins you already won and to be 
able to compare your coins with the amount of coins your partner won. 
Ajdin and Mrs. White play the game “Collecting coins” the second time. At the 
beginning Mrs. White told Ajdin that he should display his coins so that they would 
not have to count a lot to find out who has already won more coins. They 
have already talked about 13 minutes. Mrs. White won 14 coins and she 
structured them in 5+5+4. 
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Ajdin is winning his first 6 coins and he structures them like that: 
Mrs. White wins 5 more coins. Ajdin tells her that she now has 19 coins and she 
structures it like 5+5+5+4. She first asks him how he saw this and then how he 
calculated it. He tells her that 14+5=19, because 4+5=9. After that Mrs. White wins 3 
coins and structures them like that 5+5+5+5+2: 
 
 
Ajdin wins four coins and structures the coins like that:       Mrs. White says 
that it is a “strange” pattern and asks what he thinks about it. He first tells her 3+4=7 
and 7+3=10 and later he says 3+3=6 and 6+4=10 while pointing on the lines of his 
pattern. 
Epistemological analysis of the video episode Ajdin and Mrs. White 
For the interpretation it is important to notice 
that “Collecting coins” is on the one hand a 
game and on the other it is dealing with 
mathematical contents. The arrangement of the 
coins is different for Mrs. White and Ajdin. She 
refers to five and ten as the base of our counting 
system when arranging her coins. She is not 
changing her pattern after winning some more 
coins. She continues her pattern (Nührenbörger 
& Steinbring, 2008). 
 
Ajdin’s first pattern would be called triangle number. He is “continuing” his pattern 
to the second pattern. There is no (geometric) 
label for this pattern like square or triangle or 
something else. It is not clear in which way 
he would continue his second pattern. The 
second pattern seems so complex for Ajdin 
that he gives two different calculations as 
interpretations: first 3+4=7 and 7+3=10 and 
later 3+3=6 and 6+4=10. With the 
calculations Ajdin does not explain his 
actions when arranging the coins to the first 
pattern. The second calculation explains the 
pattern in a symmetric way, but Mrs. White 
is not dealing with it. 

Fig. 1: Epistemological Triangle Mrs. W 
Concept 

 
 
5+14=19 
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system 
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Fig. 2: Epistemological Triangle Ajdin task 1 
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Mrs. White uses the term “strange pattern” for his second pattern. Perhaps she uses it, 
because in her thinking her pattern is mathematically correct and not comparable with 
the pattern of Ajdin. For Mrs. White it is probably important to be able to “see” the 
amount of coins quickly and for Ajdin it is important to find an easy calculation for 
the pattern. 
The moderator wants to discuss with the teachers about the different patterns of Ajdin 
and about the term “strange pattern”, which Mrs. White used. 
Content of the structured talk about the video episode Ajdin and Mrs. White 
The whole structured talk lasted 2 h and 15 min. Two different episodes were 
selected dealing with the first and the second pattern of Ajdin. 
Content of the first episode of the structured talk 
In the first episode the moderator tells the teachers that the first pattern of Ajdin is 
still a pattern even if it is not structured in rows of five or ten coins. This is meant as a 
stimulus for the others to discuss this statement. The participants are not discussing 
the first pattern. Through a statement of Mrs. White all the participants discuss the 
continuation from the first to the second pattern of Ajdin. The teachers discuss their 
own different interpretations of continuing the first pattern if they had won four 
additional coins. 
Analysis of the first episode of the structured talk 
The first episode deals with the continuation from the first to the second pattern of 
Ajdin. The teachers talk about patterns as a mathematical content and the working 
process of Ajdin. They do not differentiate between these two topics. 
Each teacher talks about the cases in different readings, as specified below. 
Mrs. White talks more than half of the time and dominates the discussion. She 
explains her understanding of patterns and what she believes how Ajdin is thinking. 
Probably Mrs. White has the feeling that she has to justify and to defend her actions 
in the diagnostic talk. On the one hand she is telling about her own thinking (“I would 
have” / “I put” / “for example I would” / “I would do”) and on the other hand it is 
presumable that she tries to get a sense of Ajdin’s statements (“I don’t know what he” 
/ “I think” / “I believe” / “I find this unexpected” / “I can imagine”) (line 65 ff.). She 
describes her working process when she builds patterns, which is mainly based on her 
experiences. In this episode Mrs. White narrates and evaluates the continuation 
from the first to the second pattern of Ajdin (l. 69). 
Mr. Peter talks about the structure of Ajdin’s first pattern, which Ajdin loses in the 
eyes of Mr. Peter when he creates the second pattern. Mr. Peter assumes that Ajdin 
followed the sequence of natural numbers in his first pattern (l. 71, 73, 75). Mr. Peter 
evaluates the situation in this episode. 
Mrs. Dieter reacts to the stimulus of the moderator (l. 77, 79) by creating a pattern 
different from Ajdin’s second pattern. She neither refers to the transcript nor the 
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episode. She connects the pattern with geometrical shapes like a square (l. 83, 85, 87, 
91, 96, 98). Her statement seems like an insertion. Mrs. White rejects Mrs. Dieter’s 
statement and therefore Mrs. Dieter tries to justify her thinking (l. 101, 112). At the 
end she refers to the transcript when she talks about Ajdin seeing six coins at once (l. 
114). Mrs. Dieter briefly narrates the situation at the end. The other time she does 
not refer to the episode. 
In this episode Mrs. Otto shortly paraphrases that Ajdin counted the six coins when 
he won them (l. 115, 117). She refers to the transcript. 
The moderator gives a stimulus to think about Ajdin’s first pattern if it is a pattern (l. 
64) and how each of the participants would put the four coins Ajdin won to his first 
pattern (l. 77). Then she tries to understand the statements of the teachers and 
demands further information. In line 104 she refers to the rule of the game that says 
that you have to structure your won coins, but not in a specific or given way. The 
moderator tries to initiate that the teachers develop different interpretations of 
continuing the first pattern to the second pattern of Ajdin. 
 
 
 
 
 
 
 
 
 
 
Discussion of the first episode of the structured talk 
If we look at the readings of the teachers we can see that they react more biased – 
spontaneous (narrate, evaluate) than open – reflected (paraphrase, interpret). 
If we look at the generation of case knowledge we can see that the teachers use their 
knowledge by observation and experience they have developed. For example Mrs. 
White refers to her remedial teaching (l. 74) as knowledge by experience. The 
teachers are not interpreting the given material in detail, the video episode and the 
belonging transcript. They do not refer to the statements of the other participants and 
therefore they do not generate knowledge by transfer and interrelation. 
Content of the second episode of the structured talk 
In the second episode the participants discuss from where Ajdin got the first pattern. 
Was it his own idea or did he see this pattern on the playing field? One teacher says 

T-S-Interaction Interactional frame 
Epistemological frame 

Teachers’ professional 
development

Knowledge by 
observation and 

experience

 
Ajdin’s 
patterns 

View of patterns: 
arithmetical and 
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Continuation from the first to 
the second pattern of Ajdin 
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that Mrs. White could have asked him why he structured the pattern like this. Mrs. 
White says that she could ask him but his answer would not help her to know from 
where he got his first pattern. Then they talk about the change from the first to the 
second pattern. The teachers tell their own different interpretations of the second 
pattern. They think about how to foster the mathematical abilities of Ajdin. They 
believe that you only have to support children with low-level competencies. They are 
convinced that they do not have to support him, but to foster over the usual level. In 
line 320 the moderator refers to the diagnostic-talk-transcript and says that Ajdin 
interprets his second pattern in a second way and one teacher states that Ajdin re-
interprets his second pattern when he gives another calculation. 
Analysis of the second episode of the structured talk 
The second episode deals with the development of several cases. They talk about the 
origin of the first pattern of Ajdin and again about the continuation from the first to 
the second pattern of Ajdin. They discuss about patterns as a mathematical content 
and the working process of Ajdin. Furthermore they think if they have to support 
Ajdin even if he is not a low achiever. 
First we will look at each teacher. Each of them talks about the cases in different 
readings again.  
Mrs. White talks more than one third of the time and like in the first episode she tells 
what she thinks about the patterns and what she believes how Ajdin is thinking. 
Probably Mrs. White has the feeling that she has to justify and to defend her actions 
in the diagnostic talk. It seems like that because she dominates these two episodes. 
She uses “I” very often differently. We already described this in the analysis of the 
first episode. It seems that she thinks she knows what Ajdin wanted to do. She 
express that she can demand explanations of Ajdin, but they will not help her 
understanding what Ajdin thought (l. 254, 256). Most of the time in this episode Mrs. 
White evaluates the working process of Ajdin when he builds his patterns (l. 238, 
240, 242). She decides that Ajdin needs no supporting, so she also evaluates the 
process (l. 313) and tries to finish the discussion in this episode. 
Mr. Peter talks again about the first pattern of Ajdin. He seems to be convinced that 
he knows how Ajdin saw his pattern. For him the only view is following the sequence 
of natural numbers (l. 235, 290 ff.). He refers to the transcript when he evaluates the 
working process of Ajdin. At the end he describes that Ajdin finds two different 
calculations for the second pattern. Mr. Peter evaluates and narrates in this episode. 
After the moderator repeats the statement of Mrs. Dieter (l. 279) she is the only one 
who reacts and she explains her statement (l. 280 ff.) how she looks on the second 
pattern of Ajdin. Her statement seems like an insertion because nobody refers to her. 
It seems that only Mrs. Dieter tries to answer to the stimulus of the moderator. Mrs. 
Dieter narrates in this episode. 
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In this episode Mrs. Otto reacts to the statement of Mrs. White and suggests her to 
ask Ajdin what he thinks about his patterns. She refers to the transcript when Mrs. 
White says “pattern”. She reflects about the term “pattern” and the interpretation of it 
(l. 257 ff.). Later she points out that one can also support children who show a good 
performance (l. 316, 318). Mrs. Otto paraphrases and interprets in this episode. 
The moderator gives feedback to the statements of the teachers with “mhm”. In line 
279 she points to the continuation from the first to the second pattern and takes up the 
statement from Mrs. Dieter (l. 273). Later she refers to the transcript and explains that 
Ajdin has two different interpretations of his second pattern (l. 320 ff.). Most of the 
time she listens to the conversation. 
Discussion of the second episode of the structured talk 
If we look at the readings of the teachers we can see that all the four teachers stick to 
their roles. They react more biased – spontaneous (narrate, evaluate) than open – 
reflected (paraphrase, interpret) apart from Mrs. Otto. In this second episode Mrs. 
White and Mr. Peter discuss a lot, but the others are also active, but not talking that 
much. 
If we look at the generation of case knowledge we can see that the teachers use their 
knowledge by observation. The teachers refer more to the transcript than in the first 
episode, but they rarely use knowledge by transfer and interrelation. 
Comparison between the first and the second episode of the structured talk 
We can see that in both episodes the teachers use almost the same readings and 
generate almost the same case knowledge. Only the moderator reacts more restrained 
in the second episode. It seems that the moderator helps the teachers to refer again to 
the transcript. But sometimes it seems that the teachers give the moderator the role of 
an inspector whom they have to answer to, especially Mrs. Dieter. 
4. CONCLUSIONS AND OUTLOOK 
We found out that in this first structured talk the teachers react more biased – 
spontaneous (narrate, evaluate) than open – reflected (paraphrase, interpret) and use 
mainly knowledge by observation and experience and rarely knowledge by transfer 
and interrelation. Probably the teachers develop a more open – reflected view over 
the course of three structured talks in one year. And perhaps they get used to this kind 
of discussion and interpretation as a result they refer more to the statements of their 
colleagues to generate knowledge by transfer and interrelation. 
The influence of the moderator seems to remind the teachers to focus their attention 
on the transcript and to initiate reflection processes about the statements of the other 
participants. We have to look for more evidence what impact the moderator has on 
the course of the structured talks and the case knowledge the teachers develop. We 
also can compare the influence of the cautious moderator (“Malin”, first part of this 
paper) and the active moderator (“MathKiD”) on the course of the structured talks. 
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After one structured talk we can draw no consequences and we cannot describe 
lasting changes in the readings and case knowledge the teachers develop. We will 
investigate and describe the development over the three structured talks. At the end 
we will look at video graphed lessons from the beginning and the end of the project 
MathKiD and will investigate if the structured talks had an impact on the teaching of 
each participant and on their professional development. Furthermore we will reflect if 
the participants want to continue the collegial reflections in their school without a 
moderator intended of the cautious moderator (first part of this paper). 
REFERENCES 
Ball, D. L., & Cohen, D. K. (1999). Developing practice, developing practitioners. In 

G. Sykes & L. Darling-Hammond (Eds.), Teaching as the Learning Profession: 
Handbook of Policy and Practice (pp. 3-32). San Francisco: Jossey Bass. 

Hengartner, E., Hirt, U., Wälti, B., & Lupsingen, P. (2006). Lernumgebungen für 
Rechenschwache bis Hochbegabte. Zug: Klett und Balmer. 

Lippmann, E. (2005). Intervision. Kollegiales Coaching professionell gestalten. 
Berlin: Springer. 

Little, J. W. (2002). Locating learning in teachers’ communities of practice: Opening 
up problems of analysis in records of everyday work. Teaching and Teacher 
Education, 18(8), 917-946. 

McLaughlin, M. W., & Mitra, D. (2002). Theory-based change and change-based 
theory. Journal of Educational Change( 2), 301-323. 

Nührenbörger, M. & Steinbring, H. (2007). Students` Mathematical Interactions and 
Teachers` Reflections on their own Interventions. In D. Pitta-Pantazi & G. 
Phillipou (Eds.): Proceedings of CERME. Cyprus 2007 (1250-1269), ERME. 

Scherer, P., Söbbeke, E., & Steinbring, H. (2004). Praxisleitfaden zur kooperativen 
Reflexion des eigenen Mathematikunterrichts Unpublished manuscript, Bielefeld, 
Dortmund. 

Sherin, M. G., & van Es, E. A. (2005). Using Video to Support Teachers' Ability to 
Notice Classroom Interactions. Journal of Technology and Teacher Education, 
13(3), 475-491. 

Steinbring, H. (2003). Zur Professionalisierung des Mathematiklehrerwissens. In M. 
Baum & H. Wielpütz (Eds.), Mathematik in der Grundschule. Ein Arbeitsbuch (pp. 
195-219). Seelze: Kallmeyer Verlag. 

Yoshida, M. (2008). Exploring ideas for a mathematics teacher educator's 
contribution to lesson study. In D. Tirosh & T. Wood (Eds.), Tools and processes 
in mathematics teacher education (pp. 85-106). Rotterdam: Sense Publishers. 

 
Transcripts can be ordered from the authors. 

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 953



 

 

INTERNET-BASED DIALOGUE: A BASIS FOR REFLECTION 
IN AN IN-SERVICE MATHEMATICS TEACHER EDUCATION 

PROGRAM[1] 
Mario Sánchez 

IMFUFA-NSM, Roskilde University, Denmark 
 
In this paper, the asynchronous interactions of two groups of mathematics teachers 
in an internet-based in-service course are analyzed. During the interactions, teachers 
are solving a mathematical modeling activity designed to stimulate the teachers’ 
reflections on the modeling process. In one of groups these kinds of reflections 
occurred frequently while they were absent in other group. The analyses reveal clear 
differences in the communicative characteristics of the interactions in the two groups. 
Some of the characteristics of the first group are argued to be important factors 
favoring the emergence of the teachers’ reflections on the modeling process. 

INTRODUCTION 

In this work, the asynchronous interactions of two groups of mathematics teachers in 
an internet-based in-service course are analyzed. The teachers are involved in an 
internet-based mathematics education in-service program for teachers from different 
Latin American countries. The acronym for this program is PROME-CICATA, and 
this is an educational program sponsored by the Instituto Politécnico Nacional of 
México, one of the largest public universities in Mexico. I am interested in finding 
ways of encouraging “rich” interactions and reflections among the teachers enrolled 
in the PROME mathematics education program. That is why I am trying to determine 
when an interaction can be regarded as “rich” or not, and what characterise 
communication in such rich interactions. 

FRAMEWORK 
The concept of communication is central for this work and particularly the computer-
mediated communication (CMC). There are very clear differences between the 
everyday communication (or face-to-face) and the CMC. Although in both types of 
communication some kind of information (such as thoughts and feelings) is 
exchanged among individuals, the CMC does not require people staying in the same 
place or at the same moment of time. Communication may be atemporal to some 
extent and free of geographic barriers. Everyday communication is primarily verbal, 
but the CMC fosters written communication, which can be recorded, stored and 
accessed by people during conversation. This creates a record of ideas and comments 
that can serve as a reference or collective memory (de Vries, Lund & Baker, 2002) for 
the communication process. The expression and representation of ideas, and 
particularly mathematical ones, can be enhanced in CMC by the use of technological 
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tools such as software and video. The ideas can become entities with physical 
properties (such as a spreadsheet file in which somebody expresses a hypothesis 
based on graphical and arithmetical information represented in the file) which can be 
stored, handled and distributed.  
The characteristics of the CMC influence the nature and dynamics of the interactions 
that I am analyzing in this study. The data analysis is based on the Inquiry co-
operation model (IC-Model) of Alrø & Skovsmose (2002). This model was 
developed based on the observation of students, collectively solving mathematical 
open-ended activities. The model, strongly rooted in the critical mathematics 
education approach, argues that in order to have a fruitful interaction, it must be 
based on mutual respect, on the willingness to make public our ideas and subject 
them to scrutiny, as well as in a real interest to listen and analyse our interlocutor’s 
ideas. The IC-Model is constituted by a set of communicative characteristics. 
According to this theoretical approach, an interaction as the previously described 
should have several of these communicative characteristics. In fact when these 
characteristics are present in an interaction, it is regarded as a special kind of 
interaction called dialogue, which possesses the potential to serve as a basis for 
critical learning and reflection. The communicative characteristics that define a 
dialogue are getting in contact, locating, identifying, advocating, thinking aloud, 
reformulating, challenging and evaluating; and they could be succinctly defined as 
follows: 

Getting in contact basically refers to the act of paying attention to the ideas expressed 
by our partners in an interaction. The act of locating takes place when you discover 
an idea or a way of doing that you did not know or were not aware of before. It is a 
process of examining possibilities and trying things out. Identifying is a clarifier act 
in the sense that appears when you explore or try to explain an idea or perspective 
with the intention of making it clear to all the members of the interaction (including 
yourself). Advocating appears when you present your ideas or positions and you 
justify them with arguments. An advocating an also implies a willingness to revisit 
and discuss your own ideas or positions. To think aloud simply means to express in 
public your thoughts, ideas and feelings during the interaction process. Reformulating 
means repeating some idea but with different words or in other terms, usually to try to 
make it clear to your interlocutors. When we question a perspective or when we try to 
push it toward another direction to explore new possibilities, it is said that this is a 
challenging act. An evaluative act appears when we examine, criticize or correct an 
idea or proposal from others or ourselves. 

In the communicative approach of Alrø & Skovsmose (2002), the concepts of 
dialogue and reflection are linked. First, reflection is defined as follows: “Reflection 
means considering at a conscious level one’s thoughts, feelings and actions” (p. 184), 
but the dialogical interactions are also conceived as a basis for reflection: “We find 
that reflections are part of a dialogue. In particular we find elements of reflection in 
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dialogic acts like locating, thinking aloud, identifying, advocating, etc. This means 
that we do not follow the Piagetian line, seeing reflections as carried out by an 
individual. We consider reflections referring to ‘shared considerations’ and we see 
dialogue as including processes of reflection” 

In the context of research on mathematics teacher education, reflection plays a key 
role. In her recent review, Judith T. Sowder says that several studies identify 
reflection as a crucial element in furthering teachers’ professional development (see 
Sowder, 2007, p. 198). 

METHODOLOGY 
In this section I refer to different aspects of the production and collection process of 
data, namely, the mathematical activity applied, the selected population, and the 
collection and presentation of data. 

The selected population and the research goal. 

The data that I will present were taken from one of the courses of the PROME 
program. The course was taught between March and April 2008. The course was an 
introduction to the teaching and learning of mathematical modeling. The teachers 
who participated in this course are in-service teachers working in different 
educational levels, from elementary to university level. This course was part of their 
academic obligations in order to get a master’s degree in mathematics education. 
I present here the analysis of the asynchronous interactions produced in two groups of 
teachers while working collectively with a mathematical modeling task. I use the term 
‘asynchronous interactions’ to specify that the sort of communication that takes place 
into this interaction is asynchronous. An asynchronous communication is the one that 
is carried out mainly by means of an exchange of written messages between two or 
more people (very often located in different geographical positions), but the answers 
or reactions that the participants get are not immediate, for example, you can raise a 
question or an observation and get the feedback or reactions to it several minutes or 
hours after. The asynchronous discussions usually last several days, allowing the 
participants to have more time to formulate their opinions and to reflect on comments 
and opinions expressed by the other participants. It is even possible to consult 
external sources in order to enrich and clarify a discussion in an asynchronous 
communication. The email messages and the discussion forums are some examples of 
asynchronous communication. 

The activity lasted six days and although both groups of teachers solved the 
mathematical activity, only in one group emerged some meta-reflections about the 
modeling process, which were expected to be produced through the activity and the 
interaction. In other words, I will show an interaction that is “rich” in terms of the 
reflections produced and another that it is not rich, and, through the application of IC-
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Model, I will try to identify the differences in the communicative characteristics that 
are present in each of those interactions. That is the purpose of the research. 

The mathematical activity 
The mathematical activity was taken from Lesh & Caylor (2007), but it was slightly 
modified to fit the purposes of the course. The context of the activity is a paper 
airplane contest in which four planes were involved, and where each of these planes 
were threw by three different pilots five times each. The activity includes two tables 
(see tables 1 and 2) containing numerical values generated during one of the tests. 
Table 1 shows the landing points for each launch, represented by ordered pairs (x, y); 
Table 2 shows data such as distance from target, length of throw and air time for 
those launches. In this test the three pilots flew the four paper planes. Each time the 
pilot was placed at the point (0, -80) on the floor, and their aim was to launch the 
planes so that the plane come as close as possible to the point (0, 0), which was 
marked with an X. 
A non-explicit purpose of this activity was that teachers will experience a portion of a 
mathematical modeling process, enabling them to see that in an mathematical activity 
as such, it is possible to have several possible and valid answers (or models), 
depending on the assumptions and considerations in which the model is based. To 
support the emergence of multiple approaches and answers to the activity, I decided 
to replace the original request “[to explain] how they could use this data and data 
from future contests to measure and make judgments about the accuracy of the paper 
airplanes”, for a more general question, namely: “Which one is the best airplane?”. 
Any model that answered the previous question should be based on the definition or 
concept that the modeler holds about what does it means to be “the best airplane”. 
This is where I expected to have a variety of definitions/concepts, and as a 
consequence, a variety of possible answers to the question. 

 
 
 
 
 
 
 

Table 1: Where did the plane land? 
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Table 2: Distance, time and flight sequence data for each pilot and airplane. 

The activity was uploaded as a pdf file on the web-based educational space where all 
participants of the course could access it. Teachers were organized into groups of 
three or four members and each of those groups were assigned to a discussion forum 
where the activity was collectively solved. 

Data collecting and data presentation 
As I mentioned before, one of the characteristics of the computer mediated 
communication is that it can be easily recorded, stored and shared. This feature 
represents a significant advantage for educational research, because the need of 
making transcriptions disappears. In my work for instance, I am studying some of the 
written asynchronous discussions produced in an internet-based educational program. 
Those discussions are permanently recorded and accessible on the internet-based 
workspace, ready to be analyzed. These asynchronous discussions may be composed 
of dozens of utterances. Due to the space available, it will not be possible to present 
the complete interactions, but only those sections that I consider most significant and 
illustrative. I will use bracketed ellipsis [...] to denote the omission of certain 
segments of text; this edition was made for the sake of brevity and to increase the 
readability of the data. The data that I will present has been translated from Spanish 
into English; moreover, the original names of the teachers have been replaced to 
protect their identity. 
To start the analysis of an asynchronous discussion, I order all its utterances in a 
chronological way. From this arrangement, I try to locate those sections in which two 
or more participants are involved in a discussion of a particular topic. Each of these 
sections is broken down into individual utterances, trying to ‘label’ them with some 
of the communicative characteristics that define the communication IC-Model, 
according to the content of the utterance and its role within the whole discussion. Let 
me consider utterance (1) as an example (see 'Results' section below): This is not an 
evaluative or challenging act, nor is getting into contact with someone else because 
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Juan is not criticizing, questioning or being referred to the ideas of another person. 
He is not reformulating because this is the first time that he presents these ideas. Juan 
says “I think the most important is the proximity to the target”, but he did not present 
any argument to be able to classify the act as an advocating one. The utterance could 
be classified as a thinking aloud act, but because Juan is raising different ways of 
tackling the problem, I have classified it as a locating act. A similar analysis was 
done with every utterance. In some cases it is difficult to carry out the categorization 
since the differences between some communicative acts of IC-Model are not entirely 
clear for some utterances. 

RESULTS 
Data analysis – Group A 
The working group A was composed of two teachers from Argentina (Juan and 
Susana) and one mexican teacher (Horacio). The interaction begins with some 
thinking aloud acts where the teachers begin to make public some of their initial ideas 
on how to address the problem. For instance, Susana suggests that they should find a 
way to use the three variables contained in Table 2 (distance, length and time). Juan 
answered to Susana in (1): 

1   Topic: Re: The first message 
     From: Juan 
     Date: Thursday, the 3rd of April 2008, 11:40 

Colleagues. One possible option is to work with some type of weighted mean for the 3 
considered variables (length of throw, distance from target and air time). I think the 
most important is the proximity to the target. Another option is to think on the 
deviation from the target (because definitely it is a measure of the dispersion) what do 
you think? 

In (1) Juan is locating, I mean, he is examining different ways of facing the problem 
and trying things out. He is doing a specific suggestion on how to relate the three 
selected variables. He proposes to use a weighted mean where “proximity to the 
target” is the most important variable.  

2   Topic: Re: The first message 
     From: Susana 
     Date: Thursday, the 3rd of April 2008, 13:05 

Flight partners: I was planning to ask you if you have thought in a linear regression, 
but I read your proposal of the weighted mean. We just have to decide about the 
importance assigned to each variable. Since the target is point (0,0) I would give 40% 
to distance from target, and 30% for the other two, if you agree. […] Susana 

3   Topic: Re: The first message 
     From: Juan 
     Date: Thursday, the 3rd of April 2008, 19:06 

Fellows. I have been outlining a sketch of the things worked so far and I expressed it 
on this first draft that I am attaching. [...] Best wishes. Juan 
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In (2), Susana mentions the possibility of using a linear regression, but this possibility 
was not further explored because she simply leaves this alternative and without any 
question she adheres herself to the proposal of the weighted mean. Without a clear 
argumentation, Susana proposed the weight for each element of the weighted mean. 
In turn, Juan in (3) contributes to not locate Susana's idea of linear regression. In his 
utterance he completely ignores the timid suggestion of Susana and he only “hear” 
the proposal of the weights. In a file attached to his utterance (3), Juan identifies or 
clarifies in mathematical terms his perspective on the weighted mean. In this file he 
defines the concept of “performance” that is used to determine which one is the best 
airplane. The plane that gets the higher performance will be the winner. This concept 
is defined as follows: Performance = 0.4x + 0.3y + 0.3z 

Where:  
x = the arithmetic mean of the distances from target 
y = the arithmetic mean of the lengths of throw 

z = the arithmetic mean of the air times 

Juan never questioned the weights suggested by Susana. He never asks which were 
the assumptions that Susana considered in order to establish those values, he just 
includes the values in his own proposal. In general, the interaction between Susana 
and Juan could be described as uncritical. They experienced a “smooth” interaction 
where they did not question nor evaluate the proposals from the other. An example of 
this is in the performance formula. Neither Susana nor Juan noted that this model 
favoured the airplanes having a landing fare away from the target. On the other hand, 
Juan’s attitude was not the most appropriate to establish a dialogue, apparently Juan 
was more interested in delivering the solution of the task on time, that in paying 
attention to the proposals of his colleagues. For example, although the asynchronous 
discussion forum lasted until the 6th of April, Juan showed in (5) a strong rejection 
attitude towards other proposals to his colleague Horacio (see (4)): 

4   Topic: Re: The first message 
     From: Horacio 
     Date: Friday, the 4th of April 2008, 11:10 

Susana, Juan. I am sorry but my time is very limited. I will try to communicate with 
you later on. Best regards. Horacio 
 

5   Topic: Re: The first message 
     From: Juan 
     Date: Friday, the 4th of April 2008, 11:26 

Horacio. We are against the clock, this activity started on tuesday and there is 1 day 
left...I think you will have to accommodate yourself to the things that Susana and I 
were working on...there is no time to make any modification... Do you agree? What do 
you think? 
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Thus, even though group A was able to successfully solve the mathematical 
modelling task (i.e. to establish a model to select the best airplane), the interaction 
inside the team was characterized by a poor exchange of perspectives and ideas on 
how to address the mathematical task.  
Data analysis – Group C 
The group C had three members, but almost all the interaction took place between an 
Argentinean teacher (Nora) and a Mexican one (Maria). Since the beginning of the 
interaction, Norma and Maria were locating different ways of tackling the problem, 
but always maintaining the contact between them, namely, listening to the proposals 
of the other, taking them into consideration and evaluating them. At one point, based 
on Maria’s suggestion about excluding the pilots of the analysis, Norma proposed in 
(6) a new way to find the best paper airplane: 

6   Topic: Some issues 
     From: Norma 
     Date: Saturday, the 5th of April 2008, 06:17 

[...] We could choose the ten shots that are closer to the origin, and then see which of 
those planes did it in more time and with the biggest length, what you think? [...] 
 

7   Topic: Re: Some issues 
     From: Maria 
     Date: Saturday, the 5th of April 2008, 21:44 

[...] I propose to choose the other way around, let’s say that the best planes are the 
ones who entered into a circle with center (0.0) and a fixed radio, and then to take the 
ones who did it in less time […] you said more time... but are we judging the fastest or 
the longest stay in the air[?]... both cases are possible to judge [...] in a model it should 
be fixed the aspects to take into account and the rest are discarded because it is a 
model. I think that the idea of the radio is more close to the kind of things that are 
considered in the accuracy competitions as in archery. Maria 

 
8   Topic: Re: Some issues 
     From: Maria 
     Date: Saturday, the 5th of April 2008, 22:32 

                          Colleagues: I am writing you because I think that a good size for the radio could be 20 
because it is one fourth of the distance from the point of departure to the target point. 
With this we only have six throws with three planes, I mean, the fourth plane does not 
participate, it does not surpass the first filter, then we can evaluate the next point.... 
and if we estimate the maximum speed [...] It would be like the thing that I am sending 
you ...What do you say? [...] I will wait for your criticism 

In (7) Maria is challenging Norma’s proposal by suggesting replacing the ten shots 
criterion with the radio criterion. I think this intervention is particularly valuable 
because explicitly brings into the discussion the need to establish the criteria, 
assumptions or variables to consider for building a mathematical model. Her next 
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sentence sums up this point: “[I]n a model it should be fixed the aspects to take into 
account and the rest are discarded because it is a model”. This is the kind of meta-
reflection that I was looking to produce through the activity. 
Maria’s utterance (8) includes a spreadsheet file that illustrates with more detail the 
ideas presented in (8) and (8). She concludes that the winner is the plane number 3. 
As a reaction, Norma in (9) evaluates the proposal of Maria, and qualifies as arbitrary 
the choice of a radio with longitude 20. Norma agrees with Maria about using the 
proximity to the target as a first filter for selecting the best plane, but she suggested to 
use the mean of the distances from target instead of the radio proposed in (7) and (8). 

9  Topic: Re: Some issues 
     From: Norma 
     Date: Sunday, the 6th of April 2008, 12:19 

Girls, Maria: The radio that you mention is a bit arbitrary, why do not we take 
advantage of the fact that we already have the mean of the distances from target, and 
then to select the planes that were above that mean??? [...] 
 

10  Topic: Re: Some issues 
     From: Norma 
     Date: Sunday, the 6th of April 2008, 13:03 

Well, here you have what I made according to the previous observation about the 
radio. But I would also mention that I love your conclusions, Maria. 

                          If you agree, let’s vote; choose one of the three options, or choose all of them because 
for me all of them are ok. I mean, they are all equally valuable and correct. There are 
as many answers as aspects and ways of evaluating we have agreed previously. 

In (10) Norma attached a file showing her new calculations, in which the winner is 
the plane number 4. Despite she is advocating a different model and getting a 
different winner, Norma recognizes the validity of the model suggested by her 
colleague Maria, in fact I think that this recognition is the basis for issuing the 
comment made by Norma in (10), a comment linked to another reflection implicitly 
sought for the modeling activity: the recognition that there may be different valid 
answers or mathematical models to answer the same question. It may be noted that 
the discussion has reached an interesting point: the participants in the discussion have 
been able to locate different ways (or models) that can serve as a mean to answer the 
original question which one is the best airplane? Moreover, apparently they have 
recognized as valid each of those models, then ... what model to choose? 
This discussion continued even addressing issues of responsibility (see Alrø & 
Skovsmose, 2002, p. 217). At one point Maria asked, “[I]f the owner of the plane 3 
shows up, with what criteria would we justify that we do not chose the early drafts in 
which he would win and instead we took the other one[?]”. No doubt, this was a rich 
interaction in terms of the reflections achieved by the teachers. 
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CONCLUSIONS 
The analysis of the interactions through the IC-Model shows that there are some 
differences in the communicative characteristics that are present in the interactions of 
groups A and C. For example, the interaction within the A team can be described as 
uncritical because there is a lack of communicative acts such as challenging or 
evaluating; additionally they did not seize the opportunities to find additional ways to 
address the problem (see for example the utterances sequences (2)-(3) and (4)-(5)). 
In the team C, participants were able to locate several ways to tackle the problem. 
There was a general interest in hearing (or keep the contact) and evaluate the 
proposals of the other, and they were able to recognize the existence of multiple 
perspectives to solve the problem. 
I argue that members of team C team were able to establish a dialogue that fostered 
the emergence and recognition of multiple perspectives to solve the problem. I think 
that the existence of this dialogue encouraged the emergence of meta-reflections 
about the modeling process. 
It is necessary to continue working in a more explicit characterization of the concept 
of reflection. It is also necessary to discuss how the characteristics that are specific to 
the internet-based communication affect the emergence of reflections. 
Methodologically speaking it is necessary to find appropriate tools to detect or to 
point out when a reflection takes place in an online setting, but particularly in an 
asynchronous interaction. 
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THE USE OF ALGEBRAIC LANGUAGE  
IN MATHEMATICAL MODELLING AND PROVING IN THE 

PERSPECTIVE OF HABERMAS' THEORY OF RATIONALITY 
Paolo Boero and Francesca Morselli 

Dipartimento di Matematica, Università di Genova 
In this paper we consider the use of algebraic language in modelling and proving. 
We will show how a specific model of rational behaviour derived from Habermas' 
elaboration allows to describe and interpret several kinds of students' difficulties and 
mistakes in a comprehensive way, provides the teacher with useful indications for the 
teaching of algebraic language and suggests further research developments. 
Key-words: Habermas, rationality, algebraic language, modelling, proving 
INTRODUCTION 
Habermas' work has attracted the interest of many scholars in the domain of Sciences  
of Education (see the review of the translation into English of Truth and Justification 
by Tere Sorde Marti, 2004). We think that at least one of his constructs, that of 
"rational behaviour", is of specific interest for mathematics education, if we want to 
analyse complex mathematical activities (like conjecturing, proving, modelling) in a 
comprehensive way and to deal with them not only as school subjects and sets of 
tasks, but also as ways of experiencing mathematics as one of the components of 
western rationality. In a long term research perspective, we think that Habermas' 
construct is a promising analytic instrument in mathematics education if we want to 
connect the individual and the social by taking into account the epistemic 
requirements of "mathematical truth" in a given cultural context and the ways of 
discovering, ascertaining and communicating it by means of suitable linguistic tools. 
Indeed, according to Habermas' definition (see Habermas, 2003, Ch. 2), a rational 
behaviour in a discursive practice can be characterized according to three inter-
related criteria of rationality: epistemic rationality (inherent in the conscious control 
of the validity of statements and inferences that link statements together within a 
shared system of knowledge, or theory); teleological rationality (inherent in the 
conscious choice and use of tools and strategies to achieve the goal of the activity); 
communicative rationality (inherent in the conscious choice and use of 
communication means within a given community, in order to achieve the aim of 
communication).  
In our previous research we have dealt with an adaptation of Habermas’ construct of 
rational behaviour in the case of conjecturing and proving (see Boero, 2006; Morselli, 
2007; Morselli & Boero, 2009 - to appear). In this paper we focus our interest on the 
use of algebraic language in proving and modelling. Algebraic language will be 
intended in its ordinary meaning of that system of signs and transformation rules, 
which is taught in secondary school as a tool to generalize arithmetic properties, to 
develop analytic geometry and to model non-mathematical situations (in physics, 
economics, etc.). In particular, for what concerns modelling (according to Norman' 
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broad definition: see Norman, 1993, and Dapueto & Parenti, 1999, for a specific 
elaboration in the case of mathematics) algebraic language can play two kinds of 
roles: a tool for proving through modelling within mathematics (e.g. when proving 
theorems of elementary number theory) - internal modelling; or a tool for dealing 
with extra-mathematical situations (in particular to express relations between 
variables in physics or economy, and/or to solve applied mathematical problems) - 
external modelling.  
Our interest for considering the use of algebraic language in the perspective of 
Habermas' definition of rational behaviour depends on the fact that our previous 
research (Boero, 2006; Morselli, 2007) suggests that some of the students' main 
difficulties in conjecturing and proving depend on specific aspects (already pointed 
out in literature) of the use of algebraic language, which make it a complex and 
demanding matter for students. In particular, we refer to: the need of checking the 
validity of algebraic formalizations and transformations; the correct and purposeful 
interpretation of algebraic expressions in a given context of use; the goal-oriented 
character of the choice of formalisms and of the direction of transformations; the 
restrictions that come from the needs of following taught communication rules, which 
may contradict private rules of use or interfere with them. 
In this paper, we will try to show how framing the use of algebraic language in the 
perspective of Habermas' theory of rationality: first, provides the researcher with an 
efficient tool to describe and interpret in a comprehensive way some of the main 
difficulties met by students at any school level when using algebraic language; 
second, provides the teacher with some useful indications for the teaching of 
algebraic language; third, suggests new research developments, in particular those 
concerning the interplay between epistemic rationality and teleological rationality in 
the use of algebraic language, and those related to the role of verbal language as a 
crucial tool for a rational behaviour in the use of algebraic language, thus potentially 
adding new arguments to the elaboration presented in Boero, Douek & Ferrari (2008) 
and concerning the specific functions of verbal language in mathematical activities. 
ADAPTATION OF HABERMAS’ CONSTRUCT OF RATIONAL 
BEHAVIOUR TO THE CASE OF THE USE OF ALGEBRAIC LANGUAGE 
The aim of this section is to match Habermas' construct of rational behaviour to the 
specificity of the use of algebraic language in modelling and proving. 
Epistemic rationality  
It consists in: 
- modelling requirements, concerning coherency between the algebraic model and the 
modelled situation: control of the correctness of algebraic formalizations (be they 
internal to mathematics - like in the case of the algebraic treatment of arithmetic or 
geometrical problems; or external - like in the case of the algebraic modelling of 
physical situations) and interpretation of algebraic expressions; 
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- systemic requirements in the use of algebraic language and methods. In particular, 
these requirements concern the manipulation rules (syntactic rules of transformation) 
of the system of signs usually called algebraic language, as well as the correct 
application of methods to solve equations and inequalities. 
Teleological rationality  
It consists in the conscious choice and finalization of algebraic formalizations, 
transformations and interpretations that are useful to the aims of the activity. It 
includes also the correct, conscious management of the writer-interpreter dynamics 
(Boero, 2001): the author may write an algebraic expression under an intention and, 
after, interpret it in a different goal-oriented way, by discovering new possibilities in 
the written expression. 
Communicative rationality 
In the case of algebraic language we need to consider not only the communication 
with others (explanation of the solving processes, justification of the performed 
choices, etc.) but also the communication with oneself (in order to activate the writer-
interpreter dynamics).  Communicative rationality requires the user to follow not only 
community norms concerning standard notations, but also criteria for easy reading 
and manipulation of algebraic expressions.  
Some comments 
The previous requirements define a model of “rational behaviour” in the use of 
algebraic language in modelling and proving.  
We are aware of the existence of several analytical tools to deal with the teaching and 
learning of algebraic language. In the case of most of them, the researcher adopts a 
specific point of view, performs in-depth analyses according to it, but usually does 
not take into consideration the connections between the different aspects of the use of 
algebraic language and suggests only partial indications for its teaching. In our 
opinion, Arcavi's work on Symbol sense (Arcavi, 1994; 2005) offers the most 
comprehensive perspective for the use of algebraic language. With different 
wordings, it includes concerns for teleological rationality and some aspects of 
epistemic rationality. Comparing our approach with Arcavi's elaboration, we may say 
that we add the communicative dimension of rationality. We will see how it will 
allow us to account for: the possible tension between private rules of communication 
in the intra-personal dialogue, and standard rules; and the interplay between verbal 
language and algebraic language. Moreover we will see how our distinctions between 
the epistemic dimension and the teleological dimension, and between the modelling 
and the systemic requirements of epistemic rationality allow to deal with the tensions 
and the difficulties that can derive from their coordination.  
In order to justify a new analytic tool in Mathematics Education it is necessary to 
show how it can be useful in describing and interpreting students' behaviour, and/or 
in orienting and supporting teachers' educational choices, and/or in suggesting new 
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research developments. The aim of the following Sections is to provide evidences for 
all the three mentioned aspects of the use of the adapted Habermas' model. 
DESCRIPTION AND INTERPRETATION OF STUDENTS’ BEHAVIORS  
The following examples are derived from a wide corpus of students’ individual 
written productions and transcripts of a posteriori interviews, collected for other 
research purposes in the last fifteen years by the Genoa research team in Mathematics 
Education. In particular, we will consider four categories of students: 
(a) 9th grade students who are approaching the use of algebraic language in proving; 
(b) 11th grade students who are learning to use the algebraic language in modelling; 
(c) students who are attending university courses to become primary school teachers; 
(d) students who are attending the third year of the university course in Mathematics. 
A common feature for all the considered cases is that the individual tasks require not 
only the solution, but also the explanation of the strategies followed to solve the 
problem. Each individual task was followed by a posteriori interviews. However, 
while in the cases (c) and (d) the explanation of the strategies is inherent in the 
didactical contract already established with the teacher for the whole course, in the 
cases (a) and (b) such explanation is only an occasional request. 
EXAMPLE 1: 9th grade class 
The class (22 students) was following the traditional teaching of algebraic language 
in Italy: transformation of progressively more complex algebraic expressions aimed 
at « simplification ». In order to prepare students to the task proposed by the 
researcher, two examples of  “proof with letters” had been presented by the teacher; 
one of them included the algebraic representation of even and odd numbers.   

THE TASK: “Prove with letters that the sum of two consecutive odd numbers is 
divisible by 4”.  

Here we report some recurrent solutions (in parentheses the number of students who 
performed such a solution; note that “dispari” means “odd” in Italian) 

• E1 (4 students):      d+d=2d              
In this case, we can observe how the systemic requirements of epistemic rationality 
are satisfied (algebraic transformation works well), while the modelling requirements 
fail to be satisfied (the same letter is used for two different numbers). 

• E2 (8 students):      d+d+2=2d+2    
In this case, both the systemic and the modelling requirements of epistemic 
rationality are satisfied, but the requirements inherent in teleological rationality are 
not satisfied: students do not realize that the chosen representation does not allow to 
move towards the goal to achieve (because the letter d does not represent in a 
transparent way the fact that d is an odd number) and do not change it. 
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• E3 (5 students):     d=2n+1+dc=2n+1+2n+1+2=4n+4 (or similar sequences)  
We can infer from the context (and also from some a-posteriori comments by the 
students) that "dc" means "dispari consecutivi" (consecutive odd numbers). 
In this case epistemic rationality fails in the first and in the second equality, but 
teleological rationality works well: the flow of thought is intentionally aimed at the 
solution of the problem; algebraic transformations are used as a calculation device to 
produce the conclusion (divisibility by 4).  
EXAMPLE 2: University entrance, primary school teachers’ preparation  
The following task had been preceded by the same task of the Example 1, performed 
under the guide of the teacher. 58 students performed the activity. 

THE TASK: Prove in general that the product of two consecutive even numbers is 
divisible by 8 

Very frequently (about 55% of cases) students performed a long chain of 
transformations, with no outcome, like in the following example:  

• E4: 2n(2n+2)=4n2+4n=4(n2+n)=4n(n+1)=4n2+4n=n(4n+4)         
In this case, we see how both requirements of epistemic rationality are satisfied: 
modelling requirements (concerning the algebraic modelling of odd numbers and 
even numbers); and systemic requirements (correct algebraic transformations). The 
difficulty is inherent in the lack of an interpretation of formulas leaded by the goal to 
achieve, thus in teleological rationality. The student gets lost, even if the 
interpretation of the fourth expression would have provided the divisibility of n(n+1) 
by 2 because one of the two consecutive numbers n and n+1 must be even. We can 
also observe how (in spite of the didactic contract) in general no substantial verbal 
comment precedes or follows the sequence of transformations (sometimes we find 
only a few words: "I use formulas"; "I see nothing").  
In the following case, both modelling and systemic requirements are not satisfied: the 
same letter is used for two consecutive even numbers  (note that “pari”means “even” 
in Italian) and the algebraic transformation is affected by a mistake. 

• E5: p*p=2p2, divisible by 8 because p is divisible by 2 and thus p2 is divisible by 4. 
The student seems to works under the pressure of the aim to achieve: having foreseen 
that the multiplication by 2 may be a tool to solve the problem, she tries to justify it 
by considering the juxtaposition of two copies of p that generates “2”. Indeed in the 
interview the student said that she had made the reasoning “p is divisible by 2 and 
thus p2 is divisible by 4” before completing the expression.  In this case we can see 
how teleological rationality prevailed on epistemic rationality and hindered it.       
We have also found cases like the following one: 

• E6: p*(p+2)=p2+2p=8k because p2+2p=8 if p=2  
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Also in this case, from the a posteriori interview we infer that probably the lacks in 
epistemic rationality depend on the dominance of teleological rationality without 
sufficient epistemic control: 

I have seen that in the case p=2 things worked well, so I have thought that putting 
a multiple 8k of 8 in the general formula would have arranged the situation. 

EXAMPLE 3: The bomb problem 
TASK: A helicopter is standing upon a target. A bomb is left to fall. Twenty 
seconds after, the sound of the explosion reaches the helicopter. What is the 
relative height of the helicopter over the ground? 

The problem was proposed to groups of third year mathematics students in seven 
consecutive years, and to two groups of 11th grade students (high school, scientific -
oriented curriculum). According to the school levels, some reminds were provided 
(or not) about the fact that the falling of the bomb happens according to the laws of 
the uniformly accelerated motion, while the sound moves at the constant speed of 340 
m/s. However no formula was suggested. 
The problem is a typical applied mathematical problem, whose solution needs an 
external modelling process. In terms of teleological rationality, the goal to achieve 
should result in the choice of an appropriate algebraic model of the situation, in 
solving the second degree equation derived from the algebraic model, and in 
choosing the good solution (the positive one). 
The first difficulty students meet is inherent in the time coordination of the two 
movements: it is necessary to enter somewhere in the model the information that the 
whole time for the bomb to reach the ground and for the sound of the explosion to 
reach the helicopter is 20 seconds. The second difficulty is inherent in the space 
coordination of the two movements: the space covered by the falling bomb is the 
same covered by the sound when it moves from the ground to the helicopter. 
Let us consider some students' behaviours.  
Most students are able to write the two formulas:  

• E7:   s=0,5 gt2,  s=340 t  
They are standard formulas learnt in Italian high school in grades 10th or 11th, in 
physics courses. About 25% of the high school students and 20% of the university 
students stick to those formulas without moving further. From their comments we 
infer that in some cases the use of the same letters for space and time in the two 
algebraic expressions generates a conflict that they are not able to overcome. We can 
see how general expressions that are correct for each of the two movements (if 
considered separately) result in a bad model for the whole phenomenon. Teleological 
rationality should have driven formalization under the control of epistemic 
rationality; such control should have put into evidence the lack of the modelling 
requirements of epistemic rationality, thus suggesting a change in the formalization. 

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 969



 

 

In the reality for those students such an interplay between epistemic rationality and 
teleological rationality did not work.  
In other cases (about 10% of both samples) the coordination of the two times was 
lacking, and the idea of coordinating the spaces (together with the formalization of 
both movements with the same letters) brought to the equation: 

• E8: 0,5 gt2 =340 t 
with two solutions t=0, t=68 that some students were unable to interpret and use 
(because 68 is out of the range given by the text of the problem). But other students 
found the height of the helicopter by multiplying 340x68; the fact that the result is 
out of the reach of a helicopter did not provoke any critical reaction or re-thinking, 
probably because it is normal that school problems are unrealistic! 
One part of the students who introduced the third equation  tb + ts = 20 added it to the 
first two equations without changing the name of the variable (t). 
Less than 60% of students of both samples wrote a good model for the whole 
phenomenon: 

tb+ts= 20 
h=0,5gtb

2=340ts 
and moved to a second degree equation by substituting ts=20-tb or tb=20-ts in the 
equation: 0,5gtb

2=340ts 
Many mistakes occurred during the solution of the equation (mainly due to the 
management of big numbers). Once two solutions were got (one positive and the 
other negative), in most cases the choice of the positive solution was declared but not 
motivated. A posteriori comments reveal that the fact that a negative solution is 
unacceptable (given that the other solution is positive!) was assumed as an evidence, 
without any physical motivation.  
In terms of epistemic rationality, three kinds of difficulties arose; they were inherent: 
first, in the control that the chosen algebraic model was a good model for the physical 
situation; second, in the control of the solving process of an equation with unusual 
complexity of calculations (big numbers); third (once the valid equation - a second 
degree equation - was written and solved), in the motivation of the chosen solution. 
In terms of communicative rationality, we can observe how (in spite of the request of 
explaining the steps of reasoning) very few students of both samples were able to 
justify the crucial steps of the solving process. How is it possible to interpret this kind 
of difficulty? In some cases the steps were derived from a gradual adaptation of the 
equations to the need of getting a “realistic” solution. In other cases the equations 
were written as if the idea of coordination of the spaces and times of the phenomenon 
was supported by an intuition, but no wording followed. A posteriori interviews 
revealed that most students who had been unable to justify their choices were sure 
about their method only afterwards, when checking the positive solution and finding 
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that it was “realistic”, thus putting into evidence a lack in teleological rationality 
(lack of consciousness about the performed modelling choices). However a number 
of solutions was quite realistic, even if got through a bad system. Many authors of the 
correct solution were not able to explain (during the comparison of solving processes) 
why the other solutions were mistaken. This suggests that lacks in communicative 
rationality (as concerns verbal justification of the validity of the performed 
modelisation) can reveal lacks in teleological rationality (motivation of choices with 
reference to the aim to achieve) and even in epistemic rationality (control of the 
validity of the steps of reasoning). This conclusion can be reinforced if we consider 
the fact that almost all students who were able to provide a verbal justification for 
their modelisation were also able to explain why the other solutions were not 
acceptable (even if results were realistic). 
DISCUSSION 
As remarked in the second section, the usefulness of a new analytical tool in 
mathematics education must be proved through the actual and the potential research 
advances and the educational implications that it allows to get. 
Research advances 
In the frame of our adaptation of Habermas' construct, the distinction between 
epistemic rationality and teleological rationality allows to describe, analyse and 
interpret some difficulties (already pointed out in Arcavi's work), which depend on 
the students' prevailing concern for rote algebraic transformations performed 
according to systemic requirements of epistemic rationality against the needs inherent 
in teleological rationality (see E4). Moreover, the distinction in our model between 
modelling requirements and systemic requirements of epistemic rationality offers the 
opportunity of studying the interplay between the modelling requirements and the 
requirements of teleological rationality (see E7); we have also seen that 
formalization and/or interpretations may be correct but not goal-oriented (like in E2 
and E4), or incorrect but goal-oriented (like in E5, E6 and E8).  
Together with the other dimensions of rationality, communicative rationality allows 
to describe and interpret possible conflicts between the private and the standard rules 
of use of algebraic language, and the ways student try to integrate them in a goal-
oriented activity (see E3).  
At present, we are engaged in establishing how the requirements of the three 
components of rationality intervene in the phases of production and interpretation of 
algebraic expressions.  
Further research work should be addressed to establish what mechanisms (meta-
cognitive and meta-mathematical reflections based on the use of verbal language? 
See Morselli, 2007) can ensure the control of epistemic rationality and the 
intentional, full development of teleological rationality in a well integrated way. 
With reference to this  problem, taking  into account communicative rationality (in its 
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intra-personal dimension, possibly revealed through suitable explanation tasks and/or 
interviews) suggests a research development concerning the role of verbal language 
(in its mathematical register: see Boero, Douek & Ferrari, 2008, p.265) in the 
complex relationships between epistemic, teleological and communicative rationality. 
In particular, previous analyses (see E3,  E4 and Example 3) suggest not only that the 
request (related to communicative rationality) of justifying the performed choices can 
reveal important lacks in teleological rationality, but also that the development of a 
kind of personal “verbal space of actions” can be relevant for a successful 
development of the activity (even if algebraic written traces are not satisfactory from 
the systemic-epistemic rationality point of view, like in the case E3).  The respective 
role of the space of verbal actions and of the space of algebraic manipulations should 
be investigated on the teleological rationality axe. Here Duval's elaboration about the 
productive interplay between different registers in mathematical activities might be 
borrowed to better understand and frame what students do (see Duval, 1995). Also 
the results by Mac Gregor & Price (1999) could help highlighting the relations, as 
emerged from our data, between the production of verbal justifications and the 
effective use of algebraic language to achieve the goal of the activity. 
Educational implications 
We think that the analyses performed in the previous section can provide teachers as 
well as teachers' educators with a set of indications on how to perform educational 
choices and classroom actions to teach algebraic language as an important tool for 
modelling and proving. Some of those indications are not new in mathematics 
education; we think that the novelty brought by Habermas' perspective consists in the 
coherent and systematic character of the whole set of indications.  
First of all, the performed analyses suggest to balance (at the students' eyes, 
according to the didactical contract in the classroom) the relative importance (in 
relationship with the goal to achieve) of: 
- production and interpretation of algebraic expressions, vs algebraic transformations; 
- flexible, goal-oriented direction of algebraic transformations, vs rote algebraic 
transformations aimed at “simplification” of algebraic expressions. 
These indications are in contrast with the present situation in Italy and in many other  
countries: teachers’ classroom work is mainly focused on algebraic transformations 
aimed at “simplification” of algebraic expressions, and most simplifications are 
performed by elimination of parentheses, thus suggesting a mono-directional way of 
performing algebraic transformations. At the students’ eyes, the importance of the 
formalization and interpretation processes is highly underestimated. The fact that 
algebraic expressions are given as objects to "simplify" (and not as objects to build, 
to transform according to the aim to achieve, and to interpret during and after the 
transformation process in order to understand if the chosen path is effective and 
correct or not) has bad consequences on students’ epistemic rationality and 
teleological rationality. As we have seen, many mistakes occur in the phase of 
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formalization (against the modelling requirements), and even when the produced 
expressions are correct, frequently students are not able to use intentionally them to 
achieve the goal of the activity (against the teleological rationality requirements). 
A promising indication coming from our analyses concerns the need of a constant 
meta-mathematical reflection (performed through the use of verbal language) on the 
nature of the actions to perform and on the solving process during its evolution. At 
present, the only reflective activity in school concerns checking the correct 
application of the rules of syntactic transformation of algebraic expressions (thus 
only one component of rational behaviour - namely, the systemic requirements of 
epistemic rationality - is partly engaged). 
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OBJECTS AS PARTICIPANTS IN CLASSROOM INTERACTION 
Marei Fetzer 

IDM, J. W. Goethe-University, Frankfurt/M., Germany 
In this article an object-integrating approach to interaction in the mathematics 
classroom is proposed. Accordingly, not only human beings, but also non-human 
objects are considered as participants in the course of action. Symbolic 
interactionism and Actor-Network-Theory both serve as a theoretical basis for the 
development of the object-integrating approach to classroom interaction outlined in 
this article.  
Keywords: objects, classroom interaction, Symbolic interactionism, ANT, analysis 

INTRODUCTION 
Research on teaching and learning processes in the mathematics classroom focuses on 
different aspects. Mathematical language, or communication in a broader sense, are 
possible points of interest. In this article I take an interactionistic perspective on 
processes of teaching and learning. I investigate classroom interaction as it is 
developed by its participants. My current interest is on the role of objects in such 
interactional processes. How do they affect the proceeding of interactional learning 
processes in primary education? My concern is the development of an object-
integrating approach to interaction in the mathematics classroom.  

OBJECTS AND CLASSROOM INTERACTION  
The ‘discovery’ of the mere existence of objects in the mathematics classroom is 
rather innocuous. Besides, the observation that objects have an influence on 
interaction in mathematics primary education is not new either. Moreover, systematic 
implementation of objects such as books, paper and pencil, blackboards, calculators, 
cubes or dice in teaching and learning activities is a commonly shared practice. It 
gains wide acceptance amongst researchers as well as amongst primary teachers. 
Undoubtedly, objects play a role in the course of mathematical teaching and learning. 
But how can one describe the objects’ role in the course of classroom interaction 
theoretically? Interactionistic perspectives on primary mathematics education 
traditionally focus on students and teachers (see e.g. Mehan, 1979; Cobb & 
Bauersfeld, 1995). These persons are the actors developing the interactional process. 
However, no special attention is paid to non-human objects, and no interactionistic 
thought is given to them. Thus, there remains uncertainty concerning things and their 
role within the interactional development. Subsequently I am going to outline a 
theoretical approach to interaction in which objects have “agency” (Latour 2005, p. 
63) as well. Proposing this object-integrating approach to classroom interaction, I 
draw on the framework of symbolic interactionism (Blumer, 1986) and on Latour’s 
Actor-Network-Theory (ANT) (Latour, 2005). Referring to ANT I go beyond the 
more common idea of interpreting objects as tools or instruments in human’s hands. 
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Nor do I concentrate on mediated thinking or objectification (Radford 2006). Instead, 
I accept objects as participants in classroom interaction. Thus, Latour’s theory serves 
as an impetus for a radical change in studying mathematical learning processes. 
While the suggested object-integrating approach is not yet a fully developed theory, I 
suggest it as a thought–provoking impulse. 
Symbolic Interactionism 
Blumer (1986) gives an outline of the nature of symbolic interactionism, calling in 
three premises. The first premise is that “human beings act toward things on the basis 
of the meanings the things have for them.” (ibid., p. 2). Here, Blumer’s use of the 
term ‘thing’ differs fundamentally from the understanding of ‘things’ throughout the 
rest of this article. It is as broad and overarching as possible. Blumer defines: “Such 
things include everything that the human being may note in his world – physical 
objects […], other human beings […], institutions […], guiding ideals […], activities 
of others […] and such situations as an individual encounters in his daily life.” (ibid., 
p. 2). In contrast, I apply the everyday-term ‘thing’ with regard to ANT in a much 
closer form. I use it as a colloquial and sensitizing version of the term ‘object’, taken 
as short for non-human physical object. 
The second premise refers to the source of meaning. Meaning is not intrinsic to the 
thing. Nor is it a psychical accretion like a sensation, memory, or feeling brought into 
play in connection with perceiving the thing. Instead, “symbolic interactionism sees 
meaning as arising in the process of interaction between people. The meaning of a 
thing for a person grows out of the ways in which other persons act toward the person 
with regard to the thing.” (ibid., p. 4). Thus, the meaning of things is formed in the 
context of social interaction. It is seen as a social product.  
The meaning of a thing is derived by the person from the interactional process. But 
meaning is not an already established application to a thing. It is nothing that has to 
be arisen from the thing itself. In contrast, the use of meaning by the actor occurs 
through a process of interpretation. And this leads to the third fundamental premise 
put forward by Blumer: “The meanings are handled in, and modified through, an 
interpretative process.” (ibid., p.5). Thus, interpretation becomes a matter of handling 
meanings. It is considered as a formative process in which meanings are used and 
revised as instruments for the guidance and formation of action. 
Analysing interaction in the mathematics classroom on the basis of the framework of 
symbolic interactionism is a matter of interpretation. It is an interpretative effort to 
reconstruct, as in the case of my research work, processes of meaning making. How 
is meaning formed and negotiated in the process of interaction? How do actors 
collectively create mathematical meaning? In order to investigate the process of 
meaning making, every single action is interpreted extensively in the sequence of 
emergence. The analyst tries to generate as many alternative interpretations as 
possible. Thus, he or she opens up the range of potential ways of understanding and 
construing the action. In order to get hold of the process of inter-acting, actions are 
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considered to be related to each other. They are interpreted as turns to previous 
actions. Analysing turn by turn the process of meaning making can be reconstructed.  
Actor-Network-Theory (ANT)  
Latour (2005) poses the question who and what participates in the course of action. 
He criticises the established definition of action: If action is limited a priori to “what 
‘intentional’, ‘meaningful’ humans do” (ibid., p. 71), objects have no chance to come 
into play. Instead, he recommends a broader understanding of action and agency. He 
defines that “any thing that does modify a state of affairs by making a difference is an 
actor” (ibid., p. 71). In doing so, he equips objects just as well as humans with 
agency. All actors, human or not, are “participants in the course of action” (ibid., 
p. 71). Thus Latour extends and modifies the list of actors assembled as participants 
fundamentally. He gives several reasons why ANT accepts objects “as full-blown 
actor entities” (ibid., p. 69). One is that the social world will “retain a sort of 
provisional, unstable, and chaotic aspect” if it was made of local face-to-face 
interaction. However, such temporary and fugacious interactions can become far-
reaching and durable. Latour calls the “steely quality” (ibid., p. 68) of things to 
account for this durability and extension. What is new is, that objects are highlighted 
as actors that might “authorize, allow, afford, encourage, permit, suggest, influence, 
block, render possible, forbid, and so on” (ibid., p. 72). Latour does not give 
privilege; human as well as non-human participants in the course of interaction have 
agency. Latour refrains from imposing “some spurious asymmetry among human 
intentional action and a material world of cause relations” (ibid., p. 76). He denies 
loading things into social ties. Objects do not serve as a “backdrop for human action” 
(ibid., p. 72). Neither do they determine the interactional process; they are not the 
causes of action. But he does not propose some sort of equality either (ibid., p. 63; p. 
76). Instead, he emphasises the varieties and differences in modes of action (ibid., p. 
74ff.).  
Doing research on mathematical education from an interactionistic perspective, the 
merge of ANT and symbolic interactionism might be a fruitful effort. Latour 
considers objects as actors contributing to the process of interaction in different 
modes of action. They participate in the process of meaning making, even though 
they have different options open. Concerning methodology, Latour preaches to 
“follow the actors” (Latour, 2005, p. 156) and “describe” (ibid., p. 144; p. 149). 
Blumer emphasizes that non-human objects as well as human activities have no 
intrinsic meaning. They do not carry an established meaning that has to be revealed. 
Meanings are formed in the process of interaction. Meaning making, according to 
Blumer, is a matter of interpretation. Symbolic interactionism serves as a point of 
reference for interpretative research trying to reconstruct the process of meaning 
making. Merging symbolic interactionism and Latour’s approach might help to bring 
the consuetudinary excluded objects into the course of interaction. It might contribute 
to the development of an object-integrating theory of learning in mathematical 
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classroom interaction. Latour states with regard to interaction, that “the number and 
type of ‘actions’ and the span of their ‘inter’ relations has been vastly underestimated. 
Stretch any given inter-action and, sure enough, it becomes an actor-network” (2005, 
p. 202). But how do you investigate interactional processes if you consider objects as 
full-blown actors? How do you deal with the modified list of participants and with 
the increased modes of action? In the following paragraph, I propose an object-
integrating approach on classroom interaction. 

OBJECT-INTEGRATING APPROACH TO CLASSROOM INTERACTION 
Empirically grounded development of an object-integrating theory of learning in 
mathematical classroom interaction includes the development of analytic tools, 
analysis of numerous scenes, and the comparison of interpretations to various scenes. 
Below, methodological thoughts are discussed as a basis for analysis of object-related 
classroom interaction and accordingly as a contribution to the development of an 
object-integrating theory of learning. To exemplify the methodological points of 
interest, a short episode taken from a third year German primary class is introduced 
(first published in Fetzer, 2007).  
Example 
In this scene the task is to lengthen a graphically given straight segment by 6cm 4mm 
(compare fig.). First the children work on the problem on their own. They are asked 
to put written notes on their problem solving process. Afterwards some children 

present their approaches on the blackboard. Sonja is the first 
to explain her proceeding. The teacher requests those students 
that “can’t follow anymore” to “ask what’s going on”. Sonja 
selects Sabina as next speaker. She says: “Somehow I don’t 
get it.” This last utterance will be the focus of investigation.  

Person Aktivität Activity 
Sonja Steht an der Tafel, schaut zur Lehrerin  Stands at the blackboard, looks towards 

the teacher  
Teacher Die andern- da sind viele gewesen  

da kann ich mir vorstellen die kommn 
jetzt schon nicht mehr mit-  
da müsst ihr auch mal fragen was da los 
iss-  aber wenn die nich meinn sie 
müssten fragen erklär weiter- 

The others- there have been many  
I can imagine who can’t follow anymore-  
you have to ask what’s going on then-  
but if they don’t bother asking keep on 
explaining- 

Sonja Schaut in die Klasse Sabina- Looks towards the class Sabina 
Sabina Ich kapier des irgendwie net- Somehow I don’t get it- 

First, I will give a ‘traditional’ analysis of the scene focussing on the verbal activities 
of the human participants. This brief analysis may serve as a basis for the subsequent 
theoretical and methodological discussion. 
An extensional analysis of Sabina’s utterance in the last line of the transcript opens 
up a wide range of possible ways of understanding. Here only a small selection is 

Lengthen by 6cm 4mm.
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given. By stating “somehow I don’t get it”, Sabina perhaps intends to express that she 
could not follow Sonja’s explanation. On the one hand this could be a statement 
referring to herself and her own learning process. On the other hand her utterance 
could be understood as a statement concerning Sonja’s performance. In the context of 
the latter interpretation, Sabina would indicate that Sonja’s explanation was not 
comprehensible. Alternatively one might understand her utterance as an expression of 
her troubles in solving the given task. If so, her difficulties would not relate to 
Sonja’s explanation, but to the task itself. Eventually her utterance might be 
interpreted as a contribution to the classroom interaction in order to demonstrate 
alertness. In this case, the mathematical substance of her contribution could be 
minimal. 
Who could Sabina possibly refer to? The turn-by-turn analysis basically reveals two 
alternatives: Sabina’s utterance could be understood either as a turn on Sonja, or 
alternatively as a turn on the teacher. Following the first interpretation, Sonja 
addresses Sabina and picks her as the next speaker. Sabina gets active and 
paraphrases the teacher by translating “can’t follow anymore” into “somehow I don’t 
get it”. In the context of this interpretation, Sabina would invest hardly any 
mathematical effort. According to the second understanding, Sonja might just as well 
get active as a turn on the teacher’s invitation “You have to ask what’s going on”. 
Again her utterance might be understood as a paraphrasing of the teacher’s “can’t 
follow anymore” (see above). Following this interpretation, not much mathematical 
content can be attested to her utterance. An alternative understanding would suggest 
that Sabina indeed could not follow Sonja’s explanation. She then actually belongs to 
those who were addressed by the teacher and were invited to get active. Again, 
Sabina takes the turn offered by the teacher. In the context of this latter understanding 
the mathematical content attributed to her utterance would be (slightly) increased. 
On actors 
According to an object-integrating approach to classroom interaction, not only 
humans but also objects have agency. This modified understanding of who and what 
acts in mathematical interaction entails a modified way of transcribing as 
demonstrated below. 

Actor Aktivität Activity 
Board 5+6=11 

4+7=11 
5+6=11 
4+7=11 

 [Tafelanschrieb bleibt während der 
gesamten Szene unverändert und 
sichtbar] 

[Notes on the blackboard remain 
untouched and visible throughout the whole 
scene] 

Sonja Steht an der Tafel, schaut zur Lehrerin  Stands at the blackboard, looks towards 
the teacher  
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Teacher Die andern- da sind viele gewesen  

da kann ich mir vorstellen die kommn 
jetzt schon nicht mehr mit-  
da müsst ihr auch mal fragen was da los 
iss-  
aber wenn die nich meinn sie müssten 
fragen erklär weiter- 

The others- there have been many  
I can imagine who can’t follow anymore-  
you have to ask what’s going on then-  
but if they don’t bother asking keep on 
explaining- 

Sonja Schaut in die Klasse Sabina- Looks towards the class Sabina- 
Sabina Ich kapier des irgendwie net- Somehow I don’t get it- 

The first column indicates the interacting participants. It is captioned with ‘actor’ 
because the term ‘person’ solely refers to human beings and excludes other 
participants. The second and third columns give the actions in English and in 
German, differentiating verbal (regular font) and non-verbal actions (italic font). In 
contrast to ‘conventional’ transcripts, activities of objects are included as well. In the 
illustrating scene, for example, the notes on the blackboard are highlighted in grey. 
Who and what participates in the given scene? Sonja, the blackboard, the teacher, and 
Sabina are actors in the scene. Besides, the children have their own written work at 
hand. Accordingly, Sonja’s and/or Sabina’s written approach might just as well enter 
into account. Working with an object-integrating approach to learning processes casts 
a different light on the selection of participants. The identification of the actors 
becomes more difficult for two reasons. Firstly, the fact that objects enter into 
account does not as a matter of course show in the restricted lines of a transcript. The 
reason is the time-spreading quality of things. Some-thing lying on the table like 
Sabina’s written work or written on the blackboard as in the given example might not 
be mentioned in the specific scene selected for analysis. Nevertheless, board and 
written work might become participants within the course of action. Secondly, 
indicating participants in object-related classroom interaction is not a matter of fact, 
but a matter of interpretation. Some objects may be appraised as participants in one 
interpretation, but remain unconnected to the course of interaction in another 
interpretation. Regarding the interpretation on Sabina’s utterance given above neither 
the board nor Sabina’s work get connected to the interaction. However, 
understandings that take the blackboard as well as Sabina’s work as actors can be 
reconstructed, if an object-integrating approach is applied. As a consequence, the 
selection of the actors of a given scene can always be no more than a pre-selection. 
Supplementary nominations of participants are likely to become necessary within the 
process of analysing. Accordingly, the pre-selection of participants should accept a 
wide range of possible actors. Concerning the example, Sabina’s work should be at 
hand for analysis. 
The selection of actors is one crucial point in implementing an object-integrating 
approach to classroom interaction. Another striking aspect is the matter of sequence 
and time span of participating. Who and what assembles as participants in the course 
of action might change very quickly. Especially non-human objects may enter into 
account one moment and recede into the background an instant later. They appear 
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associable with one another only momentarily. Analysis of interactional processes 
focuses on visible actions and the process of interweaving. Consequently, children, 
teachers or things can become the ‘object’ of analysis just as long as they leave an 
observable trace. If no trace is produced, no information is offered to the observer. If 
humans as well as things remain ‘silent’, they are no actors anymore. They remain 
unaccountable (Latour, 2005, p. 79). The written work on the table is not an actor. 
But Sabina and her notes might weave together and both become active participants 
in the interactional process as soon as Sabina picks up her sheet or has a glance on 
her notes. With Sabina and her written work entering the course of interaction, they 
may be captured by analysis. Interaction analysis based on the framework of 
symbolic interactionism takes a micro perspective and proceeds sequentially. Thus, 
intermittent existence and rapidly changing assembling of participants may be 
captured appropriately. But in the context of an object-integrating approach, 
durability and lasting time spans have to be considered as well. The blackboard might 
show Sonja’s notes for quite a while. Consequently it is a potential actor for a certain 
length of time. This abiding participating could be indicated in the transcript, for 
example, by implementing an additional column. 
On modes of action  
Investigating processes of teaching and learning in mathematics education actions are 
analysed in their order of emergence (see above). The analyst generates as many 
sensible interpretations to the given action as possible in order to expand the range of 
potential understandings. Reconstructing the process of meaning making in the 
context of ANT widens the spectrum and modes of actions under investigation. Both, 
human and non-human actions have to be analysed. However, analysing non-human’s 
actions on the first glance appears to be a bold venture. How can an object’s agency 
be interpreted? In order to investigate the object’s agency one may firstly explore the 
object itself ‘nakedly’. What does this object tell the analyst, what does it remind him 
of? What might it express, suggest, allow, forbid, enable, etc.? This mode of analysis 
compares to a methodical dodge often applied in analysing human action: the 
variation of the interactional context. The action is taken out of the given context and 
conveyed into another. This is an established proceeding in interaction analysis in the 
theoretical framework of symbolic interactionism. What is new is to implement the 
variation of the context to objects and their activities. This analytic move raises the 
analyst’s awareness and sharpens his or her analytic senses when it comes to interpret 
the object’s actions. This is possible as soon as objects get visibly connected to other 
participants in the course of action. Once they become associated with one another, 
their action might be captured by analysis. With Sabina glancing on her notes, the 
written work becomes a participant in the interaction. It is no longer a sheet of paper 
on the table, but a tangible link between now and earlier. It is a concrete backing of 
argumentation or a means of distraction. As an actor, the written work in front of 
Sabina might demonstrate alertness, or it might assign her to be the current speaker. 
The assumption that objects have agency, too, widens the range of observable 
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actions. Consequently, the analysis of the sequentially emerging action must be 
implemented to human as well as to non-human actors’ activities. 
Interesting enough an object may well be there unaltered or untouched for a couple of 
minutes or half an hour. In the selected example this applies for both, the blackboard 
and for the written work(s). Their ‘steely quality’ persists, although objects just 
momentarily enter into account, and become active only from time to time. In the 
context of the traditional analysis of interaction we are used to focus on actions as 
momentary affairs producing visible or otherwise perceivable traces only here and 
now. Objects prompt the analyst to open the perspective. The potentially long lasting 
effect of an object’s activity on classroom interaction has to be considered. The 
blackboard is there. Any participant might refer to the notes any time within the 
interaction. Thus the notes on the board become participants. 
These theoretical thoughts have an impact on the method of analysis in the context of 
an object-integrating approach to classroom interaction. To illustrate the effects on 
the analysing procedure, the investigation presented above is adopted and 
supplemented accordingly. Subsequently, the blackboard and Sabina’s work are 
explored. 
On the blackboard there are two number problems. Both are additions, both sums are 
eleven. Due to a lack of space, again, only a selection of possible interpretations is 
given. The two lines seem to refer to an arithmetic problem. They might for instance 
be related to each other by the mathematical strategy of inverse changing of 
summands. Assuming that Sonja’s notes are related to the given task on measuring 
and calculating lengths, the two sums might be read as operations with numerical 
values omitting the units (cm and mm). In this case, the two sums could be 
interpreted as short versions of 5cm+6cm=11cm and 4mm+7mm=11mm. From a 
mathematician’s point of view, this interpretation would give the written sums the 
touch of side notes. Taking a (weak) student’s perspective, these two lines could be 
seen as the extract or the fundament of the problem: Plain numerical values, assorted 
by different values. One rather complex calculation with units is reduced to two 
simple arithmetic problems that can be managed easily. Anyhow, the blackboard 
displays an arithmetic problem. The geometric element of the graphically given 
straight segment does not show anymore. 

Below the task (Lengthen by 6cm 4mm) 
Sabina’s work says: “I found out with my 
ruler 5cm and 8mm then I have lengthened 
that Then I found out 6cm 4mm. I had a little 
bit to the line.” (See fig.). Her work shows a 
rather geometric approach based on the idea 
of adding up to 6cm 4mm (instead of 
lengthen by). The little figure on the right 
hand side can be interpreted as the answer to 
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the given task; it is the missing bit to the requested length. The written text proves 
this interpretation valuable. The ruler is assigned to be the clue to the solving process. 
First, it serves to find out the length of the given line. Afterwards, it shows the gap 
between given and requested length. 
On turns 
In order to reconstruct the process of meaning making in mathematical classroom 
interaction according to symbolic interactionism, actions are understood as turns on 
previous actions. As soon as objects are accepted as actors in the ongoing course of 
interaction, not only the concept of ‘action’ has to be adopted (see above). The 
concept of ‘turn’ as originally introduced by Sacks (1996) has to be re-thought as 
well. In his book “Lectures on Conversation” he works on the subject of turn-taking 
and introduces the adjacency relationship if utterances are related to each other as 
turns (Vol. II, part 1, p. 41ff.). This utterance-based understanding of ‘turn’ does not 
meet the demands of interactions. It is not only verbal, but rather all sorts of activities 
that might be related to each other as turns. The teacher’s utterance might be 
interpreted as a turn on Sonja’s look at her. Sabina’s “Somehow I don’t get it” might 
be a turn on the written notes on the blackboard or her working sheet. As a 
consequence, in the context of an object-integrating approach to classroom 
interaction, I use the term ‘turn’ in a broader sense: Actions are interpreted as turns, if 
they are closely related to previous actions. The underlying concept of ‘action’ is 
closely linked to ANT. It includes different modes of actions carried out either by 
human beings or by objects. If the concept of action and turn is extended in this way, 
analysis on the basis of the framework of symbolic interactionism will serve as an 
appropriate method to reconstruct object-related classroom interaction. Objects and 
things will be integrated into the course of interaction again. To me, re-thinking the 
concept of turn is the decisive approach in investigating object-orientated classroom 
interaction. It is the adopted understanding of turn that helps to trace object’s 
activities. On the level of turns objects leave observable marks and become visibly 
connected to one another. Human as well as non-human actors get involved as soon 
as it comes to think about possible relations between actions as turns.  
Analysis on the basis of the adopted concept of turn may work as presented below. 
Again I refer to the example “Somehow I don’t get it.” In addition to the 
interpretations suggested above, I now propose an interpretation taking Sabina’s 
action as a turn on her own written work. Sonja presented her arithmetic proceeding 
to the task, based on the idea of adding two specific lengths. She did it in a 
convincing way, and Sabina could follow well. Consequently, she remains silent 
when the teacher asks those, who got in trouble, to become active. However, looking 
onto her written work causes confusion. Two different approaches, yet both 
convincing, show neither conformance nor consensus. The ideas of lengthen up to on 
the one hand and lengthen by on the other hand seem incommensurate. The 
geometrical and the arithmetic approach simply won’t merge. According to this 
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interpretation, the utterance “Somehow I don’t get it” appears to be a mathematically 
spoken reasonable statement. The last line of the transcript can be interpreted as a 
mathematically substantial statement. Its mathematical relevance is closely connected 
to the two objects, blackboard and written work. 

ANALYSING OBJECT-RELATED CLASSROOM INTERACTION 
Based on the presented outline of an approach to object-integrating interaction in the 
mathematic classroom, I will eventually point out some key points concerning the 
related method of analysis. 
The identification of the actors in the scene to be investigated is an interpretative act. 
Thus, assembling of the list of participants is a pre-selection. In order to leave space 
for a wide spectrum of alternative interpretations, the list of (potential) participants 
should not be prematurely limited. 
In order to maximize the range of possible interpretations to an observable action, the 
analytic dodge of variation of the context might be called on. This applies both for 
human as well as non-human actions. 
Actions are related to each other as turns. On the one hand, actions are interpreted as 
turns on previous human-actors’ actions. On the other hand, actions are explicitly 
related to non-human actions that may be perceived in distinct ways. How could a 
certain action be interpreted if it was a turn on an object-participant’s action? 
Performing such an object-integrating turn-by-turn analysis prevents from accidental 
neglect or premature exclusion of objects as actors. However, the list of participants 
might need reassembling or supplementation in the context of this analytic move. 
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THE EXISTENCE OF MATHEMATICAL OBJECTS IN THE 
CLASSROOM DISCOURSE 
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In this paper we are interested in the understanding of how the classroom discourse 
helps to develop the students’ comprehension of the non ostensive mathematical 
objects as objects that have “existence”. First, we examine the role of the objectual 
metaphor in the understanding of the mathematical entities as “objects with 
existence”, as well as in some of the conflicts that the use of this type of metaphor 
can provoke in the students’ interpretations. Second, we examine the mathematics 
discourse from the perspective of the ostensives representing non ostensives that do 
not exist.    
 
INTRODUCTION  
In this report we present some findings from our current research on the role of 
objectual metaphors in the interpretation of the existence of non ostensive 
mathematical objects within the classroom discourse. We illustrate these findings 
with a reinterpretation of data from Acevedo (2008). In particular we analyze certain 
remarks of different teachers that have in common the use of metaphors in their 
teaching practices. In that study, the fourth author presented an analysis of some 
teachers’ discourses while teaching the graphic representation of functions in Spanish 
high schools. The focus was on the teachers’ discourses and practices when 
interacting with the students in certain lessons. The main data was gathered by means 
of video and audio tapes, together with written tests, students’ work and filed notes.   
We organize the report from theory to example in order to deal with language and 
communication issues in mathematics classrooms from a semiotic point of view. We 
begin by briefly reviewing part of the literature on metaphors and presenting the 
notions of image schema and conceptual metaphor, which are drawn on the theories 
of the embodied cognition. When introducing some findings, we show how the use 
of metaphorical expressions of the objectual metaphors in the teachers’ discourses 
leads the students to understand the mathematical entities like “objects with 
existence”. Finally, we show how the mathematics discourse on ostensives 
representing non ostensives that do not exist and on the identification of 
mathematical objects with some of its representations, leads the students to 
separately interpret the mathematical objects and its ostensive representations.  
IMAGE SCHEMAS AND METAPHORICAL PROJECTIONS 
In recent years, several authors (see, for instance, Bolite, Acevedo & Font, 2006; 
Lakoff & Núñez, 2000; Núñez, Edwards & Matos, 1999; Pimm, 1981, 1987; 
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Presmeg, 1997) have pointed to the role of metaphors in the teaching and learning of 
mathematics, and some of them have reflected on the embodied cognition theory. 
Sriraman and English (2005), in their survey of theoretical frameworks that have 
been used in mathematics education research, talk about the importance of the 
embodied cognition theory. On the other hand, the discursive emergence of 
mathematical objects is interpreted as a research focus within that theory. Sfard 
(2000, p. 322) has stressed some of the metaphorical questions concerning the 
existence of the mathematical objects:  

To begin with, let me make clear that the statement on the existence of some special 
beings (that we call mathematical objects) implicit in all these questions is essentially 
metaphorical.  

We argue that the use of objectual metaphors in the mathematics classroom discourse 
leads to talk about the existence of mathematical objects. Our notion of objectual 
metaphor is highly related to the notions of image schema and metaphorical 
projections (Johnson, 1987; Lakoff & Johnson, 1980). The image schemas are basic 
schemas, in the middle of the images and the propositional schemas that help to 
construct the abstract reasoning by means of metaphorical projections. These schema 
are constituted by multiple corporal experiences experimented by the subject. Some 
of these experiences share characteristics that are incorporated within the image 
schema. Both the experiences and the shared characteristics are a consequence of 
situations that have been physically and repeatedly lived.  
Lakoff and Núñez (2000) claim that the cognitive structure for the advanced 
mathematical thinking shares the conceptual structure of the non mathematical daily 
life thinking. The metaphorical projection is the main cognitive mechanism that 
permits to structure the abstract mathematical entities by means of corporal 
experiences. We interpret the metaphor as the comprehension of an object, thing or 
domain in terms of another one. The metaphors create a conceptual relationship 
between an initial or source domain and a final or target domain, while properties 
from the first to the second domain are projected. In relation to the mathematics, 
Lakoff and Núñez distinguish two types of conceptual metaphors:  

• Grounding metaphors: they relate a target domain within the mathematics to a 
source domain outside them.  

• Linking metaphors: they maintain the source and the target domains within the 
mathematics and exchange properties among different mathematical fields. 

Within the group of grounding metaphors, there is the ontological type, where we 
find the objectual metaphor. The objectual metaphor is a conceptual metaphor that 
has its origins in our experiences with physical objects and permits the interpretation 
of events, activities, emotions, ideas... as if they were real entities with properties. 
This type of metaphor is combined with other ontological classical metaphors such as 
that of the “container” and that of the “part-and-whole”. The combination of these 
types leads to the interpretation of ideas, concepts... as entities that are part of other 
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entities and are conformed by them. This interpretation is clear in the axioms of 
existence and link, as they are mentioned in a classical Spanish textbook on 
Geometry (Puig Adam, 1965, p. 4):  

Ax. 1.1. We recognize the existence of infinite entities called <points> whose set will 
be called <space>.  
Ax. 1.2. The points of the space are considered grouped in partial sets of infinite points 
called <planes> and those from each plane in other partial sets of infinite points called 
<lines>.   

METAPHORICAL EXPRESSIONS OF OBJECTUAL METAPHOR 
We consider it necessary to make a distinction between the metaphorical expressions 
and the conceptual metaphors, as highly interrelated but different ideas. This 
distinction permits to establish generalizations that, otherwise, would remain 
invisible. The metaphorical expressions may be grouped into conceptual metaphors, 
and seen as isolated, they can be thought of as individual cases of particular 
conceptual metaphors.  
 
 
 

 

Figure 1. A representation of the objectual metaphor 

The conceptual metaphor “The mathematical entities are physical objects” is a 
grounding ontological metaphor. Figure 1 (Acevedo, 2008, p. 138) illustrates the 
metaphorical projection with the different metaphorical expressions that appear when 
using this conceptual metaphor in a mathematics classroom where the graphical 
representation of functions is being taught to students in high school. Figure 1 shows 
our experiences in the world of things and the interpretation of the physical objects as 
separated from this world context; these experiences generate the “objectual” image 
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schema that become the source domain that is projected into the world of the 
mathematical objects. Table 1 refers to the source and target domains that intervene 
in the interpretation of this metaphor.   

 
“The mathematical entities are physical objects” 

Source domain: Image schema Target domain: Mathematical entities 

Physical object Mathematical object 

Properties of the physical object Properties of the mathematical object 

Table 1. Domains of the metaphorical projection  

 
THE OBJETUAL METAPHOR IN THE TEACHERS’ DISCOURSE 
The objectual metaphor is always present in the teachers’ discourse because here the 
mathematical entities are presented as “objects with properties” that can be physically 
represented (on the board, with manipulatives, with gestures, etc.). In Acevedo 
(2008), metaphorical expressions of the objectual metaphor occur when the 
mathematics teacher refers to the graphic of a function as an object with physical 
properties. When he talks about the application of mathematical operations in order to 
obtain the first derivative of a function, the teacher uses verbal expressions and 
gestures that suggest the possibility of manipulating mathematical objects as if they 
were things with a physical entity (Acevedo, 2008, p. 137):  

Teacher1: The derivative of the numerator, no! You multiply by the denominator as it is, 
minus the numerator multiplied by the derivative of the denominator. Ok. Now you 
divide it by the denominator... square, it is. (...) This is the first derivative. Now, what’s 
next? To operate, to manipulate... What’s left? 

The use of the objectual metaphor facilitates the transition from the ostensive 
representation of the object –written on the board, drawn with the computer, etc.– to 
an ideal and non ostensive object. Hence, the use of this type of metaphor leads to 
talk in terms of the “existence” of the mathematical objects. This use may lead the 
students to interpret that the mathematical objects exist within the mathematical 
discourse (internal existence) and, sometimes, may lead them to interpret that they 
exist like chairs and trees do (external existence, physical or real). In Acevedo (2008, 
pp. 136-137), we first find a classroom discussion on the domain of the logarithm 
function and later a discussion on the domain of the square root function, during the 
instruction of the graphical representation of functions. Here the “existence” is 
considered within the language game of the mathematical discourse, in comparison to 
the former teacher’s comments on the existence of the first derivative of a function: 
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Teacher2: The domain goes from zero to infinite because logarithms of negative 
numbers do not exist, logarithm of minus one does not exist. Shall we say with the zero 
included?  
 

Teacher2: Not the negative… because the square root of a negative number does not 
exist. We could also say the real numbers without the negatives, or even easier, all the 
positive numbers, we can write it like this, with an interval, from the zero to the infinite, 
now the zero is included.  

If the teacher is not careful enough with the way of using (or not using) the verb 
“exist” in his discourse, the students in this class may not remain within an “internal 
existence” position. Instead, they may change the “language game” (Wittgenstein, 
1953) and assume the “external existence” of the mathematical objects. In the 
following paragraph, a third different teacher explains the graphical representation of 
functions to the students in the class and explicitly mentions the idea of existence, 
although he does so in a rather controversial way (Acevedo, 2008, p. 137): 

Teacher3: Then...this function always exists, the domain will be all real numbers and 
there won’t be any vertical asymptote.  

We observe a deviation in the “expected” use of the word “exists” within the 
language game of the mathematics discourse. It would be reasonable to affirm that 
the images of the values in the domain exist or are defined. When attributing the 
existence to the whole function instead of talking about its images, the teacher is 
making a use of the word “exists” that can lead to the understanding of the function 
as a “real” object with properties, like a chair or a person. Moreover, by doing so, the 
teacher can promote the movement from the mathematical internal existence of the 
object to a physical external existence.   
 
DIFFERENTIATON BETWEEN OSTENSIVES AND NON OSTENSIVES 
We draw on the theoretical distinction between ostensive and non ostensive objects 
as established by the onto-semiotic approach to mathematics education (Godino, 
Batanero & Font, 2007, p. 131): 

Ostensive–non-ostensive Mathematical objects (both at personal or institutional levels) 
are, in general, non-perceptible. However, they are used in public practices through 
their associated ostensives (notations, symbols, graphs, etc.). The distinction between 
ostensive and non-ostensive is relative to the language game in which they take part. 
Ostensive objects can also be thought, imagined by a subject or be implicit in the 
mathematical discourse (for example, the multiplication sign in algebraic notation). 

In the mathematics discourse, it is possible to talk about ostensives representing non 
ostensives that do not exist. For example, we can say that f’(a) does not exist because 
the graphic of f(x) has a pointed form in x = a. This gives us another example of the 
semiotic and discursive complexity of the classroom discourse when referring to the 
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existence of mathematical objects. In Acevedo (2008, p. 320) we find the following 
remark made by a teacher in his classroom discourse:  

Teacher4: As you can see, the one-sided limits are not the same and then the limit does 
not exist…  or the limit is infinite, I mean it is more or less infinite.  

In García (2008, appendix 2, p. 8), we find a teacher who uses a discourse with 
ostensives (f(3)) that represent non ostensives that do not exist. He does not say that 
they do not exist but literally says that “we cannot have them”. The instances from 
García’s research were obtained in a similar methodological setting –in regular high 
school classrooms focused on functions and graphs–, to that constructed for the study 
that was developed by Acevedo.  
Teacher 5: […] Let’s imagine this function: 

What is the domain of f? [He answers on the board { }3−ℜ ]. And f(3)? Don’t make the 
mistake of saying five, because it is not in the domain and we cannot have an image. We are 
not worried about f(3), but about going as closer as possible to three, before and after the 
three. Attention, where are the images? Now I don’t have a formula. 
Students: Near the five. 
Teacher 5: And now if I get closer to three on the right, where are its images? 
Students: Over the five. 
Teacher 5: Yes we can say limit of f(x) when x goes to three. 
Students: But f(3) does not exist. 
Student: But the asymptote does not touch it either. 
Teacher 5: It is curious but 5)(lim

3
=

→
xf

x
 [on the board]. It is not defined in three but its limit 

does exist. That limit exists without having the analytical expression and without having 
f(3). 

In order to talk about the existence of certain non ostensives, we have to use a 
discourse with ostensives constituted in accordance to the “grammar” that regulate 
the construction of the well-established formulas. This type of discourse is frequently 
used by many students, as the following remark shows (Acevedo, 2008, p. 368): 
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Student: Then you do the same here, well you first put the zero here because it is… you 
look for it, it is the number that you have obtained and the derivative is zero. Then in minus 
one and in one, you also have to write a zero, but as you have vertical asymptotes you can 
say that the derivative does not exist, neither does it exists the function. Then you do it with 
minus one and zero and you get a negative, with the same procedure, and then with the zero 
and the one you get a positive. As it is positive, it means that you have a minimum here 
because you have this drawing and it is a minimum. 

The use of ostensives that represent non ostensives that do not exist may create 
confusions in the students’ thinking, although it also can turn into philosophical 
implicit reflections for them. This is the case with a student (Acevedo, 2008, p. 213) 
that makes a distinction between “to be” and “to exist”. He misunderstands the 
vertical asymptote and makes a mistake:  

Teacher5: Could you explain a bit more about the vertical asymptote?  
Student: I understand that the vertical asymptote is the value that does not exist in the 
function. 

The existence of well-established ostensives that represent non ostensives that do not 
exist facilitates the consideration of the non ostensive object as something different 
from the ostensive that represents it. Duval’s work (2008) has pointed to the 
importance of the different representations and transformations between 
representations in the students’ understanding of the mathematical object as 
something different from its representation. 
Many textbooks of mathematics, implicitly or explicitly make the students observe 
that an object has many different representations and it is needed to distinguish the 
object from its representation. In a popular Catalan textbook (Barceló et al., 2002, p. 
89), for instance, the following is written: 

In all the activities made, you have been able to observe the different ways of 
expressing a function: as a statement, as a table of values, as a formula and as a 
graphic. You always have to remember these four forms of representation and know 
how to go from one to another.  

However, these textbooks frequently tend to identify the mathematical object with 
one of its representations. In the same Catalan textbook (Barceló et al., 2002, p. 90), 
it is said “Given the function f(x) = 1/x …” The explanation is that the representation 
is identified with the object or differentiated from it depending on the purpose. Peirce 
(1978, §2.273) mentions this idea in his work:  

To stand for, that is, to be in such a relation to another that for certain purposes it is 
treated by some mind as if it were that other. Thus a spokesman, deputy, attorney, 
agent, vicar, diagram, symptom, counter, description, concept, premise, testimony, all 
represent something else, in their several ways, to minds who consider them in that 
way.  
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In the mathematical practices, we constantly identify the object with its 
representations and, on the other hand, we make a distinction between the object 
itself and some of its representations. The rules of this language game, where the 
objectual metaphor is crucial, may be difficult to learn for some students. When we 
deal with physical objects, we can differentiate the sign from the object (for instance, 
the word “watch” and the physical object “watch”). The objectual metaphor as it is 
used in the mathematics discourse permits to transfer this differentiation to the 
mathematical objects and, therefore, we also differentiate the “representation” from 
the “mathematical object”. Moreover, the type of discourse that we produce within 
the mathematics classroom, leads us to infer the “existence” of the object as 
something independent from its representation. This situation let us conclude about 
the existence of a mathematical object that can be represented by means of different 
“representations”. 
FINAL REMARKS 
In this report we have argued that the objectual metaphor plays a central role in the 
pedagogical process in the classroom, where teachers (and, consequently, the 
students) talk about mathematical objects and physical entities. We have shown how 
the use of metaphorical expressions of objectual metaphors in the mathematics 
classroom discourse leads the students to interpret the mathematical entities like 
“objects with existence”. On the other hand, the mathematics discourse about 
ostensives representing non ostensives that do not exist and about the identification 
(differentiation) of the mathematical object with one of its representations leads the 
students to interpret the mathematical objects as being different from its ostensive 
representations. As a consequence, the classroom discourse helps to develop the 
students’ comprehension of the non ostensive mathematical objects as objects that 
have “existence”. 
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MATHEMATICAL ACTIVITY IN A MULTI-SEMIOTIC 
ENVIRONMENT 

Candia Morgan and Jehad Alshwaikh 
Institute of Education, London 

Abstract: Different semiotic systems provide different sets of resources for the 
construction of mathematical meanings. In this paper, we argue that a multi-semiotic 
environment not only affords rich potential for developing mathematical concepts but 
may also affect more fundamentally the goals of student activity. We present a 
multimodal analysis of an episode from a teaching experiment with software that 
allows students to construct animated models using equations. In the course of this 
short episode, the students made use of drawing and gesture as well as mathematical 
and everyday speech in ways that transformed the purpose of their activity from 
drawing a static pattern to constructing an animation, changing the mathematical 
problem from using velocities to determine the direction of motion to considering 
how to stop a moving object.  

INTRODUCTION 
The study of mathematical language and other sign systems has developed in recent 
years with increasing recognition of the importance of a variety of specialised 
mathematical systems, including graphical and diagrammatic forms as well as 
linguistic and symbolic (Alshwaikh, 2008; O'Halloran, 2005), and of interaction 
between the various systems (Duval, 2006) in the development of mathematical 
discourse. Moreover, where mathematical communication takes place in face-to-face 
contexts, body language and gesture also play a part (see, for example, Bjuland, 
Cestari, & Borgersen, 2007; Radford & Bardini, 2007). The development of new 
modes of representation through the medium of new technologies has generated 
further interest in this area by opening up possibilities for dynamic forms and for 
interactions between systems (such as graphs and algebraic equations) in ways that 
were previously inaccessible. 
From a social semiotic perspective (see Morgan, 2006), each semiotic system 
provides a different range of meaning potentials (Kress & van Leeuwen, 2001). For 
example, as O’Halloran argues, visual modes such as graphs allow representation of 
‘graduations of different phenomena’ rather than the limited categorical distinctions 
available through language or algebraic symbolism, while dynamic modes 
additionally allow the representation of temporal and spatial variation (2005, p.132). 
Such different potentials have been exploited in the design of interactive learning 
environments (for example, Yerushalmy, 2005) and research from various theoretical 
perspectives has focused on the kinds of mathematical meanings constructed by 
students working with such novel representations, especially in the contexts of use of 
dynamic geometry (for example, Falcade, Laborde, & Mariotti, 2007). 
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In this paper we report a teaching experiment, involving a multi-semiotic interactive 
learning environment, MoPiX, produced as part of the ReMath project [i]. This 
environment and the associated pedagogical plan were designed to provide multiple 
linked representations to support students’ development of concepts of velocity and 
acceleration [ii] by allowing them to experience and connect formal symbolic 
definitions and dynamic animations. We report elsewhere how the semiotic resources 
provided by this environment appear to support students’ development of ways of 
operating with velocity and acceleration compatible with their formal definitions and 
with Newtonian laws of motion (Morgan & Alshwaikh, 2008, 2009). Here, however, 
we discuss the influence of the multi-modal environment on the process of problem 
solving, presenting an example of an episode in which interaction with the various 
available semiotic systems transformed the goals of the activity. 

A MULTI-SEMIOTIC ENVIRONMENT 
The interactive learning environment of MoPiX allows users to construct animated 
models and investigate their behaviour. It is conceived as a constructionist toolkit 
(Strohecker & Slaughter, 2000), providing fundamental elements (in this case objects, 
represented by shapes such as squares or circles, and equations) with which students 
can build models, form and investigate hypotheses by activating their constructions 
and observing their behaviour. The environment of MoPiX is essentially multi-
semiotic, linking symbolic representations (equations) using a variation of standard 
mathematical notation, with animated models and graphs. In addition, the planned 
pedagogy of the teaching experiment, the social environment of the classroom and 
the nature of the technology (individual tablet PCs) were intended to encourage use 
of a range of modes of communication, including talk, gesture, various paper-and-
pencil representations and the electronic sharing of constructions through the ReMath 
portal [iii]. The variety of semiotic systems provides a range of meaning potentials 
and hence rich opportunities for users to construct meanings for the mathematical 
objects and concepts represented. 
x(object_1,t)=x(object_1,t-1)+Vx(object_1,t) 

x-coordinate of the circle (object_1) is augmented by 
the value of Vx as time (t) increases 

Vx(object_1,0)=3 
variable Vx, assigned an initial value of 3 (when 
time=0), may be considered the velocity of the circle  

Vx(object_1,t)=Vx(object_1,t-1)+Ax(object_1,t) 
Vx (velocity) is augmented by the value of Ax as time 
(t) increases 

Ax(object_1,t)=-0.1 
variable Ax, in this case assigned a value of -0.1, may 
be considered the acceleration of the circle  

Figure 1: A set of equations defining horizontal motion 
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A MoPiX object is caused to move by applying a set of parametric equations defining 
how its position will change over time. For example, the set of equations shown in 
Figure 1 would cause object_1 (the circle in the screen shot) to move in the horizontal 
direction with an initial velocity of 3 and constant acceleration -0.1 [iv]. Horizontal 
and vertical components of motion are defined separately. The notation thus draws 
attention to vector concepts of velocity and acceleration, while the form of the 
equations embodies the definitions of velocity as change in position and acceleration 
as change in velocity. Equations may be taken from a library of basic equations, 
edited or authored directly and applied to objects. Once equations have been added to 
one or more objects, the model may be played and each object in the model will move 
according to its own set of equations. (It is also possible to apply equations defining 
interactions between two or more objects.) Visual feedback from the animated model 
allows students to test their hypotheses about the functioning of the equations they 
have used. They may then continue their investigations: editing the sets of equations 
and adding new objects to their model.  

THE TEACHING EXPERIMENT 
A pedagogic plan was devised, in collaboration with teachers in a London tertiary 
college, with the educational goal of developing understanding of ideas of velocity, 
acceleration and force. A group of seven students (aged 17-18 years) volunteered to 
participate in the study, which took place during 10 weekly one-and-a-half hour 
sessions outside the normal curriculum. The participants were all enrolled in an 
Advanced level mathematics course. They had not previously studied the 
mathematics of motion (though some had studied physics) and, though all were 
familiar with the formal definitions of velocity and acceleration as rates of change, a 
pre-course paper-and-pencil questionnaire revealed that they nevertheless relied on 
informal non-Newtonian intuitions in order to describe and explain motion. 
Participation in the study was presented to the students as extra preparation for the 
Applied Mathematics (Mechanics) module that they were to start the following term. 
The intended pedagogy was founded on constructionist principles, providing students 
with access to the means of manipulating the elements of the MoPiX microworld 
while posing challenges that would encourage them to experiment, shaping their own 
goals and hypotheses. The episode we consider in this paper is taken from the second 
session. During the first half of this session, the students had been given a worksheet 
with a sequence of tasks introducing them to the equations needed to create straight 
line motion, to the idea that the direction of motion is determined by a combination of 
velocities in the horizontal and vertical directions and to the equations for drawing a 
trace of the motion of an object. Having done the set tasks, they experimented in a 
playful way with these and a range of other equations taken from the MoPiX equation 
library, creating multi-coloured objects moving in various ways, not only in straight 
lines. They then had their attention drawn to the next task on the worksheet: ‘As a 
group, plan a design formed by several lines.’ In designing this challenge, it was 
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anticipated that students would make use of the combination of horizontal and 
vertical motions to make objects move in different directions drawing straight lines 
with different gradients, thus developing their appreciation of relationships between 
components of motion in two dimensions. 

DATA ANALYSIS 
During the teaching experiment we gathered data in the form of video and audio 
records of pairs of students, together with any incidental paper-and-pencil work. In 
addition we administered paper-and-pencil pre- and post-questionnaires. Our broad 
research aim was to investigate how students would make use of the semiotic 
resources offered by MoPiX and the broader classroom environment in the course of 
their work on tasks related to motion. We were particularly interested to see what 
contribution the various resources might make to students ways speaking about and 
operating with ideas of velocity and acceleration. 
Extracts of video were identified as ‘of interest’ and were transcribed. In accordance 
with our research focus on multiple semiotic resources, extracts chosen for 
transcription included, in particular, those where several modes of communication 
were being used together. We consider the form of transcription to be part of the 
analytic process as a preparation for the multi-semiotic analysis needed to address our 
research questions. The use made of each mode of communication was thus recorded 
in a separate column of a spreadsheet, allowing both horizontal (a snapshot of all 
simultaneous semiotic activity at each ‘moment’) and vertical (an overview of 
semiotic activity within a particular mode through the whole period of the extract) 
examination of the data. The transcript was divided into ‘moments’ of 
communication that were considered to have some meaningful coherence; this 
division was a pragmatic consideration with no explicit theoretical basis. 
Our approach to analysis involved both the application of a priori categories and the 
iterative definition and refinement of categories derived from the data. In the episode 
discussed below, we discuss the interaction between mode of communication (an a 
priori categorisation) and the goal of the students’ activity (a strand of analysis 
arising from our exploration of the data). The episode is a five-minute extract from 
about half way through the second session, focusing on two male students, Baz and 
Vin as they start to work on the design task.  

CM if two of you think about a pattern maybe with some parallel lines and 
perpendicular lines and a number of lines to make some sort of a pattern on the 
screen. Yeah? And design that in advance and then one of you does some of the 
lines, the other does the other set of lines and then you combine the two to make 
the whole pattern. Yeah? So you might want to do some pencil paper work first. 
think about your design 

Vin Do you have a pen? 
Baz  Just use the computer 
Vin  Yeah.. in Paint [this refers to the Paint drawing programme on the PC] 
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Baz   [laughing together]  yeeaah.. Paint 
Vin  
Vin  Bring it over 
[… about a minute trying to find the Paint programme on an unfamiliar PC] 
Baz  Here we go. All right so we can do the horizontal lines and vertical lines. 
Vin  Can’t we do the diagonal ones 
Baz We can do squiggly lines, but 
Vin Like in our thing, if it has a formula, then it’s not going to be random is it 
Baz Yeah exactly 
Vin Do a log [i.e. logarithmic function] actually you can’t do log because it’ll get kind 

of mad because it’ll go on for ever 
Baz You can have different colours right [both laugh] so make it like a firework so it 

goes like that and then you could have vertical ones like that and diagonal ones 
and another horizontal, I mean vertical one going even further up 

Vin like a sparkler 
Baz yeah but we need it to start from here and then these start after this one and then .. 

I don't know how that’ll work 
We originally identified the extract for detailed transcription and analysis because it 
seemed interesting for two reasons. In the first place, the students chose to make use 
of the Paint programme on their PCs, thus providing us with an opportunity to 
consider how they were making use of the various modes of communication available 
to them. Secondly, the mathematical nature of the problem they were working on and 
the focus of their MoPiX programming task changed through the course of the 
episode. 
Strand 1: Mode.  
This strand of analysis was identified as a fundamental component of our social 
semiotic theoretical framework and of importance in addressing our research 
questions. It was initially defined by a priori categories. Each moment was first coded 
according to the mode or modes in use. The initial categories used were: 

• spoken language (subdivided into everyday/ mathematics/ MoPiX registers) 
• written language (natural  language/ conventional mathematics notation/ MoPiX 

notation) 
• drawing (outcome of MoPiX animation/ aid to problem solution) 
• gesture (pointing/ mimicking MoPiX motion/ other) 
• MoPiX equations (library/ authored/ complete models) 
During the coding process, however, it became clear that this categorisation was not 
sufficient by itself to capture the ways in which the meanings produced during the 
extract were realised using the available semiotic resources. In particular, the 
functional relationship between the various modes used in any moment appeared 
significant. For example, Baz, creating the initial design, used simultaneous words 
and drawing (see Table 1). The initial causal connection ‘so’ made by Baz between 
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the possibility of using colours and the decision to make the design ‘like a firework’ 
draws attention to the significance of the semiotic potential of the available 
technology. Both the Paint programme the students had chosen to use instead of 
paper-and-pencil and MoPiX itself afford easy application of a range of colours. It 
seems that the availability of colour as a resource suggests representational 
possibilities that might not have been chosen when working with traditional tools.  

 spoken language drawing (in Paint) 

Baz You can have different colours right 
[both laugh] so make it like a firework 

  

 
so it goes like that  draws vertical bottom to middle twice 

 and then you could have vertical ones 
like that 

horizontal middle to left; horizontal 
middle to right twice 

 
and diagonal ones 

3 diagonals: middle to NW; middle to 
NE; middle to SW 

 and another horizontal, I mean vertical 
one going even  further up 

vertical middle to top 

Table 1: Interaction of speech and drawing 

There is a direct congruence between Baz’s words (spoken -mathematics) and his 
drawing; as he speaks the word ‘vertical’, he draws vertical lines (although he 
initially confuses vertical and horizontal). In addition, however, the motion of 
drawing (gesture) mimics the imagined motion of the firework (spoken -everyday) 
thus combining use of the static meaning potential of the descriptive language - 
vertical, horizontal, diagonal - and the completed drawing (displaying the outcome of 
the intended MoPiX animation) with the dynamic meaning potential of gesture. 

 spoken language gesture drawing 

Vin like a sparkler   

Baz yeah but we need it to 
start from here and then 
these start after this one 
and then I don't know 
how that’ll work 

slide-pointing bottom to 
middle, then slide-
pointing anticlockwise 
circle around the 
perimeter of the whole 
shape 

 

 

 

 

 

 

 

 

Table 2: Interaction of speech, gesture and drawing 

WORKING GROUP 6

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 998



 

 

In the next moment (see Table 2), Vin echoes Baz’s original everyday discourse 
identification of the design as a firework, now specifying it more concretely as a 
sparkler, then Baz uses gesture to interact with the now complete drawing, 
simultaneously verbalising the process needed to construct the design with moving 
objects (spoken -MoPiX). In this case, the students use the drawing mode as readers, 
producing new meanings for the drawing through their use of spoken language and 
gesture. The spoken language naming of the design as firework/ sparkler here 
provides a holistic (everyday) image of the outcome of the design, while Baz’s 
simultaneous use of language and gesture affords a dynamic representation of the 
development of the animated design over time. 
Strand 2 Goal of the design activity: static versus dynamic outcome 
In order to capture the complexity of the relationships between modes in use in any 
moment, the coding was developed to take account of the changing nature of the 
design activity. This strand of analysis was developed after initial examination of the 
whole extract, emerging as a theme from the data. It was observed that the ways in 
which the participants talked about their pattern included attending both to the 
properties of the lines drawn as traces of the MoPiX animation (a static outcome) and 
to the properties of the motion itself (a dynamic outcome). At the beginning of the 
chosen extract, the task is introduced by the teacher/researcher, using what we have 
now characterised as a static representation of the goal of the task:  

think about a pattern maybe with some parallel lines and perpendicular lines and a 
number of lines to make some sort of a pattern on the screen. 

This static goal is taken up initially as the students discuss the types of lines they 
might make using MoPiX (horizontal, vertical, squiggly, defined by a formula).  By 
the end of the episode, however, the focus of the activity is related to the motion of 
objects needed to construct the pattern. This focus was not the anticipated task of 
coordinating horizontal and vertical components of motion in order to draw lines with 
particular gradients. Rather, the students identified an important new goal that 
influenced the progress of their work through the remainder of the session: to find a 
way of stopping a moving object. This proved a substantial problem for them as its 
solution demanded a more analytic use of MoPiX equations than they had developed 
up to that point, in particular the use of equations specifying values of velocity or 
acceleration at a given time. 
The question thus arises as to why this change from static to dynamic goal may have 
occurred. We coded references in any mode to the pattern or to components of the 
pattern as static or dynamic, identifying for each reference the mode and the 
indicators used to apply the code. Through this process of coding it became apparent 
that significant moments in the students’ developing image of their pattern occurred 
as they moved between different modes of representation (see Table 3). In particular, 
the naming of the pattern as a ‘firework’ (apparently influenced by the articulated 
recognition of the possibility of using colour in their design), and interaction using 
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gesture with the drawing of their design introduced new semiotic resources with 
meaning potentials that highlighted dynamic aspects of the design. 

(i) The original MoPiX programming challenge focuses 
on the direction of lines: “parallel”, “perpendicular”.  

written and 
spoken language 
- mathematics 

static 

(ii) Vin discusses the need for mathematical formulae to 
define MoPiX motion. 

spoken language 
- mathematics; 
MoPiX 
programming 

static 

(iii) Vin introduces of the idea of using a formula 
involving ‘log’ and the dynamic idea that it will ‘go 
on forever’, perhaps invoked by a concept image of a 
logarithmic graph (note O’Halloran’s (2005) 
identification of the dynamic meaning potential of 
mathematical graphs). 

spoken language 
- mathematics; 
imagined graph?  

static - 
dynamic

(iv) The use of Paint or perhaps the use of MoPiX 
enables the suggestion to use different colours.    

(v) This suggestion then seems to trigger the naming of 
the design as a “firework”.  

spoken language 
- everyday; 
imagined 
dynamic object 

dynamic

(vi) The firework idea is realised in Paint.   

(vii) Interaction with this drawing through gesture 
introduces a temporal aspect. 

drawing; gesture dynamic

(viii) This temporal aspect is taken up immediately by 
Baz's verbal description of the motion "we need to 
start from here and then these start after this one" 

drawing; gesture; 
spoken language 
- MoPiX 

dynamic

(ix) The MoPiX programming challenge then becomes 
the problem of how to make motion stop. 

MoPiX 
programming 

dynamic

Table 3: Change from static to dynamic 

CONCLUSIONS AND DISCUSSION 
The analysis we have offered here has focused on the multiple modes of 
communication used by these two students. Not only does each mode have its own 
set of meaning potentials but the different modes also interact, providing further 
potential. The complex interaction of use of language, drawing, gesture and MoPiX 
programming thus contributes to the construction of new meanings in the 
communication between the two students. The new semiotic resources provided by 
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MoPiX play relatively little explicit part in the episode we have considered. 
Nevertheless, we would argue that they play an influential role in shaping the 
students’ activity, not only because the overt goal of the task involved use of MoPiX 
but also because the students were influenced by their recent use of MoPiX and their 
awareness of its potential. Moreover, the technological environment and the students’ 
familiarity with its capabilities enabled them to choose to use Paint and its colour 
resources rather than traditional monochrome paper-and-pencil. 
The resources afforded by gesture have been identified as significant in the move 
from a static to a dynamic goal. We consider here not only the pointing gestures 
accompanying the deictic spoken language seen in Table 2 but also the bodily 
movement implicit in the act of drawing in Table 1. This draws attention to the 
duality of the drawing mode: it is both a product - the outcome or picture - and the 
process by which the outcome is produced. In different moments it thus has both 
static and dynamic meaning potential and may play an important part in shifting 
focus between the two types of meaning. 
However, the change from a static to a dynamic focus for the students’ problem 
solving activity was not solely a product of the multi-semiotic environment. The 
nature of the pedagogic discourse of the classroom also played an important role. In 
particular, the students had enough agency within the classroom to enable them to 
make decisions about their own activity. In the first place, they were able to decide to 
ignore the teacher/researcher’s suggestion to use paper-and-pencil, choosing to use 
Paint instead. Further, they were able to follow their own interests in designing their 
firework, thus enabling the change in the focus of their attention. Indeed, at a later 
stage in the same lesson, the teacher/researcher worked with this pair to help them 
solve the MoPiX programming problem of making a moving object stop, using 
techniques whose introduction had been planned for a later lesson.  
Our analysis of this episode illustrates the very complex space of communication and 
learning and, we hope, contributes to Kress’s call for development of theory of 
learning from a social semiotic perspective (Kress, 2008). The focus of students’ 
attention and the direction of their learning are shaped by the multi-modal resources 
available and the interactions between them. However, this takes place within a 
learning environment that affords and/or constrains students’ agency and their ability 
to change the direction of their activity in ways that will be considered legitimate.
NOTES 
i ReMath (Representing Mathematics with Digital Technologies) funded by the European 
Commission FP6, project no. IST4-26751. 
ii MoPiX also has potential to be used in many other areas of mathematical modelling. 
iii MoPiX version 1 is available at http://remath.cti.gr; version 2.0 is under development at 
http://modelling4all.nsms.ox.ac.uk/ 
iv Units are non-standard and not identified explicitly in the notation. 
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ENGAGING EVERYDAY LANGUAGE TO ENHANCE 
COMPREHENSION OF FRACTION MULTIPLICATION  

Andreas O. Kyriakides 
The Open University, United Kingdom  

 
Dedicated to the memory of the Cypriot teacher Georgia Kyriakidou 

Using as analytic frames the Pirie-Kieren model and theoretical constructs on the 
role language and communication could play in the process of learning, I attempt to 
sketch the pathway of understanding of a sixth-grade student (Avgusta) while she is 
attempting to make sense of fraction multiplication. The viewing of mathematical 
understanding as a dynamic process proved supportive in enabling me to identify the 
role language could play both at any level and in the growth between levels of 
Avgusta’s understanding. Occasioning learners to fold back to everyday language in 
order to collect the spontaneous interpretation of the word “of” and combine it with 
the scientific notation of multiplication could awaken learners’ awareness that the 
interpretation of multiplication involves finding or taking a part of a part of a whole. 

INTRODUCTION 
The story to be recounted here evolves in a public elementary school in Cyprus, 
where I work as a full-time teacher. It is part of a two-year research studying the 
complexities of learning to compute fractions as revealed from the use of a novel 
peda-cultural tool. Though in Cypriot culture school mathematics textbooks introduce 
the concept of fraction with images of partitioned rectangles and circles, they make 
little or no use of diagrams when they show students the way to compute. 
During the first year of the study I was the teacher of a fifth grade class (10 boys & 
12 girls) and had to address all subjects’ objectives set by the curriculum. Once a 
week, I took the role of a teacher-researcher and taught students how to learn 
fractions through manipulating diagrams. To be consistent and learn from my 
experiences I revisited my group of students a year later and conducted individual 
interviews in order to collect some retrospective evidence about the nature of their 
learning. It is the purpose of this paper to zoom in on one of those interviews and 
describe how one girl, Avgusta, could derive meaning in multiplication of fractions. 
Worthy of consideration is that in sixth grade my ex-students had been exposed to a 
different teacher’s instructional mode which gave no emphasis on diagrams as a 
learning tool.   
This study is of interest because it refers to an educational culture unused to use 
diagrams to compute fractions and more used to show and tell than to getting learners 
to make sense by using the diagrams as mediating tools. Its contribution lies in 
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offering Avgusta’s learning as grist for the learning and development of other pupils, 
beyond the local boundaries of the particular school.     
THEORETICAL BACKGROUND 
The role of language in learning and particularly the social role of other people in the 
development and use of language was explicitly stressed by Vygotsky when he 
emphasized the importance of getting students talking about their thinking in order to 
help them make sense of, or construct, mathematical meaning. Vygotsky also 
observed that there are differences between what pupils can achieve working alone 
and what they can achieve when assisted by someone more experienced, such as a 
teacher. He captured this in a phrase which in English is usually rendered by “zone of 
proximal development” (Vygotsky, 1978). This term suggests that the teacher wants 
to support awareness that is imminent but not yet available to learners and not do 
those things which learners can do, since this will only raise dependency. Bruner (as 
cited in Wood et al., 1976) while presenting Vygotsky’s ideas in English,  made use 
of the metaphor “scaffolding” to refer to the assistance that a teacher some time may 
offer, which can be gradually withdrawn as students are able to function 
independently. The critical part of scaffolding is its removal or fading because when 
the support has not been removed, pupils may become dependent upon the teacher or 
any employed pedagogical tool (Love & Mason, 1992). 
Zack (2006) appears in synch with Vygotsky’s and Bruner’s observations when she 
claims that because “students use sophisticated reasoning but may not see the power 
in the reasoning they are doing”, it might be useful if teachers could “revisit what 
students have said, and connect their talk with the ways in which a mathematician 
would express those ideas” (p. 211). Linking everyday and scientific ways of 
knowing in order to support learners’ imminent awareness is, according to Zack 
(1999), a much more challenging task than most researchers have appreciated. 
The Pirie-Kieren theory and its associated model [Figure 1] is a well-established and 
recognized tool for listening and looking at growing understanding as it is happening. 
Growth in understanding is seen as a dynamical and active process involving a 
continual movement between different layers or ways of thinking, with no 
implication of a linear ladder-like system. These layers, which are intentionally 
represented in the form of eight nested circles so that the accent is put on the 
embedded nature of understanding, are named Primitive Knowing, Image Making, 
Image Having, Property Noticing, Formalising, Observing, Structuring and 
Inventising. A critical feature of this theory is the act of returning to an inner layer, or 
re-visiting and re-working existing understandings and ideas for a mathematical 
concept. This act is called “folding back” (Pirie & Kieren, 1989). A slightly 
differentiated form but equally important to folding back is that of “collecting”. Its 
major difference from folding back is that, in collecting, the inner level activity does 
not involve a modification (or thickening) of the individual’s earlier understandings. 
Instead, learners’ efforts are concentrated on finding and recalling what they know 
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they need to solve a task. They are consciously aware that this knowledge exists but 
their understanding is not sufficient for the automatic recall of it (Pirie & Martin, 
2000). 
METHOD AND METHODOLOGY 
Avgusta, 12 years old when the interview was conducted, was one of the twenty two 
students participating in the study. I have chosen to present here selected pieces of 
her responses to a scenario on multiplication [Table 1], as well as explanations of 
these responses. By choosing particular moments and voicing them through a 
temporal sequence, I aim to convey not only a succession of Avgusta’s learning 
experiences but also how she experienced this succession. What counts is not only 
the content and structure of the practice itself but also the ways in which it is talked 
about, perceived and assimilated by the learner.  
 
When the principal of the school entered the classroom and asked the children what they were 
doing, they replied that they were learning how to multiply fractions. Then the principal asked who 
could come up to the board and show to her how to find the product 2/3 x 1/2 without performing 
any calculations but using only the area models. Orestes wrote the following on the board but the 
principal did not seem satisfied. If Orestes asked for your help, what would you say to him? 

 
Table 1: Interview scenario 

Using as analytic frames the Pirie-Kieren model for the growth of one’s 
understanding, theoretical constructs on the role language and communication could 
play in the process of learning, as well as personal reflections on pedagogy, I shall 
attempt to map the growth of Avgusta’s understanding. Throughout the analysis, my 
specific goal is to explore her thinking “in-change” and how this is accomplished and 
shared. In other words, how shifts in Avgusta’s thinking occur and in what ways such 
shifts in thinking supported her understanding of the meaning of multiplication. 
Taking the position with Doerr and Tripp (1999), I argue that shifts in thinking could 
be described in terms of an initial interpretation of the task situation and a later 
interpretation that stands in opposition to the initial interpretation. It is sensible to 
assume that somewhere between the two interpretations there will be evidence of 
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what precipitated the change in Avgusta’s thinking. For this reason, attention will be 
cautiously focused on the sequence of events between initial and later interpretations, 
as well as on identifying those characteristics that illuminate the growing 
understanding of Avgusta throughout the interview. 

INTERVIEW FINDINGS 
The conversation I had with Avgusta about the multiplication scenario [Table 1] is 
the focus of this section. The quoted transcript has been intentionally split into three 
parts each of which has a distinct subheading. This division is absolutely artificial 
and it does not imply any linearity in the girl’s growth of understanding. Rather, it is 
meant simply to organize structurally the data and facilitate the development of 
discussion later on. 
Avgusta’s tenacious-but-futile struggle to recall and apply a half-remembered 
algorithm in order to shed meaning to the procedure of multiplying fractions 
What really strikes me here is Avgusta’s “trapped” awareness of the falsehood of her 
actions.  

507 Interviewer: Would you like to write down what Orestes [Table 1 - scenario on 
multiplication] should have done? 

508 Avgusta: Yes. 
[Avgusta is drawing the first and second figure of sheet 5. See Table 2 below, read left to   
right, up to down direction]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 2: Avgusta’s handwritten notes 
 

Sheet 5 Sheet 6 Sheet 7 
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509 Interviewer: What are you doing now? 
510 Avgusta: The two thirds. He takes the two. Then… times one half. He takes the 

one and then we reverse them. No, I did it wrong. 
511 Interviewer: Why? 
512 Avgusta: I should have done it like that, a line. 
513 Interviewer: How about doing it below to see what you mean? 
[Avgusta is drawing the third and fourth figure of sheet 5 – Table 2] 
514 Avgusta: Like this. 
515 Interviewer: Yes? 
516 Avgusta: We will reverse them and…we will reverse them. 
517 Interviewer: Why? 
518 Avgusta: To find…to find the same number of small boxes…to do them 

common fractions. 
519 Interviewer: Okay, you could do whatever you think Avgusta and we will see. 
[Avgusta is drawing the fifth and sixth fig of sheet 5 – Table 2] 
520 Avgusta: We will reverse them. 
521 Interviewer: Okay. 
522 Avgusta: The two thirds…we will bring the one half…one minute…this one 

and then we will do times….We will reverse the one half and… 
523 Interviewer: And what do we have now? 
524 Avgusta: The small squares are now the same. 
525 Interviewer: Yes? 
526 Avgusta: But we have… 
527 Interviewer: What do you have there? 
528 Avgusta: Four sixths and here three sixths. 
529 Interviewer: Yes. 
530 Avgusta: And it becomes twelve sixths [She writes it at the bottom of sheet 5 – 

Table 2] 
531 Interviewer: So is this your answer? 
532 Avgusta: I think it is wrong. 
533 Interviewer: Why do you think so? 
534 Avgusta:  [pause] 
535 Interviewer: Would you like to tell me why do you think it is wrong? 
536 Avgusta: But I don’t know sir. 
 

An invocative intervention aimed to occasion the link between everyday 
language and multiplication notation 
The point that merits attention here is that Avgusta’s folding back to everyday 
language could open the door for her to notice fractional symbols from a lens, which 
in turn could affect her way of thinking. 
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569 Interviewer: Okay. Now I would like to ask you something else. What does 

“times” mean? For instance, when we say one half times one hundred, 
what does that mean? You may write it down if you want. 

[Avgusta is writing on the top of sheet 6 – Table 2] 
570 Avgusta: We will multiply one half times one hundred. 
571 Interviewer: Yes. Could you not say “we multiply”? How about our everyday 

language? Will you say one half times? Or, do we use any other 
word? 

572 Avgusta: The word of? 
573 Interviewer: How about saying it to see what you mean? 
574 Avgusta: One half of one hundred. 
575 Interviewer: That is? What does it mean? One half of one hundred is what? 
576 Avgusta: Fifty. 
577 Interviewer: Could you tell me Avgusta what does one half mean? 
578 Avgusta: They are two and we are taking the one. 
579 Interviewer: Nice. If I had one fourth, what does that mean? 
580 Avgusta: There are four and I take one of them. 
 

Educating awareness through encountering conflicting results and detecting the 
origin of the conflict 
After Avgusta had been exposed to the foregoing intervention, she worked on the 
examples 1/3 x 2/5 [Table 2 – sheet 6] and 2/6 x 1/5 [Table 2 – sheet 7]. Lines 720-
759 are indicative of what had been exchanged between me and Avgusta later on. Of 
great importance here is the gradual refinement of the girl’s awareness of what it 
means to multiply two fractions, and the restructuring of ill-defined algorithmic 
knowledge. 

720 Interviewer: Which way from the two, do you think, could help a child to 
understand what multiplication means? If you show him that you 
should multiply the… But, first, Avgusta do you know how we could 
multiply two fractions? 

721 Avgusta: Yes, don’t we do them common fractions? 
722 Interviewer: Could you show me the example two thirds of one half, with the way 

of area models? 
[Avgusta is drawing the second figure of sheet 7 – Table 2] 
723 Avgusta: We will do the one half, we will take the one and then we will divide 

it in three…vertical ones and we will take the two. 
724 Interviewer: Would you like to shade again what are you going to take? 
725 Avgusta: These here [She shades again the two left small squares of the top row 

of the second figure of sheet 7 – Table 2]. 
726 Interviewer: Could you now tell me which your result is? 
727 Avgusta: Two sixths. 
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728 Interviewer: Right. Earlier Avgusta we had this example again, it was on sheet 5 

[Table 2]…and you found what? 
729 Avgusta: Twelve sixths. 
730 Interviewer: You found twelve sixths and now you found two sixths. Which of the 

two is the correct one? Earlier you said that when we multiply we do 
the fractions common ones, didn’t you? 

731 Avgusta: Yes. 
732 Interviewer: Here [He points to sheet 5 – Table 2] you did common fractions, 

didn’t you?  
733 Avgusta: Yes. 
734 Interviewer: You did two thirds, four sixths, and one half, three sixths. And what 

did you do then? 
735 Avgusta: I did it times. 
736 Interviewer: Could you explain a bit more? 
737 Avgusta: I did four sixths times three sixths.  
738 Interviewer: And how much did you find? 
739 Avgusta: Twelve sixths. 
740 Interviewer: How did you find twelve? 
741 Avgusta: Four times three. 
742 Interviewer: And how about six? 
743 Avgusta: Because the denominators are… 
744 Interviewer: But here [He points to sheet 7 – Table 2] how much did you find? 
745 Avgusta: Two sixths. 
746 Interviewer: Which of the two is the correct one? 
747 Avgusta: This one, the two sixths. 
748 Interviewer: Could you tell me why? 
749 Avgusta: [pause] 
750 Interviewer: You saw it here Avgusta, didn’t you? Whereas there [He points to 

sheet 5 – Table 2]? 
751 Avgusta: I didn’t see it. 
752  Interviewer: What should you have done here [He refers to sheet 5 – Table 2], do 

you think? 
753 Avgusta: The same with this one [She points to sheet 7 – Table 2]. 
754 Interviewer: So, how do we multiply Avgusta? Do you see here [He points to sheet 

5 – Table 2]? There was something wrong. When we multiply two 
fractions, we multiply the numerators… 

755 Avgusta: And the denominators. 

DISCUSSION 
Avgusta’s main difficulty seems to be a dependence on a half remembered algorithm. 
The way she manipulates the rectangles she drew [Table 2 – sheet 5], her rapid but 
purposeful shift from solely vertical to both vertical and horizontal type of 
partitioning [lines 507-518], as well as the multiplying of the numerators of the newly 
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formed common fractions [lines 527-530], all could suggest that her understanding of 
multiplication is compartmentally drawn upon a vague memory of the standard 
change-into-common-denominators rule. 
The ability to produce a partition of a partition in the service of finding the product of 
2/3 x 1/2 might not be straightforward to Avgusta because it entails the composition 
of the operator “2/3 of” and the operator “1/2 of”. This idea is complex because it is 
removed from the whole number knowledge that learners could employ when first 
introduced to a single operator, such as “1/2 of”. 
In lines 532-536 Avgusta is observed to express concerns about the correctness of her 
actions but is failing to exemplify the origin of this uncertainty, at least in the short 
term. This could indicate that after using diagrams, Avgusta pauses and reflects by 
considering what it is that the results tell her. It is possible that while checking 
against her intuitions that the results seem to be reasonable and roughly what she 
expects, the girl encountered an internal conflict which, in turn, generated doubt. 
Avgusta’s assertion that she knows that something went wrong [line 532] but does 
not know what [line 536], catches my attention and opens the possibility that I could 
provide for her some cognitive “scaffolding” (Wood et al., 1976) to support, and 
perhaps transform that state. There was a sense of her having, and being aware that 
she has the necessary understandings but that these are just not immediately 
accessible.  
One of my enduring questions, thus, while interviewing Avgusta [lines 569-580] was 
in regard to the role I could play in pulling to the forefront of her mind the “Primitive 
Knowing” (Pirie & Kieren, 1989) that was going to be the basis for locating the 
source of perplexity. My intention was to encourage the girl to keep in touch with her 
personal way of knowing mathematics and sustain a back and forth movement, not 
unidirectional, between that understanding and the conventions of the culture. It is for 
this reason I occasioned [lines 569-580] Avgusta to “fold back” (Pirie & Kieren, 
1989) to everyday language, “collect” (Pirie & Martin, 2000) the spontaneous 
interpretation of the word “of” and combine it with the scientific notation of 
multiplication. This invocative intervention resulted in the student returning to an 
inner, more localized layer of understanding, which, in turn, seems to have given rise 
to a succession of “Image Making” activities (Martin, 2008). The handwritten notes 
on sheets 6 and 7 [Table 2] are indicative of the replacement of faded images of 
multiplication by meaningful diagrammatic illustrations linking recursive area 
partitioning with the respective symbolic notation. 
It is of great importance to stress here that it is the response of Avgusta to the 
particular intervention that determined the actual nature of it, namely, to occasion 
folding back to existing understanding, searching for, finding and then remembering 
this understanding (Martin, 2008). If the girl did not assign herself the everyday 
meaning of the word “of” to “x” or “times” [lines 569-576], it is ambiguous whether 
Avgusta would awaken her awareness that the interpretation of multiplication 
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involves finding or taking a part of a part of a whole. Standard multiplication symbols 
appear, hence, not mere marks on paper for her but become manageable and 
confidence-inspiring so as to be used in further manipulation.  
After successfully re-collecting the image she needed and through experiencing a 
series of Image Making activities [Table 2, sheets 5-7], the last of which was centered 
on the same example she worked on at the very beginning, Avgusta noticed a conflict 
between the two images she had constructed for the product of 2/3 x 1/2. This 
discerned contradiction [lines 728-747] between 12/6 [Table 2 – sheet 5] and 2/6 
[Table 2 – sheet 7] is likely what occasioned Avgusta to reject her initial way of using 
diagrams and revise her existing Formalizing level of understanding by re-structuring 
the procedure of multiplying two fractions [lines 748-755]. Figure 1 is an attempt to 
illustrate by means of the Pirie-Kieren onion model (Pirie & Kieren, 1989) the 
pathway of Avgusta’s growth of understanding. Based on my observations, this is 
seen to grow in a non-linear way: from the Primitive Knowing layer to the Image 
Making and Image Having layers. Then, evidence exists of folding back to the 
Primitive Knowing in order to collect an earlier understanding to use it anew at the 
Image Making layer. Avgusta seems to reach the Formalizing layer having first gone 
through the Image Having and Property Noticing layers. 

 

Figure 1: Avgusta’s growth of understanding 

The case of Avgusta comes to question the generalization of the assumption that once 
the meaning of a mathematical concept has been discussed, explained, formally 
articulated in class and students have at one time proven fluent with the 
corresponding algorithm, then the learning of this concept has been accomplished and 
a degree of readiness has been achieved for more sophisticated ones (Rasmussen et 
al., 2004). The fact that Avgusta struggled with the idea of fraction multiplication that 
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had been taught to it while in fifth grade, neither speaks of a teacher’s nor of a 
learner’s failure per se. Rather, it points to the need for teachers to occasion students 
to re-encounter ideas that they already have, in a different light or in relation to 
unfamiliar circumstances.  
The viewing of mathematical understanding as a dynamic process proved in the 
current study supportive in enabling me as a teacher-researcher to identify the roles 
language and thought could play both at any level and in the growth between levels 
of Avgusta’s understanding. If, as in the case of Avgusta, the student needs to 
activate a link between everyday language and mathematical notation, then in order to 
allow that student to progress in making sense, occasioning –not imposing- an 
awareness as to what to collect could be of assistance. 
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TENSIONS BETWEEN AN EVERYDAY SOLUTION 
AND A SCHOOL SOLUTION TO A MEASURING PROBLEM 

Frode Rønning 
Sør-Trøndelag University College 

N-7004 Trondheim 
Norway 

This paper reports on an empirical study from a mathematics lesson in a Norwegian 
4th grade classroom. The pupils are making batter for waffles, and the mathematical 
challenges are mainly connected to measuring. The paper will focus on the process of 
determining the correct amount of milk for the batter and furthermore on the tension 
that can be observed in the discursive practice as a result of the pupils’ and the 
teacher’s conflicting goals.   

THE CLASSROOM SITUATION 
This study is done in a group of 20 4th grade pupils in a Norwegian primary school in 
a mathematics lesson. During the lesson the pupils come in groups of five to the 
kitchen area in the back of the classroom where they make batter for waffles that are 
going to be prepared later the same day and eaten by themselves and the rest of the 4th 
graders at the school. Each group is supposed to make an equal amount of batter 
based on a recipe that is written on a poster. Before starting the actual work with the 
batter each group had a discussion where the task was to find out how much of each 
ingredient they would need in order to make three times as much as indicated on the 
recipe. The teacher expressed to me that her main mathematical focus with the waffle 
making was the discussion about the three folding. I will not report on this discussion 
but I will go into the part of the working process where the pupils are actually going 
to measure out 15 dl of milk. The milk comes in boxes marked “1/4 liter”, and the 
pupils have measuring beakers available that can take 1 litre. The beakers are 
transparent, with a scale reading “1 dl, 2 dl, …. 9 dl, 1 lit” from bottom to top. Each 
group has to determine the number of boxes needed to get the correct amount of milk.  

THEORETICAL BACKGROUND 
The notion of a complex mediated act goes back to Vygotsky (e.g. 1978) and has led 
to the idea of sociocultural artefacts that mediate between stimulus and response. 
Such artefacts can take many forms and they shape the action in essential ways 
(Wertsch, 1991). In mathematics the tools are often signs and symbols that represent 
an abstract mathematical concept, and the signs and symbols also often refer to a 
context or a specific object. A sign typically has two functions, a semiotic function – 
something that stands for something else – and an epistemologic function as the sign 
contains knowledge about that what it stands for (Steinbring, 2005).  
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One of the pioneers of semiotics is the American mathematician and philosopher 
Charles Sanders Peirce (1839-1914). He defines the terms involved in his triadic 
model of semiosis in the following way.   

A sign is a thing which serves to convey knowledge of some other thing, which it is said 
to stand for or represent. This thing is called the object of the sign; the idea in the mind 
that the sign excites, which is a mental sign of the same object, is called an interpretant 
of the sign. (Peirce, 1998, p. 13, emphasis in original)  

Peirce describes three kinds of signs (or representamens), icons, indices and symbols 
referring to three ways the representamen is related to its object. An icon stands for 
its object by likeness, an index stands for its object by some real connection with it or 
because it makes one think about the object, whereas a symbol is only connected to 
the object it represents by habit or by convention (Peirce, 1998, pp. 13-17, 272-275).  
Presmeg (2005) turns the triadic model of semiosis into a nested model. This 
nestedness is based on the idea that the totality of the triad (representamen, object and 
interpretant) becomes reified (Sfard, 1991) as a new object to which one can assign a 
representamen and an interpretant. This gives a nested chaining of signs which can 
serve as a model to describe processes leading to more general or more abstract 
situations.  
An important justification for mathematics in school is often the alleged usefulness of 
mathematics in other subjects and in situations outside of the school. It has been 
questioned whether it is possible to use a school subject such as mathematics outside 
of its own domain, and in this context it has been found fruitful to investigate the 
boundaries between the in-school and out-of school practices (Evans, 1999).  
On areas where an overlap between in-school and out-of-school practices occurs it 
could be expected that there is some tension between the motives and goals lying in 
the school mathematics and the specific out-of school activity. To analyse this tension 
I will use the framework from activity theory. Leont’ev writes that activity is 
energised by a motive, and that “[t]here can be no activity without a motive” 
(Leont’tev, 1979, p. 59). Further he talks about the components of the activity as 
actions – processes that are subordinated to certain goals. On the third level there are 
the operations – the means by which the action is carried out. It is possible to carry 
out the same action by means of various operations, which means that the chosen 
operation “is defined not by the goal itself, but by the objective circumstances under 
which it is carried out” (Leont’ev, p. 63). Hence, the choice of operation may depend 
on the specific conditions in the given situation. It is henceforth possible to envisage 
one particular action but different operations that may be chosen depending on 
whether one is situated within a school practice or within an out-of school practice. 
According to Leont’ev the activity is driven by a motive, and the actions are directed 
towards certain goals. An important point is that each activity answers to a specific 
need of the active agent. “It moves towards the object of this need, and it terminates 
when it satisfies it” (Leont’ev, p. 59).  
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METHOD 
I have been collaborating with all the teachers in grades 1-4 at this particular school 
for two years. This collaboration has involved working with the teachers in workshop 
activities, discussing in small groups and observing in classroom situations. When 
observing in the classrooms I have videotaped the activities going on. On some 
occasions parts of the videotapes have been shown and discussed with the teachers 
afterwards. Prior to the episode reported on here the teachers and I had been working 
with aspects of multiplication and division in a sequence of several workshops. We 
had agreed that on two given days in February I was going to videotape a session 
from each of the four grades 1-4. Each teacher, or group of teachers, was free to 
design the activities in accordance with the normal progression in the class. The only 
constraint was that it should have something to do with multiplication and division, 
or preliminary work leading up to these concepts. I did not partake in designing the 
lessons.  
In the grade four class, which is the focus of this paper, the mathematics lesson was 
scheduled for two hours. I stayed in the kitchen area all the time, and with a hand 
held video camera I tried to capture as much as possible of the activity going on. 
During the lesson I was mostly passive but as can be seen from the excerpts of the 
dialogue I sometimes posed questions to the pupils.  

THE HANDLING OF THE MEASURING PROBLEM IN EACH GROUP 
Group 1 
One measuring beaker is filled with flour, and Ellie is mixing flour and eggs. Lucy 
(the teacher) asks what they think is a good idea to do to avoid lumps, and they agree 
to start adding milk. James and Jessica fetch one box of milk each, and they agree 
that altogether they need 15 dl. Jessica looks at the box on which is written “1/4 
liter”.  

1.1 Jessica: This is one four litre 
1.2 James:  One four litre 
1.3 Jessica: Yes, so we take one of these first. One whole of these 
1.4 Lucy: How are you thinking now? 
1.5 James:  Have no idea 
1.6 Jessica: Yes, it should be five 
1.7 James: Yes, fifteen so now you must. We just say that this is one and a half 
1.8 Jessica: It is one comma1 five. No, we are supposed to take … like this 
1.9 Lucy:  Emily, what do you think? 
1.10 James:  Now it will be two comma eight, now it is two comma eight if we take  
1.11 Ellie:  You are supposed to measure in the other decilitre measure 

Jessica starts by looking at the text “1/4 liter” on the box but she and James do not 
have a clear sense of what this means and how it relates to the 15 dl that they know 
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they are supposed to have. In utterance 1.10 James states that the two boxes they have 
will be “two comma eight” which indicates that one box would be “one comma four”. 
It is not clear which unit this relates to, and it is also not clear what is the meaning of 
the words (two comma eight) that are spoken out. The teacher perceives what the 
pupils are saying as not correct and asks them what they are thinking. When they do 
not give a satisfactory answer she turns to Emily (#1.9) but she does not react to the 
question. Ellie comes to rescue by pointing to the existence of one more measuring 
beaker (#1.11). The existence of the second measuring beaker makes the meaning of 
“two comma eight” or “1/4 liter” redundant. After this Jessica and James are no 
longer interested in how much there is in one box, and the conversation that follows 
is about practical solutions, for example how to avoid lumps. The teacher also seems 
to be mainly interested in the practical solutions at this point. 
After having put in the first litre of milk Jessica and James start to measure out 
another 5 dl. Jessica pours in one box, looks at the scale and says “three decilitres”. 
She does not seem to make any connection between the sign on the scale (level of 
milk being close to 3 dl) and the sign 1/4 liter on the box. Then she gets another box 
and gives it to Emily who asks “How much is it we need?” Jessica answers: “We had 
ten before and then we need fifteen.” Up to now I have not contributed to the 
discussion at all but at this point I ask a question which seems to shift the focus 
somewhat for the rest of the lesson. 

1.12 Frode: How many decilitres are there in one of these? (Jessica looks at the 
box) 

1.13 Lucy: How many decilitres are there in one box? 
1.14 Jessica: It is one comma four litres. (Emily pours in the content of the box. 

Jessica looks at the scale.) 
I suggest that they keep track of how many boxes they have used. They figure this out 
by counting the empty boxes but make no connection to the number of decilitres. I do 
not push this any further but Lucy repeats the question about how many decilitres 
there are in one box, and James answers:  

1.15 James: One comma four 
1.16 Lucy: One comma four? 
1.17 James: One comma four litres. 
1.18 Jessica: Yes, but she asked about decilitres. 
1.19 Lucy: Is it more than one litre? 
1.20 Ellie: No, it isn’t. It is less. This isn’t even half a litre. 

As in the beginning of the episode 1/4 is read as “one comma four”, this time with the 
emphasis “litres”. Jessica realises that the question was about decilitres, and on 
Lucy’s expressed doubt whether it could be more than one litre (#1.19), Ellie gives a 
practical estimate, stating that it is indeed less than half a litre (#1.20). After this I end 
the conversation on this topic suggesting that it might be better that they work on the 
batter.  
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The pupils in Group 1 make notice of the sign 1/4 liter but they never develop a 
meaning of it. They also have no real need to find out what the sign means because 
they solve the practical task using the measuring beaker. The pupils answer the 
question about how many boxes they have used but they do not make any connection 
between the number of boxes and the number of decilitres.  
Group 2 
Also this group starts by looking at the milk box and the pupils pay attention to the 
text 1/4 liter. 

2.1 Chloe: One (looking at the box) 
2.2 Chris: slash four, what does that mean? 
2.3 Chloe: Four and a half 
2.4 Chris: Four and a half 
2.5 Chloe: And we need fifteen. 

The teacher asks the same question as to the previous group about how much is in 
one box. 

2.6 Chris:  Four and a half 
2.7 Lucy: Four and a half? 
2.8 Chris: Decilitres. No, litres. 
2.9 Lucy: Is it four and a half litres in here? 
2.10 Chris:  No, decilitres. 

The answer is first given in terms of the number words only (four and a half), and 
when Lucy wants them to be more precise they hesitate a little between decilitres and 
litres but stick to litres (#2.8). To this Lucy expresses astonishment (#2.9), and Chris 
changes to decilitres. Lucy is still not satisfied, and she takes Chris and Matthew to 
the board at the other end of the room. Lucy writes 1

4
 on the board. She also draws a 

circle that she partitions into four equal sectors, and she fills one of the sectors. This 
evokes the concept “one fourth” in the children. Lucy links this to “one fourth of a 
litre” and asks how many of these go into one litre. This evolves into a discussion that 
moves between various issues; how many decilitres in one litre, how many boxes in 
one litre, how many decilitres in total, and how many boxes in total.  
Group 3 
Joseph and Thomas find the crate with the milkboxes and Joseph starts by asking 
how much one box is. Thomas says that it is a quarter of a litre. At first Thomas will 
not engage in Joseph’s thinking when he wants to find out how many boxes they 
need. Joseph asks Lucy if he may use the measuring beaker. Lucy encourages him to 
try without it and after a brief discussion he accepts this. 

3.1 Joseph: Ohh. A quarter of a litre, that is … a quarter … ten decilitres is one 
litre. We have to have three of these then, then it will be. Five of these 
I think … no not five. How much should we, Thomas, if we take three 
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of these, no four, then it is one litre and we want fifteen decilitres, and 
that is, and ten decilitres that is one litre. But how many more than 
four do we have to take then? 

3.2 Thomas: Then we have to take four, and then we have to take … two 
3.3 Joseph: Then we have two, and ten decilitres here. And then it is fifteen. 
3.4 Thomas: Yes. 
3.5 Joseph: Lucy, is this correct? 

In turn 3.5 Joseph asks the teacher for reassurance of the solution, and then she makes 
him explain his reasoning. Joseph explains that four boxes equal one litre, and that 
two more boxes are two quarters which is equal to a half. Joseph and Thomas now 
state that they have one and a half litre which is the same as fifteen decilitres.  
Group 4 
Group 4 starts in the same way as Group 1 by pouring milk into the beaker. When 
they cannot find 15 on the beaker they decide that they have to split, and they choose 
to measure 9 dl first and 6 dl afterwards. They do not pay any attention to the number 
of boxes they use or to what is written on the boxes. When fetching the sixth box 
Katie says “it could be that it will be enough”. Grace looks at the scale saying “no, it 
is … it is exactly enough”. Katie replies “yes, exactly. Good.” Lucy asks how many 
boxes they have used. Katie counts them and answers “six”. Again Lucy asks the 
pupils to figure out how many boxes they need without using the measuring beaker. 
The following dialogue takes place. 

4.1 Grace: Put in three milkboxes … no six 
4.2 Lucy: Yes, but why? 
4.3 Grace: (…) 
4.4 Lucy: Yes, because you know that now 
4.5 Grace: Yes. 
4.6 Lucy: Yes, but if you hadn’t known 
4.7 Adam: Then we could have imagined having one like this (pointing to the 

measuring beaker) 
4.8 Grace: Then I could have walked home to get one 

Lucy pushes them further and Katie asks how much is in one box. They come up with 
some suggestions, and I suggest that maybe something is written on it. They look at 
the box. 

4.9 Hollie:  There, one comma five. 
4.10 Katie: No, one comma …. 
4.11 Grace: Comma, this is a slash. One slash four litres. 
4.12 Lucy: What does that mean? 
4.13 Hollie: Haven’t a clue. 

Adam suggests “one fourth”, Lucy completes this to “one fourth of a litre” and goes 
on to ask how many they would need to get one litre. The pupils suggest that they 
need four fourths, and Lucy asks how many boxes that will be. They agree that this 
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will be four, and Lucy points to the original problem to explain why they need two 
more to get the correct amount of milk.  

4.14 Lucy: Why do you need two more then? 
4.15 Grace: To get six, no 
4.16 Adam: To get three times as much 
4.17 Grace: To get fifteen – fifteen decilitres 
4.18 Lucy: Mmmm 
4.19 Adam: Can we put in the flour now? 

Lucy is pushing the issue further and wants to know how many decilitres there are in 
four boxes which she states to be equal to one litre. In the dialogue that follows 
answers like “four fourths”, “four decilitres”, and “four litres” can be heard. At the 
end Lucy holds up one box at a time and they count one fourth, two fourths, three 
fourths and four fourths. Lucy states that four fourths is one whole. The pupils add 
“litre” and Katie says “plus two more is one half”.  

DISCUSSION OF THE EPISODES 
The semiotic issues 
Central to the task is the sign or symbol 1/4 liter printed on the milk boxes. The 
pupils read the sign in various ways (one comma four, one slash four, four and a half) 
but many of them do not have a clear meaning linked to it. Groups 1 and 4 solve the 
measuring task completely by using a measuring beaker holding 1 litre. For these 
groups it is irrelevant to know the meaning of 1/4 liter to solve the task. They relate 
to the fact that they need 15 dl of milk and by using the measuring beaker as a 
mediating tool (Vygotsky, 1978) they are able to get the correct quantity. When the 
teacher asks these two groups to figure out how many boxes they would need without 
using the measuring beaker they are facing a difficult problem. I interpret the teacher 
here to be working with 1/4 liter as the representamen and the amount of milk in the 
box as the object. The teacher’s interpretant is that this is a fourth of a litre and that 
four boxes are needed to get one litre. The pupils are working within another triad 
where the representamen is the scale on the measuring beaker, an indexical sign 
pointing to the quantity of milk in the beaker as the object. The interpretant is the 
concept “fifteen decilitres” or “one and a half litre”, which they know that they need. 
I see the problem as having to do with creating a link between these two semiotic 
triads. As it is the symbolic sign 1/4 liter is not seen as a representamen for the 
semiotic triad involving the measuring beaker. Since the pupils do not have a clear 
meaning of what 1/4 liter means, the sign might just be an index connected to the 
box. In Group 3 the situation is quite different. The pupils make the connection 
between the sign 1/4 liter and the amount of milk, and as a result they are able to 
identify 4 + 2 boxes with one and a half litre. 
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In Group 2 the teacher physically moves from the kitchen part of the classroom to the 
opposite end where the blackboard is. She writes 1

4
 on the blackboard and also draws 

a circle partitioned in four sectors, filling one of them. Here the interpretant ‘one 
fourth’ is evoked in the pupils, and the teacher and the pupils seem to be working 
within the same semiotic triad, situated in a school practice. However, the sign 1

4
 is 

not seen as a representamen for the triad in which 1/4 liter is the sign, and therefore 
the link to the actual measuring problem is also missing in this case.  

The sign 1
4

is a symbol, clearly embedded in the school practice. The scale on the 

measuring beaker is an index, firmly based in the everyday practice. The sign 1/4 liter 
could be seen as a symbol representing the amount of milk in one box but for some of 
the pupils it might seem as if it is an index by its connection to the box, or a symbol 
with no interpretant. Based on this I identify three semiotic triads; the first where the 
scale is the sign, the second where 1/4 liter is the sign, and the third where 1

4
 is the 

sign. The everyday solution to the measuring problem is to pour milk into the 
measuring beaker until the indexical sign (the scale) points to 15 dl (seen as 1 litre + 
5 dl, or 9 dl + 6 dl). The school solution could for example be to establish the relation 
6 1 / 4 1,5⋅ = (litres) or 6 2,5 15⋅ = (decilitres). I have showed various attempts to 
create connections between these two practices. Based on Presmeg’s (2005) model I 
suggest that a nested chaining of the semiotic triads described above could establish a 
connection between the practices, and I have showed that lack of connection can be 
explained by lack of connection between the semiotic triads. 
The discursive practice 
Seen as a task from school mathematics the measuring problem could be formulated 
as follows. “Each milk box holds ¼ litre of milk. How many boxes are needed to get 
15 decilitres of milk?” All four groups were able to find a solution to the practical 
problem of getting the right amount of milk, so indirectly they also know how many 
boxes of milk they need. Therefore they have all found the solution to the question in 
the imaginary school task, albeit not in a school like manner. I perceive the main 
motive for this lesson to be to produce batter for the waffles, and this determines the 
direction of the activity in the lesson. The activity consists of a number of different 
actions that can be linked to specific goals. Some of these actions can be carried out 
in a number of different ways, using different operations. The choice of operations 
depends on the conditions that are there at any given time (Leont’ev, 1979). My main 
objective in this section is to analyse the teacher’s and the pupils’ goals and actions in 
the lesson. My interpretation is that there is some tension between the teacher’s and 
the pupils’ goals, and that this tension is due to the fact that the lesson is operating on 
the border between a school practice and an everyday practice.  
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In Group 1 it seems that both teacher and pupils share the same goals in the 
beginning. The pupils (Jessica and James) have the idea to try to figure out how many 
boxes of milk they will need (#1.1-1.11). The teacher sees that their idea will not 
work and she tries to guide them or bring in Emily to help (#1.4 and 1.9) but when 
Ellie (#1.11) points to the fact that there is one more measuring beaker the teacher 
just lets them go on with the measuring without going any further into their 
interpretation of 1/4 liter. The measuring beaker is the only tool they rely on to get 
the correct amount of milk. When I pose the question about how many decilitres there 
are in one box (#1.12), the situation changes somewhat. This question seems to bring 
in new goals that guide the teacher’s action and in turn influences the pupils’ goals. 
The teacher becomes more concerned about the mathematical content of the situation 
(e.g. #1.13). The fact that her attention to the mathematics appears after my question 
leads me to characterise her new goals as ‘seeing the mathematics’ and ‘satisfying 
me’. The pupils do not relate this question to the work they are doing so their new 
goal can be expressed as ‘answering the questions’ or maybe ‘satisfying the teacher’. 
They stick to reading 1/4 as “one comma four” (#1.15), emphasising “litres” (#1.17). 
Ellie is aware that there is not more than one litre in one box, “[t]his isn’t even half a 
litre” (#1.20), indicating a lack of meaning to “one comma four”.  
In Group 2 the process with the milk starts with the pupils reading on the box “one 
slash four” (#2.1-2.2) which they suggest means “four and a half” (#2.3), but they are 
not quite sure whether it is litres or decilitres (#2.8). With this group the teacher to a 
much larger extent goes into the role of the mathematics teacher, and she literally 
crosses the boundaries between practices by walking over to the blackboard at the 
other end of the room. In a funnelling pattern of interaction (Bauersfeld, 1988, p. 36) 
the teacher leads the group to a conclusion about how many boxes are needed. 
Group 4 solves the whole measuring problem using the measuring beaker, thereby 
reaching their goal. It is only on the teacher’s request that the number of boxes being 
used is brought into the picture. The pupils give an answer, because that is what is 
expected of them as pupils, but without enthusiasm. They have reached their goal, 
and they have no need to use any more energy on this. Each activity, here the 
measuring of the milk, answers to a specific need of the active agent, here getting the 
correct amount of milk for the batter, and when this need is satisfied the activity stops 
(Leont’ev, 1979). The answers of the pupils (some examples are shown in turns 4.14 
to 4.19) indicate little interest. The numbers that come up can be connected to certain 
incidents throughout the process but not necessarily corresponding to the questions 
that the teacher asks. For example in turn 4.15 when Grace answers “to get six”, she 
applies the fact that they used six boxes, which she already knows, but this is not in 
line with the hypothetical situation that the teacher has constructed. Towards the end 
the teacher leads the pupils via the question about how many boxes they need to get 
one litre. Even this evokes answers that indicate that the pupils do not engage in the 
problem.  
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I have shown that by operating on the border between practices, the mediating tools 
from the non-mathematical practice offer alternative possibilities for solving a task. 
The teacher, being pulled between the two practices, is seen to struggle in order to 
keep the pupils’ motivation to solve the task in the mathematical context when they 
already have solved it in the practical context.  
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1 In Norwegian the sign for the decimal point is a comma. Since this sign is central in the 
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example use the notation 1,5 instead of 1.5 which would be the standard English notation. Also 
when I directly refer to the text on the milk box I will use the Norwegian word ‘liter’ instead of 
‘litre’. 
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LINGUISTIC ACCOMPLISHMENT OF THE LEARNING-
TEACHING PROCESS IN PRIMARY MATHEMATICS 

INSTRUCTION 
Marcus Schütte 

Goethe-Universität Frankfurt am Main, Germany 

The linguistic accomplishment of a mathematics lesson, based on an illustrative ex-
ample of an everyday lesson in a Hamburg fourth grade class, was analyzed via the 
person instructing. The linguistic accomplishment of instruction, for the purpose of 
analysis and with the help of qualitative procedures of interpretative classroom re-
search of German mathematics education (Krummheuer/Naujok 1999), was analyzed 
on the basis of three hierarchical levels, developed from an existing theory.  The 
results of these analyses grant on the one hand a hypothesis of the learning 
opportunities for a multilingual pupil body in German classes. On the other hand the 
results in the sense of local theory genesis can be integrated into a theory concept, 
which the author designates Implicit Pedagogy.  

1 Introduction 
If one looks into the classrooms of German schools, one notes that the pupil body is 
increasingly becoming shaped by multilingualism and various cultural backgrounds; 
currently, almost a third of all pupils in the German educational system hold a mi-
grant background. Despite the increasingly linguistic and cultural diversity in German 
schools, instruction seems to be only slightly flexible and adapted to the needs of the 
diverse pupil population. Students with a migrant background or students who grow 
up in a semi-illiterate environment perform worse, according to the findings of 
international and national scholastic achievement tests, in comparison to their 
classmates who grow up in a monolingual German environment (compare the results 
of PISA 2000 and 2003, as well as IGLU 2003). It appears to be indisputable, that the 
origin of this poor performance is in a not insignificant manner to be found in an 
insufficient mastery of the language of instruction.  However, these differences in the 
mentioned studies are often gladly categorized as unchangeable via school and their 
cause legitimized by the socio-economic background and/or language of the family.  
The goal of the article at hand is thus to demonstrate the underlying reasons for the 
poorer performance of students with a migrant background and/or who grew up in a 
semi-illiterate environment.  The achieved results will then be subsequently explained 
with the assistance of theoretical approaches and in this manner demonstrate possible 
consequences or potential for change.  On the basis of this, further studies may be 
able to develop concrete possibilities of how to fit instruction better to students 
affected by lingual-cultural plurality. 
Linguistic accomplishment of instruction constitutes a substantial aspect of the 
adjustment of instruction to suit the needs of multilingual pupil bodies. In accordance 
with some approaches in the field of mathematics education, language and 
communicative competence both have a special significance for the learning of 
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mathematic content. Above all, Maier (compare e.g. 2006, 2004 and 1986) was con-
cerned with research in the field of language and mathematics within German-
speaking countries. Maier (2006) justified, that language holds a special relevance in 
Mathematics instruction, as objects in Mathematics, “ ... do not have a material nature 
and thereby are not accessible through the senses” (p.137, translated by the author). 
This consequently accounts for the significant focus of Maier’s works on the 
observation of technical terminology in Mathematics instruction. In the international 
community there are several authors who can be mentioned, who concern themselves 
with the relevance of language in the learning of mathematics. In the following, it 
should be initially referred back to Pimm (1987) who understood Mathematics as a 
social activity that is structurally and closely connected with verbal communication. 
From this, Pimm introduces the metaphor “Mathematics is a language?” (ibid, p.XiV) 
as a question of whether Mathematics could be evaluated not in the sense of a natural 
language, but as its own style of language. He compares, for this purpose, teachers as 
a role model of a “native speaker” of Mathematics and other people, for whom Math-
ematics appears to be incomprehensible, as per a foreign language, to which they are 
not empowered (ibid, p.Xiii). 
The empiric material of the underlying research consists of transcripts from video 
recordings of an everyday primary lesson. The video recordings took place over a 
time period of four months in three classes of the fourth grade in two Hamburg pri-
mary schools with an approximate 80% migration contingent amongst its pupils. 
In section 2 of this article, the analytical findings of the analysis of interactions within 
a selected instructional episode will be presented. In connection, a methodologic in-
dexing of the procedure of the underlying research will be taken as preparation of 
further analysis. The selected episode will be used in section 3 as an illustrative ex-
ample to demonstrate how lingual accomplishment of primary mathematics instruc-
tion lends itself to be described and analyzed with the here-accepted theoretical 
perspective. To this, three hierarchical levels are developed from this theory, by 
which the linguistic accomplishment of the lesson in the selected episode will be 
deeply analyzed. In section 4, the possible outcomes will be described, that yield 
from the results of the analysis to learning opportunities for pupils in German primary 
school classes. Furthermore, the results will be presented for the purpose of local 
theory development in a theoretical concept developed by the author from the entire 
research. 

2 An Episode from the Lesson Sequence “LCM” 
In the following a short transcribed episode of an everyday primary school mathemat-
ics lesson during the introduction of a new mathematic concept will be looked at.  
2.1 Prehistory and Transcript of the Lesson Episode 
At the beginning of the scene “LCM” Ms. Teichmann along with 25 female and male 
pupils, 17 of which have a migration background, are situated in the classroom. In 
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this lesson the introduction of a new mathematic concept should take place: the 
LCM- the Least Common Multiple. 
It is Wednesday morning Ms. Teichmann asks initially what the abbreviation LCM 
stands for. Thereafter she allows the multiples to be calculated. Finally she draws two 
circles on the board, that she divides into four and three segments respectively, with 
an addition symbol between them and an equals sign. She marks for each circle one 
of the segments in pink. While one pupil very quietly says, “1/3 plus 1/4,” Ms. 
Teichmann asks the pupils which equation stands on the board. The pupils begin to 
guess and first give the answer, “1 plus 1,” or, “2,” and then somewhat later label the 
segment with 1/3 and 1/4. The teacher notes this in the drawing on the board and 
adjusts the fractions from 1/3 and 1/4 to 4/12 and 3/12. Several pupils offer many 
creative solutions for their addition, such as for example “2/7”. In closing, her gen-
eralization of the procedure follows. 
241 16:30 <L: right/ you may not- add a large piece of pizza [points to the left circle] 
242  >L: and a small one and a smaller -.one together [points to the right circle] 
243  L: that is not equal right/ 
244  <L: you must practically... 
245   chop them into such pieces that they are equal\ 
246  <L: [makes a chopping motion with her hand] 
247  >L: ..right/these pieces are equal\ [points to the left circle] 
248  <L:  [points to the right circle] These pieces as well\ 
249   only here it is less\ right/ here there are only three- 
250  >L: and here there are four pieces. [Points to the left circle] 
251  S: ah now I understand it 
252 16:57 L: and for that reason one need this\. if you at all want to (add) fractions-  
253   so that you can add together such pieces of cake together\ 
254   right/one can not simply 
255   say three and four is seven and from above 
256   we will take two and then I have two sevenths\ 
257 17:11  Two sevenths is something completely different 
258   no that doesn’t work\ 

2.2 Concise Analysis of the Interaction 
At the end of the episode the teacher attempts to show the pupils a generalization of 
the addition of fractions. She uses for this purpose the everyday example of the divi-
sion of a pizza, respectively cake and makes the division of them visual through ges-
tures. Hereby both levels of the illustration on the basis of the everyday and the gen-
eralization of the rules of fractional arithmetic meld together. This is shown in the 
statement by Ms. Teichmann in <252-258>. The reference to “LCM” seems to have 
been completely lost, or left as implicit.  Alone the, “…and for that reason one needs 
this…” in <252> from Ms. Teichmann gives us the idea that there is still a reference 
to the “LCM”, since one needs an “LCM” in order to find the least common 
denominator for the addition of the two fractions. Ms. Teichmann does not further 
explain this connection. Also the final generalization by hand of the cake example 
<252-258> can barely be accounted for as a further clarification of the procedure, 
since Ms. Teichmann says that one may not simply add three and four together and 
means thereby apparently the denominators of one third and one fourth. Through the 
selected example, however, pupils did indeed have to add three and four in order to 
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ascertain the solution of the task – though, on the level of the numerator. They added 
3/12 and 4/12. Moreover, the addition of the numbers three and four are everyday 
tasks for primary pupils in basic arithmetic operation. Why one may no longer carry 
out this arithmetic remains unexplained. Since one cannot assume, that the pupils are 
competent to differentiate between numerators and denominators, one can classify the 
statement of the teacher as contradictory. Consequently, pupils in the end of this epi-
sode were merely able to solve an addition task, which they were already capable of 
solving before and whose correctness would now be put into question. 
2.3 Methodology 
After having summarized the analysis of the scene, I would like to offer as prepara-
tion of further analysis a few explanatory notes to the methodological situating of the 
underlying research. The underlying research to this article is qualitatively oriented 
and grounded in interpretative classroom research. More exactly: in the domain of the 
interactionist view of interpretative classroom research in the field of mathematics 
education. Through the analysis of the units of interaction in the videotaped instruc-
tional episodes, I oriented myself to a reconstructive-interpretative methodology and 
on a central element of the research style of Grounded Theory- the methodic ap-
proach of comparative analysis. The goal of interpretative classroom research is to 
pursue a local theory genesis through “understanding” of interactions of individuals 
in concrete instructional practice. The scope of this concept theory is related to the 
interpretative classroom research, however, to be decidedly restrained, since this is in 
many areas mostly globally and universally connoted. The theoretical results of re-
search of such a reconstructive-interpretative procedure present hypothetical out-
comes, which do not follow the claims of the development of globalizing and univer-
salizing theoretical approaches (compare Krummheuer/Naujok 1999, p. 105). These 
hypotheses stay arrested to the fact, that they are directly connected to the respective 
context of the researched field of study and are thereby rich in empirical elements and 
feature inner consistency. A universality of underlying results does not lend itself to 
be understood as, “is always applicable,” rather may be related to only a limited 
scope of classes, who are taught and will learn under similar conditions. 

3 The analysis of the linguistic accomplishment 
Here subsequently follows the analysis of the linguistic accomplishment of the in-
struction on the basis of the selected instructional episode on three hierarchical levels.  
3.1 Technical terminology versus everyday language 
Since objects of Mathematics are according to Maier (1986, p.137) of an abstract na-
ture, the introduction of new mathematic concepts allows for particular attention to 
the technical language of Mathematics, as objects of Mathematics can ultimately be 
handled and represented only on a linguistic-symbolic level  (compare ibid, p. 137). 
The question, which should be answered in the following sections, is how these tech-
nical terms of Mathematics are introduced into the analyzed lesson. To this, Maier 
(2004) refers to the fact that in the technical language of Mathematics, as well as in 
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other technical languages, there is a problem of ambiguity within the technical lan-
guage, since it interferes with the everyday language of the pupils (compare ibid, p. 
153). The problem of ambiguity within the technical language of Mathematics, ac-
cording to Maier (2004, p.153), carries a significant relevance in the verbal actions of 
teachers. Maier writes, that teacher language moves in a stress-ratio between techni-
cal linguistic “Hypertrophy” and accordingly “Hypotrophy”i. The goal should be, 
according to Maier, to have the teaching language, which moves on a scale between 
these two extreme points of Hypertrophy and Hypotrophy, positioned “in the mid-
dle.“ Thus a necessary technical language development of the pupil body can be as-
sured and on the other side the pupils can be given the opportunity to comprehend 
mathematic phenomena with their own language. In which forms the usage of 
mathematic concepts let themselves be differentiated from the usage of everyday 
language concepts in instruction follows as next in the first level of hierarchisation. 
The analysis of the selected episode 
In the underlying episode the teacher attempts to give a generalization for the addi-
tion of fractions. She stresses here the relevance of LCM for the addition of fractions 
in line <252> in saying, “and for that reason you need this.” In this statement she 
uses the place holder “in addition” and “this” instead of the technical terminology. 
In her entire generalization she uses a multiplicity of everyday language concepts 
such as, “a piece of pizza” <241>, “pieces” (of a pizza or cake) <245, 247, 248, 
250>, “chopping” <245>, “pieces of cake” <253>. From the terminology she used, 
the following language can be found in everyday language as well as in technical 
language: “to add together” <241-242, 253>, “not equal” <243>, “equal” <245, 
247>, “less” <249>. Only the expressions of “fractions” <252> und “two sevenths” 
<256, 257> suggest, on the other hand, technical linguistic terminology. With this 
analysis in mind, the procedure of the above-mentioned teacher would surely be de-
scribed, according to Maier, more in terms of technical Hypotrophy, since the teacher 
through the generalization of the procedure, where the greatest level of abstraction 
could have been conjectured, reverted only minimally back to technical terminology. 
According to the statements of Maier one could reason, that such a procedure enables 
pupils to describe mathematic phenomena with their own language, but also 
endangers the development of technical language. Since, however, these attempts to 
explain multiplicity are through everyday language concepts and the usage of place-
holders, the general principle remains implicitly hidden (see section 2.2) and it is 
doubtful, that pupils are in a position to shift into their own language to describe this 
mathematic phenomena. 
3.2 The embedding of mathematic concepts in a mathematics register 
The second level of analysis of the linguistic accomplishment of instruction via the 
teacher by the introduction of a new mathematic concept lends itself to a reference of 
the statements of Pimm (1987). Pimm compares teachers as a role model of a “native 
speaker” of Mathematics (ibid, p. Xiii) and other people, for whom Mathematics ap-
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pears to be incomprehensible, as per a foreign language, to which they are not em-
powered (ibid, p.2). In this context, Pimm (1987) is speaking of a “mathematics 
register” (p. 74). With the term register, Pimm is referring to Halliday (1975).  
Halliday understands a register as an assemblage of meanings that are intended for a 
particular function of language, that together with the words and structures are able to 
express these meanings. Halliday subsequently talks of the mathematics register only 
when a situation is concerned with meaning, that is related to the language of 
Mathematics, and when the language must express something for a mathematical 
purpose. Mathematics register in this sense can be understood as not merely consist-
ing of terminology and that the development of this register is also not merely a pro-
cess to which new words can be added (Halliday 1975, p. 65). The task of the pupils 
to learn mathematical concepts in their lessons contains, according to Pimm (1987), 
more a deeper learning of linguistic competence than is the case by Maier (e.g. 2004). 
In Maier’s approach the focus lies on the acquisition of technical linguistic compe-
tence through a well-balanced application of technical linguistic terminology and 
everyday language concepts in the linguistic accomplishment of instruction via the 
teacher. Pimm (1987, p.76) sees the task of pupils, however, as to become proficient 
in a mathematics register and in this way to be able to act verbally like a native 
speaker of Mathematics. The second level of hierarchisation of the linguistic accom-
plishment of instruction falls into what extent the newly learned mathematic concepts 
in the researched lesson were integrated into a mathematics register or if they were to 
be introduced and regarded as isolated units. 
The analysis of the selected episode 
In the selected episode the teacher appears to attempt to explain the mathematic con-
cept “LCM” in connection with the addition of fractions. In the beginning of this epi-
sode the teacher produced for this purpose a reference to the concept of multiples in 
allowing pupils to calculate them. According to the theoretical perspective of Pimm 
(1987) the attempt by the teacher to reconstruct the concept of “LCM” only allows 
itself to be incorporated, not as an isolated conceptual unit, but through its connection 
with other mathematic concepts in a mathematics register. According to Pimm, it 
should be the goal to make pupils competent native speakers of Mathematics. In the 
introduction by the teacher, however, there was no time point in the entire scene in 
which the mathematic concepts of denominator, numerator, fractions, fraction 
strokes, or multiples were verbally and content-wise clarified in the official class-
room discourse. They remain implicit and are integrated without reflection in the al-
ready familiar calculation routines. Even the teacher herself seldom uses the concepts 
to be learned actively, such as is shown in the first analysis, rather reverts back 
predominantly to the everyday language concepts. Pupils must extract the meanings 
of the new concepts by themselves from the illustration on the board. Pupils are then 
additionally given only the possibility to calculate the multiple as an active manner in 
which to solely understand the meaning of the concept of a multiple. That pupils are 
able to extract the concepts, without a verbal contextual explanation of the concepts 
by the teacher seems questionable. For example, in the analysis at the beginning of 
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the scene there were alternatives for interpretation, in which the pupils interpreted the 
fraction stroke as minus sign. Pupils must extract the subject with this implicit 
procedural method from their everyday background or from that which they already 
know from their lessons and will thus be able to take no decisive steps in the direc-
tion of becoming a native speaker of Mathematics. 
3.3 The embedding of the mathematic concepts in a formal language register 
The third level of analysis of linguistic accomplishment of instruction unfolds from 
the reference of the theoretical explanations of Bernstein (1977), Gogolin (2006), and 
Zevenbergen (2001). According to Gogolin (2006), pupils in German schools are 
submitted to the normative standard, that they are receptively and productively in 
command of the cultivated linguistic variations in class. This language of school-  
described by Gogolin as “Bildungssprache” ii (ibid, p.82 ff., according to the concept 
of “Cognitive Academic Language Proficiency”, Cummins 1979)- has on a structural 
level more in common with the rules of written linguistic communication. It is in 
large part inconsistent with the characteristics of the everyday verbal communication 
of many pupils.   
Bernstein (1977) and Zevenbergen (2001) target, with their discussion of the lan-
guage of instruction, the children from the working and middle class for differenti-
ation. According to them, the linguistic abilities of formal language that are required 
in schools set a line of demarcation in everyday language, that is more in accordance 
to the abilities of the middle class, than to those of the working class. This formal 
language of instruction stands out through its precise grammatical structure and syn-
tax as well as through its complex sentence structure. Through proficiency in this 
formal language, pupils develop - those in the middle class in particular - a sensibility 
in regards to the structure of objects and the structure of language, that helps them to 
solve problems in life and in school in a relevant and goal-oriented manner. Success-
fully receptive in “being (a) part (of)” and productive as in “taking part (in)” 
(Markowitz 1986, p.9, translated by the author) a linguistic discourse of instruction is 
something that is only possible for pupils, according to the above-mentioned authors, 
when they have competence in the formal language or the Bildungssprache of in-
struction. In this way it is possible for them to understand abstract concepts inde-
pendent of concrete context and to be able to transfer them into written decontex-
tualized form. In the third level of hierarchisation of the linguistic accomplishment of 
primary mathematics instruction there follows the question, to what extent, and how 
pupils are introduced during instruction to a formal Bildungssprache.  
The analysis of selected episode 
In her attempt to make a generalization, the teacher says in  <241-242> “Right/ you 
may not add a small piece of pizza and a small one and smaller one together” <241 – 
242>. She also uses the comparative form of the adjective “small” for this purpose, 
but does not go into the “Least Common Multiple” more explicitly. However, it is not 
self-explanatory that all pupils- most especially those who have grown up 
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multilingual- are familiar with the comparative forms of adjectives in the German 
language. It is not self-explanatory that pupils will be able to differentiate between 
“Small Common Multiple” and “Least Common Multiple”. This interpretation is 
supported by analysis of previous episodes, in which pupils used the incorrect com-
parative form when attempting to use the term “Least Common Multiple”. Another 
correlation to this can be seen in the procedure at the beginning of the scene where 
the teacher allowed the pupils to calculate multiples. At no point in time did the 
teacher explain the connection between the terms “multiple” and “Least Common 
Multiple”. In this way it is made difficult for students to be able to recognize that the 
“Least Common Multiple” is really a subset of all “multiples”. It is not attempted on 
the part of the teacher to integrate the new concept into a related text. Hereby the 
question may be asked if and how the students should be empowered to understand 
such abstract concepts independent of concrete examples and to be able to transfer 
them into written form. 
Summary of the analysis of the linguistic accomplishment of instruction 
In the underlying research of this article there were 15 different episodes in total 
which were analyzediii. These episodes with the help of comparative analysis were 
systematically compared. The comparison thereby of the three hierarchical levels of 
the linguistic accomplishment of instruction resulted in the following structure 
characteristics: 
In the case of the first level, the application of technical terminology or everyday lan-
guage by the teacher in instruction, allows no structural commonalities to be recon-
structed. A unified procedure by the usage of mathematics register and everyday 
language does not seem to make a difference in the episode. The teachers use either 
predominantly everyday language concepts or several new and unexplained 
mathematic concepts. Unlike the first level, the results of the analysis of the other two 
levels behave in a different way. The implicitness of learning content, as a phenom-
enon in the introduction of a new mathematic concept, allows itself to be 
reconstructed as the common basic structural characteristic of the linguistic 
accomplishment of instruction via the teacher. The implicitness of the learning 
content defeats itself by the usage of different mathematics and formal linguistic 
registers. In this introduction of new mathematic concepts one can reconstruct 
through mathematics register, that the meanings of the concepts, just as the content 
references between the new mathematic concepts to be learned or the already known 
everyday language concepts is not made clear or only implicitly. The meanings or 
connections are not explicitly taken up in the instructional discourse and find thus no 
consideration in the classroom discourse. The meaning or the reference are explicitly 
assimilated by the teacher into the instructional discourse and thus find no 
consideration in the interaction of the classroom discourse. The formulated goal of 
Pimm (1987, Xiii; see Ch. 2.4) that students should learn to speak Mathematics like a 
native speaker, will be difficult for students to achieve, as the native speaker of 
Mathematics - the teacher - does not exemplify this active speaking themselves. A 
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similar picture shows itself in the way the teachers commit themselves to linguistic 
particularities of formal linguistic register. Also here there is an implicitness that 
rules the teaching. The teacher only refers back to the grammatical structure 
implicitly, in which the mathematical concept is embedded, or to that which 
characterizes the meaning carrying elements. With which linguistic methods the 
complex and abstract mathematic concept, in the sense of the conceptual writing, is 
expressed to a connected text is left, as regards content or implicitness, in the end of 
the attempted explanations, unconnected. An integrated embedding of the 
mathematical concept in a Bildungssprache is not noticeable. 
4 Implicit Pedagogy and its consequences  
In the basis of the research the reconstructed procedures of the teacher in the lin-
guistic accomplishment of the lesson alone was with mathematics teaching ap-
proaches not enough to explain, and for this reason further pedagogical, sociological 
and linguistic approaches were expanded into the theory genesis (compare Bourne 
2003; Bernstein 1996; Walkerdine 1984). Through this opening of the theoretical 
framework of the underlying research, there allows for the procedure of the teacher to 
be conceptualized under the concept of “Implicit Pedagogy” (compare “Implizite 
Pädagogik” Schütte 2009). This displays itself in the introduction of new 
mathematical concepts, in the manner, that decisive aspects of meaning negotiating of 
the individuals and the thereby possible constructions of enduring, non-situational 
bodies of knowledge for the individuals, remain concealed. One such Implicit 
Pedagogy is attached to the main idea, that students alone on the basis of the abilities 
they bring along with them can unlock meanings. Not the lesson, the qualifications of 
the teachers, nor their efforts can bring a deciding influence on the possible edu-
cational success of students in school, but rather, and above all else, the abilities that 
the children have brought with them decides this. The linguistic accomplishment of 
the instruction via the teacher, that follows such fundamental ideas, would not appear 
to make enough adjustments to the existing relationships of linguistic-cultural plu-
rality in the classroom, since the procedure as it stood only served to reproduce ex-
isting social relationships in the educational system. The consequence of such an 
implicit procedure by the teacher can be, for example, that the comprehensive devel-
opment of the relevance of the new concepts to be learned, on the side of the stu-
dents, can be hindered. On the other hand it is a possible consequence that the stu-
dents could be hindered by, or could refuse to participate in, a formal linguistic 
educational discourse in their lessons. Additionally, the opportunity is taken away 
from them to participate actively, that means productively, in the lesson, and through 
this accomplish the lesson. This happens for the main reason that the teacher, through 
her primarily implicit procedure, presents no model for her students to follow in her 
interactions with the formal linguistic Bildungssprache.   
                                                 
i The excessive use of almost “pure technical language“ (ibid) by teachers and instructional media 
is viewed by Maier (2004, p.153) as technical linguistic hypertrophy. The excessive use of almost 
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“pure colloquial language“ (ibid) by teachers and instructional media is characterized by Maier 
(2004, p. 153)  as technical linguistic hypotrophy. 
ii Formal linguistic instructional language (translated by the author). 
iii This episode under consideration deals primarily with a shortened extract from the original 
episode, since for reasons of space limitations no analysis of  the entire episode was possible.  The 
detailed analysis of this episode can be found in Schütte (2009).   
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MATHEMATICAL COGNITIVE PROCESSES 
BETWEEN THE POLES OF MATHEMATICAL TECHNICAL 

TERMINOLOGY AND THE VERBAL EXPRESSIONS OF PUPILS 
Rose Vogel and Melanie Huth 

Goethe University, Frankfurt am Main, Germany 
Verbal expressions by students in mathematical conversational situations provide 
insight into the individual mathematical imagination and express what patterns and 
contexts children recognize in mathematical problems. Children just starting school 
utilize means of expression of their mathematical ideas that go from everyday speech 
descriptions to detailed action sequences. They already use technical facets, even 
though their repertoire of mathematical language of instruction has to be considered 
initially as tentative. In our article, by dint of methods of qualitative analysis, we 
want to present initial descriptions in terms of the identified capability of mathemati-
cal expression of pupils just starting school, based on a conversational situation 
about a combinatorial problem. 
Keywords: mathematical cognitive process, mathematical language, mathematics in 
elementary school, combinatorics, mathematical concepts 
INTRODUCTION 
The mathematical cognitive process is initiated extrinsically and/or intrinsically by 
tangible problems or questions the young learner encounters in various contexts. This 
process is of a discursive nature. Furthermore the mathematical problems are ex-
pressed in manifold linguistic forms. In the process of understanding, individual prior 
knowledge, mathematical concepts and strategies are activated by the learner. Ac-
cording to the learner’s estimation the activated strategies promise the most probable 
possibility for a solution.  
Within the framework of our research, we wish to focus on linguistic activities within 
the mathematical cognitive process that significantly mold this very process: mathe-
matical content is conveyed by dint of language; mathematics is talked and written 
about. This approach is needed to broaden the perception of language from purely 
verbal expressions to other activities such as gesture, body language and facial ex-
pression, as well as bringing mathematical facets into written form and presenting 
them. In addition, it is important to take into account what cognitive grasp, from their 
perspective, the respective protagonists have in terms of handling mathematical prob-
lems. It is also interesting which patterns of action are consciously or unconsciously 
activated in terms of the situation. Individual interpretations, concepts and models of 
the mathematical content, which is always restricted to context, and also social as-
pects (communication patterns, specific language of instruction, structure of the in-
teractive negotiation process, teaching and learning patterns and cultural conditions) 
and the personal image of mathematics are especially pivotal and demand detailed 
consideration.  
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“The emerging of mathematical knowledge is fundamentally taking place in the context 
of social construction an individual interpretation processes. […] it is constructed by 
means of social activities and individual interpretations.” (Steinbring 2005, p. 7) 

In the present paper we would like to give an outline of the provisional state of know-
ledge resulting from our activity in the field of ‘The learning of mathematics and lan-
guage’. Translating the mathematical content of a problem into technical terms is re-
lated to the mathematical language of young learners, in particular their mathematical 
concepts and individual conceptions, which are reconstructed based on verbal activi-
ties. We expect that the detailed consideration of the children’s verbal expression will 
afford us with insights into what they view as the problem’s mathematics. This iden-
tification of mathematical and individual concepts is to be deepened in the future in-
ter alia by the interactional view of mathematical negotiation processes mentioned 
above. In doing so, we wish to focus on ‘mathematical language’ in the broadest 
sense of the term, that is, constituting all forms of expression accompanying the 
mathematical cognitive process. In our opinion learners of mathematics, especially 
young learners, approximate more and more to technical mathematics-orientated lan-
guage in their process of learning mathematics. This “speaking mathematically” 
(Pimm 1989) is more than just learning vocabulary and using these words in the right 
linguistic form. Linked to that is the notion of utilizing this knowledge to design 
processes of teaching and learning. If we demonstrate our considerations in the fol-
lowing and represent our thoughts by means of an example, we focus at first verbal 
expressions and unique actions in the mathematical cognitive process that are exam-
ined as unique expressions for now. We will present an exemplary conversational 
situation of first-graders concerning a combinatorial problem. Our research perspec-
tive is guided by the super ordinate question about mathematical language and a po-
tential mathematical language development in the process of learning mathematics on 
the part of young learners. In the present paper we want to focus on the following 
embedded questions: 
What language do the here described pupils have at their disposal when handling a 
combinatorial problem in the conversational situation being presented? 
What individual conceptions and mathematical (‘target-consistent’) concepts can be 
surmised behind the described children’s verbal-linguistic activities in the examina-
tion with a combinatorial problem?  
What patterns of actions are activated or what conceptions about ‘to do mathematics’ 
in the examination with an explicit structured combinatorial problem can be recon-
structed by means of verbal activities? 
The data and considerations used have emerged from our research within the frame-
work of an initial exploratory pilot study. We conducted this exploratory study with a 
focus on designing and interpretating situations which could be analyzed in the view 
of mathematical concept development and the linguistic means of expression in dis-
course situations. This study could contain useful information and serves as a trial of 
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such situations. It is embedded in the context of a current developed longitudinal 
study to investigate early steps in mathematics learning (related to the Centre for Re-
search on Individual Development and Adaptive Education of Children at Risk 
(IDeA), a centre of DIPF (German Institute for International Educational Research) 
and the Goethe university, Frankfurt/Main in cooperation with the Sigmund-Freud-
Institute, Frankfurt/Main).  
THEORETICAL FRAMEWORK – MATHEMATICAL LANGUAGE AC-
TIVITIES OF CHILDREN IN ELEMENTARY SCHOOL 
At the beginning of their time in school, young, monolingual, linguistically incon-
spicuous learners have at their disposal a fundamental passive and active vocabulary. 
Their language acquisition in the unique grammatical sub-systems can be termed ba-
sic. Now what becomes relevant in terms of language is the growth of special com-
munication and action patterns to be ascribed to the institution of the school, such as 
the acquisition of a certain language of instruction (cf. “cognitive academic language 
proficiency,” according to Cummins 2000 after Gellert 2008, p. 140). For mathemat-
ics lessons in particular, a vocabulary and a specific language have to be acquired in 
which symbols are employed or terms from everyday speech adopt a different mean-
ing (like ‘equal,’ ‘less,’ ‘greater’). Negotiation processes in the social context have to 
be mastered linguistically within the learning process so as to understand mathemati-
cal teaching contents and be capable of participation. Verbal expressions are thus 
embedded in the interaction process in which they are uttered. The process of analy-
sis documented here represents an initial approach to a form of analysis yet to be de-
veloped, which would permit one to make statements about the applied forms of lan-
guage in the context of mathematical cognitive processes. Beside that, the analytical 
method to be developed could be interlocked with other approaches like interaction, 
argumentation and participation analysis (Brandt & Krummheuer 2000; Krummheuer 
2007). 
The approach presented here in an initial outline bears a certain resemblance in sev-
eral parts to Steinbring’s (2005, 2006) epistemological approach. In the epistemo-
logical triangle developed by Steinbring, the interactively constructed mathematical 
knowledge is of central importance. This knowledge, which is again based on pre-
existing conceptual ideas, is generated by creating relations between the signs being 
utilized and reference context. In our approach the children used signs in the form of 
verbal, gestural and also written expressions to communicate their meaning or inter-
pretation of the given mathematical content. In doing so, they needed to revert to 
their pre-existing conceptual ideas. Their expressions or signifier could only refer to 
the reference context or signified, whereas a common interpretation of this mathe-
matical content has to be negotiated in interaction.  
The question is how these mathematical pre-existing conceptual ideas and knowledge 
in Steinbring’s approach can be described. The point of departure of our analysis is 
the problem’s so-called mathematical content. While handling the ‘mathematical con-
tent,’ we try to describe the mathematical concepts or mental models (here in the 
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meaning of Prediger 2008) that are of import for solving the problem. Mathematical 
concepts or mental models, according to Prediger (2008), are contrasted with the per-
sonal conceptions of the individual who is learning, which are reconstructed here by 
means of pupils’ expressions. These individual “students’ conceptions” (Prediger 
2008, p. 6) which are comparable with Steinbring’s pre-existing conceptual ideas 
(Steinbring 2006, 140), sum up the conceptions of the individuals who are learning, 
which could be developed up to now to handle similar mathematical problems. Any 
other structurally similar mathematical problem will re-activate these “individual 
models,” which are then confirmed in the situation or may lead to irritations and po-
tential expansions of these individual models. Mathematical experts and novices alike 
use individual mathematical models to be able to approach the abstract and immate-
rial mathematical objects and develop mental images for them: “[…] mathematical 
concepts are sometimes envisioned by help of ‘mental pictures’ […]. Visualization 
[…] makes abstract ideas more tangible, […] almost as if they were material enti-
ties.” (Sfard 1991, 6) Should a discrepancy arise between the individual model and 
the ‘mathematical concept’ relevant to the problem and prove to be too large to over-
come, this may create learning opportunities that can be utilized more or less benefi-
cially. 
RELEVANT MATHEMATICAL CONCEPTS IN SOLVING COMBINATO-
RIAL PROBLEMS 
Combinatorics involves the determination of the number of elements of finite sets. 
The point is to select elements from a given total (basic set) and re-combine and re-
arrange them according to specific criteria (cf. Krauter 2005/2006). The description 
“combining selected elements” refers to the formation of new combinations of sets. 
The description “arranging selected elements” focuses on the order and thus on the 
formation of variations (cf. Selter & Spiegel 2004, 291). Again the determination of 
the number, of the sets or lists that arise this way, will be of importance. Thus, com-
binatorics centers around counting. Although here we are moving in the context of 
discrete mathematics and hence in the range of countability, this will frequently take 
on a theoretical character and provoke mathematical methods that go beyond the act 
of counting. These arithmetical “counting methods” are documented as formulas that 
in a compressed form describe the appropriate algorithm. In addition to the formulas, 
instructions are described having the function of activating inner images with the 
learner. These images help to translate familiar situations into the unknown mathe-
matical problem and encourage the utilization of a suitable formula (for instance, 
without regard to order and without replacement). 
The conversational situation that our analysis is based on is a part of an explorative 
study in which a total of eight first-graders were under examination. We selected this 
particular situation because its progress is comparable with all other videotaped and 
transliterated situations. Furthermore we choose such situation with a combinatorial 
problem, because this requires from the pupils counting and manipulation with se-
quences in practice. For the explorative study we developed mathematical problems 
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of different mathematical areas, e. g. combinatorics, and then presented one problem 
to a student-duad in a conversational situation. The setting which is important in the 
following descriptions was hence set up as follows: The researcher presents a combi-
natorial problem to two first-graders. The pupils had the joint task of solving the 
combinatorial problem. In the progress of the situation, the researcher simply joins 
the conversation of the children in an appropriate way. As material at their disposal 
the children had paper, pencils and a bag full of candies. 
Problem: Emma has two red cherry candies and six green apple candies in her bag. 
She pulls four times from her bag and gives the candies that have been pulled to her 
brother Tom. What candies can Tom get? Find all the options that are not identical! 
The problem describes precisely how the desired subsets – consisting of four ele-
ments – are to be generated. Four pullings in a row are to take place. Replacement 
does not make sense, as the generated subset is to be given away. This makes it quite 
explicit that one element of the initial set cannot be pulled more than once. Thus, the 
problem describes the combinatorial figure of pulling without replacement (a total of 
four pullings) of k elements from n. The second criterion of order is irrelevant to the 
problem (cf. set concept). Thus, the act can be translated into a pulling all at once, 
that is, without replacement and without regard to order (cf. Kütting & Sauer 2008, p. 
93). 
Cardinal number concept / set concept 
The point of departure for the problem is an n-element set (n = 8), which is comprised 
of two subsets with the element numbers r = 2 and g = 6. In tangible terms, the prob-
lem is about the set of eight candies that differ in color (two subsets). In this way the 
cardinality of set or the subset comes to the fore. There are eight candies which con-
sist of six green apple candies and two red cherry candies. Within these subsets, there 
exists no possible differentiation; hence no specific sequences that would be distin-
guishable are imaginable. For the subsets of four candies that are to be created anew, 
as well, the only thing that can be said is that each subset consists of candies that 
might be different in taste. A specific sequence is neither necessary nor would it 
make sense in the chosen everyday situation. Thus, all combinations of four candies 
that are distinguishable from one another have to be found from a set of eight can-
dies. 
Selection concept / combinatorial concept 
Initially, all possible cases of distinguishable combinations according to the given 
assumptions of the problem have to be considered: With k = 4 pullings 0, 1 or 2 red 
candies and correspondingly 4, 3 or 2 green candies can be pulled. The following k-
element sets are possible: {g, g, g, g}; {g, g, g, r}; {g, g, r, r}. The number of possi-
ble outcomes of the experiment could be found by a lexicographical counting of the 
combinations, following the formula of hypergeometric distribution (cf. Kersting & 
Wakolbinger 2008, p. 28) or by dint of a tree diagram. With the latter method, the 
doubles that are generated have to be discarded. 
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What is important for this concept is that there be combinations of selection distin-
guishable from one another that are created in a specific way, namely without re-
placement. In addition, a selection of candies may occur consisting of only one kind, 
since there are only two of the other kinds in the initial set. Moreover, fictitious com-
binations are generated mentally, of which only one will actually occur (cf. random-
ness concept). For that reason the initial situation (eight candies in the bag) has to be 
restored after each pulling, although there must be no replacements for each four-time 
pulling. For the discovery of all possibilities, it is advisable to compare the combina-
tions that have been found and written down, thus eliminating doubles. Hence, this 
approach provokes a certain kind of documentation, since the process of pulling has 
to be repeated until all the various combinations have been discovered. Furthermore, 
written documentations often indicate a certain order, which in this context is unim-
portant, though. 
Randomness concept / combinatorial concept 
Which of all the possible combinations will occur cannot be definitively predicted. 
All imaginable possibilities can be pulled, but the pulling does not lead automatically 
to all the different combinations. It is possible that the same combination is pulled 
several times. Hence, a situation has to be considered that will only possibly occur. 
With the facet of the randomness concept that is relevant here, it is less the probabil-
ity of particular combinations than the determination of all possible events that is in 
the foreground. The combination of the four candies that have been pulled is random. 
The missing combinations have to be added by thought experiment. 
TECHNICAL TERMINOLOGY – MATHEMATICAL COGNITIVE PROC-
ESS – PUPILS’ EXPRESSIONS 
Mathematical cognitive processes take place between the poles of mathematical and 
individually formed concepts. Mathematical as well as individual concepts are ex-
pressed in signs in form of the respective language culture (mathematical technical 
language, mathematical language of instruction, mathematical everyday speech). In 
this paper, we define the mathematical technical language as a language, which is 
used in the conversation between mathematical experts with a focus on formalization 
in verbal and written contexts in support of an agreed form of communication over a 
particular issue. The mathematical technical language is hence the result of many dis-
cursive negotiation processes that lead to a formal presentation. The mathematical 
everyday speech displays a discursive, processual character and serves more for indi-
vidual formation of concepts and the approach to mathematical concepts. 
Using the example presented above, figures 1 and 2 (see below) illustrate mathemati-
cal and individual pre-concepts, which, at best and naturally individually formed, ap-
proach one another. Verbal orientated signs that would be used by an expert (e.g. 
mathematician) are listed in the category of mathematical technical language and ex-
presses mathematical knowledge which is adequate for the given problem. This 
mathematical knowledge and the expression of it also emerged in discursive negotia-
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tion processes and in build a relation between signs and reference context and aim at 
an agreed form of communication – language culture among mathematicians (Mor-
gan 1998). The pupils’ expressions specific to the situation are listed in the right col-
umn and are conceptually oral as well. 
ANALYSIS  
At first glance, the language of the pupils is molded by phrases taken from everyday 
speech and child-like action patterns like “which should I take [using a counting-out 
rhyme]” as well as by terms from the text of the posed problem. In Steinbring’s 
words you can reconstruct out of these expressions the children’s given pre-existing 
conceptual ideas or in Prediger’s words their individual concepts. These conceptions 
are tried to communicate by dint of signs or signifiers which should convey the chil-
dren’s interpretation of the meaningful mathematical content.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Mathematical cognitive process, exemplified by the set concept / cardinal 
number concept and the selection concept 

The technical-language part described here uses phrases that are more typically 
mathematical: “There is a finite set, called A, [...]”. It can be determined that the pu-
pils utilize terms like “pull” or “replacement,” which they probably connect with their 
everyday conception of pulling situations (pulling lottery tickets, for instance). In the 
situation that is presented, the pupils skillfully focused mathematical facets: not the 
taste or type of candies (cherry, apple) but the number, the color as a differentiator, 
and the possible combinations under the given assumptions constitute the focus of 
their consideration. “At first we must always pull them and later then we have to lay 
all of them back into the bag,” is the description of the combinatorial figure of pulling 
without replacement and, in addition, something actually in contrast to that: the resto-
ration of the initial situation after pulling four times. Here, the close connection of 
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context and mathematical conception (→urn model) – intended by the text of the 
problem – is presumably taking hold.  
In terms of the technical language, mathematical terms are used also as typical for-
mulations like “as pulling without replacement and without regard to order” for mod-
eling, which are applied in a way relevant to the problem. The students are still in the 
process of model discovery, which is displayed in such comments about possible 
combinations: “Ah we can’t red, red, red, red we can’t because there are only two 
red,” which presents an interactive verbal negotiation of this cognitive process and 
suggests mathematical concepts that are still developing but are already target-
consistent and are moving within the domain relevant to combinatorics. The produc-
tion of relations between signs and reference context here therefore generate new ma-
thematical knowledge. While the children at the beginning of the situation seem to 
utilize more operational and process-oriented dynamic concepts (they pull, put down, 
count by dint of a counting-out rhyme), they use in the proceeding of the situation 
more and more also structural descriptions: “We have red, red, green […].” Sfard 
(1991, p. 5) said, that seeing both “[…] a process and […] an object is indispensable 
for a deep understanding of mathematics [...].”  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Mathematical cognitive process, exemplified by the selection concept 

The pupils’ randomness concept is molded by child-like pre-conceptions where 
events are attempted to be ‘wished’ to come true, which becomes implicit in expres-
sions like “please no red, no red please.” Mathematically, randomness becomes com-
prehensible by dint of the formula about classic probability. Nonetheless, the students 
already have at their disposal the skill that is crucial for handling combinatorial prob-
lems: being capable of mental imagining the configurations of possible combinations 
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and they can also communicate this by dint of verbal signs: “Perhaps we will pull the 
same.” It becomes manifest that the pupils have a concept of mathematizing at their 
disposal. Certainly in part guided by the setting, the students activate action patterns, 
which focus on those facets of the problem that are relevant to combinatorics and ex-
press mathematical thought processes verbally. Individual conceptions converge with 
mathematical concepts. 
CONCLUSIONS 
With our initial attempts at analysis, preliminary insights in the mathematical utter-
ances of first-graders can be described. Concerning our introductorily questions we 
can summarize the following conclusions: 
1. In view of the presented analysis of this exemplary situation we suggest that there 

is first evidence that children, who just starting school obviously have at their dis-
posal manifold forms of expression in terms of mathematical problems. They con-
vey these forms of expression by dint of everyday speech as well as of first tech-
nical language, e. g. in using mathematical terms like “possibilities” or abstract 
from the given context in using “red, red, red” rather than the concrete objects 
(here: candies). Terms belonging to combinatorics are utilized in a meaningful and 
productive way during the process of handling the problem and suggest mathe-
matical concepts that have been already acquired or are developing. 

2. In reference to the problem’s core question, language is dominant for action steps 
that are in need of explanation, or when considering an action result (here the 
combinations of candies that have been pulled). Concepts are verbalized that have 
to be tested or that only develop in – and through – the process of verbalization. In 
doing so, the individual mental concepts converge with mathematical concepts, 
which can be partially considered as already acquired. 

3. The young learners in the presented situation utilize process-oriented and struc-
tural concepts, which indicate they are focusing on what doing mathematics 
means to them in the context of the specific combinatorial problem. 

These initial conclusions have to be examined in further research to follow, in other 
mathematical areas or different problem arrangements, for instance. Moreover, it is 
essential to approach the analytical procedures mentioned above and, for one, to ex-
amine more closely the construction of mathematical knowledge in the focus of inter-
action. In our further investigations we want to deepen this analysis and adopt it to 
other comparable situations in which children solve problems in different mathemati-
cal areas. In this context we plan to investigate the mathematical development in the 
age of kindergarten children in a longitudinal study (a study inside IDEA, in front 
explained). This could enable us to describe over the period in which the children 
visit the kindergarten the development of mathematical thinking. The project of re-
search is applied as a cooperation study with researchers of language acquisition, 
which should enable us to investigate in particular the coherency of mathematical de-
velopment and language acquisition. Furthermore it is possible to broaden the percep-
tion of language from purely verbal expressions to other activities such as gesture or 
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body language as well as written and presented mathematical facets and also focus on 
interaction processes for an implication of a social perspective. 
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INTRODUCTION 
TECHNOLOGIES AND RESOURCES IN MATHEMATICAL 

EDUCATION 
Ghislaine Gueudet (CREAD, IUFM Bretagne UBO, France) 

Rosa Maria Bottino (ITD, CNR Genova, Italy) 
Giampaolo Chiappini (ITD, CNR Genova, Italy) 

Stephen Hegedus (Kaput Center, University of Massachusetts, USA) 
Hans-Georg Weigand (University of Wuerzburg, Germany) 

 

INTRODUCTION 

Technologies in mathematical education has been a theme present at CERME from the first edition. 
The available technologies have evolved a lot during these years. At CERME 5 conference, the 
conclusions of the technology Working Group (Kynigos et al. 2007), as well as Artigue’s and 
Ruthven’s interventions (Artigue 2007, Ruthven 2007), signal perspective evolutions towards more 
comprehensive studies, in several respects. Drawing on these previous works, CERME 6 WG7 
intended to go further in the directions they have indicated.  
An important issue, accounting for the introduction of the word “resources” in the name of a group 
which was previously called “tools and technologies in mathematical didactics”, is the need for 
considering technologies within a range of resources available for the students, the teachers, 
teacher’s trainers etc. These agents can draw on software, computers, interactive whiteboards, 
online resources, but also on more traditional geometry tools, textbooks, etc. Various kinds of 
digital material are now extensively used, and they can be viewed as belonging to a wider set of 
curriculum material (Remillard 2005) and teaching resources (Adler 2000). The papers in WG7 
concern different kinds of resources, still with a specific focus on digital material. Another specific 
focus of WG7 is on theoretical approaches. Design issues need to focus on integration and impact, 
especially in the use of innovative technology. This entails the development of approaches framing 
research on fidelity, efficacy, and effective integration (Hegedus & Lesh, 2008). These approaches 
have been discussed in the group, and several issues linked with the articulation between research 
and development have been raised, as it is presented below. 
The work in the group was organized into three parallel sessions, corresponding to three themes 
summarized below; specific slots were devoted to the presentation of the work done within three 
projects co-funded by the European Community, whose participants are represented in WG7: the 
Telma European Research Team, the Remath project, and the Intergeo project. The whole group 
was nevertheless gathered for the first session, with two important activities: the identification of 
questions considered important for the group’s work by the participants (figure 1); and the 
“plenary” address of Jean-Baptiste Lagrange on the results of the ICMI17 study (Hoyles & 
Lagrange, to appear). The following trends in research and salient elements presented by Jean-
Baptiste Lagrange were extensively present in the group’s discussions: 

− The integration and synthesis of previously fragmented theories and the development of broad 
approaches; 

− The consideration of the design of tools and curricula as a major issue for mathematical 
education; 

− The development of teacher-oriented research studies with a specific consideration on 
methodological issues such as the consideration of “ordinary” teachers by researchers 
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1. The word "dynamic" permeates mathematics teaching and learning activities which involve 
technology. Where and when is it appropriate? 
2. How is it possible to restructure the maths curriculum to take advantage of new technologies to 
generate mathematical thinking? 
3. How can we assess the applicability and the effectiveness of current theories? 
4. Do we need specific theoretical tools or approaches to study the different ways in which teaching 
can be carried out using technologies?  
5. What kind of professional development could support pre/in-service teachers to integrate new 
technologies in their classroom practice?  
6. How can “old” and “new” resources interact each other? For example, how is it possible to 
incorporate e-technologies in textbooks? 
7. If we take seriously into account a semiotic perspective considering the evolution of ICT, what new  
is offered in terms of creative power of semiotic means? 
8. Can the European projects presented at WG7 contribute to create a “general theory” of teaching 
and learning with ICT which can be useful in different European countries?  

Figure 1. Examples of questions raised by WG7 participants 
 

THEMES AND PROJECTS IN WG7 

Design, articulation of design and use 

The work within the « design » theme extensively dealt with the link between design and learning. 
In particular, the question on the way in which mathematical knowledge can be modified according 
to different environments was raised. Changes induced by vizualization (Ladel & Kortenkamp, Lois 
& Milevicich, Kortenkamp & Rolka), virtual reality and simulations (Dana-Picard et al., Bessot & 
Laborde) opportunities were discussed. Such changes are linked with the specific software tools 
considered and related features and their analysis is central for the design process. Tools can modify 
knowledge and learning as well, as it clearly happens for outdoor activities (Nilsson et al.). A broad 
view on the technology involved, but also on the appropriate associated mathematical tasks is 
essential (Buteau & Muller, Diakoumopoulos). Amongst the possibilities offered by technology and 
likely to affect learning and mathematical knowledge, the collective dimensions deserve a specific 
attention. Software connectivity features, enabling students’ collaboration, modify their 
participation in the mathematical work (Geraniou et al., Hegedus et al.). Questioning collective 
dimensions also includes a focus on the link between designers and users, and the possible 
interventions of the users within the design process. This is one of the aspects tackled by the 
Inter2geo project that dealt with the interoperability of digital geometry systems in Europe 
(Kortenkamp et al., Trgalova et al.). Beyond the interoperability and indexation issues, this project 
produced resources for teachers. These resources were tested by users, and users feed-back was 
included in the design process, with a quality objective. The question of quality, that is the way to 
assess and validate design and use of technology, was central in the group’s discussions. There is 
still a need for methods to evaluate efficacy of a given technology as far as the learning, 
engagement and motivation of the students. Even if the projects presented within the group were all 
grounded in research and linked to given theoretical framework, many questions remain open on the 
way in which research results can operatively contribute to successful design and use of educational 
technology.   
 
Technologies, tools and students mathematical activity 
Papers presented under this theme concerned a wide range of tools and technologies: online 
resources, software tools, as well as more traditional tools, such as textbooks. Amongst these 
technologies, Computer Algebra Systems were considered in several papers (Artigue & Bardini, 
Buteau et al., Weigand & Bichler). But even with a specific interest on CAS, the research works 
presented in WG7 consider in fact new complex artefacts, articulating CAS and graphing tools in 
particular, and raised the problem of designing resources to scaffold the use of these artefacts.  
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Another direction in which the papers showed richness and variety is the theoretical frameworks 
they draw upon. On the one hand, general theories of mathematical education were considered: 
functional thinking (Hoffkamp), situated learning, activity theory (Fernandes et al., Jacinto et al.), 
theory of didactic situations (Aldon & Durand-Guerrier). These theories were used to enlighten 
specific aspects of learning with technologies: the idea of functional dependency, the mediation 
provided by an artefact, the didactic contract. On the other hand, several papers refer to specific 
theories such as that of instrumental approach (Iranzo & Fortuny, Martigone & Antonini, Rezat). 
This framework, specially designed to study teaching and learning phenomena involving 
technology, proposes a genesis perspective on learning with technology. It leads to analyses of 
learning phenomena in terms of schemes. In WG7, precise classification of schemes and of 
operational invariants were discussed. Such discussions can contribute to a further progress of the 
instrumental approach framework.  

Interactions between resources and teachers’ professional practice 

The acknowledgment of difficulties linked with the integration of technology in classrooms, 
identified in previous CERME conferences (Kynigos et al. 2007, Drijvers et al. 2006) was still 
present in CERME 6 WG7 together with the acknowledgment of the key role played by teachers. 
The need for investigating teachers’ beliefs about technology adoption (Chrysostomou & 
Mousoulides) was recognized as well as the need for conceptualising systemic innovations of 
educational systems (Ulm). (Emprin, Cantürk-Günhan & Ozen, Faggiano) discussed the importance 
of setting up pre-service and in-service teachers’ training programs taking into account, for in-
service teachers, their pre-established repertoires of resources. An evolution from specific studies of 
individual teachers’ practice to investigations of general integration issues was observed, thus 
moving a step towards theoretical evolutions. As the matter of fact, for example, teacher’s use of 
ICT was examined with a semiotic mediation perspective in (Maracci & Mariotti), while some 
authors addressed the development of the instrumental approach to study the role of the teacher, 
drawing on the notion of instrumental orchestration (Trouche 2004), and introducing the 
consideration of teachers’ instrumental genesis (Billington, Bretscher, Drijvers et al.). The 
acknowledgment of the variety of resources involved in the teacher’s activity as well as the need to 
take into account the whole classroom context, led some authors to develop holistic approaches, 
such as a documentary approach to didactics (Gueudet & Trouche) and key structuring features of 
technology integration in the classroom practice (Ruthven). 
Delicate methodological issues are attached to the implementation of these theoretical 
developments, in particular to the question of the “ordinary teacher”, which remains open. 
 
TELMA/Remath projects  
The topic of the articulation of different theoretical frames is central in the TELMA and Remath 
European projects. In an effort for overcoming the national specificities, these projects developed a 
cross-experimentation methodology: The key idea around which this methodology was built was 
the design and the implementation by each team involved in one of these projects of experiments, 
carried out in real classroom settings, making use of an ICT-based tool developed by another team 
(Bottino et al., 2009). They also designed meta-tools, in particular scenarios for researchers and for 
teachers, and proposed developing an integrated theoretical framework (Bottino & Cerulli; 
Chiappini & Pedemonte; Maracci et al., Markopoulos et al., Moustaki et al., Trgalova & 
Chaachoua). In fact the three themes of WG7 are present within these large projects, which opened 
promising methodological and theoretical directions for research. 
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CONCLUSION 

What do we retain from the work in WG7? The three themes proposed for the contributions, 
oriented towards design, students and teachers were from the beginning presented as articulated. 
The design loops integrate more and more the users, students or teachers. The interactions between 
students and teachers in class are a focus of attention for the researchers. The articulations between 
different kinds of resources were also extensively discussed, confirming the need for a broad point 
of view on resources. Research presented in WG7 is focused on technology, but technology does 
not mean here a precise delimited tool; it includes meta-tools and complex sets of resources. 
Reflecting on this evolving meaning of technology can be a direction for the work in future 
CERME conferences. 
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REALISATION OF MERS (MULTIPLE EXTERN 

REPRESENTATIONS) AND MELRS (MULTIPLE EQUIVALENT 

LINKED REPRESENTATIONS) IN ELEMENTARY 

MATHEMATICS SOFTWARE 

Silke Ladel, Ulrich Kortenkamp 

University of Education Schwäbisch Gmünd, Germany 

 

Assumptions of multiple mental representations lead to the presumption of an 
enhanced mathematical learning, especially of the process of internalization, due to 
MERs (Ainsworth 1999) and MELRs (Harrop 2003). So far, most educational 
software for mathematics at the primary level aims to help children to automatize 
mathematical operations, whereby symbolical representations are dominating. 
However, what is missing is software and principles for its design that support the 
process of internalization and the learning of external representations and their 
meaning themselves – in primary school these are in particular symbols. This paper 
summarizes the current state of research and presents a prototype that aims to the 
above-mentioned purpose. 

INTRODUCTION 

In this article we describe the theory and new achievements of a prototypical 

educational software for primary school arithmetic. After developing the guiding 

principles that are based on multimedia learning models, we present 

DOPPELMOPPEL
1
, a learning module for doubling, halving and decomposing in 

first grade. 

THE COGNITIVE THEORY OF MULTIMEDIA LEARNING (CTML) 

In the 1970s and 80s it was assumed that comprehension is limited to the processing 

of categorical knowledge that is represented propositionally. Nowadays, most authors 

assume the presence of multiple mental representation systems (cp. Engelkamp & 

Zimmer 2006; Schnotz 2002; Mayer 2005) – mainly because of neuro-psychological 

research findings. With regard to multimedia learning the Cognitive Theory of 

Multimedia Learning (CTML) of Mayer is to emphasize (Fig. 1).  

                                         

1
 see http://kortenkamps.net/material/doppelmoppel  for the software 
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Figure 1: The Cognitive Theory of Multimedia Learning (CTML) of Mayer 

Mayer (2005) acts on the assumption of two channels, one for visually represented 

material and one for auditory represented material. The differentiation between the 

visual/pictorial channel and the auditory/verbal channel is of importance only with 

respect to the working memory. Here humans are limited in the amount of 

information that can be processed through each channel at a time. Besides the 

working memory Mayer assumes two further types: the sensory memory and the 

long-term memory. Furthermore, according to Mayer humans are actively engaged in 

cognitive processing. For meaningful learning the learner has to engage in five 

cognitive processes: 

(1) Selecting relevant words for processing in verbal working memory 

(2) Selecting relevant images for processing in visual working memory 

(3) Organizing selected words into a verbal model 

(4) Organizing selected images into a pictorial model 

(5) Integrating the verbal and pictorial representations, both with each other and 

with prior knowledge (Mayer 2005, 38) 

Concerning the process of internalization the CTML is of particular importance. The 

comprehension of a mathematical operation is not developed unless a child has the 

ability to build mental connections between the different forms of representation. 

According to Aebli (1987) for that purpose every new and more symbolical extern 

representation must be connected as closely as possible to the preceding concrete one. 

This connection takes place on the second stage of the process of mathematical 

learning where the transfer from concrete acting over more abstract, iconic and 

particularly static representations to the numeral form takes place (Fig. 2). A chance 

in the use of computers in primary school is seen in supporting the process of 

internalization by the use of MELRs. This is the main motivation for the research on 

how the knowledge about MERs and MELRs in elementary mathematics and 

educational software is actually used and how it can be used in the future. 
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TO THE REALISATION OF MERS AND MELRS IN ELEMENTARY 

MATHEMATICS SOFTWARE 

Despite the fact that computers can be used to link representations very closely, it is 

hardly made use of in current educational software packages. Software that offers 

MERs and MELRs with the aim to support the process of internalization is very rare. 

This is also the reason why tasks are mainly represented in a symbolic form (Fig. 2). 

 

Figure 2: Forms of external representations combined with the four stages of the 

process of mathematical learning 

Nevertheless, most software offers help in form of visualizations and thereby goes 

backward to the second stage. This is realised in different ways, which is why a study 

of current software was done with regard to the following aspects: 

- Which forms of external representations are combined (MERs) and how are 

they designed? 

- Does the software offer a linking of equivalent representations (MELRs) and 

how is the design of these links? 

After this analyse, a total of sixty 1
st
- and 2

nd
-grade-children at the age of six to eight 

years were monitored in view of their handling of certain software 

(BLITZRECHNEN 1/2, MATHEMATIKUS 1/2, FÖRDERPYRAMIDE 1/2). Beside 
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this own exploration – which will not be elaborated at this point - there is only a 

small number of studies that concentrates on MERs and MELRs on elementary 

mathematics software. In 1989, Thompson developed a program called BLOCKS 

MICROWORLD in which he combined Dienes blocks with nonverbal-symbolic 

information. Intention was the support of the instruction of decimal numeration 

(kindergarten), the addition, subtraction and division of integers (1
st
 – 4

th 
grade) as 

well as the support of operations with decimal numbers (Thompson 1992, 2). 

Compared to activities with “real things”, there were no physical restrictions in the 

activities with the virtual objects to denote. Furthermore the program highlighted the 

effects of chances in the nonverbal-symbolic representation to the virtual-enactive 

representation and reverse. In his study with twenty 4
th

-grade-children Thompson 

could show that the development of notations has been more meaningful to those 

students who worked with the computer setting compared to the paper-pencil-setting. 

The association between symbols and activities was established much better by those 

children than by the others. 

Two further studies that examined multi-representational software for elementary 

mathematics are by Ainsworth, Bibby and Wood (1997 & 2002). The aim of 

COPPERS is to provide a better understanding of multiple results in coin problems. 

Ainsworth et al. could find out, that already six-years-old children do have the ability 

to use MERs effectively. The aim of the second program CENTS was the support of 

nine- to twelve-years-old children in learning basic knowledge of skills in successful 

estimation. There were different types of MERs to work with. In all three test groups 

a significant enhancement was seen. The knowledge of the representations 

themselves as well as the mental linking of the representations by the children were a 

necessary requirement. The fact that a lot of pupils weren’t able to connect the iconic 

with the symbolic representation told Ainsworth et al. (1997, 102) that the translation 

between two forms of representations must be as transparent as possible. 

The opinions about an automatic linking of multiple forms of representations vary 

very much. Harrop (2003) considers that links between multiple equivalent 

representations facilitate the transfer and thus lead to an enhanced understanding. 

However, such an automatic translation is seen very controversial. Notwithstanding 

this, it is precisely the automatism that presents one of the main roles of new 

technologies in the process of mathematical learning (cf. Kaput 1989). It states a 

substantial cognitive advantage that is based on the fact that the cognitive load will be 

reduced by what the student can concentrate on his activities with the different forms 

of representations and their effects. An alternative solution between those two 

extremes – the immediate automatic transfer on the one hand and its non-existence on 

the other hand – is to make the possibility to get an automatic transfer shown to a 

decision of the learner. 
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PRINCIPLES FOR DESIGNING MERS  

The initial point and justification of multimedia learning is the so-called multimedia 

principle (cf. Mayer 2005, 31). It says that a MER generates a deeper understanding 

than a single representation in form of a text. The reason for this is rooted in the 

different conceptual processes for text and pictures. In being so, the kind of the 

combined design is of essential importance for a successful learning. The compliance 

of diverse principles can lead to an enhanced cognitive capacity. Thus Ayres & 

Sweller (2005) could find a split-attention-effect if redundant information is 

represented in two different ways because the learner has to integrate it mentally. For 

this more working space capacity is required, and this amount could be reduced if the 

integration were already be done externally. Mayer (2005) diversifies and formulates 

besides his spatial contiguity principle the temporal contiguity principle. According 

to this principle, information has not only to be represented in close adjacency but 

also close in time. If information is also redundant, the elimination of the redundancy 

can lead to an enhanced learning (redundancy-effect). The modality principle unlike 

the split-attention principle does not integrate two external visual representations but 

changes one of it into an auditory one. Hence an overload of the visual working 

memory can be avoided. 

In addition to the modality principle Mayer recommends the segmenting principle as 

well as the pretraining principle to enhance essential processes in multimedia 

learning. As a result of the segmenting principle multimedia information is presented 

stepwise depending on the user so that the tempo is decelerated. Thus the learner has 

more time for cognitive processing. The pretraining principle states that less 

cognitive effort will be needed if an eventual overload of the working memory is 

prevented in advance through the acquisition of previous knowledge. Finally, the 

abidance of the signaling principle allows a deeper learning due to the highlighting of 

currently essential information. Extraneous material will be ignored so that more 

cognitive capacity is available and can be used for the essential information. 

In elementary instruction the children first of all have to learn the meaning of 

symbolic representations and how to link them with the corresponding activities. So 

the above-described principles cannot be adopted one-to-one. Based on an empirical 

examination of the handling of six- to eight-years-old pupils with MERs and MELRs 

in chosen software, we could identify new principles and the above-described ones 

could be adapted, so that their compliance supports the process of internalization. 

These principles are demonstrated and realized in the following example of the 

prototype DOPPELMOPPEL. 

THE PROTOTYPE DOPPELMOPPEL 

Didactical concept and tools  

The function of the ME(L)Rs in DOPPELMOPPEL is the construction of a deeper 

understanding through abstraction and relations (fig. 3). The prototype was built 
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using the Geometry software Cinderella (Richter-Gebert & Kortenkamp 2006) and 

can be included into web pages as a Java applet. 

Figure 3: Functions of MERs according to Ainsworth (1999) 

Using the example of doubling and halving the children shall – in terms of 

internalization – link their activities with the corresponding nonverbal-symbolic 

representation and they shall figure out those symbols as a log of their doing. The 

mathematical topic of doubling and halving was chosen because it is a basic strategy 

for solving addition and subtraction tasks. In addition, DOPPELMOPPEL offers to 

do segmentations in common use.  

The main concern of the prototype is to offer a manifold choice of forms of 

representations and their linking in particular (MELRs). Two principles that lead the 

development are the constant background principle and the constant position 
principle. The first one claims a non-alteration of the design of the background but an 

always-constant one. Furthermore the position of the different forms of 

representations should always be fixed and visible from the very beginning so that 

they don’t constrict each other. 

DOPPELMOPPEL provides the children with the opportunity to work in many 

different forms of representations. On the one hand there is a zone in which the 

children can work virtual-enactive. Quantities are represented through circular pads 

in two colours (red and blue). To enable a fast representation (easy construction 
principle) and to avoid “calculating by counting” there are also stacks of five next to 

the single pads. According to our reading direction the five pads are laid out 

horizontally. The elimination of pads happens through an intuitive throw-away 

gesture from the “desk” or, if all should be cleaned, with the aid of the broom button. 

A total of maximal 100 pads fit on the table (10x10). The possible activities of 

doubling, halving and segmenting are done via the two tools on the right and the left 

hand side of the desk (fig. 4). 
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Figure 4: Screenshot of the prototype DOPPELMOPPEL 

The doubling-tool (to the right) acts like a mirror and doubles the laid quantities. The 

saw (to the left) divides the pads and moves them apart. Both visualisations are only 

shown for a short time after clicking on the tools. Afterwards, the children only see 

the initial situation and have to imagine the final situation (mirrored resp. divided) 

themselves. The pupils can use the mouse to drag the circular points on the doubling-

tool and the saw to move them into any position. A special feature of the saw is that it 

also can halve pads. At this point the program is responsive to the fact that already 

six-years-olds know the concept of halves because of the common use in everyday 

life. 

The children can do nonverbal-symbolic inputs themselves in the two tables on the 

right and the left hand side. The left table enables inputs in the form _=_+_, the right 

one in the form _+_=_. The table on the right is only intended for doubling and 

halving tasks. That’s why the respectively other summand appears automatically after 

the input of one. In the table on the left any addition task can be entered.  

If the pupils don’t fill in the equation completely they have the possibility to get their 

input shown in a schematic-iconic representation. Depending on the entered figures, 

the pads appears in that way that the children can’t read the solution directly by 

means of their colour. The doubling-tool respectively the saw are placed according to 

the equation so that the children – like in the virtual-enactive representation – are able 

to act with the tools (fig. 5). 
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Figure 5: Schematic-iconic representation of a task  

According to the signaling principle an arrow is highlighted when the pupils enter 

numbers in the free boxes. A click on this arrow initiates the intermodal transfer. A 

similar arrow appears below the desk after every activity done by the children (click 

on the doubling-tool respectively the saw). Here, the pupils have the possibility to let 

the software perform the intermodal transfer from the virtual-enactive and the 

schematic-iconic representation to the nonverbal-symbolic one. This is another 

special feature of DOPPELMOPPEL that is rarely found in current educational 

software. If external representations are linked, the linking is mostly restricted to the 

contrary direction. Depending on the activity the equation appears again in the form 

_=_+_ or _+_=_.  Those equations aren’t separated consciously, however a coloured 

differentiation of the equal and the addition sign (as in the tables above) point to pay 

attention. 

Besides the forms of representations there are two more functions available. Both –

the broom to clean the desk and the exclamation mark for checking answers – take 

some time in order to encourage considerate working and to avoid a trial-and-error-

effect. If the equation is false the program differentiates on the type of error. In case 

of an off-by-one answer or other minor mistake the boxes are coloured orange 

otherwise red. If the equation is correct a new box appears below. 

This prototype doesn’t already respond to modalities but the concept already 

incorporates auditory elements. 

Testing of DOPPELMOPPEL 

For the testing of DOPPELMOPPEL four versions of the prototype were created. 

Two of those feature multiple representations; the other two only offer single 

representations. One of the multiple representations provides an additional linking, 

that is an intermodal transfer in both directions (fig. 6). 
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Figure 6: 4 versions of the prototype  

The dedication of those four versions is to make sure that it is neither the medium 

computer nor the method of instruction that causes results of the testing. 

28 pupils of a 1
st
 class worked about 20 minutes per five terms with the program. 

During their work there was one student assistant who observed and took care of two 

children. In addition, the activities of the children were recorded with a screencorder-

software. Furthermore a pre- and a posttest were done. 

To the current point of time the data interpretation is still in progress but first results 

should be available to the end of January. 

CONCLUSION 

Educational software that is based on the primacy of educational theory, as claimed 

by Krauthausen and others, has to take both mathematics and multimedia theory into 

account. Carefully crafted software however, is very expensive in production. We 

hope to be able to show with our prototype that this investment is justified.  
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THE IMPACT OF TECHNOLOGICAL TOOLS IN THE 
TEACHING AND LEARNING OF INTEGRAL CALCULUS  

Lois, Alejandro* & Milevicich, Liliana*  
Universidad Tecnológica Nacional (Argentina) 

There is still a tendency to see that mathematics is not visual. At University 
education, it´s evident in several ways. One of them, is an algebraic and reductionist 
approach to the teaching of calculus. 
In order to improve educational practices, we designed an empirical research for the 
teaching and learning of integral calculus whith technological tools as facilitator 
resources of the process of teaching and learning: the use of predesigned software 
that enables to get the conceptualization in a visual and numeric way, and the using 
of a virtual platform for complementary activities and new forms of collaboration 
between students, and between teachers and students. 
KEY WORDS 
Predesigned software – virtual enviroments – registers of representation - social 
infrastructure - epistemological infrastructure 
INTRODUCTION  
The ideas, concepts and methods of mathematics presents a visual content wealth, 
which can be geometrically and intuitively represented, and their use is very 
important, both in the tasks of filing and handling of such concepts and methods, and 
for the resolution of problems. 
Experts have visual images, intuitive way of knowing the concepts and methods of 
great value and effectiveness in their creative work. Through them, experts are able to 
relate, most versatile and varied, often very complex, constellation of facts and results 
of their theory and, through such significant networks, they are able to choose from, 
so natural and effortless, most effective ways of solving the problems they face 
(Guzman, 1996). Viewing, in the context of teaching and learning of mathematics at 
the university, has to do with the ability to create wealthy images that individuals can 
handle mentally, can pass through different representations of the concept and, if 
necessary, can provide the mathematic ideas on a paper or computer screen (Duval, 
2004). The creative work of mathematicians of all times has had “the visualization” 
as its main source of inspiration, and this has played an important role in the 
development of ideas and concepts of the infinitesimal calculus. 
However, there is a tendency to believe that mathematics is not visual. At university 
education, it´s evident, particularly through an algebraic and reductionist approach of 
the teaching of calculus. One of the didactic phenomena which is considered essential 
in the teaching of Mathematical Analysis, is the “algebrización”, that is: the algebraic 
treatment of differential and integral calculation. Artigue (in Contreras, 2000) 
expresses this fact in terms of an algebraic and reductionist approach of the 
calculation which is based on the algebraic operations with limits, differential and 
integral calculus, but it treats the thinking and the specific techniques of analysis in a 
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simplistic way, such as the idea of instantaneous rate of change, or the study of the 
results of these reasons of change. 
We believe that the problems with Mathematical Analysis learning, in the first year 
of college, have to do with this context. These difficulties are associated with the 
formalism in dealing with the concepts and the lack of association with a geometric 
approach. Anthony Orton has worked for a long time about the difficulties in learning 
calculus. His research work at the University of Leeds confirmed that students had 
difficulty in learning the concepts of calculus: the idea of exchange rate, the notion of 
a derivative as a limit, the idea of area as the limit of a sum (Orton, 1979). Cornu 
(1981) arrived at similar conclusions regarding the idea of "unattainable limit" and 
Schwarzenberger and Tall (1978) regarding the idea of "very near". Ervynck (1981) 
not only documented the difficulties of the students in understanding the concept of 
limit but he also remarked the importance of viewing the processes by successive 
approximations. In this sense, wue can see that usual graphs met in textbooks of 
calculus have two problems: they are static, which can not convey the dynamic nature 
of many of the concepts, and also they have a limited number of examples, usually 
one or two, which leads to develop, in students, a narrow image of the concept in 
question. (Tall and Sheath, 1983). In this sense, taking into account our previous 
exploratory research (Milevicich, 2008), we can say that students can not understand 
the concept of definite integral of a function as the area under the curve, because they 
do not visualize how to build this area as a sum, usually known as Riemann Sum. 
In terms of the educational processes, it should be noted that teachers usually 
introduce the concept of integral in a narrative way, avoiding the real purpose, which 
is to obtain more precise approximations. A simplistic approach to the concept is 
usually done, disconnected from integral calculus applications, which hinders the 
understanding of students, and consequently, the resolution of problems relating to 
calculation of areas, length of curves, volume of solids of revolution, and those 
dealing with applications to the engineering work, pressure, hydrostatic force and 
center of mass.  
JUSTIFICATION 
Innovation in educational processes including th use of multimedia means demands 
not only on teachers´ professionalism but also new activity managing. Research work 
is currently being carried out at different universities aiming to find out what use 
teachers make of these tools and the specific competencies that they have to acquire 
for making effective use of them. From a didactic point of view, the usage of 
multimedia in teaching-learning process, presumably, should increase students 
motivation, and, in that sense, we ask ourselves: What should be the goals of 
education aimed at improving the university today? and How can we make it easier 
through the use of technological tools? The answers to these questions are not clear 
for us. Students, nowadays, have more and more information than they can process, 
so that one of the functions of the university education would be to provide them with 
cognitive and conceptual tools, to help them to select the most relevant information. 
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University Students should try to get skill and develop attitudes that enable them to 
select, process, analyse and draw conclusions. This change in the goals represents a 
departure from traditional learning. In this sense, the use of a predesigned software in 
the classroom, designed within the group research, can be a teaching facilitator 
resource of the process of teaching and learning: 

 to convey the dynamic nature of a concept from the visualization,  
 to coordinate different registers of representation of a concept,  
 for the creation of personalized media best suited to the pedagogical requirements 
of the proposal. 

RESEARCH CHARACTERISTICS 
Population and sample  
The population is made up of Engineering students from Technological University 
and the specimen is a Electrical Engineering commission of about 30 students. 
Regarding the characteristics of the population, some considerations can be made 
about their previous knowledge of integral calculus. Some students come from the 
Mechanic School of a known automotive Company and others, from a technical 
electricians school. Based on a detailed analysis of library materials used by teachers 
in these institutions, and the students’ writings, we infer that integrals are taught as 
the reverse process of derivation, with the focus on the algebraic aspects. These 
students study the concept of integral associated with a primitive, practice various 
methods of integration, transcribe or solve hundreds of exercises in order to calculate 
integrals, and some of them even achieve a considerable level of skill in the use of 
tricks and recipes that help to be more effective in getting results. Another group of 
students come from near schools where geometric concepts are little, essentially the 
calculating of areas studied during primary and middle school. However, the largest 
group, is made up of students studying Mathematical Analysis for the second or third 
time. Some of them have completed the course in previous years but failed in the 
exams. It may be that those students have some ideas about integral calculus and its 
applications, or not. It is possible that those ideas interfere with the getting of new 
knowledge or hinder it (Bachelard, 1938), primarily on those students who associate 
the integral exclusively to algebraic processes. That is why it was very important to 
carry out a diagnostic test (pretest) that would allow exploration on the previous skills 
and students ideas about definite integral and thus, categorize according to the 
following levels of the independent variable: 
 Level 1: associate the concept of integral to the primitive of a function and calculates 
easy integrals. 
 Level 2: associate the concept of integral to the primitive of a function, calculates 
easy integrals and links the concept with the area under the curve. 
 Level 3: associate the concept of integral to the primitive of a function and links the 
concept with the area under the curve. 
Level 4: has no specific pre knowledge associated with the topic. 
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Focus 
The general purposes of our research work were: 
to determine if students understand the concept of integral through the 
implementation of a proposal that would allow its teaching in a approaching process, 
using different systems of representation, according to the processes man has 
followed in his establishment of mathematical ideas, 
to analyze, in a reflective learning context, the ways in which students solve problems 
related to integral calculus,  
and the specific purposes were: 
to categorize the students, involved in the experience, according to his integral 
calculation preconceptions, at the beginning of the intervention, 
to implement a proposal that provided, on the one hand, the use of different systems 
of representation in the development of individual and group activities, and on the 
other, to promote conjeturación, experiment, formalization, demonstration, synthesis, 
categorization, retrospective analysis , extrapolation and argumentation, with the help 
of specific software, and feedback on students’ early productions so they could reflect 
on their own mistakes, 
to review progress achieved after the implementation of the didactic proposal, 
to analyze the impact of using a virtual platform for complementary activities. 
Methodology  
The design is pre-experimental type of pretest - treatment - postest with a single 
group. The independent variables in this study are: the design of teaching and pre 
knowledge of students on the definite integral. The dependent variable is: the 
academic performance. 
Regarding these previous knowledge, a pretest at the beginning of the intervention 
allowed to place each student in one of the preset categories. After 8 weeks of 
intervention, a postest allowed to determine the levels of progress made in learning 
the concepts of integral calculus in relation to the results obtained in the past three 
years cohorts (2003, 2004 and 2005). In addition, an interview at the end of the 
experience was implemented, in order to gather qualitative information. 
In order to improve educational practices, we designed a proposal for teaching and 
learning integral calculus according to the proposal of using a pre designed software 
as indicated in the goals. In this sense: 
We designed a software package allowing the boarding of integral calculus from the 
concept of definite integral associated with the area under the curve, from a 
geometric point of view. 
We selected the problems students should solve, in a way, that their approach would 
allow to establish a bridge between conceptualization of integration and problems 
related to engineering. In that sense, the use of the computer allowed to have a very 
wide range of problems, where the choice was not conditioned by the difficulty of 
algebraic calculus.  
The students used pre designed software for: 
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 a) The successive approximations to the area under a curve, considering left and 
right points on each of the subintervals. The software allows to select the function, 
the interval and the number of subdivisions. (See Figure 1). 
b) The successive approximations to the area under a curve through the graph of the 
series which represents the sum of the approach rectangles (See Graphic 1) and the 
table of values (See Table 1). 
c) The visualization of the area between two curves, it also allows to determine the 
points of intersection. 
d) The representation of the solid of revolution on different axes when rotating a 
predetermined area. (See Figure 2) 
e) The numerical and graphical representation (through table of values) of the area 
under the curve of an improper integral. 
It was designed a set of activities with the purpose students conjecture, experience, 
analyze retrospectively, extrapolate, argue, ask their peers and their teachers, discuss 
their own mistakes and evaluate their performance. Assessment techniques were 
redesigned, so that the analysis of students productions would provide feedback about 
their mistakes. 
We incorporated a Virtual Campus using Moodle supporting design, as an additional 
element, in order to keep continuity between two spaced weekly meetings. According 
to Misfeldt and Sanne (2007), communication on mathematical issues is difficult 
using computers and a weekly meeting is insufficient. In response to this problem, we 
used the virtual campus for communication, flexibility and cooperation, but the use of 
it was not a learning objective in itself. Instead, we used it to publish texts and 
exercises guides and also, students made active use of the forum for discussion 
groups.  
We also had in mind that the challenges in creating an online learning environment 
might be different when working with mathematics than in other topics (see also: 
Misfeldt et. al, 2007 & Duval, 2006). Many of the signs that goes into building 
mathematical discourse is not available on a standard keyboard, and the way that 
mathematical communication often is supported by many registers and modalities 
that are used simultaneously, as writing and drawing various representations on the 
blackboard or paper is also not avalilable. Students, using the Virtual Campus, had 
the possibility to upload files showing the solving process and using every symbol 
they needed.  
Implementation of the proposal  
Students were distributed in small groups no more than three, who worked in several 
sub-projects. Each of them included a significant number of problems.  
Subproject No. 1: The concept of integral. 
Subproject No. 2: Fundamental theorem of Calculus. 
Subproject No. 3: Improper integrals. 
Subproject No. 4: Area between curves. 
Subproject No. 5: Applications of Integral Calculus. 
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Guidelines for systematic work for each of the meetings were made. In the first part, 
it was discussed the progress and difficulties of the previous practice, where the 
essential purpose was to ensure that students analyze their own mistakes, and the 
second part, teachers and students worked on new concepts at the computer 
laboratory. The first part of each meeting was guided by the teacher, but a assistant 
teaching and a observer teacher were present in the class. The second half had the 
same staff and an extra assistant teaching. 
The assesment took place during the whole experience through: 

 weekly productions of students reflected in their electronic folders and notebooks. 
These ones allow cells to keep comments, observations, etc.; very valuable 
material in assessing the level of understanding achieved by students. 
 students interaction in classes and into working groups. 
 Students participation in the discussion forums of the virtual campus.  

In that sense, spreadsheets were used for monitoring activities, which proved to be an 
effective tool to assess different aspects relevant to student´s performance. Summary 
notes taken by the observer teacher along the 8 weeks allowed us to infer the change 
of attitude in an important group of these students. From the initial population, made 
up of 30 students, 24 of them showed increased commitment to the development of 
activities. 
Some of these activities were: 
Subproject 1: Evaluate the following integrals by interpreting each in terms of areas  

a) ∫
3

1

dxe x  b) ∫ −
3

0

)1( dxx  

Case a: because f(x)=ex is positive the integral represents the area. It ca be calculated 
as a limit of sums and a computed algebra system can be used to evaluate the 
expression. 
Case b: The integral cannot be interpreted as an area because f takes in both positive 
and negative values. But students should realize that the difference of areas works. 
Subproject 3:Sketch the region and find its area ( if it is possible) 

a) S={(x,y)/ 0 ≤ x ≤ π, 0≤ y ≤ Tan(x)Sec(x)} 
b) S={(x,y)/ x ≥ 0, 0≤ y ≤ 2xe− } 

Case a: Probably students confuse the integral with an ordinary one. They should 
warn that there is an asymptote at x= π/2 and it must be calculated in terms of limits. 
At this point students must bear in mind that whenever they meet the symbol ∫

b

a

dxxf )(  

they must decide, by looking at the function f on [a,b], whether it is an ordinary 
definite integral or an improper integral. 
Case b: The integral is convergent but it cannot be evaluated directly because the 
antiderivative is not an elementary function. It is important students look for a way to 
solve the problem and although it is impossible to find the exact value, they can know 
whether it is convergent or divergent using the Comparition Test for Improper 
Integrals. 
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Both examples above show activities where students need to find out solutions and 
get conclutions without teacher telling them. 
RESULTS 
The pretest was done by 30 students, the results allowed us to locate them as follows: 
15 at Level 1, 1 at Level 2 and 14 at level 4. It should be noted that those who came 
from technical schools had achieved a considerable level of skill in the calculation of 
integrals but they didn´t know about the links with the concept of the area.  
The postest consisted of 6 problems related to the sub projects students had worked 
on, each of which was formed by several items. It was provided to the 24 students 
remaining at the end of the experience, and took place at the computer laboratory, 
where students usually worked. In general, the level of effectiveness was above 50%, 
except in the case where they were asked to determine the area between two curves 
and then the volume to rotate around different axes. The difficulty was to get the 
solid of revolution from a shift in the rotation axis. Although the students had no 
difficulty in getting the solid geometrically, they could not get an algebraic 
expression for it.  
In a comparison with the three previous year cohorts, it was possible to emphasize the 
following differences: 

a) There were no important difficulties in linking the concepts of derivative and 
integral.  

b) An important group of students (83% of them) successfully used Fundamental 
Theorem of Calculus. 

c) In general, there were no difficulties in algebraic developments, however it is 
possible to associate the lack of such obstacles to the use of the computer.  
All of students tested, could associate the concept of solid revolution with the 
concept of integral, and even more, they were able to correctly identify the area 
to rotate. 

d) The 74% of the students tested could identify improper integrals, but only 43% 
of them, correctly, applied the properties. 

e) Most of the students tested succeeded in establishing a bridge between the 
conceptualization of integration and problems related to engineering: 89% of 
them correctly solved problems relating to applications for work, hydrostatic 
pressure and force. 

The written interviews at the close of the experience reflects the importance that 
students attribute to the use of virtual campus as an additional resource: most of 
students were very keen on having prompt responses from the teacher when asking 
questions in the forum and the help offered by other students. 
One of the questions was: 
“How did teachers interventions at the forum helped, when you had difficulties in the 
development of practices? (A: they were decisive, B: they helped me to understand, 
C: they were not decisive. I managed without them, D: they did not contribute at all. 
Please explain your choice).” 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1066



12 students selected A , 8 puplis selected B, 4 students selected C and D was not 
selected. 
Some of the explanations given by students were: 
Student a: “…They helped me because teachers answered quickly and clearly” 
Student b: “…Excellent, clear and concise answers that helped with the resolution of 
the problems.” 
Student c:“…There were many situations where I managed to solve a problem just 
reading the doubts of my fellow students. I have not done a lot of questions at the 
forum because someone asked my doubt before me…” 
It is worth mentioning that there were no substantial differences between the students 
belonging to different categories, according to the pretest. An analysis of results in 
relation to the initial categorization, suggests that pre conditioned ideas did not 
influenced the acquisition of new knowledge. There were no significant differences 
among the largest groups of students ranked in levels 1 and 4. 
CONCLUTIONS 
The failure of the students in understanding the concepts of calculation, more 
generally, and the definite integral, in particular, is one of the most worrying 
problems in the learning of Mathematical Analysis, in the first year of Engineering, 
as this hinders the understanding and resolution of problems of application. The way 
to search for the causality of this failure led us to raise the need for a change in the 
point of view. This is a change in the processes and representations through which 
students learn, in this case, the concept of integral.  
Focusing our attention on the problem how students can understand more deeply the 
concepts using tools and technology, we can conclude that the recent evolution of 
digital materials leads to devote a specific interest to the change of activities induced 
by virtual learning environments which allow new forms of collaboration between 
students, and between teachers and students. Besides, the use of the computer is a 
valuable strategy with the aim of achieving significant learning. While learning the 
concept of definite integral, the computer facilitates making the important amount of 
calculations and displays the successive approximations, contributing to the concept 
of area under the curve. In that sense, the use of a predesigned package software 
allowed students to view the alignment between the smaller and smaller geometric 
rectangles and curvilinear area to be determined.  
The carrying out of the activities required the use of the predesigned package 
software, specifically adapted to the needs of the experience. Students had to make 
numerous graphs, edit their guesses, propose new solutions, test, and analyze 
retrospectively the achieved results. Dynamic graph was valued for making student 
work with figures easier, faster and more accurate, and consequently for removing 
drawing demands which distract them from the key point of a problem. Various 
aspects of making properties apprehensible to students through dynamic manipulation 
were expressed in CERME V Plenaries: “When a dynamic figure is dragged, students 
can see it changing and see what happens, so that properties become obvious and 
students see them immediately” (Ruthven,2007: 56). In that sense, technology is seen 
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as supporting teaching approaches based on guiding students to discover properties 
for themselves. We agree on suggesting that teachers might guide students towards an 
intended mathematical conclusion, but students could find out how it works without 
us telling them so that they could feel they are discovering for themselves and could 
get a better undestanding. 
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APPENDICES 
 
 
 
 
 
 
 
 
Figure 1. Capture screen from the predesigned software about conceptualization of 
definite integral. Estimation of the area of y=x2 using 10 subdivisions and 100 
subdivisions, 0 ≤ x ≤ 1 

number of 
subdivisions 

default 
sums 

excess 
sums 

4 0,219 0,467 
10 0,285 0,385 
20 0,308 0,358 
30 0,316 0,35 
40 0,321 0,346 
50 0,323 0,343 
60 0,325 0,342 
70 0,326 0,34 
80 0,327 0,339 
90 0,328 0,339 

100 0,327 0,337 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Captured screen from the predesigned software about Solid of revolution. 
Area between the functions y=x and y=x2 , and the solid of revolution that is generated 
to rotate on the x-axis and the y- axis. 

Table 1. Sums for different 
subintervals increasingly small 
under the curve y= x2 on the 
interval [0,1] 
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Graphic 1. the series which represents the 
sum of the approach rectangles, default 
sums are in blue and excess sums are in 
pink. 
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USING TECHNOLOGY IN THE TEACHING AND LEARNING OF 
BOX PLOTS 

Ulrich Kortenkamp, Katrin Rolka 
University of Education Schwäbisch Gmünd, University of Cologne 

Box plots (or box-and-whisker-plots) can be used as a powerful tool for visualising 
sets of data values. Nevertheless, the information conveyed in the representation of a 
box plot is restricted to certain aspects. In this paper, we discuss both the potential 
and limitations of box plots. We also present a design for an empirical study in which 
the use of a variety of tasks explicitly addresses this duality. The activities used in the 
study are based on an interactive box plot applet that surpasses the currently 
available tools and offers new ways of experiencing box plots. 
MOTIVATION 
Recently, the mathematics curricula of many parts of the world were revised in order 
to include more statistics and data analysis. In the literature, one can find an extensive 
discussion about this idea under the notion of “statistical literacy” (Wallman, 1993; 
Watson & Callingham, 2003). This reflects the growing importance of the ability to 
understand and interpret data that has been collected or is being presented by others. 
The NCTM (2000) standards, for example, state, “To reason statistically--which is 
essential to be an informed citizen, employee, and consumer--students need to learn 
about data analysis and related aspects of probability.” The global availability of data 
through the Internet makes it easy to access and process huge data sets. For these, it is 
important that students have the skills and tools to summarise and compare the data, 
also by using the computer. 
In this paper, we focus on box plots as a means to visualize statistical data. Box plots 
are used not only in textbooks, but are also available in graphing calculators. In order 
to use statistical information properly, the students have to develop a clear concept of 
what the information means, no matter whether it is given numerically or, in this 
case, visually. 
The situation described also applies to Germany where some states have incorporated 
a larger amount of statistics and data analysis into the mathematics curriculum. Our 
personal experience with teacher students teaching in 8th grade (14-year-olds) has 
shown that both teachers and learners tend to ignore the mathematical concepts 
behind the statistical analysis and fall back to recipes that enable them to solve the 
standard exercises from the text books. In a similar way, Bakker, Biehler and Konold 
(2004) point out that some of the features inherent to box plots raise difficulties in 
young students’ understanding and use of them. As a remedy, we developed a series 
of activities that should enable students to develop a clear understanding of the 
statistical terms. The ultimate goal of the activities is that students can not only draw 
box plots for given data, but also interpret box plots that describe real world 
situations.  
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THEORETICAL BACKGROUND 
Box plots are part of the field of Exploratory Data Analysis where data is explored 
with graphical techniques. Exploratory Data Analysis is concerned with uncovering 
patterns in all kinds of data. A box plot (or box-and-whisker-plot) is a relatively 
simple way of organizing and displaying numerical data using the following five 
values: the minimum value, lower quartile1, median2, upper quartile, and maximum 
value. Considering a set of data values like, for example, 52, 32, 29, 30, 35, 17, 42, 
63, these five values are easy to calculate: minimum value = 17, lower quartile = 
29.5, median = 33.5, upper quartile = 47, and maximum value = 63. 
Using these five numbers, the related box plot can be constructed on a vertical (which 
we use in the following description) or horizontal scale (which is used in Fig. 1) by 
(a) drawing a box that reaches from the lower quartile to the upper quartile, (b) 
drawing a horizontal line through the box where the median is located, (c) drawing a 
vertical line from the lower quartile (the lower end of the box) to the minimum value, 
(d) drawing a vertical line from the upper quartile (the upper end of the box) to the 
maximum value, and finally (e) marking minimum and maximum with horizontal 
lines. Figure 1 shows the box plot corresponding to the data above, created with a 
box plot applet provided by CSERD. 

 
Figure 1: Box plot created online for the sample data in this article 

At the same time, box plots contain more and less information. On the one hand, the 
representation of a box plot communicates certain information at a glance: The 
median and the quartiles can easily be recognized which is not the case for the 
                                                 
1 As there is no universal definition of a quartile, we dedicated a whole subsection of this article to 
this issue. Also, the original box plot uses the lower and upper hinge instead of the quartiles. 
2 The median can be defined as the number separating the lower half of a data set from the higher 
half in the sense that at least 50% of the values are smaller than or equal to the median. 
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original set of data values. Moreover, the line indicating the median illustrates the 
centre of the data, the width of the box demonstrates the spread of the central half of 
the data, and the length of the two lines next to the box show the spread of the lower 
and upper quarters of the data. This enables skilled people to interpret the box plot 
and draw conclusions about the underlying distribution. Various authors have 
declared that box plots are particularly useful for easily comparing two or more sets 
of data values (e.g. Kader & Perry, 1996; Mullenex, 1990). In order to illustrate this 
idea, compare two data sets where the minimum and maximum values as well as the 
arithmetic mean are equal and reveal no hint of how to draw conclusions about the 
values as shown in Figure 2.  

Figure 2: Two box plots with different interquartile ranges 

It is obvious that in the second case, the box is much smaller than in the first one, 
indicating that the spread of the central half of the data is lesser. We use this 
technique extensively in the exercises that are part of the teaching unit. 
On the other hand, the box plot representation is reduced to just five key values and 
the underlying individual values are not apparent any more – one considerable reason 
for students’ difficulties with this kind of graphical representation (Bakker, Biehler & 
Konold, 2004). In addition, box plots – compared to many other graphical 
representations like, for example, histograms – do not display frequencies but rather 
densities (Bakker, Biehler & Konold, 2004). This means, the smaller a particular area 
is, the more values are contained in it. 
A Useful Quartile Definition 
There is no universal definition of a quartile; actually, there are at least five different 
definitions in use (Weisstein 2008). The situation is even worse for software 
packages. According to Hyndman and Fan (1996) even within a single software 
package several definitions might be used concurrently. A visualization sometimes 
uses a different definition than a numerical calculation. One reason for this is that the 
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original concept of box plots as introduced by Tukey (1977) used the hinges of a data 
set instead of the quartiles, which are different in one of four cases. Unsurprisingly, 
the concept of a quartile is obscure to most students and even teachers. 
School textbooks in Germany usually do not give an exact definition of quartiles, but 
combine a colloquial description with a recipe to calculate the quartiles. All 
definitions are not based on the desired result (i.e., “the first quartile is a value such 
that at least 25% of the values are less or equal, and at least 75% of the values are 
greater or equal”), but on a specified way to calculate them (i.e. “the first quartile is 
the value that is placed at position (n+1)/4 if this is an integer, else…” or similar). 
Unfortunately, these recipes are incompatible with the QUARTILE function as 
provided by Excel, which is the most common tool for data analysis in German 
schools, besides the availability of special purpose educational tools for statistical 
analysis like, e.g., Fathom (Key Curriculum Press, 2008). The documentation of the 
QUARTILE function in Excel3 is similar to the text book definitions of quartiles: it 
lacks a formal definition or explanation of the desired properties, and focuses on 
examples instead. It is not possible to explain the results of Excel on that basis.4  
Most of the critique above only applies to small data sets. With larger amounts of 
data the actual definition used is not as significant as with less than, say, 20 values. 
Still, these data sets are the ones that are accessible to hands-on manipulation in the 
classroom. 
For our study, we chose a definition that is both easy to understand and easy to use. A 
lower quartile5 of a set of values is a number qu such that at least 25% of all values 
are less than or equal to qu, and at least 75% of all values are larger than or equal to 
qu. In many cases, this number is a value of the data set, but we do not restrict 
quartiles to be chosen from the values. The definition for the upper quartile qo is 
analogous. Using 50% instead of 25% and 75% we can also use it to define the 
median. All definitions are valid even if some values occur several times. 
Finding the Median and Quartiles 
A very useful and action-oriented way to find the median and quartiles is the 
following one:6 Order all values in increasing order, and write them down in a row of 
equal-sized boxes. The strip of ordered values may look like this (for 8 values): 

                                                 
3 We used the German version of Excel 2004 on Mac OS X. There are explanations of the formulas 
used available, for example, in learn:line NRW at 
http://www.learn-line.nrw.de/angebote/eda/medio/tipps/excel-quartile.htm. Excel uses a weighted 
arithmetic mean for the quartiles. 
4 Büchter and Henn (2005) provide a definition of quartiles that is precise and matches the 
expectation that the lower and upper quartile are the smallest values that cut off at least 25% of the 
values. 
5 We are using the standard German notation here, instead of Q1 and Q3 for lower and upper 
quartile. 
6 A student teacher, Simone Seibold, came up with this method during her traineeship in school. 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1073



1 4 7 14 26 31 33 42

Now, fold the strip in the middle by lining up the left and right border. The crease 
will be between 14 and 26, in this example, as is the median. We may use any 
number between 14 and 26 (not including them), for example the arithmetic mean, 
20.  
Finding the quartiles works by iterating the procedure described above. Folding the 
left and right half of the strip will create creases between 4 and 7, yielding a suitable 
lower quartile of 5.5, and between 31 and 33, which suggests choosing 32 as upper 
quartile. 

        

1 4 7 14 26 31 33 42

        
The appeal of this method is that it also applies to situations where the creases pass 
through the boxes instead of separating two of them (i.e., for odd numbers of values, 
or if the number is not zero (modulo 4)). In that case, the (only) suitable value for the 
quartile (resp. median) is the value in that box. The conditions of our definition above 
are fulfilled automatically. 
Of course, the method is not suitable for real computations with data sets of 
significant size, but only for the proper conceptualisation. It can easily be transferred 
to a formula for the quartile and medians, however. 
Advantages of Using Technology 
Computers are a major reason for the increasing importance of statistics, and vice 
versa. The whole field of data mining became feasible only through the computing 
power to analyse large sets of data easily. Actually, the first applications of 
mechanized computing were of statistical natures, for example in the 1890 United 
States census (Hollerith 1894). In general, multimedia learning bears advantages, in 
particular if several representations of a situation have to be connected mentally (see 
Schnotz & Lowe 2003; Cuoco & Curcio 2001). Relating to suitable design for 
multimedia learning, we refer to the book of Mayer (2003) that details some of the 
guiding principles. This being said, the existing online tools for creating box plots 
disregard these principles. Even the online tool that is officially endorsed by the 
NCTM (see Fig. 1) violates most of these rules. For example, the distant placement 
of the data entry and the box plot is in clear contradiction to the Spatial Contiguity 
Principle of Mayer. The quality of interaction is another measure for multimedia 
learning. The direct interaction with a simulation with immediate feedback supports 
the learner (Raskin 2000). Even if there is no such concept of a “level of 
interactivity,” as it is not a one-dimensional scale, such interaction is considered a 
key ingredient of good software (Niegemann et al. 2003, Schulmeister 2007). Sedig 
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and Sumner (2006) categorized the possible types of interaction in mathematics 
software. Again, the activities found on the web so far do not obey these rules.  
Data Cycle 
Biehler (1997) suggests a “Cycle of solving real problems with statistics”, similar to 
the typical modelling cycle (Fig. 3 left). However, we suggest that in our case another 
model is more suited. The typical way to work with data and data analysis in school 
can be described in a “data cycle” (Fig. 3 right), where data is created by, e.g. 
measurements in the real world, this data is processed to create a representation of it, 
the representation can be used for interpretation, and this should be connected to the 
original data. From top to bottom there is less information (in the information-
theoretic sense), but more structure. On the left we work with the real world, that is 
concretely, on the right we work with a mathematized version of it, that is abstractly.  

Figure 3: Problem solving cycle by Biehler (1997) on the left, and our proposed data cycle on the 
right 

DESIGN OF THE ACTIVITIES 
The design of the study is used in order to answer our main research question: To 
what extent are students able to interpret box plots related to real world situations if 
they work with them interactively on abstract data sets? Based on the theoretical 
analysis given above we therefore designed a set of exercises that enables the 
students to experience both the power and the restrictions of box plots. In all 
exercises students use the same interactive applet.7 The applet is embedded into a 
plain web page and can be used without prior installations using a standard Internet 
browser. Using this applet, students can view and manipulate data with up to 22 
values (the limit is not due to technical reasons, but given by the screen size). They 
can add or remove data, change data by dragging the associated data point with the 

                                                 
7 See http://kortenkamps.net/material/stochastik/Quartile.html. The applet is based on Cinderella 
(Richter-Gebert & Kortenkamp 2006). In our box plot visualization we do not use outliers, as these 
are not used in the standard textbooks, either. 
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mouse vertically, and re-order values by dragging the points in direction of the x-axis. 
Points that have been added by the students are shown in red, others that were given 
are depicted in green. 
According to Bakker, Biehler and Konold (2004), it is helpful for students if 
individual cases can be recognized within the box plot representation. This is granted 
in the applet that we use in our study. All data is visible at all times. While the 
students are manipulating the data, the current mean value is displayed both 
numerically and by a dashed horizontal line. The values that correspond to the data 
points are shown numerically in a white box below each point (Fig. 4 left). 
If the values are ordered ascending the applet adds more statistical information to the 
visualization. To the left of the values the corresponding box plot showing the 
minimum, maximum, quartiles and median, is drawn. Those are connected through 
dashed lines with the corresponding “creases” and the values that are shown below 
the data. The blue bars mark the lower and upper quarters of the values as well as the 
central half (Fig. 4 right). 
Figure 4: Applet with 
unordered values on 
the left, and ordered 
values on the right 

Exploratory 
Exercises 
Assuming that the 
students cannot 
master the interpretation step if they already fail at processing the data, we designed a 
set of exercises that aim at connecting the visualized data and the concepts behind 
them with the original data. Using the applet, students can easily process data 
dynamically, while modifying it, with an immediate update of the visualization. The 
exercises focus on modifying data sets in order to change or preserve the measures of 
variation: (a) Change only the arithmetic mean by changing values, (b) Change only 
the minimum or maximum by changing values, (c) Change only the length of the 
whiskers, (d) Change only the size of the box (the interquartile range), (e) Add values 
without changing the box plot, (f) Remove values without changing the box plot, (g) 
Try to move the arithmetic mean outside of the box, and (h) Try to move the median 
outside of the box. 
Our primary goal is that students understand that box plots are a compact 
visualization of five (or six, depending on the plot) statistical measures, which in turn 
describe the distribution of values in a data set. Based on these measures it is possible 
to draw conclusion about the original set. Students should be able to find as many 
conclusions as possible, while not over-interpreting the measures. The activities force 
the students to create data sets that differ only in certain aspects, while showing an 
interactive visualization of the data and the measures. 
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For example, while experimenting with (d) students will see that for a distribution 
with smaller box (i.e. a smaller interquartile range) the values in the central half are 
more densely distributed than for a distribution with a larger box. Also, common 
misconceptions like a correspondence between the size of the box and the number of 
values in the data set are addressed. Adding or removing values does not necessarily 
change any of the measures of variation. 
SUBJECTS AND METHODS 
In line with the recommendations formulated by a group of stochastic educators in 
Germany (Arbeitskreis Stochastik, 2003), the participants in our study are aged at 
least 15 years. We conducted preliminary tests with the material in schools in two 
German states, Baden-Württemberg and North Rhine-Westphalia. 
In Baden-Württemberg, we worked with 28 students in grade 9 at the “Realschule” 
level. They already received some training with box plots, but not with interpretation, 
in grade 8. In order to let them recall the basics they all received a hand-out about 
medians, quartiles, and box plots. First, they worked for 20 minutes in pairs with the 
applet and were asked to answer the exploratory exercises as given in the last 
paragraph in writing. Next, they were asked to analyze a series of box plots on 
another (paper) work sheet and interpret them in writing. Their answers were 
collected for further analysis. 
In North Rhine-Westphalia, three students of grade 11 were involved in an interview-
like situation where they had the possibility to explore the applet and work on the 
above presented exercises related to box plots. Beforehand, they had also received a 
hand-out providing an overview of medians, quartiles, and box plots. Subsequent to 
the exploration of the applet, they were given two interpretation tasks that they 
answered in written form. 
EXAMPLE OF AN INTERPRETATION TASK 
In class 10a, there are 30 students, in class 10b 29. In both classes, the same test was 
written. The two box plots are based on the scores achieved by the students: 

Class 10a       Class 10b 

a) Describe as detailed as possible which information you can extract from the 
two box plots and compare them with each other. 

b) Which class wrote the better test? Justify your answer. 
c) Give examples for scores of the 30 students from class 10a that fit the given 

box plot and explain your procedure. 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1077



FIRST RESULTS 
We only report on the results from one of the three students who took part in the 
interview-based exploration of the applet and then answered the interpretation task 
presented above. At first, the student describes the two box plots by simply listing the 
five key values respectively. This observation is in line with results reported on in the 
literature, and also our observations with the other student group in Baden-
Württemberg. However, he does not remain at this merely descriptive level and 
formulates the following statement:  

In class 10a, a good portion of the students are located in the centre, whereas the points in 
class 10b are more distributed. However, here the higher points are more pronounced. 

Being sympathetic to the student’s answer, one could conclude that he has 
understood some basic principles of the box plot representation. However, in order to 
get more information about his competencies without construing too much, he was 
later asked by e-mail to clarify this answer. These are his additional explanations:  

The set of students is divided into four parts by the median and the two quartiles. In class 
10a, the two middle areas are particularly small. This means that particularly many 
students are located there. In class 10b, the four areas are about the same size. This 
means that the students are distributed equally regarding to the score. The rightmost area 
in class 10b is considerably smaller than the one in class 10a. This means that the 
students in this area have achieved particularly high scores. 

The additional explanations illustrate that the student has mastered some of the 
difficulties and challenges related to box plots that are described in the literature 
(Bakker, Biehler & Konold, 2004). He realizes that a box plot consists of four areas 
that approximately contain 25% of the data respectively. Moreover, he is able to 
formulate the relationship between the size of the particular areas and the density of 
the values contained in them. 
CONCLUSION 
We agree with the NCTM (2000) standards that students should also be able to create 
and use graphical representations of data in form of box plots as well as discuss and 
understand the correspondence between data sets and their graphical representations. 
The applet presented in this paper and employed in our study does not need any 
further software packages and therefore provides a basic but powerful tool for 
students in order to explore the potential and limitations of box plots. The applet is 
definitely easy to implement in the classroom. However, at the moment we cannot 
say too much about the effects on the interpretation competencies of the students who 
worked with the applet in a classroom situation. For the interview-like individual 
exploration our results show that the work with the applet can support the ability of 
students to analyze and interpret box plots. Currently, we are concerned with using 
the promising experiences based on the interview-like situations in order to make the 
applet also accessible to the work in the classroom.  
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DYNAMICAL EXPLORATION OF TWO-VARIABLE FUNCTIONS 

USING VIRTUAL REALITY
1
 

Thierry Dana-Picard – Yehuda Badihi – David Zeitoun - Oren David Israeli 

Jerusalem College of Technology 

We present the rationale of an ongoing project, aimed at the development of a 
Virtual Reality assistant learning of limits, continuity, and other properties in 
multivariable Calculus. The Mathematics for which this development is intended 
is described briefly, together with the psychological and pedagogical elements of 
the project.  What is Virtual Reality is explained and details are given about its 
application to the specific field. We emphasize the fact that this new technological 
device is suitable for self-teaching and individual practice, as well as for the 
better storing and retrieving of the acquired knowledge, and for identifying its 
traces whenever it is relevant for further advanced learning.  

BACKGROUND 

The institution and its pedagogical situation 

The Jerusalem College of Technology (JCT) is a High-Tech Engineering School. 

During the Spring Term of first year, a course in Advanced Calculus is given, mostly 

devoted to functions of two, three or more real variables. A problem for many 

students is a low ability to "see" in three-dimensional space, with negative 

consequences on their conceptualization of notions such as limits, continuity, 

differentiability. Another bias appears with double and triple integrals, as a good 

perception of the integration domain is necessary to decide how to use the classical 

techniques of integration. Sik-Lányi et al. (2003) claim that space perception is not a 

congenital faculty of human being. They built a Virtual Reality environment for 

improving space perception among 15-16 years old students. With the same concern 

we address a particular problem of space perception with older students, using the 

same digital technology.  

Berry and Nyman (2003) show students' problems when switching between symbolic 

representation and graphical representation of a 1-variable function and of its first 

derivative. They say that "with the availability of technology (graphical calculators, 

data logging equipment, computer algebra systems), there is the opportunity to free 

the student from the drudgery of algebraic manipulation and calculation by 

supporting the learning of fundamental ideas". Tall (1991) notes that the computer "is 

able to accept input in a variety of ways, and translate it's flexibly into other modes of 

representation, including verbal, symbolic, iconic, numerical, procedural. It therefore 

gives mathematical education the opportunity to adjust the balance between various 

                                         

1
 The first author is supported by Israel Foundation Grant 1340/05. The development is supported by a grant from the 

Israel Inter-University Center for e-Learning, number 5768/01. 
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modes of communication and thought that have previously been biased toward the 

symbolic and the sequential".  

Until now, various technologies have been introduced as a tentative remedy to 

problems encountered with three-dimensional perception. Nevertheless, problems 

still remain. Numerous technologies have been introduced for the sake of 

visualization. Arcavi (2003) classifies the roles of  visualization as a) support and 

illustration of essential symbolic results, b) provider of  a possible way of resolving 

conflicts between (correct) symbolic solutions and (incorrect) intuitions, and c) a help 

to re-engage with and recover conceptual underpinnings which may easily be 

bypassed by formal solutions.  

In the present paper, we focus on functions of two real variables, plotting and 

analyzing their graphs, considering especially the b) component in Arcavi's 

classification. A problem may appear inherent to all kinds of support: a graphical 

representation may be incorrect, either because of non appropriate choices of the user 

or because of the constraints of the technology (Dana-Picard et al. 2007). In order to 

overcome this problem we turn our attention towards another technology: Virtual 

Reality (VR). This technology is extensively used for training pilots or other 

professionals. Jang et al. (2007) discuss the usage of VR related to representation of 

anatomy, clearly a 3D situation too. But as far as the authors know, it has been 

implemented yet neither for Mathematics Education in general, nor for the 

Mathematics Education of Engineers. In this paper, we present the rationale for the 

authors to start the development of a VR assistant to learning Mathematics. We 

describe an environment where the learner is not passive and has some freedom to 

choose his/her actions. A VR environment offers cognitive assessment, spatial 

abilities, executive and dynamical functions which are not present in more traditional 

environments.  

Representations of a mathematical object 

Among the characters articulated in mathematics teaching cognitive aspects: 

•  Multiple representations of the same objects: textual (i.e. narrative) 

presentations, literal formulas, graphical representations, tables of numerical 

values, etc. These presentations may either be redundant or leave empty holes. 

Note that every presentation has to be accompanied by a narrative presentation 

for embodying the rule and for the sake of completing the given description of 

a rule. Mathematics educators generally agree that multiple representations are 

important for the understanding of the mathematical meaning of a given notion 

(Sierpinska 1992).   

• When using together multiple representations in order to give a concrete 

appearance of composite consequences of the rule under consideration, it can 

be necessary to perform a transfer between an abstract concept and concrete 

representations. For example, Gagatsis et al. (2004) present a hierarchy among 

the possible representations of a function, calling tables as a prototype for 
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enabling students to handle symbolic forms, and graphical representations as a 

prototype for understanding the tabular and verbal forms of functions (for a 

study of prototypes, see Schwarz and Hershkowitz 1999). 

• The more numerous the rule's implications (in Physics, Biology, Engineering, 

Finance, etc.), the more important is the requirement of creative skills (e.g. 

interpolations, extrapolations, which the learner will have to apply). Here the 

teacher will generally try and guide the learner with examples, graphical 

representations, and animations. 

• The more fundamental the rule, the more important for the learner to store it, to 

internalize it and its consequences for a long duration. This will enable him/her 

to build more advanced rules. More than that, the learner needs ways to extract 

the knowledge and to find its traces whenever it is relevant for further learning 

(Barnett et al, 2005).  

• Regarding a mathematical rule with geometrical implications and 

representations, its complete mastering requires from the learner, according to 

the Gestalt conception, a permanent transfer from one kind of representation to 

another kind (see Hartmann and Poffenberger, 2007). On the one hand, it is 

necessary to understand how a change in the parameters of the rule influences 

the representation. On the other hand, abstraction skills enable to conjecture 

the rule from the graphical representation and to modify the parameters in the 

formula according to the changes in the graphical representation. This is the 

rationale for the usage of software for dynamical geometry. 

The graphical representation has been made using either Maple 9.5 or the free 

downloadable software DPgraph (www.dpgraph.com). Because of the dynamic 

character of a VR device, we do not include screenshots. Suitable presentations can 

be found at URL: http://ndp.jct.ac.il/companion_files/VR/home.html. 

 

LIMITATIONS AND CONSTRAINTS ON THE CONVENTIONAL 

REPRESENTATION TOOLS 

Real functions of two real variables may have various representations: symbolic (with 

an explicit analytic expression ( ) ...y,xf = ), graphical (the graph of the function, i.e. a 

surface in 3D-space), numerical (a table of values), not necessary all of them at the 

same time. This last kind of representation is generally not easy to use in classroom; 

the plot command of a CAS uses an algorithm which provides numerical data, and 

the command translates this numerical data into a graphical representation. Generally 

the higher level command is used, and the user does not ask for a display of the 

numerical output. The VR device that we develop uses this numerical output to create 

a terrain (a landscape) over which the student will "fly" to discover the specific 

properties of the function, either isolated or non-isolated singularities, asymptotic 

behaviour, etc. 
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It happens that a symbolic expression is unaffordable. This creates a need, central for 

teaching, for suitable tools to illustrate the function and make it more concrete. An 

example is given by Maple's deplot command for plotting the solution of a 

Differential Equation without having computed an analytic solution; of course this 

command uses numerical methods. Within this frame, educators meet frequently 

obstacles for their students to achieve a profound and complete understanding of the 

behaviour of such functions. Examples of the limitations have been studied by Kidron 

and Dana-Picard (2006), Dana-Picard et al. (2007) and others.  The student's 

understanding of the behaviour of a given function depends on the representations 

which have been employed.   

Dana-Picard et al (2008) show that the choice of coordinates has a great influence on 

the quality of the plot produced by a Computer Algebra System (CAS).  Compare the 

plots of ( ) ( )11 22
!+= yx/y,xf , displayed in Figures 1 and 2. Cartesian coordinates 

have been used for Figure 1 and polar coordinates for Figure 2. The discontinuity at 

every point of the unit circle is either not apparent or exaggerated. Moreover Figure 

1b shows a kind of waves which should not be there.  

 

(a)                                        (b) 

Figure 1: Plots of a 2-variable function, with Cartesian coordinates 

The choice of suitable coordinates is not the sole problem for getting a correct plot. 

Figure 2a shows that our discussion on "correct coordinates" is not the ultimate issue, 

and even with these coordinates, other choices influence the accuracy of the graph, 

whence the student's understanding of the situation. In Figure 2a the discontinuities 

are totally hidden, as a result of the interpolation grid chosen by the software. This 

issue is discussed by Zeitoun et al. (2008).  

A "wrong" choice of coordinates may hide important properties of the function, but 

may show irrelevant problems, whence numerous problems with the figure and its 

adequacy to the study. A central issue is to decide what "correct coordinates" are and 

what a "wrong choice" is. It has also an influence on the possible symbolic proof of 

the properties of the function. A couple of students have been asked why they have 

hard time with such problems; they answered that the reason is a lack of basic 

understanding of the behaviour of the represented mathematical object (no matter 

whether the representation is symbolic, numerical, or graphical). A problem can arise 
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when checking that data of two different kinds actually represent the same function. 

Experience must be accumulated by the learners. 

 

                                                   (a)                                        (b)   

Figure 2: Plots of a 2-variable function, with polar coordinates 

Moreover, the students may receive a proof of a certain property using an abstract-

symbolic representation of the mathematical object under study. Despite the proof's 

precision, it happens that the student needs a more concrete presentation. In a practice 

group of 25 students, the teacher chose the function defined by ( ) ( )11 22
!+= yx/y,xf  

and showed plots like those displayed in Figure 1.  Two thirds of the students saw 

immediately that the function has a lot of discontinuities (intuitively, without giving a 

proof), but could not explain immediately what is wrong with Figure 1.    

The graph of a 2-real variable function is a surface in 3-dimensional space. A 

function of three real variables can be represented by level surfaces. Excepted at 

certain points, this is the same mathematical situation as before, because of the 

Implicit Function Theorem. At the beginning of the course, about 70% of our 

students have problems with surface drawing. A lack of intuition follows, for 

example concerning the existence of discontinuities. This may incite the student to 

make successive trials, i.e. to multiply technical tasks not always relying on real 

mathematical thinking.  Afterwards a symbolic proof is required, and maybe a 

graphical representation will be needed to give the "final accord". 

Graphical features of a Computer Algebra System are used to enhance visual skills of 

our students, hopefully their manual drawing skills. With higher CAS skills, an 

animation of level surfaces can help to visualize graphically a 3-variable function. 

We meet two obstacles: 

• The dynamical features of a CAS are somehow limited. In many occurrences, 

it is possible to program animations, and/or to rotate the plot, but not more.  

• A CAS cannot plot the graph of a function in a neighbourhood of a singular 

point. In this paper we focus on limits and discontinuities. The CAS either does 

not plot anything near the problematic point (Figure3b) or plots something not 

so close to the real mathematical situation (Figure 3b: where do these needles 

come from?). Note that this occurs already with 1-variable functions, but with 

2-variable functions the problem is more striking. 
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(a) false incomplete plot                (b) incomplete plot 

Figure 3: Two Problematic plots for ( )
1

,
22
!+

=
yx

xyyxf . 

 

VIRTUAL REALITY 

What's that? 

The technology called Virtual Reality (VR) is a computer-based physical synthetic 

environment. It provides the user with an illusion of being inside an environment 

different from the one he/she is actually. This technology enables the building of a 

model of a "computerized real world" together with interactive motion inside this 

world. The VR technology gives the user a feeling that he/she an integral "part of the 

picture", yielding him/her Presence, Orientation, and even Immersion into the 

scenario  he/she is exposed. After a short time he behaves like it’s the real world.  

The goals: VR-concretization and its added value 

A CAS is not a cure-all for the lack of mathematical understanding when dealing 

with discontinuities of multi-variable functions. A more advanced, more dynamical 

concretization is given by a VR environment. It is an additional support to 

Mathematics teaching completing the classical computerized environments, beyond 

the traditional representations (symbolic, tabular-numerical, and graphical). Actually 

VR provides an integration of computer modes previously separate (Tall 1991):  

• Input is not limited to sequential entry of data using a keyboard. Devices such 

as a joystick are also used. 

• A working session and its output mix together the iconic, the graphical and the 

procedural modes. 

When reacting to the student's commands, the VR device computes anew all the 

parameters of a new view of the situation. The student takes a walk in a landscape 

which is actually part of the graph of the function he/she studies. At any time, VR 

simulates only part of the graph, the discontinuity is never reached, but it is possible 

to get arbitrarily close to it. The VR may provide the student what is missing in 
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his/her 3-dimensional puzzle, by eliminating the white areas appearing in CAS plots, 

such as Figure 3a. It is intended to provide him/her a real picture of how the function 

he/she studies behaves. 

A VR environment provides compensation to the limitations and the constraints of 

the imaging devices already in use (CAS and plotters). It presents an image of a real 

world and gives a direct 3-dimensional perception of this world, as if the user was 

really located in it. The higher the quality of the VR environment, the more powerful 

the impression received from this imaginary world's imitation of the real world.  

In our starting project, the simulation provided by VR is intended to improve the 

students' understanding of continuity and discontinuity, and afterwards give also a 

better understanding of differentiability of a multi-variable function. Among other 

affordances, the VR simulation cancels problems of discontinuity related to graphs 

because of its local and dynamical features. 

COGNITIVE CHARACTERISTICS AND SIMULATION FEATURES OF A 

VR ENVIRONMENT 

The final rules may be represented in a concrete fashion by interaction with the 

environment and by showing to the learner the limitations of the rules, as they appear 

in a (almost) static environment generally yielded by a CAS. Non graphical 

representations of functions, such as numerical representations, cannot   show 

continuity and discontinuity. This comes from the discrete nature of these 

representations, a feature still present in the computerized plots.  

The new knowledge afforded by the learner is a consequence of his/her own efforts to 

explore the situation. His/her ability to change location, to have a walk on the graph, 

will lead him/her to internalize in a better way the mathematical meaning of 

continuity and discontinuity. An added value is to help him/her to understand the 

meaning of changing parameters in the geometric representation. This added value is 

made possible by the live experience of the behaviour of the function, no matter if the 

transitions are discrete or continuous (according to changes in the variables or in the 

parameters). The mental ability to feel changes, their sharpness, their acuteness, 

comes from the immersion into the topography in which the learner moves. 

This added value is still more important when the function under study encodes a 

concrete situation, in Physics, Engineering, Finance, etc. The interactive experience 

enables the learner to translate the rules to which the function obeys, to find 

analogues of these rules for other concrete situations. The concrete sensations 

provided by VR improve the learner's understanding of interpolation and 

extrapolation, and to translate this understanding into the graphical situation (see also 

Dana-Picard et al., 2007). The more immersive features of the mathematical 

knowledge that are incorporated into VR representation for the learner, the faster 

he/she will find the traces of it whenever it is relevant for further learning. Besides, 

the more immersive features are incorporated into VR knowledge representation the 
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greater the longevity of preserving the acquired knowledge. This means a slower 

extinction of it in the memory system (Chen, et.al. 2002). 

Interactivity improves the learning experience.  Numerous studies show that the more 

deeply lively experienced the learning process the more internalized its results 

(Ausburn and Ausburn, 2004; Barnett et al, 2005). The internalization is assessed by 

an improved conservation of the knowledge, i.e. a slower decrease of the knowledge 

as a function of elapsed time. Therefore, a Virtual Reality assisted learning process 

yields a better assimilation of the mathematical notions than with more conventional 

simulations devices, as it provides this live sensorial experience. This is a more than a 

realization of the request expressed by a student involved in a research made by 

Habre (2001); this student wished to be able to rotate surfaces in different directions. 

A Computer Algebra Systems does this already. VR meets a further requirement of 

this student, namely to have "a physical model that you can feel in your hands". 

According to the brain mapping, the numerical representation of functions is acquired 

by the left hemisphere of the brain, and the space-live experienced acquisition in a 

learning process is devoted to the right hemisphere. The transfer from the symbolic 

rule to a 3D representation and vice-versa requires transfer between two brain lobes 

with different functionalities. Concerning conceptualization, especially when it must 

be applied to a concrete domain, there exists a mental difficulty to "move" from one 

lobe to the other (in terms of longer reacting time, or of completeness of the process). 

An interactive environment where functional parameter changes are allowed, and 

where the environment changes can be sensitively experienced, enables a faster 

building of bridges between the different registers of representation, symbolic, 

numerical, and graphical.  

Finally, the usage of a VR assistant to learning is purely individual. The teacher can 

show a movie, but it is only an approximation of the requested simulation. The 

student's senses are involved in the process, the hand on the joystick, the eyes and the 

ears in the helmet, etc. Therefore the VR device should take in the learning 

computerized environment a place different from the place of other instruments. 

OUR VR DEVICE AND FUTURE RESEARCH 

The digital device described above is now in its final steps of initial development. 

The user can fly over (or walk along) the terrain, i.e. over the graph of the given 

function. The details of the graphs, the possible discontinuities, are made more and 

more visible. This effect is not obtained by regular zooming, as this operation only 

inflates the size of the cells of the interpolation grid. For new details to appear the 

data has to be computed anew and only part of the surroundings is displayed.   

Furthermore, a VR environment seems to contribute an added value by representing 

more holistic characteristics of the mathematical knowledge. Among the main 

contributions are the dynamics or flow traits. A more integrated one is the ability to 

understand its place in the whole mathematical or physical context it is playing with. 
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In cognitive terms it means that by VR environment, the teacher should provide to the 

student a more accurate mental model of the mathematical knowledge, including the 

applicable images of it (Croasdell et al, 2003).  

In particular, the dynamical properties of a VR device and their appeal to various 

sensitive perceptions (vision, audition, etc.) induce also the need of the integration of 

the hand into the educative schemes. As Eisenberg (2002) says, the hand is not a 

peripheral device, but is as important as the brain. He discusses the issue of the 

importance of physical approximations to purely abstract concepts, rejected by Plato's 

point of view. Here we use the hand totally coordinated with vision and sensorial 

perception.  

As noted by Artigue (2007), "The increasing interest for the affordances of digital 

technologies in terms of representations have gone along with the increasing 

sensitivity paid to the semiotic dimension of mathematical knowledge in mathematics 

education and to the correlative importance given to the analysis of semiotic 

mediations".   In this perspective, a preliminary double blind research is on its way, 

with two groups of JCT students. We intend to report on the results in a subsequent 

paper.   
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DESIGNING A SIMULATOR IN BUILDING TRADES AND USING 

IT IN VOCATIONAL EDUCATION 

Annie Bessot, Colette Laborde 

DIAM – LIG, University of Grenoble, France 

This paper deals with the design, the production and the uses of a simulator for the 
activity of marking out on building sites from reading a marked plan. The main 
design principle of this simulator lies in that it is not meant for reproducing 
accurately the real context of the activity but it should offer the possibility of posing 
problems of the work situation through a prior conceptual analysis of the 
professional activity. 
What is a reading-marking out activity in a building work? Most of building tasks are 

based on reading plans for marking out on the building site. We call this kind of 

tasks, reading-marking out tasks. In a building site, setting out elements takes into 

account what will be set out later. For example, when a floor is to be laid down, the 

marking out of the floor must leave holes for water pipes and electric cables. Setting 

out a wall must plan location for windows and doors by marking out their contour. 

Such marking out is called “boxing out”. Generally speaking, a boxing out is a 

formwork placed in the middle of a structure before casting concrete, used to set 

aside an area in which additional equipment can be added at a later date. This task of 

reading information from a plan to mark out contours and boxing out on the building 

site is usual for workers in building trades. 

Two types of controls can be distinguished in the marking out of boxing out: 

- controls coming from reading information on the plan 

- subsequent and effective controls at the moment of putting the additional 

elements (pragmatic controls), 

the first type of controls being oriented towards the second type of controls. 

The first type of controls is the focus of our attention. In absence of pragmatic 

control, only controls guided by knowledge about space and instruments can take 

place. The activity of setting out boxing out can allow researchers to observe 

conceptualisation and help them answer questions such as: what is the nature of 

knowledge involved in this activity? How is such knowledge organized and what 

relationship does it have with the artefacts available on the building site? 

The observation of students of a vocational school gave evidence of a discrepancy 

between procedures of students and of professionals in this reading-marking out 

activity on building site from reading a plan. Two types of analysis were carried out 

in order to better know this discrepancy and to understand the reasons:  an analysis of 

the geometry in action underlying the students’ activity in reading marking out tasks 

in workshop and an analysis of the transposition of the professional activity in 

vocational education was needed. The first analysis is presented in Bessot & Laborde 

(2005). The second analysis focused on the place and status of reading-marking out 
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activities in vocational education, in particular when preparing students to a 

certification of qualified workers for building trades (in French : Brevet 

d’Enseignement Professionnel). It was carried out and showed that the reading 

marking out situation that constitutes an indivisible entity in the professional practice 

is divided or almost absent from the vocational education institution (Metzler 2006). 

A simulator is for us a means of designing situations restoring the unity of reading 

marking out activity in the three teaching places of French vocational education in 

which knowledge about space is part of the learning aim: in the mathematics teaching 

(in particular geometry), in the teaching of construction, in the teaching of practice in 

workshop.  

According to a key design choice, the simulator was meant as an open-ended 
environment offering the possibility of constructing didactic situations based on 

problems previously identified in the analysis of professional situations. 

1. FONDAMENTAL PROBLEMS INVOLVED IN READING-

MARKING OUT PROFESSIONAL SITUATIONS 

Previous research on different types of space (Bessot & Vérillon 1993, Brousseau 

1983, Berthelot & Salin 1992, Samurcay 1984) as well as the analysis of professional 

practices (Bessot & Laborde 2005) allowed us to identify three types of problems 

related to the invariants specific to reading-marking out situation. The two first types 

are related to mesospace, the third type to the instruments of the building site. 

The first type of problems is the problem of locating the local space in which marking 

out takes place within the mesospace of the building site. Two types of space are 

involved: the local spaces in which marking out the lines is achieved, and the global 

space of moves that allows the worker to move from one local working space to 

another one. 

Locating the local space requires coordinating three frames of reference (Samurçay 

ibid.):  

- the frame of reference attached to the subject (egocentric reference frame) 

- the frame of reference of the lines marked on the building site (allocentric 

reference frame) to construct from fixed existing objects of the mesospace that may 

also be lines already marked on the building site  

- the frame of reference of the plan that is the dimension system. 

The second problem related to mesospace deals with the coordination of local spaces 

(Brousseau ibid.) that may be distant from each other. This coordination is needed in 

the process of obtaining the expected global set of marked lines of mesospace. 

The third problem is related to the use of instruments: transferring measures requires 

taking into account the features of the instruments. 
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2. CHOICES FOR SIMULATING MESOSPACE 

In order to decouple the problem of local marking out from the one of moving and 

orienting were created two different windows: the first window allows the worker to 

have access to various local spaces but never to the entire space; the second one 

provides access to the visual field of the worker within the global space and his/her 

move in this global space. In the second window (global space) one can only move, 

in the first one, one can mark out by means of instruments and one can move without 

a general view (through the scrolling bars). Here are presented the features of these 

two windows. 

� Window simulating the local space for marking out 

This window simulating the visual field of the worker with real dimensions 1,50 m by 

1,10 m is the screen of the computer providing a representation of the real visual field 

on a scale of 1 to 5 (Fig. 3).  

One can perform measurement and marking out with the simulated instruments (see 

below). This window is located within the global space for marking out which is not 

visually totally accessible. One can move in the global space from one local space to 

another one by using the scrolling bars of the window (Fig. 1) but with only a partial 

view at each moment making difficult the linking up of local spaces. 

 

Fig. 1: Window simulating the marking out local space 

We wanted to simulate the change of viewpoint when the worker is moving away 

from or closer to the lines marked on the site. Zoom out (Zoom-) and zoom in 

(Zoom+) possibilities have been set up to simulate these moves, moving away and 

moving closer. Zoom facilities are limited in order to avoid a global view of the space 

for marking out. In addition, it is not possible to perform marking out when the zoom 

tool is active but it is possible to move the instruments. At any time, it is possible to 

come back to marking out by pressing the key “Zoom 0”. This zooming possibility 

makes easier an accurate reading of the marks of the measuring tape and the move 

from one marking out local space to another one at a small distance. 

� Window simulating the global space 

In order to locate the current marking out local space within the whole space, it is 

possible at any time to have access to the simulation of the global space by pressing 

F9 key. The window global space is simulated by a squared vignette with a 7,5 cm 

long side representing a real squared space with a 5m long side (Fig. 3 et 4). 
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When opening the window, a yellow hard hat appears that represents the worker with 

its visual field represented by a rectangle. This rectangle is the image at scale of the 

screen (marking out local space). When opening the window, the yellow hard hat is 

always oriented vertically below the rectangle (Fig. 3, 4 et 7). 

It was chosen to simulate the moves of the worker (yellow hard hat) and not its 
position (Fig. 6 et 7). Two moves are possible: shifts and rotations which are 

multiples of a quarter turn. Shifts are performed by directly moving the rectangle 

through the mouse. Rotations are egocentric and are performed by pressing one of the 

three buttons « > », « < », « � »: to get the marking out 

local space on the right of the worker press button « > », 

on the left of the worker press button « < », behind the 

worker press button « � ». When back to the local space 

(Fig. 6), the worker sees the lines oriented as resulting 

from the move performed in the global space window. 

In this way the decision of moving and the effect of the 

move on the visual field are decoupled. If from the marking out local space one 

comes back to the global view (F9 key), when opening the window, the yellow hard 

hat is always below the rectangle representing the local space (Fig. 7). Without a 

fixed frame of reference, the change of position cannot be inferred from the position 

of the yellow hard hat with respect to the fixed border of the screen. 

    

Fig. 2: Window «marking out local space»     Fig. 3: Window global space in the screen 

(after pressing F9 key) 

          

Fig. 4: Local space in the global space window    Fig. 5: After pressing button « < » 

 

On the right On the left 

In the front of 

Behind 
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- 90 °

      
Fig. 6: After pressing « OK »                        Fig. 7: After pressing « F9 »  

           back to local space       back to global space 

3. CHOICES FOR SIMULATING OBJECTS 

� Choices for simulating the prefabrication table  

The prefabrication table in which the slab is poured, is simulated by three rectangles 

with same width 0,05m joined in an U shape: the table is 4m long and 2,5m wide. 

When opening the simulator, the borders of the table may have various directions 

with respect the borders of the screen: parallel to the screen borders (see Fig. 8) or not 

(see Fig. 10). The U shape can be oriented in various directions (see Fig. 8 and 9). 

 
The table is not totally visible in the local space although as fixed object of this space, 

it can serve as frame of reference of the mesospace for locating lines in coordination 

with the plan. The table is only totally visible in the global space window (key F9). 

� Choices for simulating the use of instruments 

The choices for simulating instruments deal with their aspect, their accessibility, their 
moves and their use. We decided that all instruments should look like real 
instruments. In particular their dimensions are proportional to real dimensions. The 
2,5m long ruler and the 3m long tape even partly unwound stick out beyond the 
visual field (see Fig. 11 and 12). 
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       Fig. 11: The ruler cannot be           Fig. 12: Apart of the measuring tape 

                     totally seen   

Marking out instruments, namely the pen and the blue line are permanently visible as 
icons at the top of the screen.  

Instruments for measuring and transferring geometric properties read from the plan 
(setsquare, ruler and tape) are put at the beginning in three boxes labelled with their 
names, which are simulated by rectangles located in a corner of the global space 
accessible by moving in this space. Once an instrument is out by clicking on its box, 
the worker may have to move to find it again in his/her visual field (resorting to the 
global space window or to zoom) and to shift it in the screen (local space) to the 
adequate location in order to perform a marking out. 

The materiality of the instruments was not preserved in that simulated instruments 
can overlap. However seeking to make the edge of an instrument coinciding with the 
prefabrication table or with the edge of another instrument partly replaces this 
materiality. However note that the simulated tape is also retractable as in reality in a 
pink squared case. 

4. CONCLUSION ABOUT THE DESIGN OF THE SIMULATOR 

One of the important contributions of simulators lies in the possibility of being freed 

of the constraints of reality, like the irreversibility of some actions or the time 

passage.  

It is clear that the simulator transforms the relationships of the worker with space. But 

what is lost in fidelity can be gained in terms of problems and control. Indeed, in the 

use of the simulator, separating local and global spaces requires from the subject to 

make the decision of seeking information in the global space. To this end the subject 

leaves the local space in order to be and move in the global space, and then must 

come back in order to perform marking out. These conscious back and forth moves 

do not occur in reality. As a result of this separation, the subject is certainly faced 

with a coordination problem of frames of reference of the two spaces. 

The additional action of back and forth moves between the two spaces is tedious, it 

transforms the reading marking out strategies and favours predictions to decrease the 

number of back and forth moves. But it gives rise to observations for the subject and 
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the educator and consequently can become an object of a reflexive work analysing 

strategies in real and simulated situations. 

Another contribution of the simulator is the possibility of controlled variation offered 

to the educator. The same simulator can give rise to different uses in vocational 

education. The educator has the command of the type of use and of tasks given to the 

students. An example of a didactical situation is briefly presented below. 

5. EXAMPLE OF A DIDACTICAL SITUATION MAKING USE OF THE 

SIMULATOR 

The situation reported here raises the problem of continuing a marking out already 

done without transmitting to the worker information on what has been set out. This 

situation simulates a usual professional problem. Solving this problem requires that 

the worker identifies the local space within the global space by coordinating various 

frames of reference including the frame of reference of the plan. 

� Instructions 

The plan of slab 1 with three boxings out is given (Fig.13) to the students.  

1) Open the file “slab 1” 

2) As visible, the contour of slab 1 and one boxing out have already been marked.  

3) Mark out the two other boxings out of slab 1.  

Here below is given the plan of slab 1 provided to the students as well as the 

windows local space and global space.  

 

The plan is oriented by the orientation of the writing (from left to right and from top 

to bottom) and consequently imposes a position for reading. It is represented in this 

position on Figure 13. When opening the file “slab 1”, part of the prefabrication table, 

part of the lines and the boxing out R(25, 26) are visible in the local space (Fig.15).  

In figure 14, it is visible that the slab is rotated through 180° with respect to the frame 

of reference of the plan.  
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Fig.15: At the opening of file slab 1 

�  A priori analysis of the situation 

In the marking out activity, the worker’s aim is to reproduce in the mesospace the 

image of the drawing of the fabrication plan. The continuation of the marking out 

requires interpreting the boxing out already marked in mesospace as the image of a 

boxing out of the plan. 

Two cases are possible: 

- Either the plan and its (unfinished) image in the working local space have a 

similar orientation and the boxing out is erroneously considered as R(27,23) 

-  Or measures are taken in order to identify the already drawn boxing out with a 

boxing out of the plan. 

The choice of the dimensions of boxings out in slab 1 is deliberate. The distances to 

the border of the two boxings out R(25 ; 26) and R(27 ; 23) are visually close, 

favouring thus the mistake of the first case in absence of the professional gesture of 

taking information on what has already set out. 

Incorrect interpretation of the already marked boxing out without measuring : R(27 ; 23) 
Two other boxings out must be marked. Here is only considered the case of boxing 

out R(27 ; 55) as the only one likely to lead to feedback. Two procedures for marking 

out R(27 ; 55) are possible:  

- Either through an alignment with R(27 ; 23) by resorting to the only measure 

55 : no feedback. 

- Or by resorting to two measures 27 and 55 without making use of the 

alignment. Once the marking out is done, the absence of alignment of the two marked 
boxings out provides feedback that leads to reject the interpretation of the existing 
boxing out as R(27 ; 23). This leads to the second case which is analyzed below.  

Correct interpretation of the already marked boxing out through checking by measuring: 
R(25 ; 26) 
The coordination between the plan and its unfinished image can be achieved in two 

ways. 

- Real or mental half turn of the plan of slab 1 
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The plan is rotated through 180 ° effectively or in thought to superimpose the image 

on the screen with the rotated plan: the marking out is performed with a 

prefabrication table in the position “open on the right, closed on the left”.  

- Move in the mesospace through resorting to the global space window. 

To keep the prefabrication plan in its privileged position and make it coinciding with 

its image on the screen, it is possible to use F9 key to get access to the global space in 

order to simulate a half turn in this space: the table is then in the position “open on 

the left, closed on the right”. When back in the local space, the boxing out already 

marked is the image of R(25 ; 26). Boxings out can be marked in the same position as 

they are on the plan. 

The situation is aimed to provide multiple opportunities in which checking measures 

of marked objects in mesospace (prefabrication table, lines) lead to an economy in 

marking out. Checking is a critical gesture of building trade as claimed by the 

educators in vocational education. 

� A posteriori analysis of the situation 

As displayed in table 1, only 3 pairs out of 5 resort to measuring on the marking out, 

in order to identify the boxing out.  

without 

measuring 

with measuring Interpreting the 

already marked 

boxing out  R(27,23) 

Pairs 1 and  2 
R(20,21) then R(27,23) 

Pair 6 
R(25,26) 

Pairs 4 and 5 

Table 1: Checking procedures of already marked boxing out 

Let us analyze the checking procedures of the three pairs 4, 5 and 6.  

Pair 4 made two checks by measuring the dimensions of the slab and the dimension 

of the already marked boxing out (26 cm) which is sufficient for identifying the 

boxing out. 

Pair 5 checked only one measure (26 cm) and did a half turn of the  plan to make the 

screen matching the plan. 

Pair 6 drew surprising conclusions: the already marked boxing out is first considered 

as not in the plan, then as the erroneous boxing out R (27, 23). Verbal interactions 

among students V and N of this pair allow us to understand those successive 

conclusions. As pairs 1 and 2, V immediately identifies the already marked boxing 

out as R(27,23). But N insists on measuring. Then he measures one of the dimensions 

of the boxing out and obtains 20 cm as a result of a wrong use of the measuring tape: 

the distance is measured by making coinciding the centre of the boxing out with the 

border of the case of the measuring tape (with width 5 cm in real size). He then 

measures the second dimension in the same way and obtains 21cm. Surprised not to 

find any boxing out of the plan, he resumes each measuring twice or three times. 
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V: it fits nothing. It means that it is already marked, then we must mark out the three 

others. We make one more, that’s it. 

N doubts that there can exist 4 boxings out and asks questions about the use of the 

measuring tape to observer O. He admits that he never used a measuring tape! 

N: the end of the tape, is it at the black mark (corresponding to the clip of the real tape) or 

at the other end? 

O: it is at the black mark as on a real tape… do you know, don’t you? 

N: No, I don’t know, I never used a tape. 

V: Didn’t you?  

The doubt about correct using of the tape as well as the cost of its use in the simulator 

lead them to give up checking the correspondence between measures and dimensions 

on the plan. They come back to the first opinion of V, i.e. identifying the already 

marked boxing out as R(27,23). 

The simulator made possible to face the students with the usual professional problem 

of continuing a marking out, which is a fundamental issue of the professional activity, 

as claimed by the teachers. The simulator revealed that even at the end of the 

vocational training, almost half the students do not resort to checking and among 

those who checked, the use of instruments may cause difficulties. This checking 

professional gesture is not available to all students at the end of the school year. 
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COLLABORATIVE DESIGN OF MATHEMATICAL ACTIVITIES 

FOR LEARNING IN AN OUTDOOR SETTING 

Per Nilsson   Håkan Sollervall   Marcelo Milrad 

School of Mathematics and Systems Engineering, Växjö University, Sweden 

In recent years, teaching mathematics in an outdoor setting has become popular 
among teachers, as it seems to offer alternative ways to motivate children’s learning. 
These new learning possibilities pose crucial questions regarding the nature of how 
mathematical activities should be designed for outdoors settings. In this paper we 
describe our current work related to the design and implementation of mathematical 
activities in this particular environment in which a specific mathematical content was 
used as the central component in the design. We illustrate our collaborative design 
approach and the results from observations of two activities. Our initial results 
provide us with valuable insights that can help to better understand how to design 
and implement this kind of educational activities.  

INTRODUCTION 

A recent trend in Swedish elementary schools is an increasing interest to teach 

mathematics in an outdoor setting. Teachers believe that this particular approach 

motivates the children more than solving problems in textbooks, thus offering new 

ways to introduce and work with mathematical concepts (Lövgren, 2007). Teaching 

mathematics in an outdoor setting usually refers to school children solving practical 
problems using whichever forms of mathematics they find appropriate (Molander, 

Hedberg, Bucht, Wejdmark, Lättman-Mash, 2007). The approach presented in this 

article is somewhat different. The paper describes our initial efforts with regard to an 

ongoing project in which a specific mathematical content within the field of geometry 

was used as the central component in the design of mathematical activities in an 

outdoor setting.   

Our project involves a development team consisting of schoolteachers, university 

teachers and researchers, who collaborate to develop mathematical activities with the 

purpose of supporting students’ processes of learning. The mathematical activity 

described in this paper was developed during a period of eight months, counting from 

the first meeting of the development team and until the completion of the activities 

involving students. The methodological approach used for developing the 

mathematical activity will be the central focus of our discussions.  

Even if outdoors teaching of mathematics has got an increasing interest among 

teachers and teacher educators in recent years, we found few published materials with 

reference to outdoor environments in the research field of mathematics education. For 

instance, we found no results when searching on outdoor, outdoors or embodied in 

titles or keywords in Educational Studies in Mathematics, Journal for research in 
Mathematics Education and The Journal of Mathematical Behaviour. When we 
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searched on the term physical, some results showed up. However, in a brief check on 

research methodologies adopted in these studies, no one was centred on an outdoor 

activity.  

Against this background, the current (ongoing) project aims at investigating different 
possibilities to support students’ processes of learning by designing mathematical 
activities for an outdoor setting. This approach does not aim at replacing traditional 
mathematics teaching. It should rather be interpreted as a complementary method to 
be used at the discretion of the mathematics teacher in combination with other 
teaching methods. In this paper, we particularly aim at discussing our method of 
design in connection to the principles of Design experiments (Cobb, Confrey, 
diSessa, Lehrer & Schauble, 2003). Throughout the discussions presented in this 
paper, special attention is paid to the constitution and the working conditions of the 
development team.  
The rest of paper is organized as follows; in the next section we present the 

mathematical tasks that guided our design and activity while the subsequent section 

gives a brief overview on the concept of design experiments. The preceding sections 

illustrate the results from observations of two activities followed by discussions on 

the notions of group and individual mathematical understanding and practices. The 

last two sections conclude this article by providing a description of current and 

coming directions of our work together with a discussion about future challenges. 

DEVELOPMENT OF ACTIVITIES 

In this section we describe, both the content of the proposed activities as well as the 

approach taken while designing the different tasks. The driving force in the design 

process has been experience-based suggestions from the schoolteachers. Each 

meeting of the development team has involved four to six teachers and two to three 

university researchers. The first meeting of the development team focused on 

identifying mathematical content and learning objectives for an outdoor activity 

suitable for beginners at lower secondary school. We soon agreed to focus on 

geometry. Aspects that were discussed dealt with the problems students have on 

understanding geometrical concepts such as area and perimeter. An early idea was to 

produce a series of activities showing progression from length to area and then to 

volume, using physical objects close to the school yard. The university 

representatives suggested utilizing non-standard measurements (sticks, steps and 

squares) to be used in relation to triangles, rectangles and polygons defined by trees 

or within the school soccer field. The school teachers instead suggested to focus on 

four aspects of the selected domain, namely the following learning objectives; 

comparison of figures, making own estimates, constructing figures with given 

measures and, specifically, discovering that a doubling of lengths makes the area four 

times larger. 

It was decided that the university teachers should work on designing a task 

incorporating as many as possible of the agreed suggestions and present it to the 
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whole group after the summer 2007. The proposed mathematical task, as described in 

figure 1, aimed at having the students construct the following sequence of figures 

using ropes and metal hooks to be fastened in the ground. 

 

 

 

Figure 1: Intended sequence of figures to be constructed by the students. 

Shortly after the summer, Växjö University hosted Professor Matthias Ludwig from 

Pädagogische Hochschule Weingarten in Germany, who offered to give two one-

hour lectures at our department. One of these discussed outdoor geometrical tasks and 

tools used in connection with the tasks. Inspired by his lecture we decided to suggest 

construction of two tools; one for producing a right angle and one for measuring 

arbitrary angles, both based on making judgments by eyesight. The planned right 

angle tool consisted of a wooden square with markers at the middle of each side, as 

shown to the left in Figure 2.  

 

Figure 2: Ludwig’s tool to the left, our tool to the right. 

The woodwork teacher at the school prepared a number of square boards and also 

prepared a number of round boards intended for use in another activity. The square 

shaped tool could also be used to represent a square meter since its side was exactly 

one meter. However, we identified several disadvantages of this tool with respect to 

the intended task: it could not be used while placed on the ground, it was quite heavy, 

and the handling required several people operating close to the tool. We later chose 

the tool shown to the right in the figure above, which was actually what was left over 

after the round boards had been cut out. This second tool had several advantages. It 
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could be used while placed directly on the ground, it was easy to carry due to the hole 

in the middle, and could be used at a distance. The right angle was aimed at the sides 

of the tool.  

In the first proposal, the lengths for the catheti (that were to be doubled during the 

task) were 3 meters and 4 meters. In the construction, metal hooks and flag lines were 

used. While trying out the task on the (grass-covered) school yard we all agreed that 

larger measures were needed, to give the students a better overview of the 

construction and to give them reason to move within the figure. The first suggestion 

was to double the lengths to 6 meters and 8 meters, but we also agreed to avoid an 

exact measure for the hypotenuse and ended up choosing 5 meters and 8 meters as 

lengths for the catheti. 

The task was communicated to the students through written instructions on paper. 

The first page of the instructions described the tools the students were supposed to 

bring to the school yard (3 flag lines, 6 metal hooks, roll-out length measure, right-

angle tool, paper and pen). Three separate tasks were described on the following three 

pages.  

Each task was divided into three subtasks in the same way (construct a figure, 

determine perimeter, determine area). This was done for several reasons. Since the 

students were not used to this kind of activity, we wanted to restrict the content in 

each subtask. We also wanted to encourage the students to discuss their conclusions 

on each subtask as a group, especially to verify that the construction was made 

according to the descriptions as we suspected that they otherwise might focus only on 

calculations. Also, since the written instructions were not supported by figures, we 

found it reasonable to restrict each subtask in order not to make it too difficult for the 

students to interpret the task. Our aim was to let the students work on the tasks 

without the support from the teacher; thereby inviting them to take on different roles 

and take more own initiatives than they were used to in their usual mathematics 

classroom. Another important aspect was that the tasks should allow for applying 

different solution strategies, such as measuring, calculation, and comparison. 

DESIGN EXPERIMENTS 

The methodology used in this project is founded on the principles of Design 

experiments (Cobb et al., 2003). Cobb and colleagues (2003) summarize Design 

experiments (DE) in five crosscutting features. The first feature, develop theories, 

concerns understanding processes of learning and the means that are designed to 

support that learning. The second feature, which concerns control, may be seen as the 

focus of the current project: “The intent is to investigate the possibilities for 

educational improvement by bringing about new forms of learning in order to study 

them” (Cobb et al., 2003, p. 10). To develop theories about learning processes, and to 

try to exert control of such processes, implies the need for prospective and reflective 

analyses. Prospective and reflective work is the third feature of DE. On the 

prospective side, our designs have been implemented with a hypothesized learning 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1104



  

process in mind. The activity has been carried out with students and the following 

reflective work has been based on observations of students’ actions. The prospective 

and reflective aspects come together in a fourth characteristic of DE, iterative design. 
Iterations are carried out with the modification and development of explaining 

learning and the means of supporting learning. The project so far has included only 

two iterations which have been based on informal observations with a rather weak 

theoretical base. Our strategy has been to let the preliminary informal observations 

guide us toward relevant learning theories to support later iterations. The fifth feature 

refers to the pragmatic roots of DE. As school teachers take active part in the design 

process, we feel confident that the activities are relevant for teachers’ practice. 

OBSERVATIONS FROM TWO ACTIVITIES 

Two activities involving students have been carried out in the project. The two 

activities included two different groups of four students (14-15 years old). The 

activities were neither videotaped nor audiotaped. Instead, two researchers and two 

teachers observed the activities. The researchers were the same both times.  

During the activities, the students were very eager to start working with the lines and 

hooks. We feel that the division of each task into subtasks made it possible for them 

to interpret the subtask while arranging lines and hooks. On a few occasions, when 

they were getting lost in the construction, we had to intervene and ask them to read 

the instructions again. We also observed that some of the students had problems 

handling the instruction papers. These problems concern locating and returning to the 

instructions after they have been left on the ground, as well as documenting answers 

to the questions. 

One specific observation concerned the change in social behaviour. One of the 

teachers commented on a female student who was busy constructing sides by pulling 

flag lines:  

Look at her. She seldom takes initiatives in the classroom; she is very quiet and rarely 

shows interest. Here she is, pulling flag lines, talking to her classmates and really 

enjoying what she is doing. 

Another notable observation can be seen as relating to gender issues. In a group of 

two boys and two girls, the boys were trying to solve the problem of extending the 

catheti, seemingly ignoring the girls. As the boys got stuck, one of the girls walked 

up to the (female) teacher and whispered her solution. The teacher encouraged her to 

talk to the boys, and the whole group ended up producing the intended construction. 

One specific topic of discussion concerning mathematics emerged in our follow-up 

meetings. To recall, one of our intention with the design was to encourage different 

solution strategies, such as measuring, calculation and comparison. What was noticed 

however, was that measuring took a rather dominant role in the activity. Moreover, 

since the students were not familiar with the Pythagorean Theorem we did not expect 

them to calculate the hypotenuse of the first triangle, in order to determine its 
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perimeter. However, when the students were asked to determine the perimeter of the 

larger triangle, i.e. after the catheti of the first triangle being doubled, they also now 

measured the hypotenuse. None of the students reflected on or argued that also the 

hypotenuse was doubled. The students did not even reflect on this after the three sides 

were measured. The data they used for determining the perimeter was the measured 

data.  

During the first activity, the students quickly turned to calculating the area of the 

larger triangle by the rule; base times altitude divided by two. No attempt was made 

to compare the larger triangle with the smaller triangle, even if the construction 

supported looking four smaller triangles within the larger (see Figure 1). In the 

instructions for the second activity, we therefore explicitly asked the students if they 

could find out from the constructions any relation between the area of the larger 

triangle and the smaller triangle. After some discussion and guidance the students at 

least articulated that the area of the larger triangle was four times the area of the first 

triangle. However, we were not comfortable that the activity did not by itself provoke 

the students to involve principles and relations in their discussions.  

We observed that the students solved the tasks rather pragmatically and routinely, in 

terms of measuring and applying rules for calculation. However, we do not have 

evidence that the students’ behaviour depended on conceptual limitations. In the 

follow-up discussions within the development team we identified possible 

explanations in terms of the design of the activity and the students’ history of being 

part of a certain educational system. Therefore, to develop the activity and to 

understand students’ actions and potential, we have reached a point where we find it 

necessary to deepen the theoretical approach of our work, taking into account 

analytical constructs on several levels of interaction. In the next section we describe 

principles of the emergent perspective (Cobb et al., 2001), which we find suitable for 

our purposes. 

CONCEPTUALIZING GROUP AND INDIVIDUAL MATHEMATICAL 

UNDERSTANDING 

In Cobb, Stephan, McClain and Gravemeijer (2001) terms, the evolution of 

mathematical learning in classrooms constitutes of social as well as psychological 
structures of behaviour and reasoning. Within the social structure, they identify three 

analytical categories: Classroom social norms, Sociomathematical norms and 

Classroom mathematical practices. Examples of Classroom social norms can be for 

instance; that students collaborate to solve problems, that meaningful activity is 

valued more than correct answers, and that partners should reach consensus as they 

work on activities. With reference to our observations, Classroom social norms may 

have been in play when the quiet girl had to be encouraged by her teacher to 

communicate with her team members. Sociomathematical norms are defined as social 

constructs specific to mathematics. These are the norms in play when explanations 

and justifications are made acceptable (Hershkowitz and Schwarz, 1999). When 
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applying the analytical construct of classroom mathematical practices the analytical 

lens is closer to a certain instructional activities. It concerns regularities of the 

collective engagement in a specific situation in terms of symbolizing, arguing and 

validating. 

A student may experience a study activity in different ways, as compared to the 

teacher’s and to other students’ interpretations (Wistedt, 1987; Iversen and Nilsson, 

2007). The psychological perspective concerns the nature of individual students’ 

reasoning. It brings attention to the diversity in students’ ways of interpreting and 

acting in mathematical activities (Cobb et al., 2001).  

It is crucial to understand that the relation between the social and the psychological 

perspective is considered to be reflexive (Cobb et al., 2001): “…neither perspective 

exists without the other in that each perspective constitutes the background against 

which mathematical activity is interpreted from the other perspective” (p. 122). 

An implicit assumption of the current project has been that an unfamiliar teaching 

arrangement might encourage students to act beyond previously established 

Classroom social and Sociomathematical norms, with the possibility that these new 

actions may be more mathematically productive than their correlates of ordinary 

classrooms. The initial results of our observations, specifically the two separate 

incidents involving girls, support this assumption.  

THE ORGANIZATION OF MATHEMATICAL PRACTICES 

Weber, Maher, Powell, and Lee (2008) summarize some important ways in which 

discussions may establish opportunities for the learning of mathematics. Discussion 

can objectify students’ experiences, thereby making these experiences the subject of 

analysis, encourage students to take a more reflective stance on their mathematical 

reasoning, require students to consolidate their thinking by verbalizing their thoughts, 

and help students learn to communicate mathematically and participate in a wider 

range of mathematical argumentation. Weber et al., (2008) also contend that group 

discussion can facilitate learning by inviting students to be explicit both about the 

ways in which they make new claims from previously established facts and about the 

standards they are using in deciding whether an argument is acceptable. Challenges 

from classmates can encourage students to debate whether a particular method of 

argumentation is appropriate and provide students with the opportunity either to 

justify their methods when their reasoning is sound or revise or abandon their 

methods when their reasoning is flawed. 

In the organization of group discussions, Cobb et al., (2001) distinguish between 

three specific structures: taken-as-shared purposes, taken-as-shared ways of reasoning 

with tools and symbols, and taken-as-shared forms of mathematical argumentation. A 

taken-as-shared purpose is what the students and the teachers are trying to achieve 

together mathematically. The second structure is concerned with the ways in which 

tools and symbols are used and given taken-as-shared meanings. To account for 
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taken-as-shared forms of argumentation Toulmin’s (1969) analytical model of 

argumentation has proven useful (Cobb et al., 2001). According to Toulmin (1969), 

an argumentation consists of at least three core components: the claim, the data, and 

the warrant. When a speaker makes a claim he or she may be challenged to present 

evidence or data to support that claim. The data typically consist of facts that lead to 

the conclusion that is made. If a listener does not understand why the data justify the 

conclusion that was drawn she may challenge the presenter to clarify why the data led 

to the conclusion. When this type of challenge is made and a presenter clarifies the 

role of the data in making her claim the presenter is providing a warrant. A warrant 

can of course be questioned, thus obligating the presenter backing up the warrant.  

DISCUSSION ON OUR METHOD OF DESIGN 

Our choice of method has been influenced by the constitution and working conditions 
of the development team. The main focus has been on collaborative development of 
the mathematical activity. The project emphasizes the potential benefits of 

collaborative development in close interaction with stakeholders. There has been a 
very open climate of discussion where teachers’ knowledge and experiences have 

been given equal attention as input from the researchers. The teachers have been very 
active providing ideas and reacting on suggestions from the researchers, both during 
physical meetings and through e-mail communication. We argue that this way of 

collaboration differs from the approach usually used by DE practitioners. In DE, 

theories are usually introduced in early stage of the design process (diSessa & Cobb, 

2004). From the observations of two activities, we have been identified a need for 

supporting theories. The interpretative frameworks outlined above will enable us to 

strengthen our design and to better understand our observations. However, we have 

found it fruitful to use an experienced based approach. No theories have been 

explicitly communicated during the initial work of the development team. 

Particularly, we believe that introducing abstract theories early in the discussions 

would have reduced the teachers’ interest and possibilities to communicate 

empirically grounded ideas, thereby limiting the pragmatic root of the project. Our 
approach may therefore serve as a reasonable model for others, who wish to engage 
in collaborative activities in order to enhance school teaching. On account of this, we 

suggest that researchers in collaboration with teachers should take seriously the role 

of theories, particularly when to introduce them in the project at hand.  

We suggest a balance between theories and practice, where practice takes on a rather 

dominant role in the early work. As the project and iterations proceed, the role of 

theories may be increased in order to enhance control of the learning activity. The 

analytical categories argued by Cobb et al., (2001), and Toulmin’s (1969) model of 

argumentation, offer instruments both for supporting the design process and for 

serving as tools for analysis of observed actions.  
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Finally, one can question the validity of our approach in relation to the pedagogical 

implementation and learning outcomes of these activities but the main point here is 

not assess the effectiveness of the learning materials neither the mathematical content 

but instead to explore how to design and organize the flow of pedagogical activities 

in an outdoor learning setting. Our initial impressions indicate that this kind of 

learning activities seem to encourage discussions and new collaboration patterns, thus 

promoting deeper understanding among students. Therefore, we believe that a major 

challenge for the mathematics education community is to create new possibilities for 

learners to understand complex mathematical concepts, as well as to develop new 

analytical tools and theories in order to facilitate our understanding on how learning 

takes place under these new circumstances. 

FUTURE EFFORTS 

Based on the discussions presented in this paper, the following suggestions appear to 

be relevant for the design of the next iteration. The design of the next activity should 

take into consideration how: 

 collective understanding can be provoked by encouraging students to make 

claims and be explicit about the warrants on which the claims rest, 

 collective discussion can capitalize on individual variations (implying that the 

activity should encourage a variation in reasoning and solution strategies),   

 norms and structures of mathematical practices may support or limit students’ 

behaviour.  

The last aspect specifically refers to the observation of how measuring took on a 
rather dominant role in the activities, narrowing the students’ conceptual structures. 
On account of these guidelines we suggest to follow up the described activity with a 
second activity, where the students are not allowed to use a measuring tool. Instead 
they start with a triangle with given perimeter and given area and whose sides are not 
known. The triangle will be marked with flag lines and the students will be asked to 
continue the construction of the same pattern as in the previous construction and will 
be asked to determine the perimeter and the area of the larger triangle. We conjecture 
that such a setup will provoke the students to reflect on conceptual aspects, by 
comparing features of the triangles. Another suggestion is to let the students choose 
their own measures and construct a triangle which will be extended to a rectangle, 
with the aim that they discover the connection between the areas of the two figures. 
An obvious next step of the project is to investigate how the described outdoor 

activity can be followed up in the regular classroom. Earlier mentioned shortcomings 

concerning students’ documentation may be overcome by using mobile technologies. 

According to Spikol and Milrad (2008), mobile technologies offer the potential for a 

new phase in the evolution of technology-enhanced learning, marked by a continuity 

of the learning experience across different learning contexts. In particular, we 

propose to let students use mobile technology in order both to communicate the tasks 
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and to support the documentation of their solutions. Moreover, offering the students 

possibilities to videotape and taking pictures during the activity will support them in 

recalling and sharing experiences when they return to their regular classroom. We 
believe moreover that interesting applications may be developed in additional fields 
such as arithmetic and statistics, and even in algebra and functions. Our ambition is to 
invite students from the teacher training program at our university, so they can 
participate in widening our design approach to the above mentioned fields.  
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STUDENT DEVELOPMENT PROCESS OF DESIGNING AND 
IMPLEMENTING EXPLORATORY AND LEARNING OBJECTS  

 
Chantal Buteau & Eric Muller 

Department of Mathematics, Brock University, St. Catharines (CANADA) 
 
In 2001 a core undergraduate program, called Mathematics Integrated with 
Computers and Applications (MICA) was introduced in the Department of 
Mathematics at Brock University, Canada. In this program that integrates evolving 
technologies, students complete major projects that require the design and 
implementation of 'Exploratory and Learning Objects' (ELO). In this paper, we 
propose schematic representations and descriptions of the student development 
process as s/he completes an ELO project. We highlight the important role that ELO 
interfaces play in this development process.  
Keywords: Exploratory and Learning Objects (ELO); student development process; 
students designing and implementing ELO; university mathematics education. 
 
INTRODUCTION 
There have been a number of publications (Muller, 1991, 2001; Muller & Buteau, 
2006; Buteau & Muller, 2006; Pead et al, 2007; Muller et al., forthcoming) about the 
long-term implementation of evolving technology use in undergraduate mathematics 
education at Brock University (Canada) that started in the early 80s. The most recent 
development is the 2001 implementation of the core undergraduate mathematics 
program called Mathematics Integrated with Computers and Applications (MICA). 
Two of the program aims are to (1) develop mathematical concepts hand in hand with 
computers and applications; and (2) encourage student creativity and intellectual 
independence (Brock Teaching, 2001). Three innovative core courses, called MICA I, 
II, III, were implemented in addition to a review of all traditional courses to 
incorporate the MICA program aims. Results of a 2006 MICA student survey and an 
enrolment analysis covering the years 2001 to 2006 are reported in Ben-El-
Mechaiekh et al. (2007). Highlights include 

Students overall rated the use of technology in their mathematics courses as 
positively beneficial (77.74% of responses; 79.36% when restricted to mathematics 
majors). (p.10) 

and, furthermore, 
... students overwhelmingly rated the use of technology in [MICA] courses as 
[positively] beneficial (91.13% of responses) (p.9) 

In this paper proposal, we focus on one of the major student activities in the MICA 
courses, namely their designing, implementing (VB.net, Maple, C++), and using of 
interactive and dynamic computer-based environments, called Exploratory and 
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Learning Objects (ELO). By Exploratory Object (EO) and Learning Object (LO), we 
mean the following. 

An Exploratory Object is an interactive and dynamic computer-based model 
or tool that capitalizes on visualization and is developed to explore a 
mathematical concept or conjecture, or a real-world situation 

and,  

A Learning Object is an interactive and dynamic computer-based 
environment that engages a learner through a game or activity and that 
guides him/her in a stepwise development towards an understanding of a 
mathematical concept. (Muller et al., forthcoming, p.5) 

To illustrate these objects, we provide without comment three examples of original 
student ELO projects that can be accessed at (MICA Student Projects website, n.d.): 
(1) Structure of the Hailstone Sequences EO by first-year student Colin Phipps for the 
investigation of a mathematical conjecture; (2) Running in the Rain EO by second-
year students Matthew Lillie and Kylie Maheu for the investigation of a real-world 
situation; and (3) Exploring the Pythagorean Theorem LO by first-year student 
Lindsay Claes for the learning of a school mathematical concept. 
In previous publications, we have elaborated how the MICA I course is designed to 
progressively bring the students to acquire the skills and understanding required for 
the development of ELOs (Muller & Buteau, forthcoming). In brief, as the course 
progresses, our students are guided through each step in the development process of 
ELOs that we describe in the next section of this paper. We have also explained that 
this requires a significant change in the teaching paradigm of faculty involved in 
these courses, and motivates a change in attitude in the students about learning and 
doing mathematics with technology at the university level (Muller et al., 
forthcoming). And also, we have argued that learning activities in the MICA program 
accelerates students' growth towards independence in doing mathematics (Buteau & 
Muller, 2006).  
In this paper we propose a first attempt at defining a structure for the student 
development process in their activity of designing, implementing, and using an ELO. 
These final MICA projects are completed individually or in pairs selecting a topic of 
their own choice. We also briefly discuss the role of interfaces in the student 
development of an ELO. As in the past, we, as mathematicians in a mathematics 
department, look forward to receiving constructive feedback from mathematics 
educators. We hope that the presentation of our innovative student learning activities, 
as part of the systemic integration of technology in our university mathematics 
curriculum, will instigate educational research questions on learning mathematics 
with use of technology in tertiary education.  
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STUDENT DEVELOPMENT PROCESS OF EXPLORATORY AND 
LEARNING OBJECTS 
In what follows, we suggest schematic representations of the development process for 
ELOs. Even though the schematic representations are worded generally, in their 
descriptions we focus on students in MICA courses. 
Development Process of an Exploratory Object to Investigate a Conjecture 
We propose the following diagram (Figure 1) to illustrate this development process. 

 
Figure 1. Development process of an Exploratory Object for the purpose of 
investigating a conjecture. 
Here is a description of each step in the diagram. 
1. Student states a conjecture, and may discuss it with the instructor; some of the 
more independent students wait until step 3 to discuss their project. 
2. Student researches the conjecture using library and Internet resources, and may 
refine his/her conjecture. In conjunction with step 3, student identifies the 
mathematics, such as variables, parameters, etc., and is involved in a Designing 
Cycle. 
3. With his/her understanding of the conjecture, student starts designing and 
implementing (i.e., coding) an interactive environment (i.e., program with interface) 
with a view to testing the conjecture. Student organizes the interface to make 
parameters accessible and to display diverse representations of results. As the 
interface plays such an important role in EO, we discuss it further in the next section. 
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4. Student selects, in a step-wise fashion, simple and more complex cases to test that 
the mathematics is correctly encoded and that the interface is fully functional. 
Together with step 3, the code testing and revising involve the student in a 
Programming Cycle. 
5. At this step, student now returns to focus on his/her conjecture and uses the Object 
to systematically investigate it. Following the results of the investigation, the student 
may decide to refine the Object, e.g., introducing new parameters, etc., and be 
involved in a Refining Cycle (with steps 2, 3, and 4). 
6. Student produces a report of his/her results and submits it with the Object. The 
report includes a statement of the conjecture, the mathematical background (from 
step 2), results of the exploration including an interpretation of the data and graphs 
(from step 5), a discussion, and a conclusion. This is somewhat similar to a science 
laboratory report. Building on this analogy, the Object is the laboratory itself. In other 
words, student submits his/her self-designed 'virtual laboratory' for the investigation 
of a self-stated conjecture together with his/her laboratory report. 
Development Process of an Exploratory Object to Investigate a Real-World 
Situation 
We propose the following diagram (Figure 2) to illustrate this development process. 
 

 
 
Figure 2: Development process of an Exploratory Object for the purpose of 
investigating a real-world situation. 
Here is a description of each step in the diagram. 
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1. Student selects a real-world situation of particular interest, and may discuss it with 
the instructor; some of the more independent students wait to discuss their project 
until step 3 or 4. 
2. Student researches the real-world situation using library and Internet resources, and 
may restrict or modify the scope of the real-world situation. In conjunction with steps 
3 and 4, student identifies the mathematics, such as variables, parameters, etc., and is 
involved in a Designing Cycle. 
3. Student develops a mathematical model of the real-world situation using the 
variables and parameters selected in step 2 and in the majority of cases, consults the 
instructor. 
4. With his/her understanding of the model, student starts designing and 
implementing (i.e., coding) an interactive environment (i.e., program with interface) 
with a view to investigating the real-world situation. Student organizes the interface 
to make the model parameters accessible and to display diverse representations of 
solutions. As the interface plays such an important role in EO, we discuss it further in 
the next section. 
5. Student selects, in a step-wise fashion, simple and more complex cases to test that 
the mathematical model is correctly encoded and that the interface is fully functional. 
Together with step 4, the code testing and revising involve the student in a 
Programming Cycle. 
6. At this step, student now returns to focus on his/her real-world situation and uses 
the Object to systematically investigate it. Following the results of the investigation, 
the student may decide to refine the model and the Object, e.g., introducing or 
deleting, new parameters and variables, new conditions, etc., and may be involved in 
a Refining Cycle (with steps 2, 3, 4 and 5). 
7. Student produces a report of his/her results and submits it with the Object. The 
report includes a description of the real-world situation, a development of the 
mathematical model (from step 3), results of the exploration (from step 6) including 
an interpretation of the data and graphs, a discussion, and a conclusion. This is 
somewhat similar to a science laboratory report. Building on this analogy, the Object 
is the laboratory itself. In other words, student submits his/her self-designed 'virtual 
laboratory' for the investigation of a self-selected real-world situation together with 
his/her laboratory report. 
Development Process of a Learning Object of a Mathematical Concept 
We propose the following diagram (Figure 3) to illustrate this development process. 
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Figure 3: Development process of a Learning Object of a mathematical concept. 
Here is a description of each step in the diagram. 
1. Student selects a school concept.  
2. Using library and Internet, student looks at resources about the concept and its 
teaching. In particular, student identifies when in the school curriculum the concept is 
taught, reviewed and expanded, what previous mathematical understanding, general 
knowledge and reading capabilities can be assumed, etc. In conjunction with steps 3 
and 4, student identifies and develops the mathematics didactical features that could 
be used for his/her Object, and is involved in a Designing Cycle. 
3. Based on the information gathered in step 2, student selects a didactical strategy 
for a fictive school pupil learning of the concept that may include developing a game 
or activity to engage the learner, breaking down the concept, setting up a testing 
procedure, etc. Student may discuss the strategy with the instructor or wait until the 
next step.  
4. Student starts designing and implementing (i.e., coding) an interactive environment 
(i.e., program with interface) with a view to implement the didactical strategy. 
Student structures a self-contained interface realizing that the fictive school pupil will 
be using the LO independently. As the interface plays such an important role in LO, 
we discuss it further in the next section. 
5. Student tests that the interface (communication, navigation, etc.) is fully functional 
and tests with simple and more complex cases that the mathematics is correctly 
encoded. Together with step 4, the code testing and revising involve the student in a 
Programming Cycle. 
6. At this step, student now returns to focus on his/her didactical strategy and works 
through the Object with a school pupil in mind. Following the results of this 
investigation, the student may decide to refine the Object, e.g., changing the sequence 
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of activities, improving the clarity of communication, etc., and may be involved in a 
Refining Cycle (with steps 3, 4, and 5). 
7. Student tests his/her Object by observing a school pupil, at appropriate grade level, 
working with the Object. In some cases, student returns to the refining cycle and 
revises the Object. 
8. Student produces a report of his/her results and submits it with the Object. The 
report includes the didactical purpose, the target audience, the mathematical 
background of the target audience, a brief account of the school pupil experience 
(step 7), and a discussion. This report is somewhat similar to a lesson plan, including 
a post-lesson reflection, though without a description of the lesson. Building on this 
analogy, the Object is the lesson itself. Thus, student submits his/her lesson plan of a 
self-selected mathematical concept in which the written description of the lesson is 
replaced by an 'interactive self-directed lesson (with a virtual learner)', i.e., by the 
Object. 
ROLE OF THE INTERFACE IN THE DEVELOPMENT PROCESS OF 
EXPLORATORY AND LEARNING OBJECTS  
The interface provides interactivity and (dynamic) visualization. In the Development 
Process of ELOs (Figures 1, 2, and 3), the student creates an interface in the 
Designing Cycle with the aim of using it for his/her mathematical or didactical 
investigation (step 5 in Figure 1 and step 6 in Figures 2 and 3). 
During the Designing Cycle of an Exploratory Object, the potentiality of interactivity 
encourages the student to make explicit the parameters that could play a role in the 
investigation of his/her conjecture or real-world situation in such a way that they are 
accessible from the interface. The potentiality of visualization urges the student to 
decide on the representations to be displayed in his/her interface so as to best support 
his/her investigation.  
At the step in the Development Process when the student uses the Object for his/her 
investigation (step 5 in Figure 1 and step 6 in Figure 2), both interactivity and 
visualization aspects of the interface play a role in the student's systematic 
investigation. The latter can be seen as a dialogue between the student and the 
computer, though the discussion is fully controlled by the student. During the 
systematic investigation, the student sets a question by fixing values to parameters 
(interactivity), the computer answers the question (visualization), and the dialogue 
continues in that way unless the student concludes that the answers are not 
satisfactory to meet his/her goal and decides to refine the Object (Refining Cycle). In 
other words, the student is in an intelligent partnership (Jones, 1996) with 
technology.  
The interface plays a central role in Learning Objects but which is different than in 
the Exploratory Objects. A Learning Object is designed for other users to use by 
themselves, i.e., without the Object designer who is the student in our case. Thus the 
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navigation in the interface should be very clear and easy. The interface should also 
provide, at any time, motivation for the intended users to go to a next step in the 
Object. As such, the visual presentation and the wording should be adapted to the 
intended users: 

For Learning Objects students [are] reminded constantly that they are 
designing interfaces for people who are not experts and that they need to take 
into account such issues as the user’s age, educational level, gender, cultural 
background, experience with computers, motivation, disabilities, etc. (Muller et 
al., forthcoming, p.12) 

Also, students should 
... break away from the linearity of the written tradition in order to take full 
advantage of the technological paradigm. (Muller et al., forthcoming, p.12) 

In step 8 of the Development Process of the LO (Figure 3), we introduced an analogy 
where the Object is a 'lesson with a virtual learner'. Using this analogy, the interface's 
potentiality of interactivity encourages the student during the Designing Cycle to 
develop an active 'lesson', i.e., a lesson that is interactive, with the intended fictive 
pupil. The interface's potentiality of visualization facilitates the development of 
transparent communication of the 'lesson' flow and makes it possible for the student 
to test his/her 'lesson' (steps 6 and 7 in Figure 3). In other words, we suggest that 
these two potentialities allow the student to develop a 'guided intelligent partnership' 
between a fictive pupil and technology. 
REFLECTIONS 
Diagrams shown in Figures 1, 2, and 3 clearly indicate our view that the student 
mathematics learning experience through the designing and implementing of an ELO 
is richer than what is experienced through activities of only programming 
mathematics. The interface plays a major role through its interactivity and 
visualization potentialities as it provides students with an opportunity to be involved 
in an 'intelligent or guided intelligent partnership' with the technology.  
In a recent collaborative project between a local elementary school, École Nouvel 
Horizon, and our Department of Mathematics, MICA student Sarah Camilleri was 
involved as part of her Honour's project in the development of Fractions 
Fantastiques/Fantasy Fractions Learning Objects (Camilleri, 2007; Buteau et al., 
2008a and b; MICA Student Project website, n.d.). In this development, she worked 
with a Grade 5 class, the teacher, and the school principal. It is worthwhile to explore 
the ways in which individuals took different roles and responsibilities in the 
Development Process (Figure 3). 
Sarah and the teacher selected the fraction concept (step 1), and Sarah researched it 
(step 2). The teacher taught fractions to the class and presented the collaborative 
project. In the Designing Cycle, guided by the teacher and the principal, the Grade 5 
pupils developed the dynamic mathematics lessons, interactive mathematics games, 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1118



story line of the Object, its characters, etc., and provided drawings and written 
materials to communicate their ideas to Sarah who had to select and adapt some of 
them for programming purposes. The pupil design work was achieved in class 
discussions and in smaller groups of two or three. Within the Programming Cycle 
Sarah took the responsibility of faithfully implementing the pupils' design which also 
involved the digitizing of the pupils' drawings. The Refining Cycle involved Sarah 
and the teacher for testing the functionality of the Learning Object and checking the 
faithful integration of the pupils' ideas. Fractions Fantastiques Learning Object was 
presented by Sarah to the Grade 5 class and each pupil received a CD-ROM copy of 
their Learning Object (step 8). 
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HOW CAN DIGITAL ARTEFACTS ENHANCE 

MATHEMATICAL ANALYSIS TEACHING AND LEARNING 

 
Dionysis I. Diakoumopoulos 

Department of Mathematics, University of Athens 
 
Digital technologies seem to be still very promising to fruitfully support the 
construction of mathematical knowledge. Far more interesting is the way to 
incorporate them into the design of a learning environment framed by certain 
institutional constraints. Through this study we present some reflections and ideas 
arising from the dialectic interplay between the environment and the students in their 
effort to formulate a calculus theorem and construct its proof. Related teaching and 
learning phenomena providing information on instrumental genesis processes are 
primarily discussed. 
INTRODUCTION 

Elementary pre-calculus is at the heart of the syllabus at secondary level mathematics 

education and the entry-point to undergraduate mathematics as well. Many research 

studies witnessing students’ problems to attain a satisfactory level of 

conceptualisation have been held on this field (for example, see Artigue, 1999). This 

fact is related to mathematically superficial strategies (Lithner, 2004) implemented by 

traditional procedure-oriented teaching practices. We claim that these practices are 

generated by both teachers’ attitudes and institutional constraints implicitly or 

explicitly imposed by textbooks and curricular objectives (Ferrini-Mundy & Graham, 

1991). Even at the university level, this situation results in detecting serious 

difficulties on behalf of the students when faced with non-algorithmic type demands 

which entail reasoning and conceptual understanding (Gonzales-Martin & Camacho, 

2004). 

On the other hand, the development of mathematics has always been dependent upon 

the material and symbolic tools available for mathematical computations (Artigue, 

2002). Current research on mathematics education regarding the relationships 

between curriculum, classroom practices and software applications (Lagrange, 2005) 

offers the ground to address and develop questions concerning technology’s fitting 

into learners’ actual social and material environments, the problems users have that 

technology can remedy, and, furthermore, ways of conceptualizing the design of 

innovative learning tools as emergent from dialectics between designers and learners-

users of those tools. 

The learning environment is supported by a Dynamic Geometry software (DGS) 

enhanced by a function-graphing editor to help Mathematical Analysis teaching at the 

level of 12
th
 grade. 
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The produced didactic sequence covers the introduction of global and local extrema 

definitions, Fermat’s theorem (stationary points) with its proof, the mean value 

theorem, monotonicity definitions and the derivative sign/monotonicity theorem 

along with the proof and its applications. Selection of the exact targeted mathematical 

material on the field of differential calculus, as well as further elaboration of the 

activities, were attempted with the intention to form a rational succession of concepts 

to a coherent local unity of mathematical knowledge, mainly including introduction 

of definitions, formulation of theorems and construction of proofs. From this still on-

going research, we present here some elements derived only from an activity 

concerning the teaching and learning of Fermat’s theorem formulation and proof on 

the field of differential calculus. 

THEORETICAL FRAMEWORK 

Complexity and close interweaving of cognitive, institutional, operational and 

instrumental aspects obliged us to adopt a multidimensional approach (Lagrange et 

al, 2003) in order to design the learning environment and study the teaching/learning 

phenomena produced. 

According to Duval (2002), construction of mathematical knowledge is strongly 

attached to the manipulation of different semiotic representations. This term refers to 

productions made up of the use of signs and formed within a semiotic register which 

has its own constraints of meaning and function. More specifically he defines a 

“register of semiotic representation” as a system of representations by signs that 

allows the three fundamental activities tied to the processes of using signs: the 

formation of a representation, its treatment within the same register, its conversion to 

another register. Interaction between different registers is considered to be of great 

importance and necessity to achieve understanding of a mathematical concept. Under 

this aspect, our tools were designed with the intention to mobilise and flexibly 

articulate semiotic representations within the numerical, the algebraic and the 

graphical register, so that to generate mathematical conjectures. 

Very special and idiomorphic conditions existing within the local educational culture 

of Greek 12
th

 grade students obliged us to take into consideration the notion of 

didactical transposition (Chevallard, 1991). At this level, a huge amount of 

institutional pressure results in the development of an “exam-oriented mentality” on 

behalf of the students as well as their families, which promotes a procedure-oriented 

attitude towards the mathematical knowledge in context.  Candidates’ needs to be 

prepared for a final national university-entrance examination at the end of the year 

result, finally, in an implicit (or even sometimes explicit!) meta-didactical attitude 

leading them to ignore or reject conceptual approaches not strongly attached to exam 

demands. Through this perspective, we were obliged to take into account and 

reinforce both the epistemic and the pragmatic value (Artigue, 2002) of the 

mathematical knowledge to be taught without any decrease or discount of any of 

them, in the economy of the available didactical time. Relating this idea to the tools’ 

design, we considered the possibility to teach basic mathematical concepts within a 
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reasonable amount of learning time, and in ways compatible to both its institutional 

dimension and the transition to advanced mathematical thinking. 

The theory of didactic situations (Brousseau, 1998) helped us conceive the whole 

learning environment (milieu) as a source of contradictions, difficulties, and 

disequilibria stimulating the student (on his own responsibility to control it) to learn 

by means of adaptations to this environment. At this point, we took also into account 

activity theory (originated in socio-cultural approaches and mediation theories rooted 

in Vygotski, 1934) to assign to the environment a character sometimes antagonistic to 

the subject (as pointed by TDS) but also sometimes cooperative and oriented to an 

educational aim, guided by distinctive didactical intentions. 

In order to best incorporate digital artefacts in our didactical engineering, we 

considered the potential technology offers for linking semiotic registers within the 

frame introduced by the instrumental approach (Rabardel, 1995, Artigue, 2002, 

Trouche, 2004). A cultural tool or artefact, designed to mediate mathematical activity 

and communication within a socio-cultural context, differs from the corresponding 

instrument into which this artefact can be transformed. The artefact, as the final 

result, encompasses a psychological component; a construction by the subject, in a 

community of practice, on the basis of the given artifact by means of social schemes. 

This transformation is developed through an instrumentation process directed towards 

and shaping the subject’s conceptual work within the constraints of the artifact and an 

instrumentalisation process directed towards and shaping the artifact itself. Both 

constitute a bidirectional dialectic and sometimes unexpectedly complex process 

called instrumental genesis (Artigue, 2002). Concerning tool design, we tried to keep 

simplicity and friendliness to the user, in the sense that their implementation 

demands, as far as possible, a short process of appropriation by the user and an easy 

way to be transformed into mathematical instruments to be utilised in the context of 

the activities. The necessity of any technical support by the teacher was also 

minimised as far as possible. 

The crucial question to answer through our research is whether a design philosophy 

under the norms mentioned above has the potential to determine a set of effective 

digital learning tools, pre-constructed on the dynamic software, which can be easily 

transformed to learning instruments successfully integrated into the teaching of 

important calculus concepts at the level of theorem formulating and proof. By the 

term successfully integrated we mean that, firstly, they can make visible phenomena 

previously invisible, secondly, they can potentially generate innovative approaches to 

important mathematical concepts, and, thirdly, they shape and better our 

understanding of some productive or problematic dimensions of the computer 

transposition regarding the mathematical knowledge accessed through the 

instrument’s mediation. 

METHODOLOGY 
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The activity (of total duration 90 min) was developed in two different schools in 

groups of 12
th
 grade students (10 in one group and 5 in the other) during the month of 

February, 2008. The main differences between the students of the different schools 

were identified on the socio-cultural and financial background of the corresponding 

families (we did not address any comparison issue in our research goals) and as well 

to the fact that comparatively more students belonging to a certain school had a 

facility for using mathematics software, being exposed several times in the past at 

different kinds of technology enhanced approaches. For the latter we did not find 

enough evidence to support the idea that different software cultures of the students 

have great impact on their attitude and capabilities of manipulating the pre-

constructed software tools induced by our activities. 

The informatics laboratory of every school was used and the pupils were at couples 

situated in a PC-environment. This time the researcher played the role of the teacher 

as an orchestrator of in-class situations. A Teacher-Analysis sheet has also been 

developed to provide necessary details so that other teachers can handle the in-class 

orchestration.  

At the beginning, a worksheet was given to the students to work with and at the end 

of the session they received a corresponding post-assessment sheet including several 

T/F type questions of mathematical nature, which they returned back completed next 

day. The whole didactic sequence (consisting of four Sessions) was recorded by a 

voice-recorder and, the whole sequence being completed, a post-questionnaire was 

passed to the students in order to collect and save some of the instrumental marks 

being left on them through the entire approach. Finally, four students (two for each 

group) were interviewed to explicitly clarify their answers at this questionnaire 

concerning the instrumented actions performed and the students’ attitude towards 

mathematics teaching before and after the whole experience. 

The way of obtaining results-serving the a posteriori analysis-from the raw input data 

has to be explained here. The whole content referring to the 2
nd

 Activity (Fermat’s 

Theorem: Stationary Points) has been divided (according to the conceptual meaning 

development) into 12 Episodes and each one of them potentially to one up to four 

Phases. Next, for every one of the 24 Phases produced, we used the transcribed 

outcomes of the recorded class discourse, along with the written notes and answers of 

the students on the worksheet, to produce some discrete entities of information we 

called Events. An Event in this terminology is characterised and differentiated by 

components of mathematical or didactical or instrumental nature which can probably 

coexist. The study and analysis of these Events provided our a posteriori analysis 

with the material to compare the results composed up to this point to the analysis of 

the students’ answers to the corresponding post-assessment sheet-being sorted out 

and analysed separately. Finally, we took into consideration the students’ answers on 

the final post-questionnaire as well as the transcribed explicitation interviews in order 

to enhance our vision and come up to some final conclusions. 

LEARNING ENVIRONMENT 
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Concerning the tools’ design (and being sensitive to the complexity of instrumental 

genesis processes), we tried to reduce, at least, the complexity of the interface. We 

tried also to keep tools’ implementation strongly attached to the mathematical needs 

emerging within the predefined context. The learning environment regarding the 

whole activity was, thus, perceived with the intentions to: 

a) Mobilise students’ interest to estimate local extrema departing from a real problem, 

b) Make up a link with the students’ previous knowledge on the subject of local 

extrema and the limit concept, c) Stimulate the students to construct the targeted 

mathematical knowledge by mobilising different registers of representation (graphic, 

numerical, symbolic, and verbal) for the same concept and favouring representational 

interconnections between them, d) Use the in-class discourse to generate an activity 

space favouring students’ effective instrumental processes, e) Support conjecturing, 

conceptualisation, and institutionalization, f) Insert certain examples or counter-

examples when necessary (Gonzales-Martin & Camacho, 2004). 

We focus especially on the activity designed to introduce the concept of Fermat’s 

theorem. As far as the students were concerned, our specific didactical aims were: to 

conjecture the theorem, construct its formal statement and proof realising the absolute 

necessity of its presuppositions and its application range, to perceive that the reverse 

form of the theorem is not valid, and, finally, to apply it in calculating the local 

extrema of the function-given by a formula-induced by the problem.  

In the following we describe and analyse some selected Events drawn out of two 

different Episodes. The material that will be presented is coming from a blend of 

actual events produced by both groups of students, whose comments and actions have 

been complementing each other over the flow of the activity. 

Remark: The term S-Tools refers to the specific on-Screen pre-constructed tools on 

the software. 

Episode A: Introduction to the Line y=k, IntersectionPoints, Magnification S-Tools 

and applications in approximating local extrema positions on the 

function graph. 

Tool Description: The students were prompted to open Line y=k and Intersection 
Points S-Tools. The first one draws a horizontal parametric line, whose position can 

be controlled by the active parameter k (a number in yellow background on the screen 

that can be modified by the user, see Image 1). If this line has some common points 

with the function graph then the second S-Tool IntersectionPoints draws these 

intersection points and provides their x -coordinates. Furthermore, a technique 

permitting the students to change the decimal length and the digits of any active 

parameter was explained to them by the teacher. 

The following question given by the corresponding worksheet came to stimulate 

students to S-Tools utilisation: 

Q1: Could you find or estimate points of local extrema for function P? 
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Image 1 

Aim Description: The main intention of the constructed situation was to encourage 

students to explore and use the S-Tools in order to estimate several intervals of x -axe 

that could enclose positions of internal local extrema and to get approximate values 

for these positions by shortening the length of the corresponding intervals. Moreover, 

they had to identify the kind of local extremum (maximum or minimum) and perceive 

which of them are internal to the interval. 

Events: The teacher asked the students to change the active parameter k and see what 

happens. Some of them could not understand the changes on the counters of 

intersection points coordinates and that was clarified by the related discussion in the 

class community. Then, the students were asked to use these tools to numerically 

estimate the local extrema positions (Question Q1) on the graph the better they could 

(Image 1). Some students could not cope with changing 

the decimal length and the values of several digits so 

they were given additional technical instruction for that. 

The teacher asked them to find an interval including the 

abscissa of a local maximum (this was done very easily) 

and then to try to shorten this interval by means of the 

tool. This was not so easily done by every pupil but 

remarks made by several students and on-screen indications gave good results. 

Interesting events identified on behalf of the students were: 

-During exploring with decimal digits many students observed two intersection points 

approaching each other and, finally, coinciding to only one but the indications on the 

corresponding counters were different. 

-Six of them noticed that they could see intersection points on the screen but the 

indications on the coordinate counters did not attest such an existence. 

Concerning these two events, the teacher’s proposition was to use the Magnification 

S-Tool. 

Tool Description: This S-Tool could be used to magnify a selected region around a 

point which can be displaced anywhere on the graph and is controlled by the Point-
Abscissa and the Magnification Factor.  

Subsequently, the students were asked to use the same process to estimate the values 

of every local extremum they could perceive on the graph. 

Remarks: Students’ written answers on the worksheet revealed that the whole class 

succeeded at the qualitative level (number of local extrema, approximate position and 

characterisation). However, at the numerical level, only a small part (26% of them) 

tried to test in the extreme the instrument’s potentialities and even less (6,6%) 

achieved at exhausting them-providing the values asked at 3
rd

 or 4
th
 decimal digit 

accuracy as we had anticipated. A technical weakness versus time disposal has been 

estimated as a possible reason for that. 

Results: This first contact with the notion of approximation opened up the ground for 

a further in-class discussion. The discourse came up to the point that the tool is able 
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Image 2 

to provide visual images of a certain validity only as an indication generator (which 

in certain cases can be of great importance for the mathematical knowledge) but not 

always to produce an arithmetic value in absolute accuracy. The teacher reinforced 

this situation by asking what would happen if the extremum in search had the real 

value 2
3

 or 2 . This fact conducted the discussion to bring into light the inherent 

inadequacy of every computing system to represent infinite decimal numbers in a 

complete way. So the students realised that, through this attempt, and also in general, 

they could obtain only relative accuracy for the local extrema values. The necessity 

of devising new mathematical tools that could probably provide absolute accuracy for 

these values came in the discourse. 

Episode B: Introduction to the tangent: Relating line y=k when passing through an 

internal local extremum to the function graph – Derivability 

Next Question Q2 had the intention to sensitise students’ attention and make them 

focus to what is going on locally at the area near an internal local extremum point.  

Q2: When line y=k is passing through an internal local extremum point on the graph, 

how is this line related to the curve at an area near this point? 

Description: Within this Episode the students 

were asked to express their thoughts regarding 

the visual relation between the line y=k when 

passing through an internal local extremum point 

on the graph and the curve itself near the 

extremum point. The first attempt was made on 

normal view and the second by means of the 

Magnification S-Tool (Image 2). Subsequently, 

at the third phase of the Episode a new 

subroutine program file was invoked, where the 

students could alternatively observe under magnification the behaviour of 

functions
2y x=  and ( )y abs x=  in the neighbourhood of 0x =  (Image 3). This was 

done by changing only the function formula through a menu of the file. The 

necessary technique was shortly explained by the teacher. 

Events: The class discourse developed at this Phase helped many of the students to 

communicate their thoughts and formulate them in an intelligible way. They came up 

with the visualisation of the inequality relations ( )f x k!  or  ( )f x k!  near the local 

extremum. Relating this fact to the image produced by the function graph and the 

horizontal line, they could easily conjecture that this line when passing through a 

local extremum point on the graph “leaves the whole curve on one side” or “does not 
cut it” at the area near this point. 

Remarks: Analysis of students’ written answers on the worksheet showed that the big 

majority of them (80%) succeeded in perceiving the visual relation between the curve 
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Image 3 

and the line and, moreover, 26,6% of them were able to connect it with the 

corresponding symbol relation. 26,6% of the students proceeded to conjecture that, at 

this case, this horizontal line should be a tangent of the graph, whereas even fewer 

(13,3%) mentioned that there was only one common point of the line and the curve at 

the area near the local extremum. 

To the question of the teacher if these two conditions (namely existing of a single 

common point and “not cutting” in the area near a local extremum) are able to assure 

the existence of a local extremum, confusion arose and the community could not 

provide a clear answer. This event, along with the term tangent mentioned earlier, 

was used as a bridge to the discussion of next question: 

Q3: At the area near the extremum point, can you observe any additional relation 

between the curve and the line y=k when the latter is passing through this point? 

Remarks: Class discourse concerning this question resulted in the 

assertion on behalf of the students that under magnification the 

curve tends to become a horizontal line or to coincide with it. 

Moreover, there were some more students stating in a clear way the 

conjecture that the horizontal line when passing through a local 

extremum point on the graph keeps the position of a tangent of the 
graph at this point. This conjecture provided the bridge through 

which the teacher introduced the issue of the existence of the 

tangent at such a point. Additionally, as a natural consequence of the 

previous discussion, the subroutine file was used to support students’ exploring and 

help them visualise the difference between the function graphs of y=x2 
and y=abs(x) 

on point 0x =  under magnification (Image 3) and relate it to the derivability of the 

function at this point. Most of the students’ expressions were for example “Oh, 
there’s an angle there!” or “… in this case we have a peak point …” etc. 

DISCUSSION AND PRELIMINARY RESULTS  

In this paper, we tried to describe a few situations concerning only the instrumental 

dimension of our research. The Episodes presented above contribute, as a first step, to 

Fermat’s theorem construction departing from an intuitive approach. This goal is 

achieved by exploring and visualizing the local extrema positions related to the 

premises of the theorem.  

As it has been pointed by Guin and Trouche (1999), students’ answers were strongly 

dependent on the environment: 

At a first attempt, many students tried to configure the artefact regarding the needs of 

the specific work: screen view adaptation by transposition of toolboxes and active 

parameters configuration (i.e. changing the decimal length and the values of certain 

digits of parameter k). These facts confirm, on their behalf, an effort to adapt the 

artefact to the demands of the specific task induced by the first question Q1 

(Estimation of local extrema values) and we consider that as a step to the direction of 

instrumentalisation in the evolution of instrumental genesis processes (Rabardel, 
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1995, Trouche, 2004).  As instrumentation processes had intently been designed and 

anticipated not to be very complex, soon after, we could observe automaticity 

towards certain instrumented action schemes to the execution of necessary tasks (i.e. 

utilising active parameters).  

We point to an internal constraint (Trouche, 2004) of the instrument, which is related 

to computer’s inherent deficiency in providing absolute preciseness through 

computations, regarding infinite decimal numbers. This issue was discussed with the 

students during several activities and, finally, was used as an entry to the discussion 

concerning the notion of approximation. Additionally, a common feeling was 

developed pointing out that computers will not solve all the mathematical questions 

inserted. This fact was also used to encourage students to develop their knowledge so 

as to overcome these limitations. 

Students’ answering to questions of the post-assessment sheet regarding the statement 

of Fermat’s theorem or its applications within only the graphic register showed that 

the great majority of them (86,6%) could cope very good at this level. However more 

complex questions relating this register to the algebraic one have been far too 

difficult for the students, proving that more work is necessary to be done at this level. 

Analysis of students’ answers to the final post-questionnaire testified a generally 

positive attitude towards “this way of teaching”. For example, to the question: 

“Could you identify any positive or negative points through this series of activities 
you have been attending?”, some of their answers were: “We could discover and see 
by ourselves most of the things on the screen…” or “By the aid of the computer we 
could really see and work on the staff we treat usually in the class”, or “It was easy-
going because, we first, … we didn’t realize that we had made the proof of the 
theorem and only at the end we got the typical statement” or “It was very helpful to 
recollect the images on the screen, but the problem was that we didn’t solve many 
exercises!” etc. Of course, more work and analysis need to be done on this issue in 

order to obtain some reliable results. 

Due to the lack of space, we did not address issues concerning the ways through 

which the rest of our theoretical perspectives shape our research. However, some 

results seem to deepen our reflection. They show the potential of such a learning 

environment design to produce didactical phenomena giving an illumination to both 

problematic and productive aspects of the mathematical knowledge developed 

through the educational use of digital technologies. 
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A LEARNING ENVIRONMENT TO SUPPORT MATHEMATICAL 
GENERALISATION IN THE CLASSROOM 

Geraniou, E., Mavrikis, M., Hoyles, C. and Noss, R. 
London Knowledge Lab, Institute of Education, UK 

This paper discusses classroom dynamics and pedagogical strategies that support 
teaching mathematical generalisation through activities embedding a specially-
designed microworld. A prototype of our microworld was used during several one-to-
one and classroom studies. The preliminary analysis of the data have allowed us to 
see the implications of designing and evaluating this specific technological tool in the 
classroom as well as the teachers’ and the students’ requirements. These studies feed 
into the design of the intelligent support that we envisage the system will be able to 
offer to all students and the teacher. In particular, they helped us identify which 
aspects of teachers’ interventions could be delegated to our system and what types of 
information would be useful for supporting teachers. 
KEYWORDS: Mathematical Generalisation, Microworlds, Classroom Practices, 
Teachers, Intelligent Support 
INTRODUCTION 
It seems that there is a growing diversity of computer-assisted material and tools for 
mathematics classrooms. Even though this proliferation of digital tools and new 
technologies has broadened the instructional material available for teachers, they are 
still rather insignificant to classroom practice and their use is far from regular 
(Artigue, 2002, Mullis et al., 2004, Ruthven, 2008). This suggests a challenge for 
mathematics educators to develop complete, consistent and coherent systems that not 
only assist students, but also support teachers’ practice in the classroom.  
The aim of the MiGen1 project is to design and implement a system with teachers that 
meets their as well as students’ requirements. We are developing an intelligent 
exploratory learning environment for supporting students in making mathematical 
generalisations. In more detail, our focus has been on the difficulties, first students 
face in their efforts to generalise and second teachers face in their efforts to support 
students appropriately during lessons with 20-30 students. For our initial 
investigations, we restricted the domain of mathematical generalisation to the 
generation and analysis of patterns. Activities with patterns often appear in the UK 
mathematics curriculum and have been identified as motivating for students (see 
Moss & Beatty, 2006). They also comprise a good domain for generalisation, since 
they allow students to come up with different constructions for the same pattern, find 
the corresponding rules and realise their equivalence.  
Our aim is to develop a system that provides the means to understand the idea of 
generalisation, but also the vocabulary to express it, while supporting rather than 
supplementing the teacher. The system is intended to provide feedback to the teacher 
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about their students’ progress and, where the system’s ‘intelligence’ is unable to help 
students, to prioritise the students in critical need of the teacher’s assistance. 
The core of our system2 is a microworld, called the eXpresser (described briefly in 
the next section), in which students can construct and analyse general patterns using a 
carefully designed interface. In order to build the microworld, our team3 started with 
a first prototype (Pearce et. al, 2008). Using an iterative design process, and in order 
to investigate the effectiveness of our approach,  we carried out a number of studies 
with individual students or pairs of students, each time using the feedback we 
obtained to build the next prototype. This process resulted in the evolution of the 
prototype and its subsequent evaluation in classroom.  
This paper, after a brief discussion of our methodology, presents the preliminary data 
analysis of the classroom studies that not only support the next version of the 
microworld, but also feed into the design of the intelligent support that we envisage 
the system will be able to provide. Our focus here is on the teachers’ pedagogical 
strategies and the students’ needs for support and assistance during their interactions 
with the microworld.  This analysis is followed by a discussion of the teachers’ 
interventions that could be delegated to the ‘intelligent’ system and what types of 
information would be useful for supporting teachers and therefore necessary for the 
development of the intelligent support components of our and other similar systems. 
A microworld for patterns – the eXpresser 

First, we present briefly the main 
features of the eXpresser. We 
emphasise that at the stage of the 
study, attention was focused largely 
on the features key to our research 
goals. So, the following description 
of the system is by no means 
complete. In addition, its design has 
evolved significantly through 
studies such as the ones described in 
this paper. The interested reader is 
referred to Noss et al. (2008), where 
the system’s rationale and design 
principles are described in detail. 
In eXpresser, students can construct 
patterns based on a ‘unit of 
repetition’ that consists of square 

tiles. These patterns can be combined to form complex patterns, i.e. a group of 
patterns. A pattern’s property box (depicted in Figure 1) shows three numeric 
attributes that characterise the pattern4. The first specifies the element count (number 
of repetitions) of this pattern (a). The icon with the right arrow (b) specifies how far 

 

Figure 1. The interface of eXpresser with 
two different constructions of the same 
pattern. The left one is made out of a vertical 
block of 3 squares and 5 ‘backward C-s’ and 
the right one of alternating vertical blocks.  
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to the right each shape should be from its predecessor and, similarly, the icon with 
the down arrow (c) specifies how far down a shape should be. 
A requirement of our constructivist approach was to allow students to construct 
patterns in a variety of ways (Figure 1). Additionally, an important design feature is 
the ability to 'build with n' (see Noss et al., 2008), i.e. to use independent variables of 
the task to create relationships between patterns.  

This feature not only provides students 
additional ways to construct patterns but 
we hypothesised that it enables students 
to realise what are the independent 
variables and use them to express 
relationships. To overcome difficulties 
that students face with symbolic 
variables the microworld employs what 
we call ‘icon-variables’, which are 
pictorial representations of an attribute 
of their construction. We have illustrated 
in previous work (Geraniou et al., 2008), 
that these ‘icon-variables’ provide a way 
to identify a general concept that is 
easier for young learners to comprehend. 
An example of expressing such 
relationships is depicted in Figure 2. 

METHODOLOGY 
Our own previous work and studies by Underwood et al. (1996) and Pelgrum (2001), 
for example, concerning the adoption of educational software in classrooms 
emphasise the importance of teachers’ involvement in the whole design process of 
computer-based environments. Therefore, several meetings with the teacher were 
held before each classroom session so that they were familiarised with the prototype, 
agreed and made input to the lesson plans and in order to clearly state the teacher’s, 
the students’ as well as the researchers’ objectives. 
The overall methodological approach is that of ‘design experiment’, as described by 
Cobb et al. (2003). One of our goals during these sessions was to inform our system’s 
design and evaluate the effectiveness of our pedagogical and technical approach. We 
aimed at investigating the classroom dynamics by looking at individual students’ 
interactions with the microworld, the collaboration among pairs or groups of students 
as well as the teachers and researchers’ intervention strategies. 
We investigated the use of eXpresser in several one-to-one and classroom sessions 
with year 7 students (aged 11-12 years old). Particularly for the classroom sessions, 
two researchers played the role of teaching assistants and another was observing and 

 
   

Figure 2. Another way to construct the 
pattern in Figure 1. To relate the middle 
row with the first pattern (named 
“blues”), the number of repetitions should 
be one more than the number of 
repetitions of “blues”. For the bottom row 
it should be twice more plus one. These 
relationships are specified iconically.  
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keeping detailed notes regarding the researchers’ and the teacher’s interventions. The 
sessions were recorded on video and later analysed and annotated with the help of the 
written observations. Based on these, we were able to get information regarding the 
time and duration of the interventions, the type of feedback given, the students’ 
reactions and immediate progress after the interventions. Therefore, our goals in the 
study reported in this paper were to identify not only the students’ ability to 
collaborate successfully and articulate the rules underpinning their generalisation of 
the patterns but particularly when and how the teacher or the researchers intervened. 
However, to maintain the essence of exploratory learning, research suggests a 
teacher’s role should be that of a ‘technical assistant’, a ‘collaborator’ (Heid et al., 
1990), a ‘competent guide’ (Leron, 1985) or a ‘facilitator’ (Hoyles & Sutherland, 
1989). Our aim was to achieve the right balance between students’ autonomy and 
responsibility over their mathematical work and teachers’ and researchers’ efforts to 
scaffold and support their interactions. The teacher and the researchers set out to 
adopt this role by following a specific intervention philosophy that adhered to our 
framework of interventions (Mavrikis et al., 2008), which was based on our previous 
work with Logo and dynamic geometry environments. This framework was extended 
after the analysis of the data and is presented in the ‘Classroom Dynamics’ section. 
Our aim was to avoid imposing our (or the teacher’s) views or ways of thinking, but 
instead allowing students to express their viewpoints and assist them by 
demonstrating the tools they could use: for example, by directing their attention, 
organising their working space and monitoring their work. 
CLASSROOM SCENARIO 
We illustrate here a classroom scenario carried out with a year 7 class with 18 high-
attaining students. Students were introduced to the microworld through a 
familiarisation process, during which the teacher introduced all the key features to 
construct a simple pattern and students followed his actions on their laptops. 

 Students were then presented with the 
task in Figure 3. The pattern was 
shown dynamically on the whiteboard; 
its size changed randomly showing a 
different instance of the pattern each 
time. This made it impossible for 
students to count the number of tiles 

while allowing them to ‘see’ variant and invariant parts of the pattern. We 
hypothesised that a dynamically presented task would discourage ‘pattern-spotting’, 
which focuses on the numeric aspect of specific instances of the  
pattern, and counting, which encourages constructing specific cases of the pattern. It 
also provided a rationale for the need of a general rule that provides the number of 
tiles for any instance of the pattern. 

 
Figure 3. The activity: Find a rule for 

calculating the number of green (light) tiles 
for any chosen number of blue (dark) ones. 
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Students were given the freedom to construct the pattern in their own way, using the 
system's features they had been shown earlier. They were asked to write on a hand-
out how they constructed the given pattern and then discuss in pairs their 
constructions and the methods they followed. They also worked collaboratively to 
find a rule that gives the number of green tiles for any chosen number of blue ones. 
Students’ next challenge was to find different ways to replicate the pattern and 
describe them on the hand-out explicitly, so as their partner could understand it. After 
discussing with their partner, if they had come up with the same constructions, they 
were expected to try to see whether there were any other ways and find all the rules 
that represented their constructions and write them down. Finally, the teacher 
initiated a discussion, where students were asked to present their rules to the rest of 
the class. Rich arguments were developed and students challenged each other to 
justify the generality of their construction and the rules they have developed. 
During this classroom study many interesting issues regarding the classroom 
dynamics were identified that informed our further design of the microworld and the 
overall system and the next phase of the research. 
CLASSROOM-DYNAMICS 
As expected, to ensure the success and effectiveness of students’ interactions with the 
eXpresser, there was a need for significant support from the teacher and the 
researchers. As discussed already, we had agreed a specific intervention philosophy 
with the teacher. The analysis of the data (video recordings and written observations) 
revealed further strategies and extended our previous framework of interventions 
(Mavrikis et al., 2008). The revised framework is presented in Table 1.  
 
 
 
 
 
 
 
 
 
Below we pull out some illustrative episodes under each category. 
Reminding students of the microworld’s affordances 
As facilitators the teacher and the researchers (referred to as ‘facilitators’ for the rest 
of the paper) managed to support students’ interactions and explorations by 
reminding them of various features of the system that assisted students’ immediate 

• Reminding students of the microworld’s affordances 
• Supporting processes of mathematical exploration 

 Supporting students to work towards explicit goals 
 Helping students to organise their working environment 
 Directing students’ attention 
 Provoking cognitive conflict 
 Providing additional challenges 

• Supporting collaboration 
 Students as ‘teaching assistants’ 
 Group allocations 
 Encourage productive discussion (group or classroom) 

• Ensuring task-engagement and promoting motivation 
Table 1. Types of interventions observed during our studies 
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goals. This intervention acted sometimes as a prompt and other times as an offer of 
assistance. If the facilitator sensed a student was working towards a direction where 
they could be assisted by a specific tool, they would point it out to their students. This 
teaching strategy might have proved rather common as for some students the one 
lesson spent on familiarisation with the system seemed not enough. 
Supporting processes of mathematical exploration 
We often needed to support the students’ problem-solving strategies. For example, 
we noted that students tended to forget their overall goal. Students seemed to get lost 
in details and got carried away with various constructions (‘drawings’), which, even 
though offering students more experience of the system’s features and affordances, it 
sometimes led them in the wrong direction. One of the downsides of any microworld 
is that students’ actions can become disconnected from the mathematical aspects 
under exploration. Even though, the system’s affordances were carefully designed to 
support students’ thinking processes, they were not always naturally adopted by 
them. Therefore, when needed, we provided a reminder of their goals or helped them 
re-establish them by asking questions like “What are you trying to do?” or “What will 
you do next?” (supporting students’ work towards explicit goals).  
Another aspect of problem-solving skills (particularly when working in microworlds) 
that some students seemed to lack was being able to come up with an organised 
working environment. We occasionally advised students to delete shapes that were 
irrelevant to the solution or change the location of a shape so that they could 
concentrate on ones that could prove useful. It was evident that students who worked 
effectively and reached their goals were the ones that organised their working space 
and therefore supported their perception of the task in hand. 
Directing students’ attention was a necessary pedagogic strategy. We prompted 
students to notice invariants or other details which are important for their 
investigations without giving away the answer. For example, we asked questions such 
as “Did you notice what happened when you increased the length of this pattern?” or 
“when you changed this property of your pattern?”. These pointed out certain facts 
that students might have missed out or ignored, but also exposed possible 
misconceptions and misinterpretations. If students were focusing on or manipulating 
unnecessary elements of their construction, the facilitators provided hints towards 
more constructive aspects. If students’ responses revealed any misconceptions, then 
such a prompt acted as an intervention for provoking cognitive conflict. There were 
cases where the cognitive conflict was not obvious to the students directly and further 
explanations were required from the facilitators. These normally involved giving 
counter-examples to provoke students’ understanding and challenge their thinking 
processes. Besides this intervention we used another strategy, referred to as 
“messing-up”, used in our previous work in dynamic geometry (Healy et al., 1994). 
This strategy challenged students to construct a pattern that is impervious to changes 
of values to the various parameters of the tasks. Students tended to construct patterns 
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with specific values and had their constructions ‘messed-up’ when the facilitators 
suggested: “What happens when you change this to say 7 (a different value to the 
student’s chosen one)?”. This strategy gave a rationale for students to make their 
constructions general by encouraging them to think beyond the specific case. In other 
cases where students seemed to have reached a satisfactory general construction, the 
facilitators intervened by providing additional challenges. For example, “Could you 
find another way of constructing the pattern?”.  
Supporting collaboration 
Students who achieved a seemingly general construction and found a rule (general or 
not, representing their construction or not), often failed to find different ways of 
constructing the pattern. Our approach in these circumstances was to introduce them 
to the collaborative aspect of the activity, in which they had to discuss, justify and 
defend the generality of their constructions and their rules to their partners. We 
envisaged that learners’ general ways of thinking would be enhanced by the sharing 
of their different perspectives. Accompanied by the facilitators’ or fellow students’ 
assistance, students could appreciate the equivalence of their approaches and possibly 
adopt a more flexible way of thinking. In this study, the rationale behind 
collaboration was to give students an incentive to enrich their perception and 
understanding of the given pattern, to find more ways of constructing it and begin to 
appreciate their equivalence mathematically. The allocation of students to groups 
aimed at ensuring the best possible collaboration (group allocations). Ensuring 
though that discussions carried out within the groups were fruitful was not an easy 
task. The first step towards this goal was grouping the students in a way that 
promoted participation from all members of the group while discouraging students 
from dominating a discussion (encourage productive discussion). 
On some occasions, the facilitators, particularly the teacher who has better insights 
into his students’ competence, encouraged students to take the role of a ‘teaching 
assistant’ and help others who were less successful in their constructions. This 
intervention boosted students’ confidence, but also gave them an opportunity to 
reflect upon their actions and an incentive to explain their perspective.  
Ensuring engagement and promoting motivation 
Finally, although the activities and the system affordances were designed to assure 
engagement as well as promote students’ motivation, there were various occasions 
(e.g. being stuck or ‘playing’ by drawing random shapes) when the facilitators’ 
intervention was required. Our vision was to give the right rationale for students to 
solve the task and praise their efforts. These studies supported our view that avoiding 
tedious activities that were pointless in the students’ eyes, not only reduces the risk of 
off-task behaviour, but also sustains a productive atmosphere for students.  
TOWARDS AN INTELLIGENT SYSTEM IN THE CLASSROOM 
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The interventions that were discussed above require an intensive one-to-one 
interaction with the students who require help. However, it is unrealistic to expect 
teachers in classrooms to be able to adhere to the demanding role of facilitators, 
keeping track of all students’ actions while allowing them to explore and have the 
freedom to choose their immediate goals. As mentioned above, there are multiple 
ways of constructing a pattern and therefore multiple ways of expressing general 
solutions for such activities. It is at this point that the value of a system that can 
provide information to the teacher becomes apparent.  
One of the most practical issues regarding students’ interactions in such environments 
is that despite the familiarisation process, there is a need to remind students of certain 
features or even prompt them to use those which could prove useful for their chosen 
strategy. Therefore, it should be possible to identify (based on students’ actions) 
which tasks of the familiarisation activity they should repeat. An intelligent system 
could highlight tools relevant to their current actions or offer a quick demonstration 
directly taken from their familiarisation activity. Furthermore, it could repeat their 
previous successful interactions relevant to the current activity.   
In terms of the teachers’ responsibility to attend to and help all the students in a 
classroom our studies highlighted the difficulty to prioritise which student to help. It 
is inevitable, therefore, sometimes to offer support to students who do not need it as 
much as others or even leave some students unattended due to the time constraints of 
a lesson. Moreover, it is possible for students to misunderstand certain concepts and 
leave a lesson with a false sense of achievement. Of course, it is difficult for an 
intelligent system to detect this accurately. However, it is possible to draw the 
teacher’s attention to students potentially in need. By providing therefore information 
regarding students’ progress at various times during a lesson as well as alerting them 
of likely misconceptions, it becomes possible for the teacher to spend their time and 
effort efficiently. 
Besides these teachers’ difficulties, there are situations when, despite having 
carefully-planned lessons, teachers are required to take immediate and effective 
decisions during lessons to accommodate their students’ needs. For example, noticing 
when students are having difficulty with certain tasks or providing extension work 
are interventions which could be delegated to our system, allowing more time for 
teachers to provide essential help.  Moreover, the collaborative component of an 
activity could be supported by the system by recommending effective groupings of 
students and allowing them to co-construct patterns whilst reducing dominance and 
promoting successful collaboration. The system could inform the teacher about the 
dynamics of different groups and alert them of possible concerns regarding the 
groups’ progress as well as suggest more productive groupings (e.g. group students 
with different constructions but equivalent general expressions). 
In addition, although we acknowledge the strong dependency between motivation, 
engagement and the design of the activities, it was evident that some students were at 
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points disengaged. Even if off-task behaviour can sometimes lead to fruitful 
outcomes and intrigue students’ thinking processes towards a direction, there is a 
need in automatically detecting such behaviour and informing the teacher. It then 
becomes the teacher’s responsibility to decide how and whether to intervene. 
The aforementioned suggestions for intelligent support could ease the use of an 
exploratory environment like the eXpresser in the classroom. It is often the case that 
such systems end up being used as a tool just to demonstrate certain mathematical 
concepts because of similar difficulties faced in classroom as those we reported here. 
Moreover, although quite a few ‘intelligent’ tutoring systems have been designed to 
provide support and personalised feedback to students and are starting to be 
integrated in classroom (Forbus et al., 2001), they usually scaffold the students with 
predetermined solution methods and by definition restrict students’ reaching their 
own generalisations. Our team’s challenge is to build a system that provides students 
the freedom to explore, make mistakes, get immediate feedback on their actions while 
assisting teachers in their difficult role in the classroom and therefore enable the 
successful teaching and learning of the idea of mathematical generalisation. 
NOTES 
1. See http://www.migen.org/ for details. Funded by the TLRP, e-Learning Phase-II; Award no: RES-139-25-0381. 

2. Our system comprises of two additional components, the eGeneraliser, which aims to provide students with 
personalised feedback and support during their interactions with the microworld, and the eCollaborator, which aims to 
foster an online learning community that supports teachers in offering their students constructions and analyses to view, 
compare, critique and build on. 

3. We would like to acknowledge the rest of our research team and particularly Sergio Gutierrez, Ken Kahn and Darren 
Pearce who are working on the development of the MiGen system. 

4. Each attribute has an associated icon tentatively depicted as cogs “to indicate the inner machinery of a pattern”. As 
the design of eXpresser is evolving our team is evaluating the appropriateness of these icons.   
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CINVESTAV, Mexico 

We describe the construct of a 4-year longitudinal efficacy study implementing 
dynamic mathematics software and wireless networks in Algebra 1 and 2 classrooms. 
We focus on student learning and motivation over time, and issues of effective 
implementation in establishing a longitudinal study. 

INTRODUCTION: BACKROUND TO DYNAMIC MATHEMATICS 

New forms of mathematics technology (e.g., dynamic geometry) can provide 

executable representations—representations that transform the mathematics made by 

students into a more tangible and exciting phenomenon (Moreno-Armella, Hegedus 

& Kaput, 2008). In particular, we have designed and used SimCalc MathWorlds
®

 to 

transform students’ mathematical constructs into fascinating motion phenomena. 

Second, networks can intimately and rapidly link private cognitive efforts to public 
social displays. Consequently, students can each be assigned a specific mathematical 

goal (e.g., playing the part of a single moving character by making a graph with 

certain mathematical characteristics), which instantly links to public social display 

(e.g., the parade constituted by all characters moving simultaneously). This approach 

shifts the types of critical thinking that are possible in mathematics classrooms and 

transforms the role of instructional technology by integrating it into the social and 

cognitive dimensions of the classroom. 

Our connected approach to classroom learning highlights the potential of classroom 

response systems to achieve a transformation of the classroom-learning environment. 

Similarly other investigators have expanded their approaches to include devices that 

allow aggregation of mathematical objects submitted by students. (Stroup, Ares & 

Humford, 2005).  

SITUATED NEED 

Our proposed work addresses three essential needs: (i) the Algebra Problem (RAND, 

2002), (ii) the related problem of student motivation and alienation in the nation’s 

schools, especially urban secondary schools (National Research Council, 2003), and 

(iii) the widely acknowledged unfulfilled promise of technology in education, 

especially mathematics education (e.g., Cuban, 2001).  

An important analysis by the National Academies Institute of Medicine (National 

Research Council, 2003) of student motivation at the high school level reveals in 

painful detail what most high school teachers (and parents) know only too well: that 
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student motivation in high schools, and even more acutely in urban high schools, is 

an urgent and complex national problem. The report also recommends that high 

school courses and instructional methods need to be redesigned in ways that will 

increase adolescent engagement and learning. 

Ethnographical studies of high school students (Davidson & Phelan, 1999; Phelan, 

Davidson, & Yu, 1998) reveal a world of alienation with strongly negative responses 

to standard practices (Meece, 1991) and strong sensitivity to interactions with 

teachers and their strategies (Davidson, 1999; Johnson, Crosnoe & Elder, 2001; 

Skinner & Belmont, 1993; Turner, Thorpe, & Meyer, 1998). Negative responses, 

particularly as they are intimately connected with self image and sense of personal 

efficacy, can be deeply debilitating, both in terms of performance variables (Abu-

Hilal, 2000) as well as in the ability to use help when it is available (Harter, 1992; 

Newman & Goldin, 1990; Ryan & Pintrich, 1997). See the comprehensive reviews by 

Brophy (1998), Newmann (1992), Pintrich & Schunk (1996), and Stipek (2002). On 

the other hand, students exhibit consistently positive responses to alternative modes 

of instruction and content (Ames, 1992; Boaler, 2002; Mitchell, 1993), particularly 

those that build upon intrinsic instead of external motivation (Linnenbrink & Pintrich, 

2000). 

The literature on motivation in education and social situations in general has focused 

on intrinsic and extrinsic motivation with a great deal of debate (Sansone & 

Harackiewicz, 2000). Intrinsic motivation reflects the propensity for humans to 

engage in activities that interest them. Extrinsic motivation, such as rewards, can 

have an undermining effect and decrease intrinsic motivation, i.e., the reason why the 

person chose to want to do the activity in the first place (Deci, 1971). Yet both 

intrinsic and extrinsic motivation, as a key feature of participation in mathematics 

classrooms, have appeared to be an orthogonal field of inquiry to the development 

and instruction of content, with motivation hesitantly intersecting with education in 

the form of “motivational strategies,” incentivizing students to learn mathematics 

because it is “fun” or “applicable” to their life, through relevant contexts, e.g., sports 

or vocations.  

Relevance, unfortunately, is a somewhat indirect means to link motivation and 

mathematics—the link between immediate cognitive effort and later applications that 

may seem improbable to students. There is a more direct alternative. Students can 

become motivated because they want to participate more fully in what their 

classroom is doing now. The alternative, thus, is to link motivation and mathematics 

through participation.  

We advocate two radically new forms of participatory activity in technology-

enhanced environments:  

1. Mathematical Performances. These activities emphasize individual student 

creations, small group constructions, or constructions that involve coordinated 
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interactions across groups that are then uploaded and displayed, with some 

narration by the originator(s).  

2. Participatory Aggregation to a Common Public Display. These activities 

involve systematic variation, either within small groups, across groups, or both, 

where students produce functions that are uploaded and then systematically 

displayed and discussed to reveal patterns, elicit generalizations, expose or 

contextualize special cases, and help raise student attention from individual 

objects to families of objects.  

 

These activities aim at enhancing mathematical literacy, debate and coherent 

argumentation—all fundamental mathematical skills. The central point is that each 

requires and rewards students for cognitive engagement in producing tangible 

phenomena that are simultaneously phenomenologically exciting and mathematically 

enlightening. This happens not at some future time when mathematics can be applied 

to a career or personal goal; instead these activities draw students in and sustain their 

interest because they are exciting and enlightening in the moment, in the classroom. 

These activities create an intrinsic motivation context with a socio-cultural view to 

“motivation in context” (Hickey, 2003) that is also intrinsically mathematical, 

accomplishing a much more intimate intertwining of motivation and mathematics that 

can be typically accomplished in existing classrooms. 

 

PRIOR WORK 

SimCalc MathWorlds
®
 creates an environment where students can be part of a family 

of functions, and their work contributes to the mathematical variation across this 

mathematical object. Consider this simple activity, which exemplifies a wider set of 

activity structures. Students are in numbered groups. Students must create a motion 

(algebraically or graphically) that goes at a speed equal to their group number for 6 

seconds. So, Group 1 creates the same function, Y=(1)X, Group 2, Y=(2)X, etc. 

When the functions are aggregated across the network via our software, students’ 

work becomes contextualized into a family of functions described algebraically by 

Y=MX (see Figure 1 below). Students are creating a variation of slope and in doing 

so this can help each student focus on their own personal contribution within a set of 

functions.  

At the heart of SimCalc is a pedagogical tool to manage classroom flow. This tool 

allows teachers to control who is connected to the teacher computer using a simple 

user interface, and choose when to “freeze” the network and aggregate students’ work 

or allow students to send a number of tries via the TI-Navigator
TM

. In addition, 

teachers have control over which set of contributions (e.g., Group 1’s functions) and 

which representational perspectives (e.g., tables, graphs, motions) to show or hide. 

Thus, the management tool encapsulates a significant set of pedagogical strategies 
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supported by question types in existing curriculum materials to satisfy a variety of 

pedagogical needs, focus students’ attention depending on their progress, and 

promote discussion, reasoning and generalization in a progressive way at the public 

level. 

In our prior research, students build meaning about the overall shape of the graphs 

and have demonstrated gestures and metaphorical responses in front of the class 

when working on this activity. For example, in two entirely different schools, 

students have raised their hand with fingers stretched out (see Figure 1 below), and 

said it would look like a “fan.” In this socially-rich context, students appear to 

develop meaning through verbal and physical expressions, which we observe as a 

highly powerful way of students engaging and developing mathematical 

understanding at a whole group level. Various forms of formative assessment can 

said to be evident as each student’s work emerges in a public display, and 

representations can be “executed” (Moreno-Armella & Block, 2002) to test, confirm 

or refute ideas. These forms of reflection, enabled through particular question-types 

and classroom dialogue focused on the dynamic representations, can be attributed to 

students learning and resonate with established research on formative assessment 

(Black & William, 1998; Boston, 2002). 

 

 

Figure 1. Sample Function in SimCalc MathWorlds® 
 

Over the past ten years, over the course of three consecutive research and 

development projects (NSF ROLE: REC-0087771; REC-0337710; REC-9619102) 

and related projects at TERC (NSF REC-9353507), the SimCalc project has 

examined the integration of the Mathematics of Change and Variation (MCV) as a 

core approach to algebra-intensive learning. This work has led to a Goal 3 IERI-

funded study (NSF REC-0437861), led by SRI International, focusing directly on 

large-scale implementability and teacher professional development in TX, and a 

recently funded IES Goal 2 project in the high school grades (IES Goal 2 # 

R305B070430) focusing on longitudinal impact of our curriculum and software 

products distributed by Texas Instruments on their popular graphing calculators in 
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combination with a commercially available wireless network (TI-Navigator™ 

Learning system). 

The Scale-Up pilot work employed a set of SimCalc resources in a delayed-treatment 

design. Teachers were initially randomly assigned to one of two groups. An ANOVA 

of difference scores (again teacher nested within condition) was significant 

[F(1,282)=178.0, p<0.0001]. The effect size for the gain in the group that used 

SimCalc is 1.08. In our main study, which is a randomized controlled trial in which 

95 7
th
-grade mathematics teachers were randomly assigned to implement a 3-week 

SimCalc curriculum unit following training, our analyses show an effect size of 0.84 

(Roschelle, Tatar, Shectman et al., 2007). 

Prior work has documented statistically significant evidence for impact of SimCalc 

materials in connected “networked” environments with computers and calculators 

(Hegedus & Kaput, 2004) under multiple quasi-experimental interventions across 

grades 8-10 and college students demonstrating statistically significant increases 

(p<0.001) in student mean scores (effect=1.6) but with an even higher effect on the 

at-risk 9
th
 grade population (effect=1.9). A major finding of our work was that 

critically important skills such as graphical interpretation were improved, i.e., 

cognitive transfer was evident. Recent studies show similar statistically significant 

results in terms of student learning and shifting attitudes towards learning 

mathematics in connected environments (Hegedus, Kaput, Dalton et al., 2007). We 

have also analyzed the changing participation structures using frameworks from 

linguistic anthropology (Duranti, 1997; Goffman, 1981). Our work has described new 

categories of participation in terms of gesture and language (Hegedus, Dalton, 

Cambridge et al., 2006) new forms of identity (Hegedus & Penuel, 2008), and 

theoretical advances in dynamic media and wireless networks (Hegedus & Moreno-

Armella, 2008; Moreno-Armella et al., 2008).  

 

DESIGN ASPECTS OF EFFICACY WORK 

In this context, our research program (funded by the US Department of Education, 

IES Goal 2 # R305B070430) builds on prior work to examine this problem. It is 

focused on outcomes in terms of both grade-level learning gains and longitudinal 

measures that relate to students’ progress and motivation in mathematics across the 

grades in Algebra 1 and 2 classrooms. 

SimCalc combines two innovative technological ingredients to address core 

mathematical ideas: Software that addresses content issues through dynamic 

representations and, wireless networks that enhance student participation in the 

classroom. We have begun to develop materials that fuse these two important 

ingredients in mathematically meaningful ways and developed new curriculum 

materials to replace core mathematical units in Algebra 1 (8-12 weeks) and Algebra 2 

(4-8 weeks) at high school. We are measuring the impact of implementing these 
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materials on student learning (high-stakes State examinations in Massachusetts (MA), 

USA) and investigating whether one or multiple involvements in this type of learning 

environment over the course of their high school years affects their motivation to 

continue studying mathematics effectively and enter STEM-career trajectories. 

Our work is conducted in eight school districts in MA offering a wide variety of 

settings in terms of performance on State exams and Socio-Economic Status (SES). 

Our treatment interventions are in 9
th

 and 11
th
 grade classrooms (Algebra 1 then 2) 

but we will also track some students when they are in 10
th
 and 12

th
 grade collecting 

simple questionnaire data. Our study is a small-scale cluster randomized experiment 

where we cluster at the classroom level, randomly assigning two classrooms in each 

school to treatment in our main studies (total of 28 classrooms and a. 500 students in 

each main study). 

We are using two instruments comprised of standardized test items to measure 

student’s mathematical ability and problem-solving skills before and after each 

intervention. We are also collecting survey data on student’s attitude before during 

and after the intervention. We are administering these tests and surveys at similar 

times (with respect to curriculum topics covered) in treatment and control 

classrooms. Video data from periodic classroom visits are being analyzed using 

participation frameworks from prior work and triangulated with variations in student 

survey data on attitude. 

We are using suitable statistical methods to assess gain relative to the control groups, 

and between-cluster variation using mixed-Hierarchical Linear Modeling. We are 

also collecting survey and classroom observation data to assess changes in attitudes 

and participation, and daily logs by teachers to monitor fidelity of implementation. 

We have completed our first year of 4 years work with our first cohort of students 

that we will track for the duration of their high school career and will present initial 

findings from our pilot study and challenges we have addressed in sampling and 

establishing a longitudinal program of research. We focus on results from factor 

analyses of our survey instruments on student and teacher attitude and correlations 

with student learning. Following a minimal effect size in our pilot study, we aim to 

present findings for improving effective implementation from analyses of teacher 

daily logs and classroom video.  

Such methodologies build a comprehensive program for evaluating how prior 

findings (briefly highlighted above) can scale to larger implementations whilst being 

cognizant of issues of fidelity. Our ongoing work and preliminary analyses report of 

the potential effect on outcome measures such as student learning and motivation. 
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FUTURE CHALLENGES OF THE INTERGEO PROJECT 
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(3) DFKI Saarbrücken, Germany 

(4) Université Montpellier II, France 
In this overview article we describe the manifold achievements and challenges of 
Intergeo1, a project co-funded within the eContentplus programme2 of the European 
Union.  

THE INTERGEO PROJECT 
The Intergeo project started in October 2007 and will be funded until September 
2010. Its main concern is the propagation of Interactive or Dynamic Geometry 
Software. 
Goals 
Interactive Geometry is a way to improve mathematics education by using computers 
and Dynamic Geometry Software (DGS) and there are many advantages in 
comparison to “classical” geometry without DGS. Figures can e.g. be easily 
manipulated [see e.g. Roth 2008] and thus virtually be brought to life, comparable to 
what movies mean to images or to what interactive computer games mean to motion 
pictures. 
It is therefore not amazing that Interactive Geometry obtains more and more attention 
in many educational institutions. Around 25 per cent of the countries within the EU 
refer explicitly to DGS in their national curricula or guidelines and roughly 40 per 
cent refer to ICT in general. And although the remaining countries do not mention 
ICT, some of them recommend the use of DGS in schools [Hendriks et al. 2008]. 
Still, the adoption of DGS at school is often difficult. Despite the fact that a lot of 
DGS class material exists, Interactive Geometry is still not used in classrooms 
regularly. Many teachers do not seem to know about the new possibilities, or they do 
not have access to the software and/or resources. 
The Intergeo Project has identified the three following major barriers, that have a 
negative impact on the use of Interactive Geometry in classrooms [Intergeo Project 
2007]: 

                                                 
1 http://inter2geo.eu 
2 http://ec.europa.eu/information_society/activities/econtentplus/index_en.htm 
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• Missing search facilities 
Though many resources exist, there remains the problem of finding and 
accessing them. If the files were put on the internet by their developers, they 
are virtually scattered all over the web and it is extremely hard to retrieve 
them by using search engines like Google. 

• Lack of interoperability 
There are many different programmes for Interactive Geometry on the 
market and each software has its own proprietary file format. Thus, finding a 
file does not automatically mean that it can be used – it must be a file for the 
specific software that is used. 

• Missing quality information 
And even if a teacher finds a file and the file works with her DGS, it may 
still be unsuitable for the use in class due to a lack of quality. Lacking 
quality can be software-sided in the way the figures are constructed or 
missing (or even wrong) mathematical background. 

The aims of Intergeo are to dispose of the problems stated. In other words, Intergeo 
will 

• enable users to easily find the resources they are looking for, 
• provide the materials in a format that can be used with different DGS 

systems, and 
• ensure classroom quality. 

All three facets will be dealt with in the following chapters in extenso. 
Furthermore, Intergeo attends to a topic that is mostly neglected but of high 
importance nonetheless: the question of copyright.  
Consortium 
The Intergeo Consortium, the founding partners of the Project, assembles software 
producers, mathematicians, and mathematics educators: Pädagogische Hochschule 
Schwäbisch Gmünd (D), Université Montpellier II (F). Deutsches 
Forschungszentrum für künstliche Intelligenz DFKI (D), Cabrilog S.A.S. (F), 
Universität Bayreuth (D), Université du Luxembourg (LUX), Universidad de 
Cantabria (ES), TU Eindhoven (NL), Maths for More (ES), and Jihočeská Univerzita 
v Českých Budějovicích (CZ). As the common interest of all partners is the 
propagation of sensible use of Interactive Geometry in the classroom, it was possible 
to collect both commercial, semi-commercial and free software packages. This is one 
of the key ingredients of the project: By building upon the joint knowledge and 
expertise of all parties, we hope to be able to address the needs of the teaching 
community. 
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Participation of External Partners 
The participation of External Partners, as Associate Partners, Country 
Representatives, and User Representatives justifies the basis for assuring the 
sustainability of the projects’ goals as mentioned above. Furthermore, gathering 
partners, as software developers, teachers, and persons at school administration level 
enables the development of a Europe-wide network that is indispensable for 
obtaining the projects’ major achievements.  
Since the project start in October 2007, several key actors in interactive geometry 
throughout Europe, including software producers, mathematics educators, 
governmental bodies, and innovative users that can provide additional content or 
serve as test users for the first content iterations were acquired.  
Associate Partners 
The role of Associate Partners implicates a variety of tasks and expectations, as the 
adoption of the common file format for their software, the provision of significant 
content to the Project, the development of ontologies, and the conduction of 
classroom tests. The project could successfully find several important Associate 
Partners, see [Intergeo Project 2008] and the following table. 

Table: List of Associate Partners 
Nr. Country Name Nr. Country Name 
1 Austria / USA Markus Hohenwarter (GeoGebra) 15 Germany Andreas Göbel (Archimedes Geo3D) 
2 Brazil Leônidas de Oliveira Brandão (iGeom) 16 Germany Reinhard Oldenburg 

3 Canada / Spain Philippe R. Richard, Josep Maria Fortuny 
(geogebraTUTOR) 17 Germany Andreas Meier 

4 Canada Jérémie Farret (3D Geom) 18 Germany Roland Mechling (DynaGeo) 
5 Croatia Sime Suljic (Normala) 19 Italy Giovanni Artico (CRDM) 
6 France Cyrille Desmoulins 20 Luxembourg Daniel Weiler 
7 France Odile Bénassy (OFSET) 21 México Julio Prado Saavedra (GeoDin) 
8 France François Pirsch (JMath3D) 22 Portugal Arsélio Martins 
9 France The Sesamath association 23 Portugal José Francisco Rodrigues (CMAF) 
10 France EducTice - INRP / Luc Trouche 24 Slovakia Dusan Vallo 
11 France IUFM - Jacques Gressier (Geometrix) 25 United Kingdom Albert Baeumel 
12 Germany Jürgen Roth (Universität Würzburg) 26 United Kingdom Nicolas van Labeke (Calques 3D) 
13 Germany Heinz Schumann 27 United States Joshua Marks (Curriki) 
14 Germany René Grothmann (C.a.R. / Z.u.L.) 

 
Country Representatives   
For each EU country a Country Representative serves as a contact person in their 
respective country. They come from ministries of education, preferably, and enable 
the Project to easily contact the relevant persons at school administration level. Based 
on these contacts, the project develops ways to map curricula into the ontology for 
geometry that suits all countries of the EU. The project could successfully find 
several Country Representatives, and a list is available at [Intergeo Project 2008]. 
User Representatives 
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User Representatives, as teachers and software partners, build the basis for the 
sustainability of the project. They are a contact point with their associations, in order 
to support the relationship with potential Intergeo-users [Intergeo Project 2008]. 

• Selected teachers ease experimentations in the classroom of educational 
content gathered by the project, promote the use of the Intergeo-platform and 
the philosophy of resource sharing and quality control.  

• Selected Software-partners promote the uploading of content to the Intergeo-
platform. 

Among others, the selection of external partners will be performed at several local 
user meetings during the project period. The local user meetings have a central role in 
gathering the community of practice. They intend to help providing a complete 
European coverage:   

• The Local User Meetings present Intergeo to the users: The need of a common 
file format for interoperability, the need of a web platform to share resources, 
the need of the ontology and the curriculum mapping to share resources across 
all European countries. 

• The Local User Meetings are a good way to reach power users and engage 
them into the project to improve the projects’ dissemination. 

• Local User Meetings identify suitable schools for the Quality Assessment.  

MAJOR ACHIEVEMENTS 
Content Collection 
The consortium promised to offer a significant amount of content for use in the 
database. Before the project started in Oct. 2007 we identified more than 3000 
interactive resources to be used. All these and more3 have been collected through the 
Intergeo platform by September 2008, first as traces, and now being converted to real 
assets that are searchable and tagged with meta-data. The available content ranges 
through all ages and educational levels, and also mathematical topics and 
competences. See http://i2geo.net to access and use the content. 
Copyright/Licence issues 
A major issue with content re-use and exchange is the handling of intellectual 
property rights. This affects not only the copying of resources, but also the 
modification and the classroom use. Without being able to process the data, it is also 
impossible to offer the added value of cross-curriculum search, for example. 
Thus, all content that is added to the Intergeo portal has a clear license, usually of the 
creative commons type allowing for modification and free (non-commercial) use. See 
http://creativecommons.org for details. 

                                                 
3 On September 30th, 2008, there was a total amount of 3525 traces available. 
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Theoretical Foundation For Cross-Curriculum Categorization and Search 
Interactive geometry has one quality that makes it very particular among learning 
resources: it is often multilingual. This led us naturally to propose a search tool for 
interactive geometry resources that is not just a textual search engine but a cross 
curriculum search engine. 
A simple scenario can explain the objective of cross-curriculum search: a teacher in 
Spain contributes a Cabri construction which is about the intercepting lines theorem 
(the Teorema de Tales) and measuring segment lengths; a teacher in Scotland looks 
for a construction which speaks about the enlargement transformation, segment 
lengths, and the competency to recognize proportionalities. They should match: the 
Scottish teacher should find the Cabri construction of the Spanish teacher (and be 
able to convert it to his preferred geometry system). No current retrieval system can 
afford such a matching process: there is no common word between the annotation 
and the query. 
For cross-curriculum matching to work, a language of annotations is needed that 
encompasses the concepts of all curriculum standards and that relates them. Careful 
observation of the current curriculum standards (see [Laborde et al. 2008]) has shown 
that topics, expressed as a hierarchy, and competencies are the two main type of 
ingredients that are needed. To this end the Intergeo project has built an ontology of 
topics, competencies, and educational levels called GeoSkills. This OWL ontology 
[McGuinness et al. 2004] has been structured and is now being populated by a 
systematic walk through the national curriculum standards; a report of this encoding 
is at [Laborde et al. 2008]; completeness for several school-years has been reached in 
French, English, and Spanish curriculum standards. Because the edition of an 
ontology using a generic tool can be difficult, a dedicated web-based tool is under 
work which will make it possible for the complete German, Spanish, Czech, and 
Dutch curriculum standards to be encoded by the Intergeo partners and its associates. 
For the match to happen, the input 
of topics or competencies has to 
be cared for. We use the auto-
completion paradigm for this 
purpose: the (textual) names of 
each topic and competency are 
searched for in this process and 
the user can thus choose the 
appropriate node with sufficient 
evidence, maybe browsing a 
presentation of the topics and 
competencies. An alternative 
approach proposed is to browse 
curriculum standards, being Figure 1: The skills textbox 
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documents that teachers potentially know well, in order to click a paragraph to 
choose the underlying topics and competencies. 
Quality Assessment Framework 
A Quality Assessment Framework for the Intergeo project was set up based on a 
questionnaire filled freely by the teachers themselves [Mercat et al. 2008]. This 
assessment has two different aims: 

• To rank the resources so that, in response to a query, "good" resources are 
ranked before "bad" resources, at equal relevance with respect to the query. 

• To help improve resources by identifying criteria to work upon in order for the 
author to revise his resource according to the user's input. 

The questionnaire is both easy and deep; it can provide a light 2 minutes assessment 
as well as a deep pedagogical insight of the content. This is achieved by a top-down 
approach: The quick way just asks for 8 broad statements that can be answered on a 
scale from "I agree" to "I disagree": 

• I found easily the resource, the audience, competencies and themes are 
adequate 

• The figure is technically sound and easy to use  

• The content is mathematically sound and usable in the classroom  

• Interactivity is coherent and valid  

• Interactive geometry adds value to the learning experience  

• This activity helps me teach mathematics  

• I know how to implement this activity  

• I found easily a way to use this activity in my curriculum progression 
These broad questions can be opened up by the reviewer to give more detailed 
feedback on issues of interest for him, such as "Dragging around, you can illustrate, 
identify or conjecture invariant properties" in the "Interactive geometry adds value to 
the learning experience" section.  
Of course a thorough questionnaire is weighted more than a quick reply in the 
averaging of the different answers. The questionnaire is to be taken twice, as an a 
priori evaluation, before the actual course, and as an a posteriori evaluation, after the 
teaching has taken place. This second variant is being more weighted than the first 
one. 
Different users are weighted differently as well: seasoned teachers with a lot of good 
activity, or recognised pedagogical experts, will have a high weight: their reviews are 
taken into account more than the average new user. Negative behaviour like steady 
bashing or eulogy will, on the contrary, lower user's weight. We are thinking as well 
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about a social weight: teachers could flag some of their colleagues as "leaders", users 
whose past choices they liked, because they are teaching at the same level for 
example, and the weight of these leaders would increase. 
The I2Geo Platform 
The central place of exchange of interactive geometry constructions is a web-
platform; the i2geo.net platform is becoming a server where anyone with interest to 
interactive geometry can come to search for it and to share it. 
The i2geo.net platform is based on Curriki, an XWiki-extension tuned for the purpose 
of sharing learning resources: strong metadata scheme, quality monitoring system 
and self-regulated groups. Being based on a wiki platform, Curriki offers an online 
editing and inclusion facility and thus also makes collaborative content construction 
possible. 
The i2geo platform has three 
major adaptations compared to 
the tools provided by Curriki: 
the search and annotation tools, 
the review system, and the 
support for interactive 
geometry media. 
The i2geo search and 
annotation tool uses the 
GeoSkills ontology described 
above: this allows the trained 
topics and competencies, the 
required ones, and the 
educational levels to be all 
entered using the input 
methods described above 
(auto-completion and pick-
from-document).  
Such elaborate methods are needed if one wants to honour the rich set of educational 
levels in Europe and the diversity of curriculum standards sketched in [Laborde et al. 
2008]. 
The i2geo search tool uses the GeoSkills ontology as well: queries for any concept 
are generalized to neighbouring concepts which thus allows the match of the 
intercepting-lines-theorem when queried for the concept of enlargement. 
The i2geo platform is under active development and can be experimented with on 
http://i2geo.net. Its current development focus is the input of metadata annotated 
resources and the review system described in the previous sections. The services 

Figure 2: Editing metadata 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1156



specialized to the geometry resources, enabling easy upload, preview, and embedding 
of interactive geometry resources will be provided later. 
A Common File Format 
A wide variety of Dynamic Geometric Systems (DGS) exist nowadays. Before this 
project, each system used incompatible proprietary file formats to store its data. Thus, 
most of the DGS makers have joined the project to provide a common file format that 
will be adopted either in the core of the systems or just as a way to interchange 
content. 
The Intergeo file format aims to be the convergence of the common features of the 
current DGS together with the vision of future developments and the opinion of 
external experts. Its final version based on modern technologies and planed to be 
extensible – to capture the flavour of the different DGS – could serve as a standard in 
the DGS industry. 
The specification of the first version of the Intergeo file format has been released by 
the end of July as deliverable D3.3 [Hendricks et al. 2008] after intensive 
collaboration between DGS software developers and experts. At present, the file 
format is restricted to the geometry in the plane, although it does not seem difficult to 
extend it, in the future, to the space. Besides it specifies only a restricted subset of 
possible geometric elements, which however lead to an agreement on the structure 
and basic composition of the format. 
The general framework was clear from the outset: to design a semantically rich 
format that could be interpreted by at least all DGS in the consortium. One main 
design decision in this respect consists of the choice of constructions, as opposed to 
constraints, because in general, it is very difficult to give any particular solution for a 
set of constraints. Besides constraints of a strictly classical geometric nature do not 
say anything about the dynamic behaviour of a figure. A natural way to shed light on 
both of these problems is a more precise specification of how the objects depend on 
each other, stipulating first which objects are free and then proceeding step by step. 
Such a specification is called a construction. This decision implies less 
interoperability with constraint-based systems, since some of their resources will not 
be encodable into this format. But it ensures that construction-based DGS – the 
majority of the existing systems – will be able to interpret the resources. 
As stated in the Description of Work, OpenMath Content Dictionaries are used to 
specify the symbols – the main ingredients used to describe a construction – of the 
file format. The XML schema can be generated automatically with some knowledge 
of how the atoms are expressed in XML. The complete list of official symbols 
defined so far can be found at http://svn.activemath.org/intergeo/Drafts/Format/. 
As soon as version 1 of the file format got more concrete, some software developers 
started to investigate its practical usage by integrating it (partially) into their 
software. It was possible to move simple content between several of the packages in 
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the project. For more information on the file format we refer to [Hendriks et. al 
2008], which also lists the relevant URLS to see the progress. 
 

NEXT STEPS AND CHALLENGES 
Metadata Collection 
With the arrival of the first curriculum-aware beta version of the i2geo.net platform 
we are now able to attach metadata to the existing content. This includes information 
about the authors, but also about the intended audience for a resource, the skills and 
competences that can be acquired through the resource, the prerequisites, and, of 
course, the topic – categorized according to the ontology. 
While some of this information can be extracted automatically, there is still need for 
a lot of manual intervention. At the same time, the curricula available on the platform 
have to be revised and extended to accommodate all the content. 
Quality Testing 
The partners in the Quality Assurance work package will conduct small-scale 
experimentations in the classroom during the period January-April 2009. Teachers, 
whether alone or in homogeneous teams, will  

• Use the platform in order to identify content suitable for their course,  

• First fill an a priori questionnaire,  

• Teach the resource in the classroom,  

• And finally report on its use by updating the a posteriori questionnaire. 
We will have to agree on a modus operandi, recruit volunteers, especially among the 
teachers that were contacted during the users meetings, instruct them and have them 
conduct the experimentations. 
Then these assessments will be analyzed. The analysis will be used to iteratively 
improve the quality assessment framework according to the users' feedback on 
usability and relevance of the different items and of the online platform.  
It is a primary concern that all resources receive at least basic testing. Thus, we will 
check the overall coverage in the project and, if necessary, identify resources to be 
tested. 
As the quality assessment primarily aims to make it possible to improve ranking and 
quality of the resources, we can use this as a performance indicator. For this, the 
changes in ranking due to the quality evaluation will be measured. Additionally, 
selected examples will be analysed in order to understand whether authors can infer 
improvements of their resources. 
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Via interviews with selected authors we try to understand how they perceived quality 
assessment and how we can improve its perception as positive, constructive and 
scientific more than negative, useless and personal. 
In the final year of the project, mass scale experimentations will take place. More 
countries and more parts of the curriculum shall be covered. 
File format 
As for version 1 of the file format some decisions that should be made with the help 
of other developers of DGS have been postponed, those experts are invited to join the 
discussion and propose solutions or give remarks, see [Hendriks 2008]. Thus, 
substantial modifications of this specification are expected to solve all practical 
issues that might arise. 
Better Visibility 
The ultimate goal and a measure of success is the visibility of the Intergeo platform 
in Europe as a whole. After the first year was devoted to setting up the technical 
prerequisites and administrative processes, as well as clearly describing how we can 
measure and improve the standards for successful interactive resources, we can now 
offer a usable platform with substantial content. We now have to make the platform 
more visible and raise interest within the didactical community,  the teachers, and the 
governments throughout Europe. 
Today, the websites of the individual software packages from the project still have 
much more visits a day than the i2geo.net portal. So a first step will be to announce 
the portal on the websites of the software packages and on the websites of (associate) 
partners using banners and an i2g-compliance badge that shows the compatibility of 
the software with the i2g file format. 

CONCLUSIONS AND CALL FOR PARTICIPATION 
In this article, we can only highlight the basic structure of the project. We invite 
everybody to visit the project website at http://inter2geo.eu, submit their own content 
on http://i2geo.net, join as an Associate Partner or become a User or Country 
Representative. 
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QUALITY PROCESS FOR DYNAMIC GEOMETRY RESOURCES: 
THE INTERGEO PROJECT 

Jana Trgalova*, Ana Paula Jahn**, Sophie Soury-Lavergne* 
* EducTice, INRP; LIG, Grenoble, France 

 ** UNIBAN, São Paulo, Brazil 
In this contribution, we present the European project Intergeo whose aims are first to 
develop a common language for a description of geometric figures that will ensure 
interoperability of the main existing dynamic geometry systems, and second, to 
gather and to make available pedagogical resources of a good quality. This text 
focuses on the quality process for dynamic geometry resources aiming at their 
perpetual improvement.  
Keywords: pedagogical resource, quality of a resource, dynamic geometry, teacher 
training 
INTRODUCTION 

This contribution concerns the issue of integration of ICT tools into teachers’ 
practices and the means of supporting it. One of the keys is to provide teachers with 
pedagogical resources helping them to develop new activities for their pupils. 
However, we now know that the availability of resources is not sufficient. On the one 
hand, the abundance of resources makes difficult to find appropriate and quality 
resources (Guin and Trouche 2008, Mahé and Noël 2006). On the other hand, the 
availability of resources does not solve the problem of their appropriation by the 
teachers, which requires an evolution of teachers’ competencies and their conceptions 
about the role of technology in teaching and learning mathematics (Chaachoua 2004).  
This leads to consider the issue of teachers training. Numerous research works 
pointed out the efficiency of training based on co-design of pedagogical resources 
(Krainer 2003, Miyakawa and Winsløw 2007). Various training actions have been 
developed in France based on this principle, e.g., SFODEM and Pairform@nce 
(Gueudet et al. 2008). In Brazil, AProvaME project aimed to study the effects of a 
collaborative design of resources involving ICT tools by the teachers on their 
conceptions about the notion of proof and its teaching, as well as about the role of 
technology in mathematics learning (Jahn et al. 2007). 
THE INTERGEO PROJECT 
Despite the availability and accessibility of ICT tools, and despite the 
recommendations in the curricula to use technology in France and in Brazil, teachers 
are reluctant to use these technologies (Artigue 2002). In the case of dynamic 
geometry systems (DGS) several reasons explain this resistance. The most important 
is certainly the shift in considering mathematical activity and teacher profession 
caused by the introduction of ICT into mathematics classroom (Lagrange and Hoyles 
2006). However, other obstacles to using DGS by the teachers can not be neglected. 
First, the complexity of choice of a reliable and easy to use DGS among a number of 
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existing systems, and the resulting constraints on the choice of resources that must 
match the chosen DGS. Next, it is hard to find pedagogical resources appropriate to a 
specific educational context. This can be attributed to a great amount of resources 
available on the Internet, but mostly to the lack of metadata, providing an accurate 
description of the resource content. Moreover, available resources do not often have 
the required quality to be used in a classroom. The difficulty for a teacher to evaluate 
quality and adequacy of a resource to her/his specific context is an obstacle to the 
ICT integration. For this reason, tools for indexing resources, as well as evaluating 
their quality appear essential.  
These considerations lead to 3 goals of Intergeo project (www.inter2geo.eu/fr): 
(1) interoperability of the main existing DGS, (2) sharing pedagogical resources, and 
(3) quality assessment process of resources discussed in this paper. 
THEORETICAL BACKGROUND 

Notion of pedagogical resource 
First, it is important to clarify what we mean by pedagogical resource. Indeed, Noël 
(2007) points out that the issue of resource evaluation relies on the definition of what 
is a pedagogical resource. Nevertheless, according to the author, in spite of numerous 
efforts, the definition of pedagogical resource remains vague and rather broad in its 
scope. The most often used one is drawn from LOM standards (2002): “… any entity, 
digital or non-digital, that may be used for learning, education or training” (p.5). 
Flamand (2004) specifies that in order to enhance learning, a Learning Object has to 
possess intrinsically a pedagogical intention. Thus, for the purposes of Intergeo 
project, we will consider as resources those “entities” (dynamic geometry figures, 
texts…) for which pedagogical intention is specified. 
In addition, we share Trouche and Guin’s (2006) point of view, which, referring to 
the instrumental approach (Rabardel 1995), considers a pedagogical resource as an 
artefact that needs to be transformed into an instrument by a teacher in the process of 
its use in her/his class. For the authors, usage of a resource is a condition for its 
existence. Resources are therefore living entities in evolution through their usages. In 
this perspective, the quality assessment process of Intergeo DG resources aims at 
enabling their perpetual improvement. 
Quality assessment process 
The quality of a resource depends on its intrinsic characteristics, as well as on its 
adequacy to the context in which it will be used. A given resource can be “good” in 
one context and “poor” in another. Thus clarifying its educational goals and the 
school context in which its use is intended is also essential in determining and 
improving the quality of the resource. 
Mahé and Noël (2006) constituted an evaluation typology based on a detailed 
analysis of evaluation means set up by various web sites offering pedagogical 
resources: a priori evaluation by the adherence institution; validation of resource 
conformity to a deposited content; peer-review by expert teachers; user evaluation; 
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cross-evaluation both by peers and users. The quality assessment in Intergeo project 
regarding DG resources consists of an evaluation by users and a peer review of a 
number of resources by a group of teachers supervised by math education researchers 
based on a priori analysis, use in a class, and a posteriori analysis of the resources. 
This process corresponds to the 5th type of evaluation mentioned above, rarely 
encountered according to the authors. 
Mahé and Noël (ibid.) bring to light critical aspects of a resource to take into account 
in the evaluation process: technical aspect, content, design aspect and metadata. 
Criteria we have set up for the quality assessment process of DG resources draw from 
these categories, as well as from theoretical frameworks suitable for resource 
analysis: (1) didactic theories, namely Brousseau’ theory of didactic situations 
offering tools for analysing pupil’s activity and teacher’s role, and Chevallard’s 
anthropological theory allowing to address issues of resource adequacy to 
institutional expectations, and (2) instrumental approach (Rabardel 1995) providing a 
framework for instrumented activity analysis. 
USER EVALUATION OF THE QUALITY OF A RESOURCE  
Our elaboration of a questionnaire for DG resource quality evaluation by users started 
by listing characteristics or elements of a resource related to its mathematical, 
didactical and pedagogical quality. We attempted to obtain a list as complete as 
possible. These characteristics were classified into 9 classes considered as relevant 
indicators of the resource quality: metadata, technical aspect, mathematical 
dimension of the content, instrumental dimension of the content, potentialities of DG, 
didactical implementation, pedagogical implementation, integration of the resource 
into a teaching sequence, usage reports. In what follows, we give an overview of 
criteria related to four classes referring to mathematical and didactical value of a 
resource. 
Mathematical dimension of the content of a resource 

There is no doubt that, for a resource to be usable in a school context, its content has 
to be mathematically correct. Adequacy of the content with the curricula allows the 
evaluation of the resource utility. Finally, mathematical activities need to be in 
adequacy with the declared educational goals.  
Criterion Question 
Validity Are the activities in the resource correct from a mathematical point of view? 
Adequacy to 
the curriculum  Are the activities in adequacy with curricular and institutional constraints? 

Adequacy to 
declared goals  Are the activities in adequacy with the declared educational goals? 

Table 1. Mathematical dimension of the content of a DG resource 

Instrumental dimension of the content of a resource 

When a resource includes a DG file, it is necessary to check the coherence between 
the proposed activity and the geometric figure. In addition, the figure should behave 
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as expected. Particular attention should be paid to the handling of limit cases and of 
numerical values such as measures of lengths and angles. Indeed, the dynamic 
diagram should behave according to mathematical theories and didactical goals. If 
special functionalities, such as macro-constructions, are used, a description of their 
operating mode will make easier the appropriation of the resource by a teacher.  
Criterion Question 
Adequacy of diagrams Do the dynamic diagrams correspond to the proposed activities? 
Behaviour of diagrams Do the dynamic diagrams behave as expected in the activity?  

Management of limit cases Is the management of limit cases in the dynamic diagrams 
acceptable from the mathematical point of view? 

Management of numerical 
values  

Is the management of numerical values acceptable in the sense 
that it does not hinder mathematical aims of the activity? 

Special functionalities  If the diagrams rely on special functionalities (e.g., macro-
construction), is their operating mode clearly described? 

Table 2. Instrumental dimension of the content of a DG resource 

Potentialities of dynamic geometry 

Numerous researches on DG put forward its potentialities and their contribution to 
the learning of geometry (Laborde 2002, Lins 2003, Tapan 2006). Criteria in this 
class aim first at evaluating how these potentialities are exploited in the resource, and 
more specifically to what extent DG contributes to improve learning activities 
comparing to paper and pencil environment. Second, its contribution to the 
achievement of educational goals is also analysed. This class comprises two criteria: 
(1) specific features of DG offering an added value to the resource, (2) role and use of 
drag mode, drawing on diversity of DG potentialities highlighted by research works 
(Laborde 2002, Healy 2000, Mariotti 2000). Even if a resource cannot benefit from 
each of them, we consider a resource that does not take any advantage of DG is of 
poor quality. Our hypothesis is that teachers perceive DG mainly as enabling to drag 
points to make pupils observing invariant properties (Tapan 2006). 
Criterion Question 

Is DG a visual amplifier improving graphical quality and accuracy of diagrams? 
Is DG used to obtain easily and quickly many cases of a same figure? 
Does DG provide an experimental field for the learner’s activity? 
Do the feedbacks enable students validate their constructions by themselves? 
DG offers a possibility to articulate different representations of a same 
mathematical problem. Is this possibility used in the resource? 
Does DG allow students to overcome the spatio-graphical characteristics of a 
diagram to focus on its geometrical properties? 
Is the activity specific to DG, i.e., it would be meaningless without it? El
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Does the use of DG in the activity contribute to achieve the educational goals? 
Is dragging used to illustrate a geometrical property, i.e., students are encouraged 
to drag elements and observe a given property that is invariant while dragging? 
Is dragging used to conjecture geometrical relationships, i.e. the point is to 
observe whether a supposed property is invariant while dragging elements?  
Is dragging used to study different cases of the diagram?  U
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Is dragging used to obtain a specific configuration satisfying given conditions?  
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Is dragging used to identify dependencies between objects?  
Is dragging used to illustrate link between hypotheses and conclusion in a 
theorem, i.e., the point is to momentarily satisfy hypotheses by dragging elements 
(soft construction) and consider obtained properties as necessary consequences? 
Is dragging used to explore trajectories of geometrical elements (locus, trace)?  
Is the use of dragging explicitly mentioned in the instructions for students?  

Table 3. Potentialities of dynamic geometry 

Didactical implementation of the resource 

Trouche (2005) points out that a successful integration of ICT requires a specific 
organization of pupil-computer interactions, which he calls “class orchestration”. The 
author emphasises the importance of instrumental processes management in relation 
with learning mathematics. For this reason, we are convinced that a quality resource 
should provide a kind of assistance related to the class orchestration by means of 
elements concerning mathematics learning management with technology, which 
would help the teacher organize favourable learning conditions. We propose the 
criteria and questions, reported in table 4, addressing the issue of didactical 
implementation of a resource. 
Criterion Question 

Do the students get involved easily in the proposed activity? 
Does the activity let enough initiative to students to choose their strategies? 
Does the resource describe students’ possible strategies and answers? 
Does the resource provide information about teacher reactions to students’ errors? 
Does the resource provide information about the teacher interventions at the 
beginning of the activity with the students?  
Does the resource provide information about the teacher interventions making the 
students’ strategies evolve? 
Does the resource provide information about the teacher interventions during the 
phase of synthesis?  
Does the resource provide information about the validation phases? M
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Does the resource discuss main characteristics of the activity, their effects on 
students’ behaviours and other possible choices? 
Does the resource provide information about feedback from the software? 
Do the dynamic diagrams provide feedback enabling the student to progress in 
solving the given tasks?  

In
st

ru
m

en
te

d 
ac

tiv
iti

es
 

m
an

ag
em

en
t 

Does the resource provide information about the possible teacher interventions 
regarding instrumental aspects of the activity? 

Table 4. Didactical implementation of a resource 

The resulting questionnaire comprises 9 classes with 59 questions altogether. It deals 
with a great variety of aspects of a quality DG resource and should be 
comprehensive. However, the questions are not homogenous from the point of view 
of expertise required to understand and to be able to provide a sound answer to each 
question. It can be expected that all users will not evaluate all aspects of a resource, 
but they will rather focus at those that correspond to their own expertise and their 
own representation of what is a quality resource. Nevertheless, the quality of a 
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resource will take account of all evaluators; therefore we expect that each aspect will 
be evaluated by some of the users. 
Given the length of the questionnaire, it seemed necessary to start by proposing a 
lighter version to users focusing on a few large questions (one per class) addressing 
globally each aspect of the resource. At the same time, the user will have the 
possibility to deepen her/his answer by answering more precise questions related to 
aspects s/he will wish to analyse further, according to her/his expertise. Moreover, 
s/he will be given opportunity to go back to the evaluation repeatedly. Note that the 
process of resource ranking (under development) will take account of the user’s 
declared expertise and assign a weight to each provided answer accordingly. 
Since the end-users of the questionnaire are teachers, we wished to test relevance and 
clarity of the questions. For this purpose, we organized a pilot experimentation with a 
group of teachers using a simplified version of the questionnaire. The experiment and 
some results are described in what follows.  
EXPERIMENTATION 

Some elements of the initial questionnaire available in (Mercat et al. 2008) have been 
tested in Brazil, within an in-service teacher training “Geometry” module. Our goal 
was to analyse the relevance of evaluation criteria we defined, as well as to 
understand what a quality resource is for the teachers. A few more open questions 
were added aiming at identifying elements of a resource the teachers consider as 
helpful in order to appropriate and use the resource in their classes. A DG resource 
has also been designed to control some of its aspects for the experiment purposes and 
to be relevant for a teacher training.  
Presentation of the resource and of the questionnaire 
The resource addresses the “quadrilaterals” topic and makes use of Cabri-geometry. 
It is constituted of a student worksheet, a teacher document and three DG files: two 
dynamic figures (cf. Fig. 1) and one macro-construction. 
The teacher document provides a description of the 
resource: topic, school level, educational goals, 
prerequisites and required material. It also provides 
a brief presentation of the suggested organization of 
the sessions: classroom setting and roles of teacher 
and students. 

A

B

C

D

 
Figure 1. Dynamic figures 
composing the resource 

The first mathematical activity, whose aim is to introduce a special type of a 
quadrilateral, an isosceles kite, draws from the idea of a “black box” specific to DG 
environments. It consists in reproducing a geometrical figure that behaves in the same 
way as a given model. Students are expected to explore the model in order to identify 
relationships between its elements, then to reconstruct the kite and validate their 
construction by using the macro-construction. In the resource, the exploration phase 
is partly guided to lead the students to characterize a kite by means of a maximum of 
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its properties (related to its sides, angles and diagonals). Indeed, the activities are 
intended for 12-14 year old students and the instructors consider inappropriate to let 
them completely responsible of exploring the figure and identifying properties and 
relationships linking its elements. In the second activity, the students are invited to 
explore the figure and to conjecture a possibility to obtain other types of 
quadrilaterals (square, rhombus, non squared rectangle) from the kite. In both 
activities, the drag mode is essential to explore given dynamic diagrams. 
For the purpose of the experiment, we selected and adapted several questions from 
the Intergeo questionnaire (cf. Fig. 2), namely those concerned with mathematical 
and instrumental quality of the resource, potentialities of DG and didactical 
implementation of the resource. The questions regarding DG are intentionally open 
aiming at highlighting which elements the teachers spontaneously mention as 
contributing to the added-value of DG in the resource.  

 
Figure 2. Questionnaire for resource evaluation used in the experiment 
Written answers provided by the teachers were one kind of data we gathered. These 
were completed by field notes of an observer recording relevant elements of 
exchanges among teachers.  
Experimentation and first results 
The experimentation consisted in one 2h30 training session for 22 secondary 
mathematics teachers, who had, in average, six years of experience in teaching and 
most were “beginners” in DG. The training session was organized in three phases: 
solving activities from the student worksheet, a priori analysis of these activities, and 
analysis of the resource guided by the questionnaire (cf. Fig. 2). In what follows, we 
describe the phase 3 and present the first results. 
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In the teacher document, the participants particularly appreciated the brief description 
of the sequence considered as a kind of the resource “visit card”, as well as the 
synthetic description of the sequence organisation: “very well like that, one gets 
directly every essential information”; “one understands immediately how to organise 
the sequence”.  
As regards the student worksheet, the teachers have found the tasks easily 
identifiable, mathematically correct and clearly formulated. A special attention was 
paid to the vocabulary with the intention to make the wording of activities accessible 
to pupils. The teachers used these worksheets also to understand the sequence 
organisation and its progression: “student sheets allow us to understand well the 
whole sequence and to spot contents and objectives”; “Student sheets are very well 
designed. […], one sees clearly the sequence progression: observation of sides, 
symmetry between vertices and angles. Then, the construction is proposed and finally 
the study of some cases […]”.  
Regarding elements helpful for resource appropriation but missing in the resource, 
the teachers expressed a need to understand how the macro had been constructed and 
how it works. They would also have liked to have more information about the 
teacher’s role: what interventions and when, particularly during the 
institutionalisation phases; how to assist students’ work. Some teachers pointed out 
that a document with reports of use, containing expected solutions and answers, but 
also possible students’ difficulties accompanied with advices how to cope with them 
(e.g., student worksheet with commentaries for a teacher) would be helpful for a 
better appropriation of the resource.  
Regarding DG, all teachers find unquestionable its contribution in the resource: 
“activities specific to Cabri”; “the software is essential”; “impossible without Cabri”. 
This is not surprising since the resource was designed for. The teachers state more 
precisely that “the software favours checking of properties”; “without drag mode and 
possibility to modify diagrams, properties wouldn’t be visualized”. They 
spontaneously mention that dragging enables manipulating the figure and thus 
identifying its properties; checking properties; obtaining easily many different cases 
of a same figure; constructing figures easily, quickly and more precisely; making 
conjectures. 
It is important to note that the teachers formulated all these criteria spontaneously, 
but they admitted that they would not have been able to do it without the framework 
of the questionnaire and without having done previously an a priori analysis of the 
resource. The questionnaire helped them focus on important aspects of the resource 
and they were able to provide a deeper analysis than expected. Thereof, the criteria 
set up for the evaluation questionnaire seem to be understandable by teachers, but 
what’s more, they helped them analyse the quality of the resource. Thus, the 
questionnaire is not only a tool for characterizing the quality of a resource and for 
highlighting aspects to be improved, but it can also be used to train users’ awareness 
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of positive and negative aspects of a resource and in this way develop their 
professional skills enabling them to use it efficiently with their pupils. 
CONCLUSION 
The results from the experimentation show the importance of training teachers to 
resource analysis. Indeed, the questionnaire helped the teachers focus on important 
aspects of the resource to look. These aspects were rarely taken into account before 
the training session. Among those, there is the teacher document containing 
information about the implementation of the resource and the added value of DG, in 
particular the role of drag mode. 
On the other hand, the quality assessment process will lead to an improvement of a 
quality of resources, both at the metadata level highlighting information allowing an 
easier spotting of relevant and quality resources and at the level of the resource itself. 
Indeed, the quality criteria may be considered as a grid allowing to improve certain 
aspects of resources or to design new resources satisfying these criteria from the very 
beginning. Thus, this process can eventually give rise to a model that would act as a 
guide for resource designers by pointing necessary elements and helping make them 
explicit in an understandable and accessible way for potential users.   
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NEW DIDACTICAL PHENOMENA PROMPTED BY TI-NSPIRE 

SPECIFICITIES – THE MATHEMATICAL COMPONENT OF 

THE INSTRUMENTATION PROCESS 

Michèle ARTIGUE, Caroline BARDINI 

Université Paris Diderot - Paris 7, Université Montpellier 2 

Relying on the collective work carried out in the e-CoLab project concerning the 
experimentation of the new calculator TI-nspire, we address the issue of the 
relationships between the development of mathematical knowledge and instrumental 
genesis. By analyzing the design of some resources, we first show the importance 
given to these relationships by the teachers involved in the project. We then approach 
the same issue from the student’s perspective, using some illustrative examples of the 
intertwining of these two developments framed by the teachers’ didactical choices.  
INTRODUCTION  

Educational research focusing on the way digital technologies impact, could or 

should impact on learning and teaching processes in mathematics has accumulated 

over the last two decades as attested for instance by the on-going ICMI Study on this 

theme. Questions and approaches have moved as far as research understood better the 

ways in which the computer transposition of knowledge (Balacheff, 1994) affects 

mathematical objects and the possible interaction with these, the changes introduced 

by digital technologies in the semiotic systems involved in mathematical activities 

and their functioning, and the  influence of such characteristics on learning processes 

(Arzarello, 2007). They have also moved due to the technological evolution itself, 

such as the increased potential offered by technology to access mathematical objects 

through a network of inter-connected and interactive representations, or to develop 

collaborative work (Borba & Villareal, 2004). Increased technological power, 

nevertheless, generally goes along with increased complexity and distance from usual 

teaching and learning environments, and researchers have become more and more 

sensitive to the processes of instrumentalization and instrumentation that drive the 

transformation of a given digital artefact into an instrument of the mathematical work 

(Guin, Ruthven, & Trouche, 2004). They have revealed their underestimated 

complexity, and the diversity of the facets of such instrumental genesis both on the 

student and teacher side (Vandebrouck, 2008).  

This contribution situates within this global perspective. It emerges from a national 

project of experimentation of the new TI-nspire in which we are involved. This 

artefact is quite innovative but also rather complex and distant from standard 

calculators, even from the symbolic ones. This makes the didactical phenomena and 

issues associated with its instrumentalization and instrumentation especially 

problematic and visible. In this contribution, we pay particular attention to the 

interaction between the development of mathematical knowledge and of instrumental 

genesis, analyzing how the teachers involved in the project manage it and how 
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students experience it. Through a few illustrative examples, we point out some 

phenomena which seem insightful from this point of view, before concluding with 

more general considerations. 

PRELIMINARY CONSIDERATIONS 

Let us first briefly present the TI-nspire and its main innovative characteristics, then 

the French project e-CoLab and also the theoretical frame and methodology of the 

study.  

A new tool   

TI-nspire CAS (Computer Algebra System) is the latest symbolic ‘calculator’ from 

Texas Instruments.  At first sight it undoubtedly looks like a highly refined calculator, 

but also just a calculator.  However, it is a very novel machine for several reasons: 

 Its nature: the calculator exists as a “nomad” unit of the TI-nspire CAS software 

which can be installed on any computer station;  

 Its directory, file organiser activities and page structure, each file consisting of one 

or more activities containing one or more pages. Each page is linked to a 

workspace corresponding to an application: Calculator, Graphs & Geometry, Lists 

& Spreadsheet, Mathematics Editor, Data and Statistics; 

 The selection and navigation system allowing a directory to be reorganised, pages 

to be copied and/or removed and to be transferred from one activity to another, 

moving between pages during the work on a given problem; 

 Connection between the graphical and geometrical environments via the Graphs & 

Geometry application, the ability to animate points on geometrical objects and 

graphical representations, to move lines and parabolae and deform parabolae; 

 The dynamic connection between the Graphs & Geometry and Lists & 

Spreadsheet applications through the creation of variables and data capture and the 

ability to use the variables created in any of the pages and applications of an 

activity. 

When presented with the TI-nspire, we assumed that these developments could offer 

new possibilities for students’ learning as well as teachers’ actions. They could foster 

increased interactions between mathematical areas and/or semiotic representations. 

They could also enrich the experimentation and simulation methods, and enable 

storage of far more usable records of pupils’ mathematics activity. However, we also 

hypothesized that the profoundly new nature of this calculator and its complexity 

would raise significant and partially new instrumentation problems both for students 

and teachers and that making use of the new potentials on offer would require 

specific constructions, and not simply an adaptation of the strategies which have been 

successful with other calculators.  

Excerpts both from students’ interviews and teachers’ questionnaires carried out/ 

handed out at the end of the first year of experiment support our hypotheses: 
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“At first it was difficult, honestly, I couldn’t use it… now it’s OK, but at first it was hard 

to understand… the teacher, other students helped us and the sheet we got helped us 

out… how to save, use the spreadsheet, things like that…” Student’s interview  

 “In my opinion the richness of mathematical activities thanks to the connection between 

the several registers is the key benefit […] The difficulty will be the teacher’s workload 

to prepare such activities so to render students autonomous.” Teacher’s questionnaire  

 “There are still a few students for whom mathematics poses a big problem and for whom 

the apprenticeship of the calculator still remains arduous. These students find it hard to 

dissociate things and tend to think that the obstacles they face are inherent to the tool 

rather than to the mathematics themselves.” Teacher’s questionnaire   

Context of the research 

This study took place in the frame of a two-year French project: e-CoLab 

(Collaborative mathematics Laboratory experiment) [1]. It was based on a partnership 

between the INRP and three IREM: Lyon, Montpellier and Paris. It involved six 10
th

 

grade classes, all of the pupils of which were provided with the TI-nspire CAS 

calculator. The students kept their calculators throughout the whole school year and 

were allowed to take them home. The groups on the 3 sites were composed of the 

pilot class teachers, IREM facilitators and university researchers. They met regularly 

on site although the exchange also continued distantly through a common workspace 

on the EducMath site, which allowed work memories to be shared and common tools 

(questionnaires, resources, etc.) to be designed. 

All pilot teachers had a strong mathematical background but the expertise in using 

ICT varied from one to another. In the 1
st
 year of the project, teachers and students 

were equipped with a prototype of the TI-nspire they had never worked with before. 

However, the willingness to articulate mathematical with instrumental knowledge 

was shared by all teachers, despite the work they later on admitted it required: 

“We have to devote an important amount of time to the instrumentation. This requires 

teachers to invest quite some time in order to design the activities, especially if they want 

to associate the teaching of mathematical concepts.” Teacher’s questionnaire  

Theoretical framework 

Two theoretical streams guide our analyses. The first one is related to the 

instrumental approach introduced by Rabardel (1997). For Rabardel, the human 

being plays a key role in the process of conceiving, creating, modifying and using 

instruments. Throughout this process, he also personally evolves as he acclimatises to 

the instruments, both with regard to his behaviour as well as to his knowledge. In this 

sense, an instrument does not emerge spontaneously; it is rather the outcome of a 

twofold process involved when one “meets” an instrument: the instrumentation and 

the instrumentalization. Rabardel’s ideas have been widely used in mathematics 

education in the last decade, first in the context of CAS (cf. Guin, Ruthven & 

Trouche, 2004 for a first synthesis) then extended to other technologies as 
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spreadsheets and dynamic geometry software, and more recently on-line resources. 

Recent works such as the French GUPTEn project have also used the concept of 

instrumental genesis for making sense of the teachers’ uses of ICT (Bueno-Ravel & 

Gueudet (2008).  

We are also sensitive to the semiotic aspects of students’ activities. Not only are we 

taking into account Duval’s theory of semiotic representation (Duval, 1995) and the 

notions attached to it (semiotic registers of representation and conversion between 

registers), but more globally the diversity of highly intertwined semiotic systems 

involved in mathematical activity including gestures, glances, speech and signs, i.e. 

the “semiotic bundle” (Arzarello, 2007). In particular, when examining students’ 

activity, we pay specific attention to the embodied and kinesthetic dimension of it 

(Nemirovsky & Borba, 2004) via the pointer movement or students’ gestures.  

Methodology 

We are interested in the students’ instrumental genesis of the TI-nspire and in 

particular in considering the role mathematical knowledge plays in this genesis. Such 

analysis cannot be done without taking into account the characteristics of the tasks 

proposed to students and the underlying didactical intentions. Our methodology thus 

combines the analysis of task design as it appears in the resources produced by the e-

CoLab group, and the unfolding of students’ activity.  

The analysis of students’ activity relies on screen captures of students’ activities 

made with the software Hypercam. HyperCam, already used in other research 

involving the study of students’ use of computer technology (see for e.g. Casyopée, 

Gélis & Lagrange (2007)), enables us to capture the action from a Windows screen 

(e.g. 10 frames/sec) and saves it to an AVI movie file. Sound from a system 

microphone has also been recorded and some of the activities have been video-taped. 

When relevant, we also back up our analysis by relying on students’ or teachers’ 

interviews/questionnaires carried out independently from the activities.  

TEACHERS’ INSTRUMENTATION – DIDACTICAL INTENTIONS 

Didactical intentions  

The pilot teachers involved in the experiment cannot be said to be “ordinary 

teachers”. All of them have been involved, in one way or another, in the IREM’s 

network, thus they were all somehow sensitive to didactical considerations and 

shared a fairly common pedagogical background. The relative success of the project 

was in part due to this familiarity, as one teacher acknowledged: “It is easier to 

communalize if we share the same pedagogical principles.”  

In particular, the willingness of intertwining mathematical content with instrumental 

knowledge was commonly held and despite the hard work that it meant, the joint 

work was perceived as a true added value as teachers seemed to work in harmony: 
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 “We have to carry the instrumentalization and the mathematical learning in parallel. 

Activities are not evident to think of and take time to design. The help from others make 

us gain time and provide us with new ideas.” Teacher’s questionnaire  

Imprint on resources  

Around 25 resources were designed during the two years of the project. There are two 

kinds of resources: those created essentially to familiarize pupils with the new 

technological instrument (presentation of the artifact and introduction of some of its 

potentials), and those constructed around (and we should add “for”) the mathematics 

activity itself [2]. In what follows, we mainly focus on the resources that support the 

teaching/learning of mathematical concepts and examine how teachers managed to 

articulate mathematical concepts with instrumental constituents.  

The didactical intentions previously mentioned are clearly visible when examining 

the resources teachers designed, showing that these were built from the mathematical 

component yet at the same time planning a progressive instrumentation.  

The Descartes resource is very enlightening in this sense. Teachers who have 

designed it acknowledged it appeared to be useful as an introduction into the dynamic 

geometry of the calculator, articulated with an application of the main geometrical 

notions and theorems introduced in Junior High School. It also offered the advantage 

of linking the work which had just been performed on numbers and geometry. 

In this resource, several geometrical constructions are involved, enabling products 

and quotients of lengths to be produced and also the square root of a given length to 

be constructed. For the first construction proposed, the geometrical figure is given to 

the pupils together with displays of the measurements required to confirm 

experimentally that it does provide the stated product (fig. 1). The pupils simply had 

to use the pointer to move the mobile points and test the validity of the construction. 

Secondly, for the quotient, the figure provided only contained the support for the rays 

[BD) and [BE). The pupils were required to complete the construction and were 

guided stepwise in the successive use of basic tools as “point on”, “segment”, 

“intersection point”, “measurement” and “calculation”. Thirdly, they were asked to 

adapt the construction to calculate the inverse of a length. Finally for the square root 

they had the Descartes figure and were required to organise the construction 

themselves. Instructions were simply given for the two new tools: “midpoint” and 

“circle”. 

In his treatise on Geometry, Descartes explained how to construct the product of 2 numbers 

 
 

Figure 1. First part of the Descartes resource (extracted from the pupil sheet and the associated tns file)  
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 In what concerns the resource Equal areas, the mathematical support is an algebraic 

problem with geometrical roots; it consists in finding a length OM such that two 

given areas are equal (fig. 2). The expressions of the two areas as functions of OM 

are 1
st
 and 2

nd
 degree polynomials and the problem has a single solution with an 

irrational value. This therefore falls outside the scope of the equations which the 

observed students are able to solve independently. In the first version of the resource, 

their work was guided by a sheet with the following stages: geometrical exploration 

and 1
st
 estimate of this solution, refining the exploration with a spreadsheet to give 

the required value within a tolerance of 0.005, the use of CAS to obtain an exact 

solution, and finally the production of the corresponding algebraic proof by 

paper/pencil.  

 
   

 

Figure 2.  Exploring progressively the problem of Equal Areas using different applications  

Experimentations led to the development of successive scenarios where more and 

more autonomy was given to the students in the solving of this problem, yet still 

requiring the use of several applications, discussing the exact or approximate nature 

of the solutions obtained, and the global coherence of the work. 

MERGING MATHEMATICS AND INSTRUMENT – STUDENTS’ 

VIEWPOINT  

Our analysis will rely on the experimentation of two particular resources already 

mentioned (Descartes and Equal areas) for the following reasons: they have been 

designed with an evident attention to both mathematical and instrumental concerns, 

but take place at different moments of students’ learning trajectory and have different 

mathematical and instrumental aims. Descartes has been proposed early in the school 

year; it aims at introducing the dynamic geometry of TI-nspire while revisiting some 

main geometrical notions of junior high school, and connecting these with numbers 

and operations. Equal areas was given to students several months later, at the end of 

the teaching of generalities about functions. It aims at the solving of a functional 

problem from diverse perspectives, and at discussing the coherence and 

complementarities of the results that these perspectives provide. It also aims at 

informing us about the state of students’ instrumental genesis after 6 months of use of 

the TI-nspire.  
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Students and the Descartes resource 

Two sessions and some homework were associated with this resource in the 

experimentation, and an interesting contrast was observed between the two sessions. 

The smooth running of the first session evidenced that a first level of 

instrumentalization of the dynamic geometry of the TI-nspire was easily achieved in 

this precise context. The successive difficulties met in the second session illustrated 

both the limits of this first instrumentalization and the tight interaction existing 

between mathematics and instrumentation. In what concerns the instrumentalization, 

we could mention students who inadvertently created a  point that could superimpose 

on the points of the construction and invalidate measurements; the fact that they 

could not handle short segments on the calculator, or that they had not understood 

how to “seize” length variables in the geometry window for computing with them…   

Regarding the interaction between mathematics and instrumentation, one difficulty 

appears to be especially visible in this situation:  measures and computations in the 

geometry application are dealt with in approximate mode. Thus, when testing the 

validity of the construction proposed by Descartes for the quotient for instance, the 

students did not get exactly what they expected and were puzzled. Very interesting 

classroom discussions emerged from this situation which attest the intertwining of 

mathematical and instrumental issues. Students had limited familiarity with the tool, 

and had to understand that exact calculations are restricted to the Calculation 

application. The problem nevertheless was not solved just by giving this technical 

information, showing that this was not enough for making sense of such information, 

rather related to the idea of number itself, the distinction between a number and its 

diverse possible representations, the notions of exact and approximate calculations.  

Students and the Equal area resource 

As already explained, this resource is quite different from the previous one and 

students had been using the TI-nspire for more than 6 months. It has been 

experimented several times with different scenarios, and the analysis of the data 

collected is still ongoing. Some instrumentalization difficulties were still observed, 

even when students worked with an improved version of the artifact. These often 

concerned the spreadsheet application, less frequently used, but the main difficulties 

involved tightly intertwined mathematics and instrumental issues as in the previous 

example. We will illustrate this point by the use of a spreadsheet for finding and 

refining intervals including the solution. 

Students used the spreadsheet application after a geometrical exploration of the 

problem. This convinced them of the existence and uniqueness of the solution, 

provided its approximate value and showed that the geometrical application could not 

provide exactly equal values for the two areas. The use of the spreadsheet application 

generally raised a lot of difficulties linked to the syntax for defining the content of the 

successive columns, for refining the step taking into account the existing limitation in 

the number of lines available. Students often tried to refer to spreadsheet files used in 
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previous problems to solve them. Some could be helpful (another functional 

problem), some were problematic (a probabilistic situation recently studied). 

Choosing an appropriate file required an ability to see the similarities and differences 

between the mathematical problems at stake. Benefiting from an adequate file 

required the matching of the two mathematical situations, establishing 

correspondences between the data and variables involved, and understanding how 

these reflected in the syntax of the commands. The use of the generated tables, once 

obtained, also raised many difficulties. Students tried to get the same values for the 

two areas or to find the closest ones. This was not at all easy, and very few of them 

were spontaneously able to create a new column for the difference. Moreover, when 

asked to find an interval for the solution, they were unable to exploit the table in a 

successful way. The idea that the solution of the problem corresponded to an 

inversion in the order of the two areas, and that they had thus to look at the two 

successive lines showing this inversion for getting the limits of the interval asked for 

was not a natural idea. The screen copies and discussions between students or/and 

with the teacher of this episode clearly illustrates to what extent mathematics and 

instrumentation are intertwined.  

In these two examples, we have focused on the mathematical/instrumental connection 

through the analysis of students’ difficulties but the observations also show episodes 

where an original mathematical/instrumental synergy is at stake, made possible by 

the students’ joint mathematical and instrumental  progression. We will illustrate this 

by examining students’ activity when working on the previous problem, but with 

greater autonomy. A group of two students had begun with a geometrical exploration, 

then defined the two functions expressing the areas and moved to a graphical 

exploration, selecting an appropriate window for the problem (0≤x≤4). They carried 

out this exploration cleverly, created the intersection point of the two curves to get its 

coordinates and found numerical values with only 6 decimals. This fact associated 

with the visual evidence of the intersection point convinced them that they had got 

the exact solution. They came back to the geometry page and checked that this 

solution was coherent with the approximate value with 2 decimals they had already 

got. They then moved to the calculation application (exact mode) and asked for the 

solution of the equation. They obtained 2 irrational values and were puzzled. The 

screen captures show several quick shifts between the graphic and calculation pages, 

before one of the boys decided to ask for an approximate value of the two solutions. 

Once obtained, they came back to the graph page, changed the window so to 

visualize the 2
nd

 intersection point, seemed satisfied, went back to the geometry page 

and discarded the 2
nd

 solution as non relevant. Once more, we cannot enter into more 

details, but the productive interplay here is evident. Let us just add that there has been 

an interesting collective discussion about the conviction of obtaining an exact 

solution in the graph page and the rationale underlying it. Linked with a deep 

mathematics discussion, the way TI-nspire manages approximations in the different 

applications and the way the user can fix the number of decimals was clarified.     
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For making sense of such synergies and instrumented practices, there is no doubt in 

our opinion that a semiotic approach limited to the identification of treatments inside 

a given semiotic register of representation or conversions between such registers is 

not fully adequate. What we observe indeed is a sophisticated interplay between 

different instruments belonging to the students’ mathematical working space and a 

swing between these certainly supported by technological practices developed out of 

school.  These are efficiently put at the service of mathematical activity and part of 

their efficiency also results from their kinesthetic characteristics.  

Beyond that, there is no doubt that the work performed by the students in this task, 

through the diversity of perspectives developed around the same mathematical 

problem, and the small group and collective discussion raised about the potential and 

limits of these different perspectives and their global coherence, corresponds to a 

quality of mathematical activity hardly observed in most grade 10 classes. 

CONCLUSION AND PERSPECTIVES  

Due to its specific features which distinguish TI-nspire from other calculators and as 

it had been envisaged a priori, the introduction of this new tool was not without 

difficulty and required considerable initial work on the part of the teachers, both to 

allow rapid familiarisation on their part and those of the pupils but also to actualize 

the potentials offered by this new tool in mathematics activities. When examining 

both the design of the resources created by the pilot teachers and the work performed 

by students, as we have tried to show in this contribution, we grasp how delicate and 

somehow frail the harmony between the mathematical and instrumental activity is, 

and how the semiotic games underlying it are complex. We also see the impact of 

new kinds of instrumental distances (Haspekian & Artigue, 2007) and closeness that 

shaped teachers’ and students’ activities: on the one side, distance from more familiar 

mathematical tools and especially graphic and even symbolic calculators, on the other 

side closeness with technological artifacts on offer out of school (computers, IPods, 

etc…). These characteristics affect teachers and students differently, and individuals 

belonging to the same category differently, according to their personal characteristics 

and experience. They can have both positive and negative influences on teaching and 

learning processes and need to be better understood. For that purpose, beyond the 

theoretical constructs we have used in this study, we consider it interesting to extend 

the tool/object dialectics (Douady, 1986) to the instrumental component of the 

activities. By choosing to closely articulate mathematical and instrumental 

knowledge, the latter is inevitably introduced within a specific mathematical context. 

Reinvesting instrumental knowledge also requires students, even implicitly, to 

decontextualise and to a certain extent generalize what has been acquired.  

NOTES 

1. A more general overview of the project as well as other findings can be found elsewhere (see Aldon et al., 2008). 

2. Some resources can be found at: http://educmath.inrp.fr/Educmath/partenariat/partenariat-inrp-07-08/e-colab/  
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ISSUES IN INTEGRATING CAS IN POST-SECONDARY EDUCATION: A 
LITERATURE REVIEW 

Chantal Buteau1, Zsolt Lavicza 2, Daniel Jarvis 3 & Neil Marshall1 
1Brock University (Canada), 2University of Cambridge (UK), 

 3Nipissing University (Canada) 
We discuss preliminary results of a literature review pilot study regarding the use of 
CAS in higher education. Several issues surrounding technology integration emerged 
from our review and are described in detail in this paper. The brief report on the type 
of analysis and the integration scope in curriculum suggest that the multi-
dimensional theoretical framework proposed by Lagrange et al. (2003) needs to be 
adapted for our focus on systemic technology integration in tertiary education. 
INTRODUCTION 
A growing number of international studies have shown that Computer Algebra 
System (CAS-based) instruction has the potential to positively affect the teaching and 
learning of mathematics at various levels of the education system, even though this 
has not been widely realized in schools and institutions (Artigue, 2002; Lavicza,  
2006; Pierce & Stacey, 2004). In contrast to the large body of research focusing on 
technology usage that exists at the secondary school level, there is a definite lack of 
parallel research at the tertiary level. However, Lavicza (2008) highlights that 
university mathematicians use technology at least as much as school teachers, and 
that the innovative teaching practices involving technology that are already being 
implemented by mathematicians in their courses should be researched and 
documented. Further, Lavicza (2008) found that within the research literature there 
existed only a small number of papers dealing with mathematicians and university-
level, technology-assisted teaching. In addition, most of these papers are concerned 
with innovative teaching practices, whereas few deal with educational research on 
teaching with technology. These findings coincide with school-focused technology 
studies conducted by Lagrange et al. (2003) and Laborde (2008). 
We aim to point out that it is particularly important to pay more attention to 
university-level teaching, because universities face new challenges such as increased 
student enrollment in higher education, decline in students’ mathematical 
preparedness, decreased interest toward STEM subjects, and the emergence of new 
technologies (Lavicza, 2008). Mathematicians must cope with these challenges on a 
daily basis and only a few studies have offered systematic review and developed 
recommendations in this area. Our project aims at both documenting university 
teaching practices involving technology, and formulating recommendations for 
individual and departmental change. Our research program also aims at raising the 
amount of attention paid to tertiary mathematics teaching from a research point of 
view and, from a more practical side, elaborating on specific issues and strategies for 
the systemic integration of technology in university mathematics courses. 
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METHOD DESIGN AND IMPLEMENTATION 
Based on the above-mentioned Lavicza (2008) findings and recommendations, we 
designed a mixed methods research study which involves a systematic review of 
existing literature regarding CAS use at the tertiary level. The theoretical framework 
developed by Lagrange et al. (2003) involved several stages. They first reviewed a 
large number of papers in relevant journals and then categorized these papers into 
five “types.” Based on these types, they then selected a sub-corpus of papers dealing 
specifically with educational research papers focusing on technology use mainly in 
the secondary school. Through the careful analysis of this sub-corpus of papers, they 
further developed seven dimensions, each with key indicators, and then proceeded to 
identify and further analyze papers that best described each of these dimensions.  
The theoretical framework of Lagrange et al. (2003) provided our research team with 
a helpful foundation from which to prepare for our own literature review which will 
involve approximately 1500 papers/theses. It was decided to implement a pilot study 
for this large literature review in order to begin to work with the Lagrange et al. 
framework and to determine if it would be sufficient for our purposes, or may be in 
need of certain modifications.  In the summer of 2008, we therefore began our pilot 
study focusing on 326 contributions dealing with CAS use in secondary/tertiary 
education. These papers were drawn from two well-regarded journals, namely the 
International Journal for Computers in Mathematical Learning (issues since its 
beginning in 1996) and the Educational Studies in Mathematics (since 1990). We 
also selected proceedings from two technology-focused conferences, namely the 
Computer Algebra in Mathematics Education (since its first meeting in 1999) and the 
International Conference on Technology in Collegiate Mathematics (since 1994 with 
first electronic proceedings). A sub-corpus of 204 papers dealing specifically with 
CAS use at the post-secondary level was also identified to further focus the analysis.  
While the descriptive categories found within the Lagrange et al. template were 
helpful, we began to notice that several other category/theme columns would be 
helpful at this stage of the instrument/template development (e.g., we added fields 
such as “computer/calculator,” “implementation scope,” and “implementation 
issues”). An important point to note here is that in contrast to the Lagrange study 
where the majority of papers were those describing educational research results, our 
selection of papers revealed a majority that focused on practitioner innovations with 
very few involving educational research. Thus, we realized that in order to develop 
our template for reviewing the large number (1500) of papers in the research study 
proper, we would have to separate the practitioner report type papers from the 
educational research papers, and further modify the template in both of these areas. In 
this paper we outline preliminary results of our ongoing pilot study, with a specific 
focus on a series of “issues of implementation” at the tertiary level of education. 
RESULTS 
The majority of the papers in the corpus are practice reports by practitioners (88%), 
whereas the remaining contributions are education research papers (10%) or letters to  
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Figure 1: Issues in integrating CAS in university education

journal editors (1%) (see Table 1). Among the 
practice reports, different types of 
contributions become apparent. Some (94) are 
merely examples of CAS usage. Other papers 
(41) are mostly examples of CAS but  
feature reflections by the practitioner. A few 
(13) have the practitioners go further and 
include classroom data and perform some basic analysis. There are also papers (5) 
that focus on classroom surveys and a small set (7) that examines a specific issue in 
detail. The remaining contributions (23) are conference abstracts only. The analysis 
of the education research papers according to Lagrange et al.'s multi-dimensional 
framework (2003) is still in progress. In this paper, we focus our analysis mainly on 
practitioner reports. 
In addition, nearly all papers are American (87%). The computer use is more evident 
(59%) than the use of graphical calculators (29%) or than the combined use of both 
computer and graphing calculators (10%). Furthermore, the most widely used CAS in 
the corpus is the graphing calculator (83 papers), followed by Maple (53) and 
Mathematica (43). Derive (21) and Matlab (11) are also common, as well as 27 
papers dealing with other CAS. In what follows, we elaborate on one particular 
significant aspect of the study, namely “integration issues” that emerged from our 
review, and also briefly report on “integration scope.” 
ISSUES OF CAS INTEGRATION  
Education researchers and practitioners widely wrote about issues surrounding the 
use and implementation of CAS at post-secondary education (72 papers). With regard 
to practitioner reports, 56 papers identify some issues; of these there are 20 that go 
into considerable detail. These papers could be further divided into two categories: 
Seven of them deal with a specific problem relating to CAS (e.g., rounding error) and 
thirteen discuss various implementations of CAS while underlining the hurdles the 
authors encountered. Of the sixteen 
issues identified in the corpus and 
summarized in Figure 1, we divide 
them into three categories: Technical 
(first four columns), cost-related (fifth 
column), and pedagogical (last 11).  
There are four issues discussed in the 
literature dealing specifically with 
technological aspects: Lab availability 
(Lab), reliability of technical support 
(Tec), system requirements (Sys) and 
troubleshooting (TrS). These issues may not be independent from each other. For 
example, May (1999, p. 4) urges instructors to test out their Maple worksheets on the 
lab computers rather than their own workstations due to such machines having less 

Table 1: Type of Contribution 
Presentation of Examples  
Examples with practitioner reflections  
Classroom Study  
Classroom Survey   
Examinations of a specific issue  
Abstract only 
------------------------------------------------------- 
Education research papers 
Letters 

46% 
20% 
6% 
3% 
3% 
11% 
------- 
10% 
1% 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1183



 

memory installed in them. Weida (1996, p. 3) notes that in troubleshooting, various 
hardware problems arise and his “experience and lots of calls to the Computer center” 
helps. An unexpected issue for him was the class interruption of students not enrolled 
in his class. While they would never think to disrupt a lecture, they would see nothing 
wrong with walking into his lab session to complete homework for other courses. 
Many reports mention the issue of costs (Cost) incurred by integrating CAS into 
instructors’ courses, providing few further details beyond the existence of the 
financial obstacle. An exception occurs in one paper where the authors argue for a 
particular choice of open-source (free) technology (Hohenwarter et. al, 2007, p. 5). 
Wu (1995) notes that besides the cost aspect, enacting calculus reform “requires more 
talent and training” (p. 1). This need for trained staff (staf) is mentioned in seven 
papers, often in conjunction with other issues. For example, to deal with technical 
difficulties during labs, Weida relies on his own experience to assist in 
troubleshooting (1996, p. 3). At the beginning of an attempt at CAS integration, 
Schurrer and Mitchell (1994, p. 1) wondered, “how they could go about motivating 
[sceptical mature faculty] to consider introducing the available technology and 
making the curricular changes this would require?” 
Schurrer and Mitchel (pp. 1-2) further discuss the need for time for the faculty 
(TimF) to design courses and meaningful activities with technology. Their 
department required decisions on types of technology used and on what technology 
curriculum package had a “right mix.” They note that program-wide integration takes 
time. In their case at University of Iowa, it took seven years to implement (p. 3). 
Even after a curriculum change, additional time demands on faculty are reported by 
practitioners. Wrangler (1995, p. 8) notes that near constant improvement is needed 
in lab experiments and stresses that for faculty there is “no resting on laurels.” A 
closely related issue is the problem of time management in courses (TimC). Wrangler 
(p. 8) remarks that besides the time he spent outside of class, he had to take his 
students into the lab and walk them through basic commands. Many other 
practitioners, such as May (1999, p. 4), expresses similar sentiments. While this issue 
is discussed less frequently than time spent outside the classroom, practitioners report 
about both issues in conjunction (e.g., Wrangler p. 8).  
CAS integration also affects classroom time management with respect to course 
content. Dogan-Dunlop (2003, p. 4) remarks that, “since class time was allocated for 
in-class demonstrations and discussions, detailed coverage of all the topics that were 
included in the syllabus was not possible.”  
Another source of pressure on time management is the failure of students to achieve 
learning objectives (Obj). Krishanamani and Kimmons (1994, p. 4) note that students 
failed to learn material assigned in labs and they had to include it in later lectures.  
One particular type of student error that clashes with learning objectives is the 
assumption on the part of students that their methodology is correct if their paper-
and-pencil calculations match up with results obtained from the computer. As Cazes 
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et. al. (2006 p. 342) write, “a correct answer does not mean the method is correct or is 
the best one. Teachers and students must be aware of such… pitfalls.” Often students 
engaged in trial and error strategies, with students guessing the answer from feedback 
without making a proper mathematical argument (p. 347). Instructors sometimes 
failed to ensure that students found an “optimal” solution to a particular problem 
rather than just having a “correct” answer (pp. 342-343).  
Pedagogical difficulties with learning objectives can place demands on faculty time 
not only inside but also outside of the lecture hall. Dogan-Dunlap (2003 p. 4) had to 
redesign his course and the use of CAS within it three different times because of such 
concerns. As previously discussed, there is an ongoing time commitment by faculty 
to improve their lecture and laboratory instruction and Dogan-Dunlap’s experiences 
show that student difficulties may greatly influence the nature of those changes. 
Related to the learning objectives issue, that of guidance (Gui) also emerges from the 
review. Often practitioners show concerns as to how much help they should give their 
students without compromising learning objectives. Westhoff (1997) designed a 
student project for Multivariate Calculus on the lighting and shading of a 3-
dimensional surface. He found that the difficulty in the project, due to its complexity, 
lays in determining how much he could tell his students (p. 6). Another area in which 
guidance becomes an issue is mentioned by Weida (1996). Noting that there is a “fine 
line between helping students… and ‘giving away’ the answers,” he remarks that 
such a problem is “particularly exacerbated at the end of a lab when the slower 
workers are running out of time” (pp. 3-4). Weida further presents the idea that 
careful scheduling could help alleviate this by ensuring that there isn’t a need to leave 
immediately after the lab. 
Student frustration (Frus) is another issue related to learning objectives. Cazes et. al. 
(2006, p. 344) note that students would often seek help either online or via the 
instructor “after having encountered the first difficulty” rather than attempting to 
solve the problem on their own. Krishahamani and Kimmons (1994) took steps to 
reduce anxiety both in course design and in providing additional help for students. 
Several measures, including reduced expectations, more time for tests, increased 
extra credit problems and a homework hotline were implemented (p. 2). Clark and 
Hammer (2003, p. 3) had a project for first year calculus modeling a rollercoaster. 
They found that “students who were not as “good” at Maple struggled, found the 
project (and Maple syntax) frustrating and were just happy to produce one 
mathematical model.” This suggests possible relationship between student frustration 
and failure regarding activity learning objectives, and the CAS syntax issue.  
Syntax (Synt) is the second most frequent concern for both practitioners and students. 
Cherkas (2003) found this to be a source of student dissatisfaction. He quotes a 
student complaining, “Mathematica would cause a lot of problems. If I make a 
mistake in the syntax, I couldn’t do my work” (p. 31).  
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Tiffany and Farley (2004) exclusively focus on common mistakes in Maple, 
emphasizing the hurdle for practitioners caused by syntax. Practitioners employ 
various schemes attempting to minimize this difficulty. Some such as May (1999) 
design interactive workbooks that eliminate the need for teaching syntax entirely. 
Others like Herwaarden and Gielen (2001, p. 2) provide Maple handouts with 
expected output to their students. Some emphasize a pallet-based CAS such as Derive 
(Weida, 1996, p. 1) because it is easier to learn and has, according to them, a more 
straightforward notation.  
Another source of student frustration is the unexpected behaviour of CAS (UnExp) 
even when their reasoning is syntactically and mathematically correct. Sometimes 
this is merely the case of paper-and-pencil calculations not easily matching up with 
CAS output. CAS may employ an algorithm efficient for computation and not 
necessarily one that matches a hand technique. For example, Holm (2003, p. 2) found 
that an online integral calculator would (rather than using the substitution method for             
                ) simply expand the product and use the power rule. He notes that such 
cases provide an opportunity for learning, and that, referring to another classroom 
assignment, the more “savvy student would… expand                 .” Unexpected 
behaviour of CAS also takes the form of errors by the computers themselves. Due to 
the nature of floating point arithmetic and in spite of correct input by the user, 
roundoff error can cause the output to be wrong (Leclerc, 1994, p. 1). To encourage 
her students to adapt, Wu (1995, p. 2) purposely designed a lab with roundoff error. 
LeClerc urges students to be instructed in the nature of floating point arithmetic so 
that they “will be able to detect when roundoff has corrupted a result and hopefully 
find better ways to formulate or evaluate the computation” (1994, p. 4). 
The concept of the “black box” (bbox) is examined in seven papers. Though this 
issue tends to be explored in more detail in education research papers, practitioners 
comment on it as well. O’ Callaghan (1997, p. 3) writes that faculty at Southeastern 
Louisiana University expressed concern that “students would become button pushers 
rather than problem solvers.” The managed used of the black box as an opportunity 
for students to explore complex mathematics beyond their level is discussed in great 
detail in education research papers (e.g., Winsløw, 2003, p. 283). Practitioners do not 
emphasize this potential as much. However, Cherkas (2003, p. 234) notes that CAS 
allows practitioners “to teach at a higher level of mathematical sophistication than is 
possible without such technology.” 
Closely related to the “black box” issue, is the fear that students become too reliant 
on the technology (rely). This, along with student frustration, is the least mentioned 
pedagogical issue. Cherkas reports on a student complaint that s/he could not do 
questions on tests because “Mathematica usually did them for me” (pp. 231-232). An 
over-reliance on technology may interfere with learning objectives. Considering this, 
Shelton (1995, p. 1) emphasizes her “top-down” approach and writes that “students 
can avoid the technology crutch and approach the goal of developing determination 
and mathematical maturity to perform mathematics without the technology.” 
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The last and most commonly examined issue encountered in the literature is that of 
assessment (Ass). Practitioners encounter problems in evaluation. Schlatter (1999) 
allowed for CAS use during his exam for his multivariate calculus course. 
Unfortunately, in a question designed to test student understanding of the divergence 
theorem, several students simply used the CAS capabilities to solve the integral in a 
“brute force” approach (pp. 8-9). A poorly designed assessment thus leads to a failure 
in learning objectives. Schlatter further writes that he expected “to spend more time 
during this semester… more carefully designing exam questions” (p. 8), pointing 
again to the issue of faculty time.  
Interpreting CAS output is discussed frequently. Quesada and Maxwell (1994, p.207) 
never accept a decimal answer (even if correct) if there is a proper algebraic 
expression. Many papers that discuss mathematical projects stress the use of written 
reports (e.g. Westhoff, 1997, p. 1). Lehmann (2006, p. 3) writes in his assignment 
“the important part of this assignment is the thought you put into it, the analysis you 
do and the presentation of your solution, not the answers themselves.” Xu (1995, p. 
1) found that students were finding derivatives of easy functions by hand on 
assignments, but using graphing calculators to solve the more difficult questions. To 
show students “that the calculator could not do everything for them” he found 
functions in the textbook that “were easy to handle by hand but could not be done 
easily on the calculator.” 
CAS INTEGRATION SCOPE 
Policy making regarding the curriculum in tertiary education is rather different than 
in school education. Hodgson and Muller (1992) mention that school mathematics 
curricula are in general developed by Ministries or Boards and implemented in the 
classroom by teachers, whereas tertiary mathematics curricula are developed and 
implemented by the same actors, i.e., faculty in departments of mathematics. 
However, change involving technology in tertiary curriculum, like in its secondary 
school counterpart, seems to remain very slow (Ruthven & Hennesssy, 2002). 
Lavicza (2006) argues that due to academic freedom, "Mathematicians have better 
opportunities than school teachers to experiment with technology integration in their 
teaching". This ad hoc basis is strongly reflected in our literature review. A large 
majority (67%) of the corpus restricted to practice reports discusses CAS usage with 
regards to one course, or in other words, CAS integration by one practitioner. While 
16% has a scope that reaches across a series of courses (e.g. calculus courses), 11% 
discusses a CAS implementation with a grouping of courses (e.g. all first year 
courses). Only 6% discusses a program-wide implementation within a department. 
 
CONCLUSIONS 
There is a need to develop a framework for the review of literature on the use of CAS 
at tertiary education that will integrate specificities of university-level education and 
technology integration. A significantly stronger majority of papers in our study 
stemmed from practitioner use (88%) than in Lagrange et al.’s (2003) study (60%) 
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which stated, ”Most of the [practitioner] papers lack sufficient data and analysis and 
we could not integrate them into the [detailed (statistical) analysis]” (p.242). Our 
selection of journals and conferences for our pilot study may have influenced the 
above percentage. Nevertheless, this reality will clearly influence the development of 
our analytical framework henceforth. Lagrange et al. (2003) further state, 

[Practitioner] papers offer a wealth of ideas and propositions that are stimulating, 
but diffusion is problematic because they give little consideration to possible 
difficulties. Didactical research has to deal with more established uses of 
technology in order to gain insights that are better supported by experimentation 
and reflection. We have then to think of these two trends as complementary rather 
than in opposition. (p.256)  

We aim at elaborating upon these complementary trends at the post-secondary level 
by both analyzing existing instructional practices and scrutinizing problematic issues 
within implementation. Lagrange et al. (2003) further state that the “integration into 
school institutions progresses very slowly compared with what could be expected 
from the literature” (pp. 237-8). This might be the case for school education, but 
apparently less so for tertiary education (Lavicza, 2008). The research literature about 
school mathematics and technology seems to pay less than adequate attention to the 
actual classroom implementation piece. The literature about tertiary mathematics and 
technology tends to inform us more about (individual) implementation than its 
didactical issues and benefits. This suggests that there may be a need for more 
education research focusing on the integration of technology in tertiary education. It 
also points, as suggested by Table 2, to the need of resources for departments of 
mathematics for systemic integration of technology in curriculum. At the recent 
ICME 11 conference, the results of a special survey highlighted concerns about the 
international trend of disinterest in university mathematics (ICME 11, n.d.). 
Departments of mathematics have a responsibility to question the current curriculum. 
We contend that part of this responsibility includes the careful consideration of the 
role and relevance of technology within that 21st-century curriculum and classroom. 
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THE LONG-TERM PROJECT “INTEGRATION OF SYMBOLIC 

CALCULATOR IN MATHEMATICS LESSONS” – THE CASE OF 

CALCULUS 

Hans-Georg Weigand, Ewald Bichler 

University of Wuerzburg  

A long term project (2003 – 2011) was started to test the use of symbolic calculators 
(SC) in grammar schools in Bavaria (Germany). The project was firstly done in 
grade 10. During the 2006/07 school year the project was implemented in grade 11. 
732 students at 10 Bavarian grammar schools took part in an empirical investigation. 
The content taught was calculus: basic properties of functions, limits, continuity, 
derivatives, and applications of calculus. The evaluation of the project was intended 
give answers to the following questions: how basic mathematical skills (algebraic 
transformations, solving equations) changed; how the students used the SC, how they 
evaluated the use of the new tool. This article presents the results of this project for 
school year 2006/07. 
 

1. BACKGROUND 

In the past, many empirical investigations concerning the use of CAS or symbolic 

calculators (with CAS) in mathematics teaching have been published (see Guin, 

Ruthven and Trouche, 2005). The central results of these projects have meanwhile 

been confirmed by other investigations world wide.  The use of a CAS brings a 

greater meaning to work with diagrams, reinforces experimental work, in which the 

assumptions were obtained through systematic testing and CAS appears to bring an 

increase in computer cooperative forms of work.  The effects are primarily long term.  

It is therefore necessary to develop a namely educational concept to evaluate the 

changes in knowledge and abilities over a longer time period.  However, many 

investigations in this area restrict themselves to the applications of the computer over 

“just” a few weeks (Schneider, 2000, Drijvers, 2003, Pierce and Stacey, 2004 and 

Guin et al, 2005) and do not show the long-term effects on the knowledge and ability 

of the students. 

In the school year 2003/04 we started a long term project to test the use of symbolic 

calculators (SC) – the TI-Voyage 200 and the TI-Nspire – in grammar schools 

(Gymnasien) in Bavaria (Germany). The project was done in grade 10 and has been 

repeated in the following two school years with a greater number of classes and with 

– concerning the use of new technologies – inexperienced teachers. An overview of 

the empirical investigation and especially of the theoretical background of this project 

gives Weigand (2008). On account of the positive results of this project, the Bavarian 

Ministry decided to continue the project. The follow-up project was started in 

September 2006. 
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2. THE TEACHING PROJECT – GRADE 11 

2.1 The participants 

During the 2006/07 school year the project was implemented in grade 11. A total of 

732 students at 10 Bavarian grammar schools took part in this project. 412 students in 

16 classes acted as the “pilot classes”, working with Voyage 200 and/or TI-Nspire. 

Schools could apply for the participation in the project. The pilot schools have been 

chosen by the Bavarian Ministry. They are spread over the state. In addition, 320 

participants from 11 classes – from the same schools as the pilot classes – formed a 

“control group” for the purposes of quantitative statistical investigation. The students 

had different previous experiences; some students had been exposed to the SC in the 

previous grade 10, but other students came into contact with these systems for the 

first time during this project. 

2.2 The teachers 

The project was mainly taught by teachers with little experience of tuition using 

computer algebra systems (CAS). The project teachers held two three-day meetings 

during which examples of possibilities and opportunities for SC use were discussed. 

The teachers jointly prepared a number of suggestions for a range of teaching units 

intended to highlight the possibilities of using SCs; during the year, the teachers were 

offered additional learning units
1
 by the coordinator (Ewald Bichler). However, there 

was no uniform overall concept according to which teaching was to be organised in 

all classes. The personal experience, attitudes and circumstances at the individual 

schools were too different for this to be possible.  

2.3 The learning contents 

In grade 11, calculus is taught (in Germany). The content taught was subdivided into 

the following: 

• basic properties of functions (symmetry, monotonicity, variations in function 

terms and their impact on graphs, …) 

• limits, continuity 

• differentiability, derivation rules, derivation function(s) 

• applications of differential calculus (“classical” functions discussion, extreme 

value problems) 

2.4 Teaching methods with the SC 

During the meetings with the teachers at the beginning and in the middle of the 

school year a theoretical frame of the use of the SC in the classroom was discussed 

                                         
1
 One sort of learning units developed during the project is called “Minute Made Math”, more information on 

www.minute-made-math.com 
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with the teachers. Especially a short insight into the theory of instrumentation was 

presented and explained with examples (Artigue 2002, Trouche 2005).  

Concerning the integration of the SC into the problem solving process we 

distinguished using the SC  

• in the beginning of the problem solving process or a concept formation process 

(the SC as a “discoverer”), 

• in the middle of the process (the SC as “solver”) and 

• at the end of the process (the SC as a “controller”). 

We also emphasized the “rule of three” while working with representations: If 

possible a problem or the solution of the problem should be represented on a 

symbolic, graphic and numeric level. 

2.5 Research questions:  

In the following we concentrate on a selection of the research questions (RQ) of the 

project:  

RQ1. Can any differences be ascertained in terms of core mathematical abilities 

(substitutions, interpretation of graphs, solving equations, working with tables, 

and working with formulae) between the pilot and the control groups after one 

year? 

RQ2. Can different effects of SC use be ascertained with “good”, “average” and 

“weak” students?
2
  

RQ3. To what extent have students mastered the SC at the end of the year? 

RQ4. In which phases of a problem solving activity do the students use the SC? 

2.6 Test instruments 

For the purpose of answering the 1
st
 and 2

nd
 questions we took a (classical) pre- and 

post-test-design – the tests using paper and pencil but no calculator – in pilot and 

control classes.
3
  

For the purpose of answering the 3
rd

 and 4
th
 questions the pilot classes took a test 

using a SC in February 2007 and June 2007 in which they were asked to record their 

working methods with the SC in a questionnaire which they completed immediately 

after the test.  

                                         
2
  The performance criteria used relate to the results of the pre-tests at the beginning of the school year. 

3
     See: www.dmuw.de/weigand/2009/CERME6/ 
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3. EVALUATION OF PRE- AND POST-TESTS 

3.1 The questions 

The pre- and post-test-questions (PP-questions) can be divided into the following 

groups: 

• Questions 1 and 2: doing “classical” simplification of terms 

• Question 4 and 5: solving equations 

• Question 5: understanding the concept of root functions 

• Questions 6 – 8: seeing the correlation between graph and term 

• Question 9: interpreting graphs 

3.2 Comparison of results of pre- and post-tests 

The post-test was the same as the pre-test. In the following diagram, the differences 

between the average scores achieved for each question in the pre- and post- tests for 

the pilot and the control group are shown. The “average performance increase” is 

therefore measured for each question.  

 

Figure 1: Average performance increase of the pilot and the control group 

In PP-questions 5 and 7 the pilot classes' results are significantly better than than 

those of the control groups (t-Test: PP 5: 0.01, PP 7: 0.02). However, in PP-questions 

6 and 9 they are significantly worse (t-Test: PP 6: 0.01, PP 9: 0.01).  

Overall there is not a significant difference in the average performance increase 

between the pilot and control classes. For the comparatively worse result of the pilot 

classes compared with the control classes (especially for questions PP 6 and PP 9), 

there are two possible hypotheses. On the one hand it could be due to the fact that the 

students in the pilot classes were no longer adequately challenged or motivated to 
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tackle this type of “traditional” question with enthusiasm, as they had tackled much 

more interesting questions during lessons – due to the SC. On the other hand the poor 

results of the pilot classes when determining functional equations from specified 

graphs (question 6) could be due to the fact that the students in the pilot classes had 

seen a large number of graphs – compared with the control group – during the course 

of the year and were therefore overtaxed by the diversity. However, the students in 

the control class have probably worked more often with the sine function graph 

which had been introduced in grade 10. 

If, however, the range of performance increases is considered, an interesting picture 

emerges. 

 

Figure 2: Average value and range of average performance increases in pilot (1) and 

control groups (2) 

With an almost identical average value, it becomes apparent that the differences in 

performance are more varied with the students in the pilot classes than with the 

students in the control groups. Therefore, there are students in the pilot classes who 

benefit more from SC use than students in the control classes. However, there are 

also students whose results deteriorate compared with the initial test.  

The test results can also be interpreted in a positive way for the pilot classes, as there 

are no differences in terms of classical technical and manual abilities and skills. 

However, this investigation has deflated hopes that the ability to interpret graphs and 

transfer between different forms of representation are automatically improved by the 

use of the SC.  

3.3 Scores for “good”, “average” and “weak” test participants 

In accordance with the results of the pre-test, we divided the test participants into 

“weak”, “average” and “good”.
4
 The following result is produced when the 

performances of these groups are compared in terms of pre- and post tests.  

                                         
4
 The “good” students form the upper performance quartile, the “weak” students the lower performance quartile, and the 

“average” students are represented by the two central performance quartiles.  
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Figure 3: Performances of the pilot group (left) and the control group (right) 

Compared with tests carried out in recent years in grade 10 (see Weigand 2008), 

different behaviour was demonstrated here. Whilst the “weak” students achieved a 

greater performance increase than the “average” and “good” students in grade 10, the 

“good” students – both in the control and pilot groups – improved more markedly (by 

8 percentage points) than the “average” and “weak” students (by 3 percentage points 

and 1-2 percentage points respectively) in the grade 11 test. 

The differences between the “weak” and “good” groups can be found in the 

understanding of concepts (question 5) and the transfer between different forms of 

representation (between graph and equation - questions 8 and 9)). The lack of 

performance increase in the case of weak students is attributable to the greater 

cognitive challenges posed by calculus, which may have taken some students to the 

limits of their capacities so that they were no longer able to follow lessons (“dropout 

effect”).   

4. THE SYMBOLIC-CALCULATOR-TESTS (SC-TESTS) 

4.1  Research questions 

In February and in June the pilot classes took a test where they were allowed to use 

the SC. Use of the SC was optional for the students, i.e. they decided themselves 

whether or not they would use the calculator. The two tests consisted of four 

questions each.
5
 In order to establish how calculators were used, we applied a new 

investigation method: the students completed a questionnaire on SC-use immediately 

after the test, giving details of whether and how they used the calculator. This test 

was intended to answer the following questions: 

1 How do students use the calculator?  

2 In which phases of a problem solving process do the students use the calculator? 

                                         
5
   See: www.dmuw.de/weigand/2009/CERME6/ 
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3 Which functionalities (symbolic – graphic – numerical) do the students use? 

In addition, the teachers were presented with a questionnaire regarding the questions 

immediately before the test, in which they were intended to provide details of the 

difficulties expected in terms of the questions.  

In the following, only a few spotlights of the results will be given.   

4.2 Actual use of the SC  

The following diagrams show how many students used the SC during the tests in 

February and in June – according to their own statements: 

  

Figure 4: Results of the SC-test in February (left) and June (right) 2007 

The difference between SC use in February and in June shows an increase in use of 

the calculator. More over, those students who used the SC in June when solving the 

questions scored significantly better than those who did not use it. We attribute this to 

the fact that it takes a full school year for students to acquire adequate confidence in 

the SC, as well as knowledge of the benefits of its use as a tool when solving 

problems, to be able to use these for the purpose of solving problems.  

4.3 The SC-use during the problem solving process 

The students also provided information in the questionnaire as to whether they used 

the SC in the beginning, during or at the end of the problem solving process.  
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Figure 5: Use of the SC during the course of the solving process (according to 

statements made by the students themselves) 

 

When students integrate the SC into their solving process, it is predominantly used at 

the beginning and during the solving process. If we compare the middle of the school 

year with the end, we can observe a clear increase in the frequency of positive 

responses to “during”. This allows us to conclude that the SC is more strongly 

integrated into the solving process by the students at the end of the school year. A 

slight increase can also be observed “at the end”, which makes us aware that the use 

of checking the solution is gaining in importance.  

We also asked the students which representations they used while solving a problem 

with the SC. It appears that the students mainly use the symbolic and graphic 

possibilities of the SC. Numeric use is very limited. More over they are not familiar 

with the special advantages or diadvantages of the representations nor do they use the 

relationship between the different representations. The type of the used representation 

depends on the one hand very strongly on the way problems are given to the students. 

If it is asked for a “solution of an equation”, they mainly work on a symbolic level, if 

it is asked for an “intersection point of two graphs” they work on a graphic level. This 

shows that the SC is used in a very mechanical way, guided not by the type of 

problem but by the expressions used in the problem. On the other hand the type of 

use depends also very strongly on the classes and indicates the significance of the 

teacher and his or her didactic approach. 

4.4 Teachers' predictions 

Before each test was carried out, the teachers provided an assessment of the extent to 

which students would solve the problems. The question has been: “For each problem, 

a student gets 100 % of the marks for a completely right answer. What do you 

suggest will be the average score of marks your class gets for problem 1 (2, 3, 4)?” 

The results are as follows: 
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Figure 6: Comparison of teachers' predicted and student results in the SC tests 

It is noticeable that the teachers underestimated the students in the June test.  

5. Questions for the future 

If we summarise the core results of this one-year school project there are some 

questions for up-coming investigations.  

• Methodology of pre- and post-tests.  

Hopes have not been fulfilled that students in the pilot classes would improve to a 

greater degree in terms of dealing with and interpreting graphs than students in the 

control classes. The hypothesis is that students in the pilot classes are not have been 

adequately challenged or motivated as the result of the largely traditional nature of 

the test problems. This raises the question whether the used pre- and post-test 

methodology is an adequate method to answer this question.  

• Polarisation.  

When working with new technologies, polarisation occurs in that some students 

benefit greatly from SC use, whereas for other students, SC use inhibits performance 

or even decreases performance. Two thirds of students are of the opinion that the SC 

was helpful and made them more secure and they classify lessons as “interesting”. 

Approximately one third of students do not share this view. Are there ways to get all 

students convinced of the benefits of the SC? 

• Calculator use.  

The reasons for non-use of the calculator are on the one hand the uncertainty of 

students regarding technical handling of the unit and on the other hand a lack of 

knowledge regarding use of the unit in a way which is appropriate for the particular 

problem. Is there a correlation between these two aspects? 

• Period of adjustment.  

The responses of the students confirm that familiarity with the new tool requires a 

very long process of getting used to it. It is surprising that it took almost a year to 

establish familiarity with this tool for students to use it in an adequate way. After one 

year of SC use, confidence in and familiarity with the SC grow. However there is still 
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a large group of students who experience technical difficulties when operating the 

SC. Will there be ways to shorten this period of adjustment? 

• Solution documentation.  

Students have problems how to record solutions when using the SC. Difficulties with 

the type and manner in which to document the solution decreased over the year, but 

still remain at a high level. This latter point will continue to be a permanent challenge 

when working with the SC, as there is no algorithmic solution for the procedure. Are 

there documentation rules for all or a special type of problems? 
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ENHANCING FUNCTIONAL THINKING USING THE 

COMPUTER FOR REPRESENTATIONAL TRANSFER 

  Andrea Hoffkamp 

University of Technology Berlin 

The area of functional thinking is complex and has many facets. There are several 
studies that describe the specific difficulties of functional thinking. They show that the 
main difficulties are the transfer between the various representations of functions, 
e.g. graph, words, table, real situation or formula, and the dynamic view of 
functional dependencies (process concept of a function). Interactive Geometry 
Software allows the visualization of the dynamic aspect of functional dependencies 
simultaneously in different representations and offers the opportunity to experiment 
with them. The author presents and discusses the potential of two interactive learning 
activities that focus on the dynamic aspect of functional thinking in a special way. 
Some preliminary results from a first adoption of the activities in class are presented. 
Resulting research questions and plans for further research are stated. 
Keywords: Functional thinking, representational transfer, Interactive Geometry 

Software, Interactive learning activity, empirical study. 

THEORETICAL BACKGROUND 

Functional Thinking – Concept and Relevance 

In Germany the term 'functional thinking' was first used in the 'Meraner Reform' of 

1905. The 'education to functional thinking' was a special task of the reform. 

Functional thinking was meant in a broad sense: As a common way to think which 

affects the whole mathematics education (Krüger 2000). In the 60s and 70s the 

impact of functional thinking in the above sense on the mathematics curriculum in 

Germany was very low. Since the 80s it regains importance although not in the broad 

sense of the Meraner Reform. A common definition of functional thinking derives 

from Vollrath (1989): 'Functional thinking is the typical way to think when working 

with functions'. Functional thinking in this sense is strongly connected to the concept 

of function. In the german mathematics curriculum the 'idea of functional 

dependency' is one of five central competencies, which form the mathematics 

education (Kultusministerkonferenz 2003). 

The concept of function and functional thinking includes many aspects and 

competencies: On one hand functional dependencies can be described and detected in 

several representational systems like graphs, words, real situations, tables or 

formulas. On the other hand the nature of functional dependencies has different 

characteristics (Vollrath 1989 or Dubinsky, Harel 1992): Functional dependency as a 

pointwise relation (horizontal, static aspect), functional dependency as a dynamic 

process (aspect of covariation and change, vertical aspect), Functions viewed as 

objects or as a whole.  
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There are many studies (e.g. Janvier 1978, Müller-Philipp 1994, Swan 1985, 

Kerslake 1981) describing the following main difficulties and misconceptions 

concerning functional thinking: 

The interpretation of functional dependencies in different representations and the 

representational transfer is a main difficulty. Especially the interpretation of 

functional dependencies in situations and the transfer to e.g. the graphical 

representation and vice versa causes problems. For example: graphs are often 

interpreted as photographical images of real situations ('graph-as-image 

misconception'), which is mainly caused by the inability to interpret the functional 

dependency dynamically. Especially distance-time graphs are often interpreted as 

movement in the plane. 

The above difficulties were affirmed by written tests the author gave to either 10
th

 

class students and to university students who just started their study on mathematics. 

Based on the problems in the test the interactive learning activities, which we 

describe below, were built. Figure 1 shows one of the problems (Schlöglhofer 2000) 

from the tests. 

 

Fig. 1: The dashed line moves rightwards. F(x) is the area of the grey part of the 

triangle dependent on the distance x. Which graph fits and why? 

Only 66% of about 100 university students made their cross at the graph in the 

middle. Giving the problem to sixteen 9
th
 and 10

th
 grade high school students, 

resulted in only 37% correct answers. The main mistake was to put a cross at the 

graph on the right side. The reason for this choice was usually given by a statement 

like: The area [of the graph on the right side] is just like the area F(x). 

The chances of Interactive Geometry Software 

When using the computer in classrooms on the topic functions one might think 

immediately of using Computer Algebra Systems (CAS). Most studies about the use 

of the computer when working with functions are about using CAS, e.g. Müller-

Philipp (1994), Weigand (1999), Mayes (1994). While CAS is input/output based and 

gives back information and changes asynchronously, the use of Interactive Geometry 

Software (IGS) allows interactivity and gives immediate response. This difference 

will be used to emphasize the dynamic view of functional dependencies. 

Especially the software Cinderella includes a functional programming language 

called CindyScript. This enables the teacher to create learning activities and own 
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teaching material like the ones described below by using standard tools (Kortenkamp 

2007). 

DESIGN OF THE ACTIVITIES AND CONCEPTUAL BASIS 

Main research question 

The learning activities are designed with regard to the following research question: 

Is it possible to enhance the dynamic aspect of functional thinking by dynamically 

visualizing functional dependencies simultaneously in different representations and 

by giving the opportunity to experiment with them? 

General design ideas and concept 

We developed two interactive learning activities (joint work with Andreas Fest). The 

activities consist of single Java applets embedded into a webpage and can be used 

without prior installation with a standard Internet browser. The applets are built with 

the IGS Cinderella and are accessible by using the links on the webpage 

http://www.math.tu-berlin.de/~hoffkamp. 

Figure 2 shows the typical design of a learning activity. Next to the applet there is a 

short instruction on how to use the applet and some work orders. The students are 

asked to investigate and describe the functional dependency between the distance A-

D and the dark (if coloured: blue) area within the triangle. 

 

Fig. 2: Interactive activity 'Dreiecksfläche' ('Area of a triangle'). Moving D makes the 

dynamic aspect visual. Moving B and C changes the triangle and the function itself. 

The learning activities have the following conceptual and theoretical ideas in 

common: 

Connection situation-graph: The starting point is a figurative description of a 

functional dependency, which is simultaneously connected to a graphical 

representation. The graphical representation was chosen, because it relates to the 
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covariation aspect in a very eminent way. As analysed by von Hofe (1995) students 

are able to establish 'Grundvorstellungen' (GV) more easily when an imaginable 

situation is given. GV's are mental models connecting mathematical concepts, reality 

and mental concepts of students. Rich GV's of the functional dependencies are 

necessary to succeed in problem solving processes. 

Language as mediator: The students are asked to verbalise their observations in their 

own words. Janvier (1978) emphasizes the role of the language as a mediator 

between the representations of the functional dependency and the mental conceptions 

of the students. 

Active processing assumption: According to the cognitive theory of multimedia 

learning of Mayer (2005) humans are actively engaged in cognitive processing in 

order to construct a coherent mental representation. The activities are conceptualized 

as attempt to assist students in their model-building efforts. Therefore the activities 

allow to experiment with different representations of the functional dependencies. At 

the same time the actions of the user are limited to focus on the dynamic view of the 

functional dependencies. 

Two levels of variation: The activities allow two levels of variation. First, one can 

vary within the given situation. This visualizes the dynamic aspect. To understand a 

dynamic situation one needs to construct an 'executable' mental model to achieve 

mental simulation. The idea is to support the mental simulation processes visually 

(Supplantation, Salomon 1994). Secondly, one can change the situation itself and 

watch the effects on the graph. We will call this meta-variation. Meta-variation 

allows the user to investigate covariation in several scenarios. It is variation within 

the function that maps the situation to the graph of the underlying functional 

dependency and changes the functional dependency itself. This leads to a more global 

view of the dependency. Therefore meta-variation refers to the object view of the 

function. To understand the covariation aspect one needs to find correlations between 

different points of the graph in order to describe changes. This requires a global view 

of the graph. For example the property 'strict monotony' of a graph is a global 

property and therefore refers to the object view of a functional dependency. But to 

describe it in terms of 'if x>y then f(x)>f(y)' one has to understand the covariation of 

different points of the graph. 

Low-overhead technology and practicability: To work with the interactive activities 

there is no special knowledge of the technology necessary. The activities make use of 

the students' experience with Internet browsing (actions like dragging, using links, 

using buttons etc.). The students (and the teachers) can work directly on the problems 

without special knowledge of the software and the software's mathematical 

background. This is important especially with regard to time economy. 

Learning activity 'Die Reise' ('The journey') 

Based on the conceptual ideas above the learning activity 'Die Reise' ('The journey') 

was developed. Like the activity 'Dreiecksfläche' it is adapted from a problem (Swan 
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1985) the author gave to university students and 10
th
 grade students within a written 

test. After using 'Die Reise' in classroom within a first study the activity was worked 

over. Some results of the study are presented below. The activity in its current 

version consists of three parts. Part one is about the transfer situation-graph (Fig. 3): 

A car advances from Neubrandenburg (top of the map) to Cottbus (bottom of the 

map). The graph shows the corresponding distance-time graph for the journey. 

 

Fig. 3: Applet within the first part of 'Die Reise'. The point on the distance-time-graph 

is movable. The students are asked to mark the positions A-F with the flags on the 

map. 

Part two of 'Die Reise' (without figure) refers to the first level of variation 

(visualization of the dynamic aspect in the given situation). It shows the distance-time 

graph of part one again together with the corresponding velocity-time graph. The 

work orders aim at interpreting the slopes in the distance-time graph in connection 

with the velocity-time graph. 

Part three refers to the level of meta-variation (figure 4). 

   

Fig. 4: Meta-variation in 'Die Reise'. Besides moving the points on both graphs, the 

bars in the velocity-time graph can be moved vertically and the width of the bars can 

be changed. 
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FIRST STUDIES 

Setting and methods 

The activities 'Dreiecksfläche' and 'Die Reise' were tested with 19 respectively 32 

secondary school students of age 15-16 (10
th
 class) in a block period of 2x45 minutes 

in each case. The students were not prepared to either the topic or the special use of 

technology. A worksheet was prepared which contained the Internet address of the 

interactive activity and some questions to work on. The students had to start on their 

own using the instructions of the worksheet. To provoke discussion and first 

reflection about the problems two or three students worked together. Afterwards the 

solutions were discussed in class. The results of the studies are based on student 

observations during their work with the computer, general impression of the 

discussion in the class, a short written test and a questionnaire. In addition the 

computer actions and student interactions of one student pair was recorded while 

working with the activity 'Die Reise'. All teaching material, tests and questionnaires 

can be found on www.math.tu-berlin.de/~hoffkamp. 

The studies were conceived as preliminary studies with the following aims: Test the 

interactive activities and work them over for further studies, specify further research 

questions, create a study design for a larger study based on the experiences made. 

Results and discussion 

Computer-aided work and work with the activities in general: 
The concept of low-overhead technology and practicability was successful. The 

students were able to work with the interactive activities without further instruction. 

This is also important concerning time economy, especially from the teachers' point 

of view. 

The use of the computer had a very positive effect on the students' motivation. This is 

caused by many factors. For example the students appreciated to work autonomously 

in their own tempo following their own train of thoughts. They also highly 

appreciated that the computer takes over annoying actions like drawing or 

calculating. This is a crucial point especially for slow-writers and was observed when 

watching a recorded sequence of the students' working phase. The sequence shows 

that the order 'Draw a suitable distance-time graph' really blockaded and frustrated 

the student. The following student statements from the questionnaire confirm the 

above comments: 

Question: Is there something special you like when working with the computer? 

Answer 1: It is less monotonous and the lesson is organized differently. You learn by 

means of a different learning aid, which allows a better imagination. The studious 

atmosphere is more comfortable. You do not have to follow the group's train of thoughts. 

Answer 2: The computer makes the calculations and I do not have to write so much, 

which means that it cannot be smeared and illegible. 
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Answer 3: That I can work independently (without teacher). One can use his own 

mistakes to come to the right result. 

Statements like answer 3 were made several times. The students had the impression 

that they were able to use their mistakes in a productive way. Moreover the 

computer-aided work allowed for a better internal differentiation of the learner group. 

Slowly learning students asked the teacher for help more often than more advanced 

students, but they still worked independently for longer periods. 

Effects on functional thinking: 
By visualizing the representational transfer dynamically the students were forced to 

focus on the dynamic aspect of functional thinking and they seem to have established 

(more or less) adequate mental models integrating the dynamic view. Many student 

answers on the questionnaire aim at the aspect of 'dynamic visualization':  

Question: What is different for you when you use the computer to work on mathematical 

problems? 

Answer: Because of the visualization I am able to watch the problem from different 

perspectives and this makes it easier to solve it. 

Question: Can you say what exactly you understood better by using the computer?  

Answer 1: That I could see the problem. 

Answer 2: How the graph changes when changing the triangle. 

Answer 3: I liked this form of figurative illustration that was given directly when changes 

were made because it is easier to understand something by watching it. 

Answer 4: The motion. When one graph moves although you use the other graph. 

The second question was used to find out what aspects of the activities where 

considered by the students as showing them something new. In this sense many 

student answers aim at the level of meta-variation. As explicated above the level of 

meta-variation is connected with the object view of a function, a view, which is not 

(fully) attained in the age group the author is looking at (Sfard 1991). The student 

answers lead to the assumption that meta-variation makes the object view accessible 

for cognitive processes (in a may be implicit way) and could be a step towards the 

perception of a function as an object. This assumption is strengthened by the results 

of the tests. Figure 5 and 6 show some results from the written test.  
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Fig. 5: The students had to sketch graphs describing the dependency between x and 

the grey area F(x). The figure shows percentages of correct and meaningful graph 

sketches. An answer was 'meaningful' when the graph was strictly increasing, but e.g. 

left and right turn were mixed up. 

As seen from figure 5 the students by majority seemed to have created an 'idea' of the 

dynamics of the functional dependency as far as the solution of problems like the one 

above is concerned, although it was still difficult to adapt the concept to other 

situations (here: other forms in line two of figure 5). However the students got aware 

that changes, variations, certain points (e.g. inflection points) and properties (e.g. 

symmetry, monotony) have a graphical correspondent, which gives qualitative 

information about the functional dependency. 

 

Fig. 6: The students had to draw suitable graphs to the given graphs above. Graphs 

were 'meaningful' when the graphs had 'correct shapes', but some slopes where done 

wrong. 

Figure 6 shows some results of the post-test within 'Die Reise'. Most of the students 

were able to draw suitable speed-time graphs to given distance-time graphs. The 

other way round – from speed-time graphs to distance-time graphs – was more 

difficult. The results confirm the assumption that the potential of meta-variation in 

order to enhance the understanding of the dynamic aspect of the functional 

dependencies seems to be high. Furthermore the activities seem to allow an easy 

qualitative approach to concepts of calculus. In case of 'Die Reise' the applets 

visualize the physical intuition of the fundamental theorem of calculus. When 

discussing the question 'Can you see from the speed-time graph how far the journey 

is?' in class, the students finally ended up with an intuitive concept of integration. 

The results from the preliminary studies lead to the following hypothesis: Although 
the object view is more advanced, it facilitates the understanding of the covariation 
aspect and the establishment of mental models with regard to the dynamic view of 
functional dependencies. 
The class discussion of the results – which mainly consist of verbalisations of the 

properties of the functional dependency – ran pretty smooth. The students were 

highly engaged in making contributions to the discussion. But it was obvious that 

there was a high need for reflection of the students' train of thoughts since the student 

answers were mostly superficial. Concerning 'Die Reise' some test results showed, 
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that the 'graph-as-image misconception' is very persistent in the sense of interpreting 

distance-time graphs as movement in the plane. Based on these experiences the first 

two parts of the learning activity 'Die Reise' were modified to their current version. 

OUTLOOK 

The preliminary results of the first studies give valuable hints for the direction of 

further research. Basing on the conceptual ideas described above a third interactive 

activity will be developed and pretested. It is planned to conduct a larger qualitative 

study using the three activities. The leading question is how the work with functions 

within the activities affects functional thinking itself. The level of meta-variation is a 

central idea. It leads to the concepts of calculus and may be used as a qualitative 

approach to school-analysis in the context of propaedeutics.  

The following research questions are of interest and will guide our future research: 

Main question: Is it possible to enhance the dynamic aspect of functional thinking by 

dynamically visualizing functional dependencies simultaneously in different 

representations and by giving the opportunity to experiment with them? 

Further questions: 
• Do the students establish GVs concerning the dynamic view of functional 

dependencies? What sort of GVs do the students establish? 

• Which elements of the applets have a positive effect on the dynamic view of 

functional dependencies? 

• Is it possible to distinguish types of students who get along better or worse 

with the learning units?  

• How do slow learners deal with the units compared to more advanced 

students? 

• How can we use computer-based activities like these as diagnostic tools? 
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This paper presents and discusses the use of robots to help 8th grade students learn 
mathematics. An interpretative methodology was used and data analyses were 
supported by Situated Learning Theories and Activity Theory. These tools allowed 
the accurate description and analysis of student’s practices in mathematics classes. 
The results indicate that the use of robots to study proportionality as a function aided 
and supported student learning.   

INTRODUCTION 
Educational systems the world over are investigating new and engaging mechanisms 
in order to better present complex concepts and challenging domains such as 
mathematics. The implementation and exploration of technologies in classrooms is a 
promising general approach. However, we should not neglect the real world where 
the actual students live – a world more and more dependent on technologies. 
Consequently, it is essential to combine computation aids and new educational aims 
with a redefinition of teaching processes and teachers role’s in the classroom. It is in 
this context that the project DROIDE was initiated in 2005.   
DROIDE2: “Robots as mediators of Mathematics and Informatics learning” is a 
project with three main objectives:  
(1) to create problems in Mathematics Education/Informatics areas which are suitable 
to be solved using robots; (2) to implement problem solving using robotics at three 
points in the educational system: mathematics classes at K-9 and K-12 levels; 
Informatics in K-12 levels; Artificial Intelligence, Didactics of Mathematics and 
Didactics of Computer Science/Informatics at the university level; (3) to analyze and 
understand students’ activity during problem solving using robots.  
This paper discusses research on the second issue (the implementation of problem 
solving using robots in mathematics class) at the K-9 level.  It addresses the 
following research problem: to describe, analyse and understand how students learn 
mathematics using robots as mediators of learning. It particularly focuses on the 
mathematical concept of proportionality as a function. 
                                           
1 Centro de investigação em Educação da Faculdade de Ciências da Universidade de Lisboa. 
2 The authors of this paper would like to acknowledge the support from Mathematics and Engineering Department 
(DME) and from Local Department of Ministry of Education (SRE). 
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THEORETICAL BACKGROUND  
The research approach is derived from Situated Learning Theories (Lave & Wenger 
1991, Wenger, 1998, Wenger et al, 2002) and Activity Theory (especially the 3rd 
generation introduced by Engeström, 2001). A key element of Situated Learning 
theories is the notion of a community of practice and the suggestion that learning is a 
situated phenomenon. In this paper, this viewpoint is used to reflect upon emergent 
learning within students’ mathematical practices. 
The Concept of Practice 
According to Wenger, McDermott and Snyder (2002) practice3 is constituted of a set 
of “work plans, ideas, information, styles, stories and documents that are shared by 
community members” (p.29).  Practice is the specific knowledge that the community 
develops, shares and maintains. Practice evolves as a collective product integrated in 
participants’ work and the organisation of knowledge in ways that are useful and 
reflect the community’s perspectives (Matos, 2005). 
Wenger (2002) proposes three dimensions in which practice is the source of 
coherence in a community: mutual engagement, joint enterprise and shared 
repertoire. Mutual engagement is a sense of “doing things together”; the sharing of 
ideas and artefacts, with a common commitment to interaction between community 
members. Joint enterprise is having (and being mutually accountable for) a 
communal common goal, a procedure which rapidly becomes an integral part of 
practice (Matos, Mor, Noss and Santos, 2005). Shared repertoire refers to a set of 
agreed resources for discussions and negotiations. This includes artefacts, styles, 
tools, stories, actions, discourses, events and concepts. 
The Concept of Mediation 
Engeström (1999) conceptualizes an activity model formed by three elements – the 
subject, the object and the community – with mediation relations between them. In 
the context of this research, the mathematics classroom forms such an activity 
system. The subject is part of a collective; reflecting the fact that we do not act 
individually in the world. The subject is part of a system of social relations.  
The concept of mediation has a central role in Activity Theory4. It is based on the 
presupposition that the subject does not act directly on the environment; that it has no 
direct access to the objects. The relation between subject and object is mediated by 
artefacts (Werstch, 1991); things constructed by individuals and maintaining a 
dialectic relation between people and activity (Werstch, 1991). To say that a tool or 

                                           
3 The term practice is sometimes used as an antonym for theory, ideas, ideals, or talk. In Situated Learning theories that 
is not the idea. In Wenger’s sense of practice, the term does not reflect a dichotomy between the practical and the 
theoretical, ideals and reality, or talking and doing. The paper extension does not allow the development of the idea of 
practice. For discussion of practice related with mathematics education see Fernandes (2004). 
4 For a more general vision of Activity Theory see http://pparticipar-t-act.wikispaces.com/ 
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artefact is mediator of learning means that it gives power to the process of 
transformation of objects; that it is a tool with which people think (Piteira, 2000). 
This paper claims that robots can be artefacts, mediators of the learning of functions. 
The veracity of this claim is demonstrated in the following sections.  

METHODOLOGY  
The work reported in this paper was organised into three stages: 
First stage – analysis of School Mathematics and Informatics curriculum; selection 
of didactical units where robotics can be used; creation of problems/tasks to be 
solved in Mathematics and Informatics classes.  
Second stage –implementation of problems/tasks in Mathematics and Informatics 
classes; data collection through video recordings of students. 
Third stage – analyses of student activity during learning with robots using 
interpretative methods introduced in Situated Learning Theories and Activity Theory. 
The unit of analysis was “(...) the activity of persons-acting in setting” (Lave, 1988, 
p.177).  

LEARNING AS PARTICIPATION: ANALYSING STUDENTS 
MATHEMATICAL ACTIVITY WHEN USING ROBOTS  
A brief description of mathematics class  
In mathematics classes students worked in small groups. In the initial phase, the work 
involved construction of the robots and basic programming to solve simple tasks. 
This activity took place on a Windows® desktop environment and the students used a 
visual programming tool that ships with the robot kits. Subsequently, students used 
the robots to recognise and apply concepts in coordinate systems, to understand the 
meaning of function, to represent one function (proportionality) using an analytic 
expression and to intuitively relate a straight line slope with the proportionality 
constant, in functions such as x kxa . 
General plan of work for functions unit  
The first mathematical unit students worked on involved functions. Four sets of 
problems were prepared. Problem set 1 presented examples and counterexamples of 
functions explaining things that take place in everyday situations. Problem set 2 
showed more complex graphs (beyond straight lines) and taught students to also 
recognize then as functions. In problem set 3 it was intended that students learn 
proportionality as a function. The definition of proportionality emerged from the 
mathematical activity of students as they used robots. Finally, problem set 4 was 
concerned with affin functions, such as y-intersect and slope. It also dealt with the 
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relation between the graphical appearance of these kinds of function those of 
proportionality shown earlier. This paper5 analyses students solving problem 3.  
In the classroom  
We will describe and analyse mathematical activity of two groups of students. One 
group consisted of four girls with similar mathematical levels and abilities (C, La, Li 
and S). When they started to work together, they had experienced considerable 
difficulty, even going so far as to repeatedly suggest that the problem could not be 
solved, at least individually. Eventually, they understood the problem could be solved 
if they teamed up and learned to work cooperatively. The other group featured three 
boys (M, P and Ma), in which one of them had a higher level of mathematical ability 
than the other two. 
The class started with the teacher distributing materials to each group: one robot 
(either Roverbot or Tank), one laptop, one tape-measure and a worksheet including 
the following tasks6:  

I. Let’s compare the two robots speed: 
Roverbot and Tank. Probably the first 
idea that occurs to you is to hold a robot 
race, to find out which is the quickest. 
However, that is not the best way to 
determine speed values and compare 
them accurately.  

a) Through  experimentation of Roverbot (programming, test and registration of 
data) complete the following table:  

 
Time(seconds) 1 3 6 
Distance covered 
(cm)    

 
(i) Calculate the quotient between distance covered and time. (ii) Do the 

values ‘distance covered’ and ‘time’ vary in direct proportion? Justify your 
answer. (iii) Which is the proportionality constant? In this situation what does 
the proportionality constant mean? (iv)Comment upon the following 
affirmation:  “The correspondence between the distance covered by Roverbot 
and the time spent to cover that distance is a function.”  
 

                                           
5 For a more general discussion about mathematical activity of students using robots to learn functions see Fernandes, 
Fermé and Oliveira (2006, 2007) and Oliveira, Fernandes and Fermé (2008).  
6 After the realization of several tests we verified that the time that the robot needs to reach the standard velocity as well 
as the braking time are negligible. So we can assume that, to the end of this question, time and distance covered vary in 
proportion.  

Roverbot   Tank 
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Practice as meaning 
According to Engeström (1999), in the structure of an activity we can identify 
subjects that act over objects, in a process of reciprocal transformations that 
culminates with the achievement of certain results.  
 

 
 
 
 
 
 
 
 

 
 
   Figure 1 – School mathematics activity structure 

Figure 1 shows activity during school mathematics class when robots were used to 
study proportionality as a function. In this case the term subject (figure 1) is 
collective and is represented by the different groups of students. The community is 
the class and its work methodology. The object is the ‘raw material’ at which the 
activity is directed and which is transformed (with the help of mediating instruments) 
as its outcome. In the situation considered here, the object is proportionality as a 
function and the instruments were the robots, the worksheet structure and the way the 
teacher posed questions to students. The episode described below shows how one of 
the groups solved the task described above. 
Each student read the task. C programmed the Roverbot 
to move forward one second, then measured the distance 
covered. 33cm was recorded in the table. S followed the 
some process for 3 seconds and they registered 99cm. 
Then C programmed the robot to move forward 6 
seconds. However, the desk on which they were working 
was too short for this last course. Li suggested they try 
out on the floor. This was done and 178 cm was recorded 
in the table. The students then began to discuss the results for the first time. They 
started to calculate the quotient between space covered and time, more or less the 
first times they speak.  There dialogue is shown below: 
 

Tools and Signs 
Robots, worksheet structures, questions 

posed by teacher 

Division of Labor 

Object 
Proportionality as 

function 

Community 
Classroom 

Rules 
School Mathematics 

rules 

Subjects 
Students’ Groups Outcome 

Redefinition of 
proportionality 

concept 
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1. C:  33/1 =  33 [data recorded on the worksheet]. 

2. C:  99/3 = 33 

3. Li:  178:6 = 29.6666 

4. S:  It can’t be. It has to be 33.  

5. C: Let’s programme and measure all again. 
Something is wrong. [They repeat all the process and the values were again 33, 99 
and 178]. 

6. S:  But it can’t be. It has to be 33 (referring to the value of the quotient 
between the two variables)  

7. La:  33 x 6 is 198. Let’s put 198 on the table.  

They erased 178 on the table and wrote 198. Teacher came near to the group and saw 198 
(but he had previously seen 178).  

8. Teacher: Wasn’t the result of measuring 178?  

9. C:  Yes, but 33/1 is 33, 99/3 is 33  

10. La:  So we changed 178 by 198 because 33 times 6 is 198. 

11. S:  Let’s programme and measure all again.  

Meanwhile another group calls teacher. They programmed again the robot to forward one 
second and then they measured the distance covered over the desk.  

12. La:  Oh! I know… We measured in two different places. We have to measure 
always on the floor. 

The results obtained of measuring the distance covered were 30, 89 and 178 for 1, 3 and 6 
seconds respectively.  

13. The results of the quotient were 30, 29,(6) and 29,(6) respectively. Students 
accepted them as good and answered that time and distant covered are in direct 
proportion. 

Wenger (1998) states that “meaning is a way of talking about our (changing) ability - 
individually or collectively – to experience our life and the world as meaningful” (p. 
5). He describes meaning as a learning experience. 
The concept of proportionality is studied in mathematics class from 5th grade 
onwards. It refers to a constant relationship between two variables and is usually 
discussed abstractly, such as in the example below: 
Verify that there is no proportionality between the following variables.  

a 13 26 39 52.08 
b 1 2 3 4 
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Many times, in school mathematics, proportionality is discussed without context; 
only numbers matter and the emphasis is on the mathematical concept instead of in 
the meaning of mathematical concept. This process makes difficult the learning 
experience in Wenger (1998) sense.  
In the episode presented above, the students believe that the variables time and 
distance should be in proportion. Analysing the episode we can not determine the 
origin of that belief. But we can conjecture that it comes from the presence of the 
robot (a car) or from the way the question is written in the worksheet (question iii).  
Although we are guessing at its source, it is clear that the idea of proportionality is 
meaningful for the students, as they choose to recapture their data several times in the 
face of results that violate this principle. Only when an inconsistency appears, do the 
students begin to discuss where they made a mistake and what to do in order to solve 
it.  But the idea that time and distance should be in proportion is really meaningful 
for them. This can be seen when they changed the result (from 178 to 198) to ensure 
that the calculations adhere to the rule and neglecting the fact of the last quotients are 
not equal. In spite of the evidence of the measurements, students believed that values 
should be in proportion. This shows that the ‘dogmatic’ knowledge of direct 
proportionality is more entrenched7 than their confidence in their ability to 
successfully run experiments and, consequently, they neglected the evidence of the 
experiment. 
The use of unusual artefacts in mathematics class (tape-measure, robots, laptops) 
associated to a methodology of work where students can stand up, measure, program 
the computer and experiment with data helped students to construct and rebuild 
meaning about the concept of proportionality.  
 
From the perspective of activity theory, students groups acted on robots, which were 
mediators’ elements, between them and the object. The robots were a facilitator of 
activity that they empowered students during the process of object transformation.  
 
In the second student group, students had a different experience. After programming 
the robot for 6 seconds they had the following discussion:  

M: It’s 172 cm [referring to the space covered by the robot in 6 seconds]. 

P: 172? 

M: 172 or 173. 

                                           
7 The term entrenchment refers to Goodman (1954). He claims that the criterion to decide between two predicates (in 
our case, the rule and the evidence) is the degree of entrenchment of the predicates. The entrenchment of a predicate 
depends of the history of the past projections and their success or failure. In our case, the students have more history 
records where they must leave their proper ideas when confronted with the formal concepts (teacher knowledge, 
textbook).  
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P: But it can’t be. It’s not correct. It should be 180. And the other value should be 90 
[referring to the space covered by the robot in 3 seconds]. 

Ma: Why? 

P: I have done it in the calculator. If in one second the robot covers 30cm, I multiplied 
it by 3 and it’s 90. And for 6 seconds it is 180.  

M: But it’s not correct. Aren’t you seeing the tape measure? It’s 173cm. 

In this dialogue we can notice that one of the students of the group knows the 
scholarly notion of proportionality well and applies it to compare with the results of 
the experiment. He seems to trust more in the mathematical rules that he knows than 
in the evidence of the measurement experiment.  
The two students groups reacted differently to the inconsistency between 
mathematical rules and the empirical evidence: one believed the values they obtained 
through measurement and considered that the values they obtained by approximation 
from the quotient were enough to guaranty the proportionality (as shown the episode 
above); the others calculated values after they knew the space covered by the robot in 
one second. Where does this difference in attitude (in the face of the same evidence) 
come from? 
The division of labour (figure 1) refers both to the horizontal division, of the tasks 
between different members of the community, and the vertical, of power and status. 
The vertical division of labour is connected with the fact that, in the groups, there are 
students with more power than others (due to their superior performance in 
mathematics class, assessed through evaluation by their co-students) and these lead 
the search to solve the problem. Therefore, by analysing the horizontal division of 
labour we can say that it has emerged naturally between different students of the 
groups and represents the way how they organized their work in order to solve the 
problem proposed by teacher.  
Finally the rules (figure 1) refer to the explicit or implicit regulation, to norms and 
conventions that constrain actions and interactions in the activity system. What 
students believe to be mathematics class, the way they see mathematical rules, the 
way they interpret the question put by the teacher and the worksheet structure (that is 
connected with the way they see mathematics class and mathematics) impose a 
certain form to the students’ actions. As we have said before we have two different 
reactions to the inconsistency between correctness of mathematical rules and the 
inexactness of the empirical evidence – for one group the rules won and for other the 
empirical evidence. 
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FINAL CONSIDERATIONS 
Robots helped students to renegotiate the meaning of proportionality that they had 
previously encountered (during seven years of school mathematics) as depending 
uniquely and exclusively of the quotient between two variables. The negotiation of 
the meaning evolves through the interaction of two process – participation and 
reification (Wenger, 1998). When concepts are presented to students as reified 
objects participation (in Wenger’s sense) becomes difficult. Learning through 
experience, essentially negotiating meaning through participation, helps students’ 
better grasp mathematical concepts. Most of the students in the study described here 
redefined the concept of proportionality as a function directly because of the work 
done in this mathematics class and the robots had an important role in this process 
(Fernandes et al., 2006, 2007, Oliveira et al. 2008). Furthermore, as this result was 
not explicitly intended. Instead, it was an emergent aspect of the students’ 
mathematical practice and study of functions. In the course of their experience with 
robots, students transitioned from the abstract perfection of mathematics (the 
definition of proportionality in school mathematics) to the practical reality 
(proportionality in action) of everyday experience.  
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In this paper we analyze and discuss the use of ICT, particularly the Internet, in the 
context of a mathematical problem-solving competition named “Sub14”, promoted 
by the University of Algarve, Portugal. Our purpose is to understand the 
participants’ views regarding the mathematical activity and the role of the 
technology they’ve used along the competition. Main results revealed that the 
participants see the usage of Internet quite naturally and trivially. Regarding the 
mathematical and technological competences elicited by this competition, evidences 
were found that develops mathematical reasoning and communication, as well as it 
increases technological fluency based on the exploration of everyday ICT tools. 

A GLIMPSE OVER THE MATHEMATICAL COMPETITION “SUB14”  

Sub14 (www.fct.ualg.pt/matematica/5estrelas/sub14) is a mathematical problem-

solving web based competition addressed to students attending 7
th

 and 8
th

 grades.  

It comprises two stages. The Qualifying consists of twelve problems, one every two 

weeks, and takes place through the Internet. The Sub14 website is used to publish 

every new problem; it provides updated information and allows students to send their 

answers using a simplified text editor in which they can attach a file containing any 

work to present their solution. The participants may solve the problems working 

alone or in small teams and using their preferred methods and ways of reasoning. 

They have to send their solution and complete explanation through the website 

mailing device or using their personal e-mail account. Every answer is assessed by 

the organizing committee, who always replies to each participant with some 

constructive feedback about the given answer. 

The word problems are selected according to criteria of diversity and involve several 

aspects of mathematical thinking not necessarily tied to school mathematics. Their 

aim is to foster mathematical reasoning, either on geometrical notions, numbers and 

patterns, and logical processes, among others. There is a concern on presenting 

problems that allow different strategies and also some that have multiple solutions. 

 

In Iona’s class the students had to elect a delegate and a co-delegate. Each student wrote two names 

in a voting sheet by order: the first for the delegate and the second for the co-delegate. There are 13 

students in the class. How many ways have a student to vote if his or her own name is allowed? 

Fig. 1: A problem aiming to elicit the abilities of organizing and counting 
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The Final consists of a one-day tournament where the finalists solve five problems, 

individually, with paper and pencil, and explain their reasoning and methods. This 

Final also provides some recreational activities addressed both to contestants and 

accompanying persons, namely parents and teachers.  

 

Joanna, Josephine and Julia are all very fond of sweets. As the summer aproaches they decide to go 

on a diet. Their father has a large scales and they used it to weigh themsleves in pairs. 

Joanna and Josephine together wheighed 132 kg 

Josephine and Julia together wheighed 151 kg 

Julia and Joanna together weighed 137 kg. 

What is the weight of each one? 

Fig. 2: A problem from the Final on identifying and relating variables and numbers 

Demanding a clear description of the reasoning, methods and procedures was a strong 

concern of the committee. Moreover, the feedback sent to each participant had an 

essentially formative role (Diego & Dias, 1996), aimed at stimulating self-correction 

and valuing students’ own ideas. Every two weeks the Sub14 committee publishes a 

proposal of the solution of the previous problem, stressing the diversity of strategies 

that students could have applied. Hence, the committee selects noteworthy excerpts 

from student’s solutions, whether due to the originality of their reasoning, their 

creativity or the interesting usage of technological tools. 

A THEORETICAL FRAMEWORK  

In this paper we are addressing a part of a larger study and consequently we refer to a 

few theoretical aspects of the overall framework. There are four main focuses in the 

theoretical approach: (a) looking at mathematics as a human activity, (b) taking 

problem solving as an environment to develop mathematical thinking and reasoning, 

(c) exploring the concept of being mathematically and technologically competent and 

finally (d) considering the role of home ICT in out of school mathematics learning.     

 

 

 

 

Fig. 3: Main conceptual elements of the theoretical framework 

Mathematics as a human activity  

Doing mathematics may be recognized as a human activity based upon a person’s 

empirical knowledge, in search of a formalized understanding of the everyday 

problematic situations. From this point of view, Freudenthal (1973, 1983) states that 

human activity, which comprises empirical knowledge, guides oneself from the 

simple observation and interpretation of phenomena – horizontal mathematizing –   to 

its abstract structuring and formalization – vertical mathematizing.  

Home ICT 

Mathematics as a 

human activity 
Problem solving 

Mathematical and 

technological 

competences 
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One of the criteria observed in launching a problem in Sub14 refers to the expectation 

that participating students will be able to activate their empirical knowledge and their 

experience to tackle mathematical problems. This perspective on mathematical 

activity is shared by many authors who emphasize the importance of exploring 

mathematical situations starting from common sense knowledge (Hersh, 1993, 1997; 

Ernest, 1993; Ness, 1993; Matos, 2005). As Schoenfeld (1994) claims, easiness in the 

use of mathematical tools, like abstraction, representation or symbolization, does not 

guarantee that a person is able to think mathematically. Rather mathematical thinking 

requires the development of a mathematical point of view and the competence to use 

tools for understanding.   

This is the perspective that is present in Sub14 and which expresses the prevailing 

concept of mathematical activity arising from the perspective of Realistic 

Mathematics Education: bringing student’s reality to the learning situation so that 

he/she is the one who does the mathematics, drawing on his/her knowledge and 

resources.  

Mathematical knowledge and problem solving  

Several authors from the field of mathematics education have proposed problem 

solving as a privileged activity “for students to strengthen, enlarge and deepen their 

mathematical knowledge” (Ponte et. al, 2007, p. 6).  

This view on mathematical problem solving entails a conception of mathematical 

knowledge that is not reducible to proficiency on facts, rules, techniques, and 

computational skills, theorems or structures. It moves towards broader constructs that 

entails the notion of mathematical competence (Perrenoud, 1999; Abrantes, 2001) 

and problem solving as a source of mathematical knowledge. In solving a problem 

there are several cognitive processes that have to be triggered, either separately or 

jointly, in pursuing a particular goal: to understand, to analyze, to represent, to solve, 

to reflect and to communicate (PISA, 2003). 

According to Schoenfeld (1992), the concept of mathematical problem can move 

between two edges: (i) something that needs to be done or requires an action and (ii) 

a question that causes perplexity or presents a challenge. The educational value of a 

problem increases towards the second pole where the solver has the possibility of 

coming across significant mathematical experiences. One of the purposes of 

mathematical problems should be to introduce and foster mathematical thinking or 

adopting a mathematical point of view, which impels the solver to mathematize: to 

model, to symbolize, to abstract, to represent and to use mathematical language and 

tools (Schoenfeld, 1992, 1994). 

The formative aims of the problems proposed in Sub14 are essentially in line with the 

perspective of giving students the experience of mathematical thinking and also the 

opportunity to bring forth mathematical models and particular kinds of reasoning. 

Communication, home technologies and learning 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1223



  

Considering that mathematics is a language that allows communicating your own 

ideas in an accurate and understandable way (Hoyles, 1985), Sub14 intends to 

develop that relevant communicational aspect, as stated in the current National 

Curriculum: “students must be able to communicate their own ideas and interpret 

someone else’s, to organize and clearly present their mathematical thinking” and 

“should be able to describe their mathematical understanding as well as the 

procedures they use” (Ponte et. al, 2007, p. 5). Conversely, the importance of 

developing the competence of mathematical communication draws on a strong 

connection between language and the processes that structures human thought, as it is 

referred by Hoyles (1985). Accordingly, language takes up two different roles in 

mathematical education: communicative, where students show the capacity to 

describe a situation or reasoning act; and cognitive, which may help to organize and 

structure thoughts and concepts. Hence, there is a multiplicity of capacities and 

competences, both mathematical and technological, which are triggered through the 

combination of facts and resources in order to solve each problem of the competition. 

Technologies and particularly the Internet, which gave life to Sub14, had a somewhat 

“neutral” or “trivial” role since the main focus of students’ concerns was on the 

actual mathematical activity involved. Noss and Hoyles (1999) used the “window 

image” to emphasize this phenomenon: a window allows us to look beyond, and not 

only at the object itself. Although every new technology tends to draw attention to the 

tool itself, we soon need to “forget” the tool and concentrate on the potentialities it 

has to offer, namely on the learning and cognition field.  

Using Lévy’s (1990) ideas, Borba and Villarreal (2005) claim that technology 

mediates the processes that are responsible for the rearrangement of human thinking. 

In fact, knowledge is not only produced by humans alone, but it’s an outcome of a 

symbiotic relationship between humans and technologies – which the authors entitled 

humans-with-media: “human beings are impregnated with technologies which 

transform their thinking processes and, simultaneously, these human beings are 

constantly changing technologies” (p. 22).  

Indeed, human thought used to be defined as logical, linear and descriptive. 

Nowadays it is hastily changing into a hypertextual thinking, comprising many forms 

of expression that go beyond verbal or written forms, such as image, video or instant 

messaging. These social changes allow youngsters to develop a large number of 

competences, which grants them the skills and sophistication required to learn outside 

the school barriers. 

Towards the conclusions of the ImpaCT2 project, that took place in Great Britain, 

Harrison (2006) asserted that the model used to measure the influence of new 

technologies on youngster’s school achievement was too simplistic and induced to 

settle on the absence of such influence. This author then proposed a new model that 

emphasized the importance of social contexts in which learning takes place. Harrison 

(2006) was thus able to conclude that learning at home must not be neglected, but be 

faced as a partner of the school curriculum.  
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Although knowledge gathered outside the school is frequently seen as worthless, it is 

clear that children are capable of watching a YouTube’s video, talk to their friends 

through MSN, and also solve the Sub14 problems and express their thinking using an 

ordinary technological tool. These “digital natives” (Prensky, 2001, 2006) access 

information very fast, are able to process several tasks simultaneously, prefer 

working when connected to the Web and their achievement increases by frequent and 

immediate rewards. 

METHODOLOGY 

The purpose of this study was to identify and understand the participants’ perceptions 

regarding the (i) mathematical activity, (ii) the competences involved and (iii) the 

role of the technological tools they’ve used along the competition.  

A case study methodology reveals itself appropriated in cases where relevant 

behaviours can’t be manipulated, but it is possible and appropriate to proceed to 

focused interviews, attempting to understand the surrounding reality (Yin, 1989). 

Since we intended to get diversity and interpret results, eleven participants were 

chosen intentionally, from the 120 finalists, hoping they would provide interesting 

data according to the research questions. 

The field work began collecting data that would allow a complete understanding of 

the competition, in order to adjust the approach to the participants. Later on, we used 

other data collecting techniques: a questionnaire to the finalists, video records from 

the Final, documental data from participants (such as their solutions to the Sub14 

problems, or their interactions with the Sub14 committee, using e-mail). That data 

allowed the planning of interviews to the eleven participants, as well as to their 

parents, aiming at collecting descriptive data, in their own language, hoping for an 

understanding on how they viewed certain aspects of Sub14 and of their involvement. 

For the data analysis we used an interpretative perspective (Patton, 1990) and an 

inductive process (Merriam, 1988), based on content analysis. Thus, the objective 

was to understand the significance of the events from the interviewees’ perspective, 

within the scope of the theoretical assumptions defined prior to the interviews.  

THE INTERNET – THE SUB14 LIFE SUPPORT 

The first evidence produced about students’ perceptions on the problem solving 

environment was the fact that the Internet and the technologies used within Sub14 

assumed, from the point of view of students, a neutral role in the development of their 

mathematical activity. However several aspects of their products and statements 

showed evidence of the importance and usefulness of different tools, behind their 

apparent indifference to technology if put in abstract terms. Therefore, we may state 

that the Internet undoubtedly is the technology that brings Sub14 to life; all the 

learning processes and the competences involved derive from the interaction 

provided and nourished by this tool. 
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Trivializing Technology 

Resorting to the Internet and other technologies was seen as absolutely natural by 

some participants. 

 “As I see it, reasoning comes from the mind; therefore I think no technology will help us 

to really solve a problem.” [Bernardo] 

Trivializing the role of the Internet and the technology involved in the competition 

can be found in the model proposed by Harrison (2006), which highlights the 

importance of the social context surrounding the learning process. These participants 

show all the characteristics of a digital native (Prensky, 2001), i.e., they start using 

computers at an early age, with a great variety of purposes, which can be related or 

not to school learning. Furthermore, these participants can also be considered as 

“humans-with-media”, or particularly, “humans-with-Internet”, according to the 

definitions proposed by Borba and Villarreal (2005), since their personality is being 

built, simultaneously, through the daily interaction with the Internet and other 

technologies. 

The Role of Communication and Feedback  

Essentially, the participants like the feedback sometimes provided immediately by the 

Sub14 committee, resulting from the analysis of their answers to each problem. The 

possibility of correcting little mistakes or even change the resolution completely, 

using the hints from the feedback, increase their self-esteem and motivation to remain 

in the competition. For the interviewed students, this is the characteristic that 

distinguish Sub14 from other similar competitions. 

“This year I also participated in another competition. We send an answer to a problem, 

but they don’t reply to us, and the Sub14 committee keeps sending hints”. [Isabel] 

As students pointed out there is someone who receives their answer to the problem, 

their questions or even their complaints. 

“It’s not something that we send and no one will care about, they are always there.” 

[Lucia] 

As mentioned above, the feedback is almost immediate and this is only possible due 

to the communicability that the Internet enables. The constant request for auto-

correction forces the participants to reflect on their own reasoning and the mistakes 

given, stimulating them to submit a correct answer as quickly as possible. Some of 

them sent messages to Sub14 several times a day, until they get the confirmation that 

their answer was correct. 

Another positive aspect of this bilateral communication is the request of a complete, 

coherent and clearly written explanation of the participant’s reasoning. This way, the 

feedback provided by the organizing team respects and nourishes the reasoning of 

each participant, as well as the processes used. We have even noticed a development 

on the correctness of the answers that the participants submitted throughout the 
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competition. 

“In the beginning it was somehow strange. I wasn’t used to it. I’d put the calculations and 

that was it. But we had to present all our thinking. It was as if I had to write what I was 

thinking. Thus, I would think out loud and split it into parts. But from the 3
rd

 or 4
th

 

problem I was already used to it.” [Isabel] 

This feedback originated a change of attitudes in some participants within their 

mathematics classroom when facing assessment situations. The students themselves 

observed they took more care while answering to questions posed by the teachers, 

presenting all the necessary justifications and showing a greater predisposition to 

interpret a problematic situation, find a reasoning path or procedure in order to 

explain the solution in a convincing way. 

 “[…] I now pay more attention to little details that sometimes others don’t, and it reflects 

on the tests and on the problems that the teacher gives us, some of them really tricky… 

but now I am tuned!” [Lucia] 

“Home Technologies” 

The dynamic nature of the bidirectional communication can be felt in other aspects 

revealed by the participants. First off all, we note the usage of the Sub14 website: the 

participants use it frequently and think that the available information is important and 

useful, they like the design, the way it is organized and the fact that it is permanently 

updated: 

“I like having an organized website (…) the ‘Press Conference’ page was always 

updated.” [Ana] 

The purpose of posting submitted solutions was to show the methods used by some of 

the participants, hoping to improve their performance by the positive reinforcement 

of seeing their works and their names posted online. 

 “Yes! Sometimes I would go there to see if any of the posted solutions was mine! Once 

or twice I found my answer and I was very happy and shouted… ‘Daddy, daddy, come 

here!’” [Bernardo] 

Bernardo’s enthusiasm, as well as many other participants’, supports the pedagogical 

and motivational aspects of the methodology adopted in Sub14. Not only it promotes 

the diversification of reasoning strategies and points out the several problem solving 

phases, but it also increases self-esteem and improves innovation and creativity as 

“special” answers are selected to be published online. 

Moreover, the fact that Sub14 is a digital competition allowed the participants the 

opportunity of communicating their reasoning in an inventive way, since they could 

resort to any type of attachments, particular the ones they felt more comfortable with 

or the ones they found adequate to the problem itself. Therefore, the participants used 

mainly the text editor, MSWord, but they also used drawing and spreadsheet 

programs, like MSPaint and MSExcel, all examples of home technology. 
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MSWord was used to compose text, organize information in tables, and insert 

images, automatic shapes, WordArt objects or Equation expressions. It was elected 

the favorite between the participants, since it is the one they better understand and 

constantly are asked to use for several school assignments. 

“[Word] is the simplest to use, it’s the one that I have more confidence on to do school 

tasks, and I’m used to it. It’s the one I’m good at.” [Lucia] 

Using images was a strategy that seven of the interviewee used. Nevertheless, some 

of them only inserted images that had something to do with the problem context, 

more like an illustration. In this case, we may consider that resorting to images had 

mainly an aesthetic function, as it didn’t help presenting or clarifying the reasoning 

and strategy used to solve the problem. However, other interviewees sketched their 

own images using MSPaint in order to improve the intelligibility of their thoughts: 

“Anything that I thought that could help to improve the reasoning, I would draw it [in 

paper] and then I’d put it in the computer.” [Bernardo] 

“We were playing with some straws and we reached the solution by trial and error. Then 

[we took some pictures] with the digital camera [and] put them in the computer so that 

we could send them.” [Alexandra] 

In this way the image usage assumed, essentially, two roles in the answers of these 

participants. Firstly, it was merely a visual detail, which may be influenced by the 

type of work done in students’ school assignments. Secondly, the creation of images 

within the context of their interpretation of the problems is an evidence of their 

efforts on expressing their reasoning in the best possible way. Moreover, we can 

notice their awareness of the different representations that could materialize their 

reasoning and even some decision ability when facing the options they had at hand. 

Two interviewees used Excel to present their answers. One of them used this tool to 

solve every Sub14 problem, showing however a narrow usage of the program as a 

means to organize the information and his answer. Seldom using the function 

“SUM”, he essentially resorted to tables and images, considering that the spreadsheet 

was better than a text editor. The referred simplicity seems to come from the fact that 

he has been exposed to this tool from an early age:  

“Sometimes, when I was a kid – I got my first computer when I was six – I liked to get 

there [MS Excel] and do squares with the cells, paint them and that sort of things…” 

[Bernardo] 

Another participant used the spreadsheet to solve five of the twelve problems, 

showing that he knew some of the advantages of this tool. Therefore, these 

participants were confident enough in using MSExcel, nonetheless not as a result of 

work within the school context, but rather of their domestic “findings”. 

ANOTHER LOOK AT SUB14 AS A LEARNING ENVIRONMENT 

Solving the Sub14 mathematical problems requires looking at a problem situation 
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from a mathematical perspective. This can be seen as a mathematizing process, since 

the participant is stimulated to express the way in which thinking was organized and 

progressed. In this competition, the participants found a place where they could freely 

communicate their ideas, had someone who listened and advised them, helping to 

make their mathematical thinking and expression become clearer. Moreover, when 

solving a problem, they faced the transition from convincing themselves to 

convincing the others (Mason, 2001). This led participants to develop their own 

understanding of the problem, promoting the usage of domestic technologies to 

communicate, thus adding competences that sometimes school neglects or forgets. 

As a learning environment, although being external to the school context, Sub14 is 

aligned with school mathematics, and promotes a set of competences that fit within 

current mathematical education purposes and curricular targets. The fact that the 

competition occurs in a loose institutional context allows a greater family 

commitment and complicity with the participant’s learning process, fostering the 

discussion on mathematical questions and problems outside the school environment, 

especially at home, maybe around dinner table. 

Further work on this field shall include a future experience to investigate the 

possibility of allowing participants to communicate amongst them, within the 

website, bearing in mind the idea of a connected learning environment.  
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A RESOURCE TO SPREAD MATH RESEARCH PROBLEMS IN 

THE CLASSROOM 

Gilles Aldon, Viviane Durand-Guerrier. 

INRP, IREM de Lyon, IUFM de Lyon, LEPS (Université de Lyon) 

In this communication we intend to present a digital resource the aim of which is to 
give aid to teachers to use research problems in their classes; in a first part we are 
going to present the theoretical framework which was used by the team in the 
conception of the resource and the consequences on its model; we will present the 
results of a study dealing with the role and the impact of the resource used by 
teachers preparing lessons. 

INTRODUCTION 

Different works have shown the benefits of the use of research’s problems [Polya, 

1945, Schoenfeld, 1999, Brown and Walter, 2005, Harskamp and Suhre, 2007, Arsac 

et al., 1991, Arsac and Mante, 2007], in the construction of knowledge and both the 

interest of teachers and the difficulties to deal with in the classrooms; moreover, the 

institutional injunctions of using research problem are important in France and are 

going to take part in the final evaluation of the secondary school [Fort, 2007].  

As far as we are concerned, and in the framework of the Piagetian psychological 

theory, we assume that the construction of knowledge has to go through an 

adjustment to the milieu as we will define it in the next section, and in this context, 

research problems are elements of the “material milieu” that teachers offer to 

learners.  

We also assume that amongst all hindrances of generalization of research problems in 

the classroom, the following points are decisive: 

1. the important part of the experimental dimension in problem solving clashes 

with the main representation of mathematics amongst maths teachers but also 

in the society; 

2. the focus on heuristics and reasoning skills in maths research problem is in 

contradiction with the institutional constraints of teaching maths notions, 

particularly regarding French maths curricula; 

3. difficulties for teachers to pick out in the students’ activity the mathematics 

part of their work, and, as a result the notions which can be institutionalized; 

4. the difficulties teachers have to assess such a work, the usual assessment 

modalities being not appropriate. 
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In this context, a team of teachers and researchers
1
 from different institutions (IREM 

de Lyon, IUFM de Lyon, INRP and LEPS
2
), has worked on the construction of a 

numerical resource the aim of which is to give aid to maths teachers in order to use 

research problems in their teaching. In this paper, we will present the main theoretical 

frameworks used in the construction of this resource and will show, through the 

results of a particular study, the role this resource can play in the activity of teachers 

from the preparation of a lesson to the implementation in the classroom. 

THE THEORETICAL CHOICES 

This resource was written to be a part of the milieu of the teachers in the meaning 

Brousseau [Brousseau, 1986,Brousseau, 1997, Brousseau, 2004] and after him 

[Margolinas, 1995, Bloch, 1999, Bloch, 2005, Houdement, 2004] give to this 

concept. More precisely, learners learn through regulations of their links with their 

milieu. Going a bit deeper in this concept, Margolinas [Margolinas, 1995] described 

the structure of the milieu as a set of interlocked levels which can be described as 

follow: 

 

Level Teacher Pupil Situations Milieux 

3 Noosphere-T  Noospherian situation Construction 

milieu 

2 Builder-T  Construction 

situation 

Milieu of project 

1 Project-T Reflexive 

pupil 

Project situation Didactical milieu 

0 Teacher Pupil Didactical situation Learning milieu 

-1 Teacher in 

action 

Learning 

pupil 

Learning situation Reference milieu 

-2 Teacher 

observing 

Pupil in 

action 

Reference situation Objective milieu 

-3 Teacher 

organising 

Objective 

pupil 

Objective situation Material milieu 

                                         

1
 Gilles Aldon, Pierre-Yves Cahuet, Viviane Durand-Guerrier, Mathias Front, Michel Mizony, Didier Krieger, Claire 

Tardy 

2
 IREM : Institut de Recherche sur l’Enseignement des mathématiques ; IUFM : Institut Universitaire de Formation des 

Maîtres ; INRP : Institut National de Recherche Pédagogique ; LEPS : Laboratoire d’Etude du Phénomène Scientifique, 

Université de Lyon. 
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Table 1 Structuring of the milieu 

In this table, the milieu of level n is the situation of level n-1 and is made up of the 

existing relationships between M, P and T. Using the symmetry of the table and, in 

our case, proposing to the teachers a situation, (in the acceptation of the didactical 

theory of situations) in which the a-didactical situations of action had as aim to allow 

teachers to construct, by themselves, the knowledge necessary to conduct a situation 

of problem research in the classroom [Peix and Tisseron, 1998] we speak of the 

material and objective milieu of the teachers. In this study, the resource appears to be 

a part of the material milieu of the teacher and the question is: is it possible, for a 

teacher, to use the resource to facilitate his tasks: 

• organizing the material milieu of the pupils, 

• understanding the objective milieu of the pupils and the links between their 

knowledge and conceptions 

• choosing the pertinent notions to be institutionalized in the reference milieu of 

the pupils, and anticipating the conflicts between misconceptions and tools to 

solve… 

Moreover, the theoretical framework of cognitive ergonomics through its concepts 

and methods allows us to study the competencies of the teacher in his interaction with 

the work system, and more particularly in the relationship between the prescribed 

tasks and his activity. Lastly, and in the field of using a numerical resource in 

professional tasks, the concepts of utility, usability and acceptability [Tricot et al., 

2003] have been sounded out in two different ways: 

• by an evaluation by inspection in order to construct and organize the resource, 

• by an empirical evaluation in a professional situation. 

Utility is “the question of whether the functionality of the system in principle can do 

what is needed” [Nielsen, 1993] 

Usability can be defined as: “the capability to be used by humans easily and 

effectively” [Schackel, 1991], but also “the question of how well the users can use 

that functionality” [Nielsen, 1993]  

Acceptability refers to the decision to use the artefact, and answers the questions: is 

this artefact compatible with the culture, the social values, global organisation in 

which the artefact has to be included. 

PRESENTATION OF THE RESOURCE 

Structure 

It is possible to use this resource in different ways; theoretical texts about the 

experimental dimension in mathematics [Dias and Durand-Guerrier, 2005, Kuntz, 

2007] can be read as well as different presentations made in conferences [Aldon, 

2007, Aldon and Durand-Guerrier, 2007]. It is also possible to understand the sense 
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of the resource by reading a curriculum-vitae [Trouche and Guin, 2008] of the 

different steps and reflections of its building. The different situations are outlined 

using a common structure: 

• Maths situation out of the classical literature on open problems developed in 

particular in IREM de Lyon (nowadays, there are seven maths situation): 

o Egyptian fractions: break down 1 into the sum of fractions of numerator 

1. 

o Trapezoidal numbers: study of the sum of consecutive whole numbers. 

o The river: study of the shortest distance between two points with 

constraints. 

o The number of zeros of n!: study of the digits of n! in different 

numeration systems. 

o The greatest product: study of the product of integers of fixed sums. 

o Polya’s urns: study of the dynamic of the composition of an urn in a 

repeated experience. 

o Inaccessible intersection: find a line going through an inaccessible point. 

• Maths objects that may be used to solve the given problem: for each of the 

situations, the a-priori analysis allows to extract the mathematics objects that 

are part of the mathematics situation and can be used in the process of 

resolution. 

• Learning situation: how the maths situation has been transformed into a 

didactical situation? In this part of the resource, reports of real experiments can 

be read. 

• References 

• Synthesis: a ten pages synthesis of the situation allows teacher to familiarize 

themselves with the content of the section. 

• Connected situations: how is it possible to protract the situation and what are 

the extensions in the maths researches nowadays? 

Introduction of the resource 

In order to confirm the hypothesis and to evaluate the utility, usability and 

acceptability of the resource, we built an experimentation with teachers from the first 

handover of the resource to the real experiment of a research problem in the 

classroom. In this section we are going to focus on the first handover in order to 

evaluate the usability of the resource. 

The methodology of this part of the experimentation was built using an observation 

of teachers faced to a professional problem (preparing a lesson using research 

problem); the context was a training course with sixteen teachers involved. They 
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discovered the resource during this course as an artefact in the sense that the 

functioning of the resource has not been explained; the observer (the first author of 

this paper) recorded dialogues of two teachers and in the same time recorded the 

computer screen.  

There is a confrontation, for the same person, between the position of expert (a 

teacher preparing a lesson, hence choosing objectives, a problem linked to these 

objectives, organising time of the lesson …) and the position of beginner in two 

different ways: using research problem in his (her) preparation and using a new tool. 

The theoretical framework of the didactic situation theory gave us the possibility to 

observe the position of the resource in the milieu of the teacher and to observe why 

this resource gives a possibility to the teacher to have a look into the pupils’ objective 

milieu as described above. The cognitive ergonomics framework gives us keys to 

analyse the activity of teachers in this professional situation. Moreover, the concept 

which is tested was the usability of the resource, using the following criterions 

[Tricot et al., 2003]: 

• Possibility of learning the system 

• Control of the errors 

• Memorization of the functioning 

• Efficiency 

• Satisfaction 

But also, and we will see why later, its acceptability, that is to say the degree of 

confidence the teachers have. 

The first result that we can highlight is the very quick adaptability of the observed 

teachers in front of the resource. After à three minutes wandering, the teachers used 

the different path in the resource to find exactly what they want as it can be possible 

to see when teachers changed from one situation to another. In the first time, the 

mouse hesitated on the screen, going from one button to the others before the click, 
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and progressively, the structure became clearer and the adequacy between the given 

objective and the browsing into the resource became safer: 

After nine minutes: 

 Are you interested?  

 Yes  

 (click on “situation mathématique3
” 

(two clicks and two screens in one second) 

 The mathematical situation… (they 
read) 

 Possible for our pupils (click, click) 

 I would like to see that (the mouse turn 
over the menu “possible maths objects…”) 

 

  

 

 

 

 

 

 

 

 

                                         

3
 Mathematical situation 
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The second important observation, linked to the concept of acceptability can be seen 

by the feeling of trust in the authors of the resource; at the beginning of the 

exploration, the two teachers click on the menu: theoretical framework, and after 

some seconds says: 

 “We are not going to read the whole text…”  

And, later, in front of a situation, one of the teachers said: 

“We are going to read what they say…” 

These two brief sentences show us the growing of the confidence during the use of 

the resource and can be considered as a clue of the acceptability of the resource. The 

other observations and particularly the use of the resource to construct a real lesson 

confirm us in the feeling of the acceptability of the resource. 

Realisation 

In order to go on in the evaluation of the resource, a second experimentation has been 

built with the goal of testing the utility and the acceptability of the resource; we 

observed a research problem lesson focusing more particularly on the interactions 

between pupils and teacher during the situation of action. The teacher who was 

observed and interviewed, participated to the training course described above. 

The chosen mathematical situation was the trapezoidal numbers and the question 

given to the pupils of a scientific eleventh class
4
 was: 

What are the whole numbers which are sum of at least two consecutive integers? 

Interrogating the two theoretical frameworks, the interview with the teacher allows us 

to bring to light utility and acceptability of the resource, but also to understand the 

position of this resource in the teacher’s milieu. 

Utility of the resource is in this case obvious, the teacher having prepared the lesson 

with the resource: 

“Yes, yes I use it… I read all you wrote about this problem. Oh, yes, without the resource, I 

think I should not give this problem to my pupils, because I would have spent too much 

time to do this work… I would not do that!”  

Regarding acceptability, a lot of clues allow us to consider, for this teacher and in this 

experimentation, the resource as acceptable, for example the feeling that the lesson 

created using the resource brought a new dimension to her course: 

“I think I’ll do that earlier next year, to create something in the class, precisely, this 

dynamic which makes the pupils actors, as I said to you, a pupil was speaking from the 

board, and I was at the back of the class, and the other pupils ask questions… I think it’s a 

good way to involve pupils in the maths lessons, to put a lot of them in maths… For me, it’s 

                                         

4
 Pupils are sisteen-seventeen years old 
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very confident, visibly they enjoy this time, and I think it’s something important to insert 

pleasure in maths lessons, it’s something which questions me, because it’s so easy to do 

maths without pleasure!” 

Moreover, the interview confirms the position of the resource in the objective milieu 

of the teacher in a posture of preparation of a lesson including a research problem. 

In an other hand the observation of a group of pupils gives us interesting feedback 

about the mathematical objects students deal with and shows that the a-priori 
analysis of the resource corresponds to the reality of the class; for example, one of the 

mathematical object which was highlighted by the authors of the resource related to 

this problem was the powers of two. In other words, the hypothesis was that powers 

of two belong to the objective milieu of the pupils and, consequently are a field of 

experiencing; the confrontation of pupils with these objects allows them to change 

their position in the milieu and to bring with the help of the institutionalisation these 

objects in the reference milieu of the pupils: 

F2: (using her calculator) two to the power five gives thirty two… Yes ; two to the power 

seven gives one hundred twenty eight 

G: two hundred and fifty six, five hundred and twelve, thousand and twenty four, two 

thousands and twenty eight … 

F2: how do you calculate to obtain the results so quickly? 

G: you multiply by two 

F2: Ah yeah right! 

In this small excerpt, the two definitions of the powers of two as an iterative or 

recursive process are called up and the link between these definitions is made by F2; 

it is possible to think that the recursive definition belongs now to her objective milieu 

and a necessary work must be done to institutionalize it in her reference milieu. The 

fact that this object was present in the resource allows the teacher to pay attention to 

this dialogue and to use it in her lesson: 

 

CONCLUSION 

The described engineering and the results of observations and interviews show the 

place of the resource in the milieu of the particular teachers involved in this 

experiment, and clearly show the utility, usability and acceptability of this resource. 

Regarding the didactical theory of situations, this experimentation shows that the 

resource emplaced in the material milieu of the teachers can be mobilised in their 

objective milieu and used in the setting up of research problem lessons in the 

classroom. The resource also allows teachers to launch themselves in the different 

milieu of the students and to understand the position of mathematical objects in these 

milieus, and consequently it facilitates the institutionalization.  
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However, new questions appear, in particular linked to the genesis of this resource 

and its transformation from an external resource possibly used by a teacher to a 

document available in his/her environment. 

BIBLIOGRAPHY 

[Aldon, 2007] Aldon, G. (2007). La place des tice dans une démarche 

expérimentale en mathématiques. In Académie de Clermont, en ligne, 

http://www3.ac-clermont.fr/pedago/maths/pages/UE2007/texte/Texte_11.doc. 

[Aldon and Durand-Guerrier, 2007] Aldon, G. and Durand-Guerrier, V. (2007). 

The experimental dimension in mathematical research problems. In Actes de la 
CIEAEM59, http://educmath.inrp.fr/Educmath/partenariat/partenariat-inrp-07-

08/exprime/1presentation.pdf. 

[Arsac et al., 1991] Arsac, G., Germain, G., and Mante, M. (1991). Problème ouvert 
et situation-problème. IREM de Lyon. 

[Arsac and Mante, 2007] Arsac, G. and Mante, M. (2007). Les pratiques du problème 
ouvert. Scéren CRDP de Lyon. 

[Bloch, 1999] Bloch, I. (1999). L'articulation du travail mathématique du 

professeur et de l'élève dans l'enseignement de l'analyse en première scientifique. 

Recherche en Didactique des Mathématiques, 19/2:135–194. 

[Bloch, 2005] Bloch, I. (2005). Quelques apports de la théorie des situations à 
la didactique des mathématiques dans l'enseignement secondaire et supérieur. PhD 

thesis, IUFM d'Aquitaine. 

[Brousseau, 1986] Brousseau, G. (1986). Fondements et méthodes de la didactique 

des mathématiques. Recherches en Didactique des mathématiques, 7/2. 

[Brousseau, 1997] Brousseau, G. (1997). La théorie des situations didactiques. In 

Cours à l'Université de Montréal, http://pagesperso-orange.fr/daest/guy-

brousseau/textes/TDS_Montreal.pdf. 

[Brousseau, 2004] Brousseau, G. (2004). Théorie des situations didactiques. La 

pensée sauvage éditions. 

[Brown and Walter, 2005] Brown, S. and Walter, M. (2005). The art of problem 
posing. Lawrence Erlbaum Associates, Inc. 

[Dias and Durand-Guerrier, 2005] Dias, T. and Durand-Guerrier, V. (2005). 

Expérimenter pour apprendre en mathématiques. Repères IREM, N°60:p. 61–78. 

[Fort, 2007] Fort, M. (2007). Expérimentation d'une épreuve pratique de 

mathématiques au baccalauréat scientifique. 

http://media.education.gouv.fr/file/98/4983.pdf. 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1239



 

 

 

 

[Harskamp and Suhre, 2007] Harskamp, E. and Suhre, C. (2007). Schoenfeld's 

problem solving theory in a student controlled learning environment. Comput. Educ., 
49(3):822–839. 

[Houdement, 2004] Houdement, C. (2004). Mathématiques, didactique et 

découpages : la richesse d'un problème. Actes des journées de formation IREM 
Montpellier, pages 43–52. 

[Kuntz, 2007] Kuntz, G. (2007). Démarche expérimentale et apprentissages 
mathématiques. 

http://www.inrp.fr/vst/Dossiers/Demarcheexperimentale/sommaire.htm. 

[Margolinas, 1995] Margolinas, C. (1995). La structuration du milieu et ses 

apports dans l'analyse a posteriori des situations. Les débats de didactique des 
mathématiques, annales 1993-1994. 

[Nielsen, 1993] Nielsen, J. (1993). Usability engineering. Academic Press Inc. 

Boston. 

[Peix and Tisseron, 1998] Peix, A. and Tisseron, C. (1998). Le problème ouvert 

comme moyen de réconcilier les futurs professeurs d'école avec les mathématiques. 

Petit x, 48:5–21. 

[Polya, 1945] Polya, G. (1945). How to solve it ? A New Aspect of Mathematical 
Method. Princeton University Press. 

[Schackel, 1991] Schackel, B. (1991). Human factors for informatics usability, 

chapter Usability - context, framework, design and evaluation, pages 21–38. 

Cambridge university press. 

[Schoenfeld, 1999] Schoenfeld, A. (1999). Looking toward the 21st century: 

Challenges of educational theory and practice. Educational Researcher, 28(7):4–14. 

[Tricot et al., 2003] Tricot, A., Plégat-Soutjis, F., Camps, J.-F., Lutz, A. A. G., 

and Morcillo, A. (2003). Utilité, utilisabilité, acceptabilité : interpréter les relations 

entre trois dimensions de l'évaluation des eiah. Archive EIAH. 

[Trouche and Guin, 2008] Trouche, L. and Guin, D. (2008). Un assistant 

méthodologique pour étayer le travail documentaire des professeurs : le cédérom 

sfodem 2008. Repères IREM, 72. 

 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1240



THE SYNERGY OF STUDENTS’ USE OF PAPER-AND-PENCIL 
TECHNIQUES AND DYNAMIC GEOMETRY SOFTWARE: A 

CASE STUDY  
Núria Iranzo, Josep Maria Fortuny 

Universitat Autònoma de Barcelona, Spain 

This study is part of an ongoing research1 on the interpretation of students’ behaviors 
when solving plane geometry problems in Dynamic Geometry Software and paper-
and-pencil media. Our theoretical framework is based on Rabardel’s (2001) 
instrumental approach to tool use. We seek for synergy relationships between 
students’ thinking and their use of techniques by exploring the influence of techniques 
on the resolution strategies. Our findings point to the existence of different 
acquisition degrees of geometrical abilities concerning the students’ process of 
instrumentation when they work together in a computational and paper-and-pencil 
media. In this report we focus on the case of a student. 
INTRODUCTION 
We report research on the integration of computational technologies in mathematics 
teaching, in particular on the use of Dynamic Geometry Software (DGS) in the 
context of students’ understanding of plane geometry through problem solving. We 
focus on the interpretation of students’ behaviors when solving plane geometry 
problems by analyzing connections and synergy among techniques used in 
environments, DGS and paper-and-pencil, and geometrical thinking (Kieran & 
Drijvers, 2006). Many pedagogical environments have been created such as 
Cinderella, Geometer’s Sketchpad, and Cabri Géomètre II. We focus on the use of 
GeoGebra because it is a free DGS that also provides basic features of Computer 
Algebra Software. As said by Hohenwarter and Preiner (2007), the software links 
synthetic geometric constructions (geometric window) to analytic equations, 
coordinate representations and graphs (algebraic window). Our aim is to analyze the 
relationships between secondary students’ problem solving strategies in two 
environments: paper-and-pencil (P&P) and GeoGebra (GGB). Laborde (1992) 
claimed that a task solved using DGS may require different strategies to those 
required by the same task solved with P&P; this fact has an influence on the feedback 
provided to the student.  
Our broadest research question aims at how the use of GGB in the resolution of plane 
geometry problems interacts with the students’ paper-and-pencil skills and their 
conceptual understanding. We analyze and compare resolution processes in both 
environments, taking into account the interactions (student-content, student-teacher 
and student-GGB). In this report we focus on two research goals as being interpreted 
in the case of one student, Santi. We analyze this student’s instrumentation process, 
                                                 
1 The research has been funded by Ministerio de Educación y Ciencia MEC-SEJ2005-02535, ‘Development of an e-
learning tutorial system to enhance student’s solving competence’.  
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and we compare his resolution strategies when using P&P and GGB within each 
problem. In the whole research we work with a total of fourteen individual cases from 
the same class group and establish some commonalities and differences among them.   
THEORETICAL FRAMEWORK  
We first draw on the instrumental approach (Rabardel, 2001). According to Kieran 
and Drijvers (2006), a theoretical framework that is fruitful for understanding the 
difficulties of effective use of technology, GGB in our case, is the perspective of 
instrumentation. The instrumental approach to tool use has been applied to the study 
of Computer Algebra Software into learning of mathematics and also to Dynamic 
Geometry Software. The instrumental approach distinguishes between and artifact 
and an instrument. Rabardel and Vérillon (1995) claim the importance of stressing 
the difference between the artifact and the instrument. A machine or a technical 
system does not immediately constitute a tool for the subject; it becomes an 
instrument when the subject has been able to appropriate it for her/himself. This 
process of transformation of a tool into a meaningful instrument is called 
instrumental genesis. This process is complex and depends on the characteristics of 
the artifact, its constraints and affordances, and also on the knowledge of the user. 
The process of instrumental genesis has two dimensions, instrumentation and  
instrumentalization: 

- Instrumentation is a process through which “the affordances and the constraints 
of the tool influence the students’ problem solving strategies and the 
corresponding emergent conceptions” (Kieran & Drijvers, 2006, p. 207). “This 
process goes on through the emergence and evolution of schemes while 
performing tasks” (Trouche, 2005,  p. 148). 

- Instrumentalization is a process through which “the student’s knowledge guides 
the way the tool is used and in a sense shapes the tool” (Kieran & Drijvers, op. 
cit., p. 207).  

In our research, we select different problems for being solved first with P&P and then 
with the help of GGB. In order to analyze the connectivity and synergy between the 
students’ resolution strategies in both environments, the problems are to be somehow 
similar. The basic space of a problem is formed by the different paths for solving the 
problem. We transfer the similarity of the problems to the similarity of their basic 
spaces. For example, the problems considered in this article, share common strategies 
for reaching the solution such as equivalence of areas due to complementary 
dissection rules, application of formulas (area of a triangle), particularization, etc. 
We plan to design an instructional sequence, focusing on a systematization of the 
interactions produced between artifacts (P&P, GGB), the mathematical actions and 
the didactical interactions. The theoretical framework is based on instrumental 
approach and activity theory (Kieran & Drijvers, 2006). We connect the activity 
theory as part of the “orchestration” (Trouche, 2004). The actions consist in different 
problem sequences to be proposed by the teacher to the students, to be solved in both 
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media. The teacher proposes different indications or new problems. For each 
problem, we prepare a document with pedagogical messages that provide differing 
levels of information, and we group them according to the phases of the solving 
processes which are being carried out: familiarization, planning, execution, etc. We 
classify the pedagogical messages, for each phase, in three levels. Level 0 contains 
suggestions that do not imply mathematical contents or procedures in the solving 
process. The messages of level 1 only convey the name of the implied mathematical 
contents or procedures. Level 2 provides more specific information on these contents 
or procedures. For the problems to be solved in a technological environment we also 
prepare contextual messages. These messages are related to the use of GGB. The 
teacher can help the students in case they have technical difficulties with GGB. 
We also specify some terms that will be used in this study of students’GGB 
resolutions such as figure and drawing. We use these terms with their usual meaning 
in the context of the Dynamic Geometry Software (Laborde & Capponi 1994). We 
use this distinction between Figure and drawing in order to describe the way in which 
students interpret the representations generated on the computer.  
CONTEXT AND METHOD  
The study is conducted with a group of fourteen 16-year-old students from a regular 
class in a public high school in Spain. These students are used to working on 
Euclidean geometry in problem solving contexts. They have been previously taught 
GGB. The main source of data for this paper comes from the experimentation with 
two problems:  
1. Rectangle problem: Let E be any point on the diagonal of a rectangle ABCD such 
as AB =8 units and AD=6 units. What relation is there between the areas of the 
shaded rectangles in the figure below? 

        
2. Triangle problem: Let P be any point on the median [AM] of a triangle ABC. What 
relation is there between the areas of the triangles APB and APC? 
These problems have to do with comparing areas and distances in situations of plane 
geometry. They admit different solving strategies; they can be solved by mixing 
graphical and deductive issues, they are easily adaptable to the specific needs of each 
student, and they can be considered suitable for the use of GGB. For all the problems, 
we start by exploring the basic space of the problems in the P&P and GGB 
environments. After having identified the different resolution strategies and 
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conceptual contents of the problems, the focus is on analyzing the necessary 
knowledge to solve them. Finally, we prepare a document with the pedagogical and 
technical messages that provide differing levels of information.  
All the activities with students are planned to take four sessions of one hour each with 
an average of two problems per session. The two problems above were developed in 
the first two lessons in which the students worked on their own. The inquiry-based 
approach to the lessons leads the students to assume the responsibility for the 
development of the task. The teacher fosters the students’ autonomy by only 
intervening in certain moments and giving some messages, established a priori, 
concerning the resolution. 
For the experimentation with each problem, the whole set of data is: a) the solving 
strategies in the written protocols (P&P and GGB); b) the audio and video-taped 
interactions within the classroom (student-teacher, student-content and student-
GGB); and c) the GGB files. All these data were examined in order to inform about 
our research goals. The integration of data concerning these goals led us to the 
description of the students’ process of instrumentation. For the description, different 
variables were considered, among them: the students’ heuristic strategies (related to 
geometric properties, to the use of algebraic and measure tools or to the use of 
both…); the use of GGB (visualization, geometrical concepts, overcoming 
difficulties…); the obstacles encountered in each environment (conceptual, algebraic, 
visualization, technical obstacles…); etc.  
For each case, we first analyze the P&P resolution with data coming from the tapes 
and the protocols. We consider the student’s solving strategies and the use of 
mathematical contents. Then we analyze the GGB resolutions with data coming from 
the tapes and especially from those tapes that show the screen. We consider again the 
student’s solving strategies, the use of mathematical contents and now we also pay 
attention to instrumented techniques and technical difficulties. After having 
developed these two types of analysis, we compare GGB and P&P resolutions by 
looking at the use of the two environments within each problem. To analyze the 
problem solving process, we also consider the phases of the problem solving process 
(Schoenfeld, 1985) as a whole in each group of problems (GGB and P&P).  
THE CASE OF SANTI: An episode of exploration/analysis 
The mathematical content of the problem was dealt with in courses prior to the one 
Santi is currently taking. Santi has procedural knowledge relating to the application 
of formulas for calculating the area of the Figure, and sufficient knowledge of the 
concepts associated with geometric constructions. He is a high-achieving student. 
Santi is asked to solve the first problem with P&P and the second problem with the 
help of GGB. In this section we summarize his problem solving process for both 
problems. 
- Resolution of the rectangle problem (P&P): 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1244



          In the resolution of the first problem, after reading the statement of the problem, Santi 
observes the figure and then he states that he does not have enough numerical data. 
The teacher suggests the student to consider a particular case (heuristic cognitive 
message of level 1 in the planning /execution phase). Santi reacts to this message, 
considering the particular case in which E is the midpoint of the diagonal and he 
conjectures that both areas should be equal. Then he tries to prove the conjecture for 
the particular case in which the length AE is 2 units. The student reaches a solution to 
the particular case by using trigonometry. He obtains the angles in the triangle EAN 
(Figure 1) and he calculates the measures of the sides, AN and AM. Finally he 
obtains the numerical value of both areas and he observes that he gets different 
values. Santi requests a message about the solution because he expected to obtain 
equal values. The teacher remarks that there is an algebraic mistake in his resolution 
and suggest Santi to review the process he has followed because there are algebraic 
mistakes (metacognitive message of level 1 in the verification phase). The student 
finds the mistake and obtains the equal values of both areas (Figure 1). He then tries 
to use the same strategy for the general case using the relation: 

AM
AN

=
6
8 . 

 

Figure 1: Resolution with paper and pencil of the first problem (Santi) 

Santi bases his resolution strategy on applying trigonometry and he does not try to 
use the strategy based on comparing areas of congruent triangles (strategy based on 
equivalence of areas due to complementary dissection rules). The teacher proposes 
other problems to be solved with P&P and with GGB. In the following paragraph we 
consider one of these problems. 
- Resolution of the triangle problem (GGB): 
After reading the statement of the problem, Santi draws a graphic representation 
without coordinate axes before constructing the figure with GGB. The teacher 
observes that Santi has considered the point P in the side AC of the triangle instead of 
the median. The teacher gives Santi the following message: “Try to understand the 
conditions of the problem” (metacognitive message of level 0 in the familiarization 
phase). Santi constructs a new figure with GGB (Figure 2) and he observes the figure 
trying to find a solving path. Then he proposes a conjecture and asks the teacher for 
verification: “the triangles APC and APB have a common side and the same area (he 
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verifies this with the tool area of a polygon). How could I prove that these two 
triangles are equal [congruent]”? I have tried to prove that they have the same 
angles but I don’t see it...” 
We observe that Santi does not validate his conjecture with the help of GGB (using 
measure tools for instance). The teacher gives him a validation message of level 
1“Are you sure that these triangles are congruentl? Santi reacts to this message 
changing the triangle ABC. He drags the vertex A (Figure 3) and he observes without 
measure tools that the triangles are different.    

  

Figure 2: Construction with GGB of the 
triangle ABC and its median. Santi uses 
the tool polygon to construct the 
triangles. 

Figure 3: He moves the vertex A to 
obtain a general triangle. We observe 
that he tries to define vertices with 
coordinates that are integer numbers. 

 The last graphic deduction marks the beginning of the search for a new strategy. He 
observes the figure, without dragging its elements. More than five minutes have gone 
without doing anything in the screen. Santi requests again the help of the teacher 
(Table 1, line 1) for the familiarization phase of the problem. 
  Interactions 

1 Santi Is P any point in the segment AM? Isn’t it the midpoint? [Santi 
tries to consider particular cases] 

2 Teacher P is any point in the median [AM]. The triangle ABC is also a 
general triangle [cognitive message of level 1 for the 
familiarization phase] 

.... Santi [Santi reacts to this message modifying the initial triangle. He 
drags again the vertices to obtain the triangle in Figure 3]. 

3 Santi I think that I see it!...The triangles have a common side and the 
same height [the segments [BM] and [MC] (wrong deduction)]  

4 Teacher Are you sure about that? 

5 Santi [Santi reacts to this message observing the triangle without doing 
any action on the screen. Then he states: ] 
No. These lines are not perpendicular! [(AM) and (BC)]. But, this 
was a good trial... 
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Have they the same base? [he refers to the common side of both 
triangles ] 

6 Teacher Yes 

Table 1: How Santi tries a new solving path 

For the first time, Santi tries to drag the vertices of the triangle trying to find 
invariants. While he drags the vertexes he looks in the algebraic window for 
invariants. We observe here the simultaneous use of the algebraic window and the 
geometric window. He observes again that the triangles have the same area in all the 
cases and a common side. He tries to prove that the heights are equal but he wrongly 
considers that the side [BM] is the height of the triangle BAP (Figure 3). The teacher 
gives him a message of level 0 for the validation phase (Table 1, lines 3 to 6). Santi 
reacts to this message constructing with GGB the perpendicular line from the vertex 
B to the base of the triangle (Figure 4). He tries to follow the same strategy (proving 
that the heights have the same length) and he drags continuously the vertexes A, B 
and C, changing the orientation of the triangle, and observing the constructed lines on 
the geometric window.  

 

Figure 4: Construction of the height of the triangle 
BPA and perpendicular line through C to the 
median. 

Figure 5: the heights have the same length 
(congruent triangles BFM and MCD) 

In this time, he observes again the figure (Figure 4) without dragging. He is lost. This 
is the beginning of a new phase. We wonder if Santi had found a proof for his 
conjecture if he had constructed the heights of both triangles. Nevertheless, he does 
not construct the points F and D (Figure 5) and he abandons the solving strategy. 
Santi requests again the help of the teacher for the planning/execution phase and he 
states: “Is it possible to solve the problem with trigonometry?”.The teacher gives him 
a new message: “Could you think of some way of breaking the triangle ABC into 
triangles and look for invariants with the help of GGB” (cognitive message of level 2 
for the planning phase). Santi reacts to the previous message of the teacher and starts 
a new exploration phase. He erases the perpendicular lines and drags continuously the 
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vertexes of the triangle ABC. He observes in the algebraic window the changing 
values looking for invariants. He extracts the inner triangles BPM and CPM which 
have the same area (Table 2, line 1) from the initial configuration. This observation 
will suggest him a new solving path based on comparing areas. He makes a new 
conjecture and requests the help of the teacher for validating his deductions (Table 2). 
  Interactions 

1 Santi Are the triangles BPM and PMC equal? (Figure 2) 

2 Teacher What do you mean by equal? 

3 Santi The triangles have the same area 

4 Teacher Yes. You should justify this fact. 

5 Santi If I subtract two equal areas from two equal areas, do I get the 
same area? 

6 Teacher Yes 

6 Santi Ok! I justify this with paper and pencil. 

Table 2: Strategy based on comparing areas 

Finally Santi justifies his deductions with P&P, he proves that the median of a 
triangle divides the triangle into two triangles of same area. We wonder if the use of 
GGB helps Santi to find a strategy based on comparing areas.  
FINAL REMARKS  
We observe in this study that Santi appropriates the software in few sessions of class 
and he bases his constructions on geometric properties of the figures. He also 
combines the simultaneous use of the algebraic window and the geometric window 
and he tends to reason on the figure. We consider that the affordances of the software 
and teacher’s orchestration have influenced Santi’s resolution strategies. We have 
identified the following instrumented schemes: ‘dragging combined with perceptual 
approach to find a counter-example’ and ‘dragging combined with perceptual 
approach to distinguish geometric properties of the figure (perpendicularity, 
congruence of triangles, equality of areas). In the ongoing research (longer teaching 
experiment) we have also observed some common heuristic strategies in both 
environments such as the strategy of supposing the problem solved and the strategy 
of particularization. We have also observed that Santi tends to use more algebraic 
strategies when he works only with P&P than when he works in a technological 
environment. Moreover he tends to produce more generic resolutions, independent of 
numerical values, fostered by a proposal of problems that accept these kinds of 
solving strategies. Nevertheless, given that students have different relationships with 
the use of GGB and the detailed study of Santi gives us some insight of a future 
classification of typologies in the instrumental genesis. In our broader research we try 
to follow the instrumental genesis for a group of fourteen students to observe 
different students’ profiles. Future research should help to better understand the 
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process of appropriation of the software and to analyze the co-emergence, 
connectivity and synergy of computational and P&P techniques in order to promote 
argumentation abilities in secondary school geometry.  
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FOR GEOMETRICAL TRANSFORMATIONS: A FIRST 
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The activities with the Mathematical Machines are very rich from educational and 
cognitive points of view. In particular, the use of pantographs has revealed 
educational potentialities for the acquisition of some important mathematical 
concepts and for the emergence of argumentation and proving processes, at any 
school level. In this paper, we propose a cognitive analysis of the processes involved 
in the manipulation of the mathematical machines, providing a first classification of 
utilization schemes of pantographs for geometrical transformations. This 
classification can be efficiently used to observe, describe and analyse cognitive 
processes involved in the exploration of mathematical properties incorporated in the 
machines. 
Keywords: Mathematical Machines, utilization schemes, pantographs, geometrical 
transformations and cognitive processes. 
INTRODUCTION 
The Mathematical Machines Laboratory (MMLab: www.mmlab.unimore.it), at the 
Department of Mathematics in Modena (Italy), is a research centre for the teaching 
and learning of mathematics by means of instruments (Ayres, 2005; Maschietto, 
2005). The name comes from the Mathematical Machines (working reconstruction of 
many mathematical instruments taken from the history of mathematics), the most 
important collection of the Laboratory. These machines concern geometry or 
arithmetic:  

“a geometrical machine is a tool that forces a point to follow a trajectory or to be 
transformed according to a given law”…“an arithmetical machine is a tool that allows the 
user to perform at least one of the following actions: counting; making calculations; 
representing numbers” (Bartolini Bussi & Maschietto, 2008). 

The MMLab research group carried out various activities with the Mathematical 
Machines, namely: laboratory sessions in the MMLab, long-term teaching 
experiments in classrooms, workshops at national and international conferences and 
also exhibitions (see chapters 2 and 5 of the forthcoming volume by Barbeau and 

                                                 
♦ Study realized within the project PRIN 2007B2M4EK (Instruments and representations in the teaching and learning 
of mathematics: theory and practice), jointly funded by MIUR, by University of Modena e Reggio Emilia and by 
University of Siena. 
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Taylor, from ICMI Study n. 16) in collaboration with the members of the association 
“Macchine Matematiche” (http://associazioni.monet.modena.it/macmatem).  

The laboratory sessions in the MMLab are designed in order to offer hands-on 
activities with mathematical machines for classes of students in secondary schools 
(an average of 1300-1500 Italian secondary students a year come with their 
mathematics teacher to experience hands-on mathematics laboratory), groups of 
university students, prospective and practicing school teachers (Bartolini Bussi & 
Maschietto, 2008). As the Mathematical Machines activities in school classrooms 
concerns, the MMLab research group organized different long-term teaching 
experiments in primary and secondary schools (Bartolini Bussi & Pergola, 1996; 
Bartolini Bussi, 2005; Bartolini Bussi, M. G., Mariotti M. A., Ferri F., 2005, 
Maschietto & Martignone, 2007).  
All the activities quoted above are based on two fundamental components: the idea of 
the “mathematics laboratory”[1] and the didactical research on the use of tools in the 
teaching and learning of mathematics (Bartolini Bussi & Mariotti, 2007). 
The MMLab researches aim at the development of different activities that should 
foster, through the use of the mathematical machines, the acquisition of some 
important mathematical concepts and the emergence of argumentation processes.  
In order to implement the studies on MMLab laboratory activities, and to set up new 
teaching experiments, we consider important to carry out a cognitive analysis of the 
processes involved in the manipulation of the Mathematical Machines. The aim of 
our research is identifying Mathematical Machines utilization schemes and the 
connected exploration processes, providing a first classification. In the paper we shall 
present the first steps of this new research. 
THEORETICAL FRAMEWORK 
According to the educational goals that the activities with Mathematical Machines 
intend to realize, we investigate students cognitive processes involved in exploration 
of open-ended problems (in particular the problem of identifying the geometrical 
laws that explain how a machine works), in generation of conjectures and 
argumentations and in concept formation (for example: the concepts of geometrical 
transformations, of conic, of central perspective…). First of all, to analyse deeply 
these processes we propose a classification of Mathematical Machine utilization 
schemes [2]. This classification is suitable not only for describing the interactions 
between machines and subjects but also for analysing both their exploration and 
argumentative processes. 
The processes through which a subject interacts with a machine have been studied by 
Rabardel in cognitive ergonomics: he grounded his research in constructivist 
epistemologies, primarily in activity theories, but also in the Piagetian and post-
Piagetian developmental approach to the cognition-action dialectic (Rabardel, 1995; 
Béguin & Rabardel, 2000).  
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Rabardel proposed an original approach blending anthropocentric and technocentric 
approaches: as a matter of fact, in line with activity theory, he conceived the 
instruments as psychological and social realities and studied the instrument-mediated 
activity. According to Rabardel (1995) an instrument (to be distinguished from the 
material -or symbolic- object, the artefact) is defined as a hybrid entity made up of 
both artefact-type components and schematic components that are called utilization 
schemes.  

“What we propose to call “ utilization scheme” (Rabardel, 1995) is an active structure 
into which past experiences are incorporated and organized, in such a way that it 
becomes a reference for interpreting new data” (Béguin & Rabardel, 2000) 

An artefact only becomes an instrument through the subject’s activity. This long and 
complex process (named instrumental genesis) can be articulated into two 
coordinated processes: instrumentalisation, concerning the individuation and the 
evolution of the different components of the artefact, drawing on the progressive 
recognition of its potentialities and constraints; instrumentation, concerning the 
elaboration and development of the utilization schemes (Béguin & Rabardel, 2000). 
For the importance of these schemes, for their specificity in interacting with 
Mathematical Machine and for the limits that this paper has to respect, we focus here 
on utilization schemes in the case of pantographs. 
METHODOLOGY 
The method used for investigation was the clinical interview: subjects were asked to 
explore a machine and to express their thinking process aloud at the same time. In 
particular, after having explained to the student that the machines to be explored are 
pantographs for geometric transformations, we asked:  
1. To define the mathematical law made locally by the articulated system.  
2.   In particular, to justify how the machine “forces a point to follow a trajectory or 
to be transformed according to a given law” and then to prove the existing 
relationship between the machine properties (structure, working…) and the 
mathematical law implemented. 
The interviews were videotaped and the analysis is mainly based on the transcripts of 
the interviews.  The interviews were analysed with special attention to verbal tracks 
and hands-on activities in order to detect mental processes developing during the 
exploration of the machines. Every protocol is analysed in a double perspective: as 
bearer of new information about possible exploration processes and as evidence for 
the existence of recurrent schemes. 
The subjects were three pre-service teachers, two university students and one young 
researcher in mathematics. The choice to interview subjects which are familiar with 
(Euclidean) geometry and with problem-solving has allowed us to collect 
observations of complete machine exploration: namely, the generation of conjecture 
about the mathematical law implemented by the machine and, subsequently, 
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argumentation and proof of mathematical statements that can explain the functioning 
of the machine. Moreover, the subjects were new in working with this environment: 
in this way we could assume that they did not have an a priori specific knowledge 
about these machines.  
The artefacts selected for this first research are machines concerning geometry, in 
particular pantographs: for the axial symmetry, for the central symmetry, for the 
translation, for the homothety and for the rotation. These machines establish a local 
correspondence between points of limited plan regions connecting them physically by 
an articulated system; they were built to incorporate some mathematical properties in 
such a way as to allow the implementation of a geometrical transformation (i.e. axial 
symmetry, central, translation, homothety, rotation).   
CLASSIFICATION OF THE UTILIZATION SCHEMES 
In this paper we present the first part of our research that aimed to introduce a 
classification of utilization schemes observed during the explorations of pantographs 
for geometrical transformations. The identified utilization schemes were divided into 
two large families: utilization schemes linked to the components of the articulated 
system (as the constraints, the measure of rods, the geometrical figures representing a 
configuration of rods, etc.) and utilization schemes linked to the machine movements. 
As regards the first family, we have identified the following utilization schemes: the 
research of fixed points, movable points (with different degrees of freedom), plotter 
points and straight path; the measure of rods length; the research of geometric figures 
representing the articulated system or some part of it; the construction of geometric 
figures that extend the articulated system components; the individuation of 
relationships between the recognized geometric figures; the analysis of the machine 
drawings.  
As regards the utilization schemes linked to the machine movements [3], we 
distinguish between the movements aimed at finding particular configurations 
obtained stopping the action in specific moments and the continuous movements 
aimed to analyse invariants or changes. We summarize this classification in a table: 
 

Linkage Movement that stops in Movements description: 

Generic Configurations Movement that stops in a configuration 
which is considered representative of all 
configurations observed (that does not 
have "too special" features)  
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Particular Configurations Movement that stops in a configuration 
that presents special features (i.e. right 
angles, rods positions…) 

Limit Configurations Movement that stops in configurations in 
which the geometric figures that represent 
the articulated system become degenerate 

Limit zones Movement that stops in the machine limit 
zones: i.e. the reachable plane points 

 
Linkage Continuous movements Movements description: 

Wandering movement Moving the articulated system randomly, 
without following a particular trajectory 

Bounded movement 
 (For example: Movements by fixing one 

point or one rod…) 

Moving the articulated system, blocking 
particular points or rods  

Guided movement Moving the articulated system, forcing a 
point to follow a line or a specific figure 

Movement of a particular configuration  Moving the articulated system, 
maintaining a particular configuration 

Movements between limit configurations Moving the articulated system so that it 
can successively assume the different 
“limit Configurations” 

Movement of dependence Moving (in a free, guided or bound way) 
a particular point and see what another 
particular point does 

Movement in the action zones 
 

Moving the articulated system in a such 
a way that all the possible parts of the 
plane are reached 

 
A PROTOCOL 
In this paragraph we present the first part of one clinical interview transcripts dealing 
with the exploration phase (i.e. the beginning of the machine exploration, before the 
identification of the geometrical transformation made by the machine), where we can 
identified some of the utilization schemes described in the previous paragraph [4]. 
The subject of the protocol, Anna, is a pre-service teacher graduated in mathematics 
and she explored the pantograph of Scheiner (see Fig. 1-2). 
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Anna: (she touches a rod which seems to remain blocked) all motionless!...(she 
moves the articulated system) Ah, no, only a single fixed point … I saw that 
leads are useful, and then… … (opening and closing the linkage, she draws 
lines that converge in the fixed point) … then (she turns the machine and 
she draws again  “concentric lines”)… 

She starts controlling which part of the linkage is pivoted to the wood plane (research 
of fixed points) and then, in order to explore the linkage movements, she puts the 
leads in both plotter holes (individuation of plotter points) and draws curves produced 
by the linkage closing movement (guided movements that end in a limit 
configuration: see Fig. 3) 

Anna: I do not see anything then………(she is looking the motionless machine 
and the curves drawn)…(she moves the linkage and she stops in a generic 
configuration) well, this is a parallelogram, I would say… That is… then, 
parallelogram, and in a vertex there is a lead… (with the ruler she measures 
two rods: in the fig. 2 CQ and CP)… are congruent (she points them out) 

The analysis of the drawn curves does not seems to help her to discover what 
transformation the machine makes, therefore she starts an analysis of the linkage 
structure (research and individuation of a generic configuration and recognition of 
particular geometric figures in the linkage structure): at first she identifies a 
parallelogram (see Fig.4), and then she focuses on other linkage rods (those parts that 
do not form the parallelogram). She recognizes the parallelogram without using the 
ruler (probably the visual perception of congruence has been supported by the 
previous exploration of movements during which the rods remained parallel). 
Differently, to discover the other characteristics of the linkage geometric structure, 
Anna feels the need to measure the rods length, so she discovers that there are two 
congruent rods (CQ and CP). 

Anna: … so this (she looks at the linkage and she uses two fingers to show the 
“virtual segment” PQ that completes the triangle  PQC: see Fig. 5) is an 
isosceles triangle 

The identification of these congruent rods arouses the construction of a new 
geometric figure (an isosceles triangle) created completing, with an imaginary 
segment, the sequence of the congruent rods (extending and individuation of 
geometric figures in the linkage structure).  

Anna: but I will not see anything… but it doesn’t say anything to me at this 
moment…… (she moves the machine, drawing always concentric lines) 
well they are always circumferences…(she is looking at the drawings) I do 
not understand if they are or not circumferences …  

Also the exploration of linkage characteristics does not seem to help her, for this 
reason she comes back to the previous strategy: she starts again to draw lines that 
follow the machines closing movement (guided movements that end in a limit 
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configuration and analysis of these drawings), but, as before, she is not aware of the 
drawn lines characteristics; therefore, not knowing which properties designed curves 
have, she can not understand how they are transformed by the machines.  

 Anna:  (she makes a zigzag movement) well, but it seems to me that they trace the 
same thing (she makes the zigzag movement in another area of the paper)… 
(she points the zigzag drawing and she moves away the linkage)… the leads 
then trace the same, the same image, it seems to me, but I dare say that (she 
makes a gesture: see Fig.6)…that it is reduced in scale. 

Anna changes the guided movements (zigzag movements) and, this time, the analysis 
of the drawings leads to the recognition of the transformation (the homothety). 
Therefore it seems that what lets Anna to do the discovery of the transformation 
incorporated in the machine, is the drawings analysis more than the machine 
structure; but not all the drawings seem to be successfully: in fact each of them gives 
only partial information about the transformation. In particular, for Anna is 
determinant the choice to change the movement (and consequently, the drawing): as a 
matter of fact in the zigzag lines it can be seen that the correspondent segments are 
modified, while the angles are not (in the previous drawings these proprieties are 
“hidden”, while it came out the presence of a fixed point). 
In conclusion, it is interesting to underline that also in a brief excerpt, it is possible to 
see the variety, the complexity of their relationships and, in particular, the plot of the 
different utilization schemes. After the individuation of the schemes, we can make a 
cognitive analysis of the exploration processes linked to these schemes. For example, 
we intend to examine closely how (and then why) Anna swings between two different 
strategies that remain separated (the drawing/analysis of lines and the study of 
linkage structure). This analysis brings important information for the understanding 
of subsequent processes: in fact, in the continuation of this protocol, the lack of 
interweaving of the information acquired through the different utilization schemes 
used, seems to be an obstacle in the Anna’s proof construction (about how the 
machine incorporates the transformation properties). This part of the research is still 
in progress, but the first results raise the hypothesis that successful strategies are 
those that maintain a tension and integration between the analysis of the articulated 
system proprieties, the drawings and the invariants of the movement. 
CONCLUDING REMARKS 
The studies on the interaction between a subject and a machine have to take into 
account an intriguing complexity because several components are involved. From a 
cognitive point of view and with educational goals, in this paper, we have presented a 
study to better understand the exploration of some geometrical machines: in 
particular, we have proposed a first classification of utilization schemes of 
pantograph for geometrical transformations and we have shown an analysis carried 
out through this classification. In this analysis we have underlined the importance of 
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the identification of the different schemes in describing the aspects of mathematical 
machines exploration.  
Further researches are needed in two directions. On the one hand, we will study how 
these schemes are intertwined with the processes involved in conceptualisation, in 
argumentation and in proving; on the other hand, we will explore the evolution of the 
utilization schemes and its relationship with argumentation processes and subject’s 
cultural resources.  
Moreover, this study will be developed to offer teachers tools that could be efficient 
to set up activities with educational goals and to intervene in students’ interactions 
with the machines, promoting those processes that are considered relevant for the 
activities with the mathematical machines. 
 
NOTES 
1. “A mathematics laboratory is a methodology, based on various and structured activities, aimed at 

the construction of meanings of mathematical objects. (…) The mathematics laboratory shows 
similarities with the concept of Renaissance workshops where apprentices learned by doing and 
watching what was being done, communicating with one another and with the experts”  
http://umi.dm.unibo.it/italiano/Didattica/ICME10.pdf. 

2.In literature there are not previous cognitive studies of this type on mathematical machines. A 
classification of utilization schemes of instruments of different nature is proposed in Arzarello et 
al. (2002) where different modalities of dragging are discussed. 

3.In addition to the linkage movements, there are also the movements of the machine wood base (on 
which the linkage is set): i.e. the rotations of the base that permit to look the machine from other 
points of view. 

4.In these extracts there are not all the utilization schemes identified during our research. For the 
limit of this article we should not make an example for each of the utilization schemes previously 
listed. 
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Fig 1: Encyclopédie ou dictionnaire raisonné 
des sciences, des arts et des metiers (1751-

Fig 2: An image from Scheiner pantograph 
graphic animation: Four bars are pivoted so 
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1780) that they form a parallelogram APCB. The 
point O is pivoted on the plane. It is possible 
to prove that the points P, Q and O are in the 
same line and that P and Q are corresponding 
in the homothetic transformation of centre O 
and ratio BO/AO.   

 

          

Fig. 3: Anna’s drawings Fig. 4: Anna identifies the parallelogram 

 

 

     

Fig. 5: Anna shows the isosceles triangle Fig. 6: Anna’s gesture for indicating the 
“reduction in scale” of the zigzag lines 
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THE UTILIZATION OF MATHEMATICS TEXTBOOKS AS 

INSTRUMENTS FOR LEARNING  

Sebastian Rezat 

Justus-Liebig-University Giessen, Germany 

 

The mathematics textbook is one of the most important resources for teaching and 
learning mathematics. Whereas a number of studies have examined the use of 
mathematics textbooks by teachers there is a dearth of research into the use of 
mathematics textbooks by students. In this paper results of an empirical investigation 
of the use of mathematics textbooks by students as an instrument for learning 
mathematics are presented. Firstly, a method to collect data on student’s use of 
mathematics textbooks is introduced. It is explicated, that this method is capable to 
explore the actual use of the mathematics textbook by students, and a way of 
recording the use of the mathematics textbook whenever and wherever students use it. 
Secondly, results from the study are presented. The results outlined in this paper 
focus on typical self-directed uses of the mathematics textbook by students.  

INTRODUCTION 

Research in mathematics education has been concerned with the role of new 

technologies in the teaching and learning of mathematics from the very beginning 

computers and information technologies entered the mathematics classroom. In the 

first ICMI study the computer is even considered to be a new dimension in the 

mathematics classroom: “We now have a triangle, student-teacher-computer, where 

previously only a dual relationship existed” (Churchhouse et al., 1984). But, this 

perspective disregards the fact that tools have always been incorporated in teaching 

and learning mathematics and thus the relationship in the mathematics classroom has 

never actually been dual. The mathematics textbook was and still is considered to be 

one of the most important tools in this context. According to Howson, new 

technologies have not affected its outstanding role: “despite the obvious powers of 

the new technology it must be accepted that its role in the vast majority of the world’s 

classrooms pales into insignificance when compared with that of textbooks and other 

written materials.” (Howson, 1995) 

Valverde et al. (2002) believe that the structure of mathematics textbooks is likely to 

have an impact on actual classroom instruction. They argue, that the form and 

structure of textbooks advance a distinct pedagogical model and thus embody a plan 

for the particular succession of educational opportunities (cf. Valverde et al., 2002). 

The pedagogical model only becomes effective when the textbook is actually used. 

Therefore, mathematics textbooks should not be a subject to analysis detached from 

its use. It is an interactive part within the activities of teaching and learning 

mathematics In order to develop a better understanding of the role of the mathematics 
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textbooks within the activities of teaching and learning mathematics an activity 

theoretical model was developed (Rezat, 2006a): 

 

 

 

 

 

Fig. 1: Tetrahedron model of textbook use 

This model is based on the fundamental model of didactical system: the ternary 

relationship between student, teacher, and mathematics (Chevallard, 1985). The 

mathematics textbook is implemented as an instrument at all three sides of the 

triangle: teachers use textbooks in the lesson and to prepare their lessons, by using the 

textbook in the lesson teachers also mediate textbook use to students, and finally 

students learn from textbooks. Thus, each triangle of the tetrahedron-model 

represents an activity system on its own. From an ergonomic perspective it is argued 

that artefacts have an impact on these activities, because on the one hand they offer 

particular ways of utilization and on the other hand the modalities of the artefacts 

impose constraints on their users (cf. Rabardel, 1995, 2002). Thus, the mathematics 

textbook has an impact on the activity of learning mathematics as a whole that is 

represented by the didactical triangle on the bottom of the tetrahedron. 

Whereas a number of studies have examined the role of new technologies in terms of 

tool use (cf. Lerman, 2006) the role of the mathematics textbook as an instrument for 

teaching and learning has not gained much attention. So far, a number of studies have 

examined the use of mathematics textbooks by teachers (e.g. Bromme & Hömberg, 

1981; Haggarty & Pepin, 2002; Hopf, 1980; Johansson, 2006; Pepin & Haggarty, 

2001; Remillard, 2005; Woodward & Elliott, 1990) whereas there is a dearth of 

research into the use of mathematics textbooks by students (Love & Pimm, 1996). 

This is striking, because as pointed out by Kang and Kilpatrick (1992), textbook 

authors regard the student as the main reader of the textbook.  

In order to develop a better understanding of the impact that textbooks have on 

learning mathematics a qualitative investigation was carried out in two German 

secondary schools that focused on how students use their mathematics textbooks.  

METHOD AND RESEARCH DESIGN 

The difficulty of obtaining data on students working from textbooks is one reason 

that Love and Pimm (1996) put forward in order to explain the dearth of research into 

student’s use of texts. Therefore, developing an appropriate methodology to collect 

data on student’s use of mathematics textbooks can be regarded as a major issue in 

this field. 

 teacher student 

textbook 

mathematics 
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First of all, the method of data-collection has to be in line with the situation of 

textbook use. In Germany, schools either provide mathematics textbooks to students 

for one year or students buy the books. Accordingly, students have access to their 

mathematics textbook at school and at home. From previous research there is 

evidence, that German teachers rely heavily on the textbook in the preparation of 

lessons and also during lessons. (Bromme & Hömberg, 1981; Hopf, 1980; Pepin & 

Haggarty, 2001). 

The method to collect data on student’s use of mathematics textbooks was developed 

within the framework of the activity theoretical model of textbook use. According to 

this model the use of mathematics textbooks is situated within an activity system 

constituted by the student, the teacher, the mathematics textbook, and mathematics 

itself. First of all, this implies that a method to investigate the use of mathematics 

textbooks by students has to take all four vertices of the tetrahedron-model into 

consideration. 

In addition, three criteria were established for an appropriate methodology to collect 

data on student’s use of mathematics textbooks: 

1. The actual use of the mathematics textbook should be recorded in detail.  

2. Biases caused by the researcher, by the situation or by social desirability should be 

minimized. 

3. The use of the textbook should be recorded at any time and any place it is used. 

Criterion 1 leads to the rejection of quantitative methods and of methods that are 

likely to reveal only verbalized uses of the textbook, e.g. interviews. Experimental 

settings and artificial situations are refused due to criterion 2. Approaches that are 

solely based on observation are discarded because of criterion 3. 

The methodological framework that was developed according to the three criteria 

combines observation and a special type of questioning. First of all, the students were 

asked to highlight every part they used in the textbook. Additionally, they were asked 

to explain the reason why they used the part they highlighted in a small booklet by 

completing the sentence “I used the part I highlighted in the book, because …”. By 

assigning more than one comment to a highlighted book section the reuse of book 

sections becomes apparent. This method of data-collection was developed in order to 

get the most precise information about what the students actually use and why they 

use it by keeping the situation of textbook use as natural as possible. Nevertheless, 

highlighting sections in a textbook is not the natural way to use the textbooks and 

therefore a bias on the data cannot be totally excluded.  

Provided that the students take their task seriously, this method enables to collect data 

on the use of the textbooks whenever and wherever students use it and therefore 

meets criterion 3.  

In addition, the lessons were observed and field notes were taken. On the one hand 

the overall structure of the lesson was recorded in the field notes using a table 
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comprising three columns: time, activity/content and remarks. On the other hand all 

utterances concerning the textbook were transcribed literally. Furthermore, a focus 

was put on all utilizations of the textbook. Both, the use of the textbook by the 

students and by the teacher was taken into account. This is important for several 

reasons: 

First of all, there is evidence from previous research that the teacher plays an integral 

part in mediating textbook use. Because of that, the teacher was included as a 

variable in the model of textbook use.  

Secondly, the observation provides an insight into the way the teacher mediates 

textbook use in the classroom. It makes a difference if the students only use the 

textbook when they are told to by the teacher or if they use it of their own accord. 

This difference will become apparent through classroom observation.  

Thirdly, the methodological triangulation provides a measure for the validity of the 

data. Collecting data on how the textbook has been used in the classroom makes it 

possible to compare the markings and comments of the students with the field notes. 

The degree of correspondence between these two sources relating to the use of the 

textbook in the classroom indicates how serious the students took their task. 

While the method of highlighting and taking notes especially satisfies criterion 3 and 

at the same time aims at both, providing a precise record of the actual use of the 

textbook by students (criterion 1) as well as keeping biases low (criterion 2), the 

intention of the observation is threefold. On the one hand the idea is to lower biases 

that might be caused by the method of highlighting (criterion 2) and on the other the 

triangulation of two different data-sources provides a measure for the validity of the 

student’s data.  

In addition to the previously described methods interviews were conducted with 

selected students.  

Data was collected for a period of three weeks in two 6
th

 grade and two 12
th

 grade 

classes in two German secondary schools. Within the German three partite school 

system, these schools are considered to be for high achieving students. All four 

classes were taught by different teachers. 

The coding process followed the ideas of Grounded Theory by Strauss and Corbin 

(Strauss & Corbin, 1990). Categories were established in the process of analysing the 

data. Each highlighted section in the textbook was categorized according to the kind 

of block it belongs to (introductory tasks, exposition, worked example, kernels, 

exercises) (cf. Rezat, 2006b), the activity it was involved in, and finally whether the 

use of the section was mediated by the teacher or not.  

In order to understand the role of the mathematics textbook as an instrument within 

the activity system represented by the tetrahedron model Rabardel’s (1995, 2002) 

theory of the instrument was used. As Monaghan (2007) points out, this theory has 

proven fruitful to provide insights into the use of new technologies as instruments for 
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learning mathematics. According to Rabardel an instrument is a psychological entity 

that consists of an artefact component and a scheme component. In using the artefact 

with particular intentions the subject develops utilization schemes which are shaped 

by both, the artefact and the subject. Vergnaud (1998) suggests that schemes are 

characterized by two operational invariants: theorems-in-action and concepts-in-

action. Since these two operational invariants are put forward in order to describe the 

representation of mathematical knowledge, it is not self-evident to apply them to 

knowledge related to the use of an artefact like the mathematics textbook. Therefore, 

it is suggested to generalize Vergnaud’s notion of theorems-in-action and concepts-

in-action to the notion of beliefs-in-action. As well as concepts-in-action beliefs are 

supposed to guide human behaviour by shaping what people perceive in any set of 

circumstances (Schoenfeld, 1998). Like theorems-in-action beliefs are propositions 

about the world that are thought to be true (Philipp, 2007). The appendix ‘in-action’ 

is supposed to underline that beliefs-in-action might be inferred from actions. They 

do not necessarily have to be expressed verbally. Because of its universality, the 

notion of beliefs-in-action offers an appropriate means to characterize operational 

invariants of utilization schemes linked to any artefact. 

RESULTS 

A first and a major result of the study is, that students do not only use the 

mathematics textbook when they are told to by the teacher. But, they also use the 

textbook self-directed. The following analysis focuses on utilizations of the 

mathematics textbook that students perform in addition to teacher mediated textbook 

use.  

Students incorporate their mathematics textbook as an instrument into four activities: 

solving tasks and problems, consolidation, acquiring mathematical knowledge, and 

activities associated with interest in mathematics. From the data it was possible to 

reconstruct several individual utilization schemes of the mathematics textbook related 

to these activities. Comparing the individual schemes of different students related to 

the same activity revealed that some of the schemes were analogous in terms of the 

underlying beliefs-in-action. These schemes were generalized to utilization scheme 

types (UST). USTs are general in the way, that they allow to classify individual 

utilization schemes of the textbook into USTs and thus make individual utilizations 

comparable. Nevertheless, different students might show different USTs. The USTs 

are not general in the way that they are common to all students.  

Solving tasks and problems is associated with activities where students utilize their 

mathematics textbook in order to get assistance with solving tasks and problems. 

Three different USTs were found related to this activity. It was observed that students 

repeatedly utilize specific blocks from the textbook as an assistance to solve tasks and 

problems. Worked examples and boxes with kernels were instrumentalized in most of 

the cases. This scheme could be traced back to the belief-in-action that a specific 

block from the textbook is useful in order to solve tasks and problems. It was also 
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observed that students choose sections from the textbook that show similarities to the 

task. For example, Oliver is working on the following task that is not from the 

textbook:  

 

He looks for assistance in the textbook and reads a task in the textbook that is located 

next to an image, which is identical to the image in the task. From this behaviour it 

can be inferred that Oliver expects information concerning the image next to it. In his 

case, the information is not useful for solving the task, because it is a task itself.  

 

Fig. 2: Passage Oliver used from the textbook “because he was looking for something” 

(Griesel et al., 2003) 

In order to get assistance with solving tasks and problems it was also observed that 

students search an adequate heading in the book and start reading from there until 

they find useful information. From this behaviour it was inferred that these students 

expect useful information related to a subject at the beginning of a lesson in the 

textbook. 

All three USTs reveal that students are looking for information in the book that can 

be directly applied to the task. The only difference is the way they are approaching 

the information. Hardly ever does it seem like students want to understand the 

mathematics first and then apply it to the task. 
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Consolidation is associated with all activities that students perform in order to 

improve their mathematical abilities related to subject matters that were already dealt 

with in the mathematics class. One UST of students using their mathematics textbook 

for consolidation is strongly related to teacher mediated exercises from the textbook. 

They either recapitulate tasks and exercises from the book that the teacher mediated 

or they pick tasks and exercises that are adjacent to teacher-mediated exercises. This 

was traced back to the belief-in-action that effective practising means to do tasks and 

exercises that are similar to teacher-mediated exercises. If students pick tasks that are 

adjacent to teacher mediated tasks this is also supported by the belief-in-action that 

adjacent tasks in the textbook are similar. The use of specific blocks for consolidation 

was also observed. One UST is that students only read the boxes with the kernels of 

several lessons in the textbook.  

So far, consolidation seems to comprise learning rules, recapitulating teacher 

mediated tasks and solving tasks that are similar to teacher mediated tasks 

respectively. But, it was also observed that students either utilize special parts at the 

end of a unit that are designed especially for recalling and practising the main issues 

of the unit or they scan the section in the book relating to the actual topic in the 

mathematics class and read different parts of it in order to consolidate their 

understanding of the topic. Both UST are less dependent on teacher mediation and 

show more proficiency in the utilization of the textbook.  

Whereas consolidation related to previously treated topics, acquisition of knowledge 

is associated with activities where students use parts of the book that have not been a 

matter in the mathematics class so far. The UST identified in this context is that 

students use parts from the proximate lesson in the textbook. This is supported by the 

belief-in-action that the chronological succession of topics in the mathematics class 

will follow the order of the textbook.  

Students also used parts of their textbook because they thought they were interesting. 

These utilizations are associated with activities related to interest in mathematics. In 

this case the UST is connected to the use of images and other salient elements from 

the book. Students either only look at the images or they read passages that are next 

to images or other salient elements. Looking just at the pictures does not seem to be 

associated with learning mathematics though. This UST usually is observed in the 

context of other utilizations of the textbooks. It seems like this UST is not based on a 

belief-in-action, but that salient elements in the textbook catch the attention of the 

students while there utilizing it for another purpose.  

CONCLUSIONS 

The activities the mathematics textbook is involved in do not only give an insight into 

student’s utilizations of mathematics textbooks, but they also give an idea of what 

learning mathematics is about for students. The USTs show that learning 

mathematics with the mathematics textbook comprises activities as solving tasks and 

problems, consolidating mathematical knowledge and skills, acquiring new contents. 
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The USTs show how the textbook is used as an instrument within these activities. 

Furthermore, these USTs reveal interesting insights into student’s dispositions 

towards mathematics. Learning mathematics comprises mainly learning rules, 

applying rules and worked examples to tasks, and developing proficiency in tasks that 

are similar to teacher mediated tasks.  

Consciousness about student’s USTs could affect teacher’s ways of implementing the 

mathematics textbook in the teaching process. Some USTs show that the use of 

mathematics textbooks by teachers in the classroom is an important reference for 

student’s utilizations of the textbook. For example, the UST that is characterized by 

the utilization of tasks that are adjacent to teacher mediated tasks for consolidation is 

dependent on the mediation of tasks from the textbook by the teacher. Therefore, it is 

important that the teacher uses tasks from the textbook in order to support student’s 

individual learning of mathematics. Another example is the anticipation of the next 

topic in the mathematics class by reading parts of the proximate lesson in the 

textbook. This UST shows that students belief that the course of the mathematics 

lessons will follow the order in the book. Accordingly, the textbook provides 

orientation for students, and it can therefore be considered important that teachers 

follow the succession of the topics in the book. 

It was pointed out, that Valverde et al. (2002) argue that the structure of mathematics 

textbooks advances a distinct pedagogical model and is likely to have an impact on 

actual classroom instruction. From an ergonomical perspective it can be argued that 

the structure of the book also has an impact on the USTs of the students. This raises 

the question of how a textbook must be structured in order to promote desirable 

USTs.  

Furthermore, this study provides evidence that Rabardels theory of the instrument is 

not only capable of conceptualizing human-computer-interaction, but is also 

applicable to non technological resources. The conceptualization of student-textbook-

interaction on the basis of this theoretical framework provides interesting insights 

into different aspects of learning mathematics. The UST do not only provide a better 

understanding of student’s utilizations of mathematics textbooks, but also reflect 

student’s ways of learning mathematics. Furthermore, it can be inferred from 

student’s USTs how the textbook is effectively used in the classroom by the teacher. 

Accordingly, a better understanding of student’s utilizations of mathematics 

textbooks is a prerequisite for effective implementation of mathematics textbooks 

into teaching. 
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TEACHERS’ BELIEFS ABOUT THE ADOPTION OF NEW 
TECHNOLOGIES IN THE MATHEMATICS CURRICULUM 

 

Marilena Chrysostomou & Nicholas Mousoulides 
Department of Education, University of Cyprus 

 
The purpose of the present study was to examine elementary mathematics teachers’ 
concerns in relation to the expected implementation of the new technology based 
mathematics curriculum in Cyprus. A questionnaire examining teachers’ concerns 
towards this innovation was administered to seventy four elementary school teachers. 
Results provide evidence that the majority of teachers were positive towards the 
innovation. Results revealed the existence of four factors related to teachers’ 
concerns and beliefs towards the innovation, namely the concerns about the nature of 
the curriculum, teachers’ self-efficacy beliefs, concerns about the consequences on 
the organization of teaching, and concerns about the effectiveness of the curriculum.  
 
INTRODUCTION AND THEORETICAL FRAMEWORK 
Based on the premise that Information and Communication Technologies (ICT) can 
have a positive impact on mathematics teaching and students’ learning outcomes, 
technology based activities have been implemented in mathematics curricula in a 
number of countries (Hennessy, Ruthven, & Brindley, 2005). This implementation is, 
however, not an easy yet straightforward task; a number of factors such as 
mathematics teachers’ beliefs and concerns about the adoption of this innovation, 
facilities, in-service teachers’ training, and available resources might influence the 
successful implementation of the innovation (Hennessy, et al., 2005). 
Gibson (2001) argues that technology by itself will not and can not change schools. It 
is only when reflective and flexible educators integrate technology into effective 
learning environments, that the restructuring of the classroom practices will benefit 
all learners. The introduction and implementation of ICT in the teaching and learning 
of mathematics has not been successful in a number of cases in different countries 
(Hennessy, et al., 2005). As reported by the British Educational Communications and 
Technology Agency (2004), only few teachers succeed in integrating ICT into subject 
teaching in a fruitful and constructive way that can promote students’ conceptual 
understandings and can stimulate higher-level thinking and reasoning. In most of the 
cases, teachers just use technology to do what they have always done, although in 
fact they often claim to have changed their teaching practice. Further, a number of 
teachers report that they do not feel comfortable with the integration of ICT in subject 
teaching, since their role was predetermined and designed by educational authorities 
and teachers feel that they face a lack of professional autonomy (Olson, 2000). Olson 
(2000) proposes that integrating new technologies challenges teachers and, thus, 
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requires innovators to understand and be engaged “in conversations with teachers 
about their work culture, the technologies that sustain it and the implications of new 
approaches for those technologies” (p.6).  
Among the factors that have been identified as crucial for the successful integration 
of ICT in the mathematics curricula are teachers’ concerns and beliefs about this 
change (Van den Berg et al., 2000). To this end, a number of studies focused their 
research efforts on examining teachers’ concerns towards the adoption of ICT in 
general (Gibson, 2001) or towards an innovation in education (Hall & Hord, 2001). 
According to Hord and colleagues (1998), concerns can be described as the feelings, 
thoughts, and reactions individuals develop in regard to an innovation that is relevant 
to their job (Hord, Rutherford, Huling-Austin & Hall, 1998). In this framework, 
innovation concerns refer to a state of mental arousal resulting from the need to cope 
with new conditions in one’s work environment (Hord et al., 1998). Furthermore it is 
argued that teachers are also important as representatives of their students’ needs. In 
this respect, the opinions and views of teachers can be considered to be reflective of 
opinions and views from two major stakeholder groups instead of one, and this 
further underlines the importance of studying teachers’ concerns before and during 
implementing a new innovation in education (Hossain, 2000). 
A model that has been widely used for the evaluation of the innovations in education 
is the Concerns-Based Adoption Model (CBAM) (Hord, et. al., 1998). This model 
can be used to identify how, for example, teachers (who feel that they will be affected 
by the new technology based curriculum in mathematics) will react to the 
implementation of the innovation (Christou et al., 2004). The CBAM includes three 
tools that are used for collecting data related to teachers’ concerns and beliefs. These 
tools include: (a) the levels of use questionnaire, (b) the innovation configurations, 
and (c) the stages of concerns questionnaire. The stages of concerns questionnaire 
was adopted, modified and used in the present study to measure elementary school 
teachers concerns and beliefs about the innovation of introducing a technology based 
mathematics curriculum (Hall & Hord, 2001). The stages of concerns questionnaire 
includes items for measuring teachers’ concerns towards seven stages of concern, 
namely the Awareness, Informational, Personal, Management, Consequences, 
Collaboration, and Refocusing stages.  
Briefly, in the awareness stage teachers have little knowledge of the innovation and 
have no interest in taking any action. In the informational stage teachers express 
concerns regarding the nature of the innovation and the requirements for its 
implementation. In the personal stage teachers focus on the impact the innovation 
will have on them, while in the management stage their concerns begin to concentrate 
on methods for managing the innovation. In the consequences and collaboration 
stages their concerns focus on student learning and on their collaboration with their 
colleagues. Finally on the refocusing stage teachers evaluate the innovation and make 
suggestions for improvements related to the innovation and its implementation (Hord 
et al., 1998). 
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PURPOSE AND RESEARCH QUESTIONS 
The purpose of the present study was to examine teachers’ beliefs about an 
innovation that will soon take place in Cyprus, namely the adoption of a new 
mathematics curriculum. The new curriculum is expected to incorporate an inquire 
based approach and to integrate technological tools into the teaching and learning of 
mathematics. The study aimed at investigating how well prepared teachers feel about 
implementing the new curriculum and whether teachers are positive towards this 
innovation.  
The research questions of the study were the following: 

(a) What beliefs do teachers have regarding the adoption of a mathematics 
curriculum that integrates technology? 

(b) Do teachers’ beliefs differentiate in accordance to their teaching experience 
and their studies?  

(c) Do teachers feel capable to implement the new curriculum and if not, what do 
they reported that they need to be appropriately prepared? 

 
METHODOLOGY 
Participants 
The participants in this study were 74 teachers from nine elementary schools in 
Cyprus. Schools were randomly selected from the district of Nicosia. One hundred 
questionnaires were mailed to schools and 74 were returned to researchers. Teachers 
were grouped according to their teaching experience and their studies, in three 
categories and in two categories, respectively. The numbers of teachers in each group 
are presented in Table 1. 
 
Table1. Teachers involved in the study by years of teaching experience and level of 
studies 
 

Teaching experience Studies 
 1-5 6-15 >15 

Postgraduate 
studies 16 13 9 

Undergraduate 
studies 6 16 14 

Total 22 29 23 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1272



 
Batteries   
The questionnaire included 23 likert-scale items. Part of the items was adopted from 
previous stages of concerns questionnaires (e.g., Hall & Hord, 2001; Christou et al., 
2004). Since these studies focused on teachers’ adoption of innovations in general, 
the items were modified to serve the purposes of investigating teachers’ concerns of 
the adoption of the innovation of using ICT in the teaching of mathematics. The 23 
items were on a 7-point likert scale, from 1 (strongly disagree) to 7 (strongly agree); 
all responses were recorded so that higher numbers indicated greater agreement with 
the statement. The questionnaire also included two open-ended questions in which 
teachers were asked to report on: (a) what they need in order to feel confident and 
well prepared to implement the new technology-based mathematics curriculum, and 
(b) their beliefs and concerns in general about their new role in teaching mathematics 
after the implementation of the innovation. 
The data were analyzed using the statistical package SPSS. An exploratory factor 
analysis and an multiple analysis of variance were conducted. Descriptive statistics 
were also used. 
 
RESULTS 
The exploratory factor analysis resulted in four factors, including the 21 items of the 
teachers’ questionnaire. The following four factors arose: (a) Concerns/Beliefs about 
the nature of the new mathematics curriculum, (b) Teachers’ self-efficacy beliefs,    
(c) Concerns about the consequences on the organization of teaching, and                 
(d) Concerns/Beliefs about the effectiveness of the new curriculum. The loadings of 
each statement in the four factors are presented in Table 2.  
Furthermore, teachers that participated in the study appeared to have positive beliefs 
about the nature of the proposed new curriculum ( x =5,1). Particularly, the majority 
of teachers reported that the new curriculum will put emphasis on pupils’ way of 
thinking and their reasoning skills, on problem solving and on the enhancement of 
students’ conceptual understanding. The mean score of the ‘Self-efficacy beliefs’ 
factor ( x =4,1) might claim that teachers feel quite confident and well prepared to use 
the new curriculum. Although the mean score can be considered quite large, it is 
important to underline that the majority of teachers reported that there is a strong 
need for in-service teachers’ training before the implementation of the innovation.  
Furthermore, it seems that teachers’ beliefs concerning the consequences on the 
organization of teaching are also rather positive. The mean score ( x =4,0) reveals that 
many teachers who participated in this study believe that after the implementation of 
the curriculum the stress of the teacher regarding the organization of teaching will be 
reduced  and   that  this    innovation  will  relieve  the  teacher  from  a  great  deal  of  
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Table 2: Factor analysis results  
 Factors 
Statements F1 F2 F3 F4 
The adoption of the new curriculum will place sufficient 
emphasis on the development of pupils’ thinking. ,831    

The use of the computer in mathematics develops pupils’ 
mathematical thinking and reasoning skills. ,744    

The new curriculum that takes advantage of the computer 
in the teaching of mathematics promotes problem solving. ,730    

The use of computers promotes conceptual understanding 
in mathematics. ,704    

The new curriculum places emphasis on investigation. ,618    

The knowledge that students acquire through the use of 
computers is not superficial.  ,572    

I do not feel confident about teaching mathematics with 
computers.   ,808   

I do not face difficulties in teaching mathematics with 
computers.  ,759   

The implementation of the new curriculum requires the 
use of methods that I am not familiar with. (recoded)  ,723   

I do not need guidance to teach mathematics with the use 
of computers. (recoded)  ,715   

I know how to use computers effectively in mathematics 
in the classes that I teach.  ,541   

The computer based activities that will be included in the 
new curriculum will reduce teacher’s preparation.   ,856  

With the implementation of the new curriculum, teachers’ 
stress about the organization of teaching will be reduced.   ,846  

Pupils’ homework will be reduced.   ,578  
Teaching of mathematics with the use of computers will 
allow me to follow the progress of each pupil.    ,775

The adoption of the new curriculum is a useful innovation.    ,613

I believe that the adoption of the new curriculum will 
improve students’ achievement.    ,557

The integration of computers in mathematics teaching will 
result in major changes in the teaching of mathematics.    ,418
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preparation. They also reported that they expect that pupils’ homework will be 
reduced and that the integration of technology will improve the 
organization/management of the classroom.  

Similarly, the mean score for the forth factor was also quite large ( x =5,3). Teachers 
appeared to be positive that the new curriculum will introduce major changes in the 
teaching of mathematics and that it will improve results. They also consider the 
mathematics curriculum that integrates technology as a useful innovation in primary 
education mathematics and as a means that will allow them to follow the progress of 
each pupil. 

Table 3: The four factor model mean scores 
 

Factors Mean SD 
F1: Beliefs about the nature of the new 
mathematics curriculum 5,1 0,9 

F2: Teachers’ self-efficacy beliefs 4,1 1,2 

F3: Concerns/Beliefs about the 
consequences on the organization of 
teaching 

4,0 1,2 

F4: Concerns/Beliefs about the effectiveness 
of the new curriculum 5,3 0,9 

In order to investigate whether teachers’ beliefs in four factors differentiate in 
accordance to the years of teaching experience and level of studies, a multivariate 
analysis of variance (MANOVA) was conducted, with the statements of teachers in 
four factors as dependent variables and years of teaching experience and studies as 
independent ones. The results of the multivariate analysis showed that there were 
significant differences between teachers beliefs across the years of teaching 
experience (Pillai’s F(2,64) = 2,211, p<0,05). More concretely, the results indicated that 
there were statistically significant differences between the three groups only in the 
first factor, ‘Beliefs about the nature of the new mathematics curriculum’ (F=5,667, 
p<0.05). It was found that the significant differences related to this factor appeared 
only between inexperienced teachers (years of teaching experience: 1-5) and 
experienced teachers (6-15) (p<0.05) and between inexperienced teachers and 
teachers with more than 16 years of experience who probably possess administrative 
places (16+) (p<0.05). As the years of experience increase the beliefs about the nature 
of the curriculum get higher. In the other three factors there were no significant 
differences between the three groups of teachers. The results of the multivariate 
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analysis indicate that there were no significant differences between teachers’ beliefs 
in the four factors in relation to their level of studies (Pillai’s F(1,68) = 0,661, p > 0,05).  
Of importance are also teachers’ responses to a number of individual items of the 
questionnaire. The item with the highest mean score ( x =6,1) was the one that 
referred to the need for training courses. Specifically, the majority of teachers (60 
teachers), agreed strongly (chose 7) or very much (chose 6), and only two teachers 
disagreed that training courses are necessary for the successful implementation of the 
technology based curriculum in mathematics. The items with the lowest mean score 
were the ‘The knowledge that students acquire through the use of computers is 
superficial’ ( x =2,7) and ‘The adoption of the new curriculum for the integration of 
computers in the teaching of mathematics is a useless innovation’ ( x =2,1). Teachers’ 
responses to these items also showed that teachers consider the integration of 
technology in the teaching of mathematics as a useful innovation that will enforce 
learning, something that is in line with the high mean score ( x =5,2) which refers to 
the improvement of students’ achievement after the implementation of the new 
curriculum. Their positive beliefs and willingness to integrate technology into 
teaching appears also from the high mean score ( x =5,2) of the item ‘I would like to 
teach mathematics lessons using computers’.  
 

Table 4: Mean scores for questionnaire items 
 

Items Mean SD 

The knowledge that students acquire through the use of 
computers is superficial. 2,7 1,2 

Training courses for the integration of computers in the 
teaching of mathematics are necessary for teachers. 6,1 1,3 

I would like to observe and participate in technology 
based mathematics lessons taught by more experienced 
teachers.  

5,2 1,4 

I believe that the adoption of the new mathematics 
curriculum that integrates technology into teaching will 
improve students’ achievement. 

5,2 1,1 

The adoption of the new curriculum for the integration of 
computers in the teaching of mathematics is a useless 
innovation. 

2,1 1,7 
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Teachers’ need for training courses came also up from their answers in the first open-
ended question. Fifty-five teachers answered this question and some of the answers 
consisted of a combination of different ideas. For this reason some of the teachers are 
included in the percentage of more than one category of answers. Forty-six teachers 
(83,6%) stated that they need ‘Training courses for the integration of computers in 
the teaching of mathematics’. The second category that was pointed out by ten 
teachers (18%) was ‘lesson plans and worksheets’. Also, ten teachers (18%) 
expressed that it is essential to become familiar with the software that will be used, 
before implementing the innovation, and eight teachers revealed their wish to attend 
courses that will be held by more experienced teachers. Six teachers stated that they 
need much guidance, three that they considered the co-operation with colleagues 
important and three that they need the appropriate infrastructure. The last four 
answers that were reported only by one teacher each, are the following: (a) training 
courses for the use of computers, (b) more hours devoted to the teaching of 
mathematics, (c) one coordinator in each school, and (d) adaptation of the books 
according to the purpose of the curriculum that integrates technology into teaching. 
Regarding the second open-ended question, five categories of answers were identified 
from the 53 answers that were gathered. The majority of teachers (46 teachers-
88.7%) stated that they feel that their role would be more like a facilitator during the 
learning process. Three teachers reported that their role will remain the same and two 
just mentioned that they will have a decisive role. Lastly, one teacher pointed out that 
his role will change; he will need to first develop more positive attitudes and 
knowledge towards the innovation and then transfer them to his students. 
 
DISCUSSION 
The purpose of this study was to examine teachers’ beliefs and concerns regarding 
the expected innovation of integrating the new technology-based curriculum in 
mathematics at the elementary schools in Cyprus.  
The questionnaire was used to provide a description of teachers’ concerns and beliefs 
about the integration of the new technology-based mathematics curriculum, which 
shows that the great majority of teachers welcome the expected change in 
mathematics curriculum after the introduction of ICT and they seem to have positive 
beliefs in general and positive self-efficacy beliefs for teaching mathematics using 
ICT (Chamblee & Slough, 2002).     
The present study showed that in general teachers welcome the introduction of ICT in 
mathematics education. According to the teachers that participated in the study, 
however, the majority underlined the importance of in-service and pre-service 
training on implementing ICT in the mathematics teaching. This is crucial for the 
successful implementation of the innovation as, according to teachers’ answers, 
teacher role will be changed, new classroom dynamics will appear, and student 
learning in mathematics will be improved. The results of the study also revealed that 
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teachers believe that this innovation is important and can positively change the way 
mathematics are taught and student learning can be improved, but this is not an easy 
task; careful planning is needed and resources like software and lesson plans will help 
teachers in their new different role (Luehmann, 2002).  
The results revealed that differences of beliefs across different groups of teachers in 
terms of teaching experience existed only for the first factor, namely the ‘Beliefs 
about the nature of the new mathematics curriculum’. Specifically, teachers’ beliefs 
about the nature of the curriculum differed between the inexperienced teachers and 
teachers with more than five years of experience. As teachers’ experience increases, 
teachers feel that the new curriculum can place sufficient emphasis on the 
development of pupils’ thinking and that the appropriate use of computers can assist 
students in further developing their mathematical thinking and reasoning skills. These 
teachers also reported that the integration of ICT in the teaching and learning of 
mathematics can assist teachers in teaching problem solving skills, an essential and 
core part of the mathematics curriculum.  
The themes emerging from the analysis of teachers’ beliefs and concerns about the 
expected integration of ICT in the mathematics curricula converge to offer a 
grounded model for the innovation. This model underlines the importance of 
teachers’ training and knowledge on the various aspects that are related with the 
integration of ICT in mathematics. Furthermore, teachers appeared to be very positive 
about the innovation and that they expect that the role of ICT will assist the teaching 
and learning of mathematics. This result is very prominent and encouraging, 
considering that the majority of these teachers were not well informed about the 
innovation from educational authorities, but were rather themselves positive and they 
believe that the role of technology can positively influence the role and impact of 
school mathematics on student learning and problem solving abilities.  
In the future, a longitudinal study could be conducted to examine the development of 
teachers’ beliefs and concerns over the first steps of the innovation. Since teachers 
appear to have quite strong and positive beliefs and they expressed their willingness 
to adopt and use the new curriculum, a study on the development of their concerns 
and beliefs over a long period could provide more useful information for practitioners 
and researchers. To better examine the research questions that guided the present 
study, it is recommended that a comparative study could be conducted to examine the 
differences between pre-service and in-service teachers’ concerns and beliefs towards 
the new technology based mathematics curriculum, and to identify how the more 
technology experiences pre-service teachers have might influence their concerns and 
beliefs about the innovation.  
Teachers’ beliefs and concerns are an important issue for the successful integration of 
the ICT in the mathematics curricula, and this study examined this issue in relation to 
elementary school teachers in Cyprus. It is expected that such explorations can 
suggest good practices for educational authorities and teacher educators. Finally, the 
findings discussed would provide avenue and references for future studies.   
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SYSTEMIC INNOVATIONS OF MATHEMATICS EDUCATION 

WITH DYNAMIC WORKSHEETS AS CATALYSTS 

Volker Ulm 

University of Augsburg, Germany 

 
With reference to theories of cybernetics the paper proposes a general theoretical 
framework for initiatives aiming at systemic innovations of educational systems. It 
shows that it is essential to initiate incremental-evolutionary changes on the meta-
level of beliefs and attitudes of the agents involved. For the theoretical foundation of 
concrete activities in mathematics education the didactic concept of learning 
environments is developed on the basis of constructivist notions of teaching and 
learning. Such learning environments may integrate dynamic mathematics for 
educational processes. So technology and especially dynamic worksheets can be 
considered as means and catalysts for improvements of mathematics education on 
system level. 
Keywords: systemic innovation, learning environment, dynamic mathematics   

INNOVATIONS IN COMPLEX SYSTEMS 

There are many efforts to innovate educational systems – on regional, national and 

international levels – aiming at changes of teaching and learning. For understanding 

the structure of such initiatives a short glance at theories of cybernetics is useful.  

Innovations 

The OECD defines an innovation as the implementation of a new or significantly 

improved product, process or method (OECD, Eurostat, 2005, p. 46). Thus an 

innovation requires both an invention and the implementation of the new idea.  

In the educational system we are in a situation where lots of concepts, methods and 

tools have been developed for substantial improvements of teaching and learning. 

Three examples:  

(1) There is a wide range of current pedagogical theories that emphasize self-

organised, individual and cooperative inquiry-based learning.  

(2) There exists a huge amount of material for teaching and learning in a 

constructivist manner – available e.g. in electronic data bases or by print media.  

(3) A large variety of software and other tools for the integration of ICT in 

educational processes has been developed.  

But for real innovations these promising theories and products have to be 

implemented in the educational system. Here implementation means a good deal 

more than diffusion or dissemination of material (papers, guidelines, software tools 

etc.). And implementation should reach the real agents in the school system, i.e. the 
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teachers and students, their thinking and their working. Let’s remember the three 

examples from above:  

(1) Teachers should teach according to current pedagogical concepts.  

(2) The proposed new task culture should become standard in everyday lessons.  

(3) ICT should be used as a common tool for exploring mathematics. 

So for substantial innovations we do not need further material. We need changes in 

teachers’ and students’ notions of educational processes, in their attitudes towards 

mathematics and in their beliefs concerning teaching and learning at school. Hence 

the crucial question is: How can substantial innovations in the complex system of 

mathematics education be initiated and maintained successfully? 

Complex Systems 

In theories of cybernetics a system is called “complex”, if it can potentially be in so 

many states that nobody can cognitively grasp all possible states of the system and all 

possible transitions between the states (Malik, 1992; Vester, 1999). Examples are the 

biosphere, a national park, the economic system, mathematics education in Europe 

and even mathematics education at a concrete school. 

Complex systems usually are networks of multiply connected components. One 

cannot change a component without influencing the character of the whole system. 

Furthermore real complex systems are in permanent exchange with their 

environment.  

Maybe this characterization of complex systems seems a bit fuzzy. But, nevertheless, 

it is of considerable meaning. Let us regard the opposite: If a system is not complex, 

someone can overview all possible states of the system and all transitions between the 

states. So this person should be able to steer the system as an omnipotent monarch 

leading it to “good” states. In contrast, complex systems do not allow this way of 

steering. 

Steering of Complex Systems 

The fundamental problem of mankind dealing with complex systems is how to 

manage the complexity, how to steer complex systems successfully and how to find 

ways to sound states.   

With reference to theories of cybernetics two dimensions of steering complex 

systems can be distinguished (Malik, 1992). The first one concerns the manner, the 

second one the target level of steering activities (see figure 1). 

The method of analytic-constructive steering needs a controlling and governing 

authority that defines objectives for the system and determines ways for reaching the 

aims. Hierarchical-authoritarian systems are founded on this principle. However, 

fundamental problems are caused just by the complexity of the system. In complex 

systems no one has the chance to grasp all possible states of the system cognitively. 
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incremental-
evolutionary  

analytic-
constructive 

on the object level 

on the meta-level 

Figure 1: Steering of complex systems 

 

So the analytic-constructive approach postulates the availability of information about 

the system that cannot be reached in reality. 

In contrast incremental-evolutionary steering is based on the assumption that changes 

in complex systems result from natural growing and developing processes. The 

steering activities try to influence these systemic processes. They accept the fact that 

complex systems cannot be steered entirely in all details and they aim at incremental 

changes in promising directions. The focus on little steps is essential, since 

revolutionary changes can have unpredictable consequences which may endanger the 

soundness or even the existence of the whole system.  

 

 

 

 

 

 

 

The second dimension distinguishes between the object and the meta-level. The 

object level consists of all concrete objects of the system. In the school system such 

objects are e.g. teachers, students, books, computers, buildings etc. Changes on the 

object level take place if new books are bought or if a new computer lab is fitted out. 

Of course such changes are superficial without reaching the substantial structures of 

the system. 

The meta-level comprehends e.g. organizational structures, social relationships, 

notions of the functions of the system etc. In the school system e.g. notions of the 

nature of the different subjects and beliefs concerning teaching and learning (e.g. 

Pehkonen, Törner 1996, Leder, Pehkonen, Törner 2002) are included. 

Innovations in Complex Systems 

How can substantial innovations in the complex system “mathematics education” be 

initiated successfully? The theory of cybernetics gives useful hints: Attempts of 

analytic-constructive steering will fail in the long term, since they ignore the 

complexity immanent in the system. Changes on the object level do not necessarily 

cause structural changes of the system. According to the theory of cybernetics it is 

much more promising to initiate incremental-evolutionary changes on the meta-level 
(see figure 2). They are in accord with the complexity of the system and do not 

endanger its existence. Nevertheless, they can cause substantial changes within the 

system by having effects on the meta-level, especially when they work cumulatively. 
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LEARNING ENVIRONMENTS WITH DYNAMIC WORKSHEETS 

Aspects of Learning 

Learning is a very complex phenomenon. Initiatives aiming at the development of 

mathematics education have to take in account the nature of learning. Let us have a 

very short glance at some fundamental aspects of learning (e.g. Reinmann-Rothmeier 

& Mandl, 1998; Haberlandt, 1997) which form a background for the latter:  

 Learning is a constructive process. Knowledge and understanding cannot be 

simply transported from teachers to students. Cognitive psychology describes 

learning as a process of construction and modification of cognitive structures. 

From the view of neurobiology learning is the construction of neuronal 

networks. Connections between neurons develop and change.  

 Learning is an individual process. Learning takes place inside the head of each 

learner. He creates his own knowledge and understanding by interpreting his 

personal perceptions on the basis of his individual prior knowledge and prior 

understanding. 

 Learning is an active process. Cognitive activity means working with the 

content in mind, viewing it from different perspectives and relating it to the 

existing network of knowledge. 

 Learning is a self-organized process. The learner is at least partially 

responsible for the organization of his individual learning processes. The 

degree of responsibility may vary in the phases of planning, realizing or 

reflecting learning processes. 

 Learning is a situative process. It is influenced by the learning situation. A 

meaningful context or a pleasant atmosphere can foster learning processes, fear 

can hamper them. 

 Learning is a social process. On the one hand the socio-cultural environment 

has great impact on educational processes. On the other hand learning in 

school is based on interpersonal cooperation and communication between 

students and teachers. 

incremental-
evolutionary  

analytic-
constructive 

on the object level 

on the meta-level 

Figure 2: Innovations in complex systems 
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Figure 3: Working with learning environments, 

four components of learning environments 
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Concept of Learning Environments 

Considering the aspects of learning noted above the following model seem adequate 

for teaching and learning processes in school: 

 

 

 

 

 

 

 

 

 

 

 

 

 

The learning environment is the essential link between the teacher and the learner. 

This notion includes the tasks for the learner’s activities, the arrangement of media 

and the method for teaching and learning as well as the social situation with the 

teacher and other learners as partners for learning. It belongs to the teacher’s field of 

responsibility to design the learning environment. So he offers a basis for the 

learner’s work. This allows the teacher to get feedback about the learner as well as 

about the learning environment. This model is based on and extends the didactical 

concepts of “substantial learning environments” by Wittmann (1995, 2001) or “strong 

learning environments” by Dubs (1995). 

The aspects of learning noted above imply fundamental consequences for the design 

of learning environments: Tasks should be problem-based with necessary openness 

for learning by discovery. They should offer meaningful contexts and view situations 

from multiple perspectives. The teaching methods should make the learners work 

actively, individually and self-organized. But not less important are the learners’ 

communication and cooperation as well as discussions and presentations of ideas and 

results. Media can have several supporting functions for these processes. 

Before we will discuss the relevance of this model for innovations in educational 

systems, we look at a specific kind of media which may carry general ideas to 

practice in school and serve as a catalyst for processes of change.  
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Dynamic Worksheets 

The notion “dynamic mathematics” is currently used for software for dynamic 

geometry with an integrated computer algebra system, so that geometry, algebra and 

calculus are connected. When designing learning environments with dynamic 

mathematics, one faces the necessity to relate dynamic constructions to texts, e.g. for 

explanations or exercises for the students. For this purpose software for dynamic 

mathematics – like e.g. GEONExT or Geogebra – can be embedded in HTML-files. 

So dynamic constructions can be varied on the screen and are combined by the 

internet browser with texts, pictures, links and other web-elements. This kind of new 

media for mathematics education is called “dynamic worksheets“ (Baptist, 2004; 

Ehmann, Miller, 2006). 

With respect to the model in figure 3 dynamic worksheets are strongly related to all 

four components of learning environments: Of course they serve as teaching and 

learning media. Since they include text, they may provide tasks and instructions for 

the students. So implicitly they influence the teaching method and the cooperation 

between the learning partners (see next section). Hence, when designing learning 

environments with dynamic worksheets one should carefully take account of all these 

components and their impact on students’ learning.  

Figure 4 shows an example: The students are given a mathematical situation leading 

to an optimization problem. The text is combined with a dynamic construction which 

helps to understand the context. The rectangular can be moved while fitting exactly in 

the area between the parabola and the x-axis. The tasks help to structure the lesson 

according to the methodical concept described in the following section. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Screenshot of a dynamic worksheet 
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A Methodical Concept for Learning Environments with Dynamic Worksheets 

The use of dynamic worksheets does not automatically improve mathematics 

education. It is crucial how these media are integrated in teaching and learning 

processes. If we want to initiate substantial changes on the meta-level of attitudes and 

beliefs concerning mathematics and mathematics education we have to organize 

lessons in a way that students work actively, individually, self-organized and 

cooperatively. They should experience that mathematics is a field for explorations 

and discoveries. And they should present and discuss their ideas and results 

cooperatively. Considering the aspects of learning noted above the following four 

phases structuring lessons with dynamic worksheets methodically are very natural: 

1. Individual working: Learning is an individual, active and self-organized 

process. So at first the students work on their own. They are faced with the 

necessity to explore the content, to activate their prior knowledge, to develop 

ideas and to make discoveries. Learning environments with dynamic 

worksheets offer a framework for such activities and may support them. 

2. Cooperation with partners: Learning is a social process. It is very natural 

that the students discuss their ideas with partners in small groups and that they 

work on the problems cooperatively. This communication helps to order 

thoughts and to get further ideas. Meanwhile the teacher may remain in the 

background or turn his attention to individuals.  

3. Presentation of ideas: After having worked individually and in groups the 

students present their ideas and discuss them in the plenum. The different 

contributions reveal multiple aspects of the topic and help to view it from 

varying perspectives. Moreover the students train debating and presentation 

techniques. 

4. Summary of results: Finally the students’ results are summarized and 

possibly extended by the teacher. It is his task to introduce mathematical 

conventions and to consider curricular regulations. Since the students have 

already discovered the new content on their own paths, they can more likely 

integrate the teacher’s explanations into their individual cognitive structures. 

Table 1: Methodical concept 

This methodical concept combines individual learning with working in small groups 

as well as in the plenum of the class in a very natural way. It is in close relationship 

to the methodical concepts “Think – Pair – Share” by Lyman (1981) or “I – You – 

We” by Gallin and Ruf (1998).  

Learning by Writing: The Study Journal 

The call for papers for working group 7 at CERME 6 emphasizes that technology in 

school should be considered within a wider range of resources for teaching and 

learning. Students should draw on ICT in combination with more traditional tools. 
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Accordingly, dynamic worksheets are only one element of rich learning 

environments. Especially pencil and paper do not lose relevance when student work 

with the computer. Noting down thoughts helps to order and arrange thoughts. 

Writing helps to develop understanding for new subject matters. Hence, when using 

dynamic worksheets students should regularly be asked to draw figures in their 

exercise book and to write down observations, conjectures, argumentations and 

personal statements. The exercise book gets the character of a personal “study 

journal” that accompanies students on their individual learning paths (Gallin, Ruf, 

1998). 

When designing dynamic worksheets for students’ self-responsible learning, one 

should be aware of the risk that students play with the media as with a computer 

game quite superficially and do not get to the deeper mathematical content. The 

regular request of working in the exercise book decelerates the process of clicking 

through the learning environment. So the students are forced to take their time which 

is indispensable for individual learning.  

Finally, the notes in the study journal ensure that ideas and results are still available 

when the computer is switched off. They are a basis for further presentations, 

discussions and summaries in the plenum of class (Baptist, 2004). 

INCREMENTAL-EVOLUTIONARY SYSTEMIC INNOVATIONS WITH 

DYNAMIC WORKSHEETS AS PARTS OF LEARNING ENVIRONMENTS 

In their plenary talks at CERME 5 Ruthven and Artigue observed that current results 

of activities integrating ICT in school are rather disappointing on system level. 

“Advocacy for new technology is part of a wider reform pattern which has had limited 

success in changing well established structures of schooling.” (Ruthven, 2007) “From the 

very beginning, digital technologies have been considered as a tool for educational 

change […]. Unfortunately, the results are far from being those expected” (Artigue, 

2007). 

For substantial innovations in the educational system there is no lack of general ideas, 

pedagogical concepts or didactic tools – as discussed above. But there is a wide gap 

between theoretical knowledge and practice in school. So we have to develop 

strategies to bridge this gap. 

Conclusion: A Pattern for Innovation Projects 

Combining the theory of cybernetics and the concept of learning environments using 

dynamic worksheets we get a pragmatic, but also theory-based way of initiating 

innovations in school. Activities are most promising, if they focus on incremental-

evolutionary changes on the meta-level of beliefs and attitudes of all agents involved. 

Learning environments with dynamic worksheets may serve as framework for 

learning processes of teachers and students. How can this be done concretely? 
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As a conclusion from all reflections above we sketch and propose a pattern for 

innovation projects for mathematics education. (It is realized e.g. by the current 

project “InnoMathEd – Innovations in Mathematics Education on European Level”, 

see http://innomathed.eu). 

(1) The key persons for innovations in school are the teachers. Their beliefs, 

motivation and abilities are crucial for everyday teaching and learning in school. So 

regional networks of schools are established which form frameworks for teachers’ 

cooperative learning, exchange of experience and professional development. 

(2) Universities are innovation centres for teacher education. They lead the school 

networks and provide regular and systematic in-service teacher education offers. This 

teaching and learning is designed according to the aspects of learning and the concept 

of learning environments described above. So the teachers get acquainted with these 

theories and concepts by making personal experiences in learning environments 

designed for them.  

(3) Participating schools concentrate on one or a few areas of innovation, e.g. 

autonomous learning with dynamic worksheets, promoting student cooperation with 

dynamic worksheets or fostering key competences with dynamic worksheets. It is not 

promising to aim at total changes of mathematics education – because of the 

complexity of the system. However, such bounded fields of activity allow teachers to 

begin with substantial changes without the risk of losing their professional 

competence in class. 

 (4) The teachers get acquainted with general ideas and theories of teaching and 

learning as well as with techniques for constructing learning environments. To bridge 

the gap between theory and practice the teachers’ project activities are strongly 

related to their regular work at school. They develop learning environments for their 

students, they use, test and evaluate them in their classes and finally optimize them 

on the basis of all experiences. In this process they get guidance and coaching by the 

University leading the network. 

(5) All learning environments which are tested, evaluated and optimized are collected 

in a data base and made available for public use. 

(6) Teachers are given possibilities to exchange experiences with colleagues and to 

participate in teacher education offers on national and international level. Thus they 

understand that problems and necessities for development have systemic character 

and concern the fundaments of mathematics education far beyond their own 

professional sphere. Moreover, they get ideas for innovation activities from a large 

community. 

(7) Finally, further networks of teachers and schools are essential means for 

dissemination processes in the long term. Experienced teachers coach colleagues 

from schools starting with innovation activities. 
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This approach may be called “theory based and material driven”. On the basis of the 

theory of cybernetics and the theories of learning the teachers involved make 

incremental-evolutionary steps on the meta-level of beliefs and attitudes by designing 

and working with concrete learning environments for their classes.  
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A DIDACTIC ENGINEERING FOR TEACHERS EDUCATION 
COURSES IN MATHEMATICS USING ICT 

Fabien EMPRIN 
IUFM Champagne Ardennes - LERP 

A first part of our research led us to define a theoretical framework to analyse 
teachers’ education courses and to make hypotheses to explain the lack of efficiency 
of teachers training (Emprin, 2008). This paper presents the continuation of this 
work. We use the methodology of didactic engineering, adapted to teachers’ 
education, and a theoretical framework previously built to test our hypothesis. In a 
first part of this paper we will describe our theoretical framework and hypothesis 
about teachers training. In a second part we will develop the didactic engineering 
and its results. 

TEACHERS EDUCATION COURSES ANALYSIS 
The general question guiding this work is the difficulty for mathematics teachers to 
use ICT in their classrooms. Our choice is to focus on a particular factor explaining 
this difficulty: teachers’ professional education; without denying the existence of 
other factors such as material problems, resources available etc. Several studies in 
France or wider as Empirica study of European Commission, TIMSS & PIRL of the 
Boston College and BECTA’s reports indicate this explanatory factor. French 
political choices since 1970i show that a quantitative effort was made, our research 
thus relates to a qualitative problem of teachers’ training. 
A theoretical framework 
First we chose to use a framework designed for the analysis of teaching practices and 
to specify it with teacher educators’ practices: the two-fold approach. This 
framework, defined by Robert (1999), does not take into account specifics of the use 
of technology. This leads us to use, jointly with the two-fold approach, a framework 
making it possible to take into account this dimension as described in (Emprin, 2008). 
The instrumental approach developed by Rabardel (1995) appears to be relevant. This 
approach, which was already developed in the didactic of Mathematics ,for example 
in Trouche (2005), leads us to analyse instrumental geneses.  
One difficulty is that teacher educators’ practices can not be reduced to a teaching 
activity. A teachers’ educator, in France, was most of the time a secondary school 
teacher, in many instances they keep on teaching to pupils. For this reason, like 
Abboud Blanchard (1994) specifies, the teacher trainer’s previous practices as a 
teacher intervene in his practices as a teachers’ educator. 
We borrow the definitions of “activity” and “practices” from Robert & Rogalski 
(2002) which we must specify on various levels met during a teachers’ education 
course: 
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This definition of “activity” is nearly similar to Rabardel’s notion of “productive 
activity” (Rabardel, 2005, p. 20). It contains actions but also statements, attitudes and 
unobservable aspects which influence actions.  
The definition of “practices” we use is a reconstitution of the five components 
described in the two-fold approach. Robert & al. (2007) give the description we have 
translated here: 

“We developed, taking into account the complexity of the practices, analyses capable of 
giving an account of what can be observed in class, which results from teacher’s 
homework and the unfolding, and factors which are external to the classroom but which 
weigh on practices, including those in the classroom, and eventually contribute to the 
teachers’ choices before and during the lesson. Indeed, practices in classroom are forced, 
beyond goals in terms of pupils’ acquisitions, by determinants related to teachers’ trade: 
institutional, social… Let us quote programs, timetables, schools, colleagues, class and 
its composition. Moreover, the practices have a personal anchoring which refers to the 
teacher as a singular individual, in terms of knowledge, picturing, experiments, trade’s 
idea and also conditions its choices. Our analyses start from class session in which we 
distinguish components, institutional, social, personal, meditative (related to the 
unfolding in the classroom and improvisations), cognitive (related to the prepared 
contents and expected unfolding), closely dependent for a given teacher, and having to be 
recomposed: it is necessary for us to think of the components together, and to estimate 
the compensation, balance, the compromises to include/understand and start to explain 
what is concerned. » 

To build our framework of analysis we need to dissociate the various levels of 
activities and practice but also to see their interactions. Figure 1 makes it possible to 
describe these various levels. 
The first level of activity is the one of the pupil. We note it A0 level. The pupil has a 
task to realize, and acts accordingly. He uses an instrument belonging to ICT. This 
level can thus be analyzed with the didactic of mathematics and the instrumental 
approach. The observation of the process of instrumentation/ instrumentalisation 
informs us about the instrumental geneses of the pupil and the instruments built.  
The second level of activity is the one of the teacher whom we note at level A1. The 
tasks of the teacher consist of managing and organizing the activity of the pupils. He 
also organizes the instrumental geneses of the pupil. The two-fold approach enables 
us to analyze a first level of practices which we note P1 level.  
The other two levels of activity are those which exist in teachers’ education courses. 
The activities of the trainees (who are thus teachers) during the training course, are 
noted as A2. They are organized by those of the teachers’ educator noted as A3. The 
Two-fold approach and the instrumental approach give us access to a second level of 
practices noted as P2, those of the teachers’ educators. 
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Figure 1: overlap of the four levels of activity and two levels of practices 

Use of the theoretical framework 
Our work is centred on the analysis of the teachers educators practice, thus we neither 
directly analyze the practices of P1 level, nor activities of A1 and A2 levels, 
nevertheless they appear during teachers’ education courses as explanatory factors.  
Teachers practices (P1) can be seen during teachers education courses in three main 
ways, through a video: practices are shown, when the teacher’s educator narrates a 
classroom session: practices are narrated through what the teacher’s educator asks the 
trainees to do: the practices are inherent. This last way is linked with a strategy of 
teachers training which is called homology. This strategy described by Houdement & 
Kuzniak (1996) shortly consists in doing with teachers (A3 A2) what they will be 
expected to do when they are back in their classrooms (A1 A0). 
The two-fold approach is designed to analyze the real practices; it requires being able 
to observe the courses and to ask the teacher about the context in which he works. To 
analyse P1 practises which appear during teacher education session we use two-fold 
and instrumental approaches as a reading grid to see which part of practices teachers’ 
educator focuses on. 
Hypothesis resulting from the analysis of teachers education courses 
We implemented this framework of analysis on a corpus of three teachers’ education 
courses, of fourteen interviews of teachers’ educators. The results obtained help us to 
build the first part of our hypothesis about the lack of effectiveness of teachers 
trainings. 
First we notice that working time is mainly dedicated to a work on computers (more 
than 50% of the time). When trainees are not in front of computers, the time is 
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devoted to explanations (44 to 62%) and descriptions (35 to 52%) given by the 
teachers’ educator, there is thus very few analysis or debate. In term of two-fold 
approach social, personal and institutional components of the practices are almost not 
approached. The mediative component of practices appears in the analysis of video or 
the narration of courses, but is not questioned. The cognitive dimension remains 
rather marginal. Our analysis also shows a possible drift of homology strategy: it is 
likely to introduce confusion between the various instrumental geneses, of pupil and 
teacher. 

BUILDING OF A DIDACTIC ENGINEERING FOR TEACHERS 
EDUCATION COURSES 
Hypothesis 
We identify two complementary ideas explaining the lack of efficiency pointed 
previously. The first one results from the work of Ruthven & Hennessy (2002) and 
Lagrange & Dedeoglu (in press). Theses authors show a gap between teachers’ needs 
and ICT potentialities presented by teachers’ trainers. We also observe an absence. In 
France the “reflexive practitioner” of Schön (1994) and the “analysis of practices” 
developed by Altet (1994) or Perrenoud (2003) are two important models for 
teachers’ education is thus remarkable that no allusion is made there in teachers’ 
education courses to mathematics with ICT. That leads us to consider the introduction 
of a reflexive component in ordinary practices’ analysis and to formulate four 
hypotheses taking into account the first part of our work: 

• The analysis of real practices would make it possible to initiate a reflexive 
attitude in teachers (making it possible for the teacher to change their teaching 
practices) 

• Leading trainees to analyze a real professional problem enables them to 
confront their representations, mobilize their knowledge (resulting from 
experience) and come to a consensus based on reasoning.  

• An analysis of the professional practices taking into account several 
dimensions of practices (in terms of two-fold approach) and based on the 
analysis of the relationship between teaching practices and activity of the pupil, 
makes it possible for the trainees to mobilize their knowledge (resulting from 
experience and their theoretical knowledge). 

• It is necessary to contribute, during teachers’ training courses, to the 
professional instrumental geneses of teachers and to analyze the lessons in 
terms of instrumental needs and potential instrumental genesis of pupils. 

In order to check these hypotheses we use the methodology of didactic engineering 
that we specify to teachers’ education. This methodology defined in Artigue (2002) is 
based on the verifying of a priori hypothesis. Thus we need to define observable 
criteria linked to our hypothesis. We decline our four hypotheses in seven criteria: 
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• The trainees’ ability to identify and define a problem. 

• The formulation and the use, by the trainee, of knowledge coming from 
experience associated with theoretical knowledge to analyze the practice  

• The implication of trainees’ personal practices and of his own experience in the 
analysis. 

• The trainees reach a consensus based on knowledge coming from experience 
and theory. 

• During the session teachers’ educator does not give any answers, any 
explanations. The knowledge is built by trainees and not given by the teachers’ 
educator. We call that an a-didactical lesson referring to theory of didactical 
situations (Brousseau, 1998) 

• The fact that the analysis makes it possible to take into account several 
dimensions of the practices  

• It must then be possible to identify any trace of instrumental genesis making it 
possible for teachers to consider instrumented actions but also results on 
pupils’ activity. 

Our methodology leads us to conceive a scenario for teachers’ education whose 
implementation will be analyzed by means of the theoretical framework built in the 
first part. 
Scenario and analyzes 
The scenario is inspired from Pouyanne & Robert (2004). It is based on the analysis 
of teaching practices by means of a video. Four periods are defined: an a priori 
analysis of the lesson (which has been recorded) where hypothesis about the effects 
of the teaching practices on pupils’ activity are put forward; an analysis of the video 
and a comparison with the hypothesis; a search for alternatives based on the question 
“What would you do if you had to do such a lesson?”; and finally a debate around 
problems emerging during the first three period. 
We implemented this scenario twice, in each one, videos show pupils using 
interactive geometry software (IGS): In the first training course eight grade pupils 
had to prove that perpendicular bisectors in a triangle converge. The second video 
show sixth grade pupils solving a problem (which is detailed below). We develop 
now this second session of teacher education. 
In each teacher’s education session, the scenario lasts about three hours. This part of 
the session has been recorded, transcribed and analysed. The analysis takes into 
account who is speaking, the type of speech (description, explanations, analysis) and 
its content.  
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An example of session 
The lesson recorded for this teachers training is what we call in French “an open 
problem” referring to Arsac & Mante (2007). This type of problem is called “open” 
insofar as no specific solution is expected: what 
matters is pupils’ search.  
Figure 2 gives the statement of the problem. 
Pupils are asked to say which one of [EG] or 
[AC] is longer.  
During the first part of the work with trainees, 
the a priori analysis, we had to let them use the 
IGS. It is a first change in the scenario. It seems 
to be very difficult for teachers to analyse the 
problem without having a working time on the 
computer. This time is not a time of homology 
even if the trainees do what is expected from 
pupils.  
During the analysis the trainees have a 
transcription of the discussion with the teacher 
who is in the video. She specifies what is at stake in this lesson: she wants pupils to 
develop their critical thinking and to show them not to trust their perception. The 
trainees identify three stakes: the drawing with the software, the location of the 
rectangles in the whole geometrical drawing and the property of the diagonals of a 
rectangle. They specify that they think that the situation cannot be done by the pupils. 
They propose teaching aids to make the situation feasible. They propose to reveal the 
radius of the circle, the other two diagonals of the rectangle. Another solution 
considered is to cut out the problem or to make a preliminary recall of the useful 
properties. In this stage there is thus an implication of the trainees who adapt the 
lesson since they try, to some extent, to make it feasible in their classrooms. This 
implication can be seen in the following example. 

Trainee: that seems difficult to me in 6th grade also because I think that they will see that 
the diagonals have the same length but that they will not be able to justify 
it. 

The viewing of the film reveals initially the need for dissociating the task of 
construction in the software from the remainder. Indeed the pupils encounter real 
difficulties to build the geometrical figure. The trainees realize that pupils need to 
build uses of the software. It is a part of the instrumental genesis. On the video, once 
geometrical construction has been carried out, the pupils try to conjecture. The 
trainees realize that pupils have the necessary knowledge to solve the problem but 
that they are not able to mobilize it. 

Figure 2 : an « open problem » 
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In the film, the pooling of pupils’ works take place at the end of the lesson, whereas 
the pupils are still in front of the computers. It is quickly carried out by the teacher. 
The conclusions of the trainees are that it is necessary to take more time, to move the 
pupils away from the computers and to let them talk. There is thus a clear evolution 
in the trainees’ mind. In the first part of the analysis they have doubts about the 
ability of the pupils to solve the problem and in the last part they say it is necessary to 
devote more time to the pooling of what pupils have found.  
The search for alternatives contains the essential components of the analysis. The 
trainees reaffirm that it is necessary to dissociate the drawing on IGS from conjecture. 
Some even propose to remove the drawings’ work. This work also allows a long 
discussion about the place of this problem in pupils’ training. Before pupils know the 
property of the diagonals of the rectangle, the problems is centred on research 
whereas afterwards it acts more as a consolidation of knowledge. This also leads to 
discuss the place of observations in the geometrical trainings. A trainee proposes to 
use this problem to introduce the property of equality of the diagonals which disturbs 
another trainee who believes that observing properties is conflicting with the idea of 
mathematics. This trainee finally realizes that she does not have tools to give proof of 
the property to pupils of this level while at the same time the property is in the 
official programme. During these discussions the teachers’ educator scarcely 
intervenes. Trainees are personally involved in the analysis: 

Trainee: I do think that giving the instructions when the computers are “on” is always 
rather difficult; it is better to give instructions before turning the computers 
on. 

In this example we can see that this trainee formulates a teaching knowledge, rather 
simple but which can now be used consciously by other trainees.  
Most of the indicators can be observed for “many” trainees. Nevertheless, during a 
three hours session, a limited number of trainees can speak and consequently the 
internal evaluation of our methodology is only partial.  
Finally, we noticed two changes in our scenario: the time of appropriation of the 
software was introduced during the analysis of the lesson and the final time of 
debates was removed. For the first change, the lack of acquaintance of the trainees 
with the artefact prevents them from making a real analysis. The second change is 
due to time devoted to debates during the session. The entire subject likely to be 
alluded to seems to have been discussed before. A last noticeable point is that trainees 
do not know other pieces of software which could be used in this lesson. The 
teachers’ educator had to show different pieces of software as in the teachers’ 
education courses we analysed in the first part of our work.  
Conclusion on the didactic engineering of formation and continuation 
The main results of this didactic engineering are linked with our criteria: it seems to 
be necessary to let the trainees use and try the artefact. It helps them to analyse the 
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lesson but it also seems to match with trainee expectations. It is possible to take into 
account several dimensions of the practices but in a smaller number than expected. 
The analysis of the video helps trainees to make cognitive and mediative components 
more explicit but the other components are more difficult to reach. The scenario built 
allows a reflexive analysis of the practices. Experience and theoretical knowledge is 
used to analyze the problem of introduction of the ICT. Instrumental geneses of the 
teachers and the pupils are really dissociated. The trainees considered what is 
necessary to pupil to use ICT in this lesson. They also found different options and 
they analysed the changes involved by these choices in term of learning or in lesson 
unfolding. For example ask pupils to draw the figure in the software helps them to 
use a proper vocabulary (because the software makes it compulsory) but it takes a 
long time and leads the teacher to reduce the time of conjecture. 
Practices, in our didactic engineering, are shown in a video but it is possible to work 
on other types of practices such as real practices or simulated practices. Simulated 
practices make it possible for a whole group of trainees to work on the same teaching 
experience. The construction of such a simulator is the object of a work we initiated 
in 2007. 
To conclude, the fact that teachers use experience knowledge to analyze practices 
with ICT makes it possible for us to consider the teachers’ education course with ICT 
as a lever for teachers’ education generally speaking. It seems to be easier to 
influence the way of teaching mathematics by influencing the way of teaching 
mathematics with ICT. 
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hours of training for teachers. For more information see Archambault, J.-P. (2005), 1985, vingt ans après... Une histoire 
de l'introduction des TIC dans le système éducatif français. Médialog (54). 
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GEOMETERS’ SKETCHPAD SOFTWARE FOR NON-THESIS 

GRADUATE STUDENTS: A CASE STUDY ıN TURKEY 

Berna CANTÜRK-GÜNHAN
 
, Deniz ÖZEN

 

Dokuz Eylul University, Izmir, Turkey. 

The purpose of this paper is to determine mathematics teachers’ views about 
Geometers’ Sketchpads Software (GSP) and to analyze the effects of training sessions 
on prospective teachers’ ability to integrate instructional technology in the teaching 
of geometry. For that purpose, two graduate student teachers were selected; they 
investigated GSP activities. They followed training sessions about using GSP. The 
data come from interviews with them and GSP activities improved by them. The 
results of this study indicate that their  awareness level about GSP was increased.  
Keywords: Teacher Education, Secondary Mathematics Education, Non-thesis 
Graduate Program, Integrating Technology, Geometers’ Sketchpad Software. 

INTRODUCTION  

Today’s use of technology as a learning tool supplies the students with gaining the 
mathematics skills in their lessons. According to Newman (2000), the use of 

technology in learning arouses curiosity and thinking, and challenges students’ 

intellectual abilities. Kerrigan (2002) state that using mathematics software promote 
students’ higher order thinking skills, develop and maintain their computational skills. 

For this reason, teacher training is crucial in order to use technology in mathematics 

education.    

Computers could be used in school for teaching geometry, and since then a lot of 

work has been done that discusses many aspects of using Dynamic Geometry 
Software (DGS) in education (Kortenkamp, 1999). In this study, it was concerned 

with DGS activities developed by non-thesis graduate student teachers. Non thesis 

graduate program is in Turkey was opened for the purpose of educating future 
teachers. The secondary school (grade 9-11) mathematics teacher training program 

made up of two different programs. The Five-Year Integrated Programs (3.5+1.5) in 

Faculty of Education and Non Thesis Graduate Program (4+1.5) in Faculty of 
Science. Last 1.5 year part is the same for both 3.5+1.5 and 4+1.5 programs. Of 

these programs 3.5 and 4 year are spent on taking the mathematics courses and 

remainder years on pedagogical courses. After graduation, they can be secondary 
school mathematics teacher. This program is described in more detail in YOK 

(1998). The aim of this study was to investigate whether their views changed after 

the education process and to determine the outcomes about student teachers’ 
proficiency.   

 

 

THEORETICAL FRAMEWORK 
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In geometry, teachers are expected to provide “well-designed activities, appropriate 
tools, and teachers’ support, students can make and explore conjectures about 

geometry and can learn to reason carefully about geometric ideas from the earliest 

years of schooling” (NCTM, 2000). Mathematics teachers can help students 
compose their learning by using geometry sketching software. Geometer’s 

Sketchpad allows younger students to develop the concrete foundation to progress 

into more advanced levels of study (Key Curriculum Press, 2001). 

Reys et al. (2006) point out young learners of mathematics need to  

• experience hands-on (concrete) use of manipulative for geometry such 

as geoboards, pattern blocks and tangrams,  

• connect the hands-on to visuals or semi concrete models such as 
drawings or use the sketching software on a computer,  

• comprehend the abstract understanding of the concepts by seeing and 
operating with the picture or symbol of the mathematical concept (cited 

in Furner and Marinas, 2007).  

GSP is an excellent tool for students to understand the properties of geometric 
shapes and to model for them mentally manipulating objects. GSP can also provide 
students to visualize the solid in their mind.  In literature, McClintock, Jiang and July 

(2002) found GSP provides opportunities to have a distinct positive effect on 

students' learning of three dimensional geometry. In another study, Yu (2004) stated 
that the students’ concurrent construction of figurative, operative and relational 

prototypes was facilitated by dynamic geometric environment. That’s why, the 

knowledge about which DGS and DGS activities how prepared should be given the 
student teachers. 

METHOD 

Participants 

Case study was used in this paper. This research was conducted during the spring 

term of 2007–2008 academic years in spring term. The study was conducted with 

two secondary school preservice teachers attending the 4+1.5 Integrated Secondary 
Mathematics Teacher Education Program at Dokuz Eylul University in Turkey. Of 

the ten students in this program there were two volunteers. In this process, they 

took the courses about mathematics content knowledge, pedagogical content 
knowledge and general pedagogical knowledge. All participants had basic 

computational skills but none of them knew how to use DGS.    

Data Collection 

The data were collected from interviews and the activities which are prepared by the 

student teachers. The interviews were semi-structured in nature. In the beginning of 
the research, the opinions of the participants towards GSP software are taken with 

semi-constructed interview form. Each interview took approximately 15-20 minutes 

and recorded with a tape. Then the participants attended a six-hour GSP training 
sessions which is given by the researchers. After the program, it was demanded that 
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the participants developed the GSP activities. Finally, the participants` opinions 
towards GSP software are taken again.  

The Geometer’s Sketchpad Training Sessions  

The training sessions allowed the instructor to prepare the non-thesis graduate 

student teachers to enter their future mathematics classrooms not only 
knowledgeable about the capabilities of instructional technology, but also 

experienced enough to appropriately integrate their selected software. The GSP 

training sessions’ content is given Table 1. 

 Training Sessions Topics Duration 

 

Introductory 

(Guided & 
Discussed) 

• major concepts of mathematics 

education  

• the aim of the involved Software 

• introduction to dynamic geometry 

environment with GSP 

• introduction to tools and menus of the 

Software  

1 hour 

   
   

   
   

   
   

 D
AY

 1
 

 

Constructing 

Geometrical Concepts 

(Guided & 
Discussed) 

• to construct basic concepts of 

geometry  

• to transform the rotation, reflection, and 

dilation of the figures 

• to construct regular and non-regular 

polygons, and its interiors 

• to measure in geometry (length, 

distance, perimeter, area, circumference, 

arc angle, arc length, radius, etc.) 

• to graph various functions and its 

derivative 

1 hour 

Animation and 

Presentation 

(Guided & 
Discussed) 

• to use action and hide/show buttons 

• to tabulate the data 

• to prepare presentations 

2 hours 

D
AY

 2
 

Activity Planning 

(Guided & 
Individual) 

• to plan activities and practice it 2 hours 

Table 1: Training Sessions 

DAY 1 included two sessions. Each session lasts an hour.  

Introductory Session: The introductory session contained the major concepts of 
mathematics education, introduction to dynamic geometry environment with GSP 

and the aim of the involved Software. 

In the beginning of the session, the participants discussed the major concepts -
conceptual development, problem solving, modelling verbal problems, creative 
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thinking, analytical thinking etc.- in order to determine their readiness with 
researcher. Then, they argued the aim of the involved Software. Afterwards, the 

participants introduced Dynamic Geometry Environment, the menus, sub-menus and 

tools of the GSP Software. When the participants get information about tool box, 
text palette, file menu, edit menu, display menu, construct menu etc., the researcher 

advanced next session. 

Constructing Geometrical Concepts: In this session, the participants find out how to 
construct the basic concepts of geometry; such as ray, line, segment, paralel line, 

perpendicular line, angle bisector, median of triangle, altitude of triangle, arc etc.  

When the participants learned how to use the menus, sub-menus and tools, the 
researcher showed them some operations. The participants learned about 

constructing regular and non-regular polygons, and its interiors. After that, they 

learned to change the color and width of the lines and figures.  

Then, they transformed the rotation, reflection, and dilation of the figures. 

Subsequently, they measured length, distance, perimeter, area, circumference, arc 

angle, arc length, radius, etc. with using GSP.  

When they reached the graph menu, they defined coordinate system, chose grid 

form and they draw some graphs with GSP, such as sinus, cosinus, tangent, etc. 

Afterwards, they graphed various functions and its derivatives. During this session, 
the participants discussed the functions of GSP each other if it was necessary or it 

was forgotten.  

DAY 2 comprised two sessions. Each session is made up of two hours. 
Animation and Presentation: In this session, the participants found out text palette 

on advanced level. Next they learned motion controller, how to paste picture and 

then passed animation and hide/show buttons. They learned how to utilize animations 
and change it’s speed. Then they learned to trace points, segments, rays and lines. 

Afterwards they focused on tabulate the data on tables in order to arrange them 

regularly. 

After they learned animation and presentation clues, they started to organize page 

set-up and document options in order to prepare excellent presentations. 

Activity Planning: This session includes all of the applications learned. The 
researchers wanted the participants to prepare activities. And they also wanted to 

apply all the operations learned in their activity. In the preparation period, if the 

participants needed to be supported, the researchers could be guiding them. 

Data Analyses 

In the interview, four open-ended questions were asked to the participants and the 

interview guide was used in this stage. During the interview, the questions like 
“What are the GSP aims in mathematics learning environment?” “Which students’ 

skills are able to improve by GSP activities?”, “What do you take into account while 
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the GSP activities are composed?” and “How can you assess the students with the 
GSP activities?” were answered by the students. 

The evaluating criteria were determined in order to assess the activities improved by 

the student teachers. These criteria were adapted from Roblyer (2003). 

1.  Connection to mathematics standards. 

2.  Appropriate approach to mathematics topics with respect to grade, ability.  

3.  Presence of conceptual development, problem solving/higher order 
thinking skills.  

4.  Use of practical applications and interdisciplinary connections.  

5.  Suitability of activities (interesting, motivating, clear, etc.) 

Table 2: Evaluation Criteria adapted from Roblyer (2003)  

RESULT 

In this section, the analysis of data obtained from two preservice teachers’ view 
transcripts and activities which they prepared are presented. 

Handan’s Case  

Handan is working as an assistant teacher in private teaching institution for a year. 
During the pre-interview, four questions were asked her. She made explanations as 

follows:  

Researcher : What are the GSP aims in mathematics learning environment? 

Handan : It supplies the students with learning and visualizing in math 

lessons and preparing animations. 

Researcher : Which students’ skills are able to improve by GSP activities? 

Handan : The students’ spatial thinking skills are improved.  

Researcher : What do you take into account while the GSP activities are 

composed? 

Handan :  It should be appropriate the students’ cognitive level. 

Researcher : How can you assess the students with the GSP activities? 

Handan : I don’t know because of lacking knowledge about GSP.  

As can be seen in her statements, although she mentioned that she did not know 

GSP, she could be able to estimate its aims, skills to be improved and rules taken 

into account when the activities had done.   

After training sessions, the researcher wanted her to prepare GSP activities whatever 

topics she wished. She chose the congruence as a subject of geometry instruction. 

Her activity is given Figure 1. 
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Figure 1: Handan’s Activity  

The content of her activity was about congruence. She decided to plan her activity 

for constructing the concept of congruence. As regards to the activity, the student 

knows the aim of the subject (step 1) and the concepts related to the subject (step 
2). Handan gave directions to the students in her activity, in general. Therefore the 

student follows the instructions and carries on step by step.  Afterwards, she gave 

two segments as AB and KL. She demonstrated the length of AB and KL segments 
(step 3-4). In the next step of the activity, she wanted students to compare the 

length of AB segment with KL segment.  She asked whether the students call a 

common name to these segments (step 5) and explained it simply (step 6). 
Subsequently, she gave two angles and its measurements (step 7-8). She told the 

angles have the same measurement (step 9) and asked what the common name of 

the angles is (step 10). Later she constructed two triangles (ABC and KLM) and 
asked the students in what conditions they are congruent (step 11). Later on she 

showed the conditions of the congruence (step 12) and measurements of the 

triangles (step 13-14-15-16). In following steps, she paired each corners of the 
triangles and animated them (step 17-18-19). Finally, she drew the students’ 

attention for the coincidence of triangles and demonstrated this (step 20-21).  

When her activity arranged was assessed via the so-called evaluation criteria in Table 
2, it was seen that the activity was connected to mathematics standards organized 

by Ministry of National Education (MNE) in Turkey, suited approach to mathematics 

topics -to explain congruence of triangle- with respect to 10th grade but it was too 
simple and like 8th grade level. It was provided conceptual development, also clear 

but not engaged the students in real life situations and interdisciplinary connections. 

It is useful for constructing the concept of congruence but not provide satisfactory 
knowledge. It wasn’t prepared for improving the students’ problem solving skills 

also. Handan utilized the mathematical language adequately. In respect of 
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technicality, the activity is good.  Each step’s button is made as hide/show button.  
The 17th and 19th steps’ button have the same function, so one of them is needless. 

The activity hasn’t got any other technical problem.  

Afterwards she had done activity; the post-interview was carried out with her and it 
was given her comments as follows:  

Researcher : What are the GSP aims in mathematics learning environment? 

Handan : It provides the students learn geometrical concepts…their problem 

solving skills are improved and the concepts are visualized.  

Researcher : Which students’ skills are able to improve by GSP activities? 

Handan : The students’ spatial thinking…. and problem solving skills are 

improved.  

Researcher : What do you take into account while the GSP activities are 

composed? 

Handan : It should be interesting…. appropriate for the students’ cognitive 

level and the students’ opinions can be taken while the activities are 

prepared. 

Researcher : How can you assess the students with the GSP activities? 

Handan : The students can be able to do the applications involved in GSP 

and these are evaluated. 

Considering her statements, it is seen that her views changed after training sessions 

and her activity. She has primarily information about GSP and she awakes of what 

taking into account while the GSP activities are composed. 

Mualla’s Case  

Mualla is also working as an assistant teacher in private teaching institution for a 

year. In time of the pre-interview, she gave responses as follows:  

Researcher : What are the GSP aims in mathematics learning environment? 

Mualla : …It constitutes long lasting learning in math lessons and provides 

the teachers and the student drawing figures, preparing animations. 

Researcher : Which students’ skills are able to improve by GSP activities? 

Mualla : GSP improves the students’ spatial thinking skills.  

Researcher : What do you take into account while the GSP activities are 

composed? 

Mualla :  It should be interesting…  

Researcher : How can you assess the students with the GSP activities? 

Mualla : I don’t know…  

In the analysis of this interview, she determined which skills improved and what she 

pays attention during the GSP activities are composed. Besides it is seen that 
Mualla’s responses are similar to the Handan’s statements.  

After training sessions, the researcher wanted her to prepare GSP activities whatever 

topics she wished. She chose the similarity as a subject of geometry instruction. The 
activity involved is given Figure 2. 
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Figure 2: Mualla’s Activity  

Mualla’s activity deals with similarity of triangles. She tried to carry out her activity 

for constructing the concept of similarity. According to her activity, she 
acknowledged that the students have little knowledge about the subject. Mualla 

generally gave directions to the students in her activity, as Handan did. However, her 

activity didn’t similar to in terms of following the instructions step by step. In the 
beginning of the activity, she mentioned few real-life examples to the students about 

similarity and then she passed the similarity between geometrical concepts. She gave 

two segments, like Handan, and she compared the length of them under the first 
button. The second button shows the students the ratio of the lengths of the 

segments.  After that, the definition -geometrical ratio and geometrical proportion- 

was given, and demonstrated. Then, she compared the measures of each angle of 
the triangles and mentioned the coincidence of each angle. Afterwards, she showed 

and compared the length of sides of the triangle and stated whether the sides of both 

triangles have a ratio or not. Lastly, she defined a stable ratio, as the ratio of 
similarity. 

When her activity organized was assessed by means of the evaluation criteria in 

Table 2, it was seen that the activity was overlapped mathematics standards 
organized by MNE in Turkey, partly suited approach to mathematics topics -to 

explain similarity of triangle- with respect to 10th grade. It was provided conceptual 

development, but not connected to the students in real life situations and 
interdisciplinary connections. Her activity was clear and understandable but it was 

also towards 8th grade and too simple. It wasn’t also provides sufficient knowledge. 

It wasn’t prepared for improving the students’ problem solving skills also. Mualla 
used the mathematical language few adequately. In respect of technicality, the 

activity is not bad. Each step’s button was made as hide/show button, as Handan 

did. It didn’t include enough animation and demonstration. Finally it was said that, 
the activity hasn’t got any technical problem.  

After she had done activity; her comments during the post-interview was given as 

follows:  

Researcher : What are the GSP aims in mathematics learning environment? 

Mualla : It provides the students learn geometrical concepts and problem 

solving, proof geometrical theorems. In addition to, it can be long 

lasting learning.  
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Researcher : Which students’ skills are able to improve by GSP activities? 

Mualla  : The students’ spatial thinking was improved.  

Researcher : What do you take into account while the GSP activities are 

composed? 

Mualla  : It should be appropriate the students’ cognitive level and the 

mathematics standards  

Researcher : How can you assess the students with the GSP activities? 

Mualla : It can be ask some question in GSP aiming at determining whether 

they learned the geometric concepts. We expect that the students 

reveal the relationships between geometric concepts. 

As her statements, she increases information about GSP. It follows from her 

responses that her point of view enlarged after training sessions. She encouraged 

and determined carefully what she does with GSP in mathematics learning 
environment after she prepared activities herself. 

DıSCUSSıON AND CONCLUSION 

In this study, the data indicated that Dynamic Geometry Software (DGS) is 
important in geometry education. Generally speaking, Handan and Mualla learned 

some properties of GSP. At the end of the study, they realized how they can use 

GSP to prepare the activities. Handan gave detailed directives in her activity. She 
expected that the students to mention the concept of congruence; but this concept 

was given by her at the beginning of the study. In the other case, Mualla set out the 

similarity proportion when she prepared her activity. Both of them did not mention 
the kinds of congruence and similarity. They perhaps fostered the finding of these 

kinds by the students. As Key Curriculum Press (2001) mentioned, teachers can use 

GSP to create worksheets, exams, and reports by exporting GSP figures and 
measurements to spreadsheets, word processors, other drawing programs, and the 

Web. These results indicate that DGS is important in teacher education and DGS 

training must be present in non-thesis graduate education.   
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LEADING TEACHERS TO PERCEIVE AND USE 

TECHNOLOGIES AS RESOURCES FOR THE CONSTRUCTION 

OF MATHEMATICAL MEANINGS 

Eleonora Faggiano 

University of Bari - Italy 

This paper presents the early results of an on-going research project on the use of 
technology in the mathematics teaching and learning processes. A first aim of this 
project is to understand how deeply math teachers do perceive the opportunities 
technologies can bring about for change in pedagogical practice, in order to 
effectively use them for the students’ construction of mathematical meanings. 
Secondly, the research aims at verify if teachers realise that, in order to successfully 
deal with perturbation introduced by technologies, they have to keep themselves 
continuously up-to-date and to acquire not only a specific knowledge about powerful 
tools, but also a new didactical and professional knowledge emerging from the deep 
changes in teaching, learning and epistemological phenomena.  
INTRODUCTION 

Due to the continuous spread of technology in the latest years, challenges and 

expectations in the everyday life, and in education in particular, have dramatically 

changed. Within this context of rapid technological change the world wide education 

system is challenged with providing increased educational opportunities. The use of 

Information and Communication Technology (ICT) in the classroom, however, seems 

to be, in the majority of cases, still based on a traditional transfer model characterised 

by a teacher-centred approach (see for example: Midoro, 2005).  

But, according to Hoyles et al. (2006; p.301):  

«…a learning situation had an economy, that is a specific organization of the many 

different components intervening in the classroom, and technology brings changes and 

specificities in this economy. For instance, technological tools have a deep impact on the 

“didactical contract”…».  

That is, the technology-rich classroom is a complex reality that necessitates 

observation and intervention from a wide range of perspectives and bringing 

technology in teaching and learning adds complexity to an already complex process 

(Lagrange et al. 2003).  

Moreover, as underlined by Mously et al. (2003; p.427),  

«…technological advances bring about opportunities for change in pedagogical practice, 

but do not by themselves change essential aspects of teaching and learning ».  

As research underlines (Bottino, 2000), indeed, innovative learning environments can 

result from the integration among educational and cognitive theories, technological 

opportunities, and teaching and learning needs. However, it is extremely important 
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for teachers to confront themselves with the necessity to understand how the potential 

offered by technology can help in the overcoming of the everyday didactical practice 

complex problems.  

I believe that for technologies to be effectively used in classroom activities teachers 

need, not only to “accept” the presence of technologies in their teaching practice but 

also to see technologies as learning resources and not as ends in themselves. 

Moreover, learning activities involving technologies should be properly designed to 

build on and further develop mathematical concepts. Hence, an “adequate” 

preparation is essential for teachers to cope with technology-rich classrooms, so that 

using computers not merely consists on a matter of becoming familiar with a 

software. 

This paper presents the early results of an on-going research project on the use of 

technology in the mathematics teaching and learning processes, investigating 

mathematics teachers’ perceptions of ICT and of their usefulness in promoting a 

meaningful learning.  

A first aim of this project is to understand how deeply math teachers, both pre-service 

and in-service, do perceive the opportunities technologies can bring about for change 

in pedagogical practice in order to effectively use them for the students’ construction 

of mathematical meanings. 

Secondly, the research aims at verify, whether or not, teachers realise that, in order to 

successfully deal with perturbation introduced by technologies, they have to keep 

themselves continuously up-to-date and to acquire not only a specific knowledge 

about powerful tools, but also a new resulting didactical and professional knowledge 

emerging from the deep changes in teaching, learning and epistemological 

phenomena.  

THEORETICAL FRAMEWORK AND RELATED LITERATURE 

Many researchers in the latest years are answering the challenge to provide 

educational opportunities by studying teaching and learning mathematics with tools 

(Lagrange et al., 2003).  

Results of both empirical and theoretical studies have also led to the elaboration of 

the idea of “mathematics laboratory” as reported, for example, in an official Italian 

document prepared by the UMI (Union of Italian Mathematicians) committee for 

mathematics education (CIIM):  

«A mathematics laboratory is not intended as opposed to a classroom, but rather as a 

methodology, based on various and structured activities, aimed to the construction of 

meanings of mathematical objects » (UMI-CIIM MIUR, 2004; p.32).  

In this sense, a laboratory environment can be seen as a Renaissance workshop, in 

which the apprentices learned practicing and communicating with each other. In 

particular in the laboratory activities, the construction of meanings is strictly bound, 
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on one hand, to the use of tools, and on the other, to the interactions between people 

working together (without distinguishing between teacher and students).  

According to this approach, and as in Fasano and Casella (2001), I believe that 

technological tools can assume a crucial role in supporting teaching and learning 

processes if they allow teachers to create suitable learning environments with the aim 

to promote the construction of meanings of mathematical objects. Moreover, in 

agreement with this point of view, I consider important to highlight that, again 

quoting the UMI-CIIM document (p.32):  

«The meaning cannot be only in the tool per se, nor can it be uniquely in the interaction 

of student and tool. It lies in the aims for which a tool is used, in the schemes of use of 

the tool itself. The construction of meaning, moreover, requires also to think individually 

of mathematical objects and activities.» 

Furthermore, as claimed by Laborde (2002; p.285),  

«…whereas the expression integration of technology is used extensively in 

recommendations, curricula and reports of experimental teaching, the characterisation of 

this integration is left unelaborated.» 

In particular, she underlines the idea that the introduction of technology in the 

complex teaching system produces a perturbation and, hence, for teacher to ensure a 

new equilibrium he/she needs to make adequate, non trivial choices. Integrating 

technology into teaching takes time for teachers because it takes time for them, first 

of all to understand that, and how, learning might occur in a technology-rich 

situations and, then, to become able to create appropriate learning situations. This 

point of view is based on the idea that a computational learning environment could 

promote the learners’ construction of situated abstractions (Noss & Hoyles, 1996; 

Hölzl, 2001) and on the “instrumental approach” as developed by Vérillon and 

Rabardel (1995).  

Within the instrumental approach, the expression “instrumental genesis” has been 

coined to indicate the time-consuming process during which a learner elaborates an 

instrument from an artefact: it is a complex process, at the same time individual and 

social, linked to the constraints and potential of the artefact and the characteristic of 

the learner. If, according to the instrumental approach, learners need to acquire non-

obvious knowledge and awareness to benefit of a instrument’s potential, I firmly 

believe that teachers need to take into account the student’s instrumental genesis 

(Trouche, 2000).  

Finally, I consider worthy of note the concept of “instrumental orchestration” 

proposed by Trouche (2003) aiming at tackling the didactic management of the 

instruments systems in order to conceive the integration of artifacts inside teaching 

institutions. In particular, he underlines that pre-service and in-service teacher 

training should take in account the complexity of this integration at three levels 

(Trouche, 2003; p.798): 
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« - a mathematical one (new environments require a new set of mathematical problems); 

   - a technological one (to understand the constraints and the potential of artifacts); 

   - a psychological one (to understand and manage the instrumentation process and their 

variability). » 

METHODS, CONTEXT AND PROCEDURE 

The research I’m going to present consists in two main phases. The first has been 

carried out with a rather small group of in-service teachers at the University of Bari 

and a larger group of pre-service teacher at the University of Basilicata. The second 

involved another small group of pre-service teachers at the University of Bari.  

Teachers belonging to the first group at the University of Bari were 16 high-school 

teachers. Although some of them already taught mathematics, on the whole they were 

qualified to teach related subject and they were attending a training program in order 

to get a formal qualification to teach mathematics.  

At first, a preliminary anonymous questionnaire was submitted to them with the aim 

to know if they were able to see technologies as learning resources, as well as if they 

were available to continuously bring up-to-date in order to properly design and 

manage with technology-rich classroom activities. Key questions in the questionnaire 

included the following: 

1 Do you think ICT could be useful for your teaching activities? Why? 

2 Do you think that the use of ICT can somehow change the learning environment? 
And the way to teach? And the dynamics among actors in the teaching/learning 
situations?  

3 Which difficulties do you think can be encountered when designing and developing 
a math lessons using somehow ICT? 

4 As a teacher, do you think you need to have some didactical competences in order 
to properly use ICT? Eventually, which ones? And anyway, why? 

Within the training program they attended, a thirty hours course was focused on 

didactical reflection aiming at helping student teachers to understand how to make 

the most of the use, in mathematics teaching and learning activities, of general tools 

such as spreadsheets, multimedia and Internet, as well as mathematics-specific 

educational software such as Cabri. In order to explain them that the changes 

produced by the introduction of a technological tool will not necessarily per se bring 

the students more directly to mathematical thinking, particular attention was devoted 

to stress the role of the a-didactical milieu in authentic learning situations, as in the 

known Brousseau’s (1997 ) “theory of didactical situations”. Furthermore, they were 

asked to analyse and discuss both successful and questionable examples of 

teaching/learning mathematics activities in which an important role has been played 

by the use of ICT. 
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At the end of the course student teachers designed a teaching/learning activity 

involving somehow the use of technology: in this way I intended to verify how 

deeply they have perceived the opportunity to effectively exploit the usage.  

A further anonymous questionnaire, free from constraints, was later submitted with 

the aim to find out any signal for changes in their conceptions to have been occurred. 

Key questions in this further questionnaire were exactly the same. 

Pre-service teachers involved in the research project at the University of Basilicata 

were a larger number (97). They were only asked to fill in the first questionnaire.  

During the second phase, a group of 16 pre-service teachers at the University of Bari, 

instead, interacted with the researchers/educators in the same way of the first group 

of in-service teachers: to this further group of teachers a preliminary anonymous 

questionnaire was submitted; then, they were invited (during a thirty hours course) to 

reflect on didactical aspects of the use of technologies as well; at the end of the 

course they were asked to design a teaching/learning activity in which technology 

played an essential role; finally I analysed the extent of their changes in looking at the 

integration of technologies in the teaching/learning processes. 

According to the results obtained during the first phase (that I’m going to present and 

discuss in the next paragraph), in the second phase I asked student teachers, not only 

to design a teaching/learning activity involving the use of technology, but also to put 

in action the activities they have designed, having as student sample their colleagues: 

in this way they proved themselves as “actors” in a technology-rich learning 

“milieu”.  

FINDINGS AND DISCUSSION 

Findings from the first anonymous questionnaire revealed that in-service student 

teachers perceived that technology can bring support to their teaching (see Fig.1), but 

only as much as it is a motivating tool enabling students understanding per se (see 

Fig. 2).  

Figure1: The 79% of the in-service student teachers gave a positive (“Yes, for sure”) 

answer to question 1. 

Do you think that ICT could be useful for your teching activities?

79%8%

13%
Yes, for sure

It may be

I don't know

No
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Figure2: Some in-service student teachers’ answers to question 1: Do you think ICT 

could be useful for your teaching activities? Why? 

Answers given by the pre-service teachers were, instead, a little bit more didactically 

oriented: some of them recognise that, if nothing else, the knowledge of the 

instrument functionality is probably not enough for a teacher to use it in an effective 

way in terms of construction of meanings by the students (see Fig. 3).  

 

Figure3: A pre-service student teacher’s answer to question 1. 

None of the in-service teachers recognised that technology could bring a great 

support in creating new interesting and attractive learning environments. While, at 

least some interesting observation could be revealed among answers given (to 

question 2) by the pre-service teachers: some of them suggested the use of 

technological tools to allow students “collaboratively solve intriguing problems”. 

Be aware of the opportunity to create a new “milieu” and change the “economy” of 

the solving process was, however, extremely far from their perception of the use of 

technology in mathematics teaching/learning activities, both for in-service and for 

pre-service teachers.  

About the question 3, concerning the difficulties they think can be encountered when 

designing and developing a math lessons using somehow ICT,  they mostly ascribed 

possible difficulties to the lack of an adequate number of PC and the technical 

problems that might occur, but also to the natural students’ bent for distraction and 

relaxation, especially when facing a PC (see Fig. 4). 

…otherwise the only difference with the classical lesson would be the 
use of a PC instead of a calculator 

…math can be more attractive, dynamic, practical 

…lesson can be more, shared, interactive, fascinating 
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Figure4: Some student teachers consider new technology as a motivating tool that 

requires motivation. 

As a consequence they did not feel the need to be skilled in using technology for their 

teaching and did not usually consider that their lack of skills presents them with any 

difficulties. And, although the 75% of the student teachers recognised (answering to 

question 4) the need to have some didactical competences in order to use new 

technology, what they asked to know about was, in most of the cases, just software 

functionalities (not potential, nor constrains): only some of the pre-service teachers 

also asked to know how to effectively integrate their use in the teaching practice.  

Even tough some of the activities that in-service teachers prepared at the end of the 

course revealed the willingness to attempt a new approach to the use of ICT, answers 

to the second anonymous questionnaire shown they still continued to find difficulty 

to be aware of the potential offered by ICT (see Fig. 5). 

0%

20%

40%

60%

80%

100%

Question 2 First
Questionnaire

Second
Questionnaire

Question 4 First
Questionnaire

Second
Questionnaire

In-service

Pre-service

Figure5: Percentage of positive (“Yes, for sure”) answers given by both in-service and 

pre-service teachers respectively to the first and the second questionnaire to questions 

2 and 4.  

For this reasons, for the second phase of the project I planned to pay particular 

attention to promote teachers’ reflections on the opportunities offered by appropriate 

uses of technological tools in order to create new learning environment and, 

according to the idea of “mathematics laboratory”, to foster the construction of 

mathematical meanings. 

…motivation is needed! 
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Student teachers were invited not only to design a possible teaching/learning activity 

involving somehow the use of technology, but they were also involved in a “mise en 

situation” (as in the known Chevallard’s approach) during which they had the 

opportunity to assume the roles of the student, the teacher and a researcher/observer.  

In this way, they faced with the complexity of the integration of technologies in 

classroom practice. Their comments at the end of the experience shown that they 

have developed an awareness of how the students’ instrumental genesis can take 

shape (psychological level). Moreover, answers to the second anonymous 

questionnaire revealed that they felt the need to understand the constraint and the 

potential of technologies (technological level) and to look for new mathematical 

problems (mathematical level). 

EARLY CONCLUSIONS AND FUTURE WORKS 

Discussion suggested by the researches in this field and by the analysis of this on-

going experience led me to reflect on and to underline that an adequate preparation is 

essential for teachers to cope with technology-rich classrooms. In particular I believe 

that, only if teachers become aware of the potential usefulness and effectiveness of 

technologies as methodological resources (enable to foster the constructions of 

meaningful learning environment) they would recognise the need of an effective 

integration of them in the classroom activities and view new technologies as cultural 

tools that radically transform teaching and learning. 

At the actual stage of this on-going research I can claim that, in my opinion, most of 

the teachers have difficulty to acquire the awareness of the potential of technology as 

a methodological resource. Hence, as educators, we also have to deal with the need to 

lead teachers to develop a more suitable and effective awareness of the usage of new 

technologies. Furthermore, I believe that the difficulty teachers have to acquire this 

awareness could be overcome giving teachers the opportunity to be subject of a  

“mise en situation”. In this way teachers can experience by themselves the difficulties 

students can encounter and have to overcome, the cognitive processes they can put in 

action and the attainment they can achieve. They also have the opportunity to 

understand and manage with the students’ instrumental genesis and to become more 

skilful and self-confident when deciding to exploit the potentials of technologies in 

mathematics education. 

For future works I think in particular to go on with this idea, promoting further 

experiences of “mise en situation” according to the following stages: 

- let teachers experience the importance of the relationship between the specific 

knowledge to be acquired by the students and the knowledge teacher possesses of it; 

- let teachers experience the importance of the relationship between the specific 

knowledge to be acquired by the students and whatever students already know; 

-  let teachers experience the importance of the relationship between their knowledge and 

the students’ ones. 
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I suppose, indeed, that through these stages, teachers could experience by themselves 

the processes that come into play bringing technology in a teaching/learning 

situations. In particular, according to the early results of this study, I believe that in 

this way teachers do tackle with the obstacles encountered, the difficulties to be 

overcome, the cognitive and metacognitive processes carried out and the attainment 

that can be achieved. 

To conclude, in the next future I aim to verify that, thanks to this methodology, not 

only they can cope with changes they could meet in a technology-rich learning 

situation but, reflecting on them, they can also become aware of how to better make 

use of technology as a resource to create an effective and meaningful learning 

environment. 

Finally (also considering the explicit suggestions of the WG7 call for papers), I 

suppose that an interesting help to foster the development of teacher’s instrumental 

genesis can be given by the use of Geoboards (Bradford, 1987). A Geoboard is a 

physical board (often used to explore basic concepts in plane geometry) with a certain 

number of nails half driven in, in a symmetrical square, (for example five-by-five 

array): stretching rubber bands around pegs, provide a context for a variety of 

mathematical investigation about concepts and objects such as area, perimeter, 

fractions, geometric properties of shapes and coordinate graphing. 

Thus, I would like to let high school teachers operate with an unusual (at that level) 

context/tool like a Geoboard, and try to understand if, in this way, they can perceive 

teaching resources, both digital or not, as methodological resources: when teachers 

become aware that some resources can be effectively used for the construction of 

mathematical meanings they can start to successfully design and experiment new 

interesting learning activities.  
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THE TEACHER’S USE OF ICT TOOLS IN THE CLASSROOM 

AFTER A SEMIOTIC MEDIATION APPROACH 

Mirko Maracci and Maria Alessandra Mariotti 

Department of Mathematics and Computer Science, University of Siena, Italy 

The issue of the teacher’s role in exploiting the potentialities of ICT tools in 
classroom is more and more raising the interest of our community. We approach this 
issue from the Semiotic Mediation perspective, which assigns a crucial importance to 
the teacher in using ICT tools in the classroom. In the report we describe a Teaching 
Sequence centred on the use of the tool Casyopée and inspired by the Theory of 
Semiotic Mediation. Then we focus on the teachers’ use of the tool with respect to the 
orchestration of collective activities and present an on-going analysis of her actions. 

INTRODUCTION  

Recent research points out a wide-spread sense of dissatisfaction with the degree of 

integration of technological tools in mathematic classrooms. Kynigos et al. observe 

that so far one did not succeed to exploit the ICT potential suggested by research in 

the 80s and the 90s and denounce that “the changes promised by the case study 

experiences have not really been noticed beyond the empirical evidence given by the 

studies themselves” (Kynigos et al. 2007, p.1332). 

The acknowledgement of the existing gap between the research results on the use of 

technology in the mathematical learning and the little use of these technologies in the 

real classroom led recently to reconsider the importance of the teacher in a 

technology-rich learning environment, and to investigate ways of supporting teachers 

to use technological tools. 

Those “teacher-centred” studies have been developed from different perspective and 

address different aspects, for instance: teacher education (Wilson, 2005), teachers’ 

ideals and aspirations regarding the use of ICT (Ruthven, 2007), teacher’s role in 

exploiting the potentialities of ICT tools in the classroom. 

With that respect, as Trouche underlines, most studies refer to the importance of 

teachers’ guide or assistance to students’ activities with the technology (Trouche, 

2005). Trouche himself emphasizes the need of taking into account the teacher’s 

actions with ICT. For that purpose he introduces the notion of “instrumental 

orchestration”, that is the intentional systematic organization of both artefacts and 

humans (students, teachers…) of a learning environment for guiding the instrumental 

geneses for students (ibidem, p.126). 

Within this approach the teacher is taken into account insofar as a guide for the 

constitution of mathematical instruments. 

As we will argue in the next section, guiding the constitution of mathematical 

instruments does not exhaust the teacher’s possible use of ICT. In fact ICT tools can 
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be used by the teacher (a) for developing shared meanings having an explicit 

formulation, de-contextualized with respect to the ICT tool itself and its actual, 

recognizable and acceptable in respect to mathematicians’ community, and (b) for 

fostering students’ consciousness-raising of those meanings. The Theory of Semiotic 

Mediation (Bartolini Bussi and Mariotti, 2008) takes charge of that dimension.  

In this report, we present an analysis of the teacher’s use of an ICT tool within the 

frame of the Theory of Semiotic Mediation. More precisely we focus on the teacher’s 

promotion and management of collective discussions. But a systematic discussion of 

the role of the teacher or a classification of her possible actions is out of the goals of 

the present paper. The context is a teaching sequence, inspired by the Theory of 

Semiotic Mediation, and centred on the use of the tool Casyopée. Both the teaching 

sequence and the tool are presented in the next sections, after recalling some basic 

assumptions of the Theory of Semiotic Mediation. 

THE THEORY OF SEMIOTIC MEDIATION 

Assuming a Vygotskijan perspective Bartolini Bussi and Mariotti put into evidence 

that the use of an artefact for accomplishing a (mathematical) task in a social context 

may lead to the production of signs, which, on the one hand, are related to the actual 

use of the artefact (the so called artefact-signs), and, on the other one, may be related 

to the (mathematical) knowledge relevant to the use of the artefact and to the task. As 

obvious, this knowledge is expressed through a shared system of signs, the 

mathematical signs. The complex of relationships among use of the artefact, 

accomplishment of the task, artefact-signs and mathematical signs, is called the 

semiotic potential of the artefact with respect to the given task. 

Hence, in a mathematics class context, when using an artefact for accomplishing a 

task, students can be led to produce signs which can be put in relationship with 

mathematical signs. But, as the authors clearly state, the construction of such 

relationship is not a spontaneous process for students. On the contrary it should be 

assumed as an explicit educational aim by the teacher. In fact the teacher can 

intentionally orient her/his own action towards the promotion of the evolution of 

signs expressing the relationship between the artefact and tasks into signs expressing 

the relationship between the artefact and knowledge. 

According to the Theory of Semiotic Mediation, the evolution of students’ personal 

signs towards the desired mathematical signs is fostered by iteration of didactic 

cycles (Fig.1) encompassing the following semiotic activities:  
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• activities with the artefact for accomplishing 

given tasks: students work in pair or small 

groups and are asked to produce common 

solutions. That entails the production of 

shared signs; 

• students’ individual production of reports on 

the class activity which entails personal and 

delayed rethinking about the activity with the 

artefact and individual production of signs; 

• classroom collective discussion orchestrated 

by the teacher  

The action of the teacher is crucial at each step of 

the didactic cycle. In fact the teacher has to design tasks which could favour the 

unfolding of the semiotic potential of the artefact, observe students’ activity with the 

artefact, collect and analyse students’ written solutions and home reports in particular 

posing attention to the signs which emerge in the solution, then, basing on her 

analysis of students written productions, she has to design and manage the classroom 

discussion in a way to foster the evolution towards the desired mathematical signs. 

The Theory of Semiotic Mediation offers not only a frame for designing teaching 

interventions based on the use of ICT, but also a lens through which semiotic 

processes, which take place in the classroom, can be analysed (for a more exhaustive 

view, see Bartolini Bussi and Mariotti, 2008). 

CASYOPÉE 

Casyopée (Lagrange and Gelis 2008) is constituted by two main environments which 

can “communicate” and “interact” between them: an Algebraic Environment and a 

Dynamic Geometry Environment (though the designers’ objective was not to develop 

a complete CAS or a complete DGE). Possible interactions between the two 

environments are supported through a third environment, the so called “Geometric 

Calculation”. Without entering the details of Casyopée functioning, we can illustrate 

it through the following example. 

If one has two variable geometrical objects in the DGE linked through a functional 

relationship (e.g. the side of a square and the square itself), Casyopée supports the 

user in associating algebraic variables to the geometrical variables and building an 

algebraic expression for the function (e.g. the function linking the measure of the 

length of the side, as independent variable, and the measure of the area of the square, 

as dependent variable). The generated algebraic variables and functions can be 

exported in the Algebraic Environment, and then explored and manipulated. 

Fig. 1. Didactical Cycle 
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DESCRIPTION OF THE TEACHING EXPERIMENT 

The Theory of Semiotic Mediation shaped both the design and the analysis of the 

teaching experiment carried out. In this chapter, we briefly describe the design. 

Educational Goals of the designed teaching sequence. 

The design of the teaching intervention started from the analysis of the semiotic 

potential of the tools of Casyopée. That analysis led us to identify two main 
educational goals: fostering the evolution of students’ personal signs towards 

1. the mathematical signs of function as co-variation and thus consolidate (or 

enrich) the meanings of function they have already appropriated, that entails 
also the notions of variable, domain of a variables…; 

2. the mathematical meanings related to the processes characterizing the algebraic 

modelling of geometrical situation. 

Description of the teaching sequence 

According to our planning the whole teaching sequence is composed of 7 sessions 

which could be realized over 11 school hours. 

The whole teaching sequence is structured in didactical cycles: activities with 

Casyopée alternate with class discussions, and at the end of each session students are 

required to produce reports on the class activity for homework. 

The familiarization session is designed as a set of tasks and aims at providing 

students with an overview of Cayopée features and guiding students to observe and 

reflect upon the "effects" of their interaction with the tool itself, e.g.: 

Could you choose a variable acceptable by Casyopée and click on the 

“validate” button? Describe how the window “Geometric Calculation” 

change did after clicking on the button. Which new button appeared? 

Besides familiarization, the designed activities with Casyopée consist of coping with 

“complex” optimization problems formulated in a geometrical setting and posed in 

generic terms, e.g.: 

Given a triangle, what is the maximum value of the area of a rectangle 

inscribed in the triangle? Find a rectangle whose area has the maximum 

possible value. 

The aim is to elaborate on those problems so to reveal and unravel the complexity 

and put into evidence step by step the specific mathematical meanings at stake. 

The diagram (Fig. 2) depicts the structure of the teaching sequence: the cyclic nature 

of the process, which develops in spirals, is rendered through the boxing of the cycles 

themselves. 

Implementation and data collection 
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With some differences, the teaching sequence was implemented in 4 different classes 

(3 different teachers): two 13 grade classes and a 12 grade class of two Scientific 

High Schools, and a 13 grade class of Technical School with Scientific Curriculum.  

Different kinds of data were collected: students’ written productions; screen, audio 

and video recordings, and Casyopée log files. The analysis presented below is based 

on the verbatim transcription of the video recordings of the classroom discussions. 

 

 

ANALYSIS OF THE TEACHER’S ACTIONS 

According to the theory of Semiotic Mediation, the teacher’s action should aim at 

promoting the evolution of students’ personal signs towards mathematical signs. Such 

evolution can be described in terms of semiotic chains, or chains of signification to 

use Walkerdine’s terminology, that is: 

Fig. 2. Outline of the Teaching 

Sequence 
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“particular chain of relations of signification, in which the external reference is 

suppressed and yet held there by its place in a gradually shifting signifying chain.” 

(Walkerdine, 1990, p.121). 

The following excerpt is drawn from the transcript of the class discussion held in the 

5
th
 session. It shows an example of how artefacts signs are produced in relation to the 

use of the artefact, and how they may evolve during the discussion. We first go 

quickly through the excerpt showing the evolution of signs, then we will analyse how 

the teacher contributes to this evolution. 

1. Teacher A:  “Which are the main points to approach this kind of problem? Which 

kind of problem did we deal with? […] What is an important thing 

you should do now? To see the general aspects and apply them for 

solving possible more problems with or without the software, […] the 

software guided you proposing specific points to focus on.[…]”  

2. Cor:  “[…] First of all we had to choose the triangle by giving coordinates” 

[Students recall the steps to represent the geometrical situation within Casyopée DGE] 

5. Luc:  “But you have to choose a mobile point, first […]” 

6. Teacher A:  “Does everybody agree?[…]How would you label this first part? […]” 

7. Students:  “Setting up” 

8. Teacher A:  “Luc has just highlighted something […] do you see anything similar 

between the two problems?” 

9. Sam:  “One has always to take a free point which varies, in this case, the 

areas considered […]” 

10. Teacher A:  “Then we have a figure which is…” 

11. Students:  “Mobile.” 

12. Teacher A:  “Mobile, dynamical. Let us pass to the second phase. Andrea, which is 

the next phase? […]” 

13. And:  “The observation of the figure would let us see… we need to study 

that figure and observe what the shift of the variable causes…” 

14. Teacher A:  “Ok, then? Everybody did that, isn’t it?” 

15. Sil:  “We computed the area of the triangle and of the parallelogram, we 

summed them, and by shifting the mobile point one observed as [the 

sum of the areas] varied […]” 

Focusing on students’ signs, one can notice: 

• Elements of a collectively constructed semiotic chain, in which a connection is 

established between artefact signs (“mobile point”) and mathematical signs 

(“variable”). The elements of this semiotic chain are: “movable point” (item 5), 

“free point” (item 9), “variable” (item 13), and “movable point” (item 15). It is 
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worth noticing the two directions: from the artefact sign (“mobile point”) to the 

mathematical sign (“variable”) and vice versa.  That semiotic chain shows: (a) 

students’ recognition that geometrical objects can be considered (can be treated, 

can act) as variables, and (b) the enrichment of students’ meanings of variable to 

include meanings related to “movement”.   

• Elements of a collectively constructed semiotic chain, in which the meaning of 

function as a relation of co-variation of two variables emerges. The elements of 

this semiotic chain are: “a free point which varies […] the areas” (item 9), “the 

shift of the variable causes” (item 13), “by shifting the movable point, one 

observed as [the sum of the areas] varied” (item 15).  

Analysis of the Teachers’ orchestration of the discussion. 

We reconsider the excerpt previously analysed form the point of view of the signs 

produced and used by students. Here we focus on how the teacher’s actions fuel the 

discussion, foster the production of artefacts signs in relation to the use of the 

artefact, and create the conditions for their evolution during the discussion. 

1. Teacher A:  “Which are the main points to approach this kind of problem? Which 
kind of problem did we deal with? […] What is an important thing 
you should do now? To see the general aspects and apply them for 
solving possible more problems with or without the software, […] the 
software guided you proposing specific points to focus on.[…]”  

The teacher starts the discussion by making explicit its objectives: to arrive at a 

shared and de-contextualized formulation of the different mathematical notions at 

stake (“to see the general aspects and apply them for solving possible more problems 

with or without the software”).  

In order to do that, the teacher asks students to recall the problem dealt with in the 

previous section and to report on the solutions they produced. She explicitly orients 

the discussion towards the specification of the main phases of the solution of the 

problem, asking students to look for similarities between the two problems addressed 

so far and between the strategies enacted to solve them.  

While asking students to do that, the teacher suggests to refer to (or to remind) the 

use of the DDA. The suggestion to explicitly refer to the use of Casyopée facilitates 
the production and use of artefact-signs and the unfolding of the semiotic potential.  

5. Luc:  “But you have to choose a mobile point, first […]” 

… 

8. Teacher A:  “Luc has just highlighted something […] do you see anything similar 
between the two problems?” 

9. Sam:   “One has always to take a free point which varies, in this case, the 
areas considered […]” 

Following the teacher’s request, students collectively report on their work with 

Casyopée. That leads to the production of the artefact sign “mobile point” (out of the 
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others) (item 5). The sign “mobile point” is clearly related to the task and the use of 

Casyopée for accomplishing it. At the same time it may be related to the 

mathematical knowledge at stake: the notion of variable. There are several 

possibilities for the subsequent development of the discussion: one could orient the 

discussion towards the distinction between mobile and variable, towards the 

specification of other variable elements, discussion towards the distinction between 

algebraic or numerical variable and geometrical variable, towards the recognition of 

the aspects of co-variation between the variable elements of the geometrical figure, 

towards the distinction between independent and dependent variable. 

Certainly, the teacher’s intervention is needed both to drive the attention of the class 

towards the sign introduced by Luc and to orient the discussion. The teacher is aware 

of that and intentionally emphasizes Luc’s contribution to the discussion (item 8). At 

one time, she requires to generalize so to foster a de-contextualization from the 

specific problems faced and strategies enacted, and to provide the possibilities for the 

evolution of personal signs to initiate. 

After the teacher’s intervention, Sam (item 9) echoes Luc’s words. But she uses the 

sign “free point” instead of “mobile point”, and introduces the consideration of other 

variable elements (“areas”) also emphasizing the existence of a link between them 

(“free point which varies […] the areas”). Those are the first elements of the two 

semiotic chains described in the previous section. 

10. Teacher A:  “Then we have a figure which is…” 

11. Students:  “Mobile.” 

12. Teacher A:  “Mobile, dynamical. Let us pass to the second phase. Andrea, which is 
the next phase? […]” 

13. And:  “The observation of the figure would let us see… we need to study that 
figure and observe what the shift of the variable causes…” 

Sam’s contribution (item 9) ends with the reference to variable areas. That could 

prematurely move the discussion towards the consideration of algebraic or numerical 

aspects, without giving time to elaborate on variable and variation in the geometric 

setting. In order to contrast this risk, the teacher introduces the term “figure” (item 

10) which has the effect of keeping students’ attention still on the geometrical 

objects. In addition the teacher fuels the discussion echoing students and, thus, 

emphasizing the reference to the dynamical aspects (item 12), which nurtures the 

construction of the semiotic chains on variation and co-variation. 

And, whose intervention is stimulated by the teacher, echoes the use of the sign 

“figure” and makes explicit exactly the co-variation between the geometrical objects 

in focus. She also introduces the sign “variable” so establishing a connection between 

the artefact sign “mobile point” and the sign “variable”. 

We are not claiming that the evolution towards the target mathematical signs is 

completed: a shared and de-contextualized formulation of the different mathematical 
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notions at stake is not reached yet, as witnessed by Sil’s words (item 15), who still 

makes reference to the use of the artefact in her speech. 

14. Teacher A:  “Ok, then? Everybody did that, isn’t it?” 

15. Sil:  “We computed the area of the triangle and of the parallelogram, we 
summed them, and by shifting the mobile point one observed as [the 
sum of the areas] varied […]” 

The above analysis puts into evidence a number of interventions of the teachers who 

succeeds in exploiting the semiotic potential of Casyopée, and thus in making the 

class progress towards the achievement of the designed educational goals. 

One can find also episodes in which the teacher’ action is not so efficient. The 

following excerpt is drawn from a discussion held in another class and orchestrated 

by a different teacher, and it shows an episode in which the teacher does not succeed 

to exploit the potentialities of the students’ interventions. Chi countered the sign 

“variable” with the sign “variable point” so offering the possibility to dwell on the 

relationship between not measurable geometrical variables and measurable 

geometrical variables. The specification of this distinction was considered a key 

aspect of algebraic modeling, and as such highly pertinent to the designed educational 

goals. The teacher does not seize the occasion and does not take any action to fuel the 

discussion on that, she was probably aiming at orienting the discussion along a 

different direction. 

184. Chi:  “we put CD as variable, and not by chance CD, in fact we used a fixed 

point, C, and a variable point on the segment, D” 

185. Teacher B:  “well, the underpinning idea is to link numbers, and, […] having 

observed a link between the position of the point D and […] the area 

of the rectangle […] a link is established between a geometrical world 

and an algebraic world” 

That witnesses the difficulty of mobilizing strategies to foster the evolution of 

students’ signs. One has to constantly keep the finger on the pulse of the discussion 

and of its possible development. In fact the evolution of students’ signs depends on 

extemporary stimuli asking for a number of decisions on the spot. 

CONCLUSIONS 

The analysis carried out in the paper confirms the crucial role of the teacher in 

technology-rich learning environments. In particular, such role may (and should from 

our perspective) go beyond that of assistant or guide for students’ instrumental 

genesis process. In fact through her interventions the teacher promotes and guides the 

development of the class discussion, so to foster the production and the evolution of 

students’ signs towards the target mathematical signs, and to facilitate students’ 

consciousness-raising of the mathematical meanings at stake.  
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Certainly we are aware that the analysis presented is still at a phenomenological 

level. There is an emerging need for elaborating a more specific model for analysing 

the teacher’ semiotic actions. But there is not only the need of developing tools for 

finer analysis. We showed an episode witnessing the difficulty of mobilizing 

strategies to foster the evolution of students’ signs. Currently, the Theory of Semiotic 

Mediation does not equally support analysis and planning. Due to the richness of a 

class discussion and the number of extemporary stimuli which could emerge, one 

cannot foresee the exact development of the discussion. That makes the teacher’s role 

still more crucial. Nevertheless there is the need of an effort for elaborating more 

specific theoretical tools for supporting the a-priori design of classroom discussion. 

All this is also relevant to the more generic issue of teacher’s formation. 

NOTES 

Research funded by the European Community under the VI Framework Programme, IST-4-26751-

STP. ‘‘ReMath: Representing Mathematics with Digital Media’’, http://www.remath.cti.gr 
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ESTABLISHING DIDACTICAL PRAXEOLOGIES:  

  TEACHERS USING DIGITAL TOOLS IN UPPER SECONDARY 

MATHEMATICS CLASSROOMS   

Mary Billington  

University of Agder 

This paper discusses elements of the didactical work of ordinary mathematics 
teachers using digital tools. The upper secondary school in Norway where the data 
was collected has run an internal project to integrate the Personal Computer into the 
mathematics classroom. Using the Instrumental Approach as a framework this paper 
seeks to describe and interpret elements of teacher practice exploring also the notion 
of instrumental genesis from a teacher perspective. From the analysis of classroom 
observations, interviews, meetings, and study of documents three main didactical 
practices were found to be linked to the introduction of the digital tools: the digital 
notebook, the digital textbook, and the phenomenon of weaving between 
tools/instruments in the classroom. 

INTRODUCTION  

The recent school reform in Norway, Knowledge Promotion 2006, formally 

acknowledges digital competence as one of the five basic skills students should 

acquire and develop in their formal schooling
1
. This places on schools and individual 

teachers a responsibility to integrate these tools into classroom practice. This study 

looks at the practice of two teachers in a comprehensive upper secondary school in 

Norway who have been using digital tools over a period of five years. In 2007 the 

school joined the project “Learning Better Mathematics”, hereafter LBM
2
, a 

developmental project initiated by school authorities through a co-operation with 

University of Agder. Data used in this paper was collected at the school’s point of 

entry to the project. The classrooms observed were equipped with a blackboard and a 

projector with screen and set up as “paperless” environments where all students had 

their own laptop PC and when observed rarely used paper and pencil in their 

mathematics lessons: all student work was done on the computer.  

THEORETICAL FRAMEWORK  

The theoretical approach employed emerged in the mid-nineties in France when 

researchers became aware that traditional constructivist frameworks were inadequate 

in the analysis of CAS environments (Artigue, 2002). Artigue claims that this 

approach is less student centred but provides a wider systemic view also giving the 

instrumental dimension of teaching and learning more focus (Artigue, 2007). The 

                                         
1
 Knowledge Promotion (Kunnskapsløftet 2006). These basic skills are given as the ability: to express oneself orally to 

read, to do arithmetic, to express oneself in writing, to make use of information and communication technology 
2
 The project is supported by the Research Council of Norway  
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approach uses notions both from the Theory of Instrumentation from the field of 

Cognitive Ergonomy, and from the Anthropological Theory of Didactics (ATD 

hereafter) in the field of Mathematics Education (Laborde, 2007).  

Cognitive Ergonomy considers all situations where human activity is instrumented by 

some sort of technology. The theory of instrumentation employs the notion of 

“instrument” and the notion of “instrumental genesis” (Artigue, 2002). The 

instrument has a mixed identity, made up of part artefact and part cognitive scheme. 

It is seen as a mediator between subject and object but also as made up of both 

psychological structures, called schema which organise the activity, and physical 

artefact structures such as pencil, paper, or  digital tools (Béguin & Rabardel, 2000). 

For the individual user, the artefact becomes an instrument through a process of 

instrumental genesis which involves the construction of personal schema or the 

appropriation of socially pre-existing schemes (Artigue, 2002). This process of 

instrumental genesis has two elements, instrumentalisation the process whereby the 

user acts on the tool shaping and personalising the tool, and instrumentation the 

process whereby the tool acts on the user shaping the psychological schema 

(Rabardel, 2003). Instrumental genesis is a process occurring through the user’s 

activity through participation at the social plane. Guin and Trouche (1999) applied 

the Theory of Instrumentation in research in mathematics classrooms, studying the 

process by which the graphic calculator becomes an instrument for the students to 

learn mathematics. They term the teachers’ role in guiding the students’ instrumental 

genesis instrumental orchestration. This is defined as a plan of action having four 

components: a set of individuals, a set of objectives, a didactic configuration and a set 

of exploitation of this configuration (Guin & Trouche, 2002, p. 208).  

ATD on the other hand aims at the construction of models of mathematical activity to 

study phenomena related to the diffusion of mathematics in social institutions, see for 

example (Barbé, Bosch, Espinoza, & Gascón, 2005). The theory analyses human 

action including mathematical activity by studying praxeologies:   

But what I shall call a praxeology is, in some way, the basic unit into which one can 

analyse human action at large. (Chevallard, 2005, p. 23) 

Any human praxeology is constituted of a practical element (praxis) and a theoretical 

element (logos). The praxis has two components, the task and the technique to solve 

the task. The logos also has two components, the technology (or discourse) and the 

theory which provide a justification for the praxis.   

Mathematical knowledge in an educational institution can be described in terms of 

two types of praxeologies: mathematical praxelologies and didactical praxeologies. 

The object of the didactical praxeologies is the setting up of and construction of the 

the mathematical praxeologies. It is these didactic praxeologies, representing teacher 

practice, that are of interest to me in my study. Questions arising are: What 

constitutes or defines the didactical task, technique, discourse and theory? How are 

the mathematical praxeology and the didactical praxeology entwined? How do the 
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existing didactical praxeologies change when digital tools are introduced into the 

mathematics classroom? Laborde’s conclusion that, “A tool is not transparent. It 

affects the way a user solves a task and thinks” (Laborde, 2007, p. 142) should apply 

equally to both teacher and student.  

Research indicates that the interventions of the teacher are critical in relation to 

student learning of mathematical knowledge when digital tools are introduced (Guin 

& Trouche, 1999). The teacher’s instrumental orchestration is part of the didactical 

praxeology. As new tools are introduced, the teacher must develop new didactical 

praxeologies to support the students’ instrumental genesis for the particular tool 

(Trouche, 2004, p. 296). The teacher must also incorporate the new tool into an 

existing repertoire of tools and didactical techniques. Practically in the classroom, 

this involves for the teacher: (1) Organisation of space and time, (2) the choosing of 

the mathematical tasks and the techniques to solve these tasks, and (3) the steering of 

the mathematical activity in the classroom by discourse.   

Aim and research question 

This paper aims to identify features of didactical praxeologies that have been 

established in relation to the introduction of the digital tool and also to describe the 

process of introduction of the digital tool and changes to practice from the teacher 

perspective. The research questions are: What features of the teachers’ didactical 

praxeologies can be identified as pertaining to/originating specifically from the 

introduction and use of the digital tool? Can these features be seen as evidence of a 

process of instrumental genesis for the teachers in relation to the digital tool? What 

factors influence this process?  

This short paper allows for in depth discussion of only some of the features indicated 

above. I have therefore selected features that appear to be of significant importance to 

the teachers when they describe the changing practice in relation to the tool. The 

paper also seeks to describe only commonalities in teacher practice.  

THE EMPIRICAL STUDY 

The teachers, their classes and classrooms   

The two teachers in this study very generously opened their classrooms and gave of 

their time to this researcher. Both were active in initiating the ICT project at the 

school. The ICT project had been established and operated entirely within the school 

and was not part of any external research, design or development project. It is 

therefore claimed that it is the practice of two “ordinary” teachers that is described in 

this paper. In 2005, the school was the only school in the country to conduct final 

examinations in mathematics entirely on the portable PC. 

This part of the study involved classroom visits to two classes of approximately 

twenty five students. The students were studying the subject “Theoretical 

Mathematics 1” (1T), which is allocated three double lessons a week, each of 90 

minutes duration. These two classes were two of five classes at the school studying 
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this subject. Each classroom was equipped with a blackboard and a projector with 

screen. The screen covered part of the blackboard but it was still possible to use the 

blackboard. The technical features of the environment functioned without difficulties 

in the observation period. The classrooms observed presented as “paperless” 

environments as all students had their own laptop PC, leased from the school, and 

when observed rarely used paper and pencil in their mathematics lessons though this 

was permitted. All student work including exercises, notes, rough work was done on 

the computer. I have chosen to refer to this practice as the “digital notebook”. 

Standard paper textbooks were no longer in use as the teachers have developed their 

own digital textbooks, which are made available to the students through a Learning 

Management System (LMS). This practice I refer to as the “digital textbook”. The 

classrooms appeared very orderly as there were no books, papers, rulers or other 

items littering the desks. Each student had a PC and perhaps a bag placed on the floor 

under the desk. The students started work quickly plugging in and turning on the PC, 

contrasting sharply with “normal” classrooms where students take some minutes to 

find notebooks, textbooks, pencils and so on. In the observed lessons only the 

teachers used the projector. Student work was not displayed using the projector.   

Data collection and analysis  

Data collection over a period of four months involved: audio recording of an 

introductory meeting between the school and the university where the two teachers, a 

school leader, two researchers and a project leader from the university were present; 

lesson observation with video recording of eight lessons; audio recording of three 

semi-structured interviews before and after lessons with the teachers; audio- 

recording of seven structured interviews with students (Billington, 2008); and audio 

data from LBM project meetings where the teachers were present and took part in 

discussions. The writer was present at all events, taking field notes. In the classroom 

observations, researchers were present as observers, taking no active part in the 

planning or carrying through of the lesson. Shortly after each event a preliminary data 

reduction using the notes and recordings was made. Passages were also transcribed. 

Later all data was again reviewed, coded and further transcribed. Each data episode 

renders different information helping to build a picture of teacher practice identifying 

didactical praxeologies that would not be there without the digital tool. The meetings 

and interviews tell of the temporal dimension and of the changing nature of the 

didactical praxeologies from the teacher perspective and also reveal the institutional 

influences. Classroom episodes record teacher activity in the classroom revealing 

techniques of instrumental orchestration. Student interviews tell of the students’ 

instrumental genesis and the teachers’ orchestration from the students’ perspective.  

Analysis of data from meetings and interviews  

The teachers were very keen to discuss the introduction of the digital tool and there 

were clear indications in the data that the teachers saw a process of development in 

their teaching practice.  Examples of such comments were as follows:   
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Teacher 1: … and it, it has been, been of course, a long process to come this far, this 

software … 

Teacher 2: But …there is, as such, a remarkable difference from when we started, now… 

Reviewing the data from the meetings and interviews, reoccurring themes emerged.  

These were first categorised under three headings, justification, implementation and 

evaluation. I then attempted to interpret these themes in the light of the theory as 

presented in the table below. In a didactical praxeology, implementation would 

pertain to the praxis while justification and evaluation would pertain to the logos.    

Justification  

Teachers explained why 

“we do what we do and 

continue to do what we do ” 

 Didactical theory – 

 justification of practice  

Implementation 

Teachers explained how 

they organised and carried 

out the project   

Didactical tasks and 

techniques 

Evaluation  

Teachers talked about what they 

identified as affordances and 

constraints of the tool     

Didactical technology (discourse) – 

relating theory to tasks and 

techniques   

Table 1: Interview Themes   

The most common reoccurring themes under implementation were: the digital 

textbook, the digital notebook and teaching techniques in the classroom. There was 

also some discussion input from a school leader, which is relevant to the discussion 

on orchestration.  

Results and discussion of data from meetings and interviews   

As stated above, the teachers referred constantly to the introduction of the digital 

textbook and the digital notebook. Discussion of these two innovative features of the 

implementation occupied much of meeting and interview time. The teachers referred 

to the digital textbook as “Learning Book”
3
. This digital textbook has replaced the 

usual paper textbook that students would normally buy. It is made available through 

the functioning LMS. Commenting on the digital textbook, the teachers explained 

that as the project progressed they found that the students preferred to read the notes 

that they had made rather than read the paper textbook. As a new syllabus came into 

force this year they decided to make their own digital textbook from scratch.   

Teacher 1: Yes. Totally from scratch, just from the syllabus. Not from any textbook 

….We have taken the syllabus point by point … 

Teacher 2:  Now we use the syllabus, and it has been extremely useful to go thoroughly 

into the plans and now we have to make the right choices … we feel we have to make a 

good deal of choices … that we make for the students … 

                                         
3
 Here literally translated from the Norwegian “læringsbok” 
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The teachers have been provoked to return to the mathematical goals in the syllabus 

and build from these. This development is in line with that described by Monaghan 

(2004). The students save this textbook to their own PC and can write in memos, and 

notes. All problems and exercises are also made available through the LMS for the 

students. According to the teachers giving out solutions on the LMS saves time that 

can be used to other things, for example, “we can go around and help”. The students 

also retain these files from year to year whereas previously they sold the textbook at 

the end of the year. In terms of the theoretical framework of ATD this could be 

interpreted as a transposition of mathematical knowledge (Balacheff & Kaput, 1996) 

from the syllabus to a form usable on the PC.   

The second innovation, the digital notebook, a notebook kept by each individual 

student where s/he writes and stores all notes, exercises, and rough work on his/her 

own PC, was also clearly important to the teachers. In fact one teacher gave this 

aspect some credit for the increased enrolment of girls in these maths courses.  

Teacher 1: ...and they (girls) sat on the fence for a year or so. And then a few girls 

signalled to the others, see here, and then the girls joined in force, ….That was when the 

girls saw that this was not about playing games, but this was a way to make it very nice.  

They got everything very systematic, got a way to keep all their notes in order, and very, 

very nice presentation, and this, the girls thought was very ok, and the boys too, now they 

have all their notes from last year and can build on this.  

Choosing supporting materials for the student is a didactical task for the teacher. In 

this case the production of a digital textbook and the promotion of a digital notebook 

are clearly identifiable as innovations in relation to normal practice and could be 

interpreted as an instance of instrumentalisation where the user shapes the tool to 

his/her purpose. Data from the student interviews confirmed that these two 

innovations were important in the students’ instrumental genesis (Billington, 2008). 

This leads to the reoccurring third theme in the meetings and interviews: reflection 

over teaching practice in the classroom. The teachers expanded on the teaching 

philosophy on which they have based the project claiming that they tried to avoid the 

standard structure of theory, example, exercises, and method.  

Teacher 2:  We have had a main principle since we started with this. These textbooks are 

always alike, theory, examples, and then exercises exactly like the example, and then 

examples that are almost the same. As far as possible we try to avoid this. Our 

philosophy is fewer exercises and they can rather sit and struggle with the same exercise 

and if it takes the whole lesson that does not matter.   

Interestingly the teachers did not expose on the wonders of the digital tool per se, but 

rather talked of the teaching possibilities with the tool as illustrated by these quotes.   

Teacher 1: I have much more influence on my own teaching before... 

Teacher 1: The role of the teacher is a bit …you have greater possibilities, that is what we 

have seen … 
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Teacher 2: But, I must say, for my sake, that I have opportunities that I would never had 

had without the PC. 

These possibilities can be interpreted as new didactical techniques. One teacher 

claimed that his teaching had changed since the students have now chosen not to use 

the standard paper textbooks. They discussed the need to focus on understanding 

rather than the reproduction of algorithms. They saw the creation of the digital 

textbook as allowing them more freedom to steer the activities of the classroom in 

line with their philosophy. These reflections I interpret as discourse justifying the 

praxis element of the didactical praxeologies. 

Choosing for students the mathematical tasks, and the techniques and tools to solve 

these tasks, is a didactical task for the teacher. These tools include the textbook as 

well as the digital tools, the software and the hardware. The nature of this didactical 

task has changed for these teachers in the course of the project. They have explained 

how previously they just followed the book, a routine, but now because of the new 

situation they have been forced to make new choices. They now worked together to 

select mathematical tasks themselves rather than following a set up in a book.  

Analysis of data from classroom observation  

In looking at the data from classroom observations I attempted to identify didactical 

praxeologies that were a result of the introduction of the digital tool. In the classroom 

observation data I looked at the teachers’ (1) Organisation of space and time, (2) 

Choice of mathematical tasks and mathematical techniques and physical tools, and 

(3) Steering of activity through discourse, considering these to be three practical 

moments of the didactical praxeologies.    

In the lessons observed, neither the organisation of space or time nor the choice of 

mathematical tasks seemed to be dependent on or unique for a classroom where the 

digital tool of the PC has been introduced. For example, analysis of the time 

disposition in lessons showed a script with recapping, homework correction, new 

theory, and then exercises with approximately 50 – 60 % of the lesson time spent 

with students working alone or in pairs on exercises. Some time however was given 

to the explanation of the technical aspects of performing the mathematical techniques 

with the digital tool. This time allocation varied from lesson to lesson.    

Deviation from a standard classroom environment without digital tools was observed 

in the type of tools used by the students and by the teacher and also in the public 

discourse of the teacher. Choosing the tools for use in the lesson, for the teacher and 

for the students to carry out mathematical tasks is a didactical task. This is an 

ongoing task as choices are made in the planning but also in the conduct of the 

lesson. Two aspects that stood out in the observations were the manner in which the 

teacher used both the digital tool and the blackboard to support his/her public 

discourse and the manner, which the teacher referred to and talked about using the 

digital tool when describing the mathematical techniques to solve the mathematical 
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tasks. This second aspect involves a too broad discussion to take in this paper but will 

be discussed in the thesis of which this work forms a part.   

Results and discussion of classroom observation  

In the classroom observations the teachers used both the blackboard and the screen, 

which was connected to the PC to support their public discourse. One feature that 

emerged frequently in each observed lesson, I term “weaving”. Weaving describes 

the manner in which the teacher moved between the available tools. Three physical 

tools were noted to be in use when the teacher was holding public discourse: the 

blackboard, the PC+screen, and gestures with own body such as tracing out a curve in 

the air. Each of these tools is used in conjunction with the voice and schemas 

(cognitive apparatus). It appeared that in prepared sequences of the lessons the digital 

tool was used but in spontaneous situations, for example when pressed for further 

explanation, the teacher turned to the blackboard or to gestures.   

Discussing this weaving with the teachers, one teacher explained, that “we use what 

is appropriate in the situation”. Teachers seemed to identify affordances and 

constraints of each tool. It appeared that an affordance of the blackboard was that it 

allowed more personal and spontaneous expression by the teacher. It may also be the 

case that such unplanned use of the digital tool requires a high level of skill and 

familiarity with the tool and as such this is a constraint of the tool. In a later instance 

one teacher began to draw a circle on the blackboard freehand but suddenly stopped 

saying; “I have an excellent tool to do this”, and then drew the circle using the 

dynamic geometry software on PC screen instead. Also the mathematical tasks in use 

were standard tasks, which could be solved without the digital tool. Had these tasks 

been more complex or tasks that required the use of digital tools perhaps the response 

of the teacher would have been different.  

CONCLUSIONS AND FURTHER DISCUSSION   

Returning to the research questions, three features of the didactical praxeologies as 

specifically pertaining to and “provoked” by the introduction of the digital tool have 

been identified and discussed: the digital notebook, the digital textbook, and the 

phenomena of weaving between tools/instruments in the classroom. The two features 

that are seen as particularly important by the teachers are the digital textbook and the 

digital notebook. These could be interpreted as examples of instrumentalisation 

whereby the teacher as user has adapted the tool to his/her usage. In the classroom, 

the observation of patterns of inter-dependent mediation between physical tools that 

have been adapted by the teachers, where they weave between blackboard and the 

digital tool in response to the situation, could be interpreted as observations of 

schema or expression of instrumentation as in these cases the tool which is thought to 

be the most appropriate is used.  

Can the project implementation described above be modelled as a process of 

instrumental genesis for the teachers and is such a modelling helpful in gaining an 
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understanding of the situation? Further examination of teacher discourse will provide 

more information about this possible instrumental genesis process though tentative 

findings in this report seem to lead in this direction. Some issues to be discussed in 

relation to such a process are for example: the temporal dimension; if instrumental 

genesis is a process how is it possible to identify the different stages of this process 

for the teacher; and also as to which observations would indicate the formation of 

schema. The notion of instrumental orchestration has been discussed earlier. Is the 

process of instrumental genesis for the teacher also influenced by some constraining 

factors? Comments by the teachers indicated that, for the teachers, the process is 

steered in part on an organisational level by the schooling authorities at school, 

region, and national levels. Financial and policy support from schooling authorities is 

necessary for the survival of the ICT project. In the meetings, the school leader was 

highly supportive of the project and expressed the opinion that when students think it 

(mathematics) is fun, then they use more time on mathematics and so become better 

at it. Enrolment in mathematics has also increased dramatically. However, more 

important to the teachers seemed to be the response of the students. In the categories 

of justification and evaluation the majority of comments by the teachers concerned 

student learning and engagement as illustrated by the comment below.   

Teacher 1: Need to give students a challenge. Students are not educated to work in this 

way. Now they think it is fun. Looking for methods … 

For the teachers in this study, the students’ response to the new situation appears to 

influence the teachers’ use and adaptation of the digital tool. Such comments as 

above also indicate that the teachers are aware of their role in orchestrating their 

teaching to support the instrumental genesis of the student. 
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DYNAMIC GEOMETRY SOFTWARE: THE TEACHER’S ROLE 
IN FACILITATING INSTRUMENTAL GENESIS 

Nicola Bretscher 

King’s College London 

In the UK, use of dynamic geometry software (DGS) in classrooms has remained 
limited. Whilst the importance of the teacher’s role is often stated in dynamic 
geometry research, it has been seldom elaborated. This study aims to address the 
apparent deficiency in research. By analysing teacher/pupil interactions in a DGS 
context, the intention is to identify situations and dialogue that are helpful in 
promoting mathematical thinking. The analysis draws on an instrumental approach 
to describe such interactions. Elements of instrumental genesis are distinguished in 
pupils’ dialogue and written work which suggest techniques that teachers can employ 
to facilitate this process.  

Keywords: teacher’s role, dynamic geometry, instrumental genesis 

INTRODUCTION 

This study aims to elicit teaching techniques that teachers might employ in their 
classrooms to help pupils engage constructively with dynamic geometry software. 
Currently DGS has made little impact on classrooms in the UK. Research has tended 
to focus on elaborating situations of innovative use and student/machine interaction. 
This study hopes to re-focus on “the teacher dimension” (Lagrange et al, 2003). The 
author carried out this study in the role of a practitioner-researcher with a high ability 
year 8 class. Whilst the class cannot be deemed to be representative, nevertheless it is 
an ‘ordinary classroom’ and therefore this study can claim to respond to the need for 
research into how dynamic geometry software is integrated into ‘the regular 
classroom’ (Gawlick, 2002). 

DGS – A CLASSROOM FAILURE? 

Dynamic geometry software (DGS) appears to be following the cycle of oversell and 
high expectations, ending in limited classroom use identified by Cuban (2001) as a 
general pattern for technological innovation in education. Research in mathematics 
education generally presents DGS as a potentially important and effective tool in the 
teaching and learning of geometry (see for example Holzl, 1996; Marrades and 
Gutierrez, 2000; Mariotti, 2000). In their survey of geometry curricula, Hoyles et al 
(2001) state that although most countries seek to integrate ICT into teaching 
geometry, there is little explicit influence of ICT in classrooms. In the UK, despite 
recommendations in the Key Stage 3 Mathematics Framework (DfEE, 2001) for 
using DGS to develop geometrical reasoning, classroom use has remained limited 
(Ofsted, 2004). Syntheses of research findings generally conclude by favouring the 
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strong potential of ICT but give few explanations for the contrasting poor reality of 
classroom use (Lagrange et al, 2003). 

THE ABSENT TEACHER 

A criticism of educational policy and discourse on ICT is that the predominant focus 
has been on technology rather than education (Selwyn, 1999). The picture painted by 
Lagrange et al (2003) of research on ICT within mathematics education is of a field 
dominated by “publications about innovative use or new tools and applications” 
where issues of the integration of technology into ordinary classrooms have been 
largely neglected. In particular, the voice and role of the teacher has been notably 
absent. DGS is no exception: in his review of research on dynamic geometry 
software, Jones (2002) suggests that future research could usefully focus on teacher 
input and its impact, amongst other issues. Although research has begun to examine 
the role of the teacher in DGS integration, the practices of ordinary teachers in 
ordinary classrooms remains an area requiring further investigation (Lagrange 2008).  

This study was designed with these issues in mind. The instrumental approach, 
described in the next section, was used to analyse teacher/pupil interactions in order 
to elicit teaching techniques which might facilitate pupils’ instrumental genesis.  

THEORETICAL BACKGROUND 

Instrumental genesis is described as the process by which an artefact is transformed 
into an instrument by the subject or user (Guin and Trouche, 1999). An artefact is a 
material or abstract object, given to a subject. An instrument is a psychological 
construct built from the artefact by the subject internalising its constraints, resources 
and procedures (Guin and Trouche, 1999). Once the user has achieved 
instrumentalisation, he is able to reinterpret or reflect on the activity he is engaged in. 
Drijvers and Gravemeijer (2005) describe instrumental genesis as the “emergence 
and evolution of utilisation schemes”. A utilisation scheme is a “stable mental 
organisation” including both technical skills and supporting concepts as a method of 
using the artefact for a given class of tasks (Drijvers and Gravemeijer, 2005). The 
interrelation between machine techniques and concepts seems important since 
Drijvers and Gravemeijer (2005) found that the apparent technical difficulties that 
students had often had a conceptual background. 

The instrumental approach has been mainly developed and applied within the context 
of computer algebra software (Drijvers and Gravemeijer, 2005) and there remains a 
question over how general its applicability is. Drijvers and Gravemeijer (2005) cite 
two examples where the instrumental approach has been applied to DGS. Thus it 
seems instrumental genesis may be an appropriate tool to analyse observations of 
student behaviour within a dynamic geometry environment. 
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RESEARCH CONTEXT AND METHODOLOGY 

This study was conducted as part of a Best Practice Research Scholarship-funded 
project on using DGS as a resource for teaching geometrical proof. Much of the 
previous research on DGS has focused on pupils in upper secondary school (Jones, 
2000). It has been suggested that more research is needed on the impact of dynamic 
geometry software on students in lower secondary school (Marrades and Gutiérrez, 
2000). The decision to conduct the research with the researcher’s year 8 class was 
partly influenced by this consideration. Since the pupils were in year 8, there was an 
added advantage that they were not subject to public examinations, the curriculum is 
less pressurised and therefore ethical considerations about deviating from schemes of 
work were somewhat reduced. The school in which the research was conducted is a 
private day school for girls. The research was conducted with the highest attaining set 
in year 8, containing 23 pupils, with girls expected to achieve levels 7 or 8 at Key 
Stage 3 [1]. In common with several other research studies, this was seen as an 
advantage since students judged to be above average in mathematical ability are most 
likely to be able to engage with proving processes and therefore allow meaningful 
data collection to take place (Jones, 2000; Marrades and Gutiérrez, 2000). 

In this paper, I consider data drawn from a sequence of 5 lessons in which pupils 
were engaged in investigating a series of construction problems in pairs using Cabri 
Geometre. The tasks were based upon the Phase 1 and 2 tasks developed by Jones 
(2000) and were intended to progress in difficulty. Each task consisted of a figure 
which the pupils were to construct in Cabri so that it remained constant under drag. 
The methods for constructing a figure were linked and developed from previous 
problems to encourage the pupils to examine how additional constraints might affect 
the resultant shape. They were prompted to say what the resultant shape was and, 
importantly, how did they know? The point of the teaching sequence was to 
encourage pupils to justify or prove these assertions.  

The pupils were asked to choose a construction of their choice and produce a Power-
point presentation on why their construction had worked which was presented to the 
class. Printouts of the pupils’ Power-point presentations and audiotape recordings of 
their presentations to the class form one part of the data collected. During the lessons, 
the researcher carried an audiotape so that any teacher/pupil interactions would be 
recorded: these recordings form another part of the data collected. After the lessons, 
brief field-notes were made on the major events in the lesson.  

The initial stage of data analysis concerned the transcription of tape-recordings made 
during lessons. Using field notes, the tapes were broken down into major events or 
“episodes” (Bliss et al, 1996). In the sense described by Bliss et al (1996) these 
episodes had “an internal coherence”; they were complete conversations which 
allowed the researcher to “interrupt momentarily, for the purpose of analysis, the 
‘relentless flow of the lesson’”. A second stage of analysis involved going through 
the transcripts and pupils’ work making notes, identifying critical incidents that build 
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towards detailed accounts of practices. The final analysis was based on a grounded 
approach using narrative techniques (Kvale, 1996) which moved back and forth 
between the theoretical viewpoint developed in the review of literature and the 
pupils’ work and transcribed episodes. Each step in this process eased the transition 
from emotionally involved participant towards objective observer. Using the concept 
of instrumental genesis to achieve a “rich and vivid description of events” (Hitchcock 
and Hughes, 1995), this study hopes to tease out the threads of a tapestry of complex 
social interactions to see if techniques for promoting mathematical thinking can be 
discerned in the weave. 

ANALYSIS 

From the analysis of data, three teaching techniques emerged for facilitating pupils’ 
instrumental genesis in Cabri. Using excerpts from teacher/pupil dialogue, these 
techniques are described below, where T represents the teacher throughout. 

Unravelling functional dependency in DGS 

In common with other students, Pupils H and C experienced difficulty with 
specifying where they wanted objects to intersect when attempting to construct two 
circles sharing the same radius. They constructed the first circle successfully and 
correctly placed the centre of the second circle on its edge. The difficulty arose when 
they tried to adjust the size of the second circle so that its edge would pass through 
the centre of the first circle, thus ensuring that they would share a radius. The 
problem was that they made it look like the edge of the second circle passed through 
the centre of the first circle rather than specifying to Cabri that the circle should go 
“By this point” – as the Cabri pop-up phrase suggests if you hover over the required 
centre point. Although their Cabri drawing looked successful, when it was subjected 
to a drag-test, the circles changed size in relation to each other instead of maintaining 
their pattern: 

T: Yeahhh. That’s it because you see this computer program will only do exactly what 
you tell it so if you just make it look like it… sort of, yeah. I’m going to be able to 
change the shape of your circle so if you tell it, look…. 

crackle:  teacher using the computer to show how the circle can still be messed up. Then 
creates a new one “by this point” method to show the difference 

T: Ok now try and mess it up, you try and mess it up     now 
mess up one of the other circles yeah… ok so… 

There follows some unintelligible comments and crackling then… 

H: You think a computer’s smart but it’s not, you can’t just sit there and watch it do it 
for you, you have to know what to do and you have to tell it to do it so it’s like a 
something…. like it’s like a lightswitch. 
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The difficulties that students have in coming to terms with the concept of functional 
dependency in geometry exemplifies Drijvers and Gravemeijer’s (2005) conception 
of utilisation schemes in which the technical and conceptual elements co-evolve.  
Pupil H articulates this point very clearly: “you have to know what to do and you 
have to tell it to do it”. Mathematical knowledge is knowing “what to do” and 
technical knowledge is required in order to tell the computer to do it. The gap in H 
and C’s knowledge was an appreciation of the functional dependencies inherent in 
Cabri: on the one hand, a conceptual gap of the necessity of specifying the required 
geometrical relationship and, on the other hand, a gap in the technical knowledge of 
how to specify the relationship using Cabri. The teacher explains the need to specify 
the geometrical relationship: the “computer program will only do exactly what you 
tell it”. The teacher goes on to illustrate the technical knowledge of how to specify 
the relationship by contrasting the construction ‘by eye’, which could still be messed-
up, to the “by this point” version in which the geometrical relationships remained 
intact. 

Pupil K had similar difficulties to H and C: although she seemed to be clear about 
how the circle should be positioned, she appeared unaware of the necessity to specify 
to Cabri that the circle should go “By this point”. Again the teacher makes the 
technical elements explicit: 

Ok. Keep your hand …[K: uhuh] yeah? So if you actually put it on the point and say 
I want it “by this point” that’s how the comp… that’s the only bit of IT you’re using. 
[K: But that’s…] That’s the only knowledge…IT knowledge you’ve used. And really 
then you’ve had to tell it to do that haven’t you? 

In this case, the teacher is more direct in making the functional dependencies explicit, 
by guiding the pupil’s construction and referring to the software language “by this 
point”. The teacher even describes this technical knowledge of how to specify the 
relationship as “IT knowledge”, unravelling it from the mathematical knowledge of 
the geometrical relationship. The teacher again refers to the conceptual necessity of 
specifying the relationship: “you’ve had to tell it to do that”. Drijvers and 
Gravemeijer (2005) describe instrumental genesis as the “emergence and evolution of 
utilisation schemes, in which technical and conceptual elements co-evolve”. The role 
of the teacher in supporting instrumental genesis is partly in making the technical and 
conceptual elements explicit. In the case of dynamic geometry software such as 
Cabri, the role of the teacher is to unravel the notion of functional dependency by 
highlighting the necessity of specifying the required geometrical relationship and the 
technical knowledge of how to specify the relationship. 

Exploiting dynamic variation to highlight geometric invariance 

All the figures presented to the pupils for construction were based on the initial 
construction of a line which was apparently horizontal. Of course, there is no 
geometrical reason for the line to be horizontal, the figures had been presented in this 
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way purely for neatness and it had not been given a second thought, until the teacher 
noticed that all students appeared to be constructing intentionally horizontal lines. 
The pupils had discovered that by pressing the “shift” key whilst constructing a line, 
the line would snap to the horizontal. According to the pupils, a similar feature of 
“snapping to a grid” occurs in a piece of completely unrelated software, which was 
how the discovery was made. Pupil K was insistent that the line should be horizontal: 

T:  Why do you always insist on that being horizontal? Does it matter if it…. 

The teacher draws attention to the pupil’s misconception and, by dragging, attempts 
to convey that the horizontal constraint is artificial, that it can be broken without 
disturbing the figure under construction. As the pupils were presenting their work to 
the class, it became clear that all groups had produced figures with horizontal lines. 
The teacher again attempted to question this feature of their constructions but this 
time in a whole class context. Pupil MC was asked to reconstruct her solution to 
Problem 2 (a perpendicular bisector) without starting from a horizontal line. She did 
this successfully on an interactive whiteboard so that the whole class could see. She 
then dragged the figure, directed by the teacher, changing its orientation to show its 
invariance, including the situation with the initial line being horizontal. The teacher 
exploits dynamic variation to highlight the geometric invariance of the construction 
in order to help pupils differentiate between geometrical relationships which were or 
were not crucial. 

A similar situation occurred when a pair of pupils, MC and ML, successfully 
completed the construction leading to a square (Problem 4). They both excitedly told 
the teacher that the shape they had produced was a diamond. The teacher dragged 
their construction so that the base of the shape was horizontal, at which point they 
both concurred that the shape was a square. Upon dragging it back to the original 
position, ML in particular returned to her previous statement that it was a diamond. 
Repeated dragging, more and more slowly to emphasise the continuous 
‘transformation’ of the shape, convinced both students that the shape was, in fact, 
always a square. Again the teacher’s strategy is to demonstrate the potential of the 
software, by exploiting dynamic variation to demonstrate the invariance of the 
constructed shape. Recognising the potential of the software and making its 
affordances explicit to pupils is a key element in supporting instrumental genesis.  

Making connections between DGS and pencil-and-paper  

Pupil N had constructed a rhombus but, as in the examples in the previous paragraph, 
had difficulty identifying the shape due to its unfamiliar orientation. The teacher 
employs dynamic variation to convince pupil N that the shape is indeed a rhombus 
but then continues the explanation on paper: 

N: Is this a rhombus? But a rhombus supposed to be like tilted so…? 

Teacher manipulating the diagram on screen 
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N: Oh so it can be, it can be any way up and it [T: Oh!] would still be a rhombus.  

T: Well yeah… [N to another pupil: Well it is a rhombus.] it’s like, look, this is a well 
no that’s not. This a rectangle isn’t it? Ok, it’s still a rectangle. It’s still a rectangle. 
However much I turn it, it’s still a rectangle. Yeah, ok? 

Diagram of rectangle drawn on paper and then the paper twisted and turned as a 
demonstration that orientation doesn’t alter the shape. 

Guin and Trouche (1999) suggest that teachers should highlight the constraints and 
limitations of the software to students in order to support their instrumental genesis. 
In these cases, the teacher is in fact using the dynamic nature of the Cabri software to 
highlight the constraints and limitations of the paper-and-pencil environment, 
exposing a misconception and thereby supporting the pupils’ instrumental genesis in 
the more traditional medium. In the case of the tilted rhombus, the teacher sketched a 
rectangle on paper in order to further illustrate the concept that orientation does not 
affect the nature of the shape. This sketch was done on paper at the time mainly 
because it was quicker than constructing the shape on Cabri. The teacher’s return to 
the paper-and-pencil environment is important because it makes a connection 
between the two environments: although dynamic variation makes it easier to 
appreciate that orientation does not affect the shape, the concept still holds in a paper-
and-pencil environment. The return to paper-and-pencil is thus an attempt by the 
teacher to “build connections with the official mathematics outside the microworld”, 
a responsibility which Guin and Trouche (1999) identify as being a crucial part of the 
teacher’s role. 

DISCUSSION 

From the sequence of lessons, three teaching techniques have been distilled that serve 
to facilitate pupils’ instrumental genesis in a DGS context. These techniques are 
clearly not exhaustive: exploiting anomalies of measurement in Cabri such as 
rounding errors might be another way to promote mathematical thinking, for 
example. These techniques are specific to DGS in general and Cabri Geometre. They 
are also analogous to teaching techniques used in other contexts. Guin and Trouche 
(1999) suggest that teachers should highlight the constraints and limitations of the 
software to students: in the case of Derive, the discrete and finite nature of the 
software. Similarly, a dynamic geometry environment such as Cabri is only a discrete 
model of Euclidean geometry, despite its continuous appearance. All tools and 
resources have constraints and limitations. In the case of paper and pencil, a 
limitation is the static nature of the environment. Thus techniques such as those 
identified in this paper may apply to any teaching resource. In a sense, the teaching 
techniques mentioned here essentially highlight general principles of mathematics 
teaching applied to a specific context, in this case DGS. The resource provides a 
context for learning but cannot teach. The focus of research needs to shift away from 
the context, towards teachers and the teaching techniques they may employ in order 
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to aid pupils’ instrumental genesis. In this way research on ICT may avoid the 
criticism that the predominant focus has been on technology rather than education. 

NOTES 
1. Key Stage 3 covers the first three years of secondary schooling in England: Year 7 (age 11-12), Year 8 (age 12-13) 
and Year 9 (age 13-14). Average attainment at the end of KS3 is at level 5/6. Level 8 is the highest level possible in 
maths at KS3. 
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INSTRUMENTAL ORCHESTRATION:  

THEORY AND PRACTICE 

Paul Drijvers, Michiel Doorman, Peter Boon, Sjef van Gisbergen 

Freudenthal Institute for Science and Mathematics Education, Utrecht University 

 
The paper concerns the way teachers use technological tools in their mathematics 
lessons. The aim is to investigate the explanatory power of the theory of instrumental 
orchestration through its confrontation with a teaching episode. An instrumental 
orchestration is defined through a didactical configuration, an exploitation mode and 
a didactical performance. This model is applied to a teaching episode on the concept 
of function, using an applet embedded in an electronic learning environment. The 
results suggest that the instrumental orchestration model is fruitful for analysing 
teacher behaviour, particularly in combination with additional theoretical 
perspectives. 

INTRODUCTION 

The integration of technological tools into mathematics education is a non-trivial 

issue. More and more, teachers, educators and researchers are aware of the 

complexity of the use of ICT, which affects all aspects of education, including the 

didactical contract, the working formats, the paper-and-pencil skills and the 

individual and whole-class conceptual development. 

A theoretical framework that acknowledges this complexity is the instrumental 

approach (Artigue, 2002). According to this perspective, the use of a technological 

tool involves a process of instrumental genesis, during which the object or artefact is 

turned into an instrument. The instrument, then, is the psychological construct of the 

artefact together with the mental schemes the user develops for specific types of 

tasks. In such schemes, technical knowledge and domain-specific knowledge (in our 

case mathematical knowledge) are intertwined. Instrumental genesis, in short, 

involves the co-emergence of mental schemes and techniques for using the artefact, 

in which mathematical meanings and understandings are embedded. 

Many studies focus on the students’ instrumental genesis and its possible benefits for 

learning (e.g., see Kieran & Drijvers, 2006). However, it was acknowledged that 

instrumental genesis needs to be monitored by the teacher through the orchestration 

of mathematical situations. In order to describe the management by the teacher of the 

individual instruments in the collective learning process, Trouche (2004) introduced 

the metaphorical theory of instrumental orchestration.  

Until today, however, the number of elaborated examples of instrumental 

orchestrations is limited. Therefore, the aim of this paper is to investigate the 

explanatory power of the theory of instrumental orchestration through its 
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confrontation with a teaching episode. As such, this contribution can be situated in 

the intersection of themes 2 and 3 of Cerme6 WG7: it concerns the interaction 

between resources or artefacts and teachers’ professional practice, in which students 

use tools in their mathematical activity. 

In the following, we first define instrumental orchestration. Then a description of a 

classroom teaching episode in which a technological tool plays an important role is 

provided. The episode is analysed in terms of the theory. This is followed by a 

reflection on the application and the conclusions which we have drawn.  

INSTRUMENTAL ORCHESTRATION: A THEORETICAL MODEL 

The theory of instrumental orchestration is meant to answer the question of how the 

teacher can fine-tune the students’ instruments and compose coherent sets of 

instruments, thus enhancing both individual and collective instrumental genesis.  

An instrumental orchestration is defined as the intentional and systematic 

organisation and use of the various artefacts available in an – in our case 

computerised – learning environment by the teacher in a given mathematical task 

situation, in order to guide students’ instrumental genesis. An instrumental 

orchestration in our view consists of three elements: a didactic configuration, an 

exploitation mode and a didactical performance. 

1. A didactical configuration is an arrangement of artefacts in the environment, 

or, in other words, a configuration of the teaching setting and the artefacts 

involved in it. These artefacts can be technological tools, but the tasks students 

work can be seen as artefacts as well.  

In the musical metaphor of orchestration, setting up the didactical 

configuration can be compared with choosing musical instruments to be 

included in the orchestra, and arranging them in space so that the different 

sounds result in the most beautiful harmony. 

2. An exploitation mode of a didactical configuration is the way the teacher 

decides to exploit it for the benefit of his didactical intentions. This includes 

decisions on the way a task is introduced and is worked on, on the possible 

roles of the artefacts to be played, and on the schemes and techniques to be 

developed and established by the students. 

In the musical metaphor of orchestration, setting up the exploitation mode can 

be compared with determining the partition for each of the musical instruments 

involved, bearing in mind the anticipated harmonies to emerge. 

3. A didactical performance involves the ad hoc decisions taken while teaching 

on how to actually perform the enacted teaching in the chosen didactic 

configuration and exploitation mode:  what question to raise now, how to do 

justice to (or to set aside) any particular student input, how to deal with an 

unexpected aspect of the mathematical task or the technological tool? 
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In the musical metaphor of orchestration, the didactical performance can be 

compared with a musical performance, in which the actual inspiration and the 

interplay between conductor and musicians reveal the feasibility of the 

intentions and the success of their realization. 

The model for instrumental orchestration initially was developed by Trouche 

(Trouche 2004) and included the first and the second points above, i.e. the didactical 

configuration and the exploitation mode. As an instrumental orchestration is partially 

prepared beforehand and partially created ‘on the spot’ while teaching, we felt the 

need for a third component reflecting the actual performance. Establishing the 

didactical configuration has a strong preparatory aspect: often, didactical 

configurations need to be thought of before the lesson and cannot easily be changed 

during the teaching. Exploitation modes may be more flexible, whereas didactical 

performance has a strong ad hoc aspect. Our threefold model thus has a time 

dimension.   

The model also has a structural dimension: an instrumental orchestration on the one 

hand has a structural, global component in that it is part of the teacher’s repertoire of 

teaching techniques (in the sense of Sensevy et al. 2005) and can be reflected in 

operational invariants of teacher behaviour. On the other hand, an instrumental 

orchestration has an incidental, local actualisation appropriate for the specific 

didactical context and adapted to the target group and the didactical intentions.  

The instrumental orchestration model brings about a double-layered view on 

instrumental genesis. At the first level, instrumental orchestration aims at enhancing 

the students’ instrumental genesis. At the second level, the orchestration is 

instrumented by artefacts for the teachers, which may not necessarily be the same 

artefacts as the students use. As such, the teacher himself is also involved in a process 

of instrumental genesis for accomplishing his teaching tasks (Bueno-Ravel & 

Gueudet, 2007). 

In literature, the number of elaborated examples of instrumental orchestrations is 

limited. Trouche (2004) and Drijvers & Trouche (2008) describe a so-called Sherpa 

orchestration. Kieran & Drijvers (2006), without mentioning this orchestration 

explicitly, describe an instrumental orchestration of short cycles of individual work 

with the artefact and whole-class discussion of results. 

THE CASE OF TWO VERTICALLY ALIGNED POINTS 

The case we describe here stems from a research project on an innovative 

technology-rich learning arrangement for the concept of function
1
. In this project, a 

learning arrangement for students in grade 8 was developed, aiming at the 

development of a rich function concept. This includes viewing functions as input-

output assignments, as dynamic processes of co-variation and as mathematical 

                                         
1
 For further information on the project see Drijvers, Doorman, Boon, Van Gisbergen & Gravemeijer (2007) and the 

project website www.fi.uu.nl/tooluse/en/. 
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objects with different representations. The main technological artefact is an applet 

called AlgebraArrows embedded in an electronic learning environment (ELO). The 

applet allows for the construction and use of chains of operations, and options for 

creating tables, graphs and formulae and for scrolling and tracing. A hypothetical 

learning trajectory, in which the expected instrumental genesis is sketched, guided the 

design of the student materials.  An accompanying teacher guide contained 

suggestions for orchestrations. 

After group work on diverse problem situations involving dependency and co-

variation, the notion of arrow chains is introduced to the students. In the third and 

fourth lessons, students work with arrow chains in the ELO. One of the tasks of the 

fourth lesson, which some of the students did at home, is task 8, shown in Figure 1.   

 

Figure 1 Computer task 8 

At the right of Figure 1 is the applet window, which in this task contains the start of 

the square and the square root chain, and an empty graph window. At the left you see 

the tasks and two boxes in which the students type their answers. The numbered 

circles at the bottom allow for navigation through the tasks. 

The following verbatim extract describes the way the teacher discusses this task 

during the fifth lesson. 

Using a data projector, the ELO with the list of student pairs is projected on the wall 

above the blackboard. The teacher T navigates within this list to Tim and Kay’s solution 

for task 8.  

T:  It says here [referring to question c]: what do you notice? Oh yes, I actually 

wanted to see quite a different one, because they had … 

T navigates to Florence and her classmate’s work. The Table option is checked. That 

leads to ‘point graphs’ on the screen. The students’ answer to question c reads:   
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"For the square they are all whole numbers, and for the square root they are whole 

numbers and fractions. And the square of a number is always right above the root. ?" 

T:  Look here, what this says. [indicates the students’ answer of question c on 
the screen with the mouse] For the square they are all whole numbers, okay, 

and for the square root they aren’t whole numbers, we agree with that too, 

and the square of a number is always right above the square root.  

F(lorence): Was that right? 

T: I’m not saying.  

St1
2
: Yes, I had that too. 

T: What they say, then, is that every time there is…if I’ve got something here, 

there is something above it, and if I’ve got something there, there is also 

something above it. [points vertically in the graph with the mouse] Why is 

that, that these things are right above each other? 

F: Well, because it…the square root is just…no the square is just, um, twice 

the root, or something. 

St2: No. 

T: Kay? 

Kay: That’s because the line underneath, that’s got a number on it, which you 

take the square root of and square, so on the same line anyway.    

T: What are those numbers called that are on the horizontal line then?  

St3: The input numbers. 

T: The input numbers.  

T: Ehm, Florence, did you follow what Kay said? 

F: No, but I […]. It was about numbers and about square roots and about… 

Sts: [laughs] 

St:  It was about numbers! 

T: Kay said: these are the input numbers, here on the horizontal line. [indicates 
the points on the horizontal axis with the mouse] And for an input number 

you get an output number. And that is right above it. So if you take the 

same input number for two functions… [indicates the two arrow chains 
with the mouse]  

F:  Oh yes.  

                                         

2
 St1, St2, .. stands for one of the students 
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T: … then you also get…then you get points above it. So that’s got nothing at 

all to do with the functions. It’s just got to do with from which number you 

are going to calculate the output value. Now, if for both of them you 

calculate what the output value is for 10, they both get a point above the 10 

[indicates on the screen with the mouse]. Do you understand that? 

F: Oh yes, I didn’t know that. 

T navigates back to the list of student pairs.  

Figure 2 shows the work of Florence and her classmate on this task in Dutch at the 

end of the teaching sequence. They changed their answer to question c into: “for the 

square they are always whole numbers, and for the square root they are whole 

numbers and fractions. The squares get higher with much bigger steps.” 

 

Figure 2 Revision of the answer after whole class discussion 

APPLYING THEORY TO PRACTICE 

In this section we apply the theory of instrumental orchestration to the above teaching 

episode, which essentially reflects the teacher’s way to treat a misconception of (at 

least) one of the students, whose use of the Table-Graph technique leads to thinking it 

is ‘special’ that two points reflecting function values for the same input value are 

vertically aligned. 

Let us call the instrumental orchestration the teacher puts into action the ‘spot and 

show orchestration’. By ‘spot’ we mean that the teacher, while preparing the lesson, 

spotted the students’ work in the ELO and thus came across Florence’s 

misconception. The ‘show’ refers to the teacher’s decision to display Florence’s 

results as a starting point for the whole-class discussion of item 8c. The teacher’s 
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phrase “Oh yes, I actually wanted to see quite a different one” and her straight 

navigation to Florence’s work reveal her deliberate intention to act the way she does.  

The didactical configuration for the preparatory phase consists of the ELO’s option 

for teachers to look at the students’ work at any time. As a result, the teacher notices 

the misconception and decides to deal with it in her lesson. This preparation is 

instrumented by ELO-facilities that are not available for students. In this sense, the 

teacher’s artefact is different from the students’ artefact. For the classroom teaching, 

the configuration includes a regular classroom with a PC with ELO access, connected 

to a data projector. Apparently, the teacher finds the computer lab not appropriate for 

whole-class teaching. The configuration includes putting the computer with the data 

projector in the centre of the classroom. This choice is driven by the constraints of 

one of the artefacts: if the projector was at the front, the projection would get too 

small for the students to read. The screen is projected on the wall above the 

blackboard, thus enabling the teacher to write on the blackboard, which she regularly 

does − though not in the episode presented here. Both the way of preparing the 

lessons and the setting in the classroom are observed more often in this teacher’s 

lessons.  

The exploitation mode of this configuration includes that teacher’s choice to operate 

the PC herself. These two aspects of the exploitation mode result in the teacher 

standing in the centre of the classroom, with the students closely around her, all 

focused on the screen on the wall. From these and other observations, we conjecture 

that this exploitation mode enhances classroom discussion and student involvement. 

Observations of another teacher using the same orchestration in a less convenient 

setting support this conjecture.  

The didactical performance starts with the teacher reading the student’s answer with 

some minor comments (“Look here, …”). Then she reformulates the answer and asks 

Florence for an explanation (“What they say…”). When the explanation turns out to 

be inappropriate, she makes Kay give his explanation, and checks whether Florence 

understands it. When this is not the case, the teacher rephrases Kay’s explanation and 

once more checks it with Florence, who now says she understands. Of course, this 

didactical performance might be different a next time. For example, Florence could 

be asked to explain her understanding in her own words.  

Now how about the link between instrumental orchestration and instrumental 

genesis? As the episode does not show students using the artefact, we do not see 

direct traces of the students’ instrumental genesis. We do claim, however, that 

Florence’s idea of two vertically aligned points being special is part of her scheme of 

using the TableGraph technique to produce point graphs. Even though this is a 

misconception, the episode shows that the teacher can exploit the students’ 

experiences, and those of Florence and Kay in particular, for the purpose of attaching 

mathematical meaning to the technique they used, which leads to a convergence in a 
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shared function conception in class. We see the development of mathematical 

meanings of techniques as an important aspect of instrumental genesis. 

This ‘spot&show’ orchestration was one of the options suggested in the teacher guide 

accompanying the teaching sequence. This teacher used it quite often, whereas she 

felt free to neglect other suggestions made in the teacher guide. In the post-

experiment interview, she indicated to really appreciate the possibility to get an 

overview of students’ results while preparing the lesson: “The ELO is practical to see 

what students do, you can adapt your lesson to that.” She seemed to see this 

‘spot&show’ orchestration as a means to enhance student involvement and 

discussion, which she believed to be relevant and seem to be part of her operational 

invariants . We do not have data, however, that confirm such operational invariants 

across other teaching settings.   

Finally, an interesting aspect of the teacher’s own instrumental genesis is worth 

discussing. The teacher points with her mouse on the screen, but does not really make 

changes in the students’ work. Other observations suggest that she doesn’t do so 

because she is afraid that such changes will be saved and thus affect the students’ 

work. When she learns that this is not the case as long she uses her teacher login, she 

benefits from the freedom to demonstrate other options and to investigate the 

consequences of changes. This behaviour is instrumented by the facilities of the 

artefact that she initially was not aware of. 

REFLECTION ON THE THEORY AND THE CASE 

Let us briefly reflect on the application of the theory of instrumental orchestration to 

the data presented above. A first remark is that the three elements of the model – 

didactical configuration, exploitation mode and didactical performance – allow for a 

distinction and an analysis of the relevant issues within the orchestration, and their 

interplay. As such, the model offers a useful framework for describing the 

orchestration by the teacher.   

As a second remark, however, we notice that it is not always easy to decide in which 

category something that is considered relevant should be placed. For example, does 

the fact that the teacher operates the computer herself belong to the didactical 

configuration or to the exploitation mode? This probably is a matter of granularity: if 

we study the ‘spot & show’ orchestration, this is part of the exploitation mode. If the 

focus of the analysis is on students’ activity, it might be identified as a didactical 

configuration issue.   

A third reflection is that the model has the advantage of fitting with the instrumental 

approach of students learning while using tools. This has proved to be a powerful 

approach (Artigue, 2002; Kieran & Drijvers, 2006), and it is therefore of great value 

having a framework for analysing teaching practices that is consistent with it. As 

such, instrumentation and orchestration form a coherent pair. In terms of 

instrumentation, we notice that the teachers’ tasks, artefacts and techniques are not 
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the same as those of the students; still, we can use a similar framework for analysis 

and interpretation.  

The time dimension in the model – ranging from the didactical configuration having a 

strong preparatory character to the didactical performance with its strong ad hoc 

character – comes out clearly in the model. For the structural dimension, this is not as 

straightforward. As a fourth remark, therefore, we notice that operational invariants 

of the teacher are not limited to the preparatory phases, but also emerge in the 

performance. For example, the wish to have students explain their reasoning to each 

other appears as an operational invariant for this teacher, which is more explicit in the 

performance than in the configuration or in the exploitation mode. As an aside, we 

are aware that the data presented here do not allow for full identification of the 

teacher’s operational invariants. More observations over time need to be included. 

CONCLUSION  

As far as this is possible from the one single, specific exemplary case study presented 

in this paper, we conclude that the model of instrumental orchestration can be a 

fruitful framework for analysing teachers’ practices when teaching mathematics with 

technological tools. As it is important for teachers to develop a repertoire of 

instrumental orchestrations, more elaborated examples are needed. Such examples 

could not only help us to better understand teaching practices, but could also enhance 

teachers’ professional development.  

In addition to the need to find and elaborate exemplary orchestrations, a second 

challenge is to link the theory of instrumental orchestration with complementary 

approaches. Lagrange (2008), for example, uses additional models provided by Saxe 

(1991) and Ruthven and Hennessey (2002) to identify and understand teaching 

techniques. Another interesting perspective concerns the alternation of teacher 

guidance and student construction, as described by Sherin (2002). In short, the 

instrumental orchestration approach is promising, but needs elaboration and 

integration with other perspectives. For the moment, its descriptive power seems to 

be more important than its explanatory power. 
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TEACHING RESOURCES AND TEACHERS’ PROFESSIONAL 

DEVELOPMENT:  

TOWARDS A DOCUMENTATIONAL APPROACH OF 

DIDACTICS 

Ghislaine Gueudet / Luc Trouche  
CREAD, IUFM Bretagne UBO / EducTice, INRP; LEPS, Université de Lyon 

 
In this paper we propose a theoretical approach of teachers’ professional 
development, focusing on teachers’ interactions with resources, digital resources in 
particular. Documents, entailing resources and schemes of utilization of these 
resources, are developed through documentational geneses occurring along 
teachers’ documentation work (selecting resources, adapting, combining, refining 
them). The study of teachers’ documentation systems permits to seize the changes 
brought by digital resources; it also constitutes a way to capture teachers’ 
professional change. 

INTRODUCTION 

We present in this paper the first elements of a theoretical approach elaborated for the 

study of teachers’ development, and in particular teachers ICT integration. 

Technology integration, and the way teachers work in technology-rich environments, 
have been extensively researched, and discussed at previous CERME conferences 

(Drijvers et al., 2005, Kynigos et al., 2007). Ruthven’s presentation at CERME 5 

drew attention on the structuring context of the classroom practice, and on its five key 
features: working environment, resource system, activity format, curriculum script, 
time economy (Ruthven, 2007). This leads in particular to consider ICT as part of a 

wider range of available teaching resources. This view also fits technological 
evolutions: most of paper material is now at some point in digital format; teachers 

exchange digital files by e-mail, use digital textbooks, draw on resources found on 

websites etc. Considering ICT amongst other resources raises the question of 
connections between research on ICT and resources-oriented research. 

Many research works address the use of curriculum material (Ball & Cohen, 1996; 

Remillard, 2005). They observe the influence of such material on the enacted 
curriculum, but also highlight the way teachers shape the material they draw on, 

introducing a vision of “curriculum use as participation with the text” (Remillard, 

2005, p.121). Other authors consider more general resources involved in teaching: 
material and human, but also mathematical, cultural and social resources 

(Adler, 2000). They analyze the way teachers interpret and use the available 
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resources, and the consequences of these processes on teachers’ professional 
evolution.  

Such statements sound familiar for researchers interested in ICT, who “consider not 

only the ways in which digital technologies shape mathematical learning through novel 

infrastructures, but also how it is shaped by its incorporation into mathematical learning and 

teaching contexts” (Hoyles & Noss, 2008, p. 89). Conceptualization of these processes 

is provided by the instrumental approach (Guin et al., 2005) and by the work of 
Rabardel (1995) grounding it; this theoretical frame has contributed to set many 

insightful results about the way students learn mathematics with ICT. Further 

refinements of this theory have led to take into account the role of the teacher and her 
intervention on students instrumental geneses, introducing the notion of orchestration 

(Trouche, 2004). Considering instrumental geneses for teachers has been proposed in 

the context of spreadsheets (Haspekian, 2008) and e-exercises bases (Bueno-Ravel & 
Gueudet, 2007). These refinements can be considered as first steps towards the 

introduction of concepts coming from the instrumental approach and illuminating the 

interactions between teachers and ICT. 

Thus connections between studies about the use of teaching resources, and studies 

about the way in which teachers work in a technology-rich environment exist; 

however, elaborating a theoretical frame encompassing both perspectives requires a 
specific care. We present here an approach designed for this purpose, and aiming at 

studying teachers’ documentation work: looking for resources, selecting, designing 

mathematical tasks, planning their order, carrying them out in class, managing the 
available artefacts, etc. We take into account teachers’ work in class, but also their 

(too often neglected) work out of class.  

We draw on the theoretical elements evoked above, but also on field data. Some of 
these data come from previous research in which we were engaged: particularly about 

use of e-exercises bases (Bueno-Ravel & Gueudet, 2007), and about an in-service 

training design, the SFoDEM (Guin & Trouche, 2005). Other data were specifically 
collected: we have set up a series of interviews with nine secondary school teachers. 

We chose teachers with different collective involvements, different institutional 

contexts and responsibilities, and different ICT integration degrees (Assude, 2007). 
We met them at their homes (where, in France and for secondary teachers, most of 

their documentation work takes place), and asked them about their uses of resources, 

and the evolution of these ways of use. We observed the organization of their 
workplaces at home, of their files (both paper and digital), and collected materials 

they designed or used. The analyses of these data contributed to shape the concepts; 

in this paper we only use them to display illustrations of the theory. All the interviews 
took place in France; thus the national context certainly influences the results we 

display. We hypothesize nevertheless that the concepts exposed are likely to 

illuminate documentation work in diverse situations. 
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We present here the elementary concepts of this theory, introducing in particular a 
distinction between resources and documents, and the notion of documentational 
genesis. We also expose the specific view of professional evolutions it entails.  

RESOURCES, DOCUMENTS, DOCUMENTATIONAL GENESES 

The instrumental approach (Rabardel, 1995, Guin et al., 2005) proposes a distinction 
between artefact and instrument. An artefact is a cultural and social means provided 

by human activity, offered to mediate another human activity. An instrument comes 

from a process, named instrumental genesis, along which the subject builds a scheme 
of utilization of the artefact, for a given class of situations. A scheme, as Vergnaud 

(1998) defined it from Piaget, is an invariant organization of activity for a given class 

of situations, comprising in particular rules of action, and structured by operational 
invariants, which consist of implicit knowledge built through various contexts of 

utilization of the artefact. Instrumental geneses have a dual nature. On the one hand, 

the subject guides the way the artefact is used and, in a sense, shapes the artefact: this 
process is called instrumentalization. On the other hand, the affordances and 

constraints of the artefact influence the subject's activity: this process is called 

instrumentation. We propose here a theoretical approach of teaching resources, 
inspired by this instrumental approach, with distinctive features that we detail 

hereafter, and a specific vocabulary. 

We use the term resources to emphasize the variety of the artefacts we consider: a 
textbook, software, a student’s sheet, a discussion with a colleague etc. A resource is 

never isolated: it belongs to a set of resources. The subjects we study are teachers. A 

teacher draws on resources sets for her documentation work. A genesis process takes 
place, bearing what we call a document. The teacher builds schemes of utilization of 

a set of resources, for the same class of situations, across a variety of contexts. The 

formula we retain here is:  

Document = Resources + Scheme of Utilization. 

A document entails, in particular, operational invariants, which consist of implicit 

knowledge built through various contexts of utilization of the artefact, and can be 
inferred from the observation of invariant behaviors of the teacher for the same class 

of situations across different contexts.  

Figure 1 represents a documentational genesis. The instrumentalization process 

conceptualizes teacher appropriating and reshaping resources, and the 

instrumentation process captures the influence, on the teacher’s activity, of the 

resources she draws on. 
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A set of resourcesA teacher

Instrumentation
Instrumentalization

A document: 
combined resources+a scheme of 
utilization

Institutional 
influences

For a given class of 
situations, through 
different contexts

 

Figure 1. Schematic representation of a documentational genesis 

DOCUMENTATIONAL GENESES: TWO ILLUSTRATIVE EXAMPLES  

We use a first case study (figure 2) coming from our interviews to illustrate the 

distinction between a set of resources and a document. 

 

Marie-Pierre (aged 40, involved in collective work within an IREM
1
 group; no institutional responsibilities, strong 

degree of ICT integration) is teaching at secondary school for 14 years, from grade 6 to 9. She uses dynamic 

geometry systems, spreadsheets, and many online resources (e-exercises and mathematics history websites in 

particular). She has a digital version of the class textbook. Marie-Pierre has an interactive whiteboard in her 

classroom for three years, and uses it in each of her courses. For the introduction of the circle’s area in grade 7, 

she starts in class by using a website comprising historical references (Archimedes using circular sections to link 

the perimeter and the area of a circle) and displaying an animation of the circle unfolding and transforming into a 

triangle (roughly, but that point is not discussed). Then she presents her own course, based on an extract of the 

class digital textbook. She complements as usual the files displayed on the whiteboard by writing additional 

comments and explanations, highlighting important expressions etc.  

 

  

Figure 2. Marie-Pierre, example of a lesson introducing the circle’s area 

For the class of situations: “design and implement the introduction of the circle’s area 

in grade 7” (figure 2), Marie-Pierre draws on a set of resources comprising the 

                                         
1
 Institute for Research on Mathematics Teaching. 
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interactive whiteboard, a website
2
, a digital textbook, and a hard copy of it. The 

official curriculum texts, about the circle area, only state that “an inquiry-based 

approach permits to check the area formula”, with no more details. The digital 

textbook proposes an introductory activity with a digital geometry software: drawing 

circles, and displaying their areas. Several radius are tested, the radius square and the 

corresponding area are noted by the students in a table, and they are asked to observe 

that they obtain an (approximate) ratio table. But Marie-Pierre prefers to draw on the 

website animated picture (both choices correspond more to an observation activity for 

the students than to an inquiry-based approach, but we will not discuss this aspect 

here). So, we claim that she has developed a scheme of utilization of this set of 

resources, structured by several operational invariants. These invariants are 

professional beliefs that we infer from our data: 

-“A new area formula must be justified by an animation showing a cutting and 

recombining of the pieces to form a figure whose area is known”. This operational 

invariant concerns all the areas introduced, it also intervenes in the document 

corresponding to the introduction of the triangle’s area for example; 

-“The circle’s area must be linked with a previously known area: the triangle”; “The 

circle’s area must be linked with the circle’s perimeter”. These operational invariants 

are related with the precise mathematical content of the lesson, they were built along 

the years, with different grade 7 classes (Marie-Pierre uses this website’s animation 

for three years, with two grade 7 classes each year).  

We do not assert that these operational invariants were not present among Marie-

Pierre’s professional knowledge before her integration of the interactive whiteboard. 

But the possibility to display an animation on a website, to complement it by writing 

additional explanations, to go back to a previous state of the board to link the 

“official” formula with what has been observed, yielded a document integrating these 

operational invariants. And we claim that the development of this document is likely 

to reinforce, in particular, the above presented beliefs. The operational invariants are 

both driving forces and outcomes of the teacher’s activity.  

Documentational geneses are ongoing processes; we use a second case study 

(figure 3) to emphasize this important aspect. Rabardel & Bourmaud (2005) claim 

that the design continues in usage. We consider here accordingly that a document 

developed from a set of resources provides new resources, which can be involved in a 

new set of resources, which will lead to a new document etc. Because of this process, 

we speak of a dialectical relationship between resources and documents. 

                                         
2
 http://pagesperso-orange.fr/therese.eveilleau/pages/hist_mat/textes/mirliton.htm  
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Marie-Françoise (aged 55; involved in collective work within an IREM group, institutional responsibilities as in-

service teacher trainer, strong degree of ICT integration) works with students from grade 10 to 12. She organizes 

for them ‘research narratives’: problem solving sessions, where students work in groups on a problem and write 

down their own ‘research narratives’ (both solutions and research processes). Thus one class of situations, for 

Marie-Françoise is ‘elaborating open problems for research narratives sessions’. For this class of situations, she 

draws on a set of resources comprising various websites, but also personal existing resources, colleagues’ ideas, 

etc. Students’ ideas constitute a major resource for Marie-Françoise, as she told us: “There is the problem and the 

way you enact it, because students are free to invent things, and afterwards we benefit from the richness of all 

these ideas, and you can build on it”. The design clearly goes on in class. Moreover, the class sessions provide new 

resources: the students’ research narrative, that Marie-Françoise collects, and saves in a new binder, aiming to 

enrich the next document built on the same open problem. 

 

Explorations of websites
Colleagues! ideas
Personal existing resources
Personal experience...

Gives matter to

A documentA set of resources

A computer file

Paper binder
A scheme of utilization

A set of students! research 
narratives
New ideas... To be part of

A new set of 
resources, giving 
matter to new 
documents...

Produces

 
 

Figure 3. An illustration of the resources/document dialectical relationship 

The resources evolve, are modified, combined; documents develop along geneses and 

bear new resources (figure 3) etc. We consider that these processes are part of 

teachers’ professional evolutions, and play a crucial role in them. 

DOCUMENTATION SYSTEMS AND PROFESSIONAL DEVELOPMENT 

According to Rabardel (2005), professional activity has a double dimension. 

Obviously a productive dimension: the outcome of the work done. But the activity 

also entails a modification of the subject's professional practice and beliefs, within a 

constructive dimension. Naturally, this modification influences further production 

processes: the productive/constructive relationship has a dialectical nature.  

Teachers’ documentation work is the driving force behind documentational geneses, 

thus it yields productive and constructive professional changes. Literature about 

teachers’ professional change raises the question of the articulation between change 

of practice and change of knowledge and beliefs. We consider that both are strongly 

intertwined (e.g., Cooney, 2001). The documentational geneses provide a specific 

view of this relationship. Working with resources, for the same class of situations 

across different contexts, leads to the development of a scheme, and in particular of 

rules of action (professional practice features) and of operational invariants 

(professional implicit knowledge or beliefs). And naturally these schemes influence 

the subsequent documentation work. All kinds of professional knowledge are 

concerned by these processes, the evolutions they generate are not curtailed to 
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curricular knowledge (Schulman, 1986). Thus, studying teachers’ documents can be 

considered as a specific way to study teachers’ professional development.  

According to Rabardel and Bourmaud (2005), the instruments developed by a subject 

in his/her professional activity constitute a system, whose structure corresponds to the 

structure of the subject’s professional activity. We hypothesize here similarly that a 

given teacher develops a structured documentation system.  

Let us go back to the example of Marie-Pierre evoked above. 

 

Marie-Pierre keeps all her “paperboards” (digital files with images corresponding to the successive states of 

the board). She uses these paperboards at the beginning of a new session, to recall what has been written, by 

herself or by her students, during the preceding session. On her laptop, Marie-Pierre has one folder for each 

class level. Each of these folders contains one file with the whole year’s schedule, and lessons folders for each 

mathematical theme. The paperboards are inside the lessons folders. The interactive whiteboard screen below 

corresponds to the introduction of equations in grade 7, in the context of triangles areas. 

 
(Translation: Find x such that ABC area equals 27 cm

2
. For x = 6.75cm, the triangle’s area is 27 cm

2
). 

 

Figure 4. A view on Marie-Pierre’s documents 

Marie-Pierre’s files organization on her computer (figure 4), and her statements 

during the interviews, clearly indicate articulations between her documents. The 

document whose material component is the year schedule naturally influenced her 

lesson preparations; but on the opposite, the documents she developed for lessons 

preparations during previous years certainly intervened in the schedule design. 

Documents corresponding to connected mathematical themes are also connected. For 

a given lesson, the students’ interventions can contribute to generate operational 

invariants that will intervene in preparations about other related topics.  

A teacher’s documents constitute a system, whose organization matches the 

organization of her professional activity. The evolutions of this documentation 

system correspond to professional evolutions. Integration of new materials is a visible 

of the professional practice, and of the documentation system (in the approach we 

propose, this integration means that a new material is inserted in a set of resources 
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involved in the development of a document). When Marie-Pierre integrates the 

interactive whiteboard in her courses, it entails a productive dimension: she now 

teaches with this whiteboard. But it also yields other changes of her practice: she 

makes more links with previous sessions, in particular recalling students productions 

is now present in her orchestration choices. And it even generates changes in her 

professional beliefs, for example about the possible participation of students to her 

teaching. She seems to have developed an operational invariant like: “a good way to 

launch a lesson is to recall students’ interventions done during the preceding lesson”.  

The integration of new material is always connected with professional practice and 

professional beliefs evolutions. But professional evolutions do not always correspond 

to integration of new material, and the same is true for documentation systems 

evolutions. For example, Arnaud (47 years old, no collective involvement, 

institutional responsibilities as in-service teacher trainer, low degree of ICT 

integration) presented during his interview “help sheets”, that he designed years ago 

for students encountering specific difficulties. He now uses the same sheets as 

exercises for the whole class; thus while no changes can be observed in the material, 

the action rules associated evolved.  

Integration of new material remains an important issue, especially when the focus is 

on ICT. The study of a given teacher’s documentation system also provides insights 

in the reasons for the integration or non-integration of a given material. The 

integration depends indeed on the possibility for this material to be involved in the 

development of a document, that will be articulated with others within the 

documentation system. For many years Marie-Pierre prepares her courses as digital 

files, she uses dynamic geometry software and online resources; the interactive 

whiteboard articulates with this material. Moreover, Marie-Pierre is convinced of the 

necessity of fostering students’ interventions, and even of including these in the 

written courses, and the interactive whiteboard matches this conviction. Possible 

material articulations are important; but other types of articulations must be taken 

into account, and the integration of new material also strongly depends on operational 

invariants, thus on teachers’ professional knowledge and beliefs. 

CONCLUSION 

This paper is related with the second theme of WG7: Interaction between resources 
and teachers’ professional practice. It introduces a conceptualization of teachers’ 

interactions with resources and of the associated professional development. Here we 

just presented the first concepts of a theory whose elaboration is still in progress. 

Studying teachers’ documentation work requires to set specific methodologies, 

permitting to capture their work in and out of class, to precise their professional 

beliefs, and to follow long-term processes: it is the main goal of our research. We did 

not discuss here the very important issue of collective documentation work, which 

causes particular processes: its study raises the question of collective 

documentational genesis and documentation systems, and raises new theoretical 
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needs. The documentational approach we propose also needs to be confronted with 

other teaching contexts: primary school, tertiary level; diverse countries; and also 

outside the field of mathematics. Further research is clearly needed; the present 

evolutions of digital resources make it a major challenge for the studies of teachers’ 

professional evolutions. 
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AN INVESTIGATIVE LESSON WITH DYNAMIC GEOMETRY: A 

CASE STUDY OF KEY STRUCTURING FEATURES OF 

TECHNOLOGY INTEGRATION IN CLASSROOM PRACTICE  

Kenneth Ruthven 

University of Cambridge 

The research literatures concerning the classroom practice of mathematics teaching 
and technology integration in school mathematics point to key structuring features – 
working environment, resource system, activity format, curriculum script, time 
economy – that shape patterns of technology integration into classroom practice and 
require teachers to develop their craft knowledge accordingly. This conceptual 
framework is applied to an investigative lesson incorporating dynamic geometry use, 
employing evidence from classroom observation and teacher interview. This 
illuminates the many aspects of professional adaptation and development on which 
successful technology integration into classroom practice depends. 

INTRODUCTION TO THE STUDY 

From synthesis of relevant research literatures, I argued at CERME-5 that successful 

integration of computer-based tools and resources into school mathematics depends 

on coordinating working environment, resource system, activity format and 

curriculum script to underpin classroom practice which is viable within the time 

economy (Ruthven, 2007). This paper will illustrate –and test– that conceptual 

framework by using it to analyse the practitioner thinking and professional learning 

surrounding a lesson incorporating the use of dynamic geometry. 

The lesson was one of four cases investigated in a study of classroom practice 

incorporating dynamic geometry use (Ruthven, Hennessy & Deaney, 2008). In the 

original study, this specific case was followed up because the teacher concerned 

talked lucidly about his experience of teaching such a lesson for the first time, and 

displayed particular awareness of the potential of dynamic geometry for developing 

visuo-spatial and linguistic aspects of students’ geometrical thinking.  

This case has been chosen for further analysis because the teacher was unusually 

expansive in all his interviews, illuminating a range of aspects of practitioner thinking 

and professional learning. While an exhaustive case analysis in terms of the 

conceptual framework would require data to be collected with its use specifically in 

mind, the richness of the evidence from this case provides a convenient interim 

means of exploring its application to a concrete example.  

ORIENTATION TO THE LESSON 

As the teacher explained when nominating the lesson, it had recently been developed 

in response to improved technology provision in the mathematics department 

prompting him to “to explore some geometry”: 
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So we’d done some very rough work on constructions with compasses and bisecting triangles 

and then I extended that to Geometer’s Sketchpad… on the interactive whiteboard using it in 

front of the class. 

He reported that the lesson (with a class in the early stages of secondary education) 

had started with him constructing a triangle, and then the perpendicular bisectors of 

its edges. The focus of the investigation which ensued had been on the idea that this 

construction might identify the ‘centre’ of a triangle: 

And we drew a triangle and bisected the sides of a triangle and they noted that they all met at a 

point. And then I said: “Well let’s have a look, is that the centre of a triangle?” And we moved it 

around and it wasn’t the centre of the triangle, sometimes it was inside the triangle and 

sometimes outside. 

 
According to the teacher, one particularly successful aspect of the lesson had been the 

extent to which students actively participated in the investigation: 

And they were all exploring; sometimes they were coming up and actually sort of playing with 
the board themselves… I was really pleased because lots of people were taking part and people 
wanted to come and have a go at the constructions.  

Indeed, because of the interest and engagement shown by students, the teacher had 

decided to extend the lesson into a second session, held in a computer room to allow 

students to work individually at a computer:  

And it was clear they all wanted to have a go so we went into the computer room for the next 
lesson so they could just continue it individually on a computer… I was expecting them all to 
arrive in the computer room and say: “How do you do this? What do I have to do again?”… But 
virtually everyone… could get just straight down and do it. I was really surprised. And the 
constructions, remembering all the constructions as well. 

For the teacher, then, this recall by students of ideas from the earlier session was 

another aspect of the lesson’s success. In terms of the specific contribution of 

dynamic geometry to this success, the teacher noted how the software supported 
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exploration of different cases, and overcome the practical difficulties which students 

encountered in using classical tools to attempt such an investigation by hand:  

You can move it around and see that it’s always the case and not just that one off example. But I 
also think they get bogged down with the technicalities of drawing the things and getting their 
compasses right, and [with] their pencils broken. 

But the teacher saw the contribution of the software as going beyond ease and 

accuracy; using it required properties to be formulated precisely in geometrical terms:  

And it’s the precision of realising that the compass construction… is about the definition of what 
the perpendicular bisector is… And Geometer’s Sketchpad forces you to use the geometry and 
know the actual properties that you can explore. 

These, then, were the terms in which the original lesson was nominated as an 

example of successful practice. This nomination was followed up by studying a later 

lesson along similar lines through classroom observations and teacher interviews. The 

observed lesson was conducted over two 45-minute sessions on consecutive days 

with a Year 7 class of students (aged 11-12) in their first year of secondary education.  

WORKING ENVIRONMENT 

The use of ICT in teaching often involves changes in the working environment of 

lessons: change of room location and physical layout, change in class organisation 

and classroom procedures.  

Each session of the observed lesson started in the normal classroom and then moved 

to a nearby computer suite, a modification of the pattern originally reported. This 

movement between rooms allowed the teacher to follow a particular activity cycle 

common to each session, shifting working environment to match changing activity 

format. The classroom was equipped with a single computer linked to a ceiling-

mounted projector directed towards a whiteboard at the front: this supported use of 

computer-based resources within whole-class activity formats. However, only in the 

computer suite was it possible for students to work individually at a machine.  

Even though the suite was also equipped with a projectable computer, starting 

sessions in the teacher’s own classroom was expedient for several reasons. Doing so 

avoided disruption to the established routines underpinning the smooth launch of 

lessons. Moreover, the classroom provided an environment more conducive to 

sustaining effective communication during whole-class activity and to maintaining 

the attention of students. Whereas in the computer suite each student was seated 

behind a sizeable monitor perched on a desktop computer unit, so blocking lines of 

sight and placing diversion at students’ fingertips, in the classroom the teacher could 

introduce the lesson “without the distraction of computers in front of each of them”. 

It was only recently that the classroom had been refurbished and equipped, and a 

neighbouring computer suite established for the exclusive use of the mathematics 

department. The teacher contrasted this new arrangement favourably in terms of the 
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easier and more regular access to technology that it afforded, and the consequent 

increase in the fluency of students’ use: 

Before… you’d book a computer suite, you’d go in and then… you’[d] just not get anywhere, 
because the whole lesson’s been sorting out logging on, sorting out how to use [the software]… 
And [now] having the access to it so easily and readily just makes a huge difference. 

New routines were being introduced to students for opening a workstation, including 

logging on to the school network, using shortcuts to access resources, and 

maximising the document window. Likewise, routines were being developed for 

closing sessions in the computer suite. Towards the end of each session, the teacher 

prompted students to plan to save their files and print out their work, advising them 

that he’d “rather have a small amount that you understand well than loads and loads 
of pages printed out that you haven’t even read”. He asked students to avoid rushing 

to print their work at the end of the lesson, and explained how they could adjust their 

output to try to fit it onto a single page; he reminded them to give their file a name 

that indicated its contents, and to put their name on their document to make it easy to 

identify amongst all the output from the single shared printer. 

RESOURCE SYSTEM 

New technologies have broadened the types of resource available to support school 

mathematics. Nevertheless, there is a great difference between a collection of 

resources and a coherent system.  

The department maintained its own schemes of work under continuous development, 

with teachers encouraged to explore new possibilities and report to colleagues. This 

meant that they were accustomed to integrating material from different sources into a 

common scheme. However, so wide was the range of computer-based resources 

currently being trialled that our informant (who was head of department) expressed 

concern about incorporating them effectively into departmental schemes: 

At the moment we’re just dabbling in [a variety of technologies and resources] when people feel 
like it, but we’re moving towards integrating [them] into schemes of work now… I’m slightly 
worried that we’ve got so much… It’s getting everybody familiar with it all. 

In terms of coordinating use of old and new technologies, work with dynamic 

geometry was seen as complementing established work on construction by hand, by 

strengthening attention to the related geometric properties:  

I thought of Geometer’s Sketchpad [because] I wanted to balance the being able to actually 
draw [a figure] with pencil and compasses and straight edges, with also seeing the geometrical 
facts about it as well. And sometimes [students] don’t draw it accurately enough to get things 
like that all the [perpendicular bisectors] meet at the orthocentre1 of the circle. 

The accuracy, speed and manipulative ease of dynamic geometry facilitated 

geometrical investigations which were difficult to undertake by hand:  
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[It] takes hours and hours if you try and do that by pencil and paper… So just that power of 
Geometer’s Sketchpad to move the triangle around and try different triangles within seconds was 
fantastic. Ideal for this sort of exploration.  

Nevertheless, the teacher felt that old and new tools lacked congruence, because 

certain manual techniques appeared to lack computer counterparts. Accordingly, old 

and new were seen as involving different methods and having distinct functions: 

When you do compasses, you use circles and arcs, and you keep your compasses the same. And I 
say to them: “Never move your compasses once you’ve started drawing.”… Well Geometer’s 
Sketchpad doesn’t use that notion at all… So it’s a different method.… I don’t think there’s a 
great deal of connection. I don’t think it’s a way of teaching constructions, it’s a way of 
exploring the geometry. 

Equally, some features of computer tools were not wholly welcome: students could 

be deflected from the mathematical focus of a task by overconcern with presentation. 

During this lesson the teacher had tried out a new technique for managing this, by 

briefly projecting a prepared example to show students the kind of document that 

they were expected to produce, and illustrating appropriate use of colour coding:  

They spend about three quarters of the lesson making the font look nice and making it all look 
pretty [but] getting away from the maths.… I’ve never tried it before, but that showing at the end 
roughly what I wanted them to have would help. Because it showed that I did want them to think 
about the presentation, I did want them to slightly adjust the font and change the colours a little 
bit, to emphasise the maths, not to make it just look pretty.  

Here we see the development of sociomathematical norms for using new 

technologies, and classroom strategies for establishing and maintaining these norms. 

Likewise, the way in which dynamic geometry required clear instructions to be given 

in precise mathematical terms was conveyed as being its key characteristic: 

I always introduce Geometer’s Sketchpad by saying: “It’s very specific, you’ve got to tell it. It’s 
not just drawing, it’s drawing using mathematical rules.”… They’re quite happy with that notion 
of… the computer only following certain clear instructions. 

ACTIVITY FORMAT 

Classroom activity is organised around formats for action and interaction which 

frame the contributions of teacher and students to particular lesson segments (Burns 

& Anderson, 1987). The crafting of lessons around familiar activity formats and their 

supporting classroom routines helps to make them flow smoothly in a focused, 

predictable and fluid way (Leinhardt, Weidman & Hammond, 1987). This leads to 

the creation of prototypical activity structures or cycles for particular styles of lesson.  

Each session of the observed lesson followed a similar activity cycle, starting with 

teacher-led activity in the normal classroom, followed by student activity at 

individual computers in the nearby computer suite, and with change of rooms during 

sessions serving to match working environment to activity format. Indeed, when the 
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teacher had first nominated this lesson, he had remarked on how it combined a range 

of classroom activity formats to create a promising lesson structure: 

There was a bit of whole class, a bit of individual work and some exploration, so it’s a model 
that I’d like to pursue because it was the first time I’d done something that involved quite all 
those different aspects.  

In discussing the observed lesson, however, the teacher highlighted one aspect of the 

model which had not functioned as well as he would have liked: the fostering of 

discussion during individual student work. He identified a need for further 

consideration of the balance between opportunities for individual exploration and 

productive discussion, through exploring having students work in pairs:  

There was not as much discussion as I would have liked. I’m not sure really how combine 
working with computers with discussing. You can put two or three [students] on a computer, 
which is what you might have done in the days when we didn’t have enough computers, but that 
takes away the opportunity for everybody to explore things for themselves. Perhaps in other 
lessons… as I develop the use of the computer room I might decide… [to] work in pairs. That’s 
something I’ll have to explore.  

At the same time, the teacher noted a number of ways in which the computer 

environment helped to support his own interactions with students within an activity 

format of individual working. Such opportunities arose from helping students to 

identify and resolve bugs in their dynamic geometry constructions:  

[Named student] had a mid point of one line selected and the line of another, so he had a 
perpendicular line to another, and he didn’t actually notice which is worrying… And that’s what 
I was trying to do when I was going round to individuals. They were saying: “Oh, something’s 
wrong.” So I was: “Which line is perpendicular to that one?” 

Equally, the teacher was developing ideas about the pedagogical affordances of text-

boxes, realising that they created conditions under which students might be more 

willing to consider revising their written comments: 

And also the fact that they had a text box… and they could change it and edit it. They could 
actually then think about what they were writing, how they describe, I could have those 
discussions. With handwritten, if someone writes a whole sentence next to a neat diagram, and 
you say: “Well actually, what about that word? Can you add this in?” You’ve just ruined their 
work. But with technology you can just change it, highlight it and add on an extra bit, and they 
don’t mind.  

This was helping him to achieve his goal of developing students’ capacity to express 

themselves clearly in geometrical terms:  

I was focusing on getting them to write a rule clearly. I mean there were a lot writing “They all 
meet” or even, someone said “They all have a centre.”… So we were trying to discuss what 
“all” meant, and a girl at the back had “The perpendicular bisectors meet”, but I think she’d 
heard me say that to someone else, and changed it herself. “Meet at a point”: having that sort of 
sentence there. 
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CURRICULUM SCRIPT 

In planning and conducting lessons on a topic, teachers draw on a loosely ordered 

model of relevant goals and actions that guides their teaching. This forms what has 

been termed a ‘curriculum script’ – where ‘script’ is used in the psychological sense 

of a form of event-structured cognitive organisation, which includes variant 

expectancies of a situation and alternative courses of action (Leinhardt, Putnam, Stein 

& Baxter, 1991). This script includes tasks to be undertaken, representations to be 

employed, activity formats to be used, and student difficulties to be anticipated. 

The observed lesson followed on from earlier ones in which the class had undertaken 

simple constructions with classical tools: in particular, using compasses to construct 

the perpendicular bisector of a line segment. Further evidence that the teacher’s script 

for this topic originated prior to the availability of dynamic geometry was his 

reference to the practical difficulties which students encountered in working by hand 

to accurately construct the perpendicular bisectors of a triangle. His evolving script 

now included knowledge of how software operation might likewise derail students’ 

attempts to construct perpendicular bisectors, and of how such difficulties might be 

turned to advantage in reinforcing the mathematical focus of the task:   

Understanding the idea of perpendicular bisector… you select the line and the [mid]point… 
There’s a few people that missed that and drew random lines… And I think they just 
misunderstood, because one of the awkward things about it is the selection tool. If you select on 
something and then you select another thing, it adds to the selection, which is quite unusual for 
any Windows package… So you have to click away and de-select things, and that caused a bit of 
confusion, even though I had told them a lot. But… quite a few discussions I had with them 
emphasised which line is perpendicular to that edge… So sometimes the mistakes actually 
helped. 

Equally, the teacher’s curriculum script anticipated that students might not appreciate 

the geometrical significance of the concurrence of perpendicular bisectors, and 

incorporated strategies for addressing this:  

They didn’t spot that [the perpendicular bisectors] all met at a point as easily… I don’t think 
anybody got that without some sort of prompting. It’s not that they didn’t notice it, but they 
didn’t see it as a significant thing to look for… even though there were a few hints in the 
worksheet that that’s what they were supposed to be looking at, because I thought that they 
might not spot it. So I was quite surprised… that they didn’t seem to think that three lines all 
meeting at a point was particularly exceptional circumstances. I tried to get them to see that… 
three random lines, what was the chance of them all meeting at a point.  

The line of argument alluded to here was one already applicable in a pencil and paper 

environment. Later in the interview, however, the teacher made reference to another 

strategy which brought the distinctive affordances of dragging the dynamic figure to 

bear on this issue:  
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When I talked about meeting at a point, they were able to move it around, and I think there’s 
more potential to do that on the screen. 

Likewise, his extended curriculum script depended on exploiting the distinctive 

affordance of the dynamic tool to explore how dragging the triangle affected the 

position of the ‘centre’. 

This suggests that the teacher’s curriculum script was evolving through experience of 

teaching the lesson with dynamic geometry, incorporating new mathematical 

knowledge specifically linked to mediation by the software. Indeed, he drew attention 

to a striking example of this which had arisen from his question to the class about the 

position of the ‘centre’ when the triangle was dragged to become right angled:  

Teacher: What’s happening to the [centre] point as I drag towards 90 degrees? What do you 
think is going to happen to the point when it’s at 90? 

Student: The centre’s going to be on the same point as the midpoint of the line. 

Teacher [with surprise]: Does it always have to be at the midpoint? 

[Dragging the figure] Yes, it is! Look at that! It’s always going to be on the midpoint of that 
side.… Brilliant! 

Reviewing the lesson, the teacher commented on this episode, linking it to distinctive 

features of the mediation of the task by the dynamic figure:  

I don’t know why it hadn’t occurred to me, but it wasn’t something I’d focused on in terms of the 
learning idea, but the point would actually be on the mid point.… As soon as I’d said it I thought 
“Of course!” But you know, in maths there’s things that you just don’t really notice because 
you’re not focusing on them. And… I was just expecting them to say it was on the line. Because 
when you’ve got a compass point, you don’t actually see the point, it’s just a little hole in the 
paper… But because the point is actually there and quite clear, a big red blob, then I saw it was 
exactly on that centre point, and that was good when they came up with that.  

In effect, his available curriculum script did not attune the teacher to this property. 

One can reasonably hazard that this changed as a direct result of this episode.  

TIME ECONOMY 

Assude (2005) examines how teachers seek to improve the ‘rate’ at which the 

physical time available for classroom activity is converted into a didactic time 

measured in terms of advance of knowledge. The adaptation and coordination of 

working environment, resource system, activity format and curriculum script are very 

important in improving this didactic ‘return’ on time ‘investment’.  

In respect of this time economy, a basic consideration of physical time for the teacher 

in this study was the proximity of the new computer suite to his normal classroom: 

I’m particularly lucky being next door… If I was upstairs or something like that, it would be 
much harder; it would take five minutes to move down. 
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However, a more fundamental feature of this case was the degree to which the 

teacher measured didactic time in terms of progression towards securing student 

learning rather than pace in covering a curriculum. At the end of the first session, he 

linked his management of time to what he considered to be key learning processes: 

It’s really important that we do have that discussion next lesson. Because they’ve seen it. 
Whether they’ve learned it yet, I don’t know… They’re probably vaguely aware of different 
properties and they’ve explored it, so it now needs to be brought out through a discussion, and 
then they can go and focus on writing things for themselves. So the process of exploring 
something, then discussing it in a quite focused way, as a group, and then writing it up… 
They’ve got to actually write down what they think they’ve learned. Because at the moment, I 
suspect… they’ve got vague notions of what they’ve learned but nothing concrete in their heads. 

A further crucial consideration within the time economy is instrumental investment. 

The larger study from which this case has been derived showed that the ways in 

which teachers incorporated dynamic geometry into classroom activity were 

influenced by their assessments of costs and benefits. Essentially, teachers were 

willing to invest time in developing students’ instrumental knowledge of dynamic 

geometry to the extent that they saw this as promoting students’ mathematical 

learning. As already noted, this teacher saw working with the software as engaging 

students in disciplined interaction with a geometric system. Consequently, he was 

willing to spend time to make them aware of the construction process underlying the 

dynamic figures used in lessons:  

I very rarely use Geometer’s Sketchpad from anything other than a blank page. Even when I’m 
doing something in demonstration… I always like to start with a blank page and actually put it 
together in front of the students so they can see where it’s coming from.  

Equally, this perspective underpinned his willingness to invest time in familiarising 

students with the software, capitalising on earlier investment in using classical tools:  

That getting them used to the program beforehand, giving a lesson where the aim wasn’t to do 
that particular maths, but just for them to get familiar with it… was very helpful. And also 
they’re doing the constructions by hand first, to see, getting all the words, the key words, out of 
the way.  

As this recognition of a productive interaction between learning to use old and new 

technologies indicates, this teacher also took an integrative perspective on the ‘double 

instrumentation’ entailed. Indeed, this was demonstrated earlier in his concern with 

the complementarity of old and new as components of a coherent resource system.  

CONCLUSION 

This analysis of a lesson incorporating dynamic geometry illuminates the influence of 

the key structuring features of working environment, resource system, activity 

format, curriculum script and time economy on technology use. Although only 

employing a dataset conveniently available from earlier research, it starts to show the 

complex character of the professional adaptation on which technology integration 
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into the classroom practice of school mathematics depends. This points to the value 

of conducting further studies in which data collection (as well as analysis) is guided 

by the conceptual framework developed in this paper and its predecessor. Such 

studies might profitably focus not just on the teacher/classroom level, but on the 

school/departmental level, and the systemic/institutional level. 

NOTES 

1
 The point at which the perpendicular bisectors of the sides of a triangle meet is the ‘circumcentre’. 

However, in the course of the interview, the teacher referred to this centre as the ‘orthocentre’. Note 

that it is now many years since reference to these (and other) terms – which distinguish the different 

‘centres’ of a triangle – was removed from the school mathematics curriculum in England. 
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METHODS AND TOOLS TO FACE RESEARCH 

FRAGMENTATION IN TECHNOLOGY ENHANCHED 

MATHEMATICS EDUCATION 

Bottino Rosa Maria & Cerulli Michele 

Institute for Educational Technology, C. N. R. - Genova, Italy 

This paper, addresses the issue of how to successfully bring into school practices the 
results in technology enhanced mathematics learning obtained at research level. The 
distance among different research teams and between researchers and teachers is 
addressed in terms of fragmentation of the research field. A methodology is presented 
to reduce such fragmentation illustrating a pathway followed at the European level in 
the EC co-funded projects TELMA and ReMath.  

INTRODUCTION 

In the CERME 5 conference two plenary sessions (Ruthven, 2007; Artigue, 2007), 

drawing from the discussions developed in different working groups, highlighted key 

issues concerning Technology Enhanced Learning (TEL) in mathematics.  

According to Ruthven (ibid pp. 52), despite of a generalized advocacy for new 

technologies in education, these have had a limited success in school. As a matter of 

fact, he observes that, even if technologies had some positive impact on the 

instruction of teachers, they remain marginal in classroom practice. This is true, in 

particular, for mathematics, even if, from the beginning, a wide number of 

researchers have been concerned with the study of the opportunities brought about by 

new technologies to the teaching and learning of this discipline (Lagrange, Artigue, 

Laborde, & Trouche, 2003). As a matter of fact, despite the positive results produced 

in a number of experimental settings and the budget invested by many governments 

for equipping schools, actual use of ICT tools in real school environments is still 

having a limited impact. Recent studies witness difficulties encountered by teachers 

in implementing teaching and learning activities mediated by technologies due to 

variables such as working environment, resource system, activity format, curriculum 

script and time economy (Cuban, 2001; Sutherland, 2004). The coordination of such 

variables is necessary in order to develop a coherent use of technological tools and to 

form an effective system. According to Ruthven (ibid pp. 64), this challenge 

“involves moving from idealised aspiration to effective realisation through the 

development of practical theories and craft knowledge”. Drawing from our own 

experience, we identify as a crucial issue the necessity to establish effective 

interactions among the different actors involved in the process, that is researchers, 

teachers, policy makers, curriculum developers, software designers, etc.  

Such a view is coherent with what is reported in (Pratt, Winters, Cerulli & Leemkuil, 

in press) from the perspective of educational technology designers. Authors, making 

reference to the specific field of games for mathematics education, speak of the 
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necessity of a multi-disciplinary approach to design and deployment of technologies 

as opposed to the frequently experienced design fragmentation. Such fragmentation is 

often due to the fact that the different communities involved are not fully cognisant of 

the structuring forces that impinge on each other’s activities. From one hand, 

discontinuities between design and deployment of technological tools impede the 

effective use of such tools in school practice and, on the other hand, the development 

of isolated projects that often do not go beyond experimental settings, do not 

contribute to cumulative knowledge about the design process that could inform future 

work. Pratt et al. advocate the need to integrate key stakeholders in the creation of 

technology enhanced learning tools, as “the problem of design fragmentation remains 

a real impediment to widespread innovation in the field”. They thus state the 

opportunity of creating multidisciplinary teams focusing on the design and 

deployment of educational technology that bring together the perspective of different 

stakeholders: designers, educators, researchers, etc.  

Fragmentation, however, is not only a problem experienced among different 

communities of stakeholders, but it is a problem often experienced also within each 

community. In particular, as highlighted by Artigue (2007) during her plenary speech 

at CERME 6, this is one of the key issues of concern within the community of the 

researchers in mathematics education, and, in particular, within the community of 

researchers focusing on technology enhanced learning in mathematics. Such a 

fragmentation is rooted at theoretical level, as witnessed also by the work of the 

working group 11 of ERME that has been established to discuss such specific issue 

(Prediger, Arzarello, Bosch & Lenfant, 2008). As a matter of fact the theoretical 

background of a research team has an important bearing on the epistemological 

assumptions, the research methodologies, the way in which tools, and, in particular, 

technology enhanced tools, are perceived and used. 

At the European level, where a great variety of different approaches and background 

is present, there is a specific sensibility to the problem of fragmentation and to the 

necessity to find feasible ways to overcome it, since, as observed in (Arzarello, 

Bosch, Gascón & Sabena, 2008) a too wide variety of poorly connected conceptual 

and methodological tools does not encourage consideration of the results obtained as 

convincing and valuable. Moreover, in the specific area of TEL, there is the need of 

designing and implementing tools and methodologies that have a wide scope of 

application and that are not restricted to a particular community or context. For these 

reasons, following the impulse given by projects funded by the European 

Community, efforts have been made to try to overcome such fragmentation.  

Our Institute has been involved in European research projects concerned with 

Information Society Technologies (IST) for several years and, in particular in 

Networks of Excellence (NoE) and Specific Targeted Research Projects (STREPs). 

These are two instruments of the European Community 6
th

 and 7
th

 Research 

Framework Programmes that aim at promoting research integration and collaboration 

in several fields including technology enhanced learning. 
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This paper presents some methods and tools, developed within the context of such 

European projects, which have been developed and tested to address the 

fragmentation issues discussed above. 

Firstly we report on the work performed within the TELMA (Technology Enhanced 

Learning in Mathematics) initiative that explored the conditions for sharing 

experience and knowledge among different research teams interested in analysing 

mathematics learning environments integrating technologies, in spite of the 

differences in the theoretical frameworks and in the methodological approaches 

adopted. For this purpose, the notions of “didactical functionality” (Cerulli, 

Pedemonte & Robotti, 2006) and of  “key concerns” - issues functionally important 

(Artigue, Haspékian, Cazes, Bottino, Cerulli, Kynigos, Lagrange & Mariotti, 2006) - 

together with a methodology based on the idea of a “cross experiments” (Bottino, 

Artigue & Noss, in press) were defined and conceptualized as concrete methods to 

address the problem of fragmentation.  

Secondly, we give account of some of the outcomes of the ReMath project that, 

building on the results of the TELMA project, has addressed the fragmentation 

problem from the perspective of the design, implementation, and in-depth 

experimentation of ICT-based interactive learning environments for mathematics, 

thus involving not only researchers but teachers and technology designers as well. In 

particular, within the ReMath project, the problem of how to effectively support 

collaboration in pedagogical planning has been faced. Efforts have been made to 

provide a solid basis for accommodating the different perspectives adopted, for 

analysing the factors at play, and also for understanding the initial assumptions and 

theoretical frameworks embraced. A web-based system, the Pedagogical Plan 

Manager (PPM), was developed to support researchers, tool designers and teachers to 

jointly design and/or deploy mathematics pedagogical plans involving the use of 

technological tools (Bottino, Earp, Olimpo, Ott, Pozzi & Tavella, 2008).  

Summing up, in the following sections, we delineate the process that has brought us 

to afford the problem of the fragmentation of approaches and frameworks, in the field 

of mathematics teaching and learning mediated by technologies, from different but 

complementary perspectives. 

A COLLABORATIVE METHODOLOGY FOR NETWORKING RESEARCH 

TEAMS IN TECHNOLOGY ENHANCED LEARNING IN MATHEMATICS 

NoEs have been established by the European Commission within the last Framework 

Research Programmes as instruments to promote integration and collaborative work 

of key European research teams and stakeholders in given fields. In particular, the 

network of Excellence Kaleidoscope was established and funded with the aim of 

shaping the scientific evolution of technology enhanced learning (http://www.noe-

kaleidoscope.org, accessed March 2009). Since each knowledge domain raises 

specific issues either for learning or for the design of learning environments, within 

Kaleidoscope a number of different joint research initiatives, covering a wide range 
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of domains, have been carried out. Among these, TELMA was specifically focused 

on Technology Enhanced Learning in Mathematics. It involved six European teams
1
 

and had as its main aim that of building a shared view of key research topics in the 

area of digital technologies and mathematics education, proposing related research 

activities, and developing common research methodologies.  

In TELMA, each team brought to the project particular focuses and theoretical 

frameworks, adopted and developed over a period of time. Most of these teams have 

also designed, implemented and experimented, in different classroom settings, 

computer-based systems for supporting teaching and learning processes in 

mathematics. It was clear from the beginning that, to connect the work of groups that 

have different traditions and frameworks it was necessary to develop a better mutual 

understanding and to find some common perspectives from which to look at the 

different approaches adopted. It was also necessary to develop a common language 

since the same words were sometime used with different meanings by each team, 

causing misunderstanding and hindering productive collaboration. Moreover, it 

became clear that the theoretical assumptions made by each team, were often implicit 

and thus not accessible to the others.  

The notion of didactical functionalities 
In order to overcome these difficulties it was decided to focus the work of TELMA 

on the theoretical frameworks within which the different research teams face research 

in mathematics education with technology. A first level of integration has been then 

pursued through the definition of the notion of didactical functionality for 

interpreting and comparing different research studies (Cerulli et al., 2006). Such 

notion has been used as a way to develop a common perspective among teams linking 

theoretical reflections to the real tasks that one has to face when designing or 

analysing effective uses of digital technologies in given contexts. The notion of 

didactical functionality is structured by three inter-related components:  

• a set of features/characteristics of the considered ICT-tool; 

• an educational aim; 

• the modalities of employing the ICT-tool in a teaching/learning process to 

achieve the chosen educational aim. 

The different didactical functionalities designed and experimented by each team have 

been compared trying to delineate how different theoretical backgrounds can 

influence the design of an ICT-based tool, the definition of the educational goals to 

be pursued, and the modalities of use of the tool to achieve such goals. At the 

beginning, this analysis was conducted on the basis of a selection of papers published 

by each team. This approach, even if useful, was considered not sufficient to enter the 

less explicit aspects of the research work of each team. Thus, TELMA researchers 

decided to move toward a strategy that could allow them to gain more intimate 

insights into their respective research and design practices. This strategy relies on the 

idea of ‘cross-experiments’ and on the development of a methodological tool for 

systematic exploration of the role played by theoretical frames.  
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The cross-experiments methodology 
The idea of cross-experiments was developed in order to provide a systematic way of 

gaining insight into theoretical and methodological similarities and differences in the 

work of the various TELMA teams. This is a new approach to collaboration that 

seeks to facilitate common understanding across teams with diverse practices and 

cultures and to elaborate integrated views that transcend individual team cultures. 

There are two principal characteristics of the cross-experiments project implemented 

within TELMA that distinguish it from other forms of collaborative research:  

• the design and implementation by each research team of a teaching experiment 

making use of a ICT-based tool developed by one of the other team involved;  

• the joint construction of a common set of questions to be answered by each team 

in order to frame the process of cross-team communication. 

Figure 1: Aplusix, developed by Metah, was experimented by ITD and UNISI. Arilab, 

developed by ITD, was experimented by LIG, ETL-NKUA and DIDIREM. E-Slate, 

developed by ETL-NKUA was experimented by IoE.   

Each team was asked to select an ICT-tool among those developed by the other 

TELMA teams (Figure 1). This decision was expected to induce deep exchanges 

between the teams and to make visible the influence of theoretical frames through 

comparison of the didactical functionalities developed by the designers of given tools 

and those implemented by the teams experimenting the tools. Moreover, in order to 

facilitate the comparison between the different experimental settings, it was also 

agreed to address common knowledge domains (fractions and introduction to 

algebra), to carry out the teaching experiments with students between the 5th to 8th 

grade, and to perform them for about the same amount of time (one month). 

Guidelines (Cerulli, Pedemonte & Robotti, 2007) were collectively built for 

monitoring the whole process: from the design and the a priori analysis of the 

experiments to their implementation, the collection of data and the a posteriori 

analysis. Beyond that, reflective interviews (using the technique of "interview for 

explicitation" (Vermesch & Maurel, 1997)) were a-posteriori organized in order to 

make clear the exact role that theoretical frames and contextual characteristics had 

played in the different phases of the experimental work, either explicitly or in a more 

naturalized and implicit way. 
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It was hypothesized that, for each team, the use of a non familiar (alien) tool would 

have made problematic, thus visible, design decisions and practices that generally 

remain implicit when one uses tools developed within his/her research and 

educational culture, and that this visibility would have been increased by the 

guidelines' request of making explicit the choices performed.  

The cross experiments provided interesting insights on the complexities involved in 

designing and implementing mathematics learning environments integrating 

technology and allowed to make some reflections (Bottino et al., in press; Cerulli, 

Trgalova, Maracci, Psycharis & Georget, 2008). 

The first reflection was on the conditions that can facilitate the sharing of experience 

and knowledge among researchers in spite of the differences in the theoretical 

frameworks adopted. Theoretical frameworks, while influencing design and analysis 

of a teaching experiment, were far from playing the role they are usually given in the 

literature. As a matter of fact, in the design of the cross-experiments, theoretical 

frameworks acted mainly as implicit and naturalized frames, and more in terms of 

general principles than of operational constructs. Even if some variations could be 

noticed, all the teams experienced a gap between the support offered by theoretical 

frames and the decisions to be taken in the design process. The acknowledgment of 

such a gap can be a starting point for establishing a better communication channel not 

only among researchers but also with teachers. As a matter of fact, a marked 

emphasis on theoretical assumptions is often too far from the practical needs of 

teachers. For this reason it is important to establish the exact role that theoretical 

frameworks play in the planning of an effective teaching experiment. In particular, it 

was found that researchers tend to overestimate such role, thus making the distance 

with teachers’ needs even bigger. A methodology for making explicit, and justifying, 

the choices made, proved a useful tool for reducing communication disparities.  

A second observation concerns the understanding of what it means to adapt an ICT 

based tool to a context different from the one it was designed for. In our work this 

was accomplished by experimenting in each country tools developed in other 

countries by different teams. Thanks to the adopted methodology and to the request 

of making explicit assumptions, choices and decisions taken, it was possible to 

individuate some variables that strongly affect the development of teaching 

experiments involving the use of technologies. For instance, the attention paid to 

different research priorities (e.g. the detailed organization of the milieu; the social 

construction of knowledge; the teacher’s role) and to local constrains (e.g. curricular; 

institutional; cultural) appeared to be crucial. Such variables are to be deeply 

considered and made explicit in the communication with teachers to effectively 

support them to adapt research experiments to their teaching contexts. In other words, 

researchers should find ways to make explicit all the key assumptions at the basis of 

their experiments. Of course, this is not enough, since, as suggested in (Pratt et al., in 

press), it is also necessary to promote a more strict collaboration between researchers, 
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tool designers and teachers also at the level of the design and the implementation of 

ICT based tools, and in the planning of the experiments. 

Taking into account these needs, and on the basis of the results obtained in TELMA, 

a new European project was thus developed, involving the same research teams: the 

ReMath project (IST - 4 – 26751 - STP). In this project the issue of collaboration 

between different stakeholders was addressed by developing a specific tool to be used 

to design teaching experiments involving ICT based tools.  

A TOOL TO SUPPORT THE COMMUNICATION OF DIFFERENT 

STAKEHOLDERS IN THE PLANNING OF LEARNING ACTIVITIES 

INVOLVING TECHNOLOGY  

The TELMA project provided a strategy for reducing the difficulties of 

communication among researchers; this strategy proved to be quite effective, thus it 

was decided to adapt it to the needs of the ReMath project where communication in a 

wider community, including software designers, researchers and teachers, has been 

addressed. The Remath project has two main goals: the development of ICT-based 

tools for mathematics education at secondary school level and the design and 

experimentation, in different contexts, of learning activities for classroom practice 

involving the use of such tools (see: http://remath.cti.gr/default_remath.asp; accessed 

March 2009). In order to pursue this last goal, a cross-experiment methodology, 

widening the one developed by TELMA, was adopted. A tool, the Pedagogical Plan 

Manager (PPM), was, thus, developed to support communication between researchers 

and teachers when planning learning activities involving ICT tools. The idea was 

originated by the analysis of some the difficulties, pointed out by researchers in the 

wide field of learning design (Koper & Olivier, 2004), concerning dialogue and 

transfer between teachers, researchers and designers. To overcome such difficulties 

the PPM was realized, relying on the concept of pedagogical plan, as a specific 

system for supporting the process of pedagogical design, namely the description of 

learning activities to be enacted during cross-experiments (thus also enabling and 

fostering their reusability). 

Pedagogical plans are conceived as descriptions of pedagogical activities to be 

carried out in real contexts (e.g. a class, a laboratory, etc.) where a number of 

different indicators could be made explicit, at different level of details (Bottino et al., 

2008): educational target (What learning outcomes? What learning contexts? Who 

are the target learners?); pedagogical rationale (Why those learning outcomes? Why 

applying a certain strategy? Why using a give tool?); specifications (Which activities 

are to be carried out? Which roles are to be assumed by the different actors? Which 

resources and tools are to be used? etc.).  

The PPM is a web environment, organized as a flexible structure allowing a three-

alike representation of pedagogical plans as hierarchical entities which can be built 

and red at different levels of detail. This structure supports both “authors” of 

pedagogical plans, providing them with the possibility to work with a top-down 
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structure, and “readers”, who in top-down organization have a facilitating factor for 

navigating from the general to the particular and vice versa.  

In other words the PPM presents a flexible structure that tries to respond to the 

different needs of both researchers and teachers; the first, in fact, were mainly 

interested in sharing ideas about aspects such as the theoretical frameworks and the 

pedagogical rationale behind each educational intervention, while teachers were 

mainly interested in retrieving suitable information about the most suitable ways to 

carry out educational activities in their classes (Earp & Pozzi, 2006).  

For space reason, we cannot provide here a detailed description of the model adopted 

and of the prototype implemented (more details can be found in Bottino et al., 2008). 

Outputs of its use are currently under examination and will be further analysed at the 

end of the ReMath project (May 2009). 

CONCLUSIONS 

Software designers, researchers and teachers may have different needs, different 

constrains, and different perspectives. This can be an obstacle for the effectiveness of 

technology enhanced learning in mathematics, also in terms of impact in school 

practice. The projects briefly presented tried to develop a coherent methodology for 

reducing the distance between the different stakeholders. In TELMA it was addressed 

the problem of networking research teams with different backgrounds and approaches 

by means of a specific collaborative methodology. In ReMath such methodology was 

extended, also through the development of a specific web-based tool, to involve all 

the stakeholders in the design, development and deployment of teaching and learning 

activities involving the use of technologies.  

The outlined pathway includes researcher’s explicitation of the actual role played by 

theoretical frameworks in the effective use of ICT tools and the individuation of the 

gap between theory and practice. This can help reducing the distance with teachers. 

The tool for pedagogical planning developed in the ReMath project is aimed at the 

same goal by involving teachers, from the beginning, also in the design of teaching 

activities with ICT-based tools. Such activities are seen as integral part in the design 

process of a technology. In this way we believe it can be possible to develop 

communities of practice that bring together teachers and researchers so that teaching 

practice and research could nurture one from each other favouring a better impact of 

technology enhanced learning in school practice.   

NOTES 

1. TELMA teams (whose acronyms are indicated in brackets) belong to the following Institutions: Consiglio Nazionale 

delle Ricerche, Istituto Tecnologie Didattiche, Italy (ITD); Università di Siena, Dipartimento di Scienze Matematiche 

ed Informatiche, Italy (UNISI); University of Paris 7 Denis Diderot, France (DIDIREM); Grenoble University and 

CNRS, Leibniz Laboratory, Metah, France (LIG); University of London, Institute of Education, United Kingdom (IOE); 

National Kapodistrian University of Athens, Educational Technology Laboratory, Greece (ETL-NKUA). 
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THE DESIGN OF NEW DIGITAL ARTEFACTS AS KEY FACTOR 

TO INNOVATE THE TEACHING AND LEARNING OF 

ALGEBRA: THE CASE OF ALNUSET 

G. Chiappini, B. Pedemonte  

Istituto per le Tecnologie Didattiche – CNR Genova 

The integration of CAS systems into school practices of algebra is marginal. To 
integrate effectively digital technology in the teaching and learning of algebra, it is 
necessary to go beyond the experience of CAS and of their instrumented techniques 
and to face the design of new artefacts. In this paper we discuss design problems 
faced in the development of a new digital artefact for teaching and learning of 
algebra, the Alnuset system. We present the key ideas that have oriented its design 
and the choices we have worked out to instrument its incorporated algebraic 
techniques. We compare the quantitative, symbolic and functional instrumented 
techniques of Alnuset with those of CAS highlighting crucial differences in the 
teaching and learning of algebra. 
Keywords: Alnuset, Instrumented technique, CAS, Algebraic learning 

INTRODUCTION 

In the last 15 years a scientific debate on the role of technology in supporting 

teaching and learning processes in the domain of algebra has been going on. This 

debate originates from research studies carried out in different countries with the 

purpose of studying the use of Computer Algebra Systems (CAS) in school contexts. 

In particular, near benefits (Heid, 1988, Kaput, 1996, Thomas, Monaghan and Pierce, 

2004) obstacles and difficulties have been identified in using this technology by 

students and teachers (Mayes, 1997, Drijvers, 2000, Drijvers, 2002, Guin & Trouche, 

1999). Results of these research works (Artigue, 2005) highlight that the integration 

of CAS systems into the school practice of algebra remains marginal due to different 

reasons. CAS expands the range of possible task-solving actions. As a matter of fact, 

techniques involved in a CAS (instrumented techniques) are in general different from 

those of the paper and pencil environment. Managing the complexity of CAS 

instrumented techniques and highlighting the potential offered by the machine to the 

student is hard work. As shown by some experiments (Artigue, 2005), CAS use may 

cause an explosion of techniques which remain in a relatively simply-crafted state. 

Moreover, any technique that goes beyond a simple, mechanically learnt gesture, 

should be accompanied by a theoretical discourse. For the paper and pencil 

techniques this discourse is known and can be found in textbooks. For instrumented 

techniques it has to be built and its elaboration raises new, specific difficulties. Even 

if the use of CAS seems fully legitimate in the class, in general, instrumented 

techniques cannot be institutionalised in the same way as paper and pencil ones 

(Artigue, 2005). 
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THE RATIONALE 

To frame the results carried out by these research studies and the complexity of the 

processes involved in the educational use of CAS, some French researchers 

(Lagrange 2000, Artigue, 2002, Lagrange, Artigue, Guin and Trouche, 2003) have 

elaborated a theoretical framework, named 'instrumental approach', integrating both 

the ergonomic theory (Rabardel, 1995) and the anthropological theory (Chevallard, 

1992). The ‘instrumental approach’ provides a frame for analyzing the processes of 

instrumental genesis both in their personal and institutional dimensions, and the 

effect of instrumentation issues on the integration of CAS in the educational practice. 

Using this framework, Artigue observes that CAS are extremely effective from a 

pragmatic standpoint and for this reason professionals (mathematicians, engineers..) 

are willing to spend time to master them (Artigue, 2002). At pragmatic level the 

effectiveness often comes with the difficulty to justify, at a theoretical level, the 

instrumented techniques used. In particular, this is true for users who do not fully 

master mathematical knowledge and techniques involved in the solution of the task. 

As a consequence, the epistemic value of the instrumented technique can remain 

hidden. This can constitute a problem for the educational context where technology 

should help not only to yield results but also to support and promote mathematical 

learning and understanding. In educational practice, techniques should have an 

epistemic value contributing to the understanding of objects involved. “Making 
technology legitimate and mathematically useful from an educational point of view, 
whatever be the technology at stake, requires modes of integration that provide a 
reasonable balance between the pragmatic and the epistemic values of instrumented 
techniques" (Artigue, 2007, p. 73). These results might account for the 

marginalization of CAS integration into the school algebraic practices. For some 

researchers, to integrate digital technology effectively in the domain of algebra, it is 

necessary to go beyond the experience of CAS and of their instrumented techniques 

and to face the design of new artefacts. As underlined by Monaghan (2007) up to 

now CAS-in-education workers have paid little attention to design issues, preferring, 

in general, to work with the design supplied by CAS designers (Monaghan, 2007). 

Moreover, it should be noted that no comparison between the design of CAS and of 

technological tools for education has been developed so far. This article aims at 

pointing out design issues that can effectively support teaching and learning 

processes in algebra. This goal will be pursued considering the design of ALNUSET 

(ALgebra on the NUmerical SETs), a system developed to improve teaching and 

learning of crucial topics involved in the mathematical curricula such as algebra, 

functions and properties of numerical sets. In particular, in this article we compare 

design aspects of Alnuset and of CAS and we highlight the relevance of differences 

in their instrumented techniques for the teaching and learning of algebra. 
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PROBLEMS OF DESIGN IN DEVELOPING NEW DIGITAL ARTEFACTS 

Going beyond the design of CAS requires new creative ideas to instrument 

techniques for mathematical activity different from those of CAS. The advent of both 

the dynamic geometrical artefacts and of spreadsheets has evidenced that even a 

single creative idea can determine a new typology of innovative artefacts. This can 

occur when new creative ideas allow to instrument mathematical techniques 

characterizing them with new operative and representative dimensions such as the 

drag of the variable point of a geometrical construction, as in the case of dynamic 

geometrical software, or the automatic re-computation of formulas of the table, as in 

the case of spreadsheet. Moreover, when a technique must be instrumented on the 

basis of an idea, various types of design problems emerge. They regard the way tasks 

and responsibilities have to be distributed between user and computer and the 

management of the interactivity, namely the operative modalities of the input by the 

user, the representation of the result by the computer (output), the visualisation of 

specific feedback to support the user action or to accompany the presentation of the 

result. Moreover, problems of design regard also the way in which the instrumented 

techniques have to be connected between each other. The way these problems are 

solved affects the accessibility of techniques, their usefulness for the task to be 

solved, the meaning that the instrumented technique evidences in the interaction, the 

discourse that can be developed about it. Hence, the way these problems are solved 

affects the balance between pragmatic and epistemic values of instrumented 

techniques within the didactical practice and this can affect mathematics teaching and 

learning. The anthropological framework is the theoretical tool used to analyse the 

way in which techniques are implemented and their effectiveness on the educational 

level. Ideas are evaluated on the base of this framework. We discuss these general 

assumptions in the domain of algebra referring to Alnuset System. 

ALNUSET: IDEAS AND CHOICE OF DESIGN  

ALNUSET is a system designed, implemented and experimented within the ReMath 

(IST - 4 - 26751) EC project that can be used to improve the teaching and learning of 

algebra at lower and upper secondary school level. The design of ALNUSET is based 

on some ideas that have oriented the realisation of the three, strictly integrated 

components: the Algebraic Line component, the Algebraic Manipulator component, 

and the Function component. These three components make available respectively 

techniques of quantitative, symbolic and functional nature to support teachers and 

students in developing algebraic objects, processes and relations involved in the 

algebraic activity. In the following we present the main ideas that have oriented the 

realisation of the three components of Alnuset and illustrate the choices and decisions 

taken to instrument algebraic techniques so that an appropriate balance between their 

epistemic and pragmatic values can emerge when used in the educational practice. 

Algebraic line component 
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The main idea in the design of the Algebraic line component is the representation of 

algebraic variables on the number line through mobile points associated to letters, 

namely points that can be dragged on the line with the mouse. In this component the 

user can edit expressions to operate with. The computer automatically computes the 

value of the expression on the basis of the value of the variable on the line and it 

places a point associated to the expression on the algebraic line. When the user drags 

the mobile point of a variable, the computer refreshes the positions of the points 

corresponding to the expressions containing such a variable in an automatic and 

dynamic manner. This is possible only thanks to the digital technology that allows to 

transform the traditional number line into an algebraic line. The following two figures 

report the representation of a variable and of an algebraic expression on the lines of 

this component. Note that the presence of two lines is motivated by operative 

necessities regarding the use of the algebraic editor based on geometrical models that 

is available in this component. This editor is not considered in this report. 

 

The drag of the variable 

x determines the 

dynamic movement of 

the expression 

containing it   

Through its visual feedback, this technique can be used either to explore what an 

expression indicates in an indeterminate way or to compare expressions. The design 

of this component is associated to every point represented on the line by a post-it. 

The computer automatically manages the relation among expressions, their associated 

points and post-it. The post-it of a point contains all the expressions constructed by 

the user that denote that point. By dragging a variable on the line, dynamic 

representative events can occur in a post-it. They might be very important for the 

development of a discourse concerning the notions of equality and equivalence 

between expressions. As a matter of the fact, the presence of two expressions in a 

post-it may mean: 

• A relationship of equality, if taking place at least for one value of the variable 

during its drag along the line  

• A relationship of equivalence, if taking place for all the values assumed by the 

variable when it is dragged along the line. 

• A relationship of equivalence with restrictions, if taking place for every value of 

the variable when it is dragged along the line, but for one or more values, for 

which one of the two expressions disappears from the post-it and from the line. 
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The expressions x+(x+1) and 2*x+1 

are equivalent, because they refer to 

the same point on the Algebraic line 

and they are contained in the same 

post-it whatever the value of the x 

variable is during the drag. 
 

Moreover, the algebraic line component has been designed to provide two very 

important instrumented techniques for the algebraic activity, i.e. for finding the roots 

of polynomial with integer coefficients and for identifying and validating the truth set 

of algebraic propositions. The root of a polynomial can be found dragging the 

variable on the algebraic line in order to approximate the value of the polynomial to 

0. When this happens, the exact root of the polynomial is determined by a specific 

algorithm of the program and it is represented as a point on the line.  

   

This technique, that can be controlled by the user through his visual and spatial 

experience, is effective not only at a pragmatic level but also at an epistemic level, 

because it can concretely support the development of a discourse on the notion of 

root of a polynomial, as value of the variable that makes the polynomial equal to 0. 

The truth set of a proposition can be found through the use of a specific graphical 

editor. Let us consider the inequation x
2
-2x-1>0, that once edited, is visualised in a 

specific window of this component named “Sets”. Once the root of the polynomial 

associated to the inequation has been represented on the line, a graphic editor can be 

used to construct its truth set (see the figure).  

Once the truth set of a proposition has been edited, it can be validated using a specific 

feedback of the system. In the set window propositions and numerical sets are 

associated to coloured (green/red) markers that are under the control of the system. 

The green/(red) colour for the proposition means that it is true/(false) while the 

green/(red) colour for the numerical set means that the actual variable value on the 

line is/(is not) an element of the set. Through the drag of the variable on the line, 

colour accordance between proposition marker and set marker allows the user to 

 

 
Two open intervals on the line, respectively on the 

right and on the left side of the roots of the 

polynomial x
2
-2x-1, have been selected with the 

mouse. The system has translated the performed 

selection into the formal language. 
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validate the defined numerical set as truth set of the proposition (see figure below). 

The validation process is supported by the accordance of colour between the two 

markers and by the quantitative feedback provided by the position of variable and of 

the polynomial on the algebraic line during the drag. 

  

This feedback offered by the system during the drag of the variable is important to 

introduce the notions of truth value and of truth set of an algebraic proposition and to 

develop a discourse on their relationships. All the described instrumented techniques 

that are specific of the Algebraic line component make a quantitative and dynamic 

algebra possible. 

Algebraic manipulator component  
The interface of this component has been divided into two distinct spaces: a space 

where symbolic manipulation rules are reported and a space where symbolic 

transformation is realised. 

 

This figure shows a part of the 

commands available with the 

interface and an example of 

algebraic transformation.  

The figure shows a 

characteristic of the 

interactivity of this 

manipulator: the selection of a 

part of an expression 

determines the activation of the 

commands of the interface that 

can be applied on it. This 

characteristic can help students 

to explore the systems of rule 

for the algebraic transformation 

and the effects they produce 

The main idea characterizing the design of the Algebraic Manipulator component is 

the possibility to exploit pattern matching procedures of computer science to 

transform algebraic expressions and propositions through a structured set of basic 

rules that are deeply different from those of the CAS. In CAS pattern matching 

procedures are exploited according to a pragmatic perspective oriented to produce a 

result of symbolic transformation that could be also very complex, as in the case of 
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command like factor or solve. As a consequence, the techniques of transformation 

can be obscure for a not expert user. In the Algebraic Manipulator component of 

Alnuset pattern matching procedures have been exploited according to three specific 

pedagogical necessities. The first necessity is to highlight the epistemic value of 

algebraic transformation as formal proof of the equivalence among algebraic forms. 

To this aim we have designed this manipulator with a set of basic rules that 

correspond to the basic properties of addition, multiplication and power operations, to 

the equality and inequality properties between algebraic expressions, to basic logic 

operations among propositions and among sets. Every rule produces the simple result 

of transformation that is reported on the icon of its corresponding command on the 

interface, and this makes the control of the rule and the result easy to control. 

Moreover a fundamental function of this component allows the student to create a 

new transformation rule (user rule) once this rule has been proved using the rules of 

transformation available on the interface. For example, once the rule of the 

remarkable product a
2
-b

2
= (a+b)*(a-b) has been proved, it can be added as new user 

rule in the interface a
2
-b

2(a+b)*(a-b) and it can successively be used to transform 

other expressions or part of them whose form match with it. Moreover, a specific 

command allows to represent every transformed expression on the algebraic line 

automatically. Through this command it is possible to verify quantitatively the 

preservation of the equivalence through the transformation, observing that all the 

transformed expressions belong to the same post-it when their variables are dragged 

along the line. These characteristics of the algebraic manipulator of Alnuset can have 

a great epistemic importance because they can be effectively exploited to support the 

comprehension of the algebraic manipulation in terms of formal proof of the 

equivalence between two algebraic forms. The second necessity is to support the 

integration of practice of quantitative and manipulative nature. In this manipulator 

three rules allow the user to import the root of a polynomial, the truth set of a 

proposition and the value assumed by a variable on the algebraic line from the 

Algebraic line component to be used in the algebraic transformation. For example the 

rule “Factorize” uses the root of polynomial found in the Algebraic Line to factorize 

it. The way in which this rule works, makes the factorization technique of Alnuset 

different from that of CAS. In CAS this technique is totally under the control of the 

system, and the result can appear rather obscure for not expert users. In Alnuset, the 

factorization can be applied on the polynomial at hand only if its roots have been 

previously determined on the algebraic line. In Alnuset the distribution of tasks 

between user and computer and the way they interact, can contribute to understand 

the link between the factorization of a polynomial and its roots. The third necessity is 

to offer more powerful rules of transformation when needed for the activity and when 

specific meaning of algebraic manipulation have been already constructed. Two 

specific rules, also present in the CAS are available in this manipulator. They 

determine the result of a numerical expression and the result of a computation with 

polynomials respectively. These rules of transformation contribute to increase the 
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pragmatic value of the instrumented technique of algebraic transformation in Alnuset 

and they can be used to introduce to the use of CAS  

Moreover, the technique of algebraic transformation has been instrumented in this 

manipulator to provide non expert users with cognitive supports in the development 

of specific manipulative skills. A first support is the possibility to explore, through 

the mouse, the hierarchical structure that characterises the expression or the 

proposition to be manipulated. By dragging the mouse pointer over the elements of 

the expression or proposition at hand (operators, number, letters, brackets…), as 

feedback the system dynamically displays the meaningful part of the selected 

expression or proposition. In this way it is possible to explore all meaningful parts of 

an expression in the different levels of its hierarchical structure. Another feedback 

occurs when a part of expression has been selected. Through a pattern matching 

technique, the system, as feedback, activates only the rule of the interface that can be 

applied on the selected part of expression. This is a cognitive support that can be used 

to explore the connection among the transformational rules of the interface, the form 

on which it can be applied, and the effects provided by their applications. 

Functions component 
The main idea characterizing the design of the Functions component is the possibility 

to connect a dynamic functional relationship between variable and expression on the 

algebraic line with the graphical representation of the function in the Cartesian plane. 

As a consequence, the interface of this component has been equipped with the 

Algebraic line and a Cartesian plane. This idea makes this component deeply 

different from other environment for the representation of function in the Cartesian 

plane. Through a specific command and the successive selection of the independent 

variable of the function, an expression represented on the Algebraic line is 

automatically represented as graphic in the Cartesian plane. Dragging the point 
corresponding to the variable on the algebraic line, two representative events occur:  

- on the algebraic line, the expression containing the variable moves accordingly 

- on the Cartesian plane, the point defined by the pair of values of the variable and of 

the expression moves on the graphic as shown in the following figure. 

This instrumented technique supports the integrated development of a dynamic idea 

of function with a static idea of such a notion (Sfard 1991). The functional 

relationship between variable and expression is visualized dynamically on the 

algebraic line through drag of the variable point, and statically in the Cartesian plane 

through the curve. The movement of the point along the curve during the drag of the 

variable on the algebraic line supports the integration of these two ideas, showing that 

the curve reifies the infinite couples of values corresponding to the variable and to the 

expression on the line. This instrumented technique can be very useful to orient the 

interpretation of the graphics on the Cartesian plane and to develop important 

concepts of algebraic nature.  
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For example, it contributes 

to assign an algebraic 

meaning to the intersection 

of two curves (for the value 

of the variable that 

determines the intersection, 

the two expressions are 

contained in the same post-it 

on the algebraic line) or to 

the intersection of a curve 

with the x-axis (in this case 

the expression is contained 

in the post-it of 0). 

Other examples are related to the construction of meaning for the sign of a function 

(position of the corresponding expression on the line with respect to 0), or to order 

among functions (positions of the expressions on the algebraic line )  

CONCLUSIONS 

In this paper we have presented the main ideas that oriented the realisation of Alnuset 

and the choices we made to instrument specific functions of algebraic activity that 

can be useful for the teaching and learning of algebra. We have shown that the 

quantitative, symbolic and functional techniques available in the three environments 

of Alnuset to operate with algebraic expressions and propositions have characteristics 

that are deeply different from the instrumented technique of CAS. The technique of 

Alnuset was designed having in mind two types of users, different from the target 

user considered by CAS designers. The former type of user is the student who is not 

an expert of the knowledge domain of algebra and uses the instrumented techniques 

of Alnuset to learn it carrying out the algebraic activity proposed by the teacher. The 

latter type of user is the teacher who has difficulties to develop algebraic 

competencies and knowledge in students and who uses the instrumented technique of 

Alnuset to acquaint them with objects, procedures, relations and phenomena of 

school algebra. The technique of Alnuset was designed to be easily controlled during 

the solution of algebraic tasks, to produce results that can be easily interpreted and to 

mediate the interaction and the discussion on the algebraic meaning involved in the 

activity. The techniques of Alnuset structure a new phenomenological space where 

algebraic objects, relations and phenomena are reified by means of representative 

events that fall under the visual, spatial and motor perception of students and 

teachers. This contributes to provide an appropriate balance between the pragmatic 

and epistemic values of the techniques made available by Alnuset. In the 

phenomenological space determined by the use of the instrumented technique of 

Alnuset algebra can become a matter of investigation as evidenced by Trgalova et al. 

(WG4) and Pedemonte (WG2) of CERME6.  
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CASYOPÉE IN THE CLASSROOM:  

TWO DIFFERENT THEORY-DRIVEN  

PEDAGOGICAL APPROACHES 

Mirko Maracci**, Claire Cazes*, Fabrice Vandebrouck*, M. Alessandra Mariotti** 
*Didirem, Research team in the didactics of mathematics, University Paris 7, France 

**Department of Mathematics and Computer Science, University of Siena, Italy 

The ReMath project is a European project that addresses the task of integrating 
theoretical frames on mathematical learning with digital technologies at the 
European level. A specific set of six dynamic digital artefacts (DDA) has been 
currently developed, reflecting the diversity of representations provided by ICT tools. 
Here we considerer the DDA Casyopée which was experimented in two different 
countries: Italy (Unisi team) and France (Didirem team). The paper focuses on the 
influence of the theoretical frames in the design of these Teaching Experiments. 

PROBLEMATIC OF THE REMATH PROJECT 

The project focuses on the primary and secondary school level giving a balanced 

attention to both teachers and students and incorporating a range of innovative and 

technologically enhanced traditional representations. Specific attention is given to 

cultural diversity: seven teams from four countries are involved in this project. The 

work is based on evidence from experience involving a cyclical process of  

a) developing six state-of-the-art dynamic digital artefacts for representing 

mathematics involving the domains of Algebra, Geometry and applied mathematics, 

b) developing scenarios in a common format for the use of these artefacts for 

educational added value, 

c) carrying out empirical research involving cross-experimentation (Cerulli et al. 

2008) in realistic educational contexts, aiming at enhancing our understanding of 

meaning-making through representing with digital media, in particular by providing 

new insight into means of using technologies to support learning, and into learning 

processes in relation to the use of technologies.  

Many recent studies highlight the existence of a multiplicity of theoretical 

frameworks for addressing those themes, and there is a shared increasing need of 

overcoming the resulting fragmentation (Artigue, 2007). This need is also felt within 

ReMath project, in which a variety of educational paradigms is present. The issue is 

addressed through the development of specific methodological tools, some of which 

are drawn and re-elaborated from the experience of TELMA project (Cerulli et al., 

2008).  

In this paper we present two different Teaching Experiments designed and carried out 

within ReMath project, respectively by Didirem team of the University Paris 7 

(France), and by Unisi team of the University of Siena (Italy). Both the TEs were 
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designed around the use of the software Casyopée (partly developed within the 

project). After describing the main features of Casyopée (exploited in the Teaching 

experiments) we will focus on the design of the Teaching Experiments, and we will 

compare them relying on the construct of Didactical Functionality (Cerulli, 

Pedemonte and Robotti, 2006). Though it would be interesting, a discussion on the 

actual implementation of the plans in classroom is out of the goals and of the 

possibilities of the present paper. 

THE CONSTRUCT OF DIDACTICAL FUNCTIONALITY 

The construct of Didactical Functionality is meant to provide a minimal common 

perspective, hopefully independent from specific theoretical frameworks, to frame 

diverse approaches (possibly depending on theoretical references) to the use of ICT 

tools in mathematics education, as well as the theoretical reflections regarding the 

actual use of ICT tools in given contexts. 

By Didactical Functionality of an ICT tool, one means the system constituted by 

three interrelated poles: a set of features of the tool, a set of educational goals, and the 

modalities of employing the specified features of the tool for achieving the envisaged 

educational goals. 

Trivially, through the construct of Didactical Functionality one intends to 

acknowledge that an ICT tool (or part of it) can be used in different ways for 

achieving different educational goals, that is one can design or identify different 

Didactical Functionalities of a given tool. In particular different theoretical 

perspectives can lead to designing different Didactical Functionalities of a given tool.   

THE DDA CASYOPEE 

The DDA Casyopée (Lagrange and Chiappini, 2007) is built as an open problem-

solving environment with the aim of giving students a means to work with algebraic 

representation, progressively acquiring control of the sense of algebraic expressions 

and of their transformations. Functions are the basic objects in Casyopée. Using this 

tool, students can explore and prove properties of functions. Casyopée takes into 

account the potentialities that Computer Algebra Systems offer to teaching and 

learning: going beyond mere numerical experimentation and accessing the algebraic 

notation; focusing on the purpose of algebraic transformations rather than on 

manipulation and connecting the algebraic activities. It is expected that students will 

make sense of algebraic representations by linking these with representations in these 

domains. See below a screen copy on the algebraic representations provided by 

Casyopée, it splits into two windows: a symbolic one and a graphical one. 
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Figure 1: the algebraic setting in Casyopée 

In the Remath project, Casyopée has been extended with a geometrical module. The 

aim is to explore what can be an interesting cooperation between a geometrical 

problem and its analytic treatment. The goal is not to develop a whole geometric 

dynamic environment but rather to see how geometric and analytic environments can 

articulate each other. For instance, a geometrical figure can be a domain to 

experiment with geometrical calculations. In the screenshot below, students can ask 

for the  measure of the area of the rectangle MNOP. Then an algebraic model can be 

built choosing one of the measures as an independent variable and the other as a 

dependant variable. Properties of the dependency can be conjectured and proved: 

they take sense both in the algebraic and in the geometrical settings. 

 

Figure 2: the geometrical window in Casyopée 

The main specificity of Casyopée among other dynamic geometrical artefacts is to 

connect geometric and algebraic approaches. More precisely, the geometrical frame 
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allows one to consider a geometric calculation and to export it in the algebraic 

environment. This transfer is allowed by choosing an adequate variable for the 

geometrical situation. At this point, Casyopée gives a feedback on the choice of this 
independent variable.  

The representations offered by Casyopée have been thought to be close to 

institutional ones. Casyopée allows students to work with the usual operations on 

functions such as algebraic operations, analytic calculations and graphical 

representations. The geometric environment offers commands usually available in 

other dynamic geometry environments such as creating fixed and free geometrical 
objects (points, lines, circles, curves) 

UNISI AND DIDIREM PEDAGOGICAL PLANS 

In the introduction we recalled that different specific methodological tools have been 

developed within ReMath for fostering the comparability of studies dealing with the 

use of ICT tools in mathematics education. A new conceptual model of the 

pedagogical scenario, called Pedagogical Plan (Bottino et al. 2007), is one of those 

methodological tools. A Pedagogical Plan has a recursive hierarchical structure: each 

pedagogical plan is conceived as a tree whose nodes and leaves are pedagogical plans 

themselves. Several components are attached to each pedagogical plan: including the 

articulation of the educational goals, of the class activities, the specification of the 

features of the ICT tool used and how they are used, and of the rationale 

underpinning the whole pedagogical plan and of the theoretical frames inspiring it. A 

web-based tool (Pedagogical Plan Manager, PPM) has been also developed for 
supporting teams in designing their pedagogical plans.  

UNISI DIDIREM 

  

Figure 3: synthetic view of Unisi and Didirem pedagogical plans in the PPM 
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Figure 3 displays a screenshot from the PPM, and it is meant to provide an overview 

of the structures of the pedagogical plans designed by the Unisi and Didirem teams. 

Details of the Unisi pedagogical plan 

The Unisi pedagogical plan is inspired by the Theory of Semiotic Mediation 

(Bartolini Bussi and Mariotti, 2008) drawn from a Vygotsijan perspective. This 

theory guided both the specification of the educational goals (starting from an 

analysis of Casyopée) and the overall structure of the planned activities.  

The designed educational goals are (a) to foster the evolution of students’ personal 

meanings towards the mathematical meanings of function as co-variation. That 

regards also the notions of variable, domain of a variable… and (b) to foster the 

evolution of students’ personal meanings towards mathematical meanings related to 

the algebraic modelling of geometrical situations.  

Students are expected to have already received some formal teaching on the notions 

of variable, function and graph of a function, and on its graphical representation in a 

Cartesian plane. Moreover, a common experience of researchers and teachers is that 

meanings related to those notions are rarely elaborated in depth. The aim is to 

mediate and weave those meanings in the more global frame of modelling. 

Hence, the pedagogical plan is not meant to help students become able to use 

Casyopée for accomplishing given tasks, but instead to foster the students’ 

consciousness-raising of the mathematical meanings at stake. 

The whole pedagogical plan is structured in cycles entailing: students’ pair or small 

group activity with Casyopée for accomplishing a task, students’ personal rethinking 

of the class activity (through the request to students of producing individual reports 

on that activity), class discussion orchestrated by the teacher. 

The familiarization session is designed as a set of tasks aims at providing students 

with an overview of Cayopée features and guiding students to observe and reflect 

upon the "effects" of their interaction with the tool itself, e.g.: 

Could you choose a variable acceptable by Casyopée and click on the 

“validate” button? Describe how did the window “Geometric Calculation” 

change after clicking on the button. Which new button appeared? 

Besides familiarization, the designed activities with Casyopée consist of coping with 

“complex” optimization problems formulated in a geometrical setting and posed in 

generic term, e.g.: 

Given a triangle, what is the maximum value of the area of a rectangle 

inscribed in the triangle? Find a rectangle whose area has the maximum 

possible value. 

The aim is to elaborate on those problems so to reveal and unravel the complexity 

and put into evidence step by step the specific mathematical meanings at stake. 
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According to the designed pedagogical plan, the teacher plays the delicate role of 

guiding students to unravel such complexity and to make the targeted mathematical 

meanings emerge. The main tool for the teacher to achieve this objective, is the 

orchestration of the class discussions. The development of a class discussion cannot 

be completely foreseen a priori, it should be designed starting from the analysis of 

students’ actual activity with Casyopée and of the reports they produce, and it would 

still depend on extemporary stimuli. Nevertheless in the design Unisi team tried to 

anticipate possible development of the pedagogical plan and to plan some kind of 

possible canvas for the teachers for managing class discussions. 

The pedagogical plan is intended for scientific high schools or technical institutes, 

grade 12 or 13, and can be implemented over approximately 11 school hours. 

Details of the Didirem pedagogical plan 

The Didirem pedagogical plan aims to help students construct or enrich knowledge in 

the following areas: meaning of functions as algebraic objects and meaning of 

functions as means to model a co variation in geometric and algebraic settings. It is 

intended for scientific high schools grade 11 or 12 and has been implemented in 

ordinary classes during approximately 10 school hours. It is inspired both by the 

Instrumental Approach (Artigue, 2002), the Theory of Situation (Brousseau, 1997) 

and the Theory of Anthropologic Didactic (Chevallard, 1999). 

Specific importance is given to the construction of tasks with an adidactical potential, 

where students can choose different variables for exploring functional 

dependencies, and to the connection between algebra and geometry. This connection 

is supported in Casyopée by geometric expressions that allow expressing magnitudes 

in a symbolic language mixing geometry and algebra.  

The pedagogical plan is built around three main types of tasks: 

- First session: finding target quadratic functions by animating parameters (five 

different tasks according to the semiotic forms used for these functions): 

Lesson 1: Introducing associated functions (a function g is associated to a 

function f if it is defined by a formula like g(x)=af(x)+b or f(ax+b) or similar) 

Lesson 2: Target Functions (functions that can be graphed but whose 

expression is not known; each student have to guess the function graphed by 

his/her partner) 

Lesson 3: Different expressions of quadratic functions 

So students should consolidate: the meaning of variable, the distinction between 

variable and parameter, the meaning of function of one variable with several registers 

of semiotic representation and the fact that a same function may have several 

algebraic expressions. The new notion of associated function is worked-out during 

this session. 
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- Second session: creating a geometrical calculus as a model of a geometrical 

situation to solve a problem of relationships between areas, manipulation to 

experiment co variation between two geometrical variables: 

Lesson 4: To divide a triangle in pieces of fixed area 

Lesson 5: Application; dividing a rectangle into figures of fixed area 

This way students can enhance their knowledge on co variation and develop the 

ability to experiment and anticipate in a dynamic geometrical situation, and the 

ability to model a geometric situation through geometric calculations.  

- Third session: creating a function as a model of a geometrical situation to solve an 

optimization problem. 

Lesson 6: solving a problem of optimisation in geometric settings by way of 

algebraic modelling. 

 

Figure 4: statement of the session 3 in Didirem pedagogical plan 

This problem allows both to reinvest abilities to use the DDA, previous knowledge on 

associated functions and to introduce the notion of optimum in a geometrical 

situation. 

COMPARISON OF THE UNISI AND DIDIREM APPROACHES USING THE 

CONSTRUCT OF DIDACTICAL FUNCTIONALITY 

The two pedagogical plans, described in the previous sections, evidently share some 

characteristics but also have apparent deep differences. In this section we use the 

frame provided by the construct of Didactical Functionality to develop a more 

systematic comparison between the two pedagogical plans.  

Tool Features 

The two pedagogical plans are not generally centred on the use of the same DDA, but 

more specifically on the use of the same DDA features. In fact both exploit especially  

(a) features of  the dynamic geometry environment: the commands for creating 

fixed, free or constrained points, for dragging free or bonded points, for 

creating points with parametric coordinates, and the corresponding feedbacks 

of the DDA; 
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(b) features of  the geometric calculation environment: the commands for creating 

“geometric calculation” associating numbers to geometrical objects, for 

choosing (independent) variables, for creating function between the selected 

variable and calculation, and the corresponding feedbacks; 

(c) features of the algebraic environment, including the commands for displaying 

and exploring graphs of functions, for creating and manipulating parameters, 

for manipulating the algebraic expressions of functions, and the corresponding 

feedbacks. 

Educational Goals 

Different educational goals are associated to the use of those features. More 

precisely, one can recognize that both pedagogical plans share a common focus on 

some mathematical notions: function (in particular, conceived as co-variation), 

variables (independent and dependent) and parameters. Moreover the two 

pedagogical plans present, among other tasks, two optimization problems sharing the 

same mathematical core (see sections…). But, besides those surface similarities, there 

are profound differences. 

Other Unisi educational goals are to mediate and weave meanings, related to the 

notions of function, variable and parameter. With that respect the Unisi team 

assumes, on the one hand, that those notions are familiar for students, and, on the 

other hand, that those notions are not elaborated in depth. Hence the Unisi 

pedagogical plan aims at helping students gain a deeper consciousness of the 

mathematical meanings at stake and re-appropriate them in the more global frame of 

modelling. In addition the Unisi objective includes the shared and decontextualized 

formulation of the different mathematical notions in focus.  

The Didirem objectives are mainly to use potentialities of representations offered by 

Casyopée to introduce some new mathematical knowledge. This knowledge has been 

chosen for two main reasons: its affordance to the French curriculum and the 

importance to be studied in several frames of representations.  

Modalities of employment 

In accordance with the different objectives and the different pedagogical culture, the 

modalities of use are different as well. 

The Unisi pedagogical plan has an iterative structure. Students’ activity with 

Casyopée alternates with class discussions, after each session students are required to 

produce individual reports on the performed activities. This structure is meant to 

foster students’ generation of personal meanings linked to the use of the DDA and 

their evolution towards the targeted mathematical meanings together with the 

students’ consciousness-raising of the mathematical meanings at stake. That process 

is constantly fuelled by the teacher, whose role is crucial. Accordingly the teacher’s 

role is explicitly taken into account in the design of the pedagogical plan, which 

provides with hints for the possible actions. The tasks used are optimization problems 
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set in a geometrical frame. Their solution and the reflection on these solutions are 

fundamental steps towards the achievement of the designed educational goals. Also 

the familiarization with the DDA has to be considered within that perspective: as 

already mentioned, it aims at making students observe and reflect upon the "effects" 

of their interaction with the DDA itself. Ad hoc tasks are designed for that purpose. 

Instead, the Didirem team pays specific attention to a progressive use of the DDA 

combining artefact and mathematical knowledge. Indeed, students work only in the 

algebraic window during section 1, then only in the geometrical windows in section2; 

finally section 3 gives an opportunity to reinvests the knowledge in the two 

environments. Moreover, all the tasks proposed are mathematical ones and are 

elaborated in order to allow students make progress alone working on the problem 

and to construct their new knowledge thanks the feedbacks. 

CONCLUSION 

Those differences can be strongly related with the different theoretical perspectives 

adopted by the two teams.  

The Unisi team has mainly structured its pedagogical plan according to the Theory of 

Semiotic Mediation which inspired both the specification of the educational goals and 

the organization of the activities in iterative cycles. In particular the Theory of 

Semiotic Mediation led the Unisi team to devote attention towards the design of the 

teacher’s action in the pedagogical plan. In fact, the teacher plays a crucial role 

throughout the whole pedagogical plan, especially for fostering the evolution of 

students’ personal meanings towards the targeted mathematical meanings and 

facilitating the students’ consciousness-raising of those mathematical meanings.  

Instead, the Didirem team splits its theoretical approach into several theoretical 

frames which shape their pedagogical plan: the Instrumental Approach (Artigue, 

2002), the theory of Situation (Brousseau, 1997) and at last the theory of 

anthropologic didactic (Chevallard, 1999). The first frame aims to go further than a 

simple familiarization with the DDA and to help the students constructing a 

mathematical instrument. This process goes hand in hand with the learning process. 

The last optimization problem is used to evaluate the progress of this process. The 

process is accurately designed through a careful choice of mathematical tasks, with 

an adidactical potential, whereas the definition of the teacher's actions and role 

escapes the design of the PP. Finally, the TAD is called upon to manage instrumental 

distance between institutional and instrumental knowledge.  

No doubt that these approaches are complementary. Each team might benefit from 

this collective work to improve its pedagogical plan in the future. For instance, the 

Didirem team plans to pay more attention to the teacher’s role during the 

pedagogical plan conception. Nevertheless, the objective is not to elaborate a wide 

common consensual theoretical frame, but rather to go in depth in the clarification of 

didactical functionalities, in a shared language. 
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NAVIGATION IN GEOGRAPHICAL SPACE 
Christos Markopoulos, Chronis Kynigos, Efi Alexopoulou, Alexandra Koukiou 

Educational Technology Lab, University of Athens 
This study is part of the ReMath project (Remath’ – Representing Mathematics with 
Digital Media FP6, IST-4, STREP 026751 (2005 – 2008), http://remath.cti.gr. 
Twenty four 10th Grade students participated in a constructivist teaching experiment, 
the aim of which was to investigate children’s constructions of mathematical 
meanings concerning the concept of function while navigating within 3d large scale 
spaces. The results showed that the utilization of the new representations provided by 
the dynamic digital media such as Cruislet could reform the way that mathematical 
concepts are presented in the curricula and possibly approach these mathematical 
notions through meaningful situations. The new representations provide the 
opportunity to introduce and study mathematical notions not as isolated entities but 
rather as interconnected functionalities of meaningful real – life situations. 
 
Functions are a central feature of mathematics curricula, both past and present. Many 
research studies indicate students’ difficulty in understanding the concept of 
functions. This difficulty comes from a) the static media used to represent the 
concept, b) the introduction of function mainly as a mapping between sets in 
conventional curricula, c) the use of formalisation and function graphs as the only 
representations. With digital media, students can dynamically manipulate informal 
representations of function defined as co-variation and rate of change, which is an 
interesting and powerful mathematical concept. Tall(1996) points out a fundamental 
fault-line in “calculus” courses which attempt to build on formal definitions and 
theorems from the beginning. Moreover, he suggests that enactive sensations of 
moving objects may give a sense that “continuous” change implies the existence of a 
“rate of change”, in the sense of relating the theoretically different formal definitions 
of continuity and differentiability. The enactive experiences provide an intuitive basis 
for elementary calculus built with numeric, symbolic and visual representations. 
The ‘Cruislet’ environment is a state-of-the-art dynamic digital artefact that has been 
designed and developed within the Eu ReMath project. It is designed for 
mathematically driven navigations in virtual 3d geographical spaces and is comprised 
of two interdependent representational systems for defining a displacement in 3d 
space, a spherical coordinate and a geographical coordinate system. We consider that 
the new representations enabled by digital media such as Cruislet can place 
mathematical concepts in a central role for both controlling and measuring the 
behaviours of objects and entities in virtual 3d environments. The notion of 
navigational mathematics is used to describe the mathematical concepts that are 
embedded and the mathematical abilities the development of which is supported 
within the Cruislet microworld. In this study we focus on how students using 
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spherical and geographical systems of reference in Cruislet construct meanings about 
the concept of function.  

THEORETICAL FRAMEWORK 
A number of research studies suggest that students of all grades, even undergraduate 
students, have difficulties modelling functional relationships of situations involving 
the rate of change of one variable as it continuously varies in a dependent relationship 
with another variable (Carlson et all, 2002; Carlson, 1998, Monk & Nemirovsky, 
1994). This ability is essential for interpreting models of dynamic events and 
foundational for understanding major concepts of calculus and differential equations. 
On the other hand, the VisualMath curriculum (Yerushalmy & Shternberg, 2001) is 
an a example of a function based curriculum that involves the moving across multiple 
views of symbols, graphs, and functions. VisualMath uses specially designed 
software environments such as simulations' software, or other modelling tools that 
include dynamic forms of representations of computational processes. Yerushalmy 
(2004) suggests that such emphasis on modeling offers students means and tools to 
reason about differences and variations (rate of change). Moreover, .Kaput and 
Roschelle (1998) using computer simulations study aspects of calculus at an earlier 
stage. These simulations (MBL tools), permit the study of change and the ways it 
relates to the qualities of the situation. In their study Nemirovsky, Kaput and 
Roschelle (1998) show that young children can use the rate of change as a way to 
explore functional understanding. In studying the process of the understanding of 
dynamic functional relationships, Thompson (1994) has suggested that the concept of 
rate is foundational. 
Confrey and Smith (1994) choose the concept of rate of change as an entry to 
thinking about functions. They introduce introduce two general approaches to 
creating and conceptualizing functional relationships, a correspondence and a 
covariation approach. They suggest that “a covariational approach to functions makes 
the rate of change concept more visible and at the same time, more critical (p. 138). 
They explicate a notion of covariation that entails moving between successive values 
of one variable and coordinating this with moving between corresponding successive 
values of another variable. 
Moreover, Carlson, Larsen and Jacobs (2001) stress the importance of covariational 
reasoning as an important ability for interpreting, describing and representing the 
behavior of dynamic function event. They consider covariational reasoning to be the 
cognitive ability involved in coordinating images of two varying quantities and 
attending to the ways in which they change in relation to each other. On the same 
line, Saldanha and Thompson (1998) introduced a theory of developmental images of 
covariation. In particular, they considered possible imagistic foundations for 
someone’s ability to see covariation. Carlson et all (2001) in their study exploring the 
role of covariational reasoning in the development of the concepts of limit and 
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accumulation, suggest a framework including five categories of mental actions of 
covariational reasoning: 

1. An image of two variables changing simultaneously 
2. A loosely coordinated image of how the variables are changing with respect to 

each other  
3. An image of an amount of change of one variable while considering changes in 

discrete amounts of the other variable 
4. An image of the average rate-of-change of the function with uniform 

increments of change in the input variable 
5. An image of the instantaneous rate of change of the function with continuous 

changes in the independent variable for the entire domain of the function 
The proposed covariation framework contains five distinct developmental levels of 
mental actions. Using this particular framework we will try to classify students’ 
covariational reasoning while studying navigation within the context of Cruislet 
microworld. We consider navigation as a dynamic function event. The function’s 
independent variable is the geographical coordinates of the position of the first 
aeroplane, which students are asked to navigate, while the dependent variable is the 
geographical coordinates of the position of the second aeroplane.  
Our approach to learning promotes investigation through the design of activities that 
offer a research framework to investigate purposeful ways that allow children to 
appreciate the utility of mathematical ideas (Ainley & Pratt, 2002). In this context, 
our approach is to design tasks for either exclusively mathematical activities or multi-
domain projects containing a mathematical element within the theme which can be 
considered as marginalized or obscure within the official mathematics curriculum 
(Kynigos & Yiannoutsou, 2002, Yiannoutsou & Kynigos, 2004).  

TASKS 
In the tasks that are included in this teaching experiment, students actually engage 
with the study of the existence of a rate of change of the displacements of the 
airplanes which are defined in the geographical coordinate system. In particular the 
dispacements of two airplanes are relative according to a linear function. This 
function will be hidden and the students will have to guess it in the first phase of the 
activity based on repeated moves of aeroplane A and observations of the relative 
positions and moves of planes A and B. The second phase, the students will be able to 
change the function of relative motion and play games with objectives they may 
define for themselves such as move plane A from Athens to Thessaloniki and plane B 
from Athens to Rhodes and then to Thessaloniki in the same time period. 
This scenario is based on the idea of half – baked games, an idea taken from 
microworld design (Kynigos, 2007). These are games that incorporate an interesting 
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game idea, but they are incomplete by design in order to encourage students to 
change their rules. Students play and change them and thus adopt the roles of both 
player and designer of the game (Kafai, 2006).  
Initially, students are asked to study the relation between the two aeroplanes, the rate 
of change of their displacements and consequently find the linear function (decode 
the rule of the game). In order to decode "the rule of the game", they should give 
various values to coordinates (Lat, Long, Height) that define the position of the first 
plane. They will be encouraged to communicate their observations about the position 
of the second plane to each other and form conjectures about the relationship between 
the positions of the two aeroplanes.  
In the second phase students are encouraged to build their own rules of the game by 
changing the function of the relative displacements of the two aeroplanes. 

METHODOLOGY 
The research methodology is a constructivist teaching experiment along the same 
lines as described by Cobb, Yackel and Wood (1992).The researcher acts as a teacher 
interacting with the children aiming to investigate their thinking. The researcher, 
reflecting on these interactions, tries to interpret children’s actions and finally forms 
models-assumptions concerning their conceptions. These assumptions are evaluated 
and consequently either verified or revised.  
Twenty four (24) students of the 1st grade of upper high school, (aged 15-16 years 
old) participated in this experiment. Students worked in pairs in the PC lab. Each pair 
of students worked on the tasks using Cruislet software.  
The data consists of audio and screen recordings as well as students’ activity sheets 
and notes. The data was analyzed verbatim in relation to students’ interaction with the 
environment. We have focused particularly on the process by which implicit 
mathematical knowledge is constructed during shared student activity. As a result, in 
our analysis we use students’ verbal transcriptions as well as their interaction with the 
provided representations displayed on the computer screen. 
 
ANALYSIS 
While students were interacting with the Cruislet environment according to the tasks, 
several meanings emerged regarding the concept of function. We categorise these 
meanings in clusters that rely upon the concept of function. In particular, there are 
two major categories: 
Domain of numbers 

Students navigating an aeroplane in the 3d map of Greece realized that the domain of 
the geographical coordinates is actually a closed group. The 3d map of Greece is a 
geographical coordinate system with specific borders. The investigation of the range 
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of the geographical borders as the domain of the function became the subject of study 
and exploration through the use of the Cruislet functionalities. In particular, students 
exploited the two different systems of reference and, experimenting with the values 
of the geographical coordinates, they define the range of the latitude – longitude 
values. This specific range of values has been considered as the domain of the 
functions according to which the displacements of the aeroplanes are relative. 
Although students didn’t refer to the values as the domain of the function, we 
interpret their involvement in finding them, as a mathematical activity regarding the 
domain of the function.   
Students experimented by giving several values to the geographical coordinates of the 
airplane’s position defining at the same time the range of the coordinates’ values. In 
the following episode students are trying to find out the reason for not placing the 
airplane in a given position.  

S1: Why?? It doesn’t accept any value. (they gave values in procedure fly1 and the 
airplane couldn’t go).  

R:  Do you remember what values the lat long coordinates have?  

   Isn’t lat equals 58 isn’t correct? (she also speaks to the next team)  

S1:It doesn’t accept 32 20 100 either.  

S2: Greece hasn’t got value 20 (student from another team speak ironically to him)  

S1: Why? Was the 58 you used correct?  

An interesting issue related to the domain of the function, is that the provided 
representations, i.e. the result of the aeroplane’s displacement displayed on the 
screen, helped students realize that the domain of numbers of the two aeroplanes 
displaced in relative positions, are strongly dependent. For instance when the first 
moved to a given position, the second one couldn’t go anywhere, but the domain of 
values was restricted by the first position. In the following episode students realized 
that the 2nd aeroplane didn’t follow them when they flew at a low height. The 
episode is interesting as it indicates the way students realize the domain of 
geographical coordinate values that the first aeroplane can take in relation to the other 
one.  

S1: There are some times that it (meaning the other aeroplane) can’t follow us. 

R:  Where? When? 

S1: When I’m getting into the sea.  

We could say that the characteristics of Cruislet software, such as the visualization of 
the results of the objects’ displacements on the map, acted as a mediator in students’ 
engagement with the domain of function. We have to mention that although the 
modalities of use of Cruislet software and the communication within the groups 
didn’t reveal that students realized or mentioned anything regarding the concept of 
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function, they did focus on finding ways to move the aeroplanes. In other words, 
students didn’t conceive the values of the coordinates as the domain of the function, 
although they used it in this way. The interpretation of students’ actions relies upon 
our educational goals, which conceive this as a mathematical activity that was related 
to the notion of function and particularly, its domain. 
Function as covariation 
During the implementation of the tasks, students engaged with the notion of function, 
through their experimentation with the dependent relationship between two 
aeroplanes’ positions, which was defined by a black – box Logo procedure. Trying to 
find out the hidden function, students’ actions and meanings created, suggested they 
were able to coordinate changes in the direction and the amount of change of the 
dependent variable in tandem with an imagined change of the independent variable. 
Our results indicate that students developed covariational reasoning abilities, 
resulting in viewing the function as covariation.  
Initially most of the students expressed the covariation of the aeroplanes’ positions 
using verbal descriptions, such as behind, front, left, etc. as they were visualizing the 
result of the airplanes’ displacements. In the following episode students express the 
dependent relationship while looking at the result displayed on the screen.  

 

Students experimented by giving several values to geographical coordinates in Logo 
and formed conjectures about the correlation between the aeroplanes’ positions. 
Through their interaction with the available representations, they successfully found 
the dependent relation of the function in each coordinate, resulting in their coming 
into contact with the concept of function as a local dependency. In fact, one of the 
teams conceived the relationship among each coordinate as a function, as is obvious 
in their notes on the activity sheet. 

S1: So, he always wants to 
be close to us on our left. 

R: Yes.  

S1: And he is beneath, 
further down to us. 
Beneath.  

S2: And behind. 
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Translation 

 

 

 

It is interesting to mention that students separated latitude and longitude coordinates 
on the one hand and that of height on the other as they were trying to decode the 
hidden functional relationship between the airplanes’ height coordinates. In 
particular, they didn’t encounter difficulties in decoding latitude and longitude 
relationship in contrast to their attempts to find the height dependency. Although all 
three functions regarding coordinates were linear, students conceived the functional 
relationship between height mainly as proportional, in contrast to latitude and 
longitude that were comprehended as linear, from the beginning. In the following 
episode, students endeavor to apply the rate of change of the function to decode the 
height relationship. As they thought the height coordinates had a proportional 
relationship, they suggested carrying out a division to find it.  

S2: When we go up 1000, he goes up 1000. 

R: Do you mean that if we go from 7000 to 8000 he goes from… let’s say 2500 to 3500. 

S2: He is at… 3000. No. Give me a moment. At 8000 he was at 5500. At 7000 he was at 
4500. At 5000 he is as 2500. And then…. 

S1: We could do the division to see the rate. 

An interesting example was the cases of the variation of the height of the aeroplane 
every time they pushed the button ‘go’ in spherical coordinates, when they wanted to 
make a vertical displacement. In particular, by defining the vector of a vertical 
upward displacement, students observed that height was the only element that 
changed in the position of the displacement. Through a number of identical 
displacements students identified and expressed verbally, symbolically and 
graphically the interdependency between direction functionality and the height of the 
aeroplane. Students’ reasoning: “the more times we push the button GO the higher 
the aeroplane goes”, suggests that students developed a covariational reasoning 
ability similar to the second level proposed by Carlson et al (2001) of how the 

Our Lat is x, his Lat is x – 0.1 

Our Long is y and his is y – 0.05 

  Our Height is ω and his is ω – 2500m.  
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variables change with respect to each other. Moreover, the retrospective symbolic 
type developed by students (h2= h1+1000) indicates that they realized that the rate of 
change of the height is constant. In the following figures we can see the result 
displayed on the screen (figure 1) as well as students’ writings on the activity sheet 
(figure 2).  

 

 

Figure 1 

 

Figure 2 

The provided representations of Cruislet software became a vehicle to engage 
students with concepts related to the concept of function and their expression in a 
mathematical way. The result of airplanes’ displacements on the screen, gave them 
the chance to realize the dependent relation in ‘visual terms’ and then express it in 
mathematical terms. We believe that the results are mainly based on the way that 
these characteristics were used in the task activity. In particular, the activity was 
based on the idea of the ‘Guess my function’ game and the dependent relationship, 
(built in Logo programming language), was hidden at first. Due to this choice, 
students focused primarily on the observation of the relative displacements and not 
on the Logo code underneath it. Αt the same time perceiving the activity as a game 
encourages the engagement of students with the activity.   

Hfinal= Hbefore + 1000  

Students’ actions:  

1. Define the spherical coordinates 
(theta = 0 fi = 90 R = 1000).  

2. Push the “Go” button in “Avatar 
properties” tab resulting in the 
vertical displacement of the 
aeroplane.  

3. Watch the displacement of the 
aeroplane on the GUI. 

4. Focus on the changes of the height 
coordinate. 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1416



  
CONCLUSIONS 
The study indicated that students exploiting Cruislet functionalities can construct 
meanings concerning the concept of functions. The provided linked representations 
(spherical and geographical coordinates), as well as the functionalities of navigating 
in real 3d large scale spaces actually enable students to explore and build 
mathematical meanings of the concept of function within a meaningful context. They 
explore the domain of numbers of a function within a real world situation distanced 
from the “traditional” formal definitions. On the other hand, they built the concept of 
function as covariation exploring the variation of the spherical and geographical 
coordinates. The provided context gave students the opportunity to cope with and 
explore mathematical concepts at different levels. They navigate within 3d large scale 
spaces controlling the displacement of an avatar and develop their visualization 
abilities building mathematical meanings of the concept of function while at the same 
time they explore the mathematical concepts of spherical and geographical 
coordinates.  
The functionalities of the new digital media such as Cruislet provide a challenging 
learning context where the different mathematical concepts and mathematical abilities 
are embedded and interconnected. The role of the teacher becomes crucial in 
designing mathematical tasks where students’ enactive explorations will reveal these 
mathematical notions and put them under negotiation. In the case of Cruislet, 
navigational mathematics becomes the core of the mathematical concepts that 
involves the geographical and spherical coordinate system interconnected with the 
concept of function and the visualization ability.  
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This paper reports on a design experiment conducted to explore the construction of 
meanings by 17-year-old students, emerging from their interpretations and uses of 
algebraic-like formalism. The students worked collaboratively in groups of two or 
three, using MoPiX, a constructionist computational environment with which they 
could create concrete entities in the form of Newtonian models by using equations 
and animate them to link the equations’ formalism to its visual representation. Some 
illustrative examples of two groups of students’ work indicate the potential of the 
activities and tools for expressing and reflecting on the mathematical nature of the 
available formalism. We particularly focused on the students’ engagement in 
reification processes, i.e. making sense of structural aspects of equations, involved in 
conceptualising them as objects that underlie the behaviour of the respective models. 

INTRODUCTION 

In this paper we report on a classroom research [1] aiming to explore 17-year-old 

students’ construction of meanings, emerging from the use of algebraic-like 
formalism in equations used as means to create and animate concrete entities in the 

form of Newtonian models. The students worked collaboratively in groups of two or 

three using a constructionist computational environment called “MoPiX” [2], 
developed at the London Knowledge Lab (http://www.lkl.ac.uk/mopix/) (Winters et 

al., 2006). MoPiX allows students to construct virtual models consisting of objects 

whose properties and behaviours are defined and controlled by the equations assigned 
to them. We primarily focused on how students interpreted and used the available 

formalism while engaged in reification processes (Sfard, 1991), i.e. making sense of 

structural aspects of equations, involved in conceptualising them as objects that 
underlie the behaviour of the respective models. 

THEORETICAL BACKGROUND 

Recognising the meaning of symbols in equations, the ways in which they are related 
to generalisations integrated within specific equations and also the ways in which a 

particular arrangement of symbols in an equation expresses a particular meaning, are 

all fundamental elements to the mathematical and scientific thinking. Research has 
been showing rather conclusively that the use of symbolic formalisms constitutes an 

obstacle for many students beginning to study more advanced mathematics 

(Dubinsky, 2000). Traditional approaches to teaching equations as part of the 
mathematics of motion or mechanics seem to fail to challenge the students’ intuitions 

since they usually encompass static representations such as tables and graphs which 
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are subsequently converted into equations. Lacking any chance of interacting with the 
respective representations, students fail to identify meaningful links between the 

components and relationships in such systems and the extensive use of mathematical 

expressions (diSessa, 1993). Indeed, students tend to use and manipulate physics 
equations in a rote manner, without understanding the concepts they covey (Larkin et 

al., 1980). Sherin (2001) argued that, in order to overcome this obstacle, students 

need to acquire knowledge elements that he termed symbolic forms. The acquisition 
of symbolic forms would help students make connections between an algebraic 

expression’s conceptual content and its structure, which is considered to be crucial 

for the understanding, meaningful use and construction of physics equations. 

In the mathematics education field, the relevant research is mainly based on the 

distinction between the two major stances that students adopt towards equations: the 

process stance and the object stance (Kieran, 1992; Sfard, 1991). The process stance 
is mainly related with a surface “reading” of an equation, concentrated into the 

performance of computational actions following a sequence of operations (i.e. 

computing values). In contrast, according to the object stance, an equation can be 
treated as an object on its own right, which is crucial to the students’ development of 

the so-called algebraic structure sense (Hoch and Dreyfus, 2004), i.e. the act of being 

able to see an algebraic expression as an entity, recognise structures, sub-structures 
and connections between them, as well as to recognise possible manipulations and 

choose which of them are useful to perform. This development, linking procedural 

and structural aspects of equations, has been termed reification (Sfard, 1991) and has 
been considered to underlie the learning of algebra in general. 

Recently, students’ uses and interpretations of symbolic formalism in understanding 

mathematical and scientific ideas have been studied in relation to the representational 
infrastructure of new computational environments designed to make the symbolic 

aspect of equations more accessible and meaningful to children, especially through 

the use of multiple linked representations (Κaput and Rochelle, 1997). Adopting a 
broadly constructionist framework (Harel and Papert, 1991), we used a computer 

environment that is designed to enhance the link between formalism and concrete 

models, allowing us to study the ways in which the use of formalism, when put in the 
role of an expression of an action or a construct (a model), can operate as a 

mathematical representation for constructionist meaning-making. Our central 

research aim was to study students’ construction of meanings emerging from the use 
of mathematical formalism when engaged in reification processes. We mainly 

focused on the development of their understanding on the structure of an equation 

based primarily on the conception of it as a system of connections and relationships 
between its component parts. 

THE COMPUTATIONAL ENVIRONMENT 

MoPiX (Winters et al. 2006) constitutes a programmable environment that provides 
the user the opportunity to construct and animate in a 2d space, models representing 
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phenomena such as collisions and motions. In order to attribute behaviours and 
properties to the objects taking part in the animations generated, the user assigns to 

the objects equations that may already exist in the computational environment’s 

Equations Library or equations that she constructs by herself. 

Figure 1 shows a red ball performing in the MoPiX environment a combined motion 

both in the vertical and horizontal axis, leaving a green trace behind. As one may 

observe, the equations attributed to the object incorporate formal notation symbols 
(Vx, x, t) as well as programming–natural language utterances (ME, appearance, 

Circle). However, their main characteristic is that they constitute functions of time, as 

it is stated by the second argument on the parentheses on their left side. For example, 
the horizontal motion equations attributed to the ball define the object’s: horizontal 

position at the 0 time instance (1), horizontal position at any time instance (2), the 

horizontal velocity at 
the 0 time instance 

(3), the horizontal 

velocity at any time 
instance (4) and the 

horizontal 

acceleration at any 
time instance (5). The 

MoPiX environment 

constantly computes 
the attributes given to 

the objects in the 

form of equations and 
updates the display, generating on the screen the visual effect of an animation. 

Some specific features of MoPiX, underlying the novel character of the 

representations provided, may offer students opportunities to further appreciate 
utilities of the algebraic activity around the use of equations. The first of these 

features is that MoPiX offers a strong visual image of equations as containers into 

which numbers, variables and relations can be placed. The meaningful use of the 
environment may allow students to easily make connections between the structure of 

an equation and the quantities represented in it. The second feature of MoPiX is that 

it allows the user to have deep structure access (diSessa, 2000) to the models 
animated. The equations attributed to the objects and underpin the models’ behaviour 

do not constitute “black boxes”, unavailable for inspection or modifications by the 

user (for a discussion on black and white box approaches see Kynigos 2004). The 
third feature of MoPiX is that the manipulations performed to a model’s symbolic 

facet (e.g. changing a value or removing an equation from the model) produce a 

visual result on the Stage, from which students can get meaningful feedback. 
“Debugging” a flawed animation demands students’ engagement in a back and forth 

process of constructing a model predicting its behaviour, observing the animation 

generated, identifying the equations that are responsible for the “buggy” behaviour 

Figure 0. The MoPiX environment 

Vertical motion 

equations 

Horizontal motion 

equations 

Ball’s and Pen’s 

properties 

equations 

x(ME,0) = 73.35 (1) 
x(ME,t) = x(ME,t-1)+Vx(ME,t) (2) 
Vx(ME,0) = 3 (3) 
Vx(ME,t)=Vx(ME,t-1)+Ax(ME,t) (4) 
Ax(ME,t) = 0 (5) 
 

y(ME,0) = 42.55 
y(ME,t) = y(ME,t-1)+Vy(ME,t) 
Vy(ME,0) = 9 
Ay(ME,t) = -.098 
Vy(ME,t)= Vy(ME,t-1)+Ay(ME,t) 
 

appearance(ME,t) = Circle 
height(ME,t) = 50 
width(ME,t) = 50 
redColour(ME,t) = 100 
penDown(ME,t) = 1 
thicknessPen(ME,t) = 6 
greenColourPen(ME,t) = 100 
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and specifying which and how particular parts need to be fixed. 

TASKS 

For the first phase of the activities we developed, using exclusively “Library” 

equations, the “One Red Ball” microworld which consisted of a single red ball 
performing a combined motion in the vertical and the horizontal axis. The students 

were asked to execute the model, observe the animation generated, discuss with their 

teammates and other workgroups the behaviours animated and write down their 
remarks and observations on a worksheet. In order to provoke discussions regarding 

the equations’ role and stimulate students to start using the equations themselves, we 

asked them to try to reproduce the red ball’s motion. In this process, we encouraged 
them to interpret and use equations from the “Library”, add and remove equations 

from their objects so as to observe any changes of behaviour and link the equations 

they used to the behaviours they had previously identified. As we deliberately made 
the original red ball move rather slowly, near the end of this phase, we expected 

students to start expressing their personal ideas about their own object’s motion (e.g. 

make it move faster) and thus start editing the model’s equations, using the 
“Equations Editor”, so as to describe the new behaviours they might have in mind. 

For the second phase of the activities we designed a half–baked microworld (Kynigos 

2007), i.e. a microworld that incorporates an interesting idea but it is incomplete by 
design so as to invite students to deconstruct it, build on its parts, customize and 

change it. In this case we built a game–like microworld –called “Juggler” (Kynigos 

2007)– consisting of three interrelated objects: a red ball and two rackets with which 
the ball interacted. The ball’s behaviour was partially the same as the “One Red 

Ball’s”. However, certain equations underpinning its behaviour, did not derive from 

the environment’s “Library” but were created by us. Using the mouse the rackets 
could be moved around and make the ball bounce on them, forcing it to move away 

in specific ways. 

We asked the students to execute the Juggler’s model, observe the animation 
generated and identify the conditions under which each object interacted with each 

other. The students were encouraged to discuss with their teammates on how they 

would change the “Juggler” microworld and embed in it their own ideas regarding its 
behaviour. In the process of changing the half–baked microworld, students were 

expected to deconstruct the existing model so as to link the behaviours generated on 

the screen to its equations’ formalism and reconstruct the microworld, employing 
strategies that would depict their ideas about the new model’s animated behaviours. 

METHOD 

The experiment took place in a  Secondary Vocational Education school in Athens 
with one class of eight 12

th 
grade students (17 years old) studying mechanical 

engineering and two researchers -the one acting also as a teacher- for 25 school 

hours. Students were divided in groups of two or three. The groups had at their 
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disposal a PC connected to the Internet, the MoPiX manual, translations in Greek of 
selected equations’ symbols and a notebook for expressing their ideas. The adopted 

methodological approach was based on participant observation of human activities, 

taking place in real time. The researchers circulated among the teams posing 
questions, encouraging students to explain their ideas and strategies, asking for 

refinements and revisions when appropriate and challenging them to express and 

implement their own ideas. A screen capture software was used so as to record the 
students’ voices and at the same time capture their interactions with the MoPiX 

environment. Apart from the audio/video recordings, the data corpus involved also 

the students’ MoPiX models as well as the researchers’ field notes. For the analysis 
we transcribed verbatim the audio recordings of two groups of students for which we 

had collected detailed data throughout the teaching sequence and also several 

significant learning incidents from other workgroups. The unit of analysis was the 
episode, defined as an extract of actions and interactions performed in a continuous 

period of time around a particular issue. The episodes which are the main means of 

presenting and discussing the data were selected (a) to involve interactions with the 
available tool during which the MoPiX equations were used to construct 

mathematical meaning and (b) to represent clearly aspects of the reification processes 

emerging from this use. 

ANALYSIS AND INTERPRETATIONS 

Interpreting existing equations’ symbols 

In the first phase of the experimentation, the students in their attempt to reproduce the 
red ball’ motion, started interpreting and using equations that already existed in the 

environment’s “Equation Library”. The natural language aspect incorporated in the 

MoPiX formalism was the element that guided their actions. The equations that they 
chose to assign first to their object were those whose symbols (at least some of them) 

were close to everyday language utterances and provided them some indication on 

the kind of the behaviour they described (e.g. the “amIHittingtheGround” symbol). 
Equations that contained symbols that didn’t satisfy the “natural language” criterion 

(e.g. the “Ax”) were simply disregarded. 

As they continued their experimentations with MoPiX, the students seemed to 
gradually abandon the “natural language” criterion and shifted their attention into 

identifying the meaning of the symbols. The students of Group B for instance came 

across two “Library” equations that seemed to describe the velocity in the x axis, the 
“Vx(ME,0)=3” and the “Vx(ME,t)=Vx(ME,t-1) + Ax(ME,t)”. Their decision to 

attribute the second one to their object, so as to define its velocity at any time 

instance, came as a result of a comparison between the two equations’ left parts. Yet 
again, the students seemed to interpret specific symbols of the equations and 

completely disregard others (e.g. the “Ax” on the second equation’s right part). 

In a number of subsequent episodes, the same students seem to articulate their 
understanding not just about particular symbols but also about the whole string of the 
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equation’s symbols and the relations among them. In the following excerpt the 
students of Group B talk about the “x(ME,t)=x(ME,t-1)+Vx(ME,t)” equation. 

S1 It [i.e. x(ME,t)] is the object [i.e. “ME”] in function with time [i.e. “t”].  

R2 What does this mean?  

S1 [goes on disregarding the question and points at the x(ME,t-1)] It’s your 

object [i.e. “ME”] in function with time minus 1 [i.e.“t-1”]. 

R2 What does “in function with time” mean? Can you explain it to me?  

S1 How much... In every second, for example, how much it moves. 

R2 Meaning?  

S2 Wait a minute! [Showing both parts of the equation] The equation is this 

one. All of this. It’s not just these two [i.e. the x(ME,t) and the x (ME,t-1)]. 

S1 Minus 1, which means that in every second of your time it subtracts always 

1, resulting to something less than the current time. Plus your velocity. 

Drawing on his previous experience with the MoPiX equations, S1 starts to 

independently interpret the equation’s symbols moving from left to right. Having 

interpreted the first two of them, he attempts to also interpret the relationship between 
them and defines it as the distance that the object has covered in a second of time. S2, 

who understands the kind of correlation S1 has made, intervenes and stresses the fact 

that he hasn’t taken into account all the symbols in the equation. S1, who up to that 
point disregarded the “Vx(ME,t)” on the right part, takes an overall view of the 

equation and interprets it not by merely referring to the comprising symbols but by 

also referring to the connection between them. It is noticeable that at this point the 
students’ actions demonstrate an emerging awareness of the equation’s structure as a 

system of connections and relationships between the component parts. 

Variables and numerical values to control motion animations 

As students gained familiarity with the MoPiX formalism, they started expressing 

their own personal ideas about the ways their objects should move. In order to put 

into effect those ideas, the students initially modified the existing equations’ symbols 
and left the structure intact. One of the main elements that they often altered was the 

equations’ arithmetic values. The students of Group B, for instance, attributed to their 

object the “Vy(ME,0)=0” equation which prescribed the object’s y axis initial 
velocity to be 0. The observation of the animation triggered the implementation of a 

series of changes to the equation’s arithmetic values starting with the conversion of 

the “0” on the right part into “3”. The successive changes of the arithmetic value on 
the equation’s right part didn’t cause the object to constantly move since the equation 

referred just to the initial velocity. To make the velocity for “all the next time 

instances to come” to be “3”, the students replaced the “0” on the left part (i.e. an 
arithmetic value) with “t” (i.e. a variable). 

S2 Do we need a symbol for this? 
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R2 Do we need a symbol? It’s a good question. How do you plan to express it? 

S2 With symbols we usually express something that we can’t describe 

accurately. 

S1 Plus… t. [He writes down Vy(ME,t)=3]. [Showing the “t”] So, when I look 

at this symbol 

S2 I’ll know it represents the infinity. 

We suggest that the students relocated their focus from just attributing arithmetic 
values, which indicates a process stance to equations, into forming functional 

relationships. The fact that they were involved in a process of recognizing which 

manipulations were possible and at the same time useful to perform so as to express 
their idea, indicates a implicit focus on the structure of the equations. Furthermore, 

the statements concerning the use of symbols to express “something that we can’t 

describe accurately” seems to constitute an indication of a progressive acquisition of 
algebraic structure sense through “mixed cues” (Arcavi, 1994) (i.e. interpreting 

symbols as invitations for some kind of action while working with them). 

Relating different objects’ behaviours by constructing new equations 

The next episode describes how the Group A students, in the course of changing the 

“Juggler” microworld, didn’t just use or edit existing equations but constructed from 

scratch two new ones. The idea they wanted to bring into effect was to “make a ball 
on the Stage change its colour according to an ellipse’s position”. Knowing that there 

was no such equation in the “Library”, they started talking about how they would 

correlate those two objects using the Y coordinates. 

S1 When it [i.e. the ball] is situated in a Y below the Y of this one [i.e. the 
ellipse] for example. 

R1 I’m thinking… Will the ball know when it is below or above the ellipse? 

S2 That’s what we will define. We will define the Ys. 

S1 This. The: “I am below now”. How will we write this? 

S2 Using the Ys. Using the Υs. The Ys. That is: when its Υ is 401, it is red. 

When the Y is something less than 400, it’s green!  

Having conceptualized the effect they would like their new equation to have, the 

students in the above excerpt decide about two distinct elements regarding the 
equation under construction: its content (i.e. the symbols) and its structure (i.e. the 

signs between the symbols). Subsequently, encountering the fact that there was no in-

built MoPiX symbol to express the idea of an object becoming green under certain 
conditions, the students came to invent one. The “gineprasino” (i.e. “become green” 

in Greek) symbol was decided to represent a varying quantity taking two distinct 

values (1 and 0, according to if the ball was below the ellipse or not). To represent the 
ball’s position they chose to use its Y coordinate in terms of a quantity varying over 

time (i.e. “y(ME,t)”) while for the ellipse’s position they chose to use its Y coordinate 
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in terms of the constant arithmetic value corresponding to the object’s position on the 
Stage at that time (i.e. “274”). Adding a “less than” sign in between, the equation 

eventually developed was the “gineprasino(ME,t)=y(ME,t)≤274”. 

Unexpectedly, this equation didn’t cause the ball to become green since it described 
solely the event to which the ball would respond (being below the ellipse) and not the 

ball’s exact behaviour after the event would have occurred (change its colour). To 

overcome this obstacle, the students decided to construct another equation in which 
they tried to find out ways to integrate the “gineprasino” variable. A “Library” 

equation which explains what happens to a ball’s velocity when it hits on one of the 

Stage’s sides and the way in which a variable similar to the “gineprasino” was 
incorporated in it, led students to duplicate this equation’s structure, eliminate any 

content and use it as a template to designate what happens to the ball’s colour when it 

is below the ellipse. The second equation encompassed in-built MoPiX symbols (the 
“greenColour”), the “gineprasino” variable in two different forms (not(gineprasino) 

and gineprasino) and numerical values (0 and 100) to express the percentage of the 

green colour the ball would contain in each case (i.e. the ball being above and below 
the ellipse). Thus, the second equation developed was the: “greenColour(ME,t) = 

not(gineprasino(ME,t))×0 + gineprasino(ME,t)×100”. 

 
 

 

 
 

 

 
 

Figure 2: The ball’s different percentage of green colour according to its Y position 

The above episode contains many interesting events that indicate the existence of a 
qualitative transformation of the students’ mathematical experience in reifying 

equations that emerged through their interaction with the available tools. 

While building the first equation the students got engaged in processes such as 
inventing and naming variables, relating symbols with mathematical systems (i.e. the 

XY coordinate system) and manipulating inequality symbols to relate arithmetic 

values to variables. However, in building the second equation, the meaning 
generation evolved to include the students’ view of equations as objects. The students 

extracted mathematical meaning from an equation that seemed to describe a 

behaviour similar to the one they intended to attribute to their ball. Conceptualizing a 
mapping between the ideas behind the two equations, the students duplicated the 

similar equation’s structure and inserted new terms so as to define a completely novel 

behaviour for their object. This is a clear indication that they recognised the existence 
of structures external to the symbols themselves and used them as landmarks to 
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navigate the second equation’s construction process. 

The manipulation of the second equation’s new terms reveals further their developing 

structural approach to equations. By inserting in the second equation the the 

“gineprasino” variable which was introduced in the first one and providing it new 
forms (i.e. not(gineprasino)), the students seem to have conceptualised the first 

equation as a mathematical object which it could be used means to encode structure 

and meaning in the second equation. We think that this reflects a kind of 
mathematical thinking that has a great deal to do with developing a good algebraic 

structural sense accompanied with the acquisition of a functional outlook to equations 

as objects which is a warranty of relational understanding. 

CONCLUDING REMARKS 

Our purpose in this paper was to illustrate a particular approach to studying the 

student’s construction of meanings for structural aspects of equations, emerging from 
the use of novel algebraic-like formalism. In the first part of the results, an initial 

icon-driven conceptualisation of the MoPiX equations seemed to have been leading 

students towards the development of criteria for an isolated interpretation of the 
MoPiX equations’ symbols. As soon as the students became familiar with testing 

their models and observing the animations generated on the “Stage”, their 

interactions with the computer environment became strongly associated with the 
editing of the existing equations’ content. As expressed in the second part of the 

results, the editing of equations revealed a subtle shift from a process-oriented view 

to equations into an object- oriented one as well as a progressive development of 
algebraic structure sense. In the last part of the results, students’ previous experience 

with the MoPiX tools seemed to become part of their repertoire, allowing them to 

construct new equations following specific structural rules, invent variables and 
specify their values, and use the equations as objects to represent variables in other 

equations. Concluding, we suggest that in the present study reifying an equation was 

not a one–way process of understanding hierarchically–structured mathematical 
concepts but a dynamic process of meaning–making, webbed by the available 

representational infrastructure (Noss and Hoyles, 1996) and the ways by which 

students drew upon and reconstructed it to make mathematical sense. 

NOTES 

1. The research took place in the frame of the project “ReMath” (Representing Mathematics with 

Digital Media), European Community, 6th Framework Programme, Information Society 

Technologies, IST-4-26751-STP, 2005-2008 (http://remath.cti.gr) 

2. “MoPiX” was developed at London Knowledge Lab (LKL) by K. Kahn, N. Winters, D. Nikolic, 

C. Morgan and J. Alshwaikh. 
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In this contribution, we are interested in the design process of Aplusix, a microworld 
for the learning of algebra and in the impact of usages on this process. In the first 
part, we present general principles that seem to be guiding the overall design process 
of the system and the development of tree representation of algebraic expressions, 
which has been added recently. The second part is devoted to a design and 
implementation of a learning scenario involving Aplusix. Examples of impact of this 
empirical study on the software design choices are discussed.  
Key words: Aplusix, algebra, tree representation, pedagogical scenario 
INTRODUCTION 
The research reported in this paper is carried out in the framework of the ReMath 
project (http://remath.cti.gr) addressing the issue of using technologies in 
mathematics classes “taking a ‘learning through representing’ approach and 
focusing on the didactical functionality of digital media”. The digital media at the 
core of this research is Aplusix, software designed to help students learn algebra. The 
work has been developed in three phases:  
(1) Design and implementation of a new representation of algebraic expressions. 
During this phase, fundamental choices for a representation of expressions in a form 
of a tree were made collaboratively through interactions between computer scientists 
and didacticians of mathematics: on the one hand, computer scientists make sure that 
the new developments comply with general principles of the software, on the other 
hand, didacticians ensure that these choices are based on didactical and 
epistemological hypotheses. The choice of theoretical frameworks in both domains 
has an impact on functionalities of the tree representation. This design phase is 
presented in the following section.  
(2) Design of a pedagogical scenario. Based on the choices made in the design phase, 
didacticians designed a pedagogical scenario to explore possible contributions of this 
new representation to the learning of algebra. The scenario has to take account of 
institutional constraints in order to implement it in ordinary classes. The design of 
scenario may lead to reconsidering certain choices concerning the new representation, 
or suggesting other. Such cases will be presented further in the paper. 
(3) Experimentation. The scenario has been experimented in three different classes, 
which allowed validating underlying didactical hypotheses, as well as assessing the 
way students manipulate this new representation. This phase is discussed in the last 
part of the paper. 
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DESIGN AND DEVELOPMENT OF APLUSIX 
When developing computer-based learning environments, designers need to make 
choices at the interface level and thus at the level of the internal universe of the 
environment. Thus pieces of knowledge implemented in such an environment will 
live not only under constraints of the didactical transposition (Chevallard 1985), but 
also under other constraints proper to the environment resulting from what Balacheff 
(1994) calls computational transposition. Thus, designers of computer-based learning 
environments have to respond to at least two types of requirements. First, they need 
to respect basic principles that are characteristic of the environment. The second type 
is related to the practice of the piece of knowledge in the institution in which it will 
be used.  
Principles governing a design of software are not always made explicit and choices 
made are rarely explicitly linked to these principles. In what follows, we present a 
study carried out in an attempt to make explicit principles and choices that were 
guiding designers of Aplusix (aplusix.imag.fr), software for learning algebra, when 
they were developing tree representation of algebraic expressions.   
General design principles of Aplusix 
Aplusix software (Nicaud et al., 2003, 2004) has been developed since 1980s. A new 
mode of representation of algebraic expressions, a tree representation, is being added 
to this software. As was already mentioned above, the new developments must not 
affect the coherence of the whole software and thus have to comply with fundamental 
principles that guide the design and development of Aplusix. Three main design 
principles have been identified: 
(1) The student is free to write algebraic expressions. This principle, influenced by 
research in the domain of interactive learning environments, considering mainly 
microworlds, resulted in the development of an editor of algebraic expressions and in 
the necessity to consider and deal with students’ errors. 
However, freedom in manipulating algebraic expressions is limited by constraining 
the selection of sub-expressions, based on the syntactic and semantic dimensions of 
expressions, which seems to be another important design principle and that can be 
formulated as follows:  
(2) In manipulating algebraic expressions, their syntactic and semantic dimensions 
are taken into account. For example, given the expression 2+3x, it is not possible to 
select 2+3 as a sub-expression. This principle brings the idea of scaffolding since this 
choice aims at helping understand algebraic expressions and make their manipulation 
easier. 
As regards the interaction between a student and a system, there are two modes of 
interaction: (1) a test mode in which the student does not get any feedback from the 
system, and (2) a training mode, in which a feedback is provided both in terms of 
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equivalence of a student’s expression and the given one, and in terms of the correct 
end of the exercise. Thus the third principle is: 
(3) In a training mode, scaffolding should be provided by the system. Scaffolding in 
the training mode requires taking decisions about validation of student’s answers. It is 
important to clarify at this point that Aplusix recognizes 4 basic types of exercises: 
calculate, expand and simplify, factor and solve (equation, inequality or system of 
equations or inequalities). For these types of exercises, these decisions have been 
implemented. For example, for the “solve equation” exercise, it has been decided that 
the expression x = 2/4 will not be accepted as it is written in a non-simplified form, 
but will not be rejected either as it is not incorrect. Therefore a feedback message is 
sent to the student saying that the equation is almost solved. 
Design and development of tree representation in Aplusix 
The decision to implement a new representation system into the existing Aplusix 
software was taken in relation with the ReMath project focusing on representations of 
mathematical concepts in educational software. Two possibilities were considered:  
tree and graphical representations. The reasons for choosing the development of tree 
representation system are numerous (Bouhineau et al. 2007): (1) from an 
epistemological point of view, trees are natural representations of algebraic 
expressions; (2) from a didactical point of view, the introduction of a new register of 
representation would allow creating activities requiring an interplay between registers, 
which would enhance learning of algebraic expressions (Duval 1993); (3) from a point 
of view of computer science, trees are fundamental objects used to define data 
structures. Indeed, internal objects used in Aplusix to represent algebraic expressions 
and their visual properties are trees; (4) graphical representation of algebraic 
expressions is available in a few educational systems, while tree representation is 
scarcer.  
Let us note first that the fundamental choices related to the tree representation were 
discussed during several meetings among developers (computer scientists and 
engineers) and didacticians. 
Different modes of tree representation 
The first idea was to develop the tree representation in a way that the student can see 
the articulation between the usual representation of an expression and a tree 
representing it: given an expression in a usual representation, a tree representation is 
provided progressively by the system, according to the student’s command. A “mixed 
representation” mode has thus been designed where each leaf of a tree is a usual 
representation of an expression that can be expanded in a tree by clicking at the “+” 
button that appears when the mouse cursor is near a node; a tree, or a part of a tree, 
can be collapsed into a usual representation by clicking at the “-” button that appears 
when the mouse cursor is near a node. The developers considered this idea interesting 
from the learning point of view. However, it was in contradiction with the principle 1, 
according to which it was necessary to let the student edit freely a tree. The 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1431



development of a “free tree representation” mode, where the student can freely built 
trees, brought new difficulties the developers had to face: notion of erroneous 
operator, representation of parentheses, difficulties related to the “minus” sign, to the 
square root… These difficulties and the ways the developers have coped with them 
are described elsewhere (Trgalova and Chaachoua 2008).  
Based on the principle 3, the developers wished to implement an editing mode 
providing scaffolding to the student. Design and implementation of scaffolding 
requires to define new kinds of exercises that would be recognized by the system and 
the means of validation of these exercises. We will discuss some of these choices 
below. It led also to the implementation of a “controlled tree representation” mode 
with constraints and scaffolding when a tree is edited: internal nodes must be 
operators and leaves must be numbers or variables. The arity of operators must be 
correct. In the current prototype of Aplusix, 3 modes of editing trees are thus 
available: free, controlled and mixed representations.  
Choices of criteria for validating a student’s answer 
According to the principle 3, when the student builds a tree in the free tree 
representation mode, the system should provide her/him with a feedback. Decisions 
about the conditions for a tree to be accepted as correct had to be taken and 
implemented. The student’s tree is compared with the expected one: (1) when, after 
normalisation of the minus signs (transformation of all minus signs in opposite), the 
trees are identical, then the student tree is accepted; (2) when the two trees differ only 
by commutation, the student’s tree is not accepted, but a specific message indicates 
that there is a problem with order; (3) when there is neither identity between the trees 
(case 1) nor commutation (case 2) but the two trees represent equivalent expressions, 
a message is generated indicating that the student’s tree is equivalent but not the 
expected one; (4) when there is no equivalence between expressions represented by 
the trees, another message is generated indicating that the answer is not correct. 
These choices were made by one of the developers based on fundamental issues 
present in Aplusix such as the notion of equivalence, the notion of commutation and 
of associativity. They are considered as a first stage choices that can be discussed and 
analysed from the didactical point of view, both in terms of messages to be generated 
and of considering different cases of behaviour.  
PEDAGOGICAL SCENARIO 
Before presenting a pedagogical scenario we designed in order to validate design 
choices for the tree representation of expressions in Aplusix, we discuss some 
theoretical considerations that underpin the scenario. 
According to Sfard (1991), mathematical notions can be conceived in two different 
ways: structurally as objects, and operationally as processes.  An object conception of 
a notion focuses on its form while a process conception focuses on the dynamics of 
the notion. Algebraic expression, when conceived operationally, refers to a 
computational process. For example, the expression 5x-2 denotes a computational 
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process “multiply a number by 5, and then subtract 2”, which can be applied to 
numerical values. When an expression is conceived structurally, it refers to a set of 
objects on which operations can be performed. For example, 5x-2 denotes the result 
of the computational process applied to a number x. It also denotes a function that 
assigns the value 5x-2 to a variable x. Yet, in the French high school, the operational 
conception of algebraic expressions prevails in the teaching of algebra. Specific 
activities are needed to favour the distinction between these two conceptions of an 
algebraic expression. Examples of such activities are describing the expression in 
natural language, which requires considering the structure of the expression, or using 
tree representation of an expression, which highlights its form. 
Semiotic representation is of major importance in any mathematical activity since 
mathematical concepts are accessible only by means of their representations. Duval 
(1995) calls “register of representation” any semiotic system allowing to perform 
three cognitive activities inherent to any representation: formation, treatment and 
conversion. These activities correspond to different cognitive processes and cause 
numerous difficulties in learning mathematics. Duval (2006) claims that while 
treatment tasks are more important from the mathematical point of view, conversion 
tasks are critical for the learning. Consequently, conceptualisation of mathematical 
notions requires manipulating of several registers for the same notion allowing to 
distinguish between a notion and its representations. As Duval (1993) says, the 
conceptualisation relies upon the articulation of at least two registers of 
representation, and this articulation manifests itself by rapidity and spontaneity of the 
cognitive activity of conversion between registers. Yet, school mathematics gives 
priority to teaching rules concerning both formation of semiotic representations and 
their treatment. The amount of activities of conversion between registers is 
negligible, although they represent cognitive activities that are the most difficult to 
grasp by students. 
Motivated by these considerations, in the design of our pedagogical scenario, we 
decided to take into account three semiotic registers of representation of algebraic 
expressions: natural language register (NLR), usual register (UR) and tree register 
(TR) and to design activities of formation, treatment and conversion between these 
registers. The pedagogical scenario thus aims at helping the students grasp the 
structure of algebraic expressions by means of introducing TR and articulating it with 
UR and NLR. The following hypothesis underpins the scenario: the introduction of 
TR and its articulation with NLR and UR will have a positive impact on students’ 
mastering of the usual register of representation of algebraic expressions, which is the 
one taught in school algebra. The scenario is composed from 4 units: pre-test, 
learning, assessing, and post-test (cf. Table 1). The pre-test aimed at diagnosing 
students’ difficulties in algebra, especially those related to the structural aspect of 
expressions. On the other hand, the results of the pre-test compared to those of the 
post-test should provide us with evidence about the efficiency of the pedagogical 
scenario. Two kinds of activities are proposed in the pre-test: (1) classical school 
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algebra exercises (calculate, expand and simplify, factor), which are, in Duval’s 
terms, treatment tasks in the register of usual representation, and (2) communication 
games between students proposing, in Duval’s terms, activities of conversion 
between UR and NLR. The aim of the learning unit is to introduce the students to 
TR, a new register of representation of expressions, as well as to articulate it with the 
already familiar registers, namely NLR and UR. Then, conversion activities between 
TR and NLR and UR respectively are proposed. Most of the activities are to be done 
in a computer lab with Aplusix in the training mode. Eventually, simple tasks of 
treatment in TR are proposed to assess the mastery of the new register of 
representation by students. The unit called assessing aims at evaluating to what extent 
TR and conversion tasks between the registers are mastered by the students after 
having done activities of the learning unit. The evaluation is organized in the form of 
communication games between students similar to those from the pre-test, but this 
time, TR is involved in the tasks. In the post-test, tasks similar to those from the pre-
test are proposed in order to enable a comparison of results. Confronting results 
obtained at the two tests should provide us with evidence confirming or not the 
underlying hypothesis. 
 Activities Description Environment Duration

Treatment in UR Calculate, Factor 
Expand and simplify Aplusix 50 min 

Pr
e-

te
st

 

Conversion  
NLR ↔ UR Communication games Paper & pencil 30 min 

Introduction to TR Scenario TR 
introduction 

Aplusix in video 
projection 55 min 

Conversion  
NLR ↔ TR 

Conversion NLR → TR 
Conversion TR → NLR

Aplusix: controlled then 
free mode 
Paper & pencil 

90 min 

Conversion  
UR ↔ TR 

Conversion UR → TR 
Conversion TR → UR 

Aplusix: controlled then 
free mode 80 min Le

ar
ni

ng
 

Treatment in TR Calculate in TR 
Simplify in TR 

Aplusix with second 
view 20 min 

A
ss

. Formation TR 
Conversion  
TR ↔ NLR (UR) 

Communication games Aplusix: free mode 
Paper & pencil 55 min 

Treatment in RU Calculate, Factor 
Expand and simplify Aplusix 30 min 

Po
st

-te
st

 

Conversion  
NLR ↔ UR  Communication games Paper & pencil 20 min 

Table 1. Structure of the pedagogical scenario. 

EXPERIMENTATION 
The scenario was proposed to 3 teachers with a possibility to adapt it to the 
constraints of their class. In this section, we present one of the experiments that took 
place in a Grade 10 class (15 years old students) in November 2007. 

WORKING GROUP 7

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1434



The pre-test revealed expected errors in treatment tasks within UR, in particular 
errors showing difficulties to take account of the structure of algebraic expressions, 
e.g., transforming 2+3x in 5x, and errors with handling powers and minus sign, e.g., 
transforming 3(-5)² in -3×5² or in ±3²×5². On the other hand, we were surprised by the 
results obtained in communication games. Algebraic expressions given in UR were 
described in NLR by the students, but with characteristics of an oral register, i.e., the 
students described actions allowing to obtain the initial expression (cf. Table 2). This 
register is based on language structure used to “read” an expression in UR. It presents 
two specificities: left-to-right reading and presence of implicit elements.   

Student emitting a message Student receiving a message Expression 
given in UR Register Examples of messages Correct in UR Wrong in RU 

2x – y Oral (left-
to-right) “2 x minus y” 14 0 

2x – y² Oral with 
ambiguity “2 x minus y squared” 22 4 

Oral with 
brackets 
explicitly 
stated  

“open a bracket, 3 x 
plus 2, close the 
bracket, open a 
bracket, 3 x minus 1, 
close the bracket, all 
this over a minus, open 
a bracket, x plus 2, 
close the bracket” 

7 1 

 

)2(
)13)(23(

+−
−+

xa
xx  

Oral with 
brackets 
explicitly 
stated and 
with 
ambiguity 

“open a bracket, 3 x 
plus 2, close the 
bracket, open a 
bracket, 3 x minus 1, 
close the bracket, over 
a minus, open a 
bracket, x plus 2, close 
the bracket” 

19 1 

Total 62 6 

Table 2. Conversion from UR into NLR. 

All messages result from the oral register and they accentuate operational aspect of 
the expressions rather than structural one. Moreover, more than 66% of messages are 
ambiguous. Despite of the ambiguities, most of pairs succeeded the game thanks to 
implicit codes of the oral register the students share and understand and which result 
from didactical contract (Brousseau 1997). Thus, the goal we assigned to the 
communication games, namely to lead students to become aware of the limits of the 
oral register they use in algebra, which does not take into account the structural 
aspect of expressions, was not achieved. 
The learning unit started by an introductory session aiming at introducing tree 
representation to the students. The teacher asked one of the designers of the 
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pedagogical scenario to manage this session since he did not feel comfortable enough 
with the new representation implemented in the software although he uses Aplusix on 
a regular basis with his students. This introductory session allowed discussing with 
the students specificities of the tree representation of expressions and introducing 
vocabulary related to this new register (branch, leave, operator, argument…). 
Particular attention was paid to reading the expressions. Thus for example, the 
expression x+2y was read as “the sum of x and of the product of 2 by y”, which 
accentuates the structure of the expression, instead of “x plus 2 y” highlighting its 
operational aspect. A particularity of the tree register residing in the fact that several 
different trees can represent a same algebraic expression was also discussed with the 
students based on the following example showing different meanings of “minus” sign 
(Fig. 1): 

 

 
In the expression x-1, the minus sign can 
be conceived in three different ways 
leading to three different trees (this 
difference is hardly visible in UR): 
- Sign of a negative number (tree on the 

left); 
- Binary operator “difference” (tree in 

the middle); 
- Unary operator “opposite number” 

(tree on the right). 

Figure 1. Three different meanings of minus sign. 

The rest of the scenario was shortened in order for the teacher to be in line with the 
global pedagogical program shared by all Grade 10 classes in the school. The teacher 
decided to individualize the implementation of the scenario according to the students 
in the following way: conversion NLR→TR and UR→TR in controlled mode only 
(only one group, denoted G1); conversion TR→NLR assigned as homework (whole 
class); treatment in TR optional (a few students with severe difficulties in algebra). 
The G1 group was formed from rather low attaining students. The results obtained in 
the conversion tasks TR→NLR showed a significant difference between the two 
groups (cf. Table 3). These results can be considered as evidence proving efficiency 
of the work on conversion tasks NLR/UR→TR. 
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 Answer in NLR with 
structural aspect 

Answer in NLR with 
operational aspect 

G1 
15 students having worked 
on conversion tasks with 
Aplusix in controlled mode 

10 5 

G2 
15 students who have not 
benefited from the work on 
conversion tasks 

3 12 

Table 3. Students’ answers to the conversion tasks TR→NLR. 

As we mentioned above, the scenario, and thus the new prototype of Aplusix, had 
been tested in three classes. Feedbacks from students and teachers led the developers 
to re-examine some choices, which allowed some adaptations and improvements at 
the interface of Aplusix. Let us take the example of the “second view” functionality 
that enables visualizing a given algebraic expression represented in two registers at 
the same time. Initially, the second view displayed only a current step of the 
transformation. Observing the students using this functionality, we realized that when 
a student performs the next transformation step, the representation in the second view 
is updated and the student cannot observe the effects of the transformation in the 
second register. For this reason, the developers were asked to redesign this 
functionality in a way for the student to be able to observe the transformation s/he has 
performed in both registers. At present, the second view displays both current and 
previous steps. 
CONCLUSION 
The example of the design and implementation of tree representation of algebraic 
expressions presented in this contribution shows that the decision to introduce a new 
register of representation has been motivated by the didactical considerations about 
the necessity of being able to represent mathematical notions in at least two different 
registers. Considerations of different nature had an impact on the development of the 
new register: (1) taking account of a didactical dimension led to make choices 
allowing the implementation of tasks of conversion between registers, which seem to 
be essential for conceptual understanding of mathematical notions (Duval 1993); (2) 
taking account of users’ feedback allowed to make some improvements at the 
interface level. An example was presented in the previous section; (3) respecting the 
general principles of the development of Aplusix guarantees the coherence of the 
system after the introduction of the new register of representation of algebraic 
expressions. As regards the choices made in the design of the Aplusix tree module, it 
seems that most of them were made internally, i.e., by the developers themselves, and 
sometimes even individually, i.e., by one of the developers. Decisions are driven by 
the fundamental design principles in a way that a coherence of the whole system is 
preserved. Although it seems that the decisions are taken regardless the school 
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context, both teachers and students are taken into account in the system design. The 
principles 1 and 3 concern especially students and their interactions with the system. 
Moreover, the developers are respectful towards the students’ ways of editing 
expressions, which is shown by the decision to make it possible to recover an 
expression in exactly the same way as the student has edited it, even if the 
implementation of such a decision was difficult (Trgalova and Chaachoua 2008).  
The example of the development of Aplusix illustrates a way the synergy between 
computer scientists, researchers in math education and users can serve a project of 
development of educational software. 
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INTRODUCTION 
QUESTIONS AND THOUGHTS FOR RESEARCHING CULTURAL 

DIVERSITY AND MATHEMATICS EDUCATION 
Guida de Abreu, Oxford Brookes University, England 
Sarah Crafter, University at Northampton, England 

Núria Gorgorió, Universitat Autònoma de Barcelona, Spain 
 

CERME 6, in Lyon 2009, was the 4th meeting of the working group “Cultural 
diversity and mathematics education” (in previous meetings it was WG10 and it had 
slightly different titles). The group is particularly interested in understanding learning 
and teaching mathematics in culturally diverse schools, classrooms and other 
educational settings. It also acknowledges the relevance of studies on culture and 
cognition in outside school settings linked with mathematics and, in particular, with 
ethno mathematics. We constitute a multi-disciplinary group that includes researchers 
from a variety of disciplines, such as mathematics, education, socio-cultural and 
developmental psychology, philosophy, anthropology, linguistics, sociology, political 
sciences, etc. We are in ourselves a multinational community that in Lyon included 
contributors from Belgium, Brazil, Canada, Cyprus, Denmark, Italy, Portugal, 
Rwanda, Spain, Sweden United Kingdom and USA.  
QUESTIONS RAISED DURING WG8 MEETINGS 
The areas covered by the presentations during our meetings were different theoretical 
and methodological approaches as well as different research domains. Teaching, the 
relationship between home-family and school, out-of-school practices, particular 
cultural and linguistic groups were some of the domains discussed. The perspectives 
that all of us brought to the discussion led, in particular, to interrogating how culture 
links to diversity, practices and institutions. 
Conceptual clarification  
The discussion of several papers claimed for clarification of different notions, such as 
‘culture’, ‘diversity’ and ‘cultural diversity’. This was considered important both in 
relation to theoretical papers and to empirical papers. Broad conceptualisations meant 
that there were issues at stake for data collection. There was agreement that culture is 
something dynamic but it is also something which is re-interpreted for meaning. In 
other words, there was interest in the socio-cultural as co-constituted in the 
psychological. Furthermore, whilst new concepts are introduced into theoretical 
research others continue to be discussed over time.  
Culture in practice   
Whilst discussions on the conceptualisation of culture were useful to the group, many 
felt they needed to make sense of how this shapes and is shaped by practices in the 
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classroom. Questions were raised such as – how can we teach mathematics whilst 
respecting cultural diversity? How do teachers/parents of other cultural backgrounds 
explain mathematical problems? Can culture help us understand identities 
development in mathematical practices within and outside school?  
Culture and institutions  
The tensions between the school as a normalising institution and the diversity of 
students in society were raised. It was questioned what the dangers of bringing 
culture to a normalising institution may be? When one thinks of school as an 
institution whose goal it is to transmit culture, one has to think “whose” culture is 
being referred to. In other words, in which ways do educational institutions reproduce 
inequalities? It was suggested that this ‘tension’ or ‘gap’ between cultural diversity 
and the institution is as symbolic as the notion of ‘normal’. The normalised 
institution, an idea developed and reproduced by school, is also symbolic and can be 
perceived as exotic and outside the lives of most pupils. Furthermore, institutions are 
culturally composed by people and these people may influence the institution.  
SHARED INTERESTS WITH OTHER GROUPS  
During reporting sessions, it was made apparent that there are different overlaps 
between WG8 and papers presented in other working groups. This was mainly 
expressed through an interest in a socio-cultural perspective when applied to a 
specific domain which was covered by another group. This perspective is felt to be 
more relevant since, nowadays, our schools are recognized to be more and more 
culturally diverse, and inequity in education has become under socio-political 
scrutiny.  
For some groups, the intersection is wide and obvious. This would be the case with 
the working group dealing with mathematics and language, since culture is 
inextricably linked to language. It seems also clear to us that there is an intersection 
with the group working on Early Years Mathematics, since nowadays it is becoming 
clearer, especially for this age group, that learning is situated on its context.  
For some other groups, one has to go deeper to see the overlapping. However, one of 
the participants in the Applications and Modelling group explicitly contributed to the 
reporting session by affirming that “modelling in mathematics can also benefit if the 
cultural backgrounds of learners is taken into account while modelling learning 
situations”. It did not surprise us either that people that had attended the Algebraic 
Thinking or Geometrical Thinking groups told that the curricular issues that they 
have addressed could benefit from a socio-cultural perspective. 
AFTERTHOUGHS 
To finish this introduction, we would like to share with the readers how we explain 
the overlapping with other research groups and the dilemmas that it poses to us as 
coordinators of the group. 
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The engagement of participants in WG8, Cultural Diversity and Mathematics 
Education, comes from our shared interest in and commitment to a particular 
empirical domain, that of multicultural settings. Other CERME working groups are 
organized either around the study of theoretical perspectives or the content domain of 
the research –language issues, teacher education, theoretical perspectives, algebraic 
thinking or modelling, just to name some of them. It is clear that any of the above 
mentioned focuses could be researched in a multicultural setting. And it is this last 
point where both our strengths and our weaknesses come from. 
Our interest in addressing non-prototypical situations requires that we try to broaden 
both our theoretical perspectives and our methodological approaches. Both theories 
and methodologies could be of use to other researchers in mathematics education.  
However, each of us as participants to WG8, has once asked him/herself questions 
such as: Do I want the focus of my presentation to be the fact that I am dealing with a 
culturally diverse situation? Do I want to stress that I am using a theoretical 
perspective that is new to mathematics educators? Or do I want to suggest a 
discussion on curricular issues or content matters? This is where our dilemmas arise. 
If we keep within our group, the research done in culturally diverse situations 
becomes closed, making it difficult for others to come to know about our 
developments. However, if we go to other groups, then we risk losing our primary 
focus and then a new question arises: who is going to foster research in culturally 
diverse situations and other neglected empirical domains? What we as a group, and 
the larger community, will loose or gain if we move from a title of WG8 that has to 
do with our empirical domain into a title that has to do with a theoretical perspective? 
How things would change if next meeting WG8 was renamed “Socio-cultural 
perspectives on mathematics education”? 
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A SURVEY OF RESEARCH ON THE MATHEMATICS 
TEACHING AND LEARNING OF IMMIGRANT STUDENTS 1 

Marta Civil  
The University of Arizona 

This paper presents key themes that emerged from a review of the literature and from 
solicited contributions from researchers around the world on the teaching and 
learning of mathematics of immigrant students. Researchers strongly suggest the 
need for schools to look at the different kinds of mathematics that immigrant students 
bring with them and to use this knowledge as a resource for learning. There is a clear 
need for teachers to gain a better understanding of their immigrant students’ and 
their families’ knowledge and experiences. The emphasis on language as “the 
problem” promotes approaches that segregate immigrant students and raise issues of 
equity in the mathematics education they are receiving. Little research documents 
experiences that center on diversity and multiculturalism as a resource for learning.  
This paper presents the key themes that emerged from a review of the literature on 
the topic of the mathematics teaching and learning of immigrant students. This topic 
was one of the four areas that ICME 11 Survey Team 5 addressed as part of our task 
to examine the research topic of mathematics education in multicultural and 
multilingual environments since ICME 10 in 2004. One of my main sources of 
information for my part of the survey team was the work of researchers actively 
involved in CERME’s working group on Cultural Diversity and Mathematics 
Education.  
The purpose of this paper is to highlight the main findings, advances, challenges, and 
indicate topics for further research in the area of mathematics teaching and learning 
of immigrant students. Much of this work is actually centered on research in Europe, 
hence the role of CERME papers. I also draw on the different contributions received 
from researchers across the world in response to our survey team’s call for 
contributions. Finally, I also looked at aspects of research in the mathematics 
education of Latino/a students in the U.S. These three sections (proceedings, 
contributions, and research with Latino/a students) are discussed at length elsewhere 
(Civil, 2008b). For reasons of space, in this paper I am only highlighting some of the 
main ideas with special attention to those that relate to CERME research, as a way to 
encourage further discussion of this topic, the teaching and learning of mathematics 
of immigrant students, during the working group sessions.  
Different forms of mathematics 
Several studies address issues related to everyday mathematics, critical mathematics, 
community mathematics, school mathematics, and so on. Researchers in Greece have 
been looking at Gypsy / Romany students’ use of mathematics in everyday contexts, 
in particular computation grounded on children’s experiences with their involvement 
in their families’ business (Chronaki, 2005; Stathopoulou & Kalabasis, 2007). These 
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researchers note that schools and teachers seem to show little interest in what 
knowledge minority students (in this case Gypsy) bring with them and thus, in how to 
build on this knowledge for classroom teaching. It may be little interest on the part of 
the teachers, or it may be due to an unawareness on how to build on this knowledge. 
Elsewhere I have argued for the complexity of the pedagogical transformation of 
community knowledge into modules for the classroom setting (Civil, 2007). 
In Civil (1996) I raised two questions that still seem relevant today: “Can we develop 
learning experiences that tap on students’ areas of expertise and at the same time help 
them advance in their learning of mathematics?” and “What are the implications of 
critical pedagogy for the mathematics education of ‘minority’ and poor students?” 
More recently Powell and Brantlinger (2008) discuss some of the tensions around 
their own work with Critical Mathematics (CM) and write, “CM educators should not 
be satisfied with engaging historically marginalized students in politicized 
investigations of injustices (e.g., wage distributions) if they do not have access to 
academic mathematics” (p. 432). As we consider different forms of mathematics and 
whose mathematics to bring to the foreground, issues of power and valorization of 
knowledge become prominent. Abreu has written extensively on the concept of 
valorization of knowledge (Abreu & Cline, 2007).  
Teacher education 
Much of the research I reviewed for this topic addressed teachers’ attitudes and 
knowledge of immigrant students. This body of research presents a rather grim 
picture and thus opens the door to several possibilities for further research. Reports 
on an European project that is looking at the teaching of mathematics in multicultural 
contexts in three countries, Italy, Portugal and Spain, point out that teachers feel 
unprepared to work with immigrant students. César and Favilli (2005) report that 
teachers in this study underscore the issue of language as being a problem and do not 
seem to recognize the potential for richer learning grounded in different problem 
solving approaches and experiences that immigrant students may bring with them. 
They also note that teachers seem to have different perceptions on immigrant students 
based on their country of origin.  Overall, these reports point to a deficit view by 
teachers of their immigrant students. 
Abreu (2005) reports that most teachers in the studies she examined tended to “play 
down cultural differences” arguing for general notions of ability and equity, as in 
treating everybody the same. Gorgorió (personal communication, April 28, 2008) 
writes, “teachers tended to make invisible the cultural conflict that would arise in 
their classrooms as a result of the discontinuities between different school cultures 
and different classroom cultures.” Abreu points out the need for teacher preparation 
programs to pay more attention to the cultural nature of learning.  
Gorgorió and Planas (2005) discuss the role of social representations in teachers’ 
images and expectations towards different students. In particular, they write, 
“unfortunately, too often, ‘students’ individual possibilities’ do not refer to a 
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cognitive reality but to a social construction. Teachers construct each student’s 
possibilities on the basis of certain social representations established by the macro-
context” (p. 1180). Researchers are critical of the public discourse that frames 
immigration as being a source of problems rather than a resource for learning since 
this discourse is counter-productive to the education of immigrant children (Alrø, 
Skovsmose, & Valero, 2005). Unfortunately, as Gorgorió and Planas (2005) point 
out, some teachers use this public perception as their orientation to assess immigrant 
students in their classrooms, rather than a direct knowledge and understanding of 
their individual students and families. 
There is a clear need for teachers to understand other ways of doing and representing 
mathematics (Abreu & Gorgorió, 2007; Moreira, 2007). As Abreu and Gorgorió 
(2007) write in relation to a teacher’s reaction to differences between representations 
of division in Ecuador and in Spain, “the relevant question is not whether there are 
any differences in the representation of the algorithm of the division, but how 
teachers react to the differences” (p. 1564). Related to the need for teachers to know 
about others’ ways of doing mathematics, is a need for an expanded view of what 
mathematics is. Teachers tend to view mathematics knowledge as culture-free and 
universal (Abreu & Gorgorió, 2007; César & Favilli, 2005). This relates directly to 
the previous section on different forms of mathematics. Teacher education programs 
should address this view of mathematics as being culture-free. Moreira (2007) brings 
up the need for teacher education programs to prepare teachers to research this 
locality of mathematics (e.g. everyday uses of mathematics).  
Issues related to educational policy 
Researchers from different countries are critical of educational policies that push 
towards assimilation of immigrant students. These policies convey a deficit view on 
immigrants’ language and culture, instead of promoting diversity as a resource for 
learning (Alrø, Skovsmose, & Valero, 2007). Anastasiadou (2008) writes,  

The de facto multiculturalism (…) which now describes the Greek society, … [which] 
continues to function with the logic of assimilation (…). In the field of education the 
adoption of the policy of assimilation means that it continues to have a monolingual and 
monocultural approach in order that every pupil is helped to acquire competence in the 
dominant language and the dominant culture. (p. 2) 

The work of Alrø et al. (2005) is particularly relevant here as these authors take a 
socio-political approach to the discussion of the teaching and learning of mathematics 
with immigrant students. They write about the influence of public discourse and in 
particular of the view of immigration as a problem rather than a resource:  

In Denmark, the sameness discourse has spread into a variety of discourses, which 
highlight that diversity causes problems – it is not seen as a resource for learning. And 
this idea brings about a well-defined strategy: Diversity has to be eliminated. (p. 1147) 

Then, as researchers in other parts of the world have noted, these authors point to the 
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emphasis in educational policy on students’ acquisition of the Danish language as the 
priority. The idea that mathematics education is political is particularly true when 
studying the mathematics education of immigrant students.  
Language, mathematics, and immigrant students 
Many of the contributions I received from across the world were on this theme. Here 
I can only give snippets of some of those. Most of them point to a clear concern 
among researchers for restrictive language policies that limit the use of home 
languages in the teaching of mathematics. For example, Clarkson (personal 
communication, May 25, 2008) writes,  

Mathematics teaching, like all the teaching that occurs in a school, normally is mandated 
to be carried out in the dominant language of the society. The use of other languages is 
normally proscribed. For immigrant children this may be an important matter. If they are 
from homes that speak a language different to the dominant societal language, then much 
of their formative early learning undertaken before schooling has begun will be encoded 
in their home language. Hence for schools to take no or little notice of these extra hurdles 
that such students have to leap is to simply not be realistic.  

Staats (personal communication, June 8, 2008) brings another language-related issue 
emerging from her work with Somali immigrant students in the U.S. She wonders 
what happens when students do not really know their home language. She writes,  

With the educational history of Somalis they do not know their math vocabulary. It is a 
point of sadness, in fact, for many young people that they feel they do not know any 
language well, they might know parts of Somali, Swahili, Arabic, Italian, or English but 
feel insecure speaking any of these.  

Elbers provided thought-provoking comments on the situation of mathematics 
education in the Netherlands. His comments relate to both the prior section on issues 
related to educational policy and this section on language: 

Realistic Mathematics was also criticized as being not real math (also by leading 
mathematicians in the Netherlands), and being based more on semantics and 
interpretation of assignments than on math knowledge and skills. They claim that the 
Dutch good achievement in math in the PISA studies is because the PISA studies do not 
test real math. Many plead for a return to transmission of knowledge in classrooms. The 
bad results of minority children in schools, in the recent debate, was partly explained 
with a reference to educational methods such as students learning by collaboration and 
investigation. These methods, the argument runs, depend on students’ skills in Dutch and 
therefore these students, because of their language gap, can never be successful in math. 
(E. Elbers, personal communication, May 14, 2008)  

As we can see, once again, language is singled out as the obstacle to immigrants’ 
learning of mathematics. Elbers’ comment is even more pointed as it is focusing on a 
critique of discussion-rich approaches to teaching mathematics that could be 
problematic for students for whom Dutch is not their first language. Moschkovich 
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(2007) addresses this topic in her research with English Language Learners in the 
U.S. She writes,  

The increased emphasis on mathematical communication in reform classrooms could 
result in several scenarios. On the one hand, this emphasis could create additional 
obstacles for bilingual learners. On the other hand, it might provide additional 
opportunities for bilingual learners to flourish (p. 90). 

As we have seen, in the eyes of education policy-makers and many teachers, not 
knowing the language of instruction is seen as a major (and in most cases the main) 
obstacle to the teaching and learning of mathematics of immigrant students. Hence, 
the push is for these students to learn the language(s) of instruction as quickly as 
possible. As Alrø et al. (2005) point out, the emphasis on learning the language of the 
receiving country may occur at the expense of these students’ learning of 
mathematics. Gorgorió and Planas (2001) have documented a similar situation in 
Catalonia. In my local context there is long history of changes in language policy for 
education, with some states now having banned or severely limited bilingual 
education. In Civil (2008c) I present the case of one student who was Spanish-
dominant and had a good command of mathematics (she had already learned much of 
what she was being currently taught in Mexico), but was in a context in which 
English was the language of instruction. I raise questions about equity and the 
opportunities for participation and further learning of mathematics for this student. 
What about immigrant parents’ views on issues of language policy and mathematics 
education? This is a less researched topic, but one that is quite prominent in our 
Center CEMELA (Center for the Mathematics Education of Latinos/as)2. For 
example, in Acosta-Iriqui, Civil, Díez-Palomar, Marshall, & Quintos-Alonso (2008), 
we look at two CEMELA sites (Arizona and New Mexico) that have different 
language policies (in Arizona, bilingual education is extremely restricted, while in 
New Mexico it is endorsed in their state constitution). This allows us to contrast the 
effect of such different language policies on parents’ participation in their children’s 
mathematics education. An interesting theme emerging from our research with 
immigrant parents is that for many of them the language also seems to be the main 
obstacle to their children’s learning of mathematics (this parallels what teachers think 
as we have illustrated earlier). This is the case in our research with mostly Mexican 
parents in the U.S. (Civil, 2008a) but is also the case with immigrant parents in 
Barcelona (Civil, Planas, & Quintos, 2005). As immigrant parents focus on the 
language as being the main obstacle, I wonder whether they are aware of the actual 
mathematics education that their children are receiving. In particular, I am referring 
to issues of placement: are the students placed in the appropriate mathematics 
classroom (based on their knowledge and understanding of the subject) or are schools 
basing their placement on their level of proficiency in the language of instruction? I 
wonder about the thinking behind these placement policies. Not only are parents not 
aware of the implications of this policy on their children’s learning (or not) of 
mathematics, but also teachers often are not either (Anhalt, Ondrus, & Horak, 2007).  
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Research with immigrant parents 
Most of the research I found on immigrant parents and their views of mathematics 
education was done by Abreu and her colleagues in the U.K. (Abreu & Cline, 2005; 
O’Toole & Abreu, 2005) and by Civil and her colleagues in the U.S. (Civil & 
Bernier, 2006; Quintos, Bratton, & Civil, 2005). Civil, Planas, and Quintos (2005) 
look at immigrant parents’ perceptions about the teaching and learning of 
mathematics in two different geographic contexts, Barcelona, Spain, and Tucson, 
U.S. Besides these studies in U.K., U.S., and the one study with immigrant parents in 
Barcelona and in Tucson, I found one study with immigrant parents in Germany by 
Hawighorst (2005). 
There are three related themes that emerged and that cut across all immigrant parents 
in these studies. Overall, immigrant parents in the four geographic contexts shared a 
concern for a lack of emphasis on the “basics” (e.g., learning of the multiplication 
facts) in the receiving country, a perception that the level of mathematics teaching 
was higher in their country of origin, and a feeling that schools are less strict in their 
“new” country. Abreu and colleagues as well as Civil and colleagues have looked at 
these themes in some depth, thus providing an analysis related to issues of differences 
in approaches, issues of valorization of knowledge, and potential conflict as children 
are caught between their parents’ way and the school’s way.  
The research with immigrant parents on their perceptions of the teaching and learning 
of mathematics underscores the need for schools to establish deeper and more 
meaningful communication with parents. Parents tend to bring with them different 
ways to do mathematics that are often not acknowledged by the schools, and vice 
versa, parents do not always see the point in some of the school approaches to 
teaching mathematics. Although this may be the case with all parents (e.g., in the 
case of reform vs. traditional mathematics), the situation seems more complex when 
those involved are immigrant parents and their children. As the research of Civil and 
colleagues shows (Civil, 2008a; Civil, Díez-Palomar, Menéndez-Gómez, Acosta-
Iriqui, 2008) differences in schooling (different approaches to doing mathematics) 
and in language influence parents’ perceptions of and reaction to practices related to 
their children’s mathematics education.  
Implications for further research 
My hope is that this paper will serve as a starting point to hear from other researchers 
who are working in mathematics education and with immigrant students. There are 
several implications that this review points to and that I want to briefly mention here. 
Abreu, César, Gorgorió, and Valero (2005) raise two important questions that should 
frame, I think, further research in this field. They write, “Why research on teaching 
and learning in multiethnic classrooms is not a bigger priority? Why issues of 
teaching in multicultural settings are not central in teacher training?” (p. 1128) 
Based on the research reviewed, there seems to be a clear need for action-research 
projects with teachers of immigrant students engaging as researchers of their own 
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practice to counteract what appears to be a well-engrained deficit view of these 
students and their families. Through a deeper understanding of their students’ 
communities and families (e.g., their funds of knowledge), maybe teachers can work 
towards using different forms of doing mathematics as resources for learning instead 
of the current trend that seems to view diversity as an obstacle to learning (there are 
of course exceptions to this view and I address those in Civil, 2008b). Related to this 
idea of understanding immigrant students’ communities, there is very little research 
looking at the sending communities. That is, what do we know about the teaching and 
learning of mathematics in the countries / communities that these immigrant students 
come from? We have recently started one such project in CEMELA, in which we 
look at the mathematical experiences of the students who are recent immigrants to the 
U.S. by studying the teaching and learning of mathematics in some sending 
communities. Specifically, we are looking at mathematics instruction at one school in 
Mexico across the border from Arizona to gain a better understanding of Mexican 
teachers’ conceptions about the teaching and learning of mathematics. I argue that 
there is a need for more research along these lines to gain a better understanding of 
the background experiences of immigrant students. 
There is also a need to analyze the learning conditions in schools with large numbers 
of immigrant students. What Nasir, Hand, and Taylor (2008) write in reference to 
African American and Latino and poor students is likely to be the case with 
immigrant students in many countries: 

African American and Latino students and poor students, consistently have less access to 
a wide range of resources for learning mathematics, including qualified teachers, 
advanced courses, safe and functional schools, textbooks and materials, and a curriculum 
that reflects their experiences and communities. (p. 205) 

Issues of valorization of knowledge and different forms of mathematics need to 
continue to be explored, as there are still many open questions. Related to this is the 
idea of non-immigrant students’ views of immigrant students. This topic has received 
little attention (a notable exception is Planas, 2007), yet it seems important to 
understand how all the students see and understand the experience of being in a 
multicultural classroom (Alrø et al. (2007) address this topic to a certain extent). 
Another area that needs further research is that of immigrant parents’ perceptions 
about the teaching and learning of mathematics. Furthermore, an important and 
under-researched area is that of interactions between immigrant parents and teachers 
and perceptions of each other’s in terms of the children’s mathematics education. 
Civil and Bernier (2006) address this to a certain extent, but much more work is 
needed in this area. 
Language is a prominent theme in the research with immigrant students and 
mathematics education. More research is needed that focuses on multiple languages 
as resources for the teaching and learning of mathematics, once again to counteract 
the deficit perspective, particularly in the public discourse that sees the presence of 
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other languages and not knowing the language of instruction as obstacles to the 
mathematics education of immigrant children. Issues of placement based on language 
proficiency and the impact that these decisions have on students’ learning of 
mathematics also need to be studied further. 
Finally, a clear implication from the research reviewed on this topic is the need for 
interdisciplinary teams with expertise in different areas including mathematics 
education, immigration policy, linguistics, socio-cultural theories, anthropology, just 
to name a few. There is a need for this interdisciplinary expertise, as well as for the 
development (or refinement) of theoretical and methodological approaches. I find 
Valero’s (2008) comment on this (in the context of mathematics education in 
situations of poverty and conflict, which are often the norm in immigrant contexts) 
very insightful: 

The theories that have been used to study mathematics learning build on a fundamental 
assumption of continuity and of progression in the flow of interactions and thinking 
leading to learning. (…) When [these theories] are simply applied without further 
examination the result has often been the creation of deficit discourses on the learners or 
the teachers. (…) The question then becomes how can (mathematics) “learning” be 
redefined as to provide a better language to grasp the conditions and characteristics of 
thinking in situations where continuity and progression cannot be assumed. (p. 161) 

I leave the reader with the challenge Valero raises in the last sentence. 
Notes 
[1] This paper is adapted from a longer paper (Civil, 2008b) prepared for ICME Survey Team 5: 
Mathematics Education in Multicultural and Multilingual Environments, Monterrey, Mexico, July 
2008. 

[2] CEMELA is a Center for Learning and Teaching (CLT) funded by the National Science 
Foundation under grant ESI-0424983. The views expressed here are those of the author and do not 
necessarily reflect the views of the funding agency. 
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PARENTAL RESOURCES FOR UNDERSTANDING 
MATHEMATICAL ACHIEVEMENT IN MULTIETHNIC SETTINGS 

Sarah Crafter 
University of Northampton, UK 

 This paper examines parental understandings about their child’s mathematical 
achievement and the resources they use to go about gaining information in 
culturally diverse learning settings. This examination takes place within a critical-
developmental framework and draws on the notion of cultural models to explicate 
how resources are used. Three parental resources of mathematics achievement are 
scrutinised: (i) the teacher, (ii) exam test results and (iii) constructions of child 
development. The interviews with twenty-two parents revealed that some resources 
were concrete, such as examination results. Other resources were symbolic, like 
the representation of child development, and were less likely to be shared with the 
school community. Either way, these resources were open to parental 
interpretations and influenced by parents’ own experiences and cultural 
representations.   

Key words: parents, resources, cultural models, achievement, ethnic minority 
 
INTRODUCTION 
Within the English school system, like many Western/English-speaking countries, 
there is a strong emphasis on testing and measurable outcomes for success at school. 
The introduction of the National Numeracy Strategy and nationwide testing in the 
primary sector led to a greater pressure for parents’ involvement in their children’s 
school education (Bryans, 1989). While many could see problems with using parents 
as teachers in the home, the problems of engaging parents specifically from culturally 
diverse backgrounds remained largely uncontested.  
The education of ethnic minority children has been given some attention, although 
less seems to be said about mathematics learning in particular in the UK context. The 
pitting of one ethnic group over another has tended to overshadow the sociocultural 
composites of school practices or the “gaps” in cultural understandings of what 
counts as mathematics learning. The current UK government position is to play down 
cultural influences on home learning even though the precise form in which home 
learning is delivered depends on the parents’ understanding of the individual child 
and their development (Goodnow, 1988) as well as judgements of value and cultural 
practices, often filtered by community experience and past experience (O’Toole & 
Abreu, 2005).  
This paper examines parental understandings about their child’s mathematical 
achievement and the resources they use to go about gaining information in culturally 
diverse learning settings. Resource is a concept which refers to the way in which the 

WORKING GROUP 8

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1453



 

 

 
individual is simultaneously a seeker and provider of information which is open to 
resistance, interpretation and multiple representations. This examination takes place 
within a framework which suggests that institutional systems like school reflects a 
dominating and particular way of looking at children’s learning where singular 
pathways to development, often age-related, are considered “appropriate” or 
“correct” (Burman, 1994). These conceptualisations influence what we think children 
should learn and what achievement outcomes are necessary by certain stages of 
development. As such, expectations for children’s achievement are “normed” against 
particular developmental milestones (Fleer, 2006). The “colonization” of the home by 
school practices does not attempt to reflect or value family practice but marginalises 
practices which are not represented by White, middle-class groups (Edwards & 
Warin, 1999). Equally, parents are privy to limited amounts of information about 
their child’s school life, including their child’s mathematics learning and therefore 
seek other avenues for constructing meaning from an environment from which they 
are largely excluded.  
It is also suggested that when parents utilise and incorporate the resources available 
to them they do so within the boundaries of particular cultural models (Gallimore & 
Goldenberg, 2001). Cultural models can be understood in terms of a shared 
understanding of how the individual perceives the way the world works, or should 
work. A cultural model is described as: 

Encoded shared environmental and event interpretations, what is valued and ideal, 
what settings should be enacted and avoided, who should participate, the rules of 
interaction, and the purpose of the interactions (p.47). 

Cultural models are often hidden and unrecognisable to the individual and quite often 
assumed to be shared by others around them. As such, mathematical learning also 
comes with a knowledge structure which is a reflection of the family or community 
practices (Abreu, 2008). Parents draw on their own understandings of mathematics 
learning to make sense of how their child is achieving. The resources they use to do 
so may have concrete or tangible aspects to them such as discussions with the class 
teacher or examination results. Others err more towards a cultural model that is 
representational or symbolic. Both are susceptible to miscommunication and 
interpretation.  
  
A STUDY OF PARENTAL RESOURCES FOR UNDERSTANDING THEIR 
CHILD’S MATHEMATICS ACHIEVEMENT IN SCHOOL 
The twenty-two parents participating in this study had children in primary schools 
(ages 5-11 years) situated in a town in the South East of England. Eleven of the 
twenty-two parents were from ethnic minority backgrounds and the remaining 
participants were White and British born. The children are characterised as being 
either high or low achievers in mathematics and were placed as such by their 
teachers. Data collection took place in three multiethnic schools that are known as 
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school A (mainly White), school B (ethnically mixed) and school C (mainly South 
Asian). Data from parents was collected using the episodic interview (Flick, 2000), a 
method which assumes a shared common knowledge on behalf of the participants 
about the subject under study. It specifically facilitates the exploration of meanings, 
representations and experiences. The procedure for analysing the interviews was 
borrowed from Flick (2000) and based upon the analysis of themes.  
Although the study was specifically about mathematics, parents within the sample 
used this opportunity to talk about their child’s education as a whole and therefore the 
data is highly inclusive of other educational issues. For parents, constructing meaning 
in relation to their children’s mathematics education is like fixing together the pieces 
of a puzzle and this is managed in a holistic way. In their accounts, parents utilised a 
varied number of resources to help them construct an understanding of their child’s 
“achievement.” The three dominating resources were: (a) the teacher, (b) exam test 
results and (c) constructions of child development. 
Using the teacher as a resource for understanding the child’s achievement 
The teacher was cited most often as the resource of information about mathematics 
achievement for the parents in the current study. Of interesting note, is that parents of 
high achieving children mentioned using the teacher as a resource more than parents 
of low achieving children (19, 111). Furthermore, White British parents mentioned 
using the teacher for this role more than the ethnic minority parents (17, 13). There 
are a number of potential explanations for why this might be the case. The parents of 
high achieving children may not have to worry so much about what will be discussed 
during consultations, therefore there is less at stake in discussing their child’s 
progress with the teacher. Parents of high achieving, and indeed White British parents 
are more likely to share cultural models of education, teaching and learning with the 
school. The discrepancies and conflicts in value positions between home and school 
for those who do not share cultural models with the school have been well 
documented by Hedegaard (2005).  
On the whole parents’ communication with teachers tended to centre around the 
parent-teacher consultation evening on a twice-yearly basis. Communication between 
parents and teachers surrounding achievement is complex, and teachers couch many 
of their descriptions of the child to parents using “teacher talk” whereby descriptions 
could connote two different meanings. For example, if a child is described as having 
“leadership qualities” this can also be interpreted as “the child is bossy.” “Teacher 
talk” can produce a discrepancy between the teacher’s discussion of the child’s 
mathematics achievement and the parent’s understanding of that achievement. For 
instance, Rajesh’s mother asked the teacher in the parents’ consultation, “how’s he 
getting on, will he be alright?” and Rajesh’s mother recalled that the teacher said: 
                                           
1 The figures used in this paper are based on the number of times a resource is mentioned, therefore there are times 
when one parent mentioned a resource more than once.  
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Rajesh’s mother: “he’ll be fine, no point to worry or anything…if he just carries on the 
way he’s doing he’s fine” (Indian mother: yr 2, LA) 

However, the teacher described Rajesh to me as a low achieving child and his family 
were categorised as having a low level parental involvement. However, this parent 
has taken at face-value the message. There are opposing cultural models of Rajesh’s 
learning held by home and school here. Rajesh still struggled to undertake 
calculations with number below ten, whilst curriculum guidelines stipulate that 
children of his age should be capable of working with numbers up to 20. This parent 
has assumed that the teacher would offer the most concrete information around her 
son’s mathematical achievement. Another parent, Fazain’s mother, reported a similar 
conversation she had with a teacher at her son’s school: 

Fazain’s mother: Mr. Headworth, he was saying that he is really good in maths because 
he comes home and you know, because I improve my maths, you know, a lot. So I teach 
him, and he’s coming really good, he’s top in his class (Pakistani mother: yr 6, LA) 

Age-related views of mathematics learning are representative of generalised and 
dominant forms of knowledge which places children outside of these brackets of 
being an achiever. Fazain was by no means top of his class and was described to me 
by his classroom teacher a low achieving child. Fazain’s mother has attempted to 
align her own models of mathematics with the schools by improving her own 
learning, but using the teacher as a resource of information still creates discrepancies. 
This next quote from Michael’s mother shows what can happen if the interaction with 
the teacher creates a dissonant cultural model of achievement from the one held by 
the parent. Michael’s mother describes a negative parent-teacher consultation she had 
experienced. In his first two years schooling, Michael’s parents had always been told 
that he was achieving well. At the most recent parent-teacher consultation, Michael’s 
parents were surprised to be told that he was not doing as well as the others. This 
change in the representation of her son’s achievement by the mother, as a 
consequence of the teacher consultation, prompted her to questions the teacher’s 
judgement: 

Michael’s mother: As I say, this consultation with Mrs. Edwards didn’t even sound like 
Michael…I thought, she doesn’t know this child at all, doesn’t even sound like him…and 
I remember being so cross…and I said to [the head teacher] “what does this child have to 
do to get any praise?” because I thought it was so unfair. Because he was working hard 
and yet there wasn’t a single thing said that was positive. (White British: yr 2, HA)  

Although the teacher was an important resource of information for all the parents as a 
means of understanding their child’s achievement, parents may challenge their 
opinion if it runs counter to well established models of understanding.  
On the whole, parents placed a great deal of emphasis and importance on the 
teacher’s judgement of their child’s achievement without always realising that 
teachers’ discourse can be framed to connote multiple meanings. One might speculate 
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that these discrepancies are even more problematic for the more marginalised parent 
(such as ethnic minority parents, working class parents, or parents of low achievers), 
like the mothers’ of Rajesh and Fazain, who may have been socialised to understand 
a more literal educational discourse. For example, these parents took at face-value the 
“no need to worry” teacher talk. This is unsurprising when models of success are 
more desirable and the teacher is considered the key authority. Using the teacher as a 
resource means that conversations take place in a setting which is rigidly framed by a 
White middle-class institutional structure (Rogoff, 2003) and as such, teachers are in 
a powerful position. Michael’s mother has fewer qualms about challenging 
achievement representations of the teacher. As such she has the resources to 
challenge the institutional perspective. It was suggested earlier that using the teacher 
as a resources of information was tangible or concrete and  yet “teacher talk” creates 
models of achievement which are not necessarily congruent with normative age-
graded levels, or parents constructions of their child’s achievement.  
Using examination assessment results as a means of understanding achievement 
Examination results from the Standard Assessment Tests (SATs) conducted in year 2 
and year 6 were also resources used by some of the parents. Parents of high achieving 
children were most likely to speak of examination results in relation to achievement 
(13, 9), although there was no difference between the White British and ethnic 
minority parents. In principle, parents should be able to use examinations as a 
concrete means of understanding achievement. Yet how parents come to understand 
or use these tests for assessing their child’s achievement and construct subsequent 
cultural models is open to considerable interpretation.  
For a start, many of the parents failed to understand how the tests are scored (tests are 
scored using levels rather than A-G classifications which parents are familiar with). 
Once again though, parents in this sample of high achieving children had a clearer 
idea of the scoring system used for the SATs tests. Why this should be the case is 
uncertain, since the scoring is new for all parents of children currently in the school 
system. It is likely that these parents are confident in accessing resources like the 
teacher, websites and shop-bought information books.  
The majority of the parents who knew that the SATs examinations were taking place 
had negative feelings about the tests. Some thought the children were too young and 
therefore ran counter to their cultural models of appropriate child development 
practices. Others felt that the SATs examinations were for the schools benefit, and 
not for the children since results are published publicly and are used to measure the 
school’s success. Rajesh’s mother was unique in her opinion about testing and its 
usefulness in understanding achievement. This may have been because she may have 
been naïve about how the schools use the test results:  

Rajesh’s mother: I reckon tests are good because it will show him what he needs to go 
further on and what he needs to learn…I think he’s going to have tests his whole life so 
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he might as well start now…they’re not going to judge the kid, if he’s bad or anything it 
just means he needs more help which is good in a way (Indian mother: yr 2, LA) 

Rajesh’s mother also held the belief that there would be some kind of positive 
feedback from the tests, which would help her son realise his mistakes and improve. 
However, once the final examinations had been finished, none of the schools in this 
sample revisited the papers and other parents had a stronger insight into institutional 
motives for testing mathematical achievement. Dale’s father shared this low opinion 
on the value of examinations as a resource for understanding his son’s mathematical 
achievement: 

Dale’s father: I find going into school reinforces my idea that they put you in a 
pigeonhole at the earliest opportunity; that’s the line, you’re this side of the line, you’ll 
always be the worst. Well, all right, he’s a couple of digits down on a maths test, it’s not 
the end of the world but to listen to them talk sometimes; is that because of the concern 
for Dale or is it because they’re concerned the school is going to get a bad report because 
the Stats [sic] are down…and I sometimes wonder exactly what it’s for, this sort of test 
thing (White British: yr 6, LA) 

Parents described how, in their view, SATs examinations have little value as a tool 
for helping the child, but are instead used as a form of classification. As such 
institutional practices are at odds with parental cultural models of what counts as a 
useful learning experience. Also, the parents look at the SATs exercise with 
justifiable scepticism. Perhaps these parents know better than Rajesh’s mother, that 
the papers will not be re-visited or used as a learning tool.  
With two exceptions the parents of low achieving children had more negative 
feelings towards the examinations than parents of high achieving children. Parents 
here were concerned about seeing their children fail, something that is more likely to 
happen to the low achieving children. Parents’ difficulties in interpreting the SATs 
mathematics examination results revealed that even as a concrete resource of 
information about the child’s achievement, examination results can have their own 
interpretive problems.  
Resources of child development for understanding achievement 
One other piece of the educational puzzle, perhaps built upon the most symbolic of 
all the resources for understanding achievement, was the use of models of child 
development. Juxtapositioned against the need to understand mathematics 
achievement was the belief that the children were very much in the early stages of 
their own development. Parents maintained a cultural model of their children as still 
being very young which are not necessarily shared by teachers or school as an 
institution.  As a consequence of these dissonant models of child development, 
tensions were created between home and school. The next quote from Rajesh’s 
mother reveals the conflict between her own model of child development and her 
desire for her child to be successful early in life: 

WORKING GROUP 8

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1458



 

 

 
Rajesh’s mother: But then I’m thinking like, his education is important at the moment but 
it’s still a bit of a laugh for him so I don’t really want to burden, like I don’t want to be 
like a fussy parent saying I’m pushing him or something…but at the moment you think 
he’s only seven, you don’t really want to push him too much, cos you’re stuck in the 
middle. Then you think if he has a good start now then he’ll have a good start, you know. 
I don’t know, it’s a bit difficult  (Indian: yr 2, LA) 

Her conflicting model of appropriate parenting and educational expectations for 
achievement are both tied in with her identity as a good parent. Contained within the 
quote are three messages which are no doubt conflicting but lead back to her model 
of child development as the resources of understanding. She does value education and 
considers it important, but for a boy of 7 years old it should be fun. She is also 
worried about being perceived as “pushy” if she broke away from her own cultural 
model of child development. However, Rajesh’s mother is unaware that it is her own 
cultural model of child development which is marginalised by against expectations of 
the school.  
Even when parents have a keen awareness of the cultural models held by the school, 
these may still be challenged by parents own models of child development.  Simon’s 
mother drew on her own experiences as a school child to understand the anomalies 
between her own cultural models of child development to what her son was 
experiencing: 

Simon’s mother: I just think that he’s seven, he’s in the infants and if I related to when I 
was in the infants, we never brought homework home until; I think we just had reading. 
And part of me thinks they’re just children, let them be children, you know, if they’re 
happy they’ll be learning and I don’t want too much pressure on him really (White 
British: yr 2, HA) 

Past educational experiences are embedded in cultural models and linked to the 
settings where practices take place (O’Toole & Abreu, 2005). Based on these past 
experiences, Simon’s mother has a strong model that school is for learning and home 
for playing/recreation. Once again, she draws on child development as a resource of 
knowledge for her cultural model.  
A recurrent idea running through parents’ models of child development was that of 
learning as a progressive activity. Learning was viewed by many of the parents as a 
building block, which develops with the child. The stage-theory representation of 
child development established through developmental psychology is widespread in 
these parents’ accounts. Learning is described as progressive and based primarily in 
the childhood years. The crux of the problem is that parents’ stage-related views on 
child development are more varied than one might expect. The variations in parents’ 
models of learning and development are strongly influenced by their own values and 
experiences, which were culturally situated. However, school as an institution in 
England relies heavily on constructs established by stage-related theories. Moreover, 
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they are not necessarily congruent with the models held by the teacher. One of the 
teachers, Richard, in School B told me: 

I still think some parents haven’t quite caught onto the idea that they’re seven so we 
should be expecting quite a lot of them. Their expectations of what a child can do isn’t as 
high as our expectations…(yr 2, mixed achievement class) 

 

CONCLUSIONS 
When parents talk about their children’s mathematics learning they draw on much 
more than just isolated accounts of mathematics as a subject. Parents try to make 
sense of their child’s mathematics experience by using both concrete and symbolic 
resources. While some resources, like the teacher and examination results might be 
considered fairly concrete forms of information for parents, they carry their own 
problems of interpretation and expectation. For example, whilst “teacher talk” may be 
a kindness to the parents and child, not all parents have the resources to reinterpret 
the double meaning. In culturally diverse situations there remains the possibility for 
discrepancy between the cultural models of learning and achievement between home 
and school through literal educational discourse. It is noteworthy that the two 
resources most used, the teacher and examination results, come from the most 
powerful setting where the knowledge is unidirectional; from home to school. Parents 
with strong cultural models about their child’s achievement can challenge the school. 
Marginalised parents, or those that sit outside White middle-class institutional 
confines, tend not to have the resources to either challenge the school or recognise 
incongruent pieces of information. The least tangible cultural model, child 
development, resides mostly in the home and is born out of values, expectations, 
practices and past experiences. This is a resource which is least likely to be shared 
with the school but is still a pervasive influence in the home. 
Furthermore, cultural models and knowledge about achievement have a reciprocal 
influence on each. A question was raised about whether the cultural model is 
established before the representation of achievement or whether images of 
achievement precede the model.  The use of cultural models and representations of 
achievement are seen as constituted from each other, in that they have the power to 
be transformed, reconstructed and rejected based on the resources that are utilised. In 
other words, new information about achievement (perhaps resourced from test 
examination results) may change a cultural model. On the other hand, a steadfast 
cultural model (perhaps resourced from representations of child development) might 
be resisted or rejected in light of discussions with the teacher about what a child 
should be able to achieve by seven years of age.  
Whilst institutional practices continue to be dominated by universal/western notions 
of development which are characterised by White, middle-class value-positions then 
some homes and their cultural practices will be marginalised. Furthermore, these 
homes and their families will be positioned as incompetent or lacking knowledge. 
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DISCUSSING A CASE STUDY OF FAMILY TRAINING IN TERMS 
OF COMMUNITIES OF PRACTICE AND ADULT EDUCATION 

Javier Díez-Palomar and Montserrat Prat Moratonas  
Department of Mathematics Education and Sciences 

Autonomous University of Barcelona 
SUMMARY 
This paper focuses on adult mathematics learners working on their children’s 
algebra problems in high school. These “adult learners” have their own 
characteristics and dynamics as a group. Therefore we define them as a socio-
cultural group. In addition we assume that to reach an identity as a member of a 
group is something good in terms of learning. For different reasons we have chosen 
Wenger’s idea of “community of practice” to look at this socio-cultural group. 
However we are not looking at this group of parents as a community of practice, but 
the process of how this group of people becomes it.  To understand how a group of 
people becomes a community of practice may provide some hints to improve our 
teaching and learning strategies.     
KEY-WORDS: Adult Learners, Family Training, Mathematics Education and 
Communities of Practice.  
 
INTRODUCTION 
People who work in the field of education know that classrooms work better, and 
students achieve better scores, when they identify as members of a community. Many 
teachers look for strategies to build these complicities at the beginning of the school 
year, thus students could become a group[1] of people working together to learn. 
Much research draws on this image by providing supporting evidence to demonstrate 
that grouping is better in terms of learning strategies (Lou, et. al. 1996). Drawing on 
the prior research, some relevant questions implicit in the process of building a group 
of people may include issues such as how the group works, what type of elements 
provides unity to the group, what are the main characteristics of the “culture” of the 
group, and so forth. The processes of support, as well as the solidarity between 
students, stresses the uniqueness of a milieu that encourages inclusion and learning 
for all the members of the group. The positive interactions held between the different 
members of the group promotes a working environment that positively strengthens 
each member. The result in terms of learning is usually better than the one obtained 
when this group identity is not present (or when it is a group of people with no 
cohesion).  
The idea of “community of practice” is present in a number of articles and books on 
Mathematics Education (Cobb & Hodge, 2002, Lerman, 2001, Jaworski, 2006). 
Usually the “community of practice” is related to good practices, because as Renshaw 
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(2003) claims there is “kindness” in the word “community;” and this “kindness” 
makes this concept attractive. However, the concept proposed by Lave and Wenger 
(1991) and developed by Wenger (1998) is a notion precisely used by Wenger in a 
particular context (the business). It was not created as a tool to be used in the context 
of educational research. All the research reviewed in this paper use this notion in a 
finalistic meaning, presenting the group studied as a “community of practice” already 
established.  
Data used in this paper come from a research project titled “Teacher training towards 
a Mathematics Education of parents in multicultural contexts” (ARIE/2007 program, 
number of reference 00026), funded by the General Office of Research and 
Universities (AGAUR) from Catalonia. In this exploratory case study the focus is on 
families and Mathematics Education. Our main aim is to use the concept of 
“community of practice” as tool of analysis, in order to understand if people involved 
in our study are (or not) a community of practice. We consider that the process of 
how a group of people become a community of practice is an interesting topic to be 
analyzed. On one hand this transition step is something that has not been studied in 
the scientific literature, on the other we think that this process may present key 
elements to understand how this ideal situation of “community of practice” appears, 
and what aspects play an important role on it. We are not looking at a “community of 
practice” already built but discuss a process. Data collected suggests that there is 
some kind of correspondence between the examples found in our study and what 
Wenger calls a “community of practice” (1998). We look at these situations because 
previous research suggests that groups working as communities of practice achieve 
better results than groups where there is not a sense of cohesion. Our research work 
was held in a classroom with adult people, and as such is a set of people different 
from other educative targets.  
ADULT EDUCATION: TOWARDS AN UNDERSTANDING OF SOME KEY 
ELEMENTS AROUND ADULTS’ LEARNING AS A CULTURAL GROUP 
In this paper we use Woods’s (1990) and Geertz’s (1973) notions of culture to define 
the adult learners as subjects of our study. The notion of “culture” has been used 
broadly with many different meanings. The aim of this paper is not to explore the 
scope of this idea and its definition but we do want to highlight how we use the term 
“culture” in our research.  
Geertz (1973) define culture as a notion that: 

“Denotes an historically transmitted pattern of meanings embodied in symbols, a 
system of inherited conceptions expressed in symbolic forms by means of which 
men communicate, perpetuate, and develop their knowledge about and attitudes 
toward life” (p. 89).  

According to his definition “culture” is defined in this paper as a characteristic of 
individuals related not only to the ethnicity, language, country of origin, or social 
background, but also all the small groups to which these individuals belong to. In this 
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sense, we define “adult people” as a particular cultural group, with their own 
characteristics and dynamics, impacting and determining how the educational process 
works inside the classroom of mathematics. As Woods (1990) claimed, every single 
group of people has their own culture, thus we need to analyze it in order to 
understand the practices carried out by the members of this group.  
Drawing on phenomenology, Rogers (1969) showed that all persons exist in a world 
of experience, which is always changing. This “world of experience” becomes the 
filter through which we perceive all of what is around us. Talking about how adults 
learn, Rogers (as well as Piaget) argued that there is a cognitive process of 
adjustment: when somebody finds that some kind of information coming from the 
outside (the real world) does not accord to his/her previous [cognitive] schemes. This 
person then assimilates the new information by accommodating it into his/her mental 
schemes. From this point of view, to learn is a “learner centred” process where the 
individual tries to solve the incongruence between what s/he perceives and what 
would represent (according to his/her previous schemas). This argument may explain 
why many adults have a common set of values and schemes (because their common 
background), which distinguish them from other social groups.  
Other researchers offered key contributions to the learning theory in Adult Education, 
such as Knowles (1984) and Mezirow’s  (1997) who both differentiate adult 
individuals as a particular cultural group in terms of their own learning. Knowles 
(1984) claims that adults are individuals who learn by drawing on their own 
experience and their “self-concept” (that is: the capacity to move from one being a 
dependent personality toward one of being a self-directed individual). Mezirow 
(1997) adds that this learning process in grounded in a dialogue. Before Mezirow 
(1997) was working on these ideas, Freire (1977) discovered the importance of 
dialogic action. The Brazilian professor had already demonstrated the power of the 
word (“la palabra”) as a tool to read the world critically. Drawing on this idea, Freire 
proposed what he called “Dialogical Method of Teaching.”   
Drawing on the ideas of Freire and Habermas, among others, Flecha (2000) proposed 
what he calls “Dialogic Learning Theory.” The most important concept embedded in 
this learning theory is the egalitarian dialogue: learning is the result of an 
intersubjective process of interaction that occurs when learners use the egalitarian 
dialogue in order to share their prior knowledge with others. Thus the learning 
process is not unidirectional between teacher and students, but the result of a 
dialogue. Arguments always are discussed grounded on validity claims, not power 
claims. Flecha (2000) explains this approach using seven principles (egalitarian 
dialogue, cultural intelligence, solidarity, transformation, creation of meaning, 
instrumental learning, and equality of differences), which are the central axe of the 
“Dialogic Learning Theory.” Learning is a powerful experience for adult people; it 
really transforms their lives. In addition, learning is reached when it makes sense for 
them. This is a particular difference with children since adult people already have 
experiences to build upon new knowledge. Drawing on these principles we can affirm 
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that adult learners are a particular group, with their own ways of thinking and 
functioning.   
THE NOTION OF COMMUNITY OF PRACTICE AS A 
METHODOLOGICAL TOOL 
Wenger (1998) introduces a learning theory grounded on the notion of Community of 
Practice in his book Communities of Practice: Learning, Meaning, and Identity. This 
concept has the “three dimensions of the relation by which practice is the source of 
coherence of a community” (Wenger, 1998 p.72) as a key idea. These three 
dimensions are: mutual engagement, joint enterprise and shared repertoire.  

 
Figure 1. “Dimensions of practice as the property of a community” (Wenger, 1998 p.73) 

The concept “community of practice” was created to define a group that acts as an 
“alive-curriculum” for the learner. For this reason the “community of practice” is a 
type of community present everywhere, and this is not linked necessarily to a formal 
system of learning.  
The notion of community of practice is more than a group of people with similar (or 
common) interests, involved in a regular activity. This is not a synonym of group, 
team, or network. This does not mean (only) to be affiliate to some kind of 
organization, or to connect with other people (close in terms of geography or social 
class). This is a dynamic concept, including all members of the community of 
practice (not just the own participants in the practice which is studied).  
Wenger’s (1998) concept of community of practice has been used as tool of analysis 
more than the theory embedded in it. However this “operationalization” of the 
theoretical concept cannot be made without taking into account several 
considerations to avoid doing an incorrect use from the methodological standpoint. 
[2] 
In this paper we use the concept of “community of practice” as tool of analysis, in 
order to analyze if parents involved in the study became a community of practice (or 
not). At the same time, we also analyze how this process impacts on teaching and 
learning practices. Thus the research question is: what type of (social and cultural) 
processes happen while a group of people became (or not) a Community of Practice? 
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In order to answer this question, our start points are the 14 “indicators that a 
community of practice has formed” (Wenger, 1998, p 125). These 14 indicators are 
specific descriptors of the 3 dimensions quoted before (mutual engagement, joint 
enterprise and shared repertoire).  
These 14 indicators are: 

“1) Sustained mutual relationships – harmonious or conflictual   
2) Shared ways of engaging in doing things together  
3) The rapid flow of information and propagation of innovation  
4) Absence of introductory preambles, as if conversations and interactions were 
merely the continuation of an ongoing process  
5) Very quick setup of a problem to be discussed  
6) Substantial overlap in participants’ descriptions of who belongs  
7) Knowing what others know, what they can do, and how they can contribute to 
an enterprise  
8) Mutually defining identities  
9) The ability to assess the appropriateness of actions and products  
10) Specific tools, representations, and other artefacts  
11) Local lore, shared stories, inside jokes, knowing laughter  
12) Jargon and shortcuts to communication as well as the ease of producing new 
ones  
13) Certain styles recognized as displaying membership  
14) A shared discourse reflecting a certain perspective on the world”  (Wenger, 
1998 pp.125-126). 

In this paper a series of classroom sessions of mathematics are discussed. Data was 
collected using videotape. The dynamics generated by the parents involved in the 
study are analyzed according to Wenger’s 14 indicators. A father and 19 mothers 
were part of the group. Almost everybody was from Catalonia, although at the 
beginning of the school year there were also two Latina women. Their children were 
freshmen in the high school (12-13 years old).  
ANALYSING AN ADULT LEARNING GROUP 
The group of adult learners took place in a high school classroom in Barcelona city. 
The learners were a group of parents come together to work on algebra problems. It is 
a group of people that have deliberately joined together in order to learn mathematics, 
although some of them knew each other before because they usually came to the high 
school in order to collaborate in other activities organized by the centre. The group 
was open to everybody (immigrant and native people, parents of low and high 
achieving pupils, etc.). Wenger’s (1998) community of practice concept asserts that 
we can neither build this type of groups as a result of a mandate, nor establish them 
from the outside. We cannot generate or design these communities either. According 
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to this viewpoint, “communities of practice are groups of people who share a concern 
or a passion for something they do and learn how to do it better as they interact 
regularly” (Wenger, 2007). That means that a group of people may become a 
community of practice over the time (if they follow the 14 criteria pointed out by 
Wenger).  
Data discussed in this paper comes from the fourth session of the workshop. People 
involved in this group had been working together for four successive weeks doing 
mathematics in this classroom. Videotapes show how they were becoming 
(functional) as a “group” over these four sessions. The identity of every single person 
of the group became more defined little by little. Analyzing our videotapes in terms 
of Wenger’s (1998) notion of community, several clips suggest that some of the 14 
indicators are achieved (or they are in the way to be achieved), such as indicators 1, 2 
and 8 (“sustained mutual relationships – harmonious or conflictual,” “shared ways of 
engaging in doing things together,” and “mutually defining identities”). A 
longitudinal analysis of the videotapes indicates that people define their identity 
collectively (indicator 8). This process produces a number of sustained mutual 
relationships (indicator 1), and at the same time shared ways of engaging in doing 
things together appears (indicator 2). The first quote is an example of this type of 
dynamics. The adult learners are in a classroom placed in a high school and are 
taking part in an activity of translation: from natural to algebraic language. They are 
working with first grade equations with one unknown. The facilitator had asked how 
they solved the problem. Pere is the only man of a group of 20 people (all of them are 
involved voluntarily in the group). Some of them participate actively in the class. 
Pere intervenes: 

 
Pere: Me too. Two times x, and then plus two times x. 
Facilitator: You wrote two times x, and then? 
Pere: One, plus two times x (a noise from the chalk when writing on the chalk board is 
heard, when the facilitator write on the chalkboard what Pere is saying).  

 
It is interesting to highlight that Pere (who usually is not the protagonist, in the sense 
that he is not the person who has the highest index of interventions) usually 
intervenes before the mothers to answer the questions proposed by the facilitator 
(almost always). This practice always occurs when some kind of explanation or 
validation is required from the learners. According to this interpretation the role 
played by Pere is “a person who already has a prior knowledge in mathematics, and 
who is able to make connections between his ideas and what the facilitator explains, 
as well as to consolidate this knowledge in the group.”   
Another aspect emerging from the data analysis is the definition of learners’ identities 
as members of the group (indicator 8) in opposition to their children’s identity.  
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People from the group identify themselves as such because all of them are parents 
(indicator 6). The variable “generation” becomes a common characteristic of their 
identity as a group, because it is also connected to their motivation to participate in 
this workshop of mathematics (and consequently, to consolidate themselves as a 
group and, perhaps, as a community of practice in the future). This aspect of their 
identity also helps us to understand the conflict emerging between these people and 
their children, in terms of teaching and learning mathematics. All these parents have 
children in the high school, and all the children have difficulties with mathematics. 
This situation produces a plethora of common experiences shared by all the members 
of the group. They, as parents, have a different “way to see the world” than their 
children. This fact, and especially how they have faced this situation as “people who 
engage in a process of collective learning in a shared domain of human endeavour” 
(Wenger, 1998), suggests that this group has some characteristics similar to what 
Wenger defines as a community of practice (1998).  
We have observed several clips suggesting that the “parents’ group” and the 
“children’ group” (implicit in parents’ discourse) have characteristics that may be 
defined as a culturally different, in terms of Woods (1990). The values shared by 
parents, as well as the cognitive referents linked to mathematics (ways to act and 
solve problems), are really different from those used by their children. This 
difference may explain the “generational” conflict between parents and children, 
because the culture of each group is not the same. In this next quote the adult learners 
are once again in a classroom in the high school. The parents are working with a first 
grade topic “how to solve an equation.” The facilitator solves the problem using one 
method, and one mother claim that her daughter uses another way to do it. At this 
point the facilitator explains the method used by the daughter. She has divided the 
chalkboard into two columns: on the left there is the method used by the facilitator –
which is the one known by the mother; on the right the facilitator wrote the 
daughter’s method – which is the one used by teachers and children in the school): 
  

Facilitator: How it is going? Good? 
Mothers: yes... very good (the mom who asked the question is the one who speaks 
louder). 
Mother: We didn’t understand it at home.  
Facilitator: eh?  
Mother: I didn’t understand it like this at home; this that you have explained to us my 
daughter used to say “mom, we wrote this here,” and I say “where do you put this?” 
because I know it in the other w... in the old way (a noise in the background is heard, like 
admitting she is right) and I was not able to understand it because there is no explanation 
on the text book.  
Facilitator: But, now did you get it? 
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Mother: (Some mothers agreeing on the background are heard) Kind of, but what 
happens is that here is so easy... but to me... (She starts to laugh and makes gestures with 
her hands to say that sometimes the activities are difficult).  
Facilitator: ... well... this is the same... but you have to go to.... 
Mother: (At the same time) now you’re getting it, because, because... 
Facilitator: (At the same time) to everybody.  
Mother: she explains that she does it that way, but I don’t know how to explain it....  

 
Figure 2. Detail of the chalkboard grounded on the field notes. 

 
The problem described in the above quote is common for many families as they 
experience difficulties in helping their children to solve home mathematics. Those 
difficulties are sometimes related to mathematics itself and how much mathematics 
the parents understand themselves. However, other times the problem is the 
difference between the methods used by parents and the ones used by children (and 
teachers). One possible reason may be the reforms in mathematics that have changed 
the procedures used in the classroom to teach mathematics. Figure 2 illustrates the 
difference between the way used by the mother to solve the equation, and the 
procedure used by the teacher (of her daughter) to do the same thing. In this figure we 
can see that while the mother puts all the unknowns[4] together in one side of the 
equation, and the numbers in the other side of the equal sign, what the teacher does is 
simplify the expression eliminating the same numbers in both sides of the equation. 
Both results are the same, but the procedure reasoning implicit is different.  
The lack of more opportunities (such as the workshops of mathematics for parents) to 
connect school and family results in parents having less opportunities to learn what 
teachers explain in the classroom. Consequently there is no possibility to create a 
unique discourse about how to teach mathematics. Parents solve the mathematical 
problems using different strategies grounded on their own methods. But they do not 
know the methods used by their children (or they just have forgotten them). Then the 
conflict between them and their children (and more broadly the school) arises. This 
conflict makes it more difficult for them to get involved in their children’ education.  
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SOME CONCLUSIONS 
As a concluding remark, this preliminary data provides evidences that the process of 
became a Community of Practice are not an easy process, neither lineal. It involves 
definition of roles, interactions, identities, etc. Some indicators appear at different 
moments, and not according to a prefixed order. In this process some conflicts 
between actors arise as well. Data shows that there is some kind of generational gap 
between parents and children (working from a parent involvement approach to the 
learning of mathematics).  
FURTHER RESEARCH 
The analysis suggests that when a group is new, every member plays a particular role 
that becomes part of his/her identity. One question arising from this situation is what 
is the impact of the role-identity definition process in terms of individual confidence 
to do and solve mathematical problems? Prior research highlights that self-image (in 
terms of ability to do/solve mathematics) has a key impact on the self-confidence that 
everyone has as a mathematics solver/doer. Taking this into account, it is important to 
analyze the effect that may have the construction of the identity in the process of 
building a group (being or not a community of practice). Could somebody who is not 
confident about him/herself feel able to learn mathematics? What is the role of gender 
in this process? Can the guarantee that everyone has an opportunity to participate 
ensure that everyone would learn mathematics?  
On other hand, in the analysis we have also observed that families and their conflicts 
with their children doing mathematics may open further analysis to find the elements 
that affect the relationship between parents and children. The community of practice 
offers us methodological tools (indicators) to analyze how aspects that define one 
group could be different for other groups, thus conflicts may be explained because of 
these differences (contradictions). Consequently a strategy to improve mathematics 
performances should take into account all the elements that may be defined as 
“culture” of a particular group (such as prior experience, mathematical knowledge, 
procedures, etc.) in order to find ways to solve the contradictions (Woods, 1990). In 
this sense learning approaches such as Dialogic Learning Theory (Flecha, 2000) may 
be a way forward for further analysis and exploration. However, before that, more in-
depth analysis of culture (defined in terms of everyday life) may be needed in order 
to find hints to bridge the functioning of the different groups. Finally, one more 
question to be further analyzed is our assumption regarding the impact of 
“generation” conflict.  
NOTES 
1. We use the term “group” referring to the people involved in the study because the aim of this study is to elucidate if 
this “group of people” are (or not) a Community of Practice. For this reason we only use the term “community” when 
referring to the theoretical concept / definition.  
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2. “However, it is not clear how to make these learning theories operational from a methodological point of view.” 
(Gómez, p. 283). 

3. All names are pseudonyms. 

4. Unknown is “an unknown quantity of variable” (Pearsall, J. (Ed.). (1999). Concise Oxford Dictionary (10th Edition). 
New York: Oxford University Press.  
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UNDERSTANDING ETHNOMATHEMATICS FROM ITS 
CRITICISMS AND CONTRADICTIONS2 
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University of Lisbon 
 
We considered articles from six researchers on the field of mathematics education, in 
which we identified two categories of criticisms to ethnomathematics: 
epistemological, related with the way ethnomathematics positioned itself in terms of 
mathematical knowledge; and pedagogical, related to the way ethnomathematical 
ideas are implicated in formal education. From this analysis we conclude firstly that 
it is not easy to criticize a research field so diverse and internationalized as 
ethnomathematics. Those difficulties are related with the different contexts on which 
ethnomathematics is pedagogically implicated. Secondly ethnomathematics itself as a 
research field rejects any dogmatic position, and is aware of contradictions 
implicated in their pedagogical aims.  
Key-words: ethnomathematics, criticisms, contradictions, school, education  
  
THE RADICALITY OF ETHNOMATHEMATICS 
To associate the prefix ‘ethno’ to something so well defined, exact and consensual as 
mathematics can cause strangeness. The idea of a science that is human-proof, as 
mathematics is in a platonist perspective, is splintered when we associate it with the 
prefix ‘ethno’. ‘Ethno’ shifts mathematics from the places where it has been erected 
and glorified (university and schools), and spread it to the world of people, in their 
diverse cultures and everyday activities. Ethnomathematics as an approach sullies 
mathematics with the human factor. Not an abstract human, but a human situated in a 
space and a time that implies different knowledge and different practices to live. 
Ethnomathematics as a research program is less a complement to mathematics, than a 
critique to the knowledge that is valorised as being mathematical knowledge.  
Ethnomathematics does not restrict its research to the mathematical knowledge of 
culturally distinct people, or people in their daily activities. The focus could be 
academic mathematics, through a social, historical, political and economical analysis 
of how mathematics has become what it is today. As mentioned by Greer (2006), it is 
                                           
2 This paper was prepared within the activities of Project LEARN: Technology, Mathematics and Society (funded by 
Foundation for Science and Technology (FCT), contract no. PTDC/CED/65800/2006. In addition, is part of a study to 
obtain the degree of Doctor, being funded by the same foundation, contract. SFRH/BD/38231/2007. 
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part of ethnomathematical research to understand the historical development of 
mathematics as a scientific discipline, the understanding of that development as the 
intersection between knowledge from different cultures, and the way the validation of 
what is considered to be true mathematical knowledge is less related with issues of 
rationality, than with the social and political contexts. 
According to D’Ambrosio (2002)3 academic mathematics is the basis of our modern 
world, upon which rests our faith in science and enlightenment ideas. So, if 
ethnomathematics aspired to be more than just the study of different mathematical 
ideas, but also the critical study of the social, political and anthropological aspects of 
academic mathematics, it assumes itself a critical stance on how mathematics is 
involved in the maintenance of our modern world. Ethnomathematics wishes to be an 
epistemological and educational alternative but, above all and this is not always 
given, a social and political alternative to our modern world. 4 
Given the radicalism of the ethnomathematical program (at least as it is put by 
D’Ambrosio (2002)), it is not surprising that its emergence has been the target of 
strong criticism. In our days research on ethnomathematics is numerous and scattered 
around the world.5 It’s difficult to have an international perspective on how 
ethnomathematical research is being done. Hence, to criticize something with so 
different practices and discourses as ethnomathematical research could result in an 
unreal chimera, if we don’t take into consideration the different contexts on which 
research is made. A way to surpass those difficulties requires criticizing 
ethnomathematics as a well defined research program, and by analysing the work of 
the most important ethnomathematical researchers. That was the path chosen by 
Rowlands and Carson (2002) and Horsthemke and Schäfer (2006), in the 
epistemological and educational critique made on ethnomathematics. This critique, 
we argue, although apparently pedagogical, is an epistemological critique that 
pretends to highlight academic mathematics as one of the biggest achievements of 
mankind. In what concerns the pedagogical critique made by the latest researchers, 
and also by Skovsmose and Vithal (1997), we will articulate the contradictions raised 
by ethnomathematical researchers. Even among these researchers there are 
contradictions in how they understand the pedagogical implications of 
ethnomathematics. 
EPISTEMOLOGICAL CRITICISMS 
In 2002 Rowlands and Carson wrote an article published in Educational Studies in 
Mathematics, where they make a critical review of ethnomathematics, by comparing 
the ethnomathematical program to the curriculum of school mathematics. This article 
was subsequently answered by Adam, Alangui and Barton (2003), which Rowlands 
                                           
3 But also to the philosopher Heidegger (1977) considerer the most important of 20th century by Slavoj Žižek (2006). 
4 At least, as D’Ambrosio (2002, 2003) put it.  
5 All those references are present in the bigger version of the paper. 
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and Carson (2004) later responded to in turn. As raised above, this paper also draws 
on arguments by Horsthemke and Schäfer who wrote two articles presented at the 
International Congress on Ethnomathematics in 2006, where they follow most of the 
arguments presented by Rowland and Carson. Those two sources of criticism present 
themselves as an educational critique on ethnomathematics but, in the way we 
analysed the texts, they are above all an epistemological critique, especially the 
articles from Horsthemke and Schäfer.  
Against a nominalist posture assumed by ethnomathematics, Rowlands & Carson 
(2002, 2004) and Horsthemke & Schäfer (2006) advocate an essentialist position, 
based on the idea that although knowledge is constructed by humans, remains 
beyond. This is to say, there is some kind of invariant (an essence) that is repeated in 
all mathematical knowledge, despite this knowledge being developed in a Mongolian 
tribe or in a European university, the mathematics involved is the same:  

Mathematics is universal because, although aspects of culture do influence mathematics, 
nevertheless these cultural aspects do not determine the truth content of mathematics 
(Rowlands & Carson, 2002, p. 98).  

The authors positioned themselves against the politicization of science: “mathematics 
is a science, and its laws, principles, functions and axioms have little to do with 
issues of social justice” (Horsthemke & Schäfer, 2006, p. 9). Or, as mentioned by 
Rowlands and Carson (2002) “rationality may be the preserve of an oppressive 
cultural system but that does not necessarily mean that rationality is in itself 
oppressive” (p. 82). Represented very strongly in this sentence is the idea that 
rationality exists per se, that is, as something disconnected from the social and 
political environment. In that sense, mathematics is taken by the authors as a piece of 
truth and neutral knowledge that could be used to the good and the evil, although 
mathematics itself is free from judgement: “the odious use of something does not 
make that something odious” (p. 98).  
These authors embraced academic mathematics as a universal human good, shared by 
all people and considered to be one of the biggest achievements of mankind. This 
universal knowledge is presented as being the climax of a human evolution, and 
clearly more precious than others: 

The reason we are attempting to ‘privilege’ modern, abstract, formalized mathematics is 
precisely because it is an unusual, stunning advance over the mathematical systems 
characteristic of any of our ancient traditional cultures. (Rowlands & Carson, 2004, p. 
331) 

Finally, the authors adopted an epistemological position in which the genesis and 
consolidation of knowledge must be understood by analysing the internal logic of that 
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knowledge and its pragmatic value, suggesting that social and political aspects have 
no influence in that genesis.6   

modern conventions of mainstream mathematics have become ‘privileged’ (i.e. accepted 
by the world’s mathematical community and numerous secular societies) for reasons that 
have little if anything to do with the politics of nations or ethnic groups, but have much to 
do with their pragmatic value. (Rowlands & Carson, 2004, p. 339) 

EDUCATIONAL CRITICISMS 
The tone for the educational critique developed by Horsthemke and Schäfer is the 
way the application of ethnomathematical ideas into South African schools 
contributed not to the inclusion, but to the exclusion of children. Ten years before, 
Skovsmose and Vithal (1997) had developed the same critique, although in a more 
constructive way. They called our attention to the way ethnomathematical ideas are 
implicated in schools of countries suffering from ethnic and racial tensions. In the 
case of South Africa, we can see how those ideas contributed to the creation of a 
lighter mathematical curriculum (based on students’ backgrounds) to those students 
considered being ‘ethno’7. As a consequence of that politics, those students were 
systematically excluded from access to academic mathematics then aimed at the 
white student: “in South Africa bringing students’ background into the classroom 
could come to mean reproducing those inequalities on the classroom” (p. 146).  
This critique on the way ethnomathematical ideas in school could overshadow the 
access to academic mathematics is also made by Rowlands and Carson. These 
authors emphasise the dangers involved in not considering formal mathematics as an 
important part of all students’ education. According to the authors, it is formal 
mathematics that gives access to a privileged world, and that all students should 
know how to appreciate that knowledge: 

There is every danger that mathematics as an academic discipline will become accessible 
only to the most privileged in society and the rest learn multicultural arithmetic within 
problem solving as a life skill or merely venture into geometric aesthetics. (2002, p. 99) 

In this sense, the authors defend a clear distinction between the local culture of a 
student, and the scientific and school culture: 

To preserve American Indian cultures, African tribal cultures, traditional cultures of Asia 
and elsewhere, their uniqueness must be recognised, not collapsed into a dreary and 
illusory sameness with scientific culture. (2002, p. 91) 

Rowlands and Carson are against the use of ethnomathematical knowledge in the 
classroom, arguing that there may be incommensurable ways of understanding and 
                                           
6 As was done in mathematics during the so called crisis on the foundations of mathematics, where mathematicians like 
Frege, Hilbert, Russell tried without success to epistemologically understand mathematics by using mathematics. The 
Gödel results showed what a chimera such enterprise is.  

7 Black students in the context of apartheid regime.  
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perceiving mathematics. It is that incommensurability that could make an artificial 
endeavour in trying to articulate ethnomathematical knowledge with school 
knowledge. They argue that people can master more than one culture, and school 
should be the place where people have contact with the more universalized culture, 
this is, the occidental culture.  
Finally, Rowlands and Carson consider mathematics to be a foreign language to all 
students before they go to school. Contrary to the ethnomathematical stance which 
argues that students already have non-formalized mathematical knowledge before 
they start school, these authors argue that protomathematical knowledge is not 
important for learning school mathematics, because all students are equally 
positioned to learn a new knowledge: 

We go to great lengths to point out that children of traditional cultural backgrounds are 
probably not at any significant disadvantage when it comes to learning mathematics, 
since it is a ‘foreign language’ to all novices, regardless their cultural background. (2004, 
p. 335) 

Skovsmose & Vithal (1997) acknowledge the importance of ethnomathematical ideas 
on a critical mathematics education. They identified four trends in the 
ethnomathematical research, and stressed that it is in the confrontation with school 
mathematical curriculum that ethnomathematics finds its greatest challenge, and also 
the possibility of critique. Firstly, the authors stressed the fact that research in 
ethnomathematics does not usually specify much about the relation between culture 
and power. Secondly, they identified a problem with the definition of 
‘ethnomathematics’, and make the question: how can someone educated in formal 
mathematics identify other mathematics? According to them, ethnomathematics only 
makes sense through the perspective of academic mathematics. Thirdly, the authors 
argue that ethnomathematics lacks a critique on how mathematics formatted reality 
(Skovsmose, 1994). Finally, as mentioned before, Skovsmose & Vithal (1997) think 
it necessary to problematize the idea of students’ background, and think not just in 
terms of the actual culture of students, but also in the aspirations and desires that 
students have of emancipation, what they called the students’ foreground:  

Foreground may be described as the set of opportunities that the learner’s social context 
makes accessible to the learner to perceive as his or her possibilities for the future. (p. 
147) 

According to Skovsmose (1994) all the importance given to students’ background 
could inhibit them from emancipation, and more attention should be paid to the 
opportunities that the social, cultural and political context could bring to students. By 
emancipation Skovsmose means the access and participation in a world where 
mathematical knowledge is central.  
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SOME COMENTS ON EPISTEMOLOGICAL CRITICISMS 
Before entering into a discussion on the epistemological criticisms made to 
ethnomathematics, we take the position that the interpretation of ethnomathematics 
carried out by Rowlands, Carson, Horsthemke and Schäfer is misleading. These 
authors understand ethnomathematics as an ethnic or indigenous mathematics. In 
fact, there is a vast diversity of studies in ethnomathematics, and part of them assume 
that ethnomathematics research consists of understanding, with the tools of academic 
mathematics, the mathematical ideas of culturally distinct people8. In that sense, 
ethnomathematics is indeed the study of an ‘ethnic’ mathematics:  

the prefix ethno refers to ethnicity, this is, to a group of people belonging to a same 
culture, sharing the same language and rituals, in other words, cultural well delimitated 
characteristics so we can characterize it as a specific group. (Ferreira, 2006, p. 70) 

In this sense, the educational implications of ethnomathematics are focused on “how 
to bring ethnic knowledge to the classroom to allow for a meaningful education? 
How to establish the bridge between ethnic and institutional knowledge?” (Ferreira, 
2006, p. 75). But there are other ways of addressing ethnomathematics. For instance, 
D’Ambrosio (2004) clearly says that “my view of ethnomathematics try to avoid the 
confusing with ethnic mathematics, as understood by many” (p. 286). That’s why 
D’Ambrosio prefers to talk about “ethnomathematics program”, as something more 
than the study of the ideas and uses of non-academic mathematics. We understand 
this program as a radical one, in the sense that it endeavours is to criticize, not just 
mathematics and mathematics education, but social orders and ideologies that feed 
our current world. As mentioned by D’Ambrosio (2004), “the ethnomathematical 
program focuses on the adventure of human species” (p. 286). Others like Knijnik 
(2006) and Powell & Frankenstein (1997) also criticize the idea of ethnomathematics 
as an ethnic mathematics and have developed investigations where the thematics of 
power and politics is taken seriously.  
The epistemological discussion carried out by Rowlands, Carson, Horsthemke and 
Schäfer is an echo of a bigger philosophical discussion about the nature of knowledge 
that was intensively debated in the last decades under the label of “science wars”. As 
with any philosophical question, there are different ways of analysing it, and 
everyone has the right to choose the one that better fits its interests. We will not enter 
in such a discussion here. We just want to call attention to two points. First, in a 
philosophical line where we can include Nietzsche, Marx, Foucault, Durkheim, 
Weber, Wittgenstein, Freud, Lacan, Kuhn, Lakatos, Bloor, Restivo, Deleuze, 
Althusser, Zizek among others, knowledge is perceived from a nominalist 
perspective, that is, as something which creation, maintenance, valorisation or 
disqualification has nothing to do with its intrinsic or essentialist value, but with the 
way knowledge is exercised, whether it is in a language game (Wittgenstein, 2002), 

                                           
8 See for instance the work of Sebastiani Ferreira, Paulus Gerdes and Marcia Ascher.  
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in the webs of discursive modalities involving power relations (Foucault, 2004), as an 
ideological discourse (Althusser, 1970 ), and so on. The meaning and the knowledge 
we have of something is always contingent, full of historicity, and involved on power 
relations. As mentioned by Amâncio (2006) the idea of knowledge as something 
universal, with an existence per se, is itself a very ideologically loaded position. 
Hence, the important aspect of this epistemological discussion is less a discussion on 
whether knowledge is itself universal or situated, but, as mentioned by Foucault 
(2004), what intentions, what politics, are behind the claiming that some knowledge 
(like academic mathematics) is universal?  
Secondly, unlike Rowlands, Carson, Horsthemke and Schäfer, we don’t think there is 
a lack of theoretical and philosophical basis for ethnomathematics. Although there is 
a very diverse and disperse field of research, and also a recent one, there are several 
studies where the focus is not the ethnomathematical knowledge of groups of people, 
but philosophy, sociology and political science. Most of those studies use the work of 
the philosophers mentioned above.9  
The authors of the essentialist perspective positioned themselves as the guardians of 
academic mathematics that fuelled this modern world, seen as being superior to any 
existing society, “the beliefs and practices of other societies are epistemic and 
vertically inferior to our own” (Horsthemke & Schäfer, 2006, p. 12). From their 
perspective, we are living the climax of a human evolution, in which academic 
mathematics is the substrate of a society based on humanistic ideals. This universal 
society is however problematic. Part of the research on ethnomathematics has been 
concerned to understand how these universal images of society generate through 
history10. As mentioned by Fernández (2006), the idea of such a universal society was 
possible through “the development of a set of formalisms characteristic of a peculiar 
way that has a certain tribe, of European origin, to understand the world” (p. 126). 
That is, the universal society (capitalist society) based on universal knowledge 
(mathematics and science) suggested by Rowlands, Carson, Horsthemke and Schäfer 
is a very particular way of understanding time and space, of classifying and ordering 
the world, of understanding economical and social relations. In short, of conceiving 
what is possible and impossible to think and do. 
CRITICISMS AND CONTRADICTIONS ON THE EDUCATIONAL 
IMPLICATIONS OF ETHNOMATHEMATICS 
Ethnomathematics carries with it a critique on school.11 D’Ambrosio (2003), for 
instance, compares current school with a factory, where people are components of big 
machinery that aims uniformity. In school, as mentioned by Rowlands and Carson 

                                           
9 All those references are present in the bigger version of the paper.  
10 See for instance the book edited by Powell & Frankenstein (1997), which collects a set of articles where these ideas 
are deconstructed. 
11 See for instance the work of Ubiratan D’Ambrosio, Gelsa Knijnik and Alexandrina Monteiro.  
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(2002, 2004), we are introduced to a certain society. And if we are delighted with our 
current society, as apparently is the case of Rowlands, Carson, Horsthemke and 
Schäfer, then we must prepare students the best we can to be full members of that 
society. But part of the studies in ethnomathematics does not share this optimistic 
view on current society.12  
Society should be problematized, and not taken for granted, especially when we are 
aware of the economical politics based on market priorities, and all the ideologies 
that fuel our way of living (like the liberal view on mankind). What does it mean to 
educate people to be participative, active authors in a more and more merchandized 
society? Do we all want “schooling to serve the needs of industry and commerce?” 
(Rowlands & Carson, 2002, p. 85). Hence, a problematization of society, and the role 
of school in society is, in our opinion, a priority in a research program like 
ethnomathematics. But that is far from happening.  
For instance, and to speak to one of the criticisms made by Rowlands, Carson, 
Horsthemke and Schäfer regarding the use of ethnomathematical knowledge in 
regular schools, we can identify a contradiction on how ethnomathematicians 
understand this pedagogical implications. On the one hand, as mentioned before, 
some researchers defend the idea of using students’ ethnomathematical knowledge to 
construct a bridge for the learning of formal mathematics. But, on the other hand, 
researchers like Knijnik (2006) clearly said that:  

it’s not a matter of establish connections between school mathematics and mathematics 
as it is used by social groups, with the purpose of achieving a better learning of school 
mathematics. (p. 228) 

Behind these two postures, is the way researchers understand the role of mathematics 
and school in our society. The problem with the first one, characterized by the 
“bridge metaphor”, is the reinforcement of the hegemony of school mathematics 
because the ‘other’ is valorised only as a way to achieve the true knowledge. Thus, it 
contradicts the critique that ethnomathematics makes to the hegemony of academic 
mathematics. The same problem identified by the critics regarding the valorisation of 
background instead of the foreground, is also raised by Knijnik (2006), Monteiro 
(2006) and Duarte (2006). These authors raise questions about the usually folkloric 
way ethnomathematical ideas appear in the curriculum. According to them, the use of 
local knowledge as a curiosity to start the learning of school mathematics could be 
the cause of social inequalities, as is mentioned by the critics.  
But to truly contemplate ethnomathematical ideas in the curriculum is no less 
problematic. If we focus on a regular school, and take into account its role preparing 
students to a market orientated society, with all the pressure to learn the mathematics 

                                           
12 In Powell & Frankenstein (1997) we can find a set of articles that articulate a critique on mathematics with a critique 
on society. See also the most recent writings of Ubiratan D’Ambrosio where he developed a social critique, based on 
the idea of peace.  
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of the standard curriculum that will be essential to students’ approval in the high 
stakes tests, we can ask ourselves if there is a place for ethnomathematical knowledge 
(or other local, non scholar knowledge)? Our opinion, according to our review on 
ethnomathematical research in Brazil, is that those educational implications of 
ethnomathematics (in a regular school) ended up being phagocytised by a school that, 
as Rowlands, Carson, Horsthemke and Schäfer would agree, is worried with the 
uniformization of knowledge. In that sense, we agree with them and also with 
Skovsmose and Vithal when they say that focussing the learning of mathematics in 
students’ local knowledge could be a factor for social exclusion. But the problem is 
not just in ethnomathematics, but in school itself. Monteiro (2006), a very well 
renowned ethnomathematicians makes the definitive question: “Is it possible to 
developing ethnomathematical work in the current school model?” (p. 437).  
Hence, it is not just the valorisation of students’ background that should be dealt with 
care, but also the valorisation of students’ foreground. Although we realise the 
importance of students having the opportunity for emancipation, and for full 
participation in a technological world (that is also a capitalist world based on a liberal 
idea of economy that stress the individual above the social), we should criticize naïve 
and ideologically loaded ideas about society. Preparing students to become 
participants in a society is also preparing them to assume critical points of view about 
society, different ways of thinking, acting and doing mathematics. Using the words of 
D’Ambrosio, we need to emancipate students by learning academic mathematics, but 
also by reinforcing its roots. If we analyse the role of school in modern societies, this 
is obviously a paradox. 
Critical mathematics education and ethnomathematics, as mentioned by Skovsmose 
& Vithal (1997), have common concerns. Both developed a critique of the way 
mathematics is usually understood as one of the biggest achievements of mankind, 
and the intrinsic resonance (seen as something inherently good) that feeds its 
education. But in the struggle for a better mathematics education, they should take 
care when suggesting pedagogical proposals to be implemented in a problematic 
school. Taking school for granted is the best way to trivializing critical and 
ethnomathematical ideas.  
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USING MATHEMATICS AS A TOOL IN RWANDAN WORKPLACE 
SETTINGS: THE CASE OF TAXI DRIVERS 
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The present study is part of an ongoing study of which the aims are twofold; to 
provide knowledge about why and how mathematics is involved in specific workplace 
settings, and to provide student teachers with culturally relevant examples to 
contextualise school mathematics for secondary school students. Observations and 
semi-structured interviews were conducted in the workplaces of two taxi drivers, one 
house constructor and one restaurant manager. The focus here is on taxi-drivers. The 
analyses draw on ideas from socio-cultural theory and the anthropological theory of 
didactics. A common main concern was economic profit and risk of loss; level of 
justification, mathematical problems to solve and techniques used differed. Among 
the taxi drivers, silent and taken-for-granted cultural knowledge were used. 
INTRODUCTION  
After the 1994-genocide, the Rwandan society was destroyed and disorganised in all 
sectors. In order to cater for capacity building, the Government of Rwanda has 
undertaken several measures in all economic sectors through its Vision 2020 for 
developing Rwanda into a middle-income country (Republic of Rwanda: Ministry of 
Finance and Economic Planning, 2000). For instance, in the educational sector, the 
Ministry of Education (MINEDUC) has embarked on prioritising the teaching and 
learning of science and technology (including mathematics) to provide human 
resources useful for socio-economic development through the education system. 
MINEDUC recommends that learning should be context-bound. This means that in 
order to serve the local society, teachers and researchers are encouraged to bring 
material to the students that are taken from national contexts. For instance, exploring 
mathematics via tasks from workplaces may support students to learn in ways that are 
personally meaningful (Taylor, 1998). Contextualising mathematics allows students 
both to understand the role of mathematics in solving different workplace problems 
and see ways in which mathematics is used out of academic institutions. They can 
also realize that such activities can be translated into mathematical language that is 
taught in different institutions. 
However, before we embed mathematics in workplace settings, we should have a 
clear picture of the use of mathematics in such contexts. This is of crucial importance 
especially in Rwanda where this kind of research is relatively new and where 
mathematics is mostly seen as an abstract and hidden science which does not provide 
visible applications in workplaces (Niss, 1994; Williams & Wake, 2007). 
In this study the use of mathematics as a mediating tool (Vygotsky, 1978) supports 
workers to solve problems related to the earning of their income, using culturally 
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relevant concepts and experiences (Cole, 1996; Abreu, 1999) when seeking survival 
means is investigated. Therefore, the current study will provide knowledge about why 
and how mathematics is involved in three workplace settings: daily taxi driving, 
house construction, and restaurant management. Although the workplace settings are 
quite different and subject to change over time, the choice was made with the 
intention to understand mathematics in use in workplace settings where the actors 
perform differently but aim to achieve the same goal – to earn a good living. Within 
this study, the present paper will focus on the taxi driving context. 
STUDIES ON SITUATED MATHEMATICS  
Over the last thirty years, researchers have investigated how mathematics in everyday 
practices differs from what was taught at school and in academic institutions. In this 
endeavour Lave (1988) found that mathematics practice in everyday settings is 
structured in relation to ongoing activities. Based for example on the use of shoppers’ 
“best-buy” strategies, she points out that mathematical practices in work places do 
not require any imposed regulation. Rather, adults use any available resources and 
strategies which could potentially help to solve a problem. Also, in a collection of 
studies related to informal and formal mathematics, Nunes, Schliemann and Carraher 
(1993) found that there was a discrepancy between street mathematics and school 
mathematics. This is demonstrated through a mathematical test which was given to 
the same children who performed better out of school than in a school setting. This 
discrepancy is due to the fact that at school children tried to use formal algorithms 
whereas in real situation they did arithmetic based on quantities. It should be noted 
though that the requested arithmetic procedures were quite simple. In results from a 
study related to college mathematics and workplace practice, Williams, Wake and 
Boreham (2001) found that the conventions of school and workplace graphs might be 
different. Indeed, in a chemical industry, school graph knowledge was not enough to 
allow a college student to interpret a graph of chemical experiments. However, the 
college student was able to interpret it with the help of an experienced employee. In a 
recent study Naresh and Presmeg (2008) followed a bus conductor in India in his 
daily practice, where they observed that though he performed significant mental 
mathematical calculations the bus driver’s attention was fully concentrated on the 
demands of his job, making his mathematical work more or less invisible to him.  
From the results of the above studies, we conclude that when it comes to solve a 
particular problem, the way mathematics is used at work is different, however 
logically organized (Abreu, 2008), compared to how it is used in academic 
institutions. At a workplace the problem solvers keep the meaning of the problem in 
mind while solving it in the real situation. In contrast, in the academic institution, the 
meaning of the problem is often dropped because of the imposed curriculum 
regulation where the problem solver is expected to employ certain mathematical 
symbols and conventions.  
Researchers have also studied mathematical concepts and processes that are used in 
different workplace settings. In a study on mathematical ideas of a group of 
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carpenters, Millroy (1992) found that not only are many conventional mathematical 
concepts embedded in the everyday practices of the carpenters, but their problem 
solving is enhanced by their stepwise logical reasoning similarly used in 
mathematical proofs. Abreu (1999) also found that Brazilian sugar cane farmers used 
indigenous mathematics to control their income. However, over time, technological 
innovations in measuring quality requested change to more school-like problem-
solving strategies which made farmers prone to abandon traditional units of analysis 
and value their children’s success at school mathematics. A study by Massingila 
(1994) revealed that mathematical concepts and processes are crucial in carpet laying 
practices such as estimation and installation activities. Furthermore, she found that 
measuring and problem solving are two major processes in the carpet laying practice. 
In their exploratory study related to how mathematics is used and described in 
workplaces in the context of employees in an investment bank, paediatric nurses, and 
commercial pilots, Noss, Hoyles and Pozzi (2000) found that practitioners use 
mathematics in unpredictable ways. Hence, their “strategies depend on whether or not 
the activity is routine and on the material resources at hand” (p. 17). 
A common point to all these studies is that mathematical strategies that are used at 
workplaces differ to those taught at academic institutions. A mathematical strategy 
for solving a problem refers to a ‘roadmap’ that consists of identifying the problem to 
be solved and the appropriate technique(s) that allow solving that kind of task. 
However, in the above mentioned studies mathematical strategies are described as 
applied by workers without details about how they are or may be underpinned by 
mathematical justifications. Mathematics is seen as a tool to mediate human activity 
through the lens of workers’ goal achievement. None of them looked at mathematics 
through the lens of its knowledge organisation, including types of problems worked 
on, as well as methods used to solve them and their justification (cf. Bosch & 
Gascon, 2006). To fill this gap the current study emphasises mathematical practices 
and its justifications embedded in mathematical activities found in specific Rwandan 
workplaces and their relation to academic mathematics. 
MATHEMATICS AS TOOL TO MEDIATE WORKPLACE ACTIVITIES 
Human activity is always goal-oriented and characterised by two major parallel 
actions: thinking and acting. The action is shaped by thinking and inversely through 
available socio-cultural tools for goal-oriented activity. Human mind and activity are 
always unified and inseparable. This means that  the “human mind comes to exist, 
develops, and can only be understood within the context of meaningful, goal-
oriented, and socially determined interaction between human beings and their 
material environment” (Bannon, 1997, p. 1). In activity theory, social factors and 
interaction between agents and their environment allow us to understand why tool 
mediation plays a central role. Tools shape the ways human beings interact with 
reality and reflect the experiences of other people who have tried similar problems at 
an earlier time (Bannon, 1997). Tools are chosen and transformed during the 
development of the activity and carry with them a particular culture. In short, the use 
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of tools is a means for the accumulation and transmission of social knowledge. At the 
same time, they influence the nature of external behaviour and the mental functioning 
of individuals. 
Engeström’s (1993) model of basic human activity systems comprises six main 
elements: subject, object, tools, rules, community, and division of labour. He also 
suggests that such systems always contain “subsystems of production, distribution, 
exchange, and consumption” (ibid., p. 67). The present study is located in the 
subsystem of production which is mainly characterised by interactions between 
subject, tools and object. Within the production activity, subjects chose and transform 
useful tools that match a prior defined object to achieve a desired outcome. 
However, our study will not elaborate on the production process as such. It will rather 
focus on the sub-production related to the selection and transformation of useful 
mathematics that facilitates the concerned subjects to achieve their goal on their 
respective workplaces. In other words, the study will investigate how the selected 
mathematics is organised so that the workers may interpret it in terms of the outcome 
of their activities. At that stage, it was imperative to add a complementary theory 
which explains deeply about the organisation of mathematical knowledge. 
We will thus use a theoretical model from the anthropological theory of didactics 
(ATD), viewing teaching and learning as an activity situated in an institutional setting 
(Chevallard, 1999; Bosch & Gascon, 2006). By engaging in this activity, the 
participants elaborate a target piece of knowledge for which the activity was 
designed. This perspective sets a focus to the knowledge itself as an organisation 
system (a praxeology), including a practical block of types of tasks and techniques to 
work on these tasks, and a theoretical block explaining, structuring and giving 
validity to work in the practical block (Barbé, Bosch, Espinoza, & Gascon, 2005). 
This praxeological organisation of knowledge can be used to describe very systematic 
and structured fields of knowledge (such as mathematics or any experimental or 
human science) and its related activities, with explicit theories, a fine delimitation of 
the kind of problems that can be approached and the techniques to do so. Considering 
the mathematics teaching and learning process, we can find two different (intimately 
related) kinds of praxeologies: mathematical ones, corresponding to the subject 
knowledge taught, and didactical ones, corresponding to the pedagogical knowledge 
used by teachers to perform their practice. For the purpose of the present paper we 
will look into the mathematical praxeologies (or mathematical organisations) 
observed at the different workplaces.  
Aims and research questions 
The study reported in this paper is from the first part of an ongoing research project 
aimed at finding ways to contextualise school mathematics within cultural 
mathematical practices in Rwanda. In this project, the researcher documents the 
rationale and characteristics of mathematical practices in local workplace settings, to 
serve as a source to design contextualised mathematical activities for student teachers 
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in a teacher education programme. From the experiences of working on such 
problems, the student teachers will design tasks contextualised in the local culture for 
secondary school students, whose work on these tasks will then be analysed. In this 
three-stage process, the didactical transposition (see Bosch & Gascon, 2006) of the 
workplace mathematical practice, via the mathematical tasks designed for and solved 
by student teachers, to the school students’ contextualised mathematical work will be 
analysed.  
The general question about why and how mathematics is involved in specific 
Rwandan workplace settings was split into specific research questions. First it was 
important to clarify what motivates the workers to involve mathematics in their daily 
activities (the why-question). In this regard, the interest was on what problems 
workers solve at their workplaces. Next there was a need to look at how those 
mathematical problems were solved. The answer to these questions raised the issue of 
justification of mathematical techniques used (the level of logos in the mathematical 
organisation observed). Using the ATD framework the following research questions 
were thus set up: What types of mathematical problems do workers solve at their 
workplaces? What techniques do they use to solve their mathematical problems? 
How are the techniques used justified? 
THE EMPIRICAL STUDY 
Method 
In this interview study the data-collection was performed by the first author who is 
familiar to the field. Four workers from the three workplace settings volunteered to 
participate in the study, a female restaurant owner, a male constructor and two male 
taxi drivers. Three visits were conducted to each workplace. The purpose of the first 
visit was to inform the participants why and how he wanted them to be involved in 
the research. On this occasion, they agreed that he was permitted to observe and 
interview them about the use of mathematics in their daily activities. On the second 
occasion, after three weeks, the purpose was to observe and conduct the first semi-
structured interview in order to understand how mathematics helps the workers to 
achieve their goals in their respective work sites. Three months later, a third visit was 
conducted to strengthen the understanding of the mathematical organisations. On that 
occasion, supplementary semi-structured interviews and observations were 
conducted. The interviews were performed in Kinyarwanda, a common language to 
all involved parties. Field notes were taken and interviews were tape recorded and 
transcribed at all visits. In the analysis we have used ideas from activity theory in 
which we draw on the object of activity to elucidate mathematics as one among the 
involved mediating tools in the activity. The analysis does not encompass the whole 
activity system; rather it focuses on the subsystem of production. The reason is that 
the purpose of the study is specifically to shed light on mathematics as a tool to help 
the participants to achieve their outcome. This part of the analysis illuminates the 
mathematical problems that are embedded in the workers’ activity. Regarding how 
mathematics is used by workers on workplaces, the analysis draws on ideas of ATD, 
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especially on its notion of mathematical organisation (MO). To perform this analysis 
we will build on a reference MO (Bosch & Gascon, 2006, p. 57), based on our own 
knowledge of academic and applied mathematics, in order to be able to analyse the 
observed MO in the workplace settings and on the interview data. 
Findings 
Due to space limitations detailed data on the observed mathematical organisations 
will be reported only from the taxi driving workplace. We will provide knowledge 
about the mathematical basis they use to determine the estimated transport fee 
charged to the customer. The taxi driving profession in Rwanda is mostly exercised 
by citizens with limited school background. The majority of taxi drivers consider the 
driving license as their core means of generating income. Some of them drive their 
own cars whereas others are employed. Taxi driving is mostly done in towns where 
you find financially potential people able to use taxi as a means of transport. Rwanda 
has not yet any explicit policy or norms and regulations that taxi drivers should 
follow to charge their customers. Because of lack of taximeters in the cars, the cost is 
negotiated between the taxi driver and the costumer. 
From the transcripts of the interviews conducted with two taxi drivers, an employed 
(A) and a car owner (B), their main concern seems to be a non fixed level of profit 
and to avoid the risk of loss. Due to the difficulty of determining the number of 
customers every day, the estimation of costs depends mainly of considering control of 
factors such as road condition (good/bad), trip distance (in kilometres), quantity of 
petrol that the car consumes for a given trip (measured by money spent), waiting time 
(if necessary), and the time of the day (different day and night tariffs). Following an 
agreement between driver A and the employer, A was not responsible for expenses 
such as taxes, insurance, spare parts and so on. Also, A and his employer had agreed 
that A must deposit 5000 Frw every day to B and A’s monthly salary was 30000 Frw. 
When the drivers were asked about their mathematical reasoning process while 
estimating costs, they always referred to authentic examples like pre-fixed 
estimations and rounded numbers without detailed calculations. In the interview, A 
gives an example of how he calculated the costs for a trip Kigali – Butare on a high 
quality tarmac road.  

Interviewer: Ok.. let’s take an example. Has it happened to you that you have taken a 
client from here [Kigali] to Butare? 

Driver A: Yes, many times. 

Interviewer: Could you explain to me how you have estimated the price? 

Driver A: A one way of that trip is about 120 kilometres. The estimated cost for that 
trip was 30000 Frw. It means that I considered the cost of the petrol about 
12000 Frw and I remained with 18000 Frw … 

But sometimes it happens that while I am on my way of returning back, I 
meet customers and depending on how we negotiate the cost I charge him 
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3000 or 5000, it depends … But when estimating the price with the 
customer before the departure, I ignore this case because there is no 
guarantee to have this chance  

This extract shows that the estimation of cost was made with respect to the cost of 
petrol and the driver’s profit only. Road conditions were probably not mentioned as 
both interviewer and interviewee were assumed to be familiar with it. Transports 
between Kigali and Butare are frequent as contacts between the National University 
in Butare and official administrators or foreign aid agencies and others in Kigali take 
place on a daily basis. The next example is taken from a less frequented distance.  

Interviewer: OK. Ok let’s take the case of a Kigali – Bugesera trip. Although the road is 
now becoming macadamized it was always used as a non macadamized 
road. How much do you estimate for instance when you bring somebody 
there?  

Driver A:  …distance is almost 50 kilometres…then the return trip is 100 kilometres. 
But because of the poor road conditions, the cost is estimated at 15000 Frw. 
In that case I assume that the car is going to consume petrol for 5000 and I 
remain with 10000.  

In the above extract, the estimation of the trip cost was made according to road 
condition, cost of petrol and the driver’s profit. A seems to assume that more petrol is 
needed if the road is of bad standard but looking at Example 1 the same unit (10 km 
for 500Frw) is used. However, in Example 2 the driver does not seem to expect to be 
able to pick up a new passenger for the return trip.  
In the second interview with B, the owner of the taxi, he explains how he estimates 
costs in relation to distance, price of petrol and time. 

Interviewer: Let me ask you one explanation… for example when you charge a customer 
a cost of 1500Frw … what is your basis for that price? 

Driver B: Do you remember I told you that with the petrol of 1000 Frw, I usually go 
20 kilometres? Now when the customer tells me the destination I start to 
think of the number of kilometres to reach there. Then you say this time one 
litre of petrol costs for example 550 Frw… Approximately my car 
consumes 50 Frw to go one kilometre. This means that to go a distance 
which is not more than 10 kilometres for a return trip my car uses 500 Frw. 
So if I transport the customer to that destination without any waiting time I 
should have 1000 Frw for a work time less than 20 minutes... Do you get 
my point? 

Like driver A, B calculates with rounded thirds, one third for petrol, one third for 
time spent and one third as a profit. As he is the car owner he could also have 
calculated with taxes and other costs involved with keeping a car. 
Analysis of the observed MO 
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To characterise the MO observed in this taxi driving workplace setting, the type of 
problems involved could be described as varying versions of calculating the value of 
a function symbolically written as PtzyxFW += ),,,( , where W is the estimated cost 
that the driver suggests to the customer. This cost consists of a non-fixed profit P and 
a cost F for the driver, estimated from all or a few of the four variables road condition 
(x), covered distance (y), petrol consumption (z) and time (t). Referring to the 
examples shown above, in the case of waiting for the customer the problem simplifies 
to PtFW += )( , while the case with a short distance on a bad road will increase both 
the time and petrol needed: PxtzFW += )))((( . When the road is good but the 
distance longer it is the distance which is the deciding variable, PytzFW += )))((( , 
which in the case of also a bad road changes to PyxtzFW += ))),((( . The techniques 
used by the drivers to solve these different types of problems are based on rounded 
estimations of basic costs, without providing a rationale of the amounts mentioned, 
and when needed elementary arithmetic operations are performed on these rounded 
numbers. For example, for the Kigali-Butare trip the model PytzFW += )))(((  was 
used, with km 1202×=y  and Frw30000=W  with Frw 12000=z  and Frw18000=P . 
In the case of the Kigali-Bugesera trip the road was not macadamized and thus in a 
bad condition and the model PxtzFW += )))(((  was applied, where Frw15000=W  
and Frw 10000=P  with km 502×=y . Technologies included number facts of 
addition and subtraction of natural numbers, and simple multiplication facts such as 
doubling. All numbers used were contextualised with units of distance and currency 
and no justification of the mathematical techniques used was referred to. Rather, it 
could be described as silent knowledge, adopted by experience and exchange with 
colleagues. 
CONCLUSIONS 
In Rwandan society as well as elsewhere in the world, the utility of mathematics is 
recognized through several activities. Those activities are seen on the one hand in 
academic institutions such as in schools and universities, where mathematics is used 
and learned for the purpose of developing knowledge about the subject per se; and on 
the other hand at different workplaces, where mathematics is used as a mediating tool 
to facilitate production within the workplace. The present study is partly an answer to 
policy departments’ demands for a more contextualized mathematics education with 
a move away from using pseudo-problems to more culturally adapted problems. 
However, one aim is also to meet a theoretical challenge that attempts to combine 
sociocultural theories with Chevallard’s anthropological theory of didactics. The 
latter makes possible an analysis of the observed knowledge organisation of 
workplace mathematics (in this case of taxi driving in Rwanda) that deepens the 
understanding of the purpose and function for the worker of using mathematics.  
In the current study our focus was on taxi driving. A pre-determined common object 
for the drivers was to avoid any risk of loss while generating their income. The taxi 
drivers chose an appropriate mathematical organisation (MO) among other tools to 
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mediate their activities, as described above. The observed techniques used by the 
subjects build on basic arithmetic related to addition and subtraction. Taken-for-
granted cultural knowledge is seen in the example when the drivers request a higher 
profit for the distance Kigali – Butare as most local people travel this distance by 
frequently running minibuses. Taxis are for those who can pay. For community 
members the return fee to Kigali is subject to negotiation.  
The way in which elementary arithmetic is applied should be understood in the 
context of continuous control of changing situational and cultural factors which make 
up a fundamental basis for the drivers’ success. The observed MO is characterised by 
techniques which are functional to the problems at hand, the cultural constraints and 
the educational background of the drivers. As long as they are pragmatic for the goals 
of the activity, no further justification of the techniques is needed, resulting in a MO 
with undeveloped logos. This is reflected in the evident fact the drivers’ goal is not to 
develop knowledge in the discipline of mathematics. What is functional at 
workplaces may in some cases be less functional in an educational context, where 
levels of justification often play an important role. However, these sets of constraints 
will form a background to the series of didactic transpositions that will occur before 
workplace mathematics can be used to contextualise school mathematics. This is a 
challenge for continuing research in this field. Moreover, the documentation of 
constraints and possibilities with which taxi drivers operate contribute to the ecology 
of mathematical and didactical praxeologies. 
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PARENTS’ EXPERIENCES AS MEDIATORS OF THEIR CHILDREN’S  
LEARNING: THE IMPACT OF BEING A PARENT-TEACHER 

Rachael McMullen & Guida de Abreu 
Oxford Brookes University, UK  

 
This article discusses the way parents’ past experiences influence the construction of 
their mathematical identities, their representations and their valorizations of current 
school mathematics, and how these factors mediate involvement with their children’s 
mathematical learning. Two different groups of parents, with and without teaching 
experience, were interviewed. Participants within the groups showed similarities in 
the ways they constructed their own mathematical identities, and differences in how 
they constructed representations and valorizations of current school mathematics. 
Whilst those with teaching experience generally held more positive representations of 
current practices, the way they valued these practices changed according to their 
perceptions of their child’s needs, and the various roles they adopted.  
 
Key words: parents;  home-school; identities; representations; valorizations 
 

INTRODUCTION  
The William’s Report argues that parental involvement in schooling is a powerful 
force, and that ‘parents are a child’s first and most enduring educator, and their 
influence cannot be overestimated’ (Department for Children, Schools and Families, 
2008, p.67). However, research indicates that parental involvement in their children’s 
education is complex. In a study reported by the Department for Children, Schools 
and Families (2007), it was found that whilst 73% of parents feel it is extremely 
important to help with homework, confidence amongst parents to become involved 
has decreased in recent years.  Barriers to successful interaction may be particularly 
evident when parents and children work together over mathematics homework 
(Abreu & Cline, 2005; O’Toole & Abreu, 2005). Societal and cultural changes (e.g. 
National Numeracy Strategy, UK, 1999; immigration) are among the factors which 
have resulted in very different experiences of mathematics learning by both parents 
and children (O’Toole & Abreu, 2005). Abreu and Cline (2005) found that many 
parents were confronted with differences between their own ways of tackling 
mathematics and methods their children learned at school.  Parents developed 
sophisticated representations of these differences, the most common concerning 
teaching methods and tools (e.g. calculators) available in the classroom.  They also 
found that even when parents share knowledge of different methods to approach 
calculation, they may have a different understanding of how these methods are 
valued, and it is the position they adopt towards these shared representations that may 
affect how they organize mathematical practices for their children (Abreu & Cline, 
2003). Abreu (2002, 2008) proposes that it is participation in particular practices 
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which enables individuals to master cultural tools, and to understand how these are 
socially valued. For parents whose experience of learning mathematics was 
algorithmic rather than conceptually based, new methods of learning may remain 
inaccessible and they may be expected to support their children’s learning in ways 
that don’t make sense to them (Remillard & Jackson, 2006).  
 
THE RESEARCH QUESTIONS 
Many studies have examined the response to perceived differences in numeracy 
practices in minority cultural groups (Abreu, 2008; Abreu & Cline, 2005; O'Toole & 
Abreu, 2005; Quintos, Bratton & Civil, 2005; Civil & Andrade, 2002). In Abreu's 
previous studies, it was apparent that both parents' own experience of mathematical 
learning in a different cultural setting, and their lack of direct exposure to current 
school mathematics, impact on their understanding of their children's mathematical 
learning. This study seeks to understand further parental participation in their 
children’s learning within the majority (White-British) cultural group, in terms of 
how this group experiences their children’s mathematical learning in the context of 
historical changes between their school education and the education of their children. 
In addition, the study seeks to explore further the impact of parents' personal histories 
on their involvement with their children's learning, in terms of their experience of 
direct participation in current methods of learning. In this way, the study can shed 
light on issues that are specific to curriculum changes over time within a society, and 
issues that are more related to minority cultural groups. The study explores the 
experiences of two different groups of parents, those with teaching experience (direct 
participation in current teaching practices) and those without, with a view to 
determining similarities and differences in the way the participants in each group 
interpret their past experiences, construct current representations, and use these 
representations to mediate interaction with their child.  The research questions 
investigated were: (1) What are the similarities and differences between the parents 
of these two groups in the way they construct their mathematical identities, and how 
does different adult experience affects these identities?  (2) How do the parents from 
the two groups construct representations of current school mathematics, and how do 
they value perceived differences between current school mathematics and their own? 
(3) How do the parents from the two groups use their representations and 
valorizations of school mathematics to mediate interaction with their children’s 
learning?  
 
METHODOLOGY 
Two groups of six White-British parents were interviewed. All participants had 
attended schools in the UK during the late 1960's - early 1970's, were university-
educated, and all had children currently attending Primary schools.  One group 
('parent group') had no teaching experience, and were recruited through a Primary 
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school in Oxford. The other group ('parent-teacher' group) had varying teaching 
experience. Four of this group had teaching experience prior to the National 
Numeracy Strategy, had taken a career break, and were selected from a Return to 
Teaching course organised by the Teacher Development Agency. These parents had 
undertaken recent placements in Primary schools which involved teaching numeracy, 
and could therefore compare their experiences of teaching numeracy both before and 
after the educational reform. The remaining two parent-teachers had recently trained 
as Primary teachers, and were able to draw on their experience of helping their 
children with their homework prior to their training. 
Procedure and tools for data collection: An episodic interview (Flick, 2000) format 
was used as this method of questioning encourages participants to give their opinions 
about the subject matter, and to give concrete examples of situations in their past. The 
interview covered basic information, and explored the interviewee’s biography in 
relation to their mathematics learning, current uses of mathematics, and their 
experiences of helping their children with school homework. For parent-teachers, 
their teaching experience was also explored. All participants were interviewed in 
their own homes for approximately 45 minutes, and interviews were audio-recorded. 
Data analysis: The interviews were fully transcribed and analysed using thematic 
analysis (Braun & Clarke, 2006), taking into account the research questions, key 
concepts from the literature, and new information emerging from the data. The 
coding was supported by NVivo qualitative analysis software. Initial thematic maps 
grouped sub-themes together into super ordinate themes as described in Table 1.  The 
data was then examined for similarities and variability between the two groups of 
participants.  
Table 1. Superordinate themes and sub-themes. 
Superordinate themes Sub-themes 
1. Parent’s mathematical identities
 

1. Memories of mathematics learning - emotions 
2. Perceptions of own ability 
3. Social value of mathematics in family/peer 
group 
4. Effect of parent’s identity on child’s identity 

2. The effect of adult experience 
on identity 

1. Effect of work experience on identity 
2. Effect of teaching experience on identity 

3. Parents’ representations of 
school mathematics 

1. Knowledge/understanding of current methods    
2. Perception of own school mathematics as 
same/different 
3. Effect of teaching experience on representations

4. Parents’ valorizations of 1. Equivalence of/confidence in different methods 
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different practices 
5. How different representations 
and valorizations influence 
interaction 

1. Effect of representations and valorizations on 
interaction 
2. Valorization of methods by parent and child 
3. Effect of teaching experience on interaction  
4. Emotional aspect: frustration/fear of confusing 
child 

 
FINDINGS AND DISCUSSION 
Parents’ mathematical identities  
Three main themes were revealed in participants’ perceptions of themselves as 
mathematics learners: their perception of their ability, memories of the emotive 
nature of their mathematics learning experiences, and their status as a learner 
amongst family and peer group. Participants in both groups were similar in that their 
assessment of their cognitive competence in the cultural tools of mathematics formed 
a significant part of the way in which they constructed their mathematics identity. 
The data also indicates that participants’ view of their mathematics ability did not 
solely rely on their perception of their competence, but was strongly influenced by 
their feelings about their experiences. For example, Table 2 shows that there were 
parents from both groups for whom learning mathematics was remembered as a 
struggle and was associated with fear and panic. Tilda talks about ‘feeling lost for 
ever, for ever after’.  
Table 2. How emotions mediate mathematics identity. 
Parent group Parent-teacher group 
P: I can remember saying, “I don’t understand,” 
and him trying to explain it, and I was none the 
wiser. I can actually remember saying, “Help!” I 
mean he tried but it was no good, and then I can 
just remember being lost for ever, for ever after … I 
think I was always quite good at just basic maths, 
but with algebra or anything like that, I’d always be 
frightened. [I felt] a sort of terror, fear.  Tilda, 
parent 

P: I think it got to that point 
where sometimes you’d go, “Oh, 
I can’t do that!”, and your brain 
freezes, and your brain would 
stop working and decide that it 
can’t do this. Rebecca, parent-
teacher 

 

 
For both parents and parent-teachers, their mathematical identity relied strongly on 
how they were identified by significant others, for example, parents and teachers, and 
their perceptions of their ability in comparison to siblings and peers. Parents in both 
groups hoped that their child would construct a positive mathematics identity, and for 
many, it was more important that their child have a confident relation with 
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mathematics, than be expert in the subject. The consequences of parents identifying 
themselves, or their children, as less competent, resulted in participants from both 
groups positioning themselves, or their child, as an ‘arts’ person rather than a 
mathematician. In positioning themselves in this way, they devalued mathematics as 
something not necessary to succeed. Consequently, this may have limited their 
capabilities in mathematics, or their expectations for their child. Many showed 
awareness of how their own parents’ mathematics identity had influenced the way 
they perceived themselves as mathematicians, and how this could, in turn, influence 
their children’s identity. As illustrated in Table 3, Tilda felt it was extremely 
important not to let her daughter know that she wasn’t a confident mathematician, 
whilst Clare understood that her own identity was interlinked with her father’s.  
 
Table 3.  How parents’ mathematical identity can affect their children’s. 
Parent group Parent-teacher group 
P: I’ve got a friend that says, “I was crap 
at maths, so my kids are crap at maths”, 
that’s what she says. And she has a 
daughter who isn’t doing so well in 
maths, but she’s taking it as an absolute 
given that that is how it will be and I 
suppose I don’t … I’ve never said to 
[Lily] I wasn’t any good at maths 
because that would be a dirty little secret 
I would keep to myself! Tilda, parent 

P: My dad was a maths teacher for a 
while, and he used to get really frustrated 
with me, helping me with maths, because 
he’s sort of mathematically-gifted, he sort 
of finds it easy. So there was this conflict 
in my relationship with my dad … and I 
didn’t see myself as a natural 
mathematician. Clare, parent-teacher 

 
The effect of adult experience on identity 
The research revealed that parents in both groups felt that they had developed a more 
positive relation with mathematics due to experience during adulthood (see Table 4).  
Table 4. The effect of adult experience on mathematical identities. 
Parent group Parent-teacher group 
P: I think it’s practical maths … 
because once you actually leave 
school and you start working, you 
have to use maths on a day to day 
basis, and suddenly it all starts to 
make sense, and depending on the 
kind of work you do … I’ve always 
learnt by rote, managed to get 
through, and then latterly actually as 

P: It’s interesting actually as I think my own 
feelings about mathematics really changed when 
I did my teacher training … Suddenly I saw the 
beauty of numbers, it all fell into place and I 
could see how all the different parts of 
mathematics relate to each other … revisiting it 
I had this sudden enthusiasm for maths that I’d 
never had before … I’m not suddenly a better 
mathematician because I’m doing more 
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you get older, you realize why that 
goes with that, and it’s a late 
discovery. Suddenly it’s like, “Oh! 
Oh yes!”  Lisa, parent 

advanced level maths, I’m a better 
mathematician because I understand the basics 
in a different way. Clare, parent-teacher  

 
Often, those parents who described a change in their mathematical identity, 
experienced a transformation of their understanding of activities through participation 
in different contexts for mathematics practice. A number of parent-teachers 
experienced transition from being an anxious mathematics learner, to a confident 
teacher of mathematics, through participation in different contexts for mathematics 
learning. Clare reveals that the experience of ‘revisiting’ mathematics during teacher 
training allowed her to acquire an understanding of the concepts of mathematics she 
felt she lacked as a child. Many parent-teachers attributed this greater understanding 
to current conceptually-based methods, in comparison to the algorithmic approach 
they had experienced themselves.  
Whilst participants in both groups had experienced changes in their relation with 
mathematics during adulthood, there was variability between the groups in how the 
participants constructed their relation to mathematics due to the differing nature of 
these experiences. Those in the parent group tended to associate the change in their 
mathematics identity with maturity, or to using mathematics in daily life. Those in the 
parent-teacher group, however, were more likely to associate change with the 
opportunity to revisit mathematics, and participate in practices which differed from 
those they were familiar with.  
Parents’ representations of their children’s school mathematics 
Whilst having clear memories of certain aspects of their own learning, many 
participants, particularly in the parent group, had unclear ideas of how their children 
were currently learning mathematics. As Table 5 shows, this lack of knowledge 
sometimes produced a strong emotional response. Lisa, for example, talked of feeling 
‘closed’ to the new methods because they didn’t make sense to her, whilst Karen 
experienced frustration and could not view the school’s methods in a positive light. 
Table 5. The effect of parents’ lack of knowledge of current methods. 
Parent group 
P: I know I’m not open, I feel that I’m quite closed to these new methods because I 
look at them and they don’t make sense to me. I get the impression that they’re trying 
to make maths meaningful and I just think it isn’t meaningful, it only becomes 
meaningful if you start to use it in life. And if you’re one of those people that it’s not 
obvious to, the way they’re doing it, it’s not making it more obvious, it’s actually 
making it more obscure.  Lisa, parent 
I: Can you show me any ways that you think they’re doing it? 
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P: Oh, God, I can’t. I mean, no, I can’t. I must be really honest here, I don’t actually 
understand how the mathematics is taught or why the mathematics is taught in the 
way it is … And the point is, I don’t actually know whether there are advantages to 
the way they do it, I just don’t know, because I don’t understand it, and I don’t know 
how they’re teaching it.  Karen, parent  
 
Although many felt unclear about the new methods, all participants remembered their 
learning as very different to the ways their children learn now, and these differences 
were explained as historical changes within Primary education. The representations 
of these differences were similar in the two groups of parents in terms of teaching 
methods used, and different mathematical strategies for calculation. Current methods 
were viewed by participants in both groups as having a greater emphasis on 
underlying meanings and relationships, whereas a significant feature of their learning 
had been the repeated practice of ‘rules’ or ‘formulae’ for calculation. The groups 
differed, however, in their conception of whether current or old methods placed a 
greater focus on mental strategies. Indeed, it became clear that what was meant by 
‘mental strategies’ was quite different to the groups. Those in the parent group tended 
to equate mental strategies with basic mental arithmetic, and felt strongly that there 
was less emphasis on this in current teaching. The participants in the parent group 
valued the repeated practice which had allowed their mental skills to become ‘second 
nature’. The participants in the parent-teacher group, however, viewed current 
methods as having a greater emphasis on mental strategies, but saw this in terms of 
children having more opportunities to discuss concepts, and have a greater range of 
mental strategies to tackle calculation.  Although parents from both groups talked 
about valuing mental mathematics, how they constructed their representations and 
valorizations of mental mathematics was quite different. 

Parents’ valorizations of different mathematical practices 
Whilst participants in both groups shared the view that current school mathematics 
was different to their own school mathematics, the way the groups valued different 
practices was quite diverse. The parent-teacher group participants had a clearer idea 
of the purpose of the new methods, saw the changes as predominantly enhancing 
children’s global abilities in mathematics, and as providing them with a more solid 
platform for later mathematical study. They spoke positively of children talking about 
mathematics, developing a greater ability to reason, and a greater understanding of 
the concepts of mathematics. They were more likely to value conceptually-based 
learning, and less likely to value an algorithmic approach. Their view of current 
mathematics was often in comparison with how they remembered their own 
experiences of learning which whilst enabling them to perform calculation 
procedures well, had also meant they adopted an ‘automatic approach’ without 
understanding how numbers worked together. Their accounts of the way in which 
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they learned may have been mediated by their greater knowledge of the aims of 
current methods and their current perceptual frameworks.   
Most of the parent group participants, on the other hand, saw the changes 
predominantly in terms of confusion and complexity. They described the new 
methods as too numerous and more complicated, and were anxious that the focus on 
understanding the concepts of mathematics was at the expense of rigorous training in 
the acquisition of basic mental skills. They viewed that this would result in a gap in 
their children’s cognitive skills, particularly if they perceived their children to have a 
less confident relation to mathematics. Amongst the participants in this group, 
differences in methods were not described in neutral terms, and were not treated as 
equal alternatives. Parents used language such as ‘simple’, ‘straightforward’ and 
‘logical’ to describe their own form of mathematics, and ‘long-winded’, 
‘complicated’, and  ‘obscure’ when describing new ways. Parents in this group were 
more likely to value an algorithmic approach, and less likely to value an emphasis on 
conceptual understanding. As they possessed less knowledge of the new methods, 
they were more likely to feel new methods inadequate or confusing, and to feel 
closed towards them.  
How different representations and valorizations influence interaction 
The data revealed that many of the parent group participants experienced difficulties 
in understanding practices in which they did not have direct participation, and were 
often dependant on children’s explanations about how they use particular procedures. 
That children themselves were often unable to explain clearly often resulted in a 
breakdown in communication between parent and child. Table 6 shows that Karen 
felt frustration that her incomplete knowledge prevented her from helping in anything 
more than a checking role, whilst Susie described how lack of information made her 
feel there was nothing she could do, and compromised the amount of effort she was 
prepared to invest. Not only did those parents who lacked knowledge of current 
methods feel excluded from helping their children, they couldn’t judge their child’s 
competence in comparison with their own ability at a similar stage, and felt they did 
not know what could be expected of their child.  
Table 6. The effects of parents’ lack of information on interaction. 
Parent group 
 I: …Do they think they’re good at maths? 
P: Yes, I think so. The problem is it’s difficult for me to know whether they’re good 
… obviously they seem to get their maths homework right …but I don’t know what 
that means, are they good beyond that? Are they capable of more than that? … I sort 
of feel like, and this is my lack really, I feel I should be more sort of involved with 
their mathematics ... I feel I’m not involved enough, because I basically just sit and 
look at it and any that are wrong I’ll check them, but only from a distance really … 
So I do find it difficult to support them as much as I could. I don’t feel I can get as 

WORKING GROUP 8

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1501



 

 

 

involved as I would if he was learning in the same way as I did. Karen, parent 
P: Well, a lot of the time if I don’t understand what method is to be used, I just throw 
up my hands. There’s nothing I can do. I don’t feel ... I don’t feel anything really, it’s 
a waste of energy really. There’s nothing I can do, but I sometimes feel sorry for 
Molly, because she gets really upset and there’s nothing I can do. Susie, parent 
 
As parents talked about the way in which they interacted with their children, it 
became clear that many children valued school’s methods more highly than methods 
their parents showed them. This was not necessarily because the school’s methods 
were better or clearer, but that children perceived them to be the ‘right way of doing 
it’. Parents in both groups talked of how their children ‘revered’ school more than 
their parents, and of their child’s resistance to being shown other ways. This often 
resulted in discordance between parents and child, and led to homework as a source 
of conflict. The data also revealed that responses to mathematical practices differed 
according to which practices parents valued more highly. Whilst not wanting to 
undermine school methods, many in the parent group displayed frustration that their 
own tried and tested methods were being devalued, whilst they perceived other 
methods as resulting in confusion for their children. Those in the parent-teacher 
group, on the other hand, generally had more favourable representations of current 
school mathematics, and were more willing to support methods which they viewed as 
enabling their children to achieve a positive relation with mathematics.  They 
reported that their teaching experience had enabled them to develop a greater 
understanding of current school mathematics, and this allowed them to be more 
confident in assessing their child’s ability, and in participating in mathematics 
homework. However, the data also revealed that although most of the parent-teachers 
understood and appreciated the use of multiple methods, they adopted different 
positions towards these approaches if they perceived their own child was confused 
and this, in turn, affected how they organized mathematical practices for their 
children (see Table 7).  
Table 7. Parent-teacher’s valorizations of their own methods. 
Parent-teacher group 
P: Milly, I know, knows one method, and if something else is being taught, then I’m 
afraid I’m saying to her, ignore it, because I’m worried that she will mix it as well. 
I’m saying forget what Mrs Woods tells you, I keep telling her, which is very 
naughty, but stick to what you know, because you can do it that way.  Jane, parent-
teacher 
P: I think we took the right decisions for Luke at the time, but I think potentially it 
could have been even more confusing to him, because I could explain to Luke, yes, 
you can do it these different ways at school, but you know if Dad’s shown you this 
way and you’re happiest with that way, then you do it that way.  Cathy, parent-
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teacher 
 
Although some parent-teachers were unwilling to devalue the school’s methods, 
others felt they were right to encourage their children to use only one method, if their 
child continued to be confused. Jane talks about actively encouraging her own 
daughter to ignore the school’s insistence on multiple methods because of her fear 
that she will become confused. The effect of teaching experience, then, was generally 
positive in terms of parents’ representations and valorizations of current school 
mathematics.  However, although, many parent-teachers recognized that multiple 
methods may enhance understanding by providing ‘the bigger picture’, they 
constructed different representations of new methods as too numerous and too 
complex if they perceived their own child to be confused by them. Even with a good 
knowledge and understanding of new methods, and sympathy towards the aims of the 
National Numeracy Strategy, their position in relation to the numeracy practices 
changed according to the particular role, as professional or parent, they had to adopt 
at any given time.  It was the position parents adopted towards these representations 
which affected how they interacted with their children’s mathematical learning.  
CONCLUSIONS 
The research set out to explore how parents’ past experiences influence the way in 
which they construct their mathematical identities and their representations of 
different mathematical practices, and how these factors influence the ways they 
interact with their children’s learning. The findings illustrated that both those with, 
and those without teaching experience, construct their mathematical identity in 
similar ways and this identity was shown to evolve through participation in different 
contexts of mathematical practice and learning. Participants in both groups were 
similarly aware that their own mathematical identity could affect the way in which 
their children approached mathematics. 
The study revealed that both those with and without teaching experiences perceived 
current school numeracy practices to be very different to those they had experienced 
when learning. Varying levels of knowledge, and different levels of participation in 
current methods resulted in the participants from both groups valuing different 
mathematical practices in different ways; those with teaching experience tending to 
attribute a higher value to current methods than those without teaching experience. 
However, the study indicated that although in many areas, those with teaching 
experience were able to bridge the gap between differing mathematical practices 
more easily, when confronted with their child’s continuing confusion about 
mathematics, parents may revert to the methods they formerly depended on, despite 
holding positive representations of current methods. Parents’ perception of their 
child’s ability in relation to certain mathematical practices was, therefore, a more 
significant resource for parents, and contributed more significantly to the way in 
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which they interact with their children, than their overall representations of current 
methods. 
This research indicated that it is the opportunity for participation in different 
mathematical approaches which allows parents to construct more positive 
representations of varying practices, and in turn, to understand how they are socially 
valued. This has implications for how schools communicate the way they approach 
mathematics, and the opportunities they offer to parents for understanding these 
practices and for raising confidence amongst parents to become involved. The study 
also explored the transitions parents experience between their roles as parent and 
teacher, and how the subjective knowledge they developed during these transitions is 
adapted for each role. Further study of teachers’ representations and practice in the 
classroom, in the light of the interaction they experience with their own children, 
would contribute to research on the ways in which valorization of numeracy practices 
affect support both within the home and at school.  
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BATIKS:  
ANOTHER WAY OF LEARNING MATHEMATICS 

Lucília Teles & Margarida César 
Universidade de Lisboa, Centro de Investigação em Educação da Faculdade de 

Ciências 
  
This paper examines a micro-project that was developed in an 8th grade class. 
Students elaborated batiks and then they discussed mathematical tasks based in their 
batiks’ elaboration process. This research is based in two research projects: 
Interaction and Knowledge (IK) and IDMAMIM. We assume an interpretative 
approach and a case study design. Results illuminate the potentialities of these 
classroom practices, illustrated through the analysis of some video taped peer 
interactions. The focus of analysis is in the didactic contract, based in collaborative 
work, and in the nature of the tasks that were part of this micro-project.  
 
THEORETICAL BACKGROUND 
Portuguese schools are multicultural settings (César, 2007; César & Oliveira, 2005). 
Considering Nieto’s definition (2002), culture is “(…) the ever-changing values, 
traditions, social and political relationships, and worldview created and shared by a 
group of people bound together by a combination of factors (…), and how these are 
transformed by those who share them” (p. 53). According to this definition, in school 
we find a great diversity of cultures. Not only origin cultures but also many others, 
including the school’s culture, or some teenagers’ group culture.  
Sometimes the school culture is so far away from students’ cultures that they focus 
their energies on other directions (Säljö, 2004). School needs to facilitate the 
emergence of “thinking spaces”, a construct coined by Perret-Clermont (2004) that 
stresses the role played by securing spaces in which students may discuss doubts, 
conjectures, solving strategies, learning difficulties, developing their critical sense, 
learning autonomy, but also their “sense of identity” (Zittoun, 2004), of belonging to 
that particular learning community. As César (2007) claimed, becoming a legitimate 
participant in a learning community, namely in formal educational settings, facilitates 
students’ engagement in academic tasks but also their construction of identities and 
the management of the dialogical I-positioning (Hermans, 2001) that are often 
conflictive when the student’s culture is much different from the school’s culture. 
Schools also need to be more inclusive (Ainscow, 1999; César, 2003, 2007, 2009; 
César & Santos, 2006) and to promote interactions among community members and 
cultures. Intercultural (mathematics) education facilitates the emergence of dialogical 
interactions, namely among students from different cultures (D’Ambrósio, 2002; 
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Favilli, César, & Oliveras, 2004; Peres, 2000; Powell & Frankenstein, 1997; Teles & 
César, 2007). Ouellet (1991) has already stressed that this education is for everyone, 
based on the comprehension, communication, and promotion of interactions. 
Collaborative work among students (and with the teachers) was studied by many 
authors. It acts as a facilitator and mediator for student’s knowledge appropriation 
when it is part of a negotiated and coherent didactic contract (César, 2007; César & 
Santos, 2006; Schubauer-Leoni & Perret-Clermont, 1997; Teles & César, 2005), and 
it also facilitates transitions (Abreu, Bishop, & Presmeg, 2002; César, 2007, 2009). 
The development of intercultural (and interdisciplinary) microprojects related to 
handicraft activities promotes students’ performances and academic achievement 
(Favilli et al., 2004). They underline the cultural dimension these activities give to the 
learning processes, also contributing to the mobilisation/development of 
competencies. Their social marking of the tasks, i.e., the possibility of connecting 
them to students’ daily experiences and social life, plays an important role on 
students’ engagement and mathematical performances (Doise & Mugny, 1981; Teles, 
2005). It also plays an important role when teachers aim at changing students’ social 
representations about mathematics. Social representations are often stated as being an 
important contribution for students’ performances and school achievement (Abreu & 
Gorgorió, 2007; César, 2009). 
  
METHOD 
We assume an interpretative approach, inspired in ethnographic methods. This study 
is based in two research projects: Interaction and Knowledge (IK) and IDMAMIM. 
The first one was developed during 12 years (1994/95-2005/06) and its main goal 
was to study and implement social interactions in formal educational scenarios (for 
more details see César, 2007, 2009). The didactic contract that was negotiated in this 
class was clearly shaped by this project’s features. Teachers’ practices, based in 
collaborative work, were also shaped by this project’s pedagogical ideals. IDMAMIM 
project was developed in some towns of Spain (Granada), Italy (Pisa) and Portugal 
(Lisbon). Its two main goals were: (1) to identify didactic needs in order to develop 
an intercultural mathematics education; and (2) to elaborate intercultural didactic 
materials, like the ones based in the batiks elaboration, and its later exploration in 
mathematics classes (Favilli et al., 2004). The mathematical tasks used in this class 
were part of this project. 
This case is part of a broader study including 4 case studies. In all these case studies 
students developed an intercultural microproject, based on the elaboration of batiks. 
Batiks are a handicraft from Java, that was then developed in other parts of the world, 
namely in Cape Verde, where we collected information about how to elaborate them. 
Batiks assume different ways of being produced in different parts of the world, 
according to the native cultures of each country, and also to their economic 
conditions. In Cape Verde, as it is a very poor country, they use flour, water and lime, 
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instead of wax in order to make the production process cheaper. Thus, even 
discussing the different ways of production of batiks, that students discover in the 
internet before elaborating them, it is a way to explore a critical mathematics 
approach. This is complemented by the discussion of the video we made in Cape 
Verde in which batiks are being produced. This way of approaching the microprojects 
also allows them to be explored in a multidisciplinary way, as teachers from different 
subjects may participate and, for instance, explore the texts from the internet in 
English language subject, the production process in Chemistry, the evolution of 
batiks around the world in History, the elaboration of the templates in Arts. In this 
paper we focus in the one of the mathematical tasks that was solved after elaborating 
the batiks. Thus, the research question that we analyse in this paper is: What are the 
contributions of intercultural and collaborative microprojects to students’ 
mathematical knowledge appropriation?  
The participants were the students from a 8th grade class (13/14 years old), their 
mathematics teacher, external observers and evaluators. This class had 21 students, 
one of them categorized as presenting special educational needs (SEN). There were 
12 girls and 9 boys. These students were from different cultures and some of them 
were born, or had families that were born, in other countries. But even Portuguese 
students belonged to different cultures and socio-economical backgrounds. The 
mathematics teacher described this class as “(…) a working, engaged, interested and 
challenging class” (Teacher’s final report, p. 7), as some of these students 
experienced underachievement in previous school grades in mathematics. Thus, many 
of them presented a negative social representation about mathematics in the 
beginning of the school year (September), according to the data of the IK project 
(students’ protocols – for more details about the first week procedure, see César, 
2009 or Teles, 2005). Some of these students usually did not participate in 
mathematics activities during classes, in previous school grades. They did not disturb 
the class work. They simply did not do anything and just waited for the end of the 
class to go to the break. Thus, many of these students never went to the blackboard 
after solving mathematical tasks, or participated in the general discussion. For these 
reasons, one of the main teacher’s practices aims during the first month of classes 
was to promote students’ participation in mathematical activities, and to avoid having 
only three or four of them – always the same ones – participating. The dyad whose 
peer interaction we chose to discuss is a paradigmatic one: J. was one of the students 
who experienced underachievement in mathematics in previous school grades while 
her peer loved participating in mathematics classes. Thus, the teacher tried to 
promote J.’s participation and, in this episode, we can see that she is no longer silent, 
or just trying to be unnoticed. She is already able to go to the blackboard, during the 
general discussion, after dyad work, and to explain to the whole class her dyad’s 
solving strategy. Thus, this dyad illuminates some of the processes that could be 
observed in many other excerpts from the videos, and that were shaped by the 
collaborative work these students developed during the whole school year in 
mathematics classes.  
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Data was collected through observations, questionnaires (IDMAMIM), interviews 
(IDMAMIM), the teacher’s and external evaluators’ reports and students’ protocols. 
In this paper we focus in the analysis of some video excerpts, the teacher’s report and 
in students’ protocols.   
In this episode, students were solving a mathematical task in dyads, after elaborating 
their batiks. A batik is a pure cotton wrap tainted with colours where a drawing is 
contrasted. This elaboration process uses mathematical knowledge that can be 
explored further in later mathematics classes (for more details, see Favilli et al., 2004; 
Teles, 2005). They were discussing about the following situation:  
Ms. Bela made a batik. It was in a square piece of 
cotton whose side measured 60 cm. Mr. Evaristo is 
interested in buying a batik. But he wants one with 
the double of the size.  
- Ms. Bela, how much is a batik like that with the 
double of this size? – asked Mr. Evaristo. 
- Look, Mr. Evaristo, this batik costs 18€. And I can 
sell you the other batik at the same price each m2.  
 - Then, I offer you 36€! Do you accept my offer? 
1.1. What do you think: Should Ms. Bela accept Mr. 
Evaristo’s offer? Explain your reasons. 
1.2. Complete the table below, considering the 
correspondence f that associates a square batiks’ side 
(x) to its area (y). 

Length of the side of the batik, 
( )

20  6
0

Area of batik, cm2 (y) 0  1600   

Figure 1: Batik 

 
RESULTS 
This episode is an excerpt of an interaction between two students: J (a girl – 13 years 
old) and N (a boy – 12 years old). They are both Portuguese, but their family cultures 
are differentiated: N. comes from a highly literate family, whose parents have an 
university graduation; J. comes from a family whose parents have jobs related to 
commerce and services. From the economical point of view their families are from a 
class that is not very high or very low. They could be characterised as paradigmatic 
teenagers, with the hobbies, dressing code, language, and friendships of most of the 
teenagers in Portugal. J and N are on 8th grade for the first time but they have 
different previous experiences with mathematics. J does not like mathematics. In the 
first term she still experienced some underachievement (she got Level 2, a mark that 
is negative, in the Portuguese educational system, in which students’ marks vary from 
Level 1 – the lowest - up to Level 5 – the highest). But during the next two terms she 
was engaged in mathematics classes and she was able to achieve. N is a student with 
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a calm and pleasant relationship with mathematics. He always succeeded in this 
subject. He shows a high self-esteem, namely an academic one, while J was less 
confident about her abilities and competencies, in particular in mathematics and 
during the first months of the school year. It was precisely their differentiated 
characteristics as mathematics students, and when they addressed the mathematics 
tasks – in the beginning of the school year J tended to give up very easily or even not 
try at all to solve them – that were the criteria for choosing them to be discussed and 
analysed in this paper, as they both represent many other similar students we had in 
this class, and even in the other three cases from the IDMAMIM project. 
In this episode, they are solving the question 1.2. It is N who starts the interaction 
writing on his notebook his reasoning in order to explain it to J. 

 
 

 
Figure 2: J and N resolution (Question 1.2.b)) 

 
1 N: It is: 20, 40, 60. It is half of 1600 [He understood that 20 is half of 40; then 
the table should be completed with half of 1600, i.e., 800]. It is 800. It is the 
double of this [He points]. Then, here it is 40 is 1600; then 20 is 800. 
2 J: A little confusing! 
3 N: What is the part you don’t understand? 
4 J: This part [she points to the sum]. Why is this plus this? 
5 N: Because… This plus this equals 1600. Teacher!? 
[The teacher approaches them] 
6 N: Could you see if my reasoning is correct?… 
7 J: So, what do you [turning to J] think about his reasoning? 
 

This piece illuminates the role of the didactic contract of this class (César, 2003; 
César & Santos, 2006; Schubauer-Leoni & Perret-Clermont, 1997; Teles & César, 
2005): students can start their resolution of the task by individual work but they need 
to explain their reasoning to his/her colleague from the same dyad. They need to 
discuss the solving strategies they used in order to find a consensus. But they also 
need to understand each other’s solving strategy because one of them may be asked 
to represent their dyad in the general discussion and to explain to their colleagues 
their solving strategies. As they are both engaged in this type of didactic contract, 
they know that just having an answer produced by one of them is not enough. Thus, J 
is trying hard to understand her peer’s solving strategy and this is exactly what her 
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teacher aimed: to improve her participation in the mathematical activities, during 
mathematics classes. Their teacher was trying to create what Perret-Clermont (2004) 
designates as thinking spaces, facilitating students’ reflection upon their solving 
strategies and some mathematical concepts. 
They also know that discussing their solving strategies is a way of learning for both 
of them. For the one who used this solving strategy as s/he has to clarify its steps in 
order to explain them and to answer to his/her peer’s doubts and questions; and to the 
one who is, at that moment, acting as the less competent peer (Vygotsky, 1932/1978), 
as it helps him/her progressing in his/her mathematical performances and in 
knowledge appropriation.  These features of collaborative work, that we can also see 
in other parts of this episode presented below, also help students develop their 
positive self-esteem – particularly clear in the way of acting of J, in this episode, 
namely when she goes to the blackboard during the general discussion and is able to 
explain her dyad’s solving strategy without taking any sheet with their resolution in 
her hands (according to the video record, she acted like this due to her teacher’s 
suggestion). Thus, it helps them to begin acting as legitimate participants and not as 
peripheral ones (César, 2007). This changing form of participation is illustrated by 
the ways J acts, during the different parts of this episode, as well as by the external 
observers reports, during the school year, and by the analysis of other episodes that 
were also video recorded. 
In Turns 5 and 6 N asks for their teacher’s help and assumes this dyad’s leadership. 
He is assuming the role of the more competent peer (Vygotsky, 1932/1978). This 
happened in this dyad during the first month they worked together, as J considered N 
“much better than me” (questionnaire, January) and it took some time before she was 
able to express her opinions, solving strategies and arguments before listening to N. It 
must be added that while analysing many other pieces of videotapes from this class it 
was clear the teacher’s effort in order to promote the positive self-esteem of J and to 
make her feel more confident. Her aim, according to the features of collaborative 
work, inclusive education and this particular didactic contract, was to be able to have 
the role of more competent peer assumed by each one of them, in different 
mathematical tasks, or even in different moments/steps of their solving strategies. But 
when one of the students usually performed much better than the other in previous 
school years, achieving this point takes time and needs a lot of knowledge about how 
to act from the teacher’s point of view.  
J considers N’s resolution “A little confusing!” (Turn 2). Thus, N tries to realise what 
J did not understand. Then, he tries to explain J what she did not understand (Turn 5). 
But he is not very clear in his explanation. He realises that J is still confused and thus 
he asks for their teacher’s help, trying to legitimate his reasoning (Turn 6). According 
to the didactic contract, their teacher does not answer him. Instead, she asks J’s 
opinion about N’s reasoning (Turn 7) and tries to promote a dialogical interaction 
between these students. The teacher assumes the role of a mediator of learning 
(Vygotsky, 1932/1978). She is more concerned with students understanding and with 
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the interaction between them than just with the validation of students’ answers. Their 
teacher’s reaction illuminates how the expert other can facilitate students – in this 
case, J’s – change from a peripheral to a legitimate participation (César, 2007, 2009; 
Lave & Wenger, 1991). As we stressed in other cases we analysed in other papers, 
this is an essential move in order to promote more inclusive formal educational 
settings, and an intercultural education (for more details see César, 2007, 2009; César 
& Santos, 2006; Teles, 2005). 

8 N: It is 20… 
9 T: But, I don’t want that answer! [Points to Question 1] Well… explain! I said 
that we’ll correct Question 1. So, I want you to explain me why you wrote this 
and… 

10 N: 36€. 36€ is the double of batik that cost 18€. Ms. Bela’s batik cost 18€. 

11 T: It measures 60cm in this side. 
12 N: It is 60cm of side but we want the double of this batik… 
13 T: You want a batik with the double of these dimensions [she points at each 
side of the batik]. 
14 N: Yes. Yes. 
15 J: So, it is the double of this one. 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 3: J and N resolution (Question 1.1.) and students’ answer translation 

 

No, because Mrs. Bela would loose money with Mr. Evaristo’s offer. Because 
in order to have a square batik with the double of the dimensions of the first 
one, he has to pay 4 times more, i.e., four times 18€. 

WORKING GROUP 8

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1512



 

 

 
N starts the interaction with their teacher again (Turn 8), and explains the solving 
strategy they used to answer to Question 1. He answers the teacher’s questions, but J 
also participates in this dialogue and concludes N’s argumentation (Turn 15). But 
another interesting feature appears in Turn 9: these students, although engaged in 
solving the task, were not answering to the part their teacher had asked to be solved. 
This illuminates the importance of the teacher’s role during classes, even when 
students are working in an autonomous way, it is only by observing closely what is 
going on that the teacher can help students to learn how to self-regulate their work in 
a more adequate way. In the excerpt, we understand that both students know the 
solving strategy they used and they can explain it because they co-constructed it 
together, according to the rules of the didactic contract (César, 2007, 2009; César & 
Santos, 2006; Teles, 2005). But in order to understand their different solving 
strategies students also need to establish an intersubjectivity that allows them to 
understand each other’s arguments and solving strategies (Valsiner, 1997; Wertsch, 
1991), as illuminated in the following piece: 

16 T: Is it? 
17 N: It is the same as we have another batik here, together. 
18 T: Is it? I didn’t think like this! Put two batiks together and confirm if it is a 
batik with 120cm of side. 
19 J: We did 18x2. 
20 T: I understood! But, I’m asking you if this is correct!? 
21 N: Maybe! 
22 T: Maybe? So, imagine that this is a batik. And you have another batik here 
… 
23 J: It has 120cm of side. 
24 T: Here [she points in their sheet of answers]. 
25 J: Yes. 
26 T: And here? [she points again] 
27 J: It doesn’t. It is 60. 
28 T: Ah… I want a square batik! 120 per 120. But, if you put two batiks 
together it has 120 per 60. Ah! Why? I said that I want the double of 
dimensions. The first one had 60 per 60 and this one has to have 120 per 120. 
Right? 

 
An interesting point here is their teacher’s care to avoid any evaluative comments on 
their work. She asks challenging questions as she seeks to encourage the students to 
realise their mistake (Turns 18, 20, 22, 24, 26, and 28). Their teacher wants these 
students to question themselves about what they did. Thus, she chooses to ask them 
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questions and to pretend she does not understand what they did and why they did it 
this way (Turns 18 and 20). But her tone of voice is a kind one, she smiles from time 
to time, the interaction has an easy-going mood, and students, although paying 
attention, also have a smiling face. 
As we can observe, J participates actively in this discussion, in spite of her usual 
introverted mood and her lack of confidence in her competencies (Turns 19, 23, 25 
and 27). She believes on what she did with N. 

29 J: Right! It is impossible! 
30 T: Impossible!? 
31 N: The teacher wants the double of this one. So, we have to add… we have to 
divide batik for all sides!? 
32 J: What!? 
33 T: To divide batik for all sides!? I don’t understand. 
34 J: I don’t understand it either.  
35 N: I don’t understand it too. 
 

J does not understand what their teacher told them, and thus she considers this 
problem impossible (Turn 29). Her attitude illuminates her lack of confidence and 
persistence in the activity, when she fails. This situation makes their teacher look for 
other alternative ways to promote students’ interest and increase their positive 
academic self-esteem.  

36 T: Let’s think a little bit more. You are saying that … I think that you already 
understood that if you put another batik here… the other is the double, isn’t it?...  
37 J: If we put here (down side), it is not enough. It isn’t 120. 
38 T: [We can’t understand] 
39 J: But, here (down side) is not enough. It is 60. 
40 T: And? You are about to have a square. 
41 N: It is a square. 
42 T: In the question they say that it is a square after we cut the batik. Think a 
little bit more. 
 

Facing students’ doubts and this impasse, their teacher decides to change the 
direction of the resolution because she wants them to go on trying to solve this 
problem. But, she starts from what she believes the students already understood (Turn 
36). J’s interest seems to increase during this interaction. She participates actively in 
the discussion. But, even more important, she goes on trying to solve this task when 
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the teacher goes away again. Thus, although this episode ends without a resolution, 
students’ discussion around that question continued. During the general discussion 
(whole group discussion) J went to the blackboard and was able to explain to their 
colleagues their solving strategy. She did it in a convincing way, explaining their 
solving strategy clearly and she was even able to answer to two colleagues doubts. 
Thus, J showed different I-positioning as mathematics student during this resolution. 
Basically, she passed from a non-confident I-positioning, typical of a low achieving 
student, to a confident I-positioning, that let her be considered a competent peer in 
the resolution of this task.  
FINAL REMARKS 
To get students’ engagement a teacher needs some effort and creativity. Students’ 
access to the rules of the didactic contract can help them understanding their role in 
that particular classroom and at school. It also facilitates facing the academic tasks in 
a confident and responsible way. As we could observe both N and J knew the rules of 
the didactic contract. They discussed their reasoning to find a consensus and they 
asked for their teacher’s help only when they couldn’t solve an impasse.  
The teacher’s role is another important feature. In this episode we could observe a 
teacher that assumes a mediating role. She did not tell students the right answer. She 
helped them to realise their mistake and she gave them assistance in order to facilitate 
their progress in their solving strategy. This teacher believed in the students’ 
competencies and she aimed at facilitating the mobilisation and development of other 
students’ competencies. 
The nature of the task is another relevant feature to achieving students’ engagement. 
In this episode the task was about batiks, which students elaborated in previous 
classes. The social marking of the task helped students’ understanding of the task. As 
they elaborated batiks, they knew the process of elaboration and they were able to 
give a meaning to this mathematical task. Thus, the social marking of the task 
facilitated students’ learning processes and also their knowledge transition from one 
situation (elaborating batiks) to another (mathematics class, solving problems).  
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Abstract 
This paper considers the field of enquiry called ethnomathematics and its role within 
mathematics education. We elaborate on the shifted meaning of ‘ethnomathematics’. 
This “enriched meaning” impacts on the philosophy of math education. Currently, 
the concept is no longer reserved for ‘nonliterate’ people, but also includes diverse 
mathematical practices within western classrooms. Consequently, maths teachers are 
challenged to handle people’s cultural diversity occurring within every classroom 
setting. Ethnomathematics has clearly gained a prominent role, within Western 
curricula, becoming meaningful in the exploration of various aspects of mathematical 
literacy. We discuss this enriched meaning of ethnomathematics as an alternative, 
implicit philosophy of school mathematical practices. 
 
Key-words: Ethnomathematics, Diversity, Politics, Philosophy, Values. 
INTRODUCTION 
Until the early 1980s, the notion ‘ethnomathematics’ was reserved for the 
mathematical practices of ‘nonliterate’ – formerly labeled as ‘primitive’ – peoples 
(Ascher & Ascher, 1997). What was needed was a detailed analysis of the 
sophisticated mathematical ideas within ethnomathematics, which it was claimed 
were related to and as complex as those of modern, ‘Western’ mathematics. 
D’Ambrosio (1997), who became the “intellectual father” of the ethnomathematics 
program proposed “a broader concept of ‘ethno’, to include all culturally identifiable 
groups with their jargons, codes, symbols, myths, and even specific ways of 
reasoning and inferring”. Currently, as a result of this change within the 
ethnomathematics discipline, scientists collect empirical data about the mathematical 
practices of culturally differentiated groups, literate or not. The label ‘ethno’ should 
thus no longer be understood as referring to the exotic or as being connected with 
race. This changed and enriched meaning of the concept 'ethnomathematics' has had 
its impact on the philosophy of mathematics education. From now on, 
ethnomathematics became meaningful in every classroom since multicultural 
classroom settings are generalized all over the world. Every classroom nowadays is 
characterized by (ethnical, linguistic, gender, social, cultural …) diversity. Teachers 
in general but also math teachers have to deal with the existing cultural diversity 
since mathematics is defined as human and cultural knowledge as any other field of 
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knowledge (Bishop 2002). The shifted meaning of ethnomathematics into a broader 
concept of cultural diversity became meaningful within the community of researchers 
working on the topic of ethnomathematics, multicultural education and cultural 
diversity. Where the topic was absent at the first two conferences of the Conference 
of European Research in Mathematics Education (CERME 1, 1998; CERME 2, 
2001), the topic appeared at CERME 3 (2003) as Teaching and learning mathematics 
in multicultural classrooms. At CERME 4 (2005) and CERME 5 (2007) the working 
group was called Mathematics education in multicultural settings. At CERME 6 
(2009) the working group was called Cultural diversity and mathematics education. 
From now on, there is an explicit consideration to the notion of cultural diversity.  
DEALING WITH CULTURAL DIVERSITY IN THE CLASSROOM 
Ethnomathematics applied in education had a Brazilian origin, but it eventually 
became common practice all over the world. It has been extended from an exotic 
interpretation to a way of intercultural learning that is applicable within any learning 
context. Dealing with cultural diversity in the classroom is the universal context 
within which each specific context has its place. 
The meaning of the ethno concept has been extended throughout its evolution. It has 
been viewed as an ethnical group, a national group, a racial group, a professional 
group, a group with a philosophical or ideological basis, a socio-cultural group and a 
group that is based on gender or sexual identity (Powell 2002, p.19). This list could 
still be completed but since lists will always be deficient, all the more because some 
distinctions are relevant only in a specific context, we use the all-embracing concept 
of cultural diversity. With respect to the field of mathematics, and in line with 
Bishop’s (2002) consideration on mathematics as human and cultural knowledge, 
there appears to be a change in the meaning of ethnomathematics as diversity within 
mathematics and within mathematical practices. This view enables us to see the 
comparative culture studies regarding mathematics that describe the different 
mathematical practices, not only as revealing the diversity of mathematical practices 
but also to emphasize the complexity of each system. In addition there is interest in 
the way that these mathematical practices arise and how they are used in the everyday 
life of people who live and survive within a well-defined socio-cultural and historical 
context. Consequently there has to be a translation of this study to mathematics 
education where the teacher is challenged to introduce the cultural diversity of pupil’s 
mathematical practices in the curriculum since pupils also use mathematical practices 
in their everyday life. 
This application exceeds the mere introduction in class of the study of new cultures 
or – to put it dynamically – new culture fields (Pinxten 1994, p.14). These are the 
first ‘ethno mathematical’ moves that were made, even before dealing with cultural 
diversity arose. Diversity within mathematical practices was considered as a practise 
of the ‘other’, the ‘exotic’. It was not considered relevant to mathematics pupils from 
a westernised culture. That is why the examples regarding mathematics (and adjacent 
sciences) are an enquiry of all kinds of exotic traditions such as sand drawings from 
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Africa, music from Brazil, games such as Patience the way it is played in 
Madagascar, the arithmetic system of the Incas or the Egyptians, the weaving of 
baskets or carpets, the Mayan calendar, the production of dyes out of natural 
substances, drinking tea and keeping tea warm in China, water collection in the 
Kalahari desert, the construction of Indian arrows, terrace cultivation in China, the 
baking of clay bricks in Africa, the construction of African houses. The examples are 
endless (Bazin & Tamez 2002). Notwithstanding the good intentions of these and 
similar projects, referring to Powell & Frankenstein (1997) we would like to 
emphasize that these initiatives may well turn into some kind of folklore while 
originally intending to offer intercultural education. 

However, we also stress that we are not advocating the curricular use of other people’s 
ethnomathematical knowledge in a simplistic way, as a kind of “folkloristic” five-minute 
introduction to the “real” mathematics lessons. (Powell & Frankenstein 1997, p.254) 

In line with the empirical research by Pinxten & François (2007) on mathematical 
practices in classroom settings, one can prove many appropriate examples that pupils’ 
mathematical practices may be used in class, not as some kind of exoticism but as the 
utilization of a mathematical concept. Starting from pupils’ mathematical knowledge 
and their everyday mathematical practices is a basic principal of the new orientation 
towards realistic mathematics education and the development of innovative 
classroom practices (Prediger 2007). The question remains how one can move from a 
teacher centered learning process towards a pupil centered learning process where 
pupils’ mathematical practices can enter the classroom. Cohen & Lotan (1997) 
describe how interactive working can be structured and they also explain the benefits 
of interactive learning in groups to deal with diversity. For that purpose the Complex 
Instruction theory was developed which they implemented in education. Meanwhile 
this didactic has had an international breakthrough in Europe, Israel and the United 
States and it has been elaborated to the didactic of Cooperative Learning in 
Multicultural Groups (CLIM) (Cohen 1997: vii). This teaching method has been 
tested in a number of settings, in distinct age groups and with regard to different 
curricula (Cohen 1997, Neves 1997, Ben-Ari 1997). Besides the acquisition of 
mathematical contents was part of this. Complex Instruction is a teaching method 
with equality of all pupils as its main objective. This teaching method tries to reach 
all children and tries to involve them in the learning process, irrespective of their 
diversity (François & Bracke 2006). In order not to peg cultural diversity down to a 
specific kind of diversity Cohen (1997) in this context speaks of working in 
heterogeneous groups. Heterogeneity can be found in every group structure. Even a 
classroom is characterized by a diverse group of pupils where every pupil has in 
some way his or her everyday mathematical practices. If pupil centered learning is 
taken seriously, teachers are challenged to deal with this present mathematical 
practices while teaching mathematics. In this way, ethnomathematics became a way 
of teaching mathematics where cultural diversity of pupils’ everyday mathematical 
practices art taken into account (François 2007). 
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ETHNOMATHEMATICS IN EVERY CLASSROOM 
The extended notion ethnomathematics as dealing with pupils’ everyday 
mathematical practices has equality of all pupils as its main objective. 
Ethnomathematics becomes a philosophy of mathematics education where 
mathematical literacy is a basic right of all pupils. The teaching process tries to reach 
all pupils and tries to involve them in the learning process of mathematics, 
irrespective of their cultural diversity. All pupils are equal. This notion of 
mathematics for everyone fits in with the ethical concept of pedagogic optimism that 
is connected with the theory of egalitarianism. This ethical-theoretical foundation on 
which the project of equality within education is based, assumes that the equality is 
measured at the end of the line. As reported by the justice theories of John Rawls 
(1999) and Amartya Sen (1992) pupils’ starting positions can be dissimilar in such a 
way that a strictly equal deal will prove insufficient to achieve equality. A 
meritocratic position – which measures the equality at the start of the process – thus 
cannot fully guarantee equal chances (Hirtt, Nicaise & De Zutter 2007). An 
egalitarian position starts from a pedagogic optimism and it needs to take into 
account the diversity of those learning in order to give equality maximum chances at 
the end of the line. 
By extending the notion ethnomathematics to cultural diversity and mathematics 
education, the distinction between mathematics and ethnomathematics seems to 
disappear. Hence the critical question can be raised whether the achievements of 
ethnomathematics will not become lost then. On the contrary the distinction between 
ethnomathematics and mathematics can only disappear by acknowledging and 
implementing the ethnomathematics’ achievements in the mathematics education. 
The issue on the distinction between ethnomathematics and mathematics has been 
raised before within the theory development of ethnomathematics (Setati 2002). 
Being critical on the dominant Western mathematics was the basis out of which 
ethnomathematics has developed and now the time is right to raise the critical 
questions also internally, within the field of ethnomathematics itself. What exactly 
distinguishes ethnomathematics from mathematics? Setati raises this question in a 
critical review on the developments within the ethnomathematics as a theoretical 
discipline that dissociates and distinguishes from mathematics (Setati 2002). Setati 
sees mathematics as a mathematical practice, performed by a cultural group that 
identifies itself based on a philosophical and ideological perspective (Setati 2002). 
Every maths teacher is supposed to use a series of standards that are connected with 
the profession and with obtaining the qualification. The standards are philosophical 
(about the way of being), ideological (about the way of perceiving) and 
argumentative (about the way of expressing). Both mathematics and 
ethnomathematics are embedded in a normative framework. So the question can be 
raised as to whether the values of mathematics and ethnomathematics indeed are that 
distinctive. 
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It cannot be denied that ethnomathematics was based on an emancipatory and critical 
attitude that promotes the emancipation and equality of discriminated groups (Powell 
& Frankenstein 1997). This general idea of emancipation can also be found in the 
UNESCO’s view on education. Moreover we see in its mission a tight connection 
with the socio-economic development, with working on an enduring and peaceful 
world, while respecting diversity and maintaining human rights. Education here is 
obviously connected with the political factor. 

UNESCO believes that education is key to social and economic development. We work 
for a sustainable world with just societies that value knowledge, promote a culture of 
peace, celebrate diversity and defend human rights, achieved by providing education for 
all. The mission of the UNESCO Education Sector is to provide international leadership 
for creating learning societies with educational opportunities for all populations; provide 
expertise and foster partnerships to strengthen national educational leadership and the 
capacity of countries to offer quality education for all. (UNESCO 1948) 

Taking into account these general stipulations we have to conclude that the explicit 
values of the general education objective connect to the values of equal chances for 
all pupils which are central within ethnomathematics. Consequently the expansion of 
ethnomathematics as a way of teaching mathematics which takes the diversity of 
pupils’ mathematical practices into account can be justified. There is a kind of 
inequality in every group and the real art is to learn to detect the skins of inequality 
and the skins of cultural diversity. Instead of a depreciation of the concept 
‘ethnomathematics’ this extended notion could mean a surplus value in situations 
where heterogeneity and cultural diversity are less conspicuous. 
Within ethnomathematics education two aspects are highlighted. First there is the 
curriculum’s content. Often this is the first step when implementing 
ethnomathematics. Besides the mathematics that can be found in the traditional 
curriculum, there will now be additional space to be introduced to more exotic or 
traditional mathematics practices. Powell & Frankenstein (1997) also emphasize this 
aspect in their definition of the enrichment of a curriculum through 
ethnomathematics. Stressing other mathematical practices offers the opportunity to 
gain a better perception in the own mathematical practice and its role and place in 
society (D’Ambrosio 2007a). It also offers the opportunity to philosophize and 
critically reflect on the own mathematical practice. In language teaching it goes 
without saying that it is better to learn more than one language. It broadens the 
outlook on the world and offers a better adaptation to dealing with other people in 
this globalized world. Knowledge of several languages is undoubtedly an advantage 
and besides it broadens the knowledge of the mother tongue. This comparison could 
even be extended to the mathematics education where knowledge of mathematical 
practices of several cultural contexts and throughout time proves to be advantageous. 
A second aspect within ethnomathematics is the didactics, the way that the learning 
process is set up. Here an interactive approach is crucial (Cohen 1997, César 2009). 
The two aspects obviously have mutual grounds. An interactive approach results in 
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contents being defined also by the learning with an active participation in the learning 
process. This aspect is strongly emphasized by researchers who investigate the 
integration of so-called traditional groups within the academic context. This is 
expressed as one of Graham’s key questions in his enquiry into mathematics 
education for aboriginal children: what do the children bring to school? (Graham 
1988, p.121). With the extended notion ethnomathematics as cultural diversity and 
mathematics education and with the emphasis on dealing with pupils’ everyday 
mathematical practices, ethnomathematical practice is now closer to the social 
environment of the pupil and unlinked it from its original (exotic) cradle. Both the 
theory and practice of ethnomathematics have opened up the eyes and broadened the 
minds. It immediately answers the question as to what exactly could be of benefit to 
the highly-educated countries – with their outstanding results in international 
comparative investigations – regarding ethnomathematics as it originally developed, 
as a critical and emancipation theory and as a movement that aimed to give all pupils 
equal chances. In a final section about ethnomathematics we would like to link up 
mathematics education and politics. 
ETHNOMATHEMATICS AS HUMAN RIGHT 
D’Ambrosio, who is the mathematician and educationalist of the mathematics on 
which ethnomathematics is based, situates mathematics education within a social, 
cultural and historical context. He can also be considered the first to explicitly link 
mathematics education and politics. Mathematics education is a lever for the 
development of the individual, national and global well-being (D’Ambrosio 2007a, 
2007b). In other words the teaching and learning of mathematics is a mathematical 
practice with obviously a political grounding. D’Ambrosio advances the political 
proposition that mathematics education should be accessible to all pupils and not only 
to the privileged few. This proposition has been registered in the OECD/PISA report, 
which is the basis for the PISA-2003 continuation enquiry. 

Mathematical literacy is an individual’s capacity to identify and understand the role that 
mathematics plays in the world, to make well-founded judgements and to use and engage 
with mathematics in ways that meet the needs of that individual’s life as a constructive, 
concerned and reflective citizen. (OECD, 2004, p.37) 

This specification of mathematical literacy clearly implies that this form of literacy is 
a basic right for every child, such that it gets a chance to participate to the world in a 
full, constructive, relevant and thoughtful way. We will see this proposition recurs 
later in the essays of Alan J. Bishop (2006) where he demonstrates the link between 
mathematics, ethnomathematics, values and politics. 
Mentioning mathematics education and education of values in one and the same 
breath does not sound unambiguous because mathematics is undeniably being 
perceived as non-normative. 

It is a widespread misunderstanding that mathematics is the most value-free of all school 
subjects, not just among teachers but also among parents, university mathematicians and 
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employers. In reality, mathematics is just as much human and cultural knowledge as any 
other field of knowledge, teachers inevitably teach values […]. (Bishop 2002, p.228) 

It is predominantly within D’Ambrosio’s’ ethnomathematics research program that 
the link of mathematics and mathematics education with values is extended to the 
political domain, not in the least with the intellectual father of ethnomathematics. 
According to D’Ambrosio still too many people are convinced that mathematics 
education and politics have nothing in common (D’Ambrosio 2007a). He will take 
the edge of this cliché. In his recent work D’Ambrosio (2007a, 2007b) departs from 
the Universal Declaration of Human Rights where articles 26 and 27 highlight the 
right to education and to share in scientific advancements and their benefits.1 This 
declaration concerning education is further developed and confirmed within the 
UNESCO’s activities by means of the World Declaration on Education for All in 
1990 and ratified by 155 countries. Finally the declaration has been applied in 
mathematical literacy in the OECD/PISA declaration of 2003. D’Ambrosio regrets 
that these declarations are not well-known by maths teachers since they play a key 
role in the emancipation process. In line with the World Declaration, ‘mathematics 
education for all’ implies a critical reflective way of teaching mathematics. 
According to D’Ambrosio, this way of teaching does not receive sufficient 
opportunities. Following Bishop (1997) he criticizes the technically-oriented 
curriculum with its emphasis on technique and drill and where history, philosophy 
and critical reflection are not given a chance. D’Ambrosio develops three concepts to 
focus on in a new curriculum regarding the usage of the international (UNESCO) 
emancipatory objectives - literacy, matheracy and technoracy. 
Literacy has to do with communicative values and it is an opportunity to contain and 
use information. Here both spoken and written language is concerned but so are 
symbols and meanings, codes and numbers. Mathematical literacy is undoubtedly a 
part of it. Matheracy is a tool that offers the chance to deduce, to develop hypotheses 
and to draw conclusions from data. These are the base points for an analytical and 
scientific attitude. Finally there is Technoracy which offers the opportunity to 
become familiar with technology. This does not imply that every pupil should or even 
could get an understanding of the technological developments. This elementary form 
of education needs to guarantee that every user of a technology should get to know at 
least the basic principles, the possibilities and the risks in order to deal with this 
technology in a sensible way or deal not at all with it. 
With these three forms of elementary education, which can be developed throughout 
the ethnomathematics research program, D’Ambrosio wants to meet the Universal 
Declaration of the Human Rights that relate to the right to education and the right to 
the benefits of the scientific developments. 
CONCLUSION 
This paper considered the shifted meaning of ethnomathematics and its role within 
mathematics education. Ethnomathematics is not longer reserved for so-called 
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nonliterate people; it now refers to the cultural diversity in mathematics education. 
Math teachers are therefore challenged to handle pupils’ diverse everyday 
mathematical practices. In line with the UNESCO declaration (1948) on education 
and the OEDC declaration (2004) on mathematical literacy, ethnomathematics clearly 
gained a more prominent role. Within Western curricula, ethnomathematics became 
meaningful to explore as an alternative, implicit philosophy of school mathematical 
practices. The extended notion of ethnomathematics as dealing with pupils’ cultural 
diversity and with their everyday mathematical practices brings mathematics closer to 
the social environment of the pupil. Ethnomathematics is an implicitly value-driven 
program and practice on mathematics and mathematics education. It is based on an 
emancipatory and critical attitude that promotes emancipation and equality (Powell & 
Frankenstein 1997). Where the so-called academic Western mathematics still is 
locked in the debate on whether it is impartial or value-driven, the ethnomathematics’ 
purposes stand out clearly right from the start. The historian of mathematics Dirk 
Struik postulated the importance of ethnomathematics. He validates 
ethnomathematics as both an academic and political program. There mathematics is 
connected to its cultural origin as education is with social justice (Powell & 
Frankenstein (1999). D’Ambrosio even puts it more sharply: Yes, ethnomathematics 
is political correctness (D’Ambrosio 2007a, p.32). 
The implication for research is threefold. First, research has to reveal the (explicit and 
implicit) values within mathematics, mathematical practices and mathematics 
education. Second, research has to investigate thoroughly the use and integration of 
pupils’ mathematical practices in the curriculum. Third, pupils’ daily mathematical 
practices have to be studied. 
NOTES 
1. Article 26. (1) Everyone has the right to education. Education shall be free, at least in the elementary and 
fundamental stages. Elementary education shall be compulsory. Technical and professional education shall be made 
generally available and higher education shall be equally accessible to all on the basis of merit. (2) Education shall be 
directed to the full development of the human personality and to the strengthening of respect for human rights and 
fundamental freedoms. It shall promote understanding, tolerance and friendship among all nations, racial or religious 
groups, and shall further the activities of the United Nations for the maintenance of peace. (3) Parents have a prior right 
to choose the kind of education that shall be given to their children. Article 27. (1) Everyone has the right freely to 
participate in the cultural life of the community, to enjoy the arts and to share in scientific advancement and its benefits. 
(2) Everyone has the right to the protection of the moral and material interests resulting from any scientific, literary or 
artistic production of which he is the author. (United Nations Educational, Scientific and Cultural Organization. 1948) 
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DIFFERENT THEORETICAL PERSPECTIVES AND APPROACHES 
IN MATHEMATICS EDUCATION RESEARCH - STRATEGIES AND 

DIFFICULTIES WHEN CONNECTING THEORIES 
Susanne Prediger1, Marianna Bosch2, Ivy Kidron3, John Monaghan4, Gérard Sensevy5 
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A large diversity of different theoretical perspectives and research paradigms charac-
terize the European mathematics education research community. Since CERME 4, 
the ‘Theory Working Group’ has explored differences between these theories, their 
expression in different research practices and possible ways to deal with this diversity 
(see Artigue et al. 2006, Bosch et al. 2008 and Prediger et al. 2008).  
Exploiting diversity as a rich resource for grasping complex realities (Bikner-
Ahsbahs & Prediger 2006) requires developing strategies for connecting theories or 
research results obtained using different theoretical approaches. In 2007, the Theory 
Working Group continued its efforts in this direction and reflected on opportunities 
and difficulties of what we call ‘networking theories’. We noted different intentions 
behind researchers efforts to network theories. In some cases, the goal is to investi-
gate the complementary insights that are offered when we analyze given data with 
different theories (Kidron, 2008). In other cases, the intention is to explore the in-
sights offered by each theory to the other theories and, at the same time, to highlight 
the limits of such an endeavour (Kidron et al., 2008; Radford, 2008).  
The call for papers for the Theory Working Group at CERME 6 was guided by the 
idea of avoiding an overly abstract discussion without a concrete basis. That is why 
we called for papers with concrete case studies in which two or more theoretical ap-
proaches were connected. After an intensive peer review process, 15 substantial pa-
pers were chosen for discussion in the working group and for publication in these 
proceedings. The most important issues arising in the discussion of these case studies 
can be sketched under some key words structured according to the landscape of net-
working strategies as proposed by Prediger, Bikner-Ahsbahs & Arzarello, 2008).  
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Main issues arising in comparing and contrasting: Dimension of comparison 
Comparing theories requires categories for comparison. A variety of categories have 
been suggested by Prediger, Arzarello & Bikner-Ahsbahs (2008). The discussion this 
year was influence by the following: 

• the delimitation of empirical data and the kind of questions that arise, as well as 
the concrete formulation of results (see Ligozat & Schubauer-Leoni in this vol-
ume); 

• the distinction between theoretical approaches and perspectives (discussed by 
Wedege in this volume); 

• an ontological characterization of theories such as that proposed by Winsløw (in 
this volume) called the GOA-Model, which distinguishes theories according to na-
ture of their objects of research, namely groups (G) structured by certain relation-
ships, the organisation (O) of knowledge and practice, and artefacts (A) used to 
access and communicate in and about O. 

• an epistemological characterization of theories such as that proposed by Radford 
(2008), distinguishing between their basic principles, their methodology, and the 
paradigmatic questions that are approached. 

Main issues arising in combining and coordinating: Compatibility 
In order to combine or coordinate different theories, it appears to us that the theories 
must, in some sense, be compatible; but what exactly does this mean? In working 
group discussions of the case studies presented in the papers, different levels were 
posited as possible locations for potential incompatibilities:  

• the level of general principles, e.g. epistemological principles about how to inter-
pret mathematical knowledge;  

• the level of basic ‘paradigms’, the potential danger of hastily combining stability-
oriented with transformation–oriented perspectives; 

• the level of central constructs: although the sense or denotation of constructs may 
not be identical over different theories, they should not be contradictory (Gellert in 
this volume shows an interesting example of networking around the construct 
“rules”); 

• the level of practical consequences: if coordinating theories in empirical work 
leads to contradictory practical consequences with regard to learning, then there is 
a need to continue reflection (see Bergsten & Jablonka in this volume); 

• the level of ontology: this does not seem to present as many difficulties as some of 
the above since different grain sizes of analyses and focuses might help in com-
bining theories (see, for example, Jungwirth in this volume).  

In the working group discussion it was suggested that when paradigmatic research 
questions and/or objects diverge in different perspectives, the combination of these 
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perspectives in the course of analysing an empirical phenomenon might produce inc-
ommensurable, but not contradictory, results, as shown by the paper of Bergsten & 
Jablonka (in this volume). This raises the question of whether it is acceptable that dif-
ferent results can, without contradiction, lead to radically opposed interpretations. 
On the other hand, we found some aspects that facilitate the connection of theories. 
Theories might be linked more easily when they are not too strong with respect to 
their grammar or their methodologies (i.e. when they are at an early level of elabora-
tion) or when they are complementary with respect to their hypothetical scope or em-
pirical load (see Jungwirth in this volume). 
Main issue arising in integrating and synthesizing: Substrategies 
The working group discussion regarding strategies for integrating and synthesizing 
theories led to the tentative proposal to identify substrategies which included: ‘brico-
laging’ (that is adapting non-conflicting principles, notions or local analysis methods 
of different grand theories); ‘subordinating’ (see Gellert); ‘zooming in and out’ (see 
Jungwirth); and ‘metaphorical structuring’, the use of single concepts based on meta-
phors from one theory that converge into another (see Gellert with regard to rules).  
As Radford (2008) stated, although connections between theories are possible, there 
is a limit to what can be connected and this limit is determined by the goal of the con-
nection and the specificities of the theories that are being connected. In the following, 
we differentiate between different goals in the networking process. 
Networking with different aims 
In order to link theories beyond comparing and contrasting, we discussed the aims of 
the papers.:  

• Some of the papers propose networking strategies with the aim of understanding an 
empirical phenomenon that seems difficult to entirely grasp within one single the-
ory. These can be described as having an initial combining strategy that ends up 
with the construction of local coherence between the notions or principles used. In 
this sense, Arzarello, Bikner and Sabena (in this volume) combine theories for ana-
lysing data about a failed teaching strategy and integrating them (very) locally for 
the purpose of making sense of the situation described. The paper of Schäfer (in 
this volume) combines theories for constructing a local theory that improved his 
potential to approach a ‘practical’ question about low achieving students. Wedege 
(in this volume) presents a study in which some aspects of two theoretical perspec-
tives are coordinated. Stadler (in this volume) coordinates different perspectives 
within one empirical study, describing how a research interest in the transition be-
tween mathematics studies at secondary and tertiary levels generates the need for 
different theoretical approaches.  

• A different goal presented by some papers is to network with the aim of dealing 
with new problems. For example Ligozat & Schubauer-Leoni’s and Sensevy’s pa-
pers are hybrids which borrow constructs from distinct theories for local integra-
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tion with conversions in order to address specific research problem, the issue of 
joint action of the teacher and the students. 

• Networking is also an important tool to elaborate existing theories with the aim of 
increasing their scope by questioning them from the outside. Artigue, Bosch, 
Gascón & Lenfant (in this volume) show how a theory can evolve locally when an 
effort is made to approach a question formulated by another theory. The strategy 
here is to work within one theoretical framework and develop it in interaction with 
others, for instance by enlarging the set of paradigmatic research questions or its 
empirical unit of analysis. The work of Jungwirth (in this volume) presents a 
method of synthesizing local theories for ‘zooming in and out’ of the data.  

• Other papers consider networking with the aim of satisfying the need for an 
enlarged framework in relation to some new domain of research, assuming the ex-
isting frames are insufficient. For instance, Lagrange & Monaghan (in this volume) 
incorporated Saxe’s four parameters model in order to understand the situation of 
teachers using technology. To these authors, the existing frameworks they consid-
ered for viewing teachers’ activities in technology-based lessons are insufficient 
because they focus on teachers’ established routines but technology interferes with 
these routines.  

Different kinds of dialogues 
Within these aims we may distinguish different kinds of dialogues between theories. 
We use the word ‘dialogue’ not only to describe that which enables mutual under-
standing in the way we communicate our theories but also to emphasize differences 
in the use of language. Different kinds of dialogues were offered in the papers by Li-
gozat & Schubauer-Leoni, by Sensevy and by Artigue et al. One important charac-
terization is that the dialogues in these papers are between neighbouring approaches - 
theoretical approaches which were born in the same educational and didactic culture, 
which may be considered as belonging to the same ‘paradigm’. Even so, when we 
explore the dialogues in depth important differences between the theories can be seen 
and some interesting questions arise: 

• Do these “neighbouring approaches” use the same words with the same meanings? 
For instance, is the word milieu in the Anthropological Theory of the Didactic 
(ATD) equivalent to the a didactic milieu in the Theory of Didactic Situations 
(TDS)? The same question could be asked in relation to other terms, e.g. institu-
tion or contract. The question could arise also for theories which are not necessar-
ily neighbouring approaches. 

• Do the different theories deal with different ways of addressing similar issues? For 
instance, comparing the Joint Action Theory in Didactics (JATD), as described in 
both Ligozat & Schubauer-Leoni and Sensevy’s papers, with ATD and TDS, we 
may ask what is the difference between ATD media milieu dialectic, TDS a didac-
tic and didactic situations, and JATD dialectic between contract and milieu. Sen-
sevy states that in order to situate JATD in relation to TDS and ATD it can be ar-
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gued that whereas these two theories initially focus, from a logical point of view, 
on the nature of knowledge (what is the knowledge which is taught?), JATD ini-
tially focuses on the diffusion process (what is going on when a specific piece of 
knowledge is taught?). The aim of the networking is to construct a new theory 
JATD which makes use of existing theories, ATD and TDS. Therefore we may 
ask what supplementary insights and/or what new questions/problems are offered 
to ATD and TDS by JATD’s analysis of the diffusion process? For example, the 
JATD may raise the following question: within the contract-milieu dialectic how 
may the teacher link the topogenesis and the chronogenesis processes with respect 
to the piece of knowledge at stake, and how might these processes lead the 
teacher, in specific cases, to enact a new learning game? In this question there are 
some notions from ATD and TDS which are reconceptualized in that they are used 
in a new way, and there is a new notion (learning game). From an abstract view-
point, this kind of question is not impossible in ATD and TDS, and it is clearly 
understandable in these two theories. But the probability that this question is 
raised in these two theories is not high because their fundamental concerns are not 
focused on the problems of didactic joint action even though they are interested in 
didactic action. 

In Artigue et al. (in this volume) the notion of ‘minimal unit of analysis’ appears as a 
basic aspect of the modelling of educational phenomena proposed by each theory. 
Starting from the way each perspective reformulates a given research question, we 
could specify what units of analysis are considered in each case and how they can be 
connected. The authors add that this could be a good way to improve our capacity for 
describing and comparing not only the concrete research or practical problem formu-
lated by each theory but also the types of problems that can be proposed, the kind of 
empirical data needed and the set of ‘acceptable answers’ that can be provided. When 
we choose a specific unit of analysis, we make decisions not only about the empirical 
data we consider but also about our different priorities with regard to the focus of the 
analysis (Bosch & Gascón, 2005).  
 
Final remarks 
The discussions that took place in our working group about affordances and con-
straints of different networking strategies made us aware that the theoretical frame-
works used in our research are ‘living entities’ that evolve through our studies. Some 
have been around and have developed for many decades, others are less mature. They 
are our working tools, providing us with new ways of looking at reality, new descrip-
tions of empirical phenomena, new methods of analysis and new possible answers to 
the difficulties of teaching and learning mathematics. They are imbedded in research-
ers’ social, cultural and institutional inheritances and their development is also im-
pregnated with the personal interactions between researchers and the cooperative 
work done in our community. When we embody ‘theories’ into research practices 
that, at the same time, use theories and produce them, it becomes clear that our reflec-
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tions about ‘networking theories’ are methodological reflections, referring to the kind 
of tools we can or cannot use, the basis and the aim of our research, as well as the 
kind of rules we follow.  
Considering the networking of theories as the networking of research practices may 
lead us further not only in our capacity to collaborate between different groups of re-
searchers (and thus accumulate efforts and results) but also to gain insight about the 
very nature – and the rationale – of our own research in mathematics education. 
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When approaching an empirical teaching episode or data related to it, theoretical 
approaches always select and highlight some aspects in detriment of others, globally 
interpreting the episode using their own conceptual categories and methodological 
tools. Therefore, different theoretical approaches often construct different research 
problems, often making their comparison difficult or even impossible. The fact that 
the Theory of Didactic Situations and the Anthropological Theory of the Didactic 
share their main assumptions and their ‘research programme’ (in Lakatos’ terms) 
makes it easier to contrast them in the way each one reinterprets and reformulates 
the problems raised by the other. Starting with ‘neighbouring approaches’ thus ap-
pears as a sensitive way to approach the complexity of networking theories.  

According to Rodríguez et al. (2008), we assume that any strategy to compare, con-
trast or network theories has to take into account the way theories question reality and 
formulate problems about it. This assumption leads us to consider as a networking 
methodology the comparison between the reformulations proposed by different theo-
ries of a research question raised by one of them. In this case, the question emerges 
from an empirical episode and a given set of data. We start this ‘exercise’ with the 
case of two theories close to each other, the Theory of Didactic Situations (TDS) and 
the Anthropological Theory of the Didactic (ATD). We first present the context 
where this study takes place, and then analyse the exchanges between the co-authors 
of this contribution around a particular research question, before entering a more gen-
eral discussion about the potential of this methodology.   

1. THE CONTEXT FOR THIS STUDY 
This study is part of the work on the comparison of theoretical frames of a collective 
that emerged at CERME4, and whose first outcomes have been presented at 
CERME5 (Arzarello et al. 2008, Kidron et al. 2008, Prediguer 2008). Since 
CERME5, the group has orientated its work towards the development of networking 
methodologies. Different strategies are used for that purpose. One of these, which 
presents some similarity with the strategy used in the ReMath European project (Ar-
tigue 2007, Mariotti 2008), is the comparison between the formulations proposed by 
different theories when confronted to a given set of data and a research question 
raised by one of them. In our case, the research question emerged from the analysis of 
a video, which, from the very beginning, played a crucial role in the work of the 
group. It corresponds to a classroom session at grade 10 in Italy on the exploration of 
the properties of exponential functions in the Cabri-géomètre environment, and more 
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precisely to the observation of a group of two students. In a first phase of the work, 
the different teams involved in the group analysed the video from their respective 
theoretical perspectives, what made clear that all of them, except the Italian col-
leagues, could not find what they needed for completing the analysis they aimed at in 
the information initially provided: the video and some documents about the class-
room session. Each team was thus asked to make clear the kind of information it 
needed, and the demands of the different teams were discussed at a post-CERME5 
meeting. One of the results of this discussion was a questionnaire to be answered by 
the teacher in charge of the class observed. When the extra information agreed upon, 
including the teacher’s answers to the questionnaire, was disseminated, each team 
tried to complete its analysis, and the results were presented during a joint meeting in 
Barcelona. In their respective presentations, several teams referred to a particular an-
swer made by the teacher, pointing out that, from their perspective, such an answer 
raised important and non trivial issues and deserved further discussion. The question 
and the answer were the following: 

“During a lesson of this type, under what circumstances do you decide to get involved 
with a pair of students, and what kinds of things do you do?”  

“I try to work in a zone of proximal development. The analysis of video and the attention 
we paid to gestures bring me to become aware of the so called ‘semiotic game’ that con-
sists in using the same gestures as students but accompanying them with a more specific 
and precise language in relation to the language used by students. A semiotic game, if it 
is used with awareness, may be a very good tool to introduce students to institutional 
knowledge.” 

This episode of our collaborative work and the potential we soon suspected it could 
have if analysed in depth, was the source of the networking methodology we then de-
veloped. This methodology obeyed the following organization: the team working in 
TDS formulates a research problem using its own terminology; each team converts 
the problem according to its theoretical perspective; the team working in TDS com-
ments on the new formulations, looking at the generic and specific issues; each team 
works on its specific question and reflects on the process followed. 
In what follows we describe the exchanges that this methodology generated between 
the TDS and ATD perspectives, and analyse their networking potential. 

2. EXCHANGES ON “SEMIOTIC GAMES”  
2.1. A first perspective inspired by TDS 

As mentioned above, a series of comments regarding the teacher’s answer and the ar-
ticulation of some precise questions was first elaborated within the TDS perspective 
by two of the co-authors of this contribution (MA & AL). We summarize the main 
lines of their argumentation below, the teacher being denoted by T. 
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First, MA & AL observe that the answer expresses the confidence that T has in the so 
called semiotic games to face a major didactic problem: the connection between, on 
the one hand, the mathematics produced by students in an adidactic situation, through 
the interaction with the adidactic milieu of this situation,1 and on the other hand, the 
institutional mathematical knowledge aimed at. They add that this connection gener-
ally requires at least changes in the ways the mathematics at stake are expressed in 
order to progressively tune them with more conventional forms of expression; and 
that T obviously considers that he has a specific mediating role to play for making 
this connection possible and uses semiotic games as a tool for that purpose. In other 
terms, semiotic games can be considered as components of the praxeology (or more 
certainly of the different praxeologies) that T has developed in order to solve this di-
dactic task. It is interesting to point out that this last sentence uses terms coming from 
ATD and not TDS, organizing a first bridge between them. 

MA & AL then point out that this answer raises two interesting didactic issues: 

The first one is that the situations proposed to students for building new mathematical 
knowledge do not necessarily have the adidactic potential that is necessary to enable 
the students to produce the mathematics to be produced under the constrained condi-
tions of the classroom. What is achievable and achieved through an adidactic interac-
tion with the milieu is often far from allowing the teacher to easily establish a mean-
ingful connection with the mathematical knowledge aimed at. The discrepancy leads 
to different phenomena that have been discussed in TDS research (for instance Jour-
dain effects or “dédoublements de situation”), all the more as the teacher feels 
obliged to maintain the fiction that the mathematics knowledge he or she is expecting 
has to be produced by the students.  

The second one is that the situations proposed to students for building new mathe-
matical knowledge are very often what the TDS calls situations of action. They can 
lead to a linguistic activity but language issues are not their main concern. The char-
acteristics of the milieu, the feedback available, do not make the productivity of the 
interaction with the milieu strongly dependent on the language used by the students. 
This is a fundamental difference with situations of communication often associated 
with the dialectics of formulation in the TDS. 

Referring to their analysis of the video, MA &AL claim that the associated situations 
have a rich adidactic potential but also that this potential is a priori not sufficient to 
ensure the production of all the mathematical knowledge aimed at according to T’s 
answers to the whole questionnaire. They also add that, even if the students have to 
produce narratives, the three situations which can be identified in the observed ses-

                                           
1 The notion of milieu was introduced by Guy Brousseau as a main element of the Theory of Didactic Situations 
(Brousseau 1997). It refers to a system without any didactic intention that constitutes a key element of any adidactic 
situation. The reader unfamiliar with the TDS can find a very accessible introduction in Warfield (2006). 
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sion are closer to situations of action than to situations of formulation. They thus con-
clude that these situations constitute a priori good material to examine in context the 
potential and limits of semiotic games. 

They also point out the specific status of T who is an expert teacher, but much more 
than that, due to his research engagement. According to them, this means that the 
confidence he expresses in the potential of semiotic games certainly has a solid expe-
riential basis both in his personal practice and also in the practices of the research 
community he is involved in. Nevertheless, MA & AL’s personal experience leads 
them to look at these semiotic games carefully, all the more when they are said to 
provide techniques for solving what are considered difficult didactic problems, and to 
try to understand under what conditions and why they can become efficient didactic 
techniques helping teachers face the difficulties described above. 

The research question resulting from this analysis is the following: 

How to identify characteristics of the semiotic game technique that would help us to un-
derstand its potential for: 
- Compensating the possible limits of the interaction with the adidactic milieu to 

achieve the expected mathematical goals? 
- Fostering the linguistic evolution linked to the needs of institutionalization processes?  
- Identifying conditions required to activate this potential?  
How to identify possible difficulties in the management of such semiotic games and pos-
sible effects of their possible malfunctioning?    

2.2. Conversion of the research question within the ATD perspective  

The answer to this question analysed below comes from the other two co-authors of 
this contribution (MB & JG) who work in the ATD perspective. 

2.2.1. Some preliminary considerations  
The ATD describes human practices (including doing mathematics and its teaching 
and learning) in terms of praxeologies composed by two complementary folds: a 
praxis or practical block (the “know-how”) made of types of tasks and techniques to 
carry out these tasks; a logos or theoretical block (the “knowledge” in its narrow 
sense) that appears as an assemblage of discourses to describe, explain and justify the 
praxis. 2 The question formulated by MA & AL starts from a rather vague notion of 
‘semiotic game’ that, in the ATD, can be considered as a didactic technique that T 
describes as follows: “the teacher starts using ‘the same gestures as students but ac-
companying them with a more specific and precise language in relation to the lan-
guage used by students”. T’s comments on the episode also reveal some theoretical 
components explaining and justifying the use of this technique, formulated in terms 
                                           
2 For the reader unfamiliar with the ATD, see Bosch & Gascón (2006). 
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of ‘working in a zone of proximal development’. At the same time, the comments re-
fer to a type of teaching task that is supposed to be performed with this technique: 
‘introducing students to institutional knowledge’. We are thus considering a didactic 
praxeology as it is evocated by the teacher. 

Any ‘didactic problem’ (that is, a problem related to the teaching, learning, studying 
or diffusion of knowledge) can be generally identified both with a ‘teaching problem’ 
(that is, a question or difficulty that appears in the teacher’s practice and that requires 
an appropriate didactic praxeology) and with a ‘research problem’ (that is, an open 
question for research in mathematics education). In both cases the problem is formu-
lated in relation to a teaching and learning process and connected to a given mathe-
matical content (which is a mathematical praxeology or a set of mathematical 
praxeologies). In this sense, the ‘expected mathematical goal’ that appears in the for-
mulation of the question, as well as the ‘proposed institutional knowledge’ are 
mathematical praxeologies that can have different ‘size’: point, local, regional or 
even global.3 According to Bosch & Gascón (2005), the ATD postulates that the 
minimal unit of analysis of didactic processes has to contain at least a local mathe-
matical praxeology. Furthermore, this local level is considered as privileged or basic 
because, in order to be studied in an operative way, any didactic problem formulated 
beyond this level of analysis needs to be ‘projected’ into its local components. For 
MB & JG, in the ATD perspective, the initial research question can thus be situated 
in the very general problem of the study of the conditions that make the building of 
local mathematical praxeologies in a given institution possible and the restrictions 
that hinder it.  

2.2.2. The dialectic media/milieu  

At the beginning, the process of building local mathematical praxeologies can start 
from questions that arise within a point praxeology or in a small set of them. In any 
case, the driving force of the didactic process, what provokes the need to study or 
build a local praxeology integrating and completing the point praxeologies, is the 
emergence of questions that cannot be answered within the point praxeologies. How 
these questions arise in a given didactic process? What conditions are needed for a 
study community to ‘take them seriously’? What ‘media’ can help the study commu-
nity to generate provisional answers and what ‘milieu’ is available to test and modify 
these answers? These are still open questions and an in-depth analysis of what is 
called the ‘dialectic media/milieu’ seems essential to answer them.  

                                           
3 A point praxeology is generated by a unique type of tasks and is often characterized by a unique technique to deal 
with them; a local praxeology is generated by the integration of several point praxeologies within the same technology; 
a regional praxeology is obtained by coordinating, integrating or linking several local praxeologies through a common 
mathematical theory and a global praxeology is a connection of some regional praxeologies (Rodríguez et al. 2008). 
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According to Chevallard (2004), the elaboration of an answer to a real question sup-
poses ‘resources’ or ‘milieus’. In close connection with the TSD terminology, a ‘mi-
lieu’ is a system without any didactic intention in the interaction we can have with it 
during the study process. In this sense a milieu behaves as a fragment of ‘nature’. Be-
sides the notion of ‘milieu’, the ATD introduces the notion of ‘media’ as any system 
the main goal or intention of which is to supply information about a given issue. In 
any knowledge construction process a dialectics between a media providing new 
knowledge or information and a milieu able to give evidence of the validity of this 
information takes place. An extreme situation is when one takes the message coming 
from the media as it appears, without any need for testing it. The opposite side is the 
construction of knowledge from scratch, through only the confrontation with a milieu. 
The existence of a vigorous (and rigorous) dialectics between media and milieus ap-
pears to be a crucial condition for a study process not to be reduced to a simple copy 
of previously elaborated answers spread over different social institutions.  

2.2.3. Formulation of the question in the ATD frame 

(a) ‘Semiotic games’ and the limitations of the adidactic milieu 

The general didactic problem we are considering is the study of the didactic tools, 
devices or praxeologies that are necessary for the teacher to lead and for the students 
to carry out the process of building local praxeologies. With respect to the problem of 
the ‘limits of the interaction with the adidactic milieu’, it is important to notice that, 
from the perspective of the ATD, the dialectic media/milieu supposes that any milieu 
has limitations in the didactic process consisting in building a local praxeology as the 
progressive answer to a problematic initial question. Even if a given milieu can help 
contrast a partial answer to the initial question, it will always provoke the need of 
new media introducing new information having to be tested with new milieus, and so 
on. In this context, T’s ‘semiotic game’ considered as a didactic technique, may be 
interpreted as a resource used by the teacher – acting as a ‘media’ – to supply stu-
dents with praxeological components of the praxeology that is to be built.  

(b) Institutional didactic praxeologies underlying the ‘semiotic games’ 

Beyond the didactic techniques a given teacher can ‘create’, research in the ATD 
frame is interested in the didactic techniques a given institution makes available to 
the teacher and the students to manage the construction of mathematical praxeologies 
and, more particularly, to manage the media/milieu dialectics.  

This institutional dimension is essential because it strongly determines the ecological 
conditions required by these didactic techniques to normally evolve in the considered 
institutions. More particularly, the existing institutional conditions influence the kind 
of technical gestures that can usually be made in the institution, as for instance the 
‘semiotic games’. Like any other didactic technique, ‘semiotic games’ need an insti-
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tutionalised didactic technology to describe, justify, interpret and control their role in 
the didactic process. Beyond the technological level, it is also interesting to study 
what theoretical foundation supports this teaching technique and technology.  

2.3. Back to the TSD and the formulation of new research questions  

After the re-formulation of the research question raised by TDS, a second exchange 
took place between the teams. We extract from it what concerns the TDS and ATD 
perspectives. In their comments, MA & AL first point out that, considered as didactic 
techniques both in TDS and ATD, semiotic games are given two different functional-
ities according to the theoretical perspective chosen. They also suggest that from this 
situation can emerge interesting insights regarding the relationships between ATD 
and TDS: 

“According to ATD, a condition for a study process not to be reduced to a simple copy of 
previously elaborated answers is the existence of a strong dialectic between appropriate 
media and milieus. Such a theoretical position presupposes that any milieu has limitations 
in the didactic process consisting in building a local praxeology, a process which is seen 
as the progressive answer to an initial question. Within this approach, T’s semiotic games 
find their place as a didactic technique used for the management of the media/milieu dia-
lectic. We think that it will be interesting from this point of view to compare the vision 
that will be proposed concerning these semiotic games on the one hand by the ATD 
analysis projecting them in the media/milieu dialectic and on the other hand by TDS pro-
jecting them at the interface between adidactic and didactic processes. Having its origin 
in a theoretical context both distinct from ATD and TDS, it may provide a good opportu-
nity for understanding better the similarities and differences between these two theoreti-
cal approaches regarding these crucial aspects.”  

Another element stressed by MA & AL is that the conversion of the initial questions 
within an ATD perspective makes a new dimension move from the periphery to the 
centre: the institutional dimension. ATD indeed obliges the researchers to consider 
that the study of any kind of didactic technique has to be situated within an institu-
tional perspective. It cannot exist and develop without any institutional legitimation, 
any institutionalised didactic technology used to describe, justify, interpret and con-
trol its role in the didactic process. Within this perspective, what is of interest for re-
search is clearly not the study of semiotic games as practices of individual teachers 
but the study of their institutional status and ecology, of their relationships with other 
institutional techniques available to teachers for managing the dialectics between me-
dia and milieus. MA & AL add that, in this particular case, the experimental status of 
the course to which the observed session belongs means that at least two institutions 
are involved and should be considered: the research institution and the high school 
institution.  
Finally, the exchanges also make MA et AL reflect more globally on the first phase 
of the work, and the limitation of the perspective underlying it. The first phase con-
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sisted of using the TDS and ATD theoretical constructs to reflect about semiotic 
games, their didactic potential and limit, but the converse movement is also possible, 
leading to investigate what can be offered to TDS and ATD by having the ideas of 
semiotic game and the ‘zone of proximal development’ as functioning in T’s ‘practi-
cal theory’ (Ruthven, 2006) entering the scene. This converse movement can also be 
insightful regarding relationships between TDS and ATD, and the possibilities of 
networking between them.  
2.4. Main features of a didactic research problem 
At this point of the networking between TDS and ATD, and in order to pursue the 
network with other theoretical frameworks, it seems necessary to locate the dialogue 
in a new position, more general and relatively neutral from an epistemological point 
of view. Three main features seem important to distinguish. 
2.4.1. Institutional dimension of the didactic problems 
In the ATD perspective, the expression ‘semiotic game’ appears as an element of the 
teacher’s didactic theoretical discourse: it helps him interpret what happens in the 
classroom, take decisions, etc. In this sense, we are dealing with a component of the 
spontaneous didactic praxeology of a concrete teacher. A first difficulty appears 
concerning the personal or institutional dimension of this didactic praxeology. 
Institutional praxeologies (and their ecology) are the ATD’s primary object of study. 
To study them, we take as an empirical basis the personal manifestations of these 
praxeologies as well as their more collective or institutional manifestations: regular 
practices, discourses, texts, official documents, etc. The dialectic between persons 
and institutions can be made more explicit in the following terms. The institutions 
where praxeologies take place are composed of persons. Reciprocally, persons are 
always subjects of a complex of institutions and, as such, have a personal relation to 
praxeologies that can be explained to a great extent by the analysis of the institutional 
praxeologies they have encountered. 
2.4.2. Mathematics as a core component of didactic problems 
Taking into account the educational institutions’ vision of teaching and learning 
processes is a basic methodological principle of the ATD. Otherwise, we run the risk 
of taking for granted the description of phenomena proposed by each institution – 
which can furthermore differ from one institution to another. More particularly, re-
search on didactic transposition processes (Bosch & Gascón 2006) has shown the 
necessity for research to construct its own models of mathematical knowledge (or 
mathematical activities) in order to avoid taking for granted the models imposed by 
the dominant institutions. These models of mathematical knowledge should include 
the description of its construction, development and diffusion (and, thus, the mathe-
matics teaching and learning processes). 

WORKING GROUP 9

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1542



 

 

 

 

2.4.3. The importance of the unit of analysis 
Any essay to contrast or compare theories has to face a dilemma. On the one hand, to 
contrast theories, we need a ‘common’ empirical universe and, thus, we have to re-
main close to the educational institutions. On the other hand, each theoretical per-
spective constructs its own vision of this empirical universe, moving away from the 
educational institutions (to ‘escape’ from their dominant vision). This detachment is 
necessary in order to approach problems related to the teaching and learning of 
mathematics in a more operative way. However, it has always to maintain an accurate 
distance to the reality one wishes to study – and modify! 
The notion of ‘minimal unit of analysis’ (section 2.2.1) appears as a basic aspect of 
the modelling of educational phenomena proposed by each theory. Starting from the 
way each perspective formulates MA & AL’s question, we could make explicit what 
units of analysis are considered in each case and how they can be connected. This 
could be a good way to improve our capacity of describing and comparing not only 
the concrete research or practical problem formulated by each frame but also the type 
of problems that can be proposed and the kind of empirical data needed. 
3. CONCLUSION 
This contribution illustrates a methodology of ‘networking theories’ based on the 
study of a question, considering how the different research frameworks engaged in 
the networking can formulate and approach it, through a sequence of exchanges and 
progressive refinements. We have taken the interaction between TDS and ATD as a 
study case, considering two close frameworks that share the same scientific project. 
This proximity makes the networking easier because the discussion on the fundamen-
tal background of the theories can be avoided. It is important to recall that ATD 
emerged within the TDS, thus integrating the original research programme, its basic 
assumptions, the nature of the considered problems and phenomena and, more par-
ticularly, the need to question and model mathematical knowledge (that is, to take it 
as a specific object of study). Making this methodology productive with more distant 
approaches raises the necessity to make the basic assumptions of each one explicit 
and to contrast them. Another positive consequence of this methodology stems from 
the fact that the theories involved are questioned from an external construction, which 
in our case has given rise to two main contributions. The first one is the institutional 
dimension assigned (by the ATD) to the ‘semiotic games’ and the way it can be taken 
into account by the TDS. This issue has long been explored and largely discussed by 
research in both the TDS and ATD perspectives (Sensevy et al 2005). The second 
contribution is the comparison between the projections ‘didactic – adidactic’ and the 
‘media and milieu dialectics’. They emphasize an obvious difference in the way both 
theories take into account the milieu’s insufficiencies and the changes in our relation 
to knowledge led by the technological evolution. It is important to note finally that, 
till now, little advantage has been taken from the inverse networking movement: con-
sidering the contributions made by the external perspectives to the development of 
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our own one. For instance, by formulating problems which are not of first priority in 
our research programmes but the study of which can open unexpected lines of devel-
opment. We finally postulate that making explicit the position adopted by research 
perspectives to the features considered in section 2.4 constitutes an essential step for 
the networking. This position is important because it delimitates what is considered a 
‘didactic research problem’ and, consequently, contributes to characterise the object 
of study of our discipline. 
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COMPLEMENTARY NETWORKING:                                 
ENRICHING UNDERSTANDING 

Ferdinando Arzarello (*), Angelika Bikner-Ahsbahs (°), Cristina Sabena (*) 
(*) Dipartimento di Matematica, Università di Torino (Italia),                                   

(°) Fachbereich Mathematik und Informatik, Universität Bremen (Deutschland) 
Our analysis of data about one learning situation from two theoretical perspectives 
yields results that on the surface seem to be in conflict. Through networking of two 
theories we produce a fresh combined analysis tool, which deepens our understand-
ing of the data in an integrated way. We elaborate this example to make explicit our 
two theoretical approaches and our networking strategies and methods. 
INTRODUCTION 
The goal of the paper is to show how networking different theories can help re-
searches in entering more deeply into their research questions. More precisely, we 
will illustrate the limits of two theoretical approaches when used alone to analyse a 
classroom teaching situation, and the benefits of networking. As a result, data analy-
sis and learning processes understanding is strongly enriched. 
The main question faced in our research concerns how mathematical knowledge 
about the growth of the exponential function is achieved in a specific socially sup-
ported learning processes. This requires properly defining the objects of our research, 
the method and the tools for observation (Prediger et al., 2008). As to the objects, we 
distinguish two deeply linked components: the social interaction among the subjects, 
and the epistemic issues in such learning processes.  
Our networking strategy is worked out through analyses of empirical data. The same 
teacher-student-interaction is analysed from two theoretical perspectives that on the 
surface seem to be in conflict: the interest-dense situation and the semiotic bundle 
analysis. Using the former, it appears that the thought process of a student is dis-
turbed by the social interaction with the teacher. However, no disturbances appear us-
ing the latter. We will show that through adding an epistemological perspective this 
conflict can be cleared away since the results can be integrated into a common view 
deepening our insight from both theoretical perspectives. This experience will be a 
starting point for a case of local integration of the two theoretical perspectives and 
some methodological reflection concerning networking strategies and methods.  
ADOPTING TWO DIFFERENT PERSPECTIVES 
Interest-dense situations and its epistemic process 
So called interest-dense situations (Bikner-Ahsbahs, 2003) are those in which a maths 
class shows interest in the mathematical topic or activity, they occasionally occur 
within discursive processes in everyday maths lessons. In these situations the students 
become deeply involved in the mathematical activity, deepen their mathematical in-
sight constructing further reaching mathematical meanings and begin to appreciate 
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the mathematics they learn. To achieve some mathematical knowledge the students 
activate epistemic actions (actions that are executed in order to come to know more). 
Through social interactions the class collectively coordinates the epistemic process. 
In this way collective epistemic actions are constituted by social interaction. In con-
trast to non interest-dense situations, all interest-dense situations lead to the epistemic 
action of structure seeing (perceiving a mathematical pattern or rule referring to an 
unlimited number of examples).        
The genesis of interest-dense situations is supported by a special kind of social inter-
actions: The students are driven by their own way of thinking. They follow their own 
questions and ideas about the mathematical object that they want to know more 
about. In this case the students’ actions are independent of the teacher’s expectations. 
In interest-dense situations the teacher’s expectations do not control the situation. 
Rather the teacher focuses on supporting the students’ thinking. If the teacher’s be-
haviour is controlled by his own expectations the emergence of an interest-dense 
situation is interrupted, and the learning process is disturbed (Bikner-Ahsbahs, 2003). 
The ways in which the teacher and students socially interact can be analysed on the 
three levels (Davis, 1980; Beck & Meyer, 1994). Speaking, a person expresses some-
thing on three different levels. On the locutionary level he/she says something, on the 
illocutionary level, he/she tells something through the way of saying something. The 
perlocutionary level is concerned with effects: “a speaker saying something produces 
an effect on feelings, thoughts, or actions of the audience, other persons, or himself” 
(Davis (referring to Austin and Searle), 1980, p. 38). In our example, G locutionarily 
says: “for a very big variable a, when the exponential function (f(x) = ax) and this 
straight line (which he assumes), meet each other, it (meaning the straight line) ap-
proximates the function very well because...” being interrupted by the teacher’s re-
quest: “what straight line, sorry?”. By using broken language, G tells the teacher that 
(illocutionarily) he is working out his train of thought while speaking. Starting the 
sentence with “because”, he indicates on the illocutionary level that his train of 
thought is not yet finished. On the perlocutionary level we observe an effect; the 
teacher’s request. In order to comprehend how the epistemic process in a discursive 
learning situation is socially supported or hindered; the analysis of social interactions 
is done on these different levels and is complemented by an analysis of the epistemic 
process. The term “non-locutionary level” will embrace the illocutionary and perlocu-
tionary level. 
The semiotic bundle perspective 
The semiotic bundle perspective lies on two basic assumptions: 
- the teaching-learning process inherently involves resources of different kinds, in a 

deep integrated way: words (orally or in written form); extra-linguistic modes of 
expression (gestures, glances, …); different types of inscriptions (drawings, 
sketches, graphs, ...); different instruments (from the pencil to the most sophisti-
cated ICT devices), and so on (for some examples see Arzarello, 2006); 
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- such resources may play the role of signs (according to Peirce's definition1) and 

therefore can be considered as semiotic resources. 
Differently from other semiotic approaches, the semiotic bundle construct allows us 
to theoretically frame gestures and more generally all the bodily means of expression, 
as semiotic resources in learning processes, and to look at their relationship with the 
traditionally studied semiotic systems (e.g. written mathematical symbolism): 

"A semiotic bundle is a system of signs — with Peirce's comprehensive notion of sign — 
that is produced by one or more interacting subjects and that evolves in time. Typically, a 
semiotic bundle is made of the signs that are produced by a student or by a group of stu-
dents while solving a problem and/or discussing a mathematical question. Possibly the 
teacher too participates to this production and so the semiotic bundle may include also 
the signs produced by the teacher" (Arzarello et al., in print). 

In teaching-learning contexts the different semiotic resources are used with great 
flexibility: the same subject can exploit simultaneously many of them, and sometimes 
they are shared by the students and by the teacher. All such resources, with the ac-
tions and productions they support, are important for grasping mathematical ideas, 
because they help to bridge the gap between the worldly experience and the time-less 
and context-less sentences of mathematics. An interesting phenomenon that has been 
identified within such an approach is the so called semiotic game (Arzarello, 2006; 
Arzarello et al., in print). A semiotic game happens in the teacher-students interaction 
when the teacher tunes with the students' semiotic resources and uses them to guide 
the evolution of mathematical meanings. We have analysed various examples in 
which the teacher repeats a student's gesture, and correlates it with a new term or with 
the correct explication given using natural language and mathematical symbolism 
(ibid.). Semiotic games constitute therefore an important strategy in the process of 
appropriation of the culturally shared meaning of signs. 
An example analysed from the two perspectives 
In this example, students (grade 10 of a scientific oriented high school) are working 
in pair on an exploratory activity on the exponential function. They are using a dy-
namic geometry software to explore the graphs of y = ax and of its tangent line2 (a is a 
parameter whose value can be changed in a sliding bar). At a certain point the teacher 
has asked the students the following question: what happens to the exponential func-
tion for very big x? We propose a short excerpt from the interaction between the 
teacher and one pair of students (G and C) about this question.  

                                           
1 As sign or semiotic resource, we consider anything that "stands to somebody for something in 
some respect or capacity" (Peirce, 1931-1958, vol. 2, paragraph 228). 
2 The line is actually a secant line; the secant points are so near that the line appears on the screen as 
tangent to the graph. This issue has been discussed in the classroom in a previous lesson. 
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1 [00:00] G: but always for a very big this straight line 

(pointing at the screen), when they meet each others, 
there it is again…that is it approximates the, the func-
tion very well, because…  

2 T: what straight line, sorry? 
3 G: this …(pointing at the screen) this, for x very, very 

(00:14) big 
 

4 T (00:16): will they meet each other (00:17)? [suggestive 
connotation in the sense of “do you really think so?”] 

 
 
 
 
 
 
 
 
  

5 G: that is [cioè]3, yes, yes they meet each other (00:19) 
6 T: but after their meeting, what happens? 
7 G: eh..eh, eh no, it make so (00:24) 

 
 
   
 

8 T: ah, ok, this then continues (00:27), this, the vertical straight line (00:28), has a well 
fixed x, hasn’t it? The exponential function later goes on increasing the x, doesn’t it 
(00:31)? Do you agree? Or not?  

 
 
 
 
 
 
 

                                           
3 The expression "cioè" in Italian means literally "that is". Over-used by teenagers, it introduces a 
reformulation of what just said. As it is likely in this case, it can have the connotation of  "I am 
sorry but". 

00:14 G: the hand goes 
upwards 

00:16 T: pointing two 
forefingers 

00:17 T: crossing the two 
pointed forefingers 

00:19 G: two forefingers 
touching each other 

00:24 G crosses the left hand over the right 
one; T is keeping the previous gesture 

00:27 T moving right-
wards his left hand  

00:28 T: right hand 
vertically raised 

00:31 T: moving rightwards 
his right hand 
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9 G: yes […] 
10 T (addressing C): He [G] was saying that this vertical straight line (pointing at the 

screen) approximates very well (00:43) the exponential function 
11 G: that is, but for very big x (00:46) 
12 T: and for how big x? 100 billions? (00:51) x = 100 billions? 
 
 
 
 
 
 
   
 
 
13 G: that is, at a certain point…that is if the function (00:57) increases more and more, 

more and more (00:59) then it also becomes almost a vertical straight line (1:03) 
 
 
 
 
 
 
 
 
 
14 T: eh, this is what seems to you by looking at; but you 

have here x = 100 billions (01:08), is this barrier over-
come sooner or later, or not? 

 
 
         
15 G: yes 
16 T: in the moment it is overcome (01:12), this x 100 billions (01:13), how many x do 

you have at disposal, after 100 billions? (01:14) 
 
 
 
 
 
 
 01:12 T crosses left fore-

finger over right hand 
01:13 T raises his right hand 01:14 T moves right hand 

rightwards, repeatedly 

01:08 T: keeps his right hand in 
the vertical position 

00:57 G raises his left hand 
00:59 G moves his hand 

upwards 01:03 G's hand is vertical

00:46 G moved his left 
hand high wards 

[00:51 T: raised his 
hand and keeps it still] 

00:43 T raises both hands 
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17  G: infinite 
18 T: infinite… and how much can you go ahead after 100 billion? 
19 G: infinite points 
20 T: then the exponential function goes ahead for his own business, doesn't it? [01:26] 

The analysis from the perspective of interest-dense situations  
How is the emergence of an interest-dense situation supported or hindered? In line 1 
G begins to construct mathematical meanings about the growth of the exponential 
function in broken language as described above. In this moment the teacher interrupts 
him: Apologising, the teacher illocutionarily indicates that he normally would not in-
terrupt the student, but in this case an interruption is necessary. The teacher perlocu-
tionarily might want G to feel accepted, however, saying sorry indicates also that 
there is something wrong with the “straight line”. Locutionarily the teacher says: ‘tell 
me what straight line you mean’. However, G does not react on the locutionary level; 
he describes the condition for his explanation in line 1: “for very big x”; just as he 
was asked to do in the task. The teacher’s question “They will meet each other?” is 
(illocutionarily) posed in a suggestive way. Perlocutionarily, the teacher wants to get 
the answer: ‘no, they don’t meet’. However, G withstands the teacher’s demand and 
answers that they meet (5). This is supported through adopting the teacher’s finger 
crossing gesture (6, 7). On the locutionary level, we would see only the question and 
the answer. On the non-locutionary levels there is negotiation underneath. Looking 
only at the lines 1 to 5, an interest-dense situation is about to emerge.  From the the-
ory of interest dense-situation we could predict how the teacher could support or hin-
der the emergence of interest-density. Focussing on the student’s ideas he would sup-
port it, acting according to his own thinking process or his expectations he would in-
terrupt the emergence of it.  
In the sentence that follows, the teacher starts to build up an argumentation as a proof 
of contradiction following his own train of thought and not that of the student. In line 
8, he constitutes his base of argumentation. In order to include G into the process, his 
rhetorical questions “do you agree? Or not?” demands G’s agreement. Summarising 
G’s statement from line 1 grammatically more precise (10), the teacher establishes 
the statement that he wants to prove being false. G’s modification “but for very big x” 
locutionarily looks like a complementary argument, but illocutionarily he corrects the 
teacher. G only partially agrees, because his description was based on ‘very big x’ 
(11). Again, G indicates that his train of thought is a bit different. Perlocutionarily G 
succeeds at this moment because the teacher changes his focus; locutionarily taking 
up the student’s idea in the question: “for how big x?” (12). G seems to feel encour-
aged to explain: “that is, normally does not arrive at a certain point, the function in-
creases more and always more, then still it becomes almost a vertical straight line 
…”. Again, an interest-dense situation is about to begin. Then, on the non-locutionary 
level, the teacher expresses understanding G’s view (14). However, through saying 
that, he also says that the student’s way of arguing is false.  He proves this by a proof 
of contradiction which he closes by the rhetorical question: “or not?” After the proof, 
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G gives up to follow his own train of thought. The emergence of interest-density dries 
up.  
Semiotic-bundle analysis  
We see both student and teacher enacting a semiotic bundle composed by words, ges-
tures, and inscriptions on the screen of the laptop. The basic point of discussion re-
gards the behaviour of the exponential function for big base a and big values x. G 
thinks that in this case, the function can be approximated by a vertical line (#1-3). 
Such a conjecture is fostered by the image from the dynamic geometry software the 
students are using (see Figure 1): the tangent line appears in fact as almost vertical, 

and the exponential function comes to be perceptually con-
fused in it. The teacher wants to clarify whether the student 
is thinking to a vertical asymptote (#4-6). Asking about an 
hypothetic meeting of the function with the straight line, he 
is representing the graphs by means of his iconic gesture 
(00:17): his right forefinger stands for a vertical line, and his 
left forefinger is inclined to represent the exponential func-
tion graph. G (#5-7, 00:19 and 00:24) is tuning with the 
teacher's semiotic resources, both speech and gesture. With 
his hand, he represents the graph of the exponential crossing 
the vertical line (00:24): he is answering the teacher's ques-
tion by means of the gesture. The teacher (#8) accepts such 

an answer and endeavours in making explicit the idea that the domain of the expo-
nential function is not limited, and therefore its graph intersects any vertical line. To 
do so, he uses both speech and gestures (see #8-20, and the related pictures). Let us 
enter into the dynamics of the semiotic bundle. In order to include C in the discus-
sion, the teacher reports G's observation. By repeating G's words (#10) he is tuning 
with the student's semiotic resource (speech). But through gestures (00:43, 01:12, 
01:13), he is making explicit the behaviour of the exponential function, i.e. the fact 
that it crosses any vertical line. The teacher is showing what we call a semiotic game, 
in that he is tuning with the student's semiotic resource, and is using another resource 
to make meanings evolve towards mathematical ones. The gesture appears a powerful 
resource, since it allows him to refer to what cannot be seen in the representation on 
the screen, and that is still difficult for the students to be conveyed in speech. In par-
ticular, gesture seems a suitable means to refer to very big values and to evoke their 
infinite quantity (01:14). If we now turn to G, we see that he does not appear to have 
profited from the teacher's semiotic game. Let us focus on lines 11-13 and related pic-
tures. In his words we can see that he is still insisting on the idea that the function 
will become "almost a vertical straight line", but above all his gestures appear very 
different from the teacher's ones. In fact, whereas the teacher's gestures link big val-
ues of x with the right location in space (hand moving rightwards: 00:31, 00:51 and 
01:14), the student's ones link big values of x to top location in space (hand moving 
upwards (00:46, 00:57, 00:59 and 01:03). From a cognitive point of view, they are 

Figure 1 
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adopting different metaphorical references and only the teacher's one is consistent 
with mathematical signs (i.e. the Cartesian plane). 
AN EMPIRICALLY BASED INTEGRATION 
Based on the theoretical account and the empirical analysis, we can consider the two 
theories as complementary: they shed light on different aspects of the teacher-
students interaction. However, by using the two theoretical lenses separately it ap-
pears that there is something important missing in each case. The strength of the in-
terest-dense situations perspective is the possibility to predict their emergence ac-
cording to the type of social interactions that hinder or foster it. In fact it includes the 
analysis of the locutionary and non-locutionary levels of speech and shows negotia-
tions underneath the content. This approach is able to describe how the epistemic 
process proceeds and provides deeper insights into the social interaction process that 
foster or hinder the emergence of interest-dense situations, including structure seeing. 
However, the student and the teacher are not able to merge their argumentations al-
though there is a lot of negotiation about whose train of thought will be followed. 
Neither the teacher nor the student is able to engage with the other’s perspective. The 
analysis shows a gap that cannot be overcome, but is unable to give the tool to find 
out why this is so. By looking at a wide range of signs (in Peirce's sense), the semi-
otic bundle analysis identifies the semiotic game between teacher and student, and al-
lows the game to be properly described. However the theory is not able to fully ex-
plain the reason why the student does not gain much from such semiotic game. In 
most other cases we had observed that the students succeeded to learn through semi-
otic games (e.g. see Arzarello et al., in print). One difference that can be identified 
within the theoretical frame is that this time the semiotic game applies the gesture-
speech resources in reverse way with respect to semiotic games analysed as "success-
ful". In this case, in fact, the teacher tunes with students' speech and uses gesture to 
foster meaning development; in other cases (see Arzarello et al., in print) it was the 
other way round: tuning with gestures and fostering meanings through words. We 
could conjecture that the characteristics of gestures as semiotic resource are not apt to 
this kind of didactical support, and indeed this can be a research problem to investi-
gate. But within the semiotic bundle theory we are not able to say why such semiotic 
game did not work. The discussion so far leads us to argue that the simple juxtaposi-
tion of the two perspectives is not enough to deeply understand what's going wrong in 
the analysed episode. To go a step further, we start from the example to combine and 
locally integrate the two theories. The combination provides a tool to investigate how 
each sign of the semiotic bundle may contribute to the locutionary or non-locutionary 
aspects of the interaction. For instance, a gesture can support locutionary as well as 
non-locutionary features that play important roles in the interaction (see Figure 2). In 
the episode, gestures illustrated in pictures 00:19 and 00:24 at the locutionary level 
show the behaviour of the graph in iconic way, and at the non-locutionary they show 
that the student is trying to agree with the teacher's perspective. The hands in fact are 
used in the same configuration as the teacher (observe the teacher in the same pic-
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tures); in the entire episode this is the only case in which it happens. In all the other 
cases, G's gestures have very different configurations. Concerning the words, a simi-
lar situation is constituted; at the locutionary level G’s words affiliate to the teacher's 
perspective. But at the non-locutionary levels the teacher and G do not fully agree 
with each other using words.  

 Speech 

Locutionary level  

 Non-locutionary level  

Figure 2: Two-level-analysis of semiotic resources 

With the aim to answer the question what exactly did not work in the student-teacher 
interaction of the episode, we propose an integration of the two combined theories 
adding an epistemological dimension to the analysis above; that means to carefully 
consider the epistemological points of view of the teacher and of the students. By 
epistemological points of view we mean the background of the piece of knowledge 
that a subject thinks can give sense to a specific situation. The epistemological point 
of view is not always explicit: it appears not only from the locutionary dimension of 
the semiotic resources used by a subject but also from the non-locutionary ones. 
Moreover, it can be partially revealed by the epistemic actions produced by the sub-
ject. Of course the epistemological point of view with respect to a situation can vary 
with the subjects. For example, that of a student can be different from that of the 
teacher or of another student. But this difference might not be apparent although the 
dynamics of a didactic situation in the classroom might be deeply influenced by it, 
especially when the teacher is not aware of it or does not take into account the epis-
temological points of view of his students. This is exactly what happened in the epi-
sode analysed above. We observe a semiotic game articulated in a tuning in words 
and a dissonance in gestures: the teacher is repeating G's words (#11-12), but he is 
performing completely different gestures (see, that in 00:46 G's hand is moving up-
wards, to indicate big values, whereas in 00:51 the teacher's hand is moving right-
wards). The dissonance in gesture is a signal that the teacher and the student are 
showing different points of view: the teacher relies on a formal theory (Weierstrass 
definition of limit) using potential infinite; the student relies on his perception imag-
ining what happens "for very big x" (#11). It is not so clear what the student means: 
possibly he has been influenced by perceptive facts (see the discussion above) and 
perhaps he is thinking within an "actual infinite" perspective, even if this point is not 
so explicit here. The analysis of the semiotic game including the epistemological di-
mension allows us therefore to say that there is an epistemological gap between 
teacher and student, and to hypothesise that this gap prevents the teacher from suita-
bly coaching the student's knowledge evolution and the student from profiting by the 
interaction with the teacher. Therefore the emergence of an interest-dense situation 
was not successful. 

Gesture 

supporting 
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CONCLUSIONS 
Presenting an empirical case of networking of theories, we showed that through a lo-
cal integration two theoretical approaches can be enriched (Prediger et al., 2008). 
This was possible because the theories provided two complementary observation 
tools: one at the level of discourse analysis describes social interactions and their 
epistemic processes; the other at the level of gesture analysis describes learning from 
a semiotic perspective. The starting point of the theoretical integration was based on 
the empirical data analysis whose meaning was not clarified by any of the two theo-
ries. This stall was overcome by suitably combining the two approaches:  adding an 
epistemological dimension made possible to locally integrate the two theories, so un-
covering blind spots in both.  
The results of our analysis could have important didactical consequences: in fact 
from them it seems possible to design a fresh role for the teacher in supporting stu-
dents’ learning processes. According to the combined analysis of the semiotic and 
linguistic features, integrated with the epistemological dimension, the teacher could 
develop suitable interventions, taking care both of the social interaction and of the 
epistemological issues with the help of semiotic resources. 
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INTERPRETING STUDENTS' REASONING THROUGH THE 
LENS OF TWO DIFFERENT LANGUAGES OF DESCRIPTION: 

INTEGRATION OR JUXTAPOSITION? 
Christer Bergsten, Eva Jablonka 

Linköping University, Luleå University of Technology 
This contribution exemplifies the interpretation of a common set of data by using two 
languages of description originating from different theoretical perspectives. One ac-
count uses categories from a psychological and the other from a sociological per-
spective. The interpretations result in different explanations for the students’ strug-
gles with sense making. However, the results cannot be integrated into a combined 
insight, but only be juxtaposed. 

INTRODUCTION 
The role of theory in mathematics education research has many facets so that compa-
risons of outcomes of research carried out within different perspectives remain a chal-
lenging and complex task (Silver & Herbst, 2007; Radford, 2008). The observed di-
versity of theories, paradigms, and frameworks in the field has called for serious ef-
forts of understanding, comparing, contrasting, coordinating, combining, synthe-
sising, or integrating different perspectives (Prediger, Bikner-Ahsbahs, & Arzarello, 
2008). In line with this work, this paper, by way of an example, sets out the task to 
construct two accounts of a transcript from a video taped problem solving session for 
the purpose of comparing and contrasting different accounts for it (Mason, 2002), 
based on two languages of description stemming from two different theoretical tradi-
tions. In the session pairs of students were working on tasks on limits of functions, a 
topic where most of the research about students’ sense making has been done from a 
cognitive psychology approach (Artigue, Batanero, & Kent, 2007). For an alternative 
account, we have chosen a sociological approach, which is rather uncommon but has 
the potential of overcoming deficit orientated interpretations of students’ struggles. 
Much of the research that aims at accounting for the problems students have, focuses 
on a distinction between “intuitive” and “formal conceptions” of limits (e.g. Harel 
and Trgalova, 1996, pp. 682-686). The notion of limits of functions is conceived as 
one where intuitive conceptions of infinity may prove insufficient or even contra-
dictory to a formal mathematical treatment (Núñez et al, 1999). As an exemplary of 
approaches that account for students’ problems with limits of functions in terms of 
the individual’s cognition, we produce an account of the data that draws on the work 
of Alcock and Simpson (2004, 2005). Their conceptualisation describes an interplay 
between modes of representations and beliefs about oneself and the role of algebra in 
reasoning about limits.  
Starting from a sociological perspective, in a second attempt, we outline an account 
of the students’ productions in terms of the dilemma they face when participating in 
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different types of discourses. This interpretation draws on a language of description 
developed in the context of studies of recontextualisation that represent a structuralist 
tradition (Bernstein, 1996). In drawing on Bernsteins’s theory, a successful student 
can be described as being able to realize in which context she participates and pro-
duces what is expected in this context, that is, the student must have access to “rec-
ognition rules” and “realisation rules” in order to produce “legitimate text”. The ulti-
mate agenda of such an approach is to explain how the students’ access to these rules 
is distributed unevenly with respect to their different backgrounds. For our account of 
the empirical text from the problem solving sessions, we use categories of expression 
and content of mathematical problems from the perspective of recontextualisation of 
different types of discourses about limits of functions.  

THE INTERVIEW SITUATION 
Six beginning engineering students from a first semester calculus course volunteered 
to participate in the video study, where they were working in pairs to solve problems 
on limits of functions. Each session lasted for about 45 minutes. After an introductory 
question about the concept of a limit and its definition, the students were asked to in-
vestigate the limits of functions. The type of problems chosen were similar to the 
ones they encountered in the course: to find the limits as x →∞ and as x → 0 for the 
three functions f (x)= 2x

x 2 + sin x
, g(x) = 1

x
− 1

x 2
, and h(x) = ln(1+ x 2 )

x
.  

For our accounts presented below, we used the transcribed protocol from the work of 
two pairs (A and B) of students on the function h(x) and on the introductory question.  
At the time of the interview the lectures had covered the definitions and basic proper-
ties of limits and continuity, and introduced and proved theorems about standard lim-
its such as lim

x→0

ln(1+ x)

x
=1, as well as worked examples. The textbook provided an expo-

sition of an introductory calculus course based on the standard δε −  definition of lim-
its and continuity. In particular, standard limits were proved within this theory and 
used as theoretical tools to investigate the limits of functions given in algebraic form. 
Other techniques taught include removing dominating factors, extension by the con-
jugate expression, and change of variable. The approach was algebraic and non-
numerical. Occasionally, diagrams were used. The teacher of the course sets out his 
agenda as follows (see Bergsten, 2007, p. 63): 

I want to present, to make things seem true, the most important I think is that students be-
lieve they understand better what a concept means. To exemplify what you can handle 
practically, to illustrate the standard way of doing things. 

In the lecture the teacher made some efforts to integrate formal algebraic treatment 
with non-formal ideas about limits and behaviour of elementary functions (ibid.). 
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ACCOUNT 1: INDIVIDUALS’ BELIEFS AND PREFERENCES 
The style of work of Anne and Adam is dominated by algebraic manipulations across 
all tasks, where the observed notations are used mainly as keys for performing proce-
dures that hopefully will lead to a possibility to apply a standard limit. This is done 
immediately when starting a new task, without prior discussion about how to attack 
the problem or what can be “seen” by considering properties of the functions in-
volved. In the transcript, when discussing the case where x tends to infinity for the 
function h(x), Anne immediately suggests making a change of variables: 

Anne:  Change of variables. 
Adam:  ...yes ... I think you get ... the logarithm can be rewritten, the function in-

side. 
Anne:  No, we can’t touch the function inside [writes, Adam looks at her seem-

ingly puzzled] there is no expression for LN X plus LN Y equal to LN X 
plus Y. 

Adam:  Yes yes but you can write it as LN one plus X ... that part [points] one plus 
X square can be written as ... one plus ... one minus X. 

Anne:  Yes, equal to LN [inaudible, Anne writes]. 
Adam:  It does not help much in this case. 
Anne:  No [erases what she wrote]. 

While solving this task no diagram is drawn or point made on properties of the func-
tions involved that could lead the process forward. Standard limits and comparison 
tables are recalled as incitements and as clues to continued algebraic manipulation. 
Uncertainty in recalling these facts correctly does not prevent them from proceeding 
the algebraic explorations, possibly thinking it will eventually lead to a result: 

Anne:  I must elaborate further on that one and see if it works. 

The work goes on along the same lines in all tasks, trying to remember what one can 
do and trying out different algebraic methods, sometimes ending up in what could be 
called an algebraic mess, using expressions like “this is just impossible”. In the fol-
lowing excerpt the students substitute 1+ x 2 by t. 

Adam:  If we in the original expression extend with ... the square root of minus one 
... T minus one in the denominator, LN T the square root of T minus one ... 
that one was not much better [looks at Anne]. 

Anne:  [writing] This is also unnecessary because we can’t do this, it is the same 
shit ... doesn’t matter ... than we have that this one moves this one moves 
and then this one moves. 

Adam:  Yes all tend to infinity. 
Anne:  To be honest, I think that infinity is the answer, as ... when I changed vari-

ables. 

The last sentence indicates a weak “internal authority”, as she cannot find a method 
that works, and on another occasion (on problem f) this is directly expressed:  
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Anne: The question is if it is correct. Now I just want to know the right answer. 
Interviewer: You don’t feel confident with the result? 
Adam: I can’t say it should be another result, but this is a kind of task where I feel I 

could easily make a mistake. 
Anne: Yes, me too. 
Adam: By some change of variable it can be possible to make it tend to zero. /…/ 
Anne: I think it is zero in both cases. What was the answer? 

This predominantly algebraic way of working seems to be in contrast to the response 
to the opening question on the meaning of a limit, where they initially describe it ver-
bally as a dynamic process using words like “approaching” but then prefer to make a 
drawing and add gestures when talking about it. However, as these images do not 
seem to have a link to their subsequent work on the problems they may lack a suffi-
cient generality to justify their reasoning (cf. Alcock & Simpson, 2004). 
Also the students in pair B describe the mathematical notion of limit as a dynamic 
process of ‘approaching’ but seem to accept both a potential and actual infinity, as 
when they discuss the arrows commonly used to denote limits: 

Bob: Yes I would maybe miss a little arrow ... 
Ben: Yes. 
Bob:  ... in front of A [i.e. the limit], tends to A, but I don’t know if ...   
Ben: it gets so very close, yes goes to A. 
Bob:  Yes, you usually don’t have those arrows like that. But the function attains 

the value A when X is infinitely large, is a very very large number, don’t 
know if I need to add more. 

Interviewer: Do you agree?  
Ben: Yes. 

They also state that it is more easy to explain when using a diagram. However, their 
diagram is more elaborated and seems to support their thinking during the work with 
the problems. For pair B this work proceeds in quite a different manner from pair A, 
dominated by more informal reasoning about the size of the quantities of the different 
parts of the given functions. They frequently use the expressions “a very small num-
ber” and “a very large number”. In ‘simple’ cases this way of reasoning is functional 
but in the case lim

x→∞
h(x) , this kind of intuitive method proves insufficient to find the 

limit even after 15 minutes of work: 
Bob: Zero times infinity is ok, almost zero times infinity is more tricky, it is not 

really zero but only tends to it. So it can be almost anything. Do we get 
anywhere? [looking at Ben] 

Ben: No [Bob laughing]. 
Bob: Yes, but which one goes more, does that one go more to zero than that one 

to infinity? No it goes more to infinity than to zero, I think. [silence] 
It seems as if algebraic methods, shown in the lectures, here are tried only when the 
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conceptual approach does not produce an answer. However, when it does these stu-
dents do not feel any need to verify the solution formally by the use of proven theo-
rems on standard limits. They rely on “internal authority”.  
Internal authority is also evident by the use of the words “I think we are done” in the 
case lim

x→0
h(x), after identifying a standard limit and applying it after expanding the 

term by x. But again no algebraic manipulations are performed on lim
x→0

g(x), where 
they reason about approaching zero from the right or from the left. They conclude, 
after testing a numerical value, drawing a diagram and comparing infinities, that g(x) 
tends to negative infinity. However, Bob is not fully satisfied: 

Ben: So this [i.e. when approaching zero from the right] must also be negative 
infinity, don’t you think so? 

Bob: Yes, but it is kind of delicate when you take infinity minus infinity, it is 
kind of vague. But if we accept this way of reasoning with infinities of dif-
ferent size, then we have found that, if it is correct. 

Thus, relying on internal authority might have prompted questioning the bases of 
their arguments and imply an uncertainty about the correctness of the result. 

ACCOUNT 2: WEAKLY / STRONGLY INSTITUTIONALISED DISCOURSE 
For the purpose of analyzing the recontextualisation of domestic practices in school 
mathematics texts, Dowling (2007) introduces a “relational space” of domains of ac-
tion that differentiates between content and expression of a text, both being weakly or 
strongly institutionalised (see Table 1). Esoteric domain text refers to the conven-
tional institutionalised mathematical language and its strongly classified specific 
meanings. In descriptive domain text, the expression is conventional mathematical 
language though its object of reference is not institutionalised mathematics. In ex-
pressive domain text, a mathematical concept or procedure etc. is expressed via signi-
fiers that are not or weakly institutionalised (in an extreme case via non-mathematical 
signifiers). Public domain text is text with both weakly institutionalised forms of ex-
pressions and content.  
The following interpretation employs these notions. As the context is a university lec-
ture in calculus, public domain text cannot be expected to be found. The oral dis-
course in the lecture analysed in Bergsten (2007) included metaphorical language  
 

 Content (signifieds) 

Expression (signifiers) strong institutionalisation weak institutionalisation 

strong institutionalisation esoteric domain descriptive domain 

weak institutionalisation expressive domain public domain 

Table 1: Domains of Action (Dowling, 2007, p. 5; layout adjusted) 
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and gestures describing graphs of functions in terms of motion and direction as well 
as hints about what to do when applying standard procedures. 
The written discourse focused on algebraic representations. The topics were pre-
sented with very detailed formalisations, very much in line with the textbook (co-
authored by the lecturer), that is, as esoteric domain text drawing on strongly classi-
fied and institutionalised language and meanings. So it is the oral discourse that is 
situated in another domain, a domain of visuo-spatial and movement metaphors that 
are used for describing the Cartesian graphs, “the behaviour”, of functions and their 
limits (in terms of shape, growth, getting bigger and smaller and approaching). The 
meanings in this discourse are weakly classified, as are the modes of expressions. In 
the course of establishing the esoteric discourse, this discourse is re-contextualised 
from the perspective of an algebra of functions and their limits, and in doing so the 
first is subordinated to the latter. The students attempts to solve the tasks in the inter-
view situation can be interpreted as a struggle to produce a legitimate text, that is an 
esoteric text. However, if they discussed with their peers and approached the solu-
tions in terms of the weakly classified oral discourse, they were faced with a problem 
of recontextualisation. However, in the introductory question of the interview, they 
were asked to explain the concept of limit, which is a quite different challenge. The 
interviewer shows to the students a piece of technical language from the course: 
“ lim

x→∞
f (x) = A” and asks:  

Interviewer: Imagine you have a friend who just started such a course in calculus and 
has never seen this. How would you explain to him what this means? 

The students are faced with the problem to recognize what a legitimate text in this in-
terview situation would be. Into which domain has the expression to be translated for 
this imaginary friend? 
Anne and Adam interpret this question as a task to produce expressive domain text. 
They first have to establish this new domain and start negotiating the translation and 
eventually agree that this new domain includes drawings of examples of functions. 
The technical language comprises “x”, “function”, “A” (which remains untranslated), 
“LN-function”. The expression  “ lim

x→∞
f (x)” is translated into “the limit”. 

Anne: This is an expression for the limit. One looks at how a function behaves 
when X tends to infinity…and when X tends to infinity and the function 
approaches a constant which is called capital A, so it is convergent, as one 
calls it. This means that one can say the function then approaches a value if 
it does not go on … 

Adam:  It approaches a finite value then, so it is bounded, a bounded function. 
Anne:  This is a little hard without drawing it. 
Adam:  Yes, this is hard to explain, it is more easily explained with a figure, I think. 

After two comments of Adam who talks about the value going “closer and closer”, 
the interviewer interferes by asking them whether they would want “to draw a figure 
for that friend”: 
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Anne: I think the friend should get a clearer picture in any case [Adam draws qui-

etly, Anne watches] … yes [approves the figure and holds up the paper to 
the friend and smiles]. 

Adam: This is a function that approaches but never really reaches [illustrates with a 
gesture]. 

Anne:  A bit like LN one can say 
Adam:  Yes, LN-function. 
Anne:  This looks like an LN [both laugh]. 

In their conversation while solving the tasks lim
x→0

h(x) and lim
x→∞

h(x) , they focus on as-
sociating it with a standard limit they have encountered in the lecture. They eventu-
ally solve the version for x approaching zero by expanding the expression by x and 
substituting x2 = t, that is, by producing esoteric domain text. However, they do not 
explicitly refer to the “multiplication rule” for limits from the lecture to justify their 
conclusion. They are not successful in their attempt to solve the second part of the 
task. As they adhere to a strategy to formalize their informal approaches and employ 
some methods suggested in the lecture, this can be seen as a production of descriptive 
domain text, which in parts, switches into the esoteric domain when they are trying 
out different algebraic transformations. Anne several times refers to “writing” it down 
properly, which indicates that she recognizes what type of text they are usually sup-
posed to produce. The episode, in which the pair tries to solve the second part of the 
question, ends with a remark about the criteria for producing legitimate text: 

Anne: Now you have made a writing mistake. You have to write X, or T, T goes 
towards infinity…They will like that at the mathematics department … also 
when we are very detailed. 

The second pair also takes the interviewer’s question as a prompt to produce expres-
sive domain text by describing the meaning in terms of the weakly institutionalised 
oral discourse. Bob refers to the limit as “the value A when X is infinitely large, is a 
very very large number, don’t know if I need to add more” and talks about “the little 
arrow” (see the transcript from the first account). After another prompt of the inter-
viewer, they expand their explanation: 

Ben: Yeah, the function value A as X tends to infinity, or? [silence ...] Then we 
have drawn [moving his hand as if he is drawing], have we not? [glancing 
at Bob] 

Bob: Yes, it gets like that, x tends to infinity, it is very simple if you make a 
sketch [raising his hand with the pencil but does not draw, making drawing 
gestures while talking]. If we have A at a certain part of the y-axis we can 
say, we get such a horizontal line. The function starts at zero maybe and 
then goes up, kind of approaching A all the time, getting thinner, the bigger 
the x-value the closer you get ... and ... I don’t know if I should bring that in 
too, you can always get closer than you already are, that is this thing with 
limits. That is the whole point, as in this case it will finally be as close as … 
you can’t say as close as you can because you can always get closer but ...  
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They solve the task lim

x→0
h(x) by reducing it to a standard limit, talking about substi-

tuting x² and decide about a solution. However, Ben seems unsure about the status of 
the solution produced by Bob (who does not refer to “multiplication rule”): 

Bob:  And this her goes towards zero, that X goes towards zero. One times zero. 
Ben:  One times a very small number next to zero. 
Bob:  This is what I also would like to say, indeed one times zero becomes zero. 
Ben:  I think we are clear with this one. 

The last remark indicates that they do not adhere to the criteria for legitimate text es-
tablished in the lecture. In the course of the solution of the second task, they remain 
in oral discourse and use visuo-spatial and movement metaphors for describing the 
shapes of standard functions and the “limit” as “approaching and coming closer”. 
However, they are not successful in re-contextualising this discourse from the per-
spective the formal algebraic discourse. However, as the other pair, they seem to 
know the criteria for legitimate text, as Bob says at one occasion: “You can’t do it 
like this mathematically /…/ It can be done, there is a method”. 
None of the pairs interpreted the first question of the interviewer as an invitation to 
establish the meaning for a novice by introducing her into the technical language and 
its institutionalized meanings, that is, to come up with a definition. Both pairs seem to 
realize that the legitimate text for successful participation in the course is located in 
the esoteric domain.  

DISCUSSION 
One goal of this exercise has been to see whether both interpretations can in combina-
tion produce useful insights about the students’ reasoning about limits in the context 
of a university calculus course.  
The first interpretation pictures those students showing an external sense of authority 
as the ones who tend to use the mathematical notations as keys to apply algebraic 
procedures. A conclusion could be that they lack an “intuitive feeling” for the mathe-
matical objects involved, which should form the basis for using algebraic techniques. 
The second pair is pictured as showing an internal sense of authority and a preference 
for an “intuitive” approach. They often “know” by informal reasoning what the limit 
is and occasionally express a need to use algebraic representations. A conclusion 
could be that they lack an ability to use algebraic representations to formalise their 
reasoning. As the first approach focuses on the individuals’ cognition it does not in-
clude the relation of their preferences to the context, in which these arose, as a spe-
cific research question.  
The second interpretation shows that both pairs were, for different reasons, not able 
to produce solutions that would satisfy the criteria for legitimate text established in 
the lectures. The first pair did not have full access to the technical language and its 
institutionalized meanings, which they tried to employ, the second did not recon-
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textualise their own productions from a formal algebraic perspective. This account 
draws attention to the structural complexities that relate to the ways in which the re-
contextualisation by means of formal algebra of the oral discourse about functions 
and limits employed in the lecture operates. It includes the establishment of a link of 
the students’ productions to the discourse, in which they participate, as a para-
digmatic research question (Radford, 2008) by conceptualising it in terms of their 
possession of recognition and realisation rules for producing legitimate text.  
The two approaches also differ in terms of the methodology. While within the first 
framework the interview situation is a method for gaining insights into the students’ 
beliefs and preferences, the second interpretation takes into account that the conversa-
tion during the problem solving sessions can also be conceived as a situation, in 
which the students are faced with the challenge of producing legitimate text. How-
ever, the students can neither have recognition nor reproduction rules for such a situa-
tion because it is the first time they participate in a study like this. They seem to have 
interpreted the interview situation differently, as more (Anne and Adam) or less (Bob 
and Ben) identical with the context of the course they were attending and thus more 
or less identifying the researcher with the official side of the university course. This 
interpretation would account for the fact that the second pair did not spend so much 
effort to translate their versions into a formal algebra as the first one and that they 
were mostly convinced that their solutions are reasonable, perhaps because of recog-
nizing the context as informal. The first pair, in contrast to their following produc-
tions, engaged in weakly institutionalized discourse only as a response to the intro-
ductory question, perhaps recognizing the story about the imaginary friend as not be-
longing to the esoteric domain. In contrast, the first interpretation takes the students’ 
explanations that follow the introductory question as an indication of their under-
standing of the concept of limit, or alternatively as an indicator of whether they know 
a definition in formal algebraic terms. 
From the second perspective, “understanding” can be framed as having access to both 
of the discourses identified, as well as to the principle by which the oral discourse can 
be recontextualised from the perspective of the written one. The “intuitive” approach 
is only represented in the oral discourse. Both interpretations suggest a tension be-
tween these discourses that cannot easily be resolved.  
It remains a highly questionable undertaking to look for combined insights stemming 
from interpretations that use languages of description, which stem from different 
theoretical traditions, particularly if issues of validity are at stake (cf. Gellert, 2008). 
The two interpretations presented here illustrate their points by selecting different 
episodes from the transcript. Considering that the research situation is re-interpreted 
in the second account (and thus taking the interviewer’s questions as a piece of data), 
one could say that the two accounts are not interpretations of the same “data”. In ad-
dition, different background information about the course has been used.  
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The outcomes of this interpretational exercise do not result in conflicting readings of 
the data. However, the results cannot be integrated into a combined insight, but only 
be juxtaposed. This is because the basic principles of the theories from which the ap-
proaches originate have established two different “universes of discourse” (Radford, 
2008) in which the paradigmatic research questions are formulated.  
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COORDINATING MULTIMODAL SOCIAL SEMIOTICS AND AN 
INSTITUTIONAL PERSPECTIVE IN STUDYING ASSESSMENT 

ACTIONS IN MATHEMATICS CLASSROOMS 
Lisa Björklund Boistrup, Staffan Selander 

Stockholm University, Sweden 
What can a multimodal social semiotic perspective in coordination with an institu-
tional perspective make visible? In this paper we describe how we coordinate these 
two perspectives in order to look at the same empirical material with different fo-
cuses. The research interest is assessment actions in mathematics classrooms, an in-
terest that also affects research objectives and possible results. When coordinating 
the different perspectives, we have chosen, for the analytical frame-work, to develop 
the social semiotic meta-functions by adding a new, fourth, meta-function: the institu-
tional. For the detailed analysis, we connect to these four meta-functions other com-
patible concepts to create an analytical framework.  

BACKGROUND 
The focus of this paper is to describe how we coordinate two theoretical perspectives, 
multimodal social semiotics and an institutional perspective, in order to create a 
structured and nurturing analytical framework for the analysis of assessments during 
lessons in mathematics. We will start out by describing some of our central notions of 
assessment. 
Assessment – a broad concept 
Both in cases where some people realise that they actually are “capable” in mathe-
matics, and in other cases where people think that they will never come to terms with 
it, we can notice “hidden” stories about assessment. Obviously, assessment explicitly 
takes place when students are given their mathematics test results. But often enough, 
assessment is implicit during teacher-student interaction in learning sequences. One 
example is the following: a student asks the teacher about a certain mathematical 
“rule” and wonders where it comes from. The teacher’s answer, by way of different 
communicational modes, shows that this particular student does not have to bother 
about such a question. S/he is just asked to follow the rule. But when another student 
asks the same question, the teacher engages in a discussion about the historical devel-
opment of this particular rule. The first student in this example learns, through this 
implicit assessment, that the teacher does not consider her/him capable enough to un-
derstand this kind of question. Our assumption is that both the explicit assessments 
and the implicit assessments in mathematics classrooms play a key role for students’ 
learning. The empirical examples we use in this paper focus on implicit assessment 
actions. 
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COORDINATING TWO THEORETICAL PERSPECTIVES 
As stated above, we hold that we are coordinating two different theories. Prediger 
et.al. (2008) make a distinction between coordinating and combining theories. They 
define “coordinating” as a term for bringing theories together that contain assump-
tions that are compatible, whereas “combining” is when the theories are only juxta-
posed.  
A multimodal social semiotic perspective 
In a multimodal approach, all modes of communication are recognised (Kress et.al. 
2001). Communication in a multimodal perspective is not understood in the same 
way as communication in a narrow linguistic perspective, focussing on verbal interac-
tion only. Rather, all kinds of modes have to be taken into consideration, such as ges-
tures, and gazes, pictorial elements and moving images, sound and the like. Relevant 
modes in (most) mathematics education are, for example, speech, writing, gestures 
and gazes as well as graphs, diagrams, physical objects, symbols, pictures and virtual 
animations. Modes are socially and culturally designed in different processes of 
meaning-making, so their meaning changes over time. It is also the case that one 
“content” in one kind of configuration (for example as speech), will not necessarily 
be the “same” content in another configuration (for example as illustration). Different 
representations of the world are not the “same” in terms of content. Rather, different 
aspects are foregrounded. In verbal texts we read linearly, within a time frame, whilst 
a drawing will be read within a space frame. And a graph does not represent a knowl-
edge domain in the same way as numbers does. The modes that are “chosen” in a 
specific situation reflect the interest of the sign maker, and they are therefore not arbi-
trary. We argue for the importance of understanding multimodal communication to be 
able to fully understand a phenomenon as assessment. Language, in a broad sense, 
“may serve as a crucial window for researchers on to the process of teaching, learning 
and doing mathematics” (Morgan 2006, p 219). 
We also argue that the assessment of learning (in a deeper sense) is about understand-
ing signs of learning, as shown by different communicative modes (see Kress 2009, 
Pettersson 2007, Selander 2008b). This perspective is based on an understanding of 
learning as an increased engagement in the world, and as an increased capacity to use 
signs, modes and artefacts for meaningful communication and actions (Selander 
2008a).  
Institutional perspective 
Within social semiotics, there are acknowledgements of institutional aspects, even 
though they are not always as clearly outlined as in the following:  

Detailed studies of the use of a given semiotic resource are interesting in their own right, 
but they also demonstrate a theoretical point. They show how the semiotic potential of 
framing is inflected on the basis of the interests and needs of a historical period, a given 
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type of social institution, or a specific kind of participant in a social institution (van 
Leeuwen 2005, p 23, see also Morgan 2006) 

Institutions are often taken for granted by the researcher who “knows” the situation. 
But without some idea of the communicative situation, it is very difficult to draw 
conclusions from, for example, a conversation. Here, we will go one step further in 
addressing “the institution” in its historical context. We understand that the interac-
tions between teacher and student are situated in a context characterized by dominant 
mathematics education discourses, the use of artefacts developed over time, framings 
in terms of specific resources for learning, division of labour and time, established 
routines, classroom structure and authority.  
Douglas (1986) argues that institutions (rituals, norms and classifications, what 
counts as centre or periphery etc.) affect the decisions made by individuals, for ex-
ample the way they classify “phenomena” and “things”. Existing classification sys-
tems are often taken for granted. In this paper, we take the stance that classifications 
are products of social and cultural negotiations (Bowker & Star 1999). Wertsch and 
Toma (1995) emphasise that powerful institutional parameters constrain classroom 
discourse (see also Bartolini Bussi 1998, Lerman 1996). Our understanding of thee 
term institution is also to be seen as being in line with a dynamic view:  

Importantly, however, the thinking and meaning-making of individuals is not simply set 
within a social context but actually arises through social involvement in exchanging 
meanings (Morgan 2006, p 221). 

Institutional framings have both direct and indirect effects. Decisions may be made 
on different “levels” in the school system, which have a direct impact on the class-
room work. However, in this paper we will try to outline the indirect aspects, such as 
classificatory systems, norms and traditions developed over time. We will also use 
the institutional aspect already in the creation of analytical categories, not only as an 
overall umbrella-tool for reflecting over the results (see Björklund Boistrup 2007). 

AN INSTITUTIONAL PERSPECTIVE IN RELATION TO META-
FUNCTIONS   
Inspired by Halliday (2004), social semioticians usually talk about three communica-
tive meta-functions: the ideational, the inter-personal and the textual. In Morgan 
(2006), these functions are used with a focus on the construction of the nature of 
school mathematics activity. In this paper, we start out with the meta-functions as 
used by Kress et.al. (2001), focussing on assessment in mathematics.  
As we see it, the three meta-functions are strong concepts for discussing situated 
communication and learning. However, two different kinds of restraints need to be 
noted. The first concerns the fact that not all possible communicative aspects can be 
captured by the three concepts. For example, expressive modes are not well captured 
(van Leeuwen 2005). Secondly, to be able to fully address institutional discourses in 
the situated communication and learning (as in this study), a wider notion of institu-

WORKING GROUP 9

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1567



  

First three figures in pattern. 

tional framing (norms, institutional practices, classifications of good or bad perform-
ance etc.) seems to be needed. Communication in a classroom has different character-
istics than communication in court or in a medical consultation. We add a fourth, in-
stitutional meta-function (proposed by Selander 2008c).  

META-FUNCTIONS AND RESEARCH OBJECTIVES 
In this paragraph, we describe the four meta-functions and relate them to the research 
objectives of an ongoing research project on assessment actions in mathematics class-
rooms in grade 4 (10-year-olds). Even if all four meta-functions are present in all 
cases, in each and everyone of them, one function is in the foreground and the others 
are in the background. Thus, the division into four meta-functions related to four re-
search objectives is meant to be seen as an analytical framework.  
The ideational meta-function – aspects of mathematical competence 
The ideational meta-function is related to human experience and representations of 
the world (Halliday 2004). When using this meta-function and aligning it with the re-
search interest of assessment, the aim for the research project is to investigate what 
aspects of mathematical competence that are represented and communicated in the 
assessment actions.  
In order to find a structure which can serve as part of the analytical framework for the 
more fine-grained analysis, we draw on a structure presented by Skovsmose (1990). 
He discusses mathematics education and the possibilities for mathematics to serve as 
a tool of democratisation in both school and society. He presents a structure of three 
aspects of mathematical competence: 

• Mathematical knowledge itself 
• Practical knowledge. Knowledge about how to use mathematical knowledge. 
• Reflective knowledge. A meta-knowledge for discussing the nature of mathe-

matical constructions, applications and evaluations. 
 

In the following sequence, the students in the class are 
working in pairs on patterns. A boy (B) and a girl (G) are 
working together. Before the teacher approaches, these two  
students are discussing whether they need to count the squares one by one in order to 
find how many they are, or if they can use the pattern from an earlier task (1, 4, 9...). 
The excerpt shows what takes place when the teacher approaches the group. In the 
first line of the transcript, the students’ speech (SS) and the teacher’s speech (TS) are 
noted. In the next line, we find the students’ and teacher’s gestures (SG and TG), and 
in the bottom line the students’ and teacher’s body movements and gazes (SB and 
TB). The actions that occur simultaneously are written above each other. The teacher 
starts by asking how things are going. 
 
SS: G: 25                   Yes, it’s going great! 
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           B:  This was strangely difficult. 

TS:  Are things going well?                    Why is it strange? 
--------------------------------------------- 
SG: G is writing. 

        B stops writing.  

TG: 
--------------------------------------------- 
SB: G is looking at her work and at T. 

 B looks at T and at his work.         B looks at T. 

TB: Approaches.  Looks at G’s paper. Moves close to G’s desk.  Looks at B’s work. Moves closer to B’s desk. Leans forward. 

 
 
We suggest that, during this lesson, the students get to show “Mathematical knowl-
edge itself” related to patterns. The girl’s comment that things are going great might 
be a sign that she feels that she has been able to handle the patterns well so far. The 
boy seems to have a different opinion. The teacher asks him and it becomes clear that 
this comment is mainly related to the aspect of mathematical competence focused on 
structuring one’s notes. He has run into problems when drawing the figures:  
 
SS: B: You add this, but then it does not show that this one is this and that this one is this.  

TS:       No they are close now, but you can still see it I think. You’ll have to leave more  

                      space between them. 
----------------------------------------- 
SG: B points at the figures on his paper. 

TG: 
----------------------------------------- 
SB: B looks at his work.      B looks at T and down. 

TB: Looks at B’s work. 

 
What he explains and shows by pointing is that two of his figures are drawn too close 
together on his paper, like this:  

 
 
The teacher’s comment is related to this “note-structuring” since she suggests that he 
should try to leave more space between the figures.  
The interpersonal meta-function – feed-back, feed-up and feed-forward 
The interpersonal meta-function is about how language (used in a broad sense in this 
paper) enacts “our personal and social relationships with the other people around us” 
(Halliday 2004, p 29). Morgan (2006) connects interpersonal aspects with assessment 
in an analysis of a classroom sequence. This is compatible with the way we use the 

Time 
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interpersonal meta-function in this paper. Our research interest in relation to this is to 
find out what kind of assessment in the form of feedback and self-assessment is tak-
ing place in the interaction between teacher and student.  
The structure for the detailed analysis is inspired by Hattie (2007). He suggests three 
kinds of feedback: 

• feed-back – what aspects of competence has the student shown? 
• feed-up – how can the aspects shown be related to stated goals? 
• feed-forward – what aspects of competence might it be best to focus on in the 

future teaching and learning? 
Using the same example as earlier, we find that the signs of assessment are shown 
both through the students’ self-assessment and through the teacher’s responses. Both 
the girl’s and the boy’s comments are within the category feed-back. The teacher’s 
responses are connected both to feed-back and to feed-forward. We consider them as 
feed-back when the teacher communicates to the boy that his way of drawing the fig-
ures is acceptable; “No, they are close now, but you can still see it, I think”. At the 
same time, she addresses a way of handling the very same issue during his continuing 
work, which we regard as feed-forward: “You will have to leave more space between 
them”. 
The textual metafunction – different communicative modes 
The textual meta-function is related to the construction of a “text”, and this refers to 
the formation of whole entities which are communicatively meaningful (Halliday 
2004), in this case to other kinds of existing assessment systems and procedures. 
Teacher and students communicate in mathematics education with speech, gestures, 
gaze, pictures, symbols, writing and so on. According to this meta-function and our 
research interest, the objective is to investigate how different communicative modes 
(Kress et.al. 2001) are used and accepted by the teacher and the students. The boy 
shows his self-assessment on “note-structuring” by way of speech, gestures and 
drawings. The teacher listens and looks at the boy’s work. Both the student and the 
teacher seem to accept different modes.  
The institutional meta-function – tradition versus active participation 
When it comes to institutional aspects of Swedish mathematics education, a dichoto-
mous picture is often noticed (e.g. Palmer 2005, Persson 2006). On the one hand, the 
discourse of mathematics education is seen as “traditional”, whereby students are ex-
pected to spend a good deal of time solely on solving all the problems in a textbook. 
On the other hand, the “wanted” discourse of mathematics education which empha-
sises a joint exploration in which, for example, students are invited to be active par-
ticipants in problem-solving. These two discourses of assessment are similar to the 
discourses described in the literature on assessment in general (see Gipps 1994, Lind-
ström & Lindberg 2005). The two discourses of assessment in mathematics can be 
summarised in the following way: 
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“Traditional” discourse “Active participant” discourse 
Focus on the correct answer Focus also on processes  
Focus on teacher’s guidance Focus on the teacher promoting thinking 
Focus on the number of finished tasks in 
the textbook in mathematics 

Focus on the quality of the mathematical 
accomplishments 

Focus only on the aspects of mathemati-
cal competence the student shows on 
her/his own 

Focus also on the aspects of mathemati-
cal competence the student shows when 
working with peers  

Focus only on written tests in mathemat-
ics 

Focus also on documentation of the 
learning in mathematics  

The teacher is the only one who assesses The student is also part of the assessment 
With inspiration from Lindström & Lindberg (2005).  
In the following example, we keep to these dichotomous discourses. However, during 
the full analysis we will broaden the scope of discourses in relation to the findings. 
We will now go further on in the sequence from the classroom. We start out with the 
girl asking the teacher if it is possible for her to read what she has written and drawn 
on her paper. The teacher asks if the student understands it herself. The girl answers 
yes and the teacher says that she also understand the notes. Then the girl makes this 
comment:  
 
SS: G:  Just so that you don’t mark it wrong “here you are wrong” 

TS:     “laughs”  Is that what I usually do? 
---------------------------------------- 

SG: B & G are writing. 

TG: 
---------------------------------------- 
SB: B & G look at own work. G smiles. 

TB: Looks at G’s work.   Looks at B’s work. 

 
As we see it, the girl’s comment refers to the traditional discourse of assessment in 
mathematics, since she proposes that the teacher might regard her notes as either 
wrong or right. The teacher engages in the discussion and asks if that is what the girl 
assumes that she as a teacher normally does. The girl answers no to this question and 
suggests that the teacher sometimes asks about notes that she does not understand. 
The teacher acknowledges this and the girl continues: 
 
SS: G: It is actually quite good to ask if you don’t know what the children have done                Yes.. 

TS:       Well, that is the only way to get to know. Mm 
-------------------------------------------- 

SG: G & B are drawing.      G stops drawing. 

TG: 
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-------------------------------------------- 
SB: G & B look at their work.     G looks at T 

TB: Looks at B’s work.      Looks at G.          Nods. 

 
Here, the other discourse is present, and by (finally) looking at each other, they seem 
to agree on this. To be able to assess the students’ notes, the teacher might have to 
ask for clarification. The implicit assessment in this described activity is not just a 
matter of what is right or wrong. It is a matter of active participation by the student as 
well.  

REFLECTIONS ON THE COORDINATION OF THEORETICAL 
FRAMEWORKS 
We argue that the three meta-functions need to be understood in the light of institu-
tional framings (also see Morgan 2006). The fourth meta-function is a way to both 
understand and describe institutional discourses as situated in history, and to address 
what it is that is at stake in conflicts and negotiations of assessment procedures and 
standards. 
We find the theoretical perspectives described in this paper fruitful with regard to 
several aspects of the research process. We understand assessment as an act of mean-
ing-making through a multimodal use of language. When defining the research objec-
tives, the four meta-functions provide means to focus on different aspects of assess-
ment actions.  
In the short examples in this paper, we have shown how the aspects of mathematical 
competence that are present (the ideational meta-function) at first seem to be in pat-
terns. But through the boy’s speech, gestures and drawings, our understanding shifts 
to the structuring of notes. When it comes to the interpersonal meta-function. we find 
that both teacher and students show signs of feedback, and in the end the teacher also 
gives feed-forward. The textual meta-function gives us clues as to how the teacher 
and students use, and show acceptance of, different modes of assessments. Finally, 
the institutional meta-function makes it possible to describe the discourse as related to 
a strong tradition in mathematics education, but also in the ways in which new ideas 
can be ideationally, interpersonally and textually meaningful. In relation to this issue, 
we have described a situation in which the girl positions the teacher in a “traditional” 
discourse of assessment in mathematics (right-wrong). When analyzing what the 
teacher’s gaze is focused on, we can notice that she initially looks at the boy’s work 
when she is talking to the girl. But finally, when she turns towards the girl, they look 
at each other and the gazes reveal an “active participant” discourse.  
This coordination of perspectives, including an analytical framework, seems to be a 
fruitful (and sufficient) basis for the full analysis of the empirical material in the pro-
ject, in order to be able to describe, understand and discuss assessment in the mathe-
matical classroom in a way that has not earlier been done (in Sweden). 
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INTEGRATING DIFFERENT PERSPECTIVES TO SEE THE 
FRONT AND THE BACK: THE CASE OF EXPLICITNESS 

Uwe Gellert 
Freie Universität Berlin, Germany 

The paper contributes to the ongoing discussion on ways to connect theoretical 
perspectives. It draws explicitly on the introductory article and the concluding article 
of the Theory Working Group publication ZDM – The International Journal on 
Mathematics Education 40(2), particularly on the strategy of local theory integration. 
In the first part of the paper, a classroom scene is presented to provide some footing 
in empirical data. This data is used to illustrate the theoretical propositions, made 
from two theoretical perspectives, on the topos of explicitness in mathematics 
teaching and learning. In the second part, the two theoretical accounts are locally 
integrated resulting in a deepened and more balanced understanding of the role of 
explicitness. In the last part, this example is used to differentiate three modes of local 
theory integration: bricolage, recontextualisation and metaphorical structuring.  

PRELIMINARY REMARKS 
According to Lakoff and Johnson (1980), the attribution of a front and a backside to 
something is metaphorical in nature and depending on the experience and interest of 
the attributor. A front-back orientation, they cogently argue, is not an inherent 
property of objects but a property that we project onto them relative to our cultural 
functioning. The front is what we see. If we want to see the back of it, we need to 
walk around it or to turn it round. This is quite clear for concrete objects like, say, 
mountains and fruits. Attributing a front-back orientation to the abstract concept of 
explicitness is different because there is no cultural agreement about what the front 
and the back of it may be. By projecting categories that emerge from direct physical 
experience onto non-physical constructs, a metaphorical structuring occurs which 
transmits the connotations of the former to the latter. It is thus no value-neutral 
endeavour to discuss the concept of explicitness in terms of its front and its back. In 
many cultures the front of something is regarded as being more important than its 
back, but otherwise the front may be taken as just a surface and you need to look at 
the back of it to see the ‘real thing’. I will come back to some consequences of this 
issue, in terms of Radford’s (2008) conceptions of theories, at the end of the paper. 
In the paper, I present empirical data from a 5th grade mathematics classroom for 
looking at the degree of explicitness in a case of mathematics teaching. I draw on the 
consequences of this teaching practice for the students’ learning of mathematics from 
two theoretical perspectives, a semiotic (“the front”) and a structuralist (“the back”) 
one. While arguing that both perspectives connect fruitfully, I use this example for 
taking on the ongoing discussion of the challenges and possibilities of connecting 
theories in mathematics education (Prediger, Arzarello, Bosch & Lenfant, 2008). 
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THE EMPIRICAL DATA 
In most federal states in Germany, primary school ends after 4th grade. From 5th grade 
on, the students are grouped according to achievement and assumed capacity. Those 
students, who achieved best in primary school, attend the Gymnasium (about 40% in 
urban settings). The data I am drawing on in this paper is the videotape of the first 
lesson of a new Gymnasium class, which consists of 5th graders from different 
primary schools. The teacher and the students do not know each other. It is the very 
first lesson after the summer holidays. The teacher starts the lesson by immediately 
introducing a strategic game known as “the race to 20” (Brousseau, 1975, p. 3). [1] 

Teacher: Well, you are the infamous class 5b, I have heard a lot about you and, now, 
want to test you a little bit, that’s what I always do, whether you really can 
count till 20. [Students’ laughter.] Thus it is a basic condition to be able to 
count till 20, so I want to ask, who has the heart to count till 20? [Students’ 
laughter.] Okay, you are? 

Nicole: Nicole. 

Teacher: Nicole, okay. So you think you can count till 20. Then I would like to hear 
that. 

>[2] Nicole: Okay, one two thr … 
>Teacher:                  Two, oh sorry, I have forgotten to say that we alternate, okay? 

Nicole: Okay. 

Teacher: Yes? Do we start again? 

Nicole: Yes. One. 

Teacher: Two. 

Nicole: Three. 

Teacher: Five, oops, I’ve also forgotten another thing. [Students’ laughter.] You are 
allowed to skip one number. If you say three, then I can skip four and 
directly say five. 

Nicole: Okay. 

Teacher: Uhm, do we start again? 

Nicole: Yeah, one. 

Teacher: Two. 

Both continue ‘counting’ according to the teacher’s rules. In the end, the teacher 
states “20” and says that Nicole was not able to count till 20. Then he asks if there 
were other students who really can count till 20. During the next 7 min. of the lesson, 
eight other students try and lose against the teacher whilst an atmosphere of students-
against-the-teacher competition is developing. While ‘counting’ against the teacher, 
the tenth student (Hannes) draws on notes that he has written in a kind of notebook – 
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and he is winning against the teacher. After Hannes has stated “20”, the following 
conversation emerges: 

Teacher: Yeah, well done. [Students applaud.] Did you just write this up or did you 
bring it to the lesson? Did you know that today … 

Hannes: I have observed the numbers you always take. 

Teacher: Uhm. You have recorded it, yeah. Did you [directing his voice to the class] 
notice, or, what was his trick now? 

Torsten: Yes, your trick. 

Teacher: But what is exactly the trick? 

During the next 5:30 minutes the teacher guides the mathematical analysis of the race 
to 20. In form of a teacher-student dialogue, he calls 17, 14, 11, 8, 5 and 2 the “most 
important numbers” and writes theses numbers on the blackboard. He makes no 
attempt of checking whether the students understand the strategy for winning the 
race. Instead, he introduces a variation of the race: you are allowed to skip one 
number and you are also allowed to skip two numbers. The students are asked to find 
the winning strategy by working in pairs. After 10 minutes, the teacher stops the 
activity and prompts for volunteers to ‘count’ against the teacher. The first six 
students lose, but the seventh student (Lena) succeeds. After Lena has stated “20”, the 
following conversation emerges: 

Teacher: Okay, good. [Students applaud.] Well, don’t let us keep the others in 
suspense, Lena, please tell us how you’ve figured out what matters in this 
game? 

Lena: Well, we’ve figured it out as a pair. 

Teacher: Yes. 

Lena: We have found out the four most important numbers and, in addition, the 
other must start if you want to win. 

Teacher: Do you want to start from the behind? 

Lena: From behind? No. 

Teacher: No? Okay, then go on. 

Lena: Okay, well if the other starts then he must say one, two or three. Then you 
can always say four. [Teacher writes 4 on the blackboard.] When the other 
says five, six or seven, then you can say eight. [Teacher writes 8 on the 
blackboard.] And when the other says nine, ten or eleven, then you can say 
twelve. [Teacher writes 12 on the blackboard.] And when the other says 
thirteen, fourteen or fifteen, then you can say sixteen. [Teacher writes 16 on 
the blackboard.] And then the other can say seventeen, eighteen or nineteen 
and then I can say twenty. 
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Teacher: Yeah, great. What I appreciate particularly is that you have not only told us 

the important numbers, but also have explained it perfectly and 
automatically. Yes, this is really great. Often, students just say the result, 
they haven’t the heart, but you have explained it voluntarily. That’s how I 
want you to answer. 

In the next two paragraphs the focus is on the theoretical issue of explicitness. First, it 
is argued from a semiotic perspective that implicitness is a precondition for learning 
and that an exaggerated explicitness counteracts mathematical learning in school. 
Second, the structuralist argument that students benefit differently from invisible 
pedagogies is explored. The data is used to illustrate the theoretical propositions. [3] 

THE FRONT: IMPLICITNESS AS A PRECONDITION OF LEARNING 
From a theory of semiotic systems, Ernest (2006, 2008) explores the social uses and 
functions of mathematical texts in the context of schooling, where the term ‘text’ may 
refer to any written, spoken and multi-modally presented mathematical text. He 
defines a semiotic system in terms of three components (Ernest, 2008, p. 68): 

1. A set o signs; 
2. A set of rules for sign use and production; 
3. An underlying meaning structure, incorporating a set of relationships between these 

signs. 

According to this perspective, the learning of mathematics in school presupposes the 
induction of the students into a particular discursive practice, which involves the 
signs and rules of school mathematics. Whereas signs are commonly introduced 
explicitly, the rules for sign use and production are often brought in through worked 
examples and particular instances of rule application. The working of the tasks, the 
reception of corrective feedback, and the internalisation gradually enrich the students’ 
personal meaning structures. It is only at the end when the underlying mathematical 
meaning structure is made explicit. 
By referring to Ernest’s semiotic system, we can make sense of the 5th grade teacher’s 
actions: First, he is explicitly stating that counting the normal way till 20 is well-
known for all students and he is playfully introducing a (growing) set of rules for sign 
use. Second, the strategies for winning the different races to 20 remain on an 
exemplary level and are not transformed into a general rule. Third, he leaves any 
exploration of the underlying meaning structure completely to the students. 
Regarded from the adopted semiotic perspective, the teacher is inviting the students 
to a very open and not much routed search for regularities and more general 
relationships between signs. This way of teaching avoids what Ernest calls the 
“General-Specific paradox” (Ernest, 2008, p. 70): 

If a teacher presents a rule explicitly as a general statement, often what is learned is 
precisely this specific statement, such as a definition or descriptive sentence, rather than 
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what it is meant to embody: the ability to apply the rule to a range of signs. Thus teaching 
the general leads to learning the specific, and in this form it does not lead to increased 
generality and functional power. Whereas if the rule is embodied in specific and 
exemplified terms, such as in a sequence of relatively concrete examples, the learner can 
construct and observe the pattern and incorporate it as a rule, possibly implicit, as part of 
their own appropriate meaning structure. 

Apparently the teacher is introducing his mathematics class as a kind of heuristic 
problem solving. He is giving no hints for finding a route through the mathematical 
problem of the race to 20. When Hannes has succeeded in the race, the teacher is 
explicitly framing the solution as a “trick” that is useful in the particular task under 
study. He then continues by modifying the rules. This may allow the students to come 
closer to a general heuristic insight: It may be an appropriate strategy to work the 
solution back from 20. However, the teacher is not insisting upon Lena explaining 
backwards. The ‘official’ underlying (heuristic) meaning structure of the race to 20 is 
not made explicit during the lesson, though the students are gradually inducted into 
the generals of heuristic mathematical problem solving. 

THE BACK: EXPLICITNESS AS A PRECONDITION OF ACCESS FOR ALL 
From a structuralist position, Bernstein (1990, 1996) polarises two basic principles of 
pedagogic practice: visible and invisible. A pedagogic practice is called visible “when 
the hierarchical relations between teacher and pupils, the rules of organization 
(sequence, pace) and the criteria were explicit” (Bernstein, 1996, p. 112). In the case 
of implicit hierarchical and organisational rules and criteria, the practice is called 
invisible. He argues that in invisible pedagogic practice access to the vertical 
discourses, on which the development of subject knowledge concepts ultimately 
depends, is not given to all children. Instead, evaluation criteria remain covert thus 
producing learners at different levels of competence and achievement. 
In terms of Bernstein’s differentiation of pedagogic practices, invisible practice 
dominates the 5th class’ first mathematics lesson. When comparing the teacher’s talk 
with Hannes and with Lena, it can be seen that the teacher keeps the students in the 
dark about some essential aspects of the mathematical teaching that is going on. 
Although students, who read between the lines of the teacher’s talk, may well identify 
some characteristics and criteria of the pedagogic practice they are participating in, 
the teacher transmits these characteristics and criteria only implicitly. All those 
students who do not notice these implicit hints, or cannot decode them, remain in 
uncertainty about: 
… if the race to 20 is meant as a social activity of getting to know each other (It is the 
very first lesson!) or as a mathematical problem disguised as a students-teacher 
competition, 
… if thus students should fish for “the trick” or heuristically develop a mathematical 
strategy and 
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… if thus successful participation in this classroom activity is granted when the race 
has been won or when a strategy has been established by mathematical substantiation. 
Only at the end of Lena’s explanation, the teacher makes the criteria for successful 
participation in ‘his’ mathematics class explicit. As a consequence, students’ 
successful learning has been contingent on their abilities to guess the teacher’s 
didactic intentions. Recording the numbers the teacher always takes (Hannes) without 
transcending the number pattern for a mathematical rule, is only legitimate to a 
certain extend. As long as the hierarchical and organisational rules and the criteria 
(which Bernstein (1996, p. 42) calls respectively the “distributive rules”, the 
“recontextualizing rules” and the “evaluative rules”) remain implicit, students are 
intentionally kept unconscious about the very practice they are participating in. Only 
visible pedagogic practices facilitate that students collectively access, and participate 
in, academically valued social practices and the discourses by which these practices 
are constituted (cf. Bourne, 2004; Gellert & Jablonka, in press). 

CONNECTION: INTEGRATING THE TWO PERSPECTIVES 
The contrasting perspectives on explicitness reveal that the rules and criteria of 
mathematics education practice remain – in part as a matter of principle – implicit. 
On the one hand, the need for implicitness is due to the very character of the learning 
process: whoever strives for whatever insight cannot say ex ante what this insight 
exactly will be. Ernest’s “General-Specific paradox” is an interpretation of this issue. 
On the other hand, the principles that structure the practice of mathematics education 
remain implicit to the participants of this practice, without any imperative to do so for 
facilitating successful learning processes.  
However, for that the general can be fully acquired, the students indeed need to 
understand that the specific examples and applications have to be interpreted as the 
teacher’s means to organise the learning of the general. Successful learning in school 
requires the capacity to decode some of the implicit principles of the teacher’s 
practice. The structuralist perspective supports the argument that the students actually 
benefit more from teaching-the-general-by-teaching-the-specific if they are conscious 
about the organising principle that is behind this teaching practice. By making the 
organisational and hierarchical rules and the criteria of the teaching and learning 
practice explicit, the teacher provides the basis for that all students can participate 
successfully in the learning process. 
It is quite clear from the empirical data presented above that the teacher is partly 
aware of this relation: In the end of the passage, he explicitly explains to the students 
the characteristics of legitimate participation in ‘his’ classroom. However, as this 
explanation is given retrospectively and in a relatively late moment of the lesson it 
seems that some of the pitfalls of the implicit-explicit relation have not been avoided: 
(1) It is neither obvious from their behaviour nor does the teacher check whether this 
very important statement is captured by all students. Particularly those students, who 
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did lose interest in the mathematical activity because they do not know where it can 
lead to, might not pay attention. (The fact that some students do not listen to the 
teacher’s statement can be observed in the videotape.) 
(2) By giving the explanation retrospectively, the teacher has already executed a 
hierarchical ordering of the students. Although no criteria for legitimate participation 
in the mathematical activity of the race to 20 has explicitly been given in advance of 
the activity, the teacher favours Lena’s over Hannes’ participation: Hannes is offering 
a “trick” (which might be more appropriate for playing outside school) while Lena is 
giving a mathematically substantiated explanation of her strategy. Apparently, Lena 
demonstrates more capacity of decoding the teacher’s actions than Hannes does. 
(3) It might be difficult for many students to transfer the teacher’s statement to their 
mathematical behaviour during the next classroom activity. Indeed, the teacher is 
giving another specific statement, which the students gradually need to include in 
their meaning structure. This is another case of teaching-the-general-by-teaching-the-
explicit: a general expectation (“students explain voluntarily”) is transmitted by 
focussing on a specific example (Lena’s explanation). Again, and on a different level, 
the students need to decode the teacher’s teaching strategy: the teacher’s statement is 
not only about legitimate participation in the race to 20, but also about participation 
in ‘his’ mathematics class in general. 
Particularly the point (3) shows how the local integration of two theories may lead to 
a deepened and more balanced understanding of the issue of explicitness and its role 
within the teaching and learning of mathematics. 

REFLECTIONS ON THE ‘GENERAL’: CONNECTING THEORIES 
The connection of the two perspectives has structurally woven the front (“learning 
requires implicitness”) into the back (“making hierarchical and organisational 
principles of classroom practice explicit“). A structuring of theoretical perspectives 
has thus taken place. But what is the nature of the new structure, and what are the 
characteristics of the process that has taken place?  
Radford (2008) develops a conceptual language for talking about connectivity of 
theories in mathematics education. He takes theories as triples τ = (P, M, Q) of 
principles, methodologies and paradigmatic research questions. For questions about 
connectivity of theories, he argues that the principles seem to play a crucial role as 
“divergences between theories are accounted for not by their methodologies or 
research questions but by their principles“ (Radford, 2008, p. 325). Indeed, at first 
glance, Ernest’s semiotic perspective and Bernstein’s structuralist perspective share 
an attention to the explicitness and implicitness of rules. The divergence of the two 
perspectives becomes apparent when the mode of these rules and their status is 
considered. Whereas from the semiotic perspective rules are rules for sign use and 
sign production and thus closely linked to the individual student’s capacity of using 
and producing mathematical signs (P1), the structuralist perspective takes rules as the 
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constitutive elements of classroom practice (P2). Ernest’s semiotics is concerned with 
text-based activities where the texts are mathematical texts and the semiotic system is 
school knowledge. Bernstein’s set of rules is the mechanism that provides an intrinsic 
grammar of pedagogic discourse. Although this looks like a fairly different 
understanding of rules and their respective theoretical status, the principles P1 and P2 
of the two theories seem to be “’close enough’ to each other” (Radford, 2008, p. 325) 
to allow for integrative connections. 
Prediger, Bikner-Ahsbahs and Arzarello (2008, p. 173) describe “local integration” as 
one of the strategies for connecting theories. Acknowledging that the development of 
theories is often not symmetric, the strategy of local integration aims at an integrated 
theoretical account of a local theoretical question (e.g., Should rules be made 
explicit?). As a matter of fact, the principles Pi and Pj of two theories τi and τj deserve 
closer attention: How get Pi and Pj connected, what modes of mediating their 
divergence exist? 
Bricolage.  The mode of integration of theories Prediger et al. refer to is Cobb’s 
notion of “theorizing as bricolage” (Cobb, 2007, p. 28). Cobb describes a process of 
adaptation of conceptual tools from the grand theories of cognitive psychology, 
sociocultural theory and distributed cognition. His goal is to “craft a tool that would 
enable us to make sense of what is happening in mathematics classrooms” (Cobb, 
2007, p. 31). Here, the mode of mediation between theoretical principles is essentially 
pragmatic: Non-conflicting principles Pg1, Pg2, Pg3, … of the grand theories τg1, τg2, 
τg3,  … are adapted for fit into the bricolage theory τb. As the goal of the integration is 
the development of a tool, τb is essentially an externally oriented language of 
description of empirical phenomena. Cobb’s theorizing as bricolage is reminiscent of 
Prediger et al.’s (2008, p. 172) “coordinating” strategy. As the bricolage theory τb is a 
theory en construction, it is problematic to make the criteria for the selection of non-
conflicting principles explicit.  
Recontextualisation.  Another mode of integration of theories is recontextualisation, 
“the subordination of the practices of one activity to the principles of another” 
(Dowling, in press, ch. 4). This is the case when the principles Pi of the theory τi 
dominate the principles Pj of the theory τj. An example of theory recontextualisation 
can be found in Gellert (2008) where an interactionist methodology Mi is 
subordinated to structuralist conceptual principles Ps. This process results in an 
asymmetrical role played by the methodologies Mi and Ms as a consequence of a 
hierarchical ordering of the principles of the corresponding theories (Ps over Pi; cf. 
Radford, 2008, p. 322f.). Hierarchical organisation of theories in the mode of 
recontextualisation is a device for avoiding theoretical inconsistencies.  
Metaphorical structuring.  A third mode of integration of theories is mutual meta-
phorical structuring. As Lakoff and Johnson (1980, p. 18f.) remark, “so-called purely 
intellectual concepts […] are often – perhaps always – based on metaphors”. Since 
metaphors aim at “understanding and experiencing one kind of thing in terms of 
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another” (Lakoff & Johnson, 1980, p. 5), this is again a case of subordination: 
metaphorical structuring. If we talk about the learning of mathematics in terms of 
rules, then the learning of mathematics is partially structured and understood in these 
terms, and other meanings of mathematics learning are suppressed. Similar things 
occur when concepts from one theory are infused into another theory. For an example 
see the infusion of the General-Specific paradox into the principles of a visible 
pedagogy. The argument that the advantage of a visible pedagogy relies on the 
explicitness of its criteria becomes differently structured when understood in terms of 
the General-Specific paradox: How can criteria be made explicit without producing 
blind rule-following and a formal meeting of expectations only? Infusing the term 
decoding capacity into the components of the semiotic system has produced a mutual 
effect: The teacher’s strategy of teaching-the-general-by-teaching-the-specific is 
effective only if the students are able to decode the respective activities.  

CONCLUSION 
Bricolage, recontextualisation and mutual metaphorical structuring show different 
effects on the theoretical components that become locally integrated. This is still a 
complex issue and it might be very useful to further develop a meta-language for the 
connection of theoretical perspectives. I am convinced that a systematic description 
of the organising principles of local theory integration is an essential part of this 
developing language. 

NOTES 
1. The transcript presented, here, is my translation from the German original. Students’ names are pseudonyms. 
2. The sign > indicates overlapping of speech. 
3. For a detailed analysis of what these passages can tell us about the exigencies that students face in mathematics 
classes, see Gellert and Hümmer (2008). 
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THE PRACTICE OF (UNIVERSITY) MATHEMATICS 
TEACHING: MEDIATIONAL INQUIRY IN  

A COMMUNITY OF PRACTICE OR AN ACTIVITY SYSTEM 
Barbara Jaworski 

Loughborough University UK and University of Agder, Norway 
Theoretical perspectives of ‘community of practice’ and ‘activity theory’ are used 
along with constructs of ‘inquiry’ and ‘critical alignment’ to theorise developing 
mathematics teaching at university level. The paper introduces and explains the theo-
ries and relates theory to issues in the ongoing development of a mathematics course 
for engineering students. It focuses on developmental research which seeks both to 
chart developmental progress and lead to more informed teaching relating to the 
goal-directed activity of those involved, the systems of which they are a part and the 
tensions/issues within which development occurs. 

INTRODUCTION 
In recent writing (e.g. Jaworski, 2007, 2008a) I have focused on communities of in-
quiry in developing mathematics teaching and learning. I have drawn particularly on 
Wenger’s (1998) concept of identity based in modes of belonging to a community of 
practice. This has been in the context of developmental research – that is research 
that seeks to develop practice while charting that development (see also, Goodchild, 
2008). Here, I want to look more closely at how theoretical and methodological per-
spectives not only complement each other but are intertwined in the complex process 
of improving practice in teaching and learning mathematics. 
I distinguish two areas of theory here. The first is Wenger’s theory of belonging to a 
community of practice. The second is theory of inquiry, based in Vygotskian ideas of 
activity, mediation and tools. The complex notion of identity and its relation to com-
munity is a central unifying force. I have used these theoretical ideas previously to 
address analysis of data in a longitudinal study of developing mathematics teaching 
and learning in schools through collaboration between teachers and didacticians in 
Norway. Many sources document this research (e.g., Jaworski, 2007; 2008a; Jawor-
ski, Fuglestad, Bjuland, Breiteig, Goodchild and Grevholm, 2007; 
http://fag.hia.no/lcm/papers.htm). In this paper, I focus on the beginnings of research 
into developing mathematics teaching in a university mathematics department, focus-
ing on my own practice as a (novice) mathematics teacher in this context. 
The structure of this paper is as follows. First I give accounts, separately, of the two 
areas of theory, relating them explicitly to practices in mathematics teaching and 
learning. Then I turn to research into my own practice as a university mathematics 
teacher – a rather different form of practice from that of teaching mathematics in 
schools which has been my main focus in previous papers. I will expose some of the 
differences and related dilemmas and ways in which the two areas of theory cohere to 
support a theorising of practice and analysis of data. In doing this, I will address the 
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nature of developmental research, its importance in contributing to development in 
mathematics teaching and learning, and issues in its operationalization 

BELONGING TO A COMMUNITY OF PRACTICE 
The term ‘community’ designates a group of people identifiable by who they are in 
terms of how they relate to each other, their common activities and ways of thinking, 
beliefs and values. Wenger (1998, p. 5) describes community as “a way of talking 
about the social configurations in which our enterprises are defined as worth pursuing 
and our participation is recognisable as competence”.  
Within a university school of mathematics I recognize mathematicians, mathematics 
educators and our students at various levels as part of a community. In this commu-
nity we engage with mathematics in various ways: learning mathematics, teaching 
mathematics and doing research into mathematics or into learning or teaching 
mathematics. Mathematics itself and what it means to do mathematics is central to 
this community. We can recognize both individuals and groups: that is to ascribe 
identity to both. Holland, Lachicotte, Skinner and Cain (1998, p. 5) write, “Identity is 
a concept that figuratively combines the intimate or personal world with the collec-
tive space of cultural forms and social relations”. Identity refers to ways of being 
(Holland, et al. 1998) and I talk here about ways of being in the university mathe-
matical community. For example, people who teach mathematics have identity with 
relation to what it means to teach mathematics within a university environment, and 
within one particularly. 
Within this community we all engage in some forms of practice: Wenger writes of 
practice: “The concept of practice connotes doing, but not just doing in and of itself. 
It is doing in a historical and social context that gives structure and meaning to what 
we do”. (1998, p.47). So doing within the school of mathematics means engaging in 
the practice of university mathematics. This includes doing mathematics, whether this 
is on the part of undergraduate learners or of research mathematicians; it includes 
students and academics researching aspects of the learning and teaching of mathemat-
ics, and associated contexts such as use of technology in teaching and learning and 
mathematics support for learners at all levels.  
Wenger talks about identity in communities of practice as being about belonging to a 
community of practice. He suggests three modes of belonging: engagement, imagina-
tion and alignment. We engage in practice with others: our participation requires us 
to do, not just to observe the practices of which we are a part. Students have to en-
gage with learning, teachers with teaching. All engage with mathematics. Engage-
ment is the fundamental activity in doing. In order to engage we have to make sense 
of what we do; imagination allows us to interpret its various aspects and conceive of 
ways to achieve what we see as the goals of practice. We are not alone in our enter-
prise: the community of practice has developed over time and has norms and expecta-
tions of what will be done and how. We need to align with the norms of practice – 
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alignment provides the sociohistorical dimension within practice by which the prac-
tice is recognisable, sustainable and continuing. 
Seeing university mathematics as a social practice is becoming a familiar basis for re-
search in mathematics education related to learning and teaching mathematics in a 
university (e.g., Burton, 2004; Hemmi, 2006; Nardi, Jaworski & Hegedus, 2006) 
which has a long history and tradition, both in universities generally and in any one in 
particular. Recognisable aspects are university terms or semesters, lectures and tutori-
als, courses organised across several years of study in calculus, analysis, algebra and 
so on, and forms of assessment. Mathematics itself has an even longer history, with 
traditions in philosophical groundings, how topics are grouped and how learning and 
understanding mathematics are perceived. As mathematicians engage, whether in 
teaching or research, they bring imagination to interpret courses or research topics 
and they align with accepted practices, perpetuating a status quo and ensuring ongo-
ing traditions. Students coming in fresh to the practices learn quickly acceptable 
forms of engagement and, imaginatively, how to make the system work for them ac-
cording to their own, more familiar, communities of practice. They align with norms 
of practice developed over centuries and experience insights and obstacles familiar to 
cohorts of their forebears.  
However, perpetuation of tradition is not always helpful in ensuring effective learn-
ing outcomes, especially if cohorts of learners no longer fit traditional moulds. Diffi-
culties at the transition between school and university have been extensively reported 
(Hawkes & Savage, 2000). Existing research describes the mismatch between univer-
sity lecturers’ expectations of mathematics undergraduates and student competencies 
(London Mathematics Society, 1995). Brown, Wiliam, Barnard, Rodd & Macrae, 
(2002) reported how mathematics undergraduates’ attitudes change and many be-
come disillusioned with the style of teaching mathematics in university. In a study of 
teaching in university mathematics tutorials, Nardi, Jaworski and Hegedus (2005) 
suggested a variability of pedagogic awareness, in the teaching of university mathe-
maticians, shifting from the naïve and dismissive to the confident and articulate. 
Hemmi (2006) studying mathematicians’ and university students’ attitudes to proof 
found distinct differences in the ways students and their teachers perceived mathe-
matics learning and teaching at university level, and categorization of mathematicians 
interview responses showed significantly varying views on the nature of teaching. 
Burton’s (2004) interview study of 70 mathematicians revealed both common tradi-
tions in mathematics teaching and research and particular viewpoints and idiosyncra-
sies. Such sources have highlighted both significant issues related to traditional prac-
tices and new concerns relating to changing traditions in which more research is ur-
gently needed. 
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ACTIVITY, MEDIATION AND TOOLS: THE ROLE OF INQUIRY  
Doing mathematics, for students at 
any level, requires engagement with 
abstract concepts which are not read-
ily visible in the world around us. Al-
though we can see particularities of 
mathematics in our familiar social 
worlds (examples of numbers or 
shapes, use of ideas of probability or 
statistical tools), expression of 
mathematical generality, necessarily, 
is abstract and requires abstract means 
of expression and justification. 
Schmittau (2003), drawing on Davidov, speaks of mathematics as involving scientific 
concepts which require “pedagogical mediation for their appropriation” (p. 226). Sci-
entific concepts are concepts which cannot be learned spontaneously in engagement 
with everyday life (Vygotsky, 1986). Some form of mediation (going between) is 
needed for students to meet mathematical concepts and engage with them in mean-
ingful ways. Particularly, Vygotsky talks about tools and signs which mediate the 
process of learning – mediating artefacts (see Figure 1). Such artefacts include both 
physical and intellectual tools; for example books and writing on paper, and language 
in which ideas and concepts are expressed. Technological tools can be helpful media-
tors for learning mathematics and teachers can orchestrate the use of technology to 
promote learning. Pedagogical mediation refers to the role of a teacher in creating 
opportunity for students to learn.  The simple mediational triangle  (Figure 1) deriv-
ing from Vygotsky and Leont’ev (e.g. Leont’ev, 1979) has been extended by 
Engeström (e.g., 1998)to include mediation in social worlds captured by the terms 
“rules”, “community” and “division of labour” to which he refers jointly as “the hid-
den curriculum” (1998, p. 76). (See Figure 2). It is “hidden” because the factors in-

volved are often not considered or 
questioned overtly as mediating fac-
tors in the education enterprise. 
In university mathematics education, 
the rules include courses to be taken, 
measures of success in a course or 
programme, expectations of partici-
pation; community encompasses 
those who engage in processes of 
mathematics learning and teaching 
with the purpose of advancing 
mathematical knowledge and under-
standing, primarily students and 

learner object of learning 

mediating artefact 

Figure 1: A simple mediational triangle 

TOOLS 

SUBJECT OBJECT OUTCOME 

RULES COMMUNITY DIVISION OF 

Engeström’s ’complex model of an activity system’ 

Figure 2: An expanded mediational triangle 
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teachers; division of labour encompasses the differing roles and responsibilities of 
those within the community, for example teachers to teach and students to learn.  
Thus, for a learner (the subject of the learning process) with an object of learning 
mathematics, the activity of engaging in mathematics in a mathematical community is 
mediated by all of these factors as well as the artefacts commonly used to support 
learning.  
Engeström refers to the system defined by the relationships illustrated in Figure 2, as 
an activity system, following a theory of activity deriving from Vygotsky and Le-
ont’ev. Briefly, all activity is motivated, and comprises actions which are explicitly 
goal directed. Thus, in any such system, participants act according to goals and their 
actions are mediated by the various elements of the system (Leont’ev, 1979; Jaworski 
& Goodchild, 2006). An issue that arises in the learning and teaching of mathematics 
in a university is that of potentially conflicting communities where the goals of activ-
ity are concerned. So within a broad activity system of university mathematics (in-
cluding students, teachers, researchers, learning, teaching and so on) we see subsys-
tems which relate to the activity of certain groups. For example, teachers working 
within the established university system and its mathematical community have expec-
tations of how students will act in relation to the norms and expectations of learning 
mathematics in a university. They have goals for students’ learning and their actions 
are a consequence of their goals.  
For students however, the system looks different. They come from different traditions 
in school systems and wider society. They are used to the kinds of relationships with 
teachers and peers that are afforded by pre-university education. They are highly in-
fluenced by popular culture and their peers. Stepping into the university system re-
quires a re-alignment in their engagement; imagination, relating to the various com-
munities of which they are a part, inspires their re-alignment. Lave and Wenger 
(1991) have offered a theory of legitimate peripheral participation to account for the 
transition for a novice into a community of practice. Here, I draw rather on Wenger’s 
tri-partite characterisation of belonging and to activity theory to account for the di-
chotomies that emerge from collision of communities. Engeström’s (1998) use of the 
expanded mediational triangle shows recognition of tensions in and between activity 
systems which can help address dichotomies. I say more on this below. 
The place of inquiry in these theories and systems is central to my arguments in the 
paper. I see inquiry first of all as a tool mediating mathematics learning, teaching and 
development and then as a way of being in practice (Jaworski, 2006). When we start 
to inquire, we can be seen to use inquiry as a tool. Through sustained use the tool be-
comes a part of our identity as well, possibly, as of the identity of our community. 
Concepts relating to inquiry in practice, and its relation to these two established areas 
of theory, have emerged from 5 years of research in Norway (Jaworski et al., 2007). 
Seeing inquiry first as a tool emphasises its mediational characteristics within an ac-
tivity system. Teachers and students, inquiring into the processes of learning and 
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teaching, achieve “metaknowing” (Wells, 1999, p. 65ff) through inquiry practice. In-
quiry in mathematics involves asking questions and working on problems which en-
gage participants and lead to new awareness and ultimately knowledge – we see this 
both in the activity of research mathematicians (e.g., Burton, 2004) and, where an in-
quiry pedagogy is in place, in classroom mathematics. Inquiry in teaching mathemat-
ics involves teachers in asking questions and working on problems in didactics and 
pedagogy; inquiring into ways in which opportunity can be created fruitfully for 
mathematical learning. Inquiry is also central to a developmental research process in 
which research into aspects of learning and teaching mathematics leads to enhanced 
knowledge in the academy and, importantly, to more informed practice (Goodchild, 
2008; Jaworski 2008a). 
Seeing inquiry as a way of being shifts inquiry from its status as a tool, to a more 
fundamental constituent of an activity system in which it becomes part of the “hidden 
curriculum”, having a consequence of making the hidden curriculum less hidden. To 
manifest inquiry as a way of being requires inquiry to become part of the fabric of 
learning and teaching, what is taught and how it is approached, to such an extent that 
it permeates the rules, community and division of labour. It therefore offers a re-
sponse to tensions and dichotomies that leads to metaknowing and possibilities for 
more knowledgeable practice. In order to explain this, I have introduced the concept, 
of critical alignment. Before discussing this in theory, I turn now to the context of 
university teaching and learning, and my own practice as a (novice) university 
teacher. 

TEACHING MATHEMATICS TO FIRST YEAR ENGINEERING STUDENTS 
At my university, the engineering faculty entrusts the mathematics teaching of its 
students to the Mathematics Education Centre which is the smaller of two parts of the 
School of Mathematics1. As I write this, I am currently in my second year of teaching 
a cohort of students in materials engineering some of whom have relatively low 
mathematical qualifications2. In the first year, I taught the weakest of these students 
(16 of them) separately from the rest and was able to develop good individual rela-
tionships. This year, all the students are together (around 70) and the approach to 
teaching is influenced strongly by this larger number. I want all students to be able to 
engage with mathematical concepts, to develop both conceptual understanding and 
procedural fluency and to be able to apply these to their engineering tasks. So, one 
area of inquiry is how I teach: what I do, how I do it, and what it achieves; included 
within this is encouraging students to inquire as part of their learning of mathematics. 
I bring an inquiry way of being as a result many years of experience, but nevertheless 
                                           
1 The other part is the Department of Mathematical Sciences. Members of both departments teach 
mathematics. Largely, those in the DMS do research in mathematics; those in the MEC do research 
in mathematics education. 
2 Some have not done mathematics beyond GCSE (the national examination at 16+). Others have 
very low grades in A level mathematics (the national examination at 18). 
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in this new arena I need to use inquiry overtly as a tool, both for myself and for my 
students. Methodologically, I engage in research and development cycles (Goodchild, 
2008), planning, observing and analysing teaching and learning as it progresses; col-
lecting data through teaching plans, reflective memos, student work, assessment tests, 
a student survey and student interviews. 
Due to limitations of space here, I focus on just one aspect of teaching, for both year-
groups of students. In the first year, to extend a more direct focus on curriculum top-
ics, I offered a weekly investigative problem for students’ exploration, requiring 
mathematical concepts with which students needed to develop strength and confi-
dence3. It was introduced in a class session (we had two 50-minute sessions per week 
for 30 weeks); students were asked to continue to work on it in their own time, singly 
or in groups, and each one to give me some of their working and findings from the 
problem. Attendance at class sessions was very variable, but most of those who came 
handed in some work on which I wrote comments and returned to them. I learned 
about each student’s mathematical skills and understanding from this activity. Obser-
vation over these weeks showed a willingness to engage with mathematics in non-
routine ways on the part of more than half the students, and a classroom atmosphere 
in which questions could be asked and addressed and students mainly contributed ac-
tively (speaking up, asking questions, coming to the board) in class.  
It became clear that some students had very weak mathematical skills, especially re-
lating to algebra. When we came to the topic of exponential and logarithmic func-
tions, I anticipated the difficulties that this topic would present. It seemed necessary 
to put all time and energy into the topic, and this halted the weekly problems. While 
maintaining an active questioning approach, I moved into a more direct approach to 
the topic: involving the class in sketching graphs, noting functional characteristics 
and relationships, expressing meanings aloud and addressing fundamental questions, 
and a strong emphasis on the rules of exponents and logs and their use in solving 
equations. Two outcomes were (a) in the related class test, several students achieved 
more highly than in two previous tests; (b) in a questionnaire in which I asked stu-
dents to comment on their participation in the course, the level at which they rated 
their understanding of this material seemed more realistic and accurate than in rela-
tion to earlier topics. In my own reflections, while I was regretful of the demise of the 
weekly problem (it was not reinstated), I recognised that the teaching approach to exp 
and log had also achieved significant outcomes. I then had to rethink the objectives of 
my approach overall and their practical interpretation within constraints of time, cur-
riculum and so on (Jaworski, 2008b). This has had implications for the current teach-
ing. With a cohort of 70 the investigative problems with quick feedback would not be 
possible. The more direct approach has been maintained to a strong degree, and liai-

                                           
3 For example, the painted cube problem which affords experience with algebraic formulation and 
manipulation – a wooden cube is painted on the outside and then sliced into smaller cubes all the 
same size; how many cubes have paint on one face, two faces, three faces? 
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son with the engineering department has started to produce problems relevant to the 
study of the particular students. An investigative element has been included using a 
GeoGebra medium. 
The activity outlined above incorporated an inquiry cycle (plan  act and observe  
reflect and analyse  feedback to planning) which led to growth and recognition of 
knowledge which should feed back into planning for teaching both locally and glob-
ally. Issues addressed included problems of variable attendance, a wide range of 
mathematical experience within the class, the time factor in focusing on a problem of 
the week, the demands of concepts that students found difficult and so on. Aligning 
within the university system was and is a necessity, but the element of inquiry has al-
lowed a questioning of what is possible, experimentation and critical review of out-
comes, and modification according to observation and analysis. This shows critical 
alignment in practice with related growth of knowledge and understanding. 
An activity theory analysis shows some conflicts/tensions in these issues. For exam-
ple, the problem of the week afforded development of confident mathematical par-
ticipation and opportunity to work algebraically. The more direct addressing of 
mathematical concepts and associated skills afforded a greater achievement in cur-
riculum-related summative assessment. Time and other factors militated against in-
clusion of both of these approaches. These issues can be seen as breaks in the mediat-
ing links in Engeström’s triangle and highlight areas where the system is in conflict. 
Such conflict fosters the meta-knowledge that is needed to move forwards produc-
tively (e.g., Engeström 1998, p. 101; Jaworski & Goodchild, 2006). 
I contrast here the two ways of theorising teaching development. Seeing critical 
alignment in practice emphasises the inquiry process in belonging to the community 
of practice which allows modification and change within engagement, imagination 
and alignment. The practitioner here brings an overtly critical eye to the practice and 
finds ways of adjusting her alignment. An activity theory analysis allows juxtaposi-
tioning of key elements of the activity system and examination of their relationships. 
Tools (e.g., the investigative problems), rules (e.g., lecture timetables), community 
norms (e.g., students who do not attend lectures) and division of labour (e.g., the ex-
pected roles of students and lecturers) can be seen to be in tension. Thus the analyst 
finds here a valuable tool in revealing the issues, their nature and relationship. This is 
both explanatory and predictive: it offers ways of seeing the status quo and reveals 
possibilities for consequent activity.  
I see these two theoretical frames to have rather different functions. The first is 
closely related to action in practice: recognising where alignment is required and 
where it can be adjusted. It offers a practical interpretation in the use of inquiry as a 
tool, and aids development of an analytical awareness of how the inquiry cycle can 
both raise and address issues. The second allows a more holistic vision of the various 
factors and issues with a framework, a set of constructs, with which to characterise 
and link, and through which to see where the tensions lie. This allows further activity 
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to be planned from the outside. Seen in these ways, the two frames offer complemen-
tary insights to the developmental process and the hidden curriculum. 

THEORETICAL FRAMES AND ONGOING PRACTICE/ACTIVITY 
One reviewer of this paper asked why students’ goals had not been taken into ac-
count. This is an important question. With the first cohort of students, a questionnaire 
was completed asking about their course participation, understanding and achieve-
ment and some interviews were conducted (Jaworski, 2008b). Both cohorts com-
pleted the standard university evaluation of the course. In another research project 
into university teaching we have tried to organise focus groups with students to dis-
cern their perspectives. A discussion of analysis of these sources is beyond the scope 
of this paper. However, a future study would valuably bring students’ goals to centre 
stage, particularly in an activity theory analysis in juxtaposition with teachers’ goals. 
For example, in the use of GeoGebra as an exploratory tool, indications are that stu-
dents do not so far see what the teacher perceives as value in its use. An activity the-
ory analysis suggests that we have here tensions between the teacher’s goals for cre-
ating conceptual understanding and students’ goals for instrumental success. This 
could be shown by juxtapositioning of two activity systems, one for the students and 
one for the teacher. However, stronger data is needed before this would make sense. 
Critical inquiry into how GeoGebra can be used by students to achieve conceptual 
understanding is proposed as action. 
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Abstract: I analyze the interplay of theories within a study on computer-based 
mathematics teaching. I will address divergences in their conceptualization of the 
empirical realities, influences on the interpretation of data, characteristics of my 
linking strategies, and issues of compatibility.  
Keywords: impact of theories on data analysis, theory development, compatibility of 
theories, micro-sociology, linguistic activity theory 

INTRODUCTION 
Amongst many others (Lester, 2005; Mason & Waywood, 1996; to name two only), 
“interpretative” research in the German speaking community of mathematics educa-
tion has highlighted the crucial role of theory in research (Bikner-Ahsbahs, 2003; 
Jungwirth & Krummheuer, 2008; Maier & Beck, 2001). Accordingly, on the one 
hand, this research invests much in the development of theoretical frameworks, on the 
other hand, it aims at a development of locally limited, grounded theories. The out-
come of research is thought of as a reconstruction of phenomena that is always theo-
retical in the sense that it transcends data and thus is an ideal type of reality (Bikner-
Ahsbahs, 2003; Jungwirth, 2003). The Austrian research project “Gender – Com-
puters – Maths&Science Teaching” by H. Jungwirth & H. Stadler was based on the 
above position. The aim was to reconstruct participants´ “relationships” to mathemat-
ics, physics and computers in computer-based classrooms, and the role gender plays 
within their interactive development (Jungwirth, 2008b; for the mathematics-related 
part). Apart from theorizing those relationships, a theoretical approach to classroom 
processes being appropriate for a comparison of both subjects had to be developed. It 
had to provide a notion of teaching as an ongoing process (in order to scaffold the in-
vestigation of the establishment of relationships) and as a whole (in order to be able 
to specify the contextual conditions of both subjects). My previous research sug-
gested a use of micro-sociological theories and of a supplementary theory that was 
located in the context of activity theory. In this paper I want to deal with these theo-
ries and their networking restricted to mathematics teaching (Jungwirth, 2008a; for 
the related findings). As my aim is not to present the study itself I just mention briefly 
that the data consisted of 21 common Austrian, mostly CAS-based mathematics les-
sons, that all were videotaped and transcribed, and analyzed according to the stan-
dards of that “interpretative” research which means that interpretation follows herme-
neutics and text theory in order to go beyond participants´ (i.e. teachers´) subjective 
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understandings, and beyond everyday life readings of the analyzed events. The over-
all procedure to elaborate the final set of hypotheses is borrowed from grounded the-
ory (Glaser & Strauss, 1967). 

MICRO-SOCIOLOGICAL THEORIES 
A micro-sociological perspective on mathematics teaching and learning has already 
proven fruitful in a variety of studies. To be precise, the attribute does not denote a 
single perspective but refers to different theories that share a basic understanding of 
social reality. Its structures are assumed to be established by the members´ of society 
mutually related acting. Those theories that figure in the project are symbolic interac-
tionism (Blumer, 1969), and ethnomethodology (Garfinkel, 1967).  
According to symbolic interactionism, interaction is the key concept to grasp social 
reality. Within interaction objects (anything that can be pointed, or referred to) get 
their meanings, and meanings are crucial for people´s acting towards objects and, in 
that, for establishing reality. Interaction is thought of as an emergent process evolving 
between the participants in the course of their interpretation-based, mutually related 
enactment. Thus, social roles, content issues, or participants´ motives as well are not 
seen as decisive factors; rather, they are also objects that undergo a development of 
their meaning. Consequently, neither the course of an interaction nor its outcome is 
predetermined. The term “interaction” is not restricted to events having outstanding 
qualities in respect to number of participants, topics, kinds of exchanges a.s.o. This 
means that classroom processes do not need to meet special demands in order to be a 
proper research object. From the perspective of symbolic interactionism, attention 
will always focus on the meanings objects get in local interaction, and on the very 
development of that interaction. As all participants matter from the standpoint of that 
theory, students are considered to be equally important as the teacher. 
Ethnomethodology, too assumes that social reality is made into reality in the course 
of action but addresses the issue that despite of its formation social reality is taken as 
a given reality. This is due to the reflexive character of everyday activities. By ac-
complishing their affaires the members of society provide explanations for their do-
ing and thus make it the normal way of doing. Ethnomethodology tries to reconstruct 
those methods. Accordingly, it helps in taking into account the methods by which 
teachers and students make computer-based mathematics teaching a matter of course 
whatever it will be about. Because of the shared stance towards reality the micro-
sociological theories are treated here as  “one” approach. 
However, both theories are not sufficient. First, they address even large joint actions 
under the aspect of formation by separate acts of the participants; that is, they do not 
foreground the idea of a whole that has its specifics and thus can be spoken of as an 
entity. Hence it is difficult to think of teaching as a business that has an overall orien-
tation. Secondly, both theories may induce a bias towards verbal events. There is a 
tendency to focus on verbal processes because of the prominent role of participants´ 
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indications to each other which are indeed often verbal. Yet in an analysis of com-
puter-based mathematics and, even more, experimental physics teaching all kinds of 
doing have to be covered.  

LINGUISTIC ACTIVITY THEORY  
The added theory (Fiehler, 1980) is a linguistic branch of activity theory (Leont´ev, 
1978) that is not specialized on teaching and learning issues. Its basic concepts are 
activity, and activity complex. Activities are not merely actions but lines of conduct 
aimed at outcomes, or consequences. An activity complex can be thought of as a net-
work of, not necessarily immediately, linked activities of some people that is oriented 
towards a material, or a mental outcome; that is, the concept always indicates a pur-
posive stance. Linguistic activity theory in particular elaborates on the idea that there 
are three types of activities: practical activities (being accomplished by manipulations 
of material objects, or by bodily movements), mental activities, and communicative 
activities (in the sense of verbal activities). It foregrounds the interplay of these types 
of activities; actually between practical and verbal ones as the involvement of mental 
activities is a matter of inference. Two kinds of activity complexes – verbally, and 
practically dominated ones – are postulated in which the orientation towards verbal, 
or practical outcomes shapes the interplay in specific ways. As for my concern, lin-
guistic activity theory helps me think of computer-based mathematics classrooms as 
entities having their own character. In particular, attention is turned to their global ob-
jectives. This is a relevant issue since in computer-based mathematics teaching IT 
plays an important role and could become a matter of teaching of its own right. Thus, 
there might be a further objective. The micro-sociological point of view is open to 
this option. But linguistic activity theory is in particular conducive to an identification 
of such cases as it helps in recognizing modes of activities and their interplay. 

STRATEGIES FOR NETWORKING 
As for the strategies of networking (Prediger, Bikner-Ahsbahs & Arzarello, 2008), 
“contrasting” theories has taken place so far and revealed that they play rather com-
plementary roles. In particular, this holds for the micro-sociological approach on the 
one side, and for linguistic activity theory, on the other side. Each of them provides 
perspectives that are not covered by the other one but are needed to form a better 
whole: on situational adjustment and formation, on the one hand, and on certain as-
pects of structure and overall sense, on the other hand.  
This two-sided approach has been used for a certain conceptualization of computer-
based (mathematics) teaching: Its overall appearance depends in particular on pre-
dominating activities and objectives that are put into effect. These features give evi-
dence of certain activity complexes that are the outcome of a multitude of similar ne-
gotiations among participants. Different types of computer-based mathematics teach-
ing can be assumed to be established, ranging from a highly verbal teaching empha-
sizing mathematical aspects to a teaching that is totally devoted to carrying out ma-

WORKING GROUP 9

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1597



  
nipulations at a computer. That conceptualization can be seen as a nucleus of a theory 
of computer-based mathematics teaching.  
Thus, because of combining theories for the sake of the development of a local the-
ory, synthesizing is a networking strategy in my research. The micro-sociological 
theories contribute by a “close-up”: the step-by-step formation of an activity complex 
becomes visible. Linguistic activity theory provides a “long shot”: a multitude of in-
teractions can be spoken of and treated as an entity. 
However, in order to elaborate that nucleus of a grounded theory it has to be applied 
to the data. Empirical phenomena are interpreted in its light. This means that the basic 
theories are also co-ordinated. Networking also serves the purpose to reconstruct con-
crete computer-based mathematics teaching. But as the research aims at a local, 
grounded theory, co-ordinating turns out to be synthesizing.  

NETWORKING OF THEORIES: AN ILLUSTRATIVE EXAMPLE   
The transcript is taken from an 11th grade classroom. During the lesson the class was 
given an introduction into maximum-minimum problems in which Derive should be 
used. The initiating task was: “A farmer has 20 metres of a fence to stake off a rec-
tangular piece of land. Will the area depend on the shape of the rectangle?” A table 
should help to systematize the findings. In a first step, the students developed a con-
jecture based upon examples being subject of the first part  (lines 01-26). In the fol-
lowing section of teaching (which is disregarded here) Derive was used to note the 
examples and to build the table. At the beginning of the second part (lines 134 ff) that 
table, containing columns for length (x), width (y), and area within the range of the 
examples, is visible to the students by a data-projector showing the solution of Erna 
who had to provide the official solution in Derive in interaction with the teacher. 

01 Teacher:  Our question is. All these rectangles with circumference 20. Do  
02 Sarah:  [inarticulate utterance] 
03 Teacher:  they have the same area. For example which ones can we take. 
04 Boy1:  No. 
05 Boy2: No. 
06 Teacher:  Which range can you give an example length width 
07 Boy:  Six and four? 
08 Teacher:  Six times four is 
09 Boy:  24 
10 Teacher:  Another example 
11 Eric:  Five times five this is the square 
12 Teacher:  Five times five would be a square having which area 
13 Eric:  25 
14 Teacher:  Or a smaller one. Is there a smaller area as well 
15 Carl:  For instance three times seven 
16 Teacher:  Three times seven is 21. Or another one. 
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17 Carl:  One times two sorry one times ten 
18 Teacher:  One times ten is ten or if we make it still smaller half a meter   
19 Girl:  [inarticulate] 
20 Teacher:  No. One times ten does not work one times nine would be OK. If the 

length will be ten what will happen.  
21 Boy: I see 
22 Teacher: Length ten what will we get if we take ten for the length 
23 Arthur: It is a line, a line [smiles], an elongated fence 
24 Boy: Not at all [continues inarticulately] 
25 Teacher: A double fence without an area thus the area can range from zero to. 

What was the largest so far 
26 Eric: 25 
<...> 
134 Teacher:  OK. This is OK. [to Erna] We can see if x is zero the width 
135 Boy: Ten 
136 Teacher: The area 
137 Student: Ten? 
138 Teacher: Yes. But now I like to have names for the columns x y z sorry x y the 

area. This we can do in the following way. We did it never before. 
Through a text object. Insert a text object [to Erna] this is not the 
proper place [it is above the table] but it does not matter no delete it. 
[she does] We want it below the table please click into the table and a 
text object above. Yes. And now you have to try. Use the cursor to 
place x y and area x in order that it is exactly above yes x y and the 
area. [she has finished] I do not know another way. I have figured out 
just this one. OK. We can see now the area change from zero 9 16 21 
24 25 24. Hence the areas differ. 

The episode 01-26 is about a response to a question. An analysis following symbolic 
interactionism can work out what participants´ taken-to-be-shared consensus concern-
ing that response actually is. Participants deal with the question in the way that they 
first present a concluding answer (04, 05, maybe 02, too) and then demonstrate its 
correctness by giving several examples. Thus the response becomes a moot point 
again, and participants establish an everyday argument of the kind “statements about 
parts of a whole hold for the whole as well” (Ottmers, 1996) that confirms the initial 
response. As for the development of the interaction, specifying length, width, and 
area serves as a format for giving examples but the binding character of the format 
does not come about at once. For instance, the second student foregrounds his own 
point and brings into play the shape as well (11). The teacher is always just one party 
in an interaction. Also his dealing with the wrong combination of length one and 
width ten (20) is a reaction to the events.  
Ethnomethodology enables me to reconstruct the ways in which the whole process of 
responding becomes a matter of course. For instance, students keep to presenting 
length and width as factors (11, 15, 17); or, in the case of disturbance (11), the 
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teacher´s ineffective acknowledgement of the square, consisting of a confirmation 
and an immediate question about the area (12), proves appropriate for stabilizing the 
format. In the end, it is quite normal that responding is about making sure that the ar-
eas differ and about finding out their range. The reference to the square (although not 
irrelevant at all) turns out to be already beyond the established scope.  
Both theories do not provide a more global understanding of the event. In particular, 
the question may arise what this episode is good for in the light of the research it be-
longs to. Linguistic activity theory helps to recognize a general purpose of the first 
part of the episode. It can be taken as a part of an activity complex: of an introduction 
to maximum-minimum problems. Accordingly, in the presented part a mathematical 
matter is made plausible that constitutes a problem that, in a generalized version, will 
have to be solved by means of calculus involving Derive. Besides, linguistic activity 
theory makes the solely verbal accomplishment of the response task a more remark-
able fact; it springs to mind that, for instance, the table is not drawn on the black-
board. Conversely, however, this theory does not provide insight into the specific 
way of arguing that turns out to be the solution of this task in the end. 
In a nutshell, in a co-ordinated theoretical perspective a mathematical event is estab-
lished that has the role of a preparatory step in a computer-supported task solving. 
The subject matter-related potential of the interaction is realized as far as it answers 
this purpose of preparation though, in the light of that role, the pseudo-reasoning 
about the difference of the areas appears somewhat artificial. Participants produce 
that event through a fine, inconspicuous verbal adjustment of their acting. 
At the beginning of the second part of the episode (134-137) participants demonstrate 
how the table has to be read. The values in the first line are used to explain what the 
output means. In a smooth-running process the teacher and two students establish a 
shared understanding of the table. After the reading has been clarified the table could 
be used (and this actually happens afterwards) to check the maximum area conjecture 
by further examples that are not confined to integer-sized rectangles (to be precise: an 
adapted version has to be used that provides numerical values in between). However, 
beforehand headings for the columns in the given table are produced. A second mean-
ing of the table emerges. The table that was designed as a means for the solution of a 
mathematical task turns into a mere scheme being subject to completeness. The 
switch is initiated by the teacher, and shared by the students (for example, Erna´s 
immediate adjustment to the new task; 138). All the time manipulations are carried 
out, and the utterances refer to them. That makes a difference to the first part of the 
episode. There is much talking again but the accomplishment of the practical activi-
ties shapes the verbal process. The completion of the table in Derive becomes the 
subject of the episode. The situation offers an occasion for such a change; apart from 
that options of a program will always have to be introduced in some task context. 
However, as the table was already interpreted well and should help to systematize the 
findings, the switch is rather a surprise. But: If teaching in that introduction to maxi-
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mum-minimum problems aimed at accurate products at a computer this turn towards 
the completion of the table would not be an extraordinary event. It just had to have 
priority then. This interpretation hypothesis grounding on linguistic activity theory 
would neither reject the possibility that those products at a computer could be condu-
cive to mathematical ambitions nor exclude that there could be entirely mathematics-
related negotiations. Thus, in its light the first episode need not be an exceptional 
event; it can even get an important role: it gives the computer-oriented business a 
mathematical air.  
In a modified version, this hypothesis is the overall résumé of my research: Com-
puter-based mathematics teaching of the observed type is a technologically shaped 
practice. The connection of the theories has also given insight into the particular fea-
tures of that practice (Jungwirth, 2008a). 
To combine theories of different grain sizes seems to be rather a successful strategy 
for co-ordinated data analysis and theory development (Prediger, Bikner-Ahsbahs & 
Arzarello, 2008; for some examples). In the following sections I want to address as-
pects of the theories featuring in my research that may further explain the fruitfulness 
of networking of theories in my case, and even beyond.  

EMPIRICAL LOAD OF THEORIES  
The first aspect is the “empirical load” of a theory (Kelle & Kluge, 1999). Accord-
ingly, theories can be classed by the risk of empirical failure: whether or not they 
comprise concepts and statements from which categories and hypotheses can be de-
duced that can be examined, and thus refuted through data. In the first case a theory 
has empirical substance, in the second one a theory has no empirical substance. These 
are the poles of a spectrum of states. 
Symbolic interactionism is at the second pole. It is a stance towards the world that 
can be hold, or rejected. It is not possible, for instance, to formulate refutable hy-
potheses for the position that objects get their meanings in the course of interaction, 
or to deduce categories for those meanings from the theory. Ethnomethodology too is 
a theory that lacks empirical substance, There is no empirical decision-making 
whether or not people´s methods to settle their everyday affairs make these common-
place affairs, and to fix in advance those methods. 
Empirically empty theories have the role of “sensitizing concepts” (Blumer, 1954), 
that is, of mere perspectives from which data can be looked at. The outcome in the 
given case has to be worked out in the data analysis. Data can never make such a the-
ory plausible; rather, conversely, interpretations of the data can be plausible in the 
light of the theory. Qualitative research often draws upon sensitizing concepts be-
cause they favour its approach to reality that tries to take into account participants´ 
own interpretations of that reality (Schwandt, 2000). 
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Linguistic activity theory has some empirical substance. Observable hypotheses can 
be built and examined through data. The category of activity and its properties “ver-
bal” and “practical” can be used for this. For instance, it is possible to decide whether 
or not practical activities dominate and replace talking at all in certain manipulation 
contexts.   
A use of empirically rich theories is characteristic, or even necessary, for quantitative 
research as the hypotheses to be formulated need a ground they can be deduced from. 
Within qualitative research referring to such theories may go beyond expectations 
concerning the rules for that kind of research. Accordingly, literature on methodology 
(Kelle & Kluge, 1999) points to the risk that properties of categories and hypotheses 
formulated in advance could dominate and interfere with the intended reconstruction 
of reality. However, it is not necessary to use empirically rich theories as it is done in 
quantitative research (Hempel, 1965); a researcher is not obliged to restrict 
her/himself to examinations of fixed properties and hypotheses. 
My study gives evidence that empirically empty and empirically rich theories are 
compatible, and, moreover, that combining them is a practicable mixture. It seems 
that this does not hold in my case only. Such a constellation can make connecting 
theories on a level involving empirical analysis particularly effective. Certainly, ap-
plying solely theories without an empirical substance has proven fruitful in qualita-
tive research (in mathematics didactics as well); however, it may be harder to elabo-
rate typologies. Besides, empirically rich theories enhance the development of 
grounded theories as they help to carry out the check of interpretation hypotheses be-
ing strictly demanded in Strauss´ version of grounded theory (Strauss 1987).  

CONCORDANCE OF BASIC ASSUMPTIONS (PARADIGMS)  
The second notable aspect is the compatibility of basic assumptions theories make for 
the subject under investigation. To put this concern more clearly I present it in well-
established terms: it is about theories´ belonging to paradigms. The concept of para-
digm has quite a lot of meanings; I will adopt here the broad view of Ulich (1976) in 
which a paradigm is thought of as a socially established bundle of decisions concern-
ing the basic understanding of the section of reality a theory wants to cover.  
According to him, the duality of stability and changeability of social phenomena is a 
crucial aspect for theories that deal with social processes and settings. Consequently, 
he has made it a starting-point for a typology of paradigms. “Stability-oriented” para-
digms regard regularities as manifestations of stable, underlying structures. Theories 
in that tradition try to grasp invariablities. “Transformation-oriented” paradigms as-
cribe regularities to conditions that are changeable because they are seen as having 
been established by the members of society. Thus, theories try to reconstruct the con-
stitution of regularities and to find out conditions for change.  
The theories I refer to differ in their origins and their concerns. Yet despite of all dif-
ferences they share the idea that regularities are established regularities; that is, that 
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they are outcomes of practice that can change if inner conditions change. This is ob-
vious for the micro-sociological theories but it holds for linguistic activity theory as 
well. According to activity theory in general, society is a man-made society; order 
and stability of societal phenomena reflect the cultural-historical development of hu-
man labour and living conditions (although there is an inner logic in that develop-
ment). Thus, all theories belong to the transformation-oriented paradigms. Symbolic 
interactionism and ethnomethodology are usually considered to be representative of 
the “interpretative” paradigm (Wilson, 1970) but that is, in the given typology, sim-
ply the micro-sociological version of the transformation-oriented ones.  
This common ground justifies an approach to activity complexes under the aspect of 
local development and, as a consequence, the above conceptualization of computer-
based mathematics teaching. If linguistic activity theory thought of human practice as 
an invariable, “given” entity, networking would not be honest at least. Actually, the 
idea that an interaction is determined by the roles of the participants, and the idea that 
an interaction is a negotiation process from which (also) roles emerge could not be 
combined to an integrated view on interaction serving as a base for analysis.  
The general issue arising from the discussion above is which elements of their respec-
tive grounds theories have to share in order that networking on the level of some syn-
thesis of theories, or of an integrated analysis, can take place.  
To summarize: The last sections should shed some light on the compatibility of theo-
ries. It seems that it depends on, or at least benefits from the aspects addressed. 
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ON THE ADOPTION OF A MODEL TO INTERPRET TEACHERS’ 
USE OF TECHNOLOGY IN MATHEMATICS LESSONS 

Jean-baptiste Lagrange and John Monaghan 
IUFM de Reims and University of Leeds 

This paper examines why researchers adopt a theoretical model in reporting the re-
sults of their research. It describes the development of two researchers investigating 
teachers’ use of digital technology in their lessons. The two researchers were dissat-
isfied in their attempts to understand the difficulties that the teachers they were re-
searching experienced and they got round this dissatisfaction by augmenting their 
theoretical positions by the adoption of Saxe’s four parameter model. The paper in-
troduces Saxe’s model, provides accounts of the researchers’ development and ends 
with a discussion of issues raised. 

INTRODUCTION 
There has been considerable recent work on theories in mathematics education, re-
flecting researchers’ efforts to be explicit about their theoretical assumptions and the 
links between different theories. CERME has been a focal point for many of these re-
flections. But why do researchers adopt a (particular) theoretical model in reporting 
the results of their research? There are many possible answers including: researchers 
are expected to adopt a theoretical model; a particular model may be ‘in vogue’; the 
researchers work in a culture where a particular model is the accepted model; the 
model addresses central questions that the researchers seek to understand. We are two 
researchers, with different national backgrounds, who used Saxe’s (1991) cultural 
framework and especially the four-parameter model to understand teachers’ activities 
in using technology in their classrooms. We look at this model with regard to central 
issues we sought to understand. The paper addresses CERME Working Group 9’s 
call for papers questions: What divergences appear in the way different perspectives 
conceptualize empirical realities, tackle practitioners’ problems? What is the influ-
ence of the different frameworks used on the research process? What is their influ-
ence on the interpretation of data? The paper is a report of what Prediger (2008, 
p.285) calls ‘problem solving “in the wild” of ordinary classroom practices’ and con-
siders the dual nature of this theoretical problem solving (theory and researcher). The 
paper first sets out Saxe’s model, then describes why and how Saxe’s model was used 
and ends by discussing issues arising. 

SAXE’S MODEL 
Saxe’s model centres on emergent goals under the influence of four parameters: ac-
tivity structures; social interactions; prior understandings; and conventions and arte-
facts (see Figure 1). Emergent goals are not necessarily conscious goals but are goals 
that arise from a problem in an activity and once the problem is solved the emergent 
goal usually vanishes. Saxe’s model was conceived to explain mathematical practices 
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in cultural transition (the Oksapmin tribe dealing with decimal money transactions) 
and is cultural-historical in its conception of artefact and interpersonal mediation in 
social practice. It has been applied in studies of street-sellers’ practices (Saxe, 1991) 
and technicians’ volume calculations (Magajna & Monaghan, 2003). It is, in our 
view, quite general in its application and particularly suited to the interpretation of 
innovative technology-based activity, such as teachers using digital technology due to 
unexpected goals emerging in this activity and the influence of cultural views regard-
ing technology. The four parameter model is the first component of a three compo-
nent theory: analysis of practice-linked goals; form-function shifts in cognitive de-
velopment; the interplay of learning across contexts, i.e. Saxe’s model is a construct 
and is part of Saxe’s broader theoretical framework. 

 

EMERGENT 
GOALS 

Activity 
Structures 

Social 
Interactions 

Conventions
Artefacts 

Prior 
Understandings 

 

Figure 1  Saxe’s four parameter model 

We provide examples from Monaghan (2004) to illustrate the parameters, in the case 
of teachers using ICT, their interrelatedness and their impact on emergent goals. 
The activity structures parameter “consists of the general tasks that must be accom-
plished in the practice- and task-linked motives” (Saxe 1991, p.17). In mathematics 
lessons this parameter concerns tasks that the teacher sets and the lesson structure. 
The tasks students engaged with in non-technology lessons were textbook exercises 
and the lesson structure was teacher exposition and examples followed by students 
doing textbook exercises. The tasks and cycles of the technology-based lessons var-
ied considerably over the teachers and over time for each teacher. 
The social interactions parameter concerns relationships between participants, teach-
ers and students, in lessons and how these relationships influence participants’ goals. 
It is very difficult to summarise differences between technology and non-technology 
lessons with regard to social interactions so we provide one example. Teachers spent 
much more time speaking to two or more students (as opposed to speaking to an indi-
vidual) in technology lessons. Further to this the computer tools not only performed 
mathematical actions but also recorded the product of these actions and this provided 
a common basis for a group of students to collaborate. 
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The conventions and artefacts parameter, consists of “the cultural forms that have 
emerged over the course of social history” (ibid p.18). Cultural forms in mathematics 
lessons include techniques linked to traditional, not computer-based, tasks and tools 
and these can clash with new practices using new tools. A teacher using a spreadsheet 
planned a lesson focusing on ratio but the students’ and her emergent goals in the les-
son were on getting the spreadsheet cells right, not only the correct equation but a 
suitable cell format. She commented after the lesson that she was unhappy with this 
focus on ‘cell-arithmetic’ and questioned “is this maths?” 
The prior understandings parameter, includes teachers’ content, pedagogical and in-
stitutional knowledge, “the prior understandings that individuals bring to bear on cul-
tural practices both constrain and enable the goals they construct in practices” (ibid 
p.18). The term ‘individuals’ is important because the different levels of experience 
participants in practice “bring to bear different (arithmetical) understandings on prac-
tice-linked problems and consequently their goals differ” (ibid., p.18). One teacher 
commented that with technology it was “back to being like a student teacher” because 
you are not prepared for any eventuality. 
These parameters interact and impinge on practice-linked emergent goals. With re-
gard to conventions and artefacts and prior understandings and the teacher who 
questioned whether cell arithmetic was mathematics, for example, this question was 
legitimate for her because her prior understanding of mathematics was formed in a 
public understanding of what (school) mathematics is. Further to this she voluntarily 
planned the task and wrote a worksheet which resulted in a focus on cell arithmetic 
and this discomfort only emerged in practice because her emergent goals in the lesson 
were shaped by the need to get the spreadsheet cells right. 

HOW AND WHY WE CAME TO EMPLOY SAXE’S MODEL 
We, in turn, state why we adopted Saxe’s model in our search for answers to central 
questions in our research.  
Monaghan’s case 
I have a long history of using digital technology in my own teaching and in working 
with other teachers who endeavoured to use it (some found it easy, others found it 
very difficult). In the late 1990s I ran a research project where I deliberately set out to 
work with teachers who had not used digital technology in their classrooms but who 
wished to do so. I worked closely with 13 secondary school teachers over a full 
school year, leading training sessions and conducting many interviews and observa-
tions. Teachers chose the technologies they would use which included computer al-
gebra and dynamic geometry systems, graphic calculators and computer graphic 
packages and spreadsheets. Each teacher was video-recorded several times over the 
year (51 recordings in total) including one recording of a lesson at the beginning of 
the year where they did not use digital technology. Video-recordings were analysed 
using systematic classroom analysis notation (SCAN; Beeby et al., 1979). SCAN 
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analysis involves viewing lessons as a series of activities, e.g. teacher exposition, stu-
dents working, teacher-student dialogue. Each activity is viewed as a series of epi-
sodes, e.g. coaching, explaining. Events sub-divide the episodes into social and lin-
guistic categories, e.g. managerial, confirmation. Coding consisted of categorising 
30-second blocks with regard to the teacher, the students and the episode. I wrote and 
co-wrote a number of papers on this work but I still felt ‘unsatisfied’ – there were dif-
ficulties that the teachers had experienced in their practices that I could not explain in 
a satisfactory manner. In one paper (Monaghan, 2001), for example, based on SCAN 
analysis, I produced fairly strong empirical evidence that teachers using technology 
did not change from being ‘didacticians’ to ‘collaborators-with-students’ (as some 
constructivists would have it). I showed, for example, that many teachers became 
what I called ‘techno trouble shooters’ and I described the material basis for this (the 
set up and use of classrooms and computer-rooms) but this was not the deep under-
standing I was looking for. 

Of the many intellectual influences on me at that time (≈2000), one that fitted with 
my thinking was Olson’s (1992) work on teachers’ routines. Olson views the study of 
teachers’ routines as a means to interpret teachers’ actions.  

Through classroom routines teachers express themselves. To understand what is being 
said in classrooms it is important to know what the routines are because such routines are 
rituals – performances involving significant symbols. These symbols belong to the tacit 
dimension of practice – what is said in the classroom that is not spoken directly. 

As a teacher-educator who is familiar with teachers’ routines these words ring true to 
me but as a researcher in this project with teachers using digital technology I had a 
problem with a focus on routine – my project teachers, who were using digital tech-
nologies in the classroom for the first time, did not have routines – they were experi-
menting and doing lots of different things (according to the material conditions of 
their classrooms). I needed another means to interpret the difficulties my project 
teachers experienced and the diversity of in-class practices they exhibited. I had, with 
Zlatan Magajna, used Saxe’s model in his work on technicians’ mathematical prac-
tices and I considered analysing my project teachers’ practices via Saxe’s model. Ini-
tial considerations looked promising. I feel it is worthy to note, for discussion at 
CERME WG9, that this analysis via Saxe’s model was quite different to my SCAN 
analysis. The SCAN analysis was “local” in as much as it concerned categorising ac-
tions in specific (30 second) time intervals; further to this it was procedural and, as 
far as is possible in qualitative analysis, objective. The analysis via Saxe’s model was 
“holistic” in that whole lessons and often sequences of lessons informed categorisa-
tions and took the form of confirming or not the influence of parameters in teachers’ 
practices. 
Lagrange’s case  
My approach is to consider theories to address an overarching question: considering 
the potentialities of technology and the strong emphasis that society puts on its educa-
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tional uses, why are these uses so rare, and why, when they exist, are they often de-
ceiving? In this approach, I was brought to focus on the teacher using technology and 
especially on his(her) classroom activity, and to search for theoretical frames that 
could help in that endeavour. This approach is reflected in the contributions I wrote 
for CERME 2, 3 and 4 and in a recent paper (Lagrange, Ozdemir-Erdogan, to ap-
pear). 
In CERME2 (Lagrange, 2002) I reflected on a meta-study conducted by a group of 
French researchers of a comprehensive corpus of international publications about re-
search and innovation on the integration of technology into mathematics. The study 
built a framework of several dimensions in order to account for trends in the corpus. 
A statistical analysis provided evidence that dimensions considering the impact of 
technology upon the learner and mathematical knowledge were addressed by a wealth 
of studies and theories giving account of successes of the use of digital technologies 
mostly in ‘laboratory conditions’. The other dimensions related to the ‘ecology’ of 
technology in educational settings were poorly addressed in term of research studies 
as well as in terms of theoretical frameworks that could give account of successes but 
also of failures in ‘real school conditions’. We considered a ‘teacher dimension’ but 
found very few studies addressing this dimension. 
In CERME3 (Lagrange, 2004) I focused on problematising teachers using technol-
ogy. Returning to the overarching question of a discrepancy between the potentiali-
ties of technology and the actual uses, my interpretation was that innovators and re-
searchers made an implicit assumption: new technologies and the associated didacti-
cal knowledge could easily be transferred to teachers by way of professional devel-
opment and training. I thought that this assumption had to be questioned because, in a 
country like France, uses of technologies are deceptive although efforts have been 
made to train teachers. In my hypothesis the existing corpus of didactical knowledge 
and frameworks about digital technologies use was not sufficient to really help teach-
ers integrate technology. Thus research had to study the teacher and try to look at 
his(her) action in the light of new frameworks. 
Analysing research (especially Kendal &Stacey, 2001 and Monaghan, 2004) about 
the teacher and digital technologies strengthened the idea of a difficult integration, 
contrasting with research centred on epistemological or cognitive aspects. Kendal and 
Stacey brought evidence that, even in a research project, teachers’ use of technology 
can be very different to what was intended because of the influence of teachers’ be-
liefs and habits on the way they use technology in the classroom. Monaghan did a 
thorough analysis of teachers’ classroom activity showing that innovators’ expecta-
tions for a more open classroom management and for more emphasis on mathematics 
in teacher-students interactions were not fulfilled.   
These studies were a first entry into the complexity of teachers’ relationship with 
technology use. To give account of this complexity and to think of new strategies for 
a better integration, I considered that an activity theory framework was needed. The 
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reason is that, while teacher’s activity in the classroom is problematic, it has its own 
logic and consistency. I believed that an activity theory framework would help to elu-
cidate the difficulties encountered by teachers using technology in the classroom, 
while giving insight on how their activity and professional knowledge evolve during 
these uses.  
In CERME4 (Lagrange, Dedeoglu & Erdogan, 2006) I tried out models of teachers’ 
practices when using technology. Working with two doctoral students, observing and 
analysing teacher practices in two fields – teachers at lower secondary level using 
dynamic geometry and teachers at upper secondary level non-scientific stream using 
a spreadsheet, we (Lagrange, Dedeoglu & Erdogan) noted that classroom use of tech-
nology reinforces the complexity of teacher practices by introducing a number of new 
factors. Our aim was to understand the impact of these factors on systems of teachers’ 
practices, and the conditions for classroom use of technology. We considered Robert 
and Rogalski’s (2005) “dual approach” and we tried to complement this approach by 
using models dedicated to teacher use of technology: Ruthven and Hennessy’s (2002) 
model addressed teachers’ views of successful use, whereas Monaghan (2004) devel-
oped a model of teacher classroom activity inspired by Saxe (1991), as outlined 
above. 
We noted in the conclusion that, combined with classroom observations, this model 
can help to make sense of phenomena in the classrooms that we observed. For in-
stance, it is a general observation that teachers teaching in a computer room devote 
much time to technical scaffolding when they expected that technology would help 
their students to work alone and that they could act as a catalyst for mathematical 
thinking. Ruthven and Hennessy’s model helped us to understand how a teacher can 
connect potentialities of a technology to her pedagogical needs, overlooking mathe-
matically meaningful capabilities. The observation of two teachers using dynamic 
geometry showed what happens when the connection does not work: the teacher tries 
to re-establish the connection by becoming a technical assistant. 
Saxe’s model was chosen to appreciate teachers’ specific positions using the parame-
ters and to make sense of their classroom activity in similar lessons. We considered 
two teachers, one positively disposed towards classroom use of technology, and the 
other not, both of them experienced and in a context in which spreadsheet use was 
compulsory: a new curriculum in France for upper secondary non-scientific classes. 
We contrasted the two teachers through the viewpoint of Saxe’s parameters and ana-
lysed their activity. In the classroom observations, we noted that teachers had to face 
repeatedly episodes marked by improvisation and uncertainty. The notion of emer-
gent goals was central to analyse this flow of unexpected circumstances and questions 
challenging teachers’ professional knowledge and parameters helped to understand 
how teachers react differently with regard to this flow. We also used other didactical 
constructs like instrumented techniques (Lagrange 2000) and milieu (Brousseau, 
1997) that helped to highlight weak points in these teachers’ activity: teachers seemed 
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not to be able to open a clear dialogue with the students about why it is better to use 
spreadsheet techniques than usual paper pencil techniques. They also seemed to not 
have a clear view of the milieu they should establish for their teaching goals. Saxes’ 
approach helped to understand the reasons for these weaknesses, mainly grounded in 
the different cultural representations between students and teachers (Lagrange & Er-
dogan to appear). 
The analysis clearly separated the two teachers. One teacher was at an impasse. Her 
tendency to act on an exposition/application activity format and a teacher/student in-
dividual interaction scheme had been reinforced by the spreadsheet and consequently 
application was replaced by narrow spreadsheet tasks. With regard to individual pa-
rameters, the other teachers’ dispositions towards technology integration were, in our 
opinion, excellent, but globally they conflicted and this teacher had to make real ef-
forts to get herself out of such conflicts. Saxe’s approach helped us to understand 
why good dispositions are not a guarantee of easy integration. 
Using Saxe’s model gave us more than what we expected. Because it is a cultural ap-
proach, it drew our attention to how cultural representations of the spreadsheet can 
differ, making it difficult for teachers to anticipate and understand what students do 
with the spreadsheet.  

DISCUSSION 
We consider issues raised above under two headings: the need for an augmented 
framework; how to evaluate the productivity of a theory. 
The need for an augmented framework 
Although we have developed as researchers in different countries we have, for many 
years, corresponded on matters concerned with the use of technology in the class-
room. The constructs available to us, however, and in our opinions, for viewing 
teachers’ activities in technology-based lessons were insufficient because they fo-
cused on teachers’ established routines and technology messes up teachers’ routines. 
Saxe’s model, with its central emergent goals, provided us with a construct to view 
teachers’ activities in technology-based lessons precisely because emergent goals 
arise from unexpected things that happen in such lessons. 
A second reason for augmenting a theoretical framework lies in the gap between data 
analysis and data interpretation one can trust. Very often researchers conduct research 
with a framework that integrates methodology and theoretical approach, where data 
analysis leads the researcher to data interpretation. This appears very sensible unless 
one finds that the data analysis does not answer ‘why’ questions. This happened with 
Monaghan. SCAN analysis revealed large differences between teacher time spent (in 
technology and non-technology-based lessons) in teacher-whole class exposition, 
eliciting  ideas from students, etc. (see Monaghan, 2001 for further details) but did 
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not contribute to a deep understanding of why this was happening. Saxe’s model, in 
Monaghan’s opinion, provided a means to a deep understanding of these phenomena. 
In augmenting a framework one should ensure that the augmentation is consistent 
with the underlying assumptions of the broader framework. In the case of Saxe and us 
there is a shared value of the importance of activity and mediation through artefacts 
and people. Further to this Saxe’s model as a construct makes few assumptions. We 
have focused on emergent goals and parameters which interrelate with them. Emer-
gent goals are ubiquitous in every human activity – so much so that we rarely notice 
them. Saxe’s model has what Dawkins (2008), in discussing Darwin’s theory, calls a 
large explanation ratio, ‘what it explains, divided by what it needs to assume in order 
to do the explaining – is large’.  
How to evaluate the productivity of a theory? 
In our opinion two outcomes impinge on the usefulness of a theory or model, under-
standing and widening the research focus/questions. First, the theory or model should 
provide specific understanding with regard to the focus of the research. Comparing 
the contribution of Saxe’s model to other frameworks helps to evaluate this specific-
ity.  
In Lagrange’s national context two frameworks are dedicated to learning (Theory of 
Didactical Situations, Anthropological approach) and a framework is dedicated to the 
teacher (Robert and Rogalski’s (2005) ‘dual approach’). These frameworks were use-
ful, but the conclusions we drew did not constitute sufficient progress towards under-
standing the situation of teachers using technology. 
As said above, considering how teachers dealt with the “milieu” and the spreadsheet 
techniques helped to highlight weak points in their activity. But it was not our central 
question. The question was why it is specifically difficult, even for experienced 
teachers, to develop a consistent activity when using technology. Then, the question 
is, why are those teachers not aware of these weaknesses, or, if they are, why do they 
not change their activity? Saxe’s framework provided a means for a deeper under-
standing of these weaknesses: rather than a poor didactical analysis, they reflect 
teachers’ uncertainty, and differences between students and teachers, with regard to 
spreadsheet representations and the fact that it was difficult for teachers to anticipate 
or understand what students do with spreadsheets.  
Robert and Rogalski’s approach assisted a consideration of the complexity of teach-
ers’ activity. We learnt from that that we would have to consider a plurality of factors 
with complex links between them. We anticipated and observed that, rather than 
bringing solutions, technology amplifies complexity. This result is, however, too 
general and did not account for the uncertainty experienced by teachers using tech-
nology in the classroom. The ‘dual approach’ postulates that practices are complex 
and stable, that is to say that teachers’ practices do not change easily because they are 
constructed to deal with the complexity. In contrast, teachers’ practices in dealing 
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with the complexity of classroom use of technology are far from stable and Saxe’s 
framework assisted an analysis of this unstability as a flow of emergent goals. 
A second criterion for the useful contribution of a theory or model is that it helps to 
widen the research questions. The main reason for choosing Saxe’s model was the 
uncertainty of teachers’ activity when using technology and the need for a holistic 
approach of this activity. We were attracted by the model rather than by the whole 
framework: goals and parameters seemed adequate to analyse teachers’ classroom ac-
tivity, and they actually were. But after using the model, we reflected why this model 
was productive. We realized that there should be something in common between our 
teachers and the New Guinea Oksapmin from which Saxe built the model. This 
should be that both had to deal with a new artefact involving deep cultural representa-
tions. In the Vygotskian perspective, Saxe was interested by the impact of culture 
upon cognition and he chose the Oksapmin people because in their case there was a 
conflict of cultures: these people have a traditional way of counting, using parts of the 
body as representation of numbers; some of them trade in the modern way, but their 
traditional way does not permit them the calculations that this trade requires. This 
comparison brought us to consider cultural systems involved in classroom use of 
technology. Students saw the spreadsheet as a means to neatly display data. It is con-
sistent with the social representations of technological tools. People are generally not 
aware of the real power of the computer, which is the possibility of doing controlled 
automatic calculation on a data set, even when they used spreadsheet features based 
on this capability. In contrast, the teachers saw the spreadsheet as a mathematical 
tool. They were disconcerted because they were not conscious of the existence of 
other representations. Clearly, Saxe’s approach helped us to widen our reflection 
about the impact of cultural views associated to computer artefacts upon classroom 
phenomena. 
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THE JOINT ACTION THEORY IN DIDACTICS: 
WHY DO WE NEED IT IN THE CASE OF TEACHING AND 

LEARNING MATHEMATICS? 
Florence Ligozat & Maria-Luisa Schubauer-Leoni 

FPSE, Université de Genève (CH) 
In this paper, we reflect on the Anthropological Theory of Didactics and the Theory 
of Didactical Situations in Mathematics as the roots of an emergent framework: the 
Joint Action Theory in Didactics. Disclosing some of the boundaries of the two major 
French theories in didactics allows us to sketch an integrative scheme of certain of 
their principles and concepts within the background of socio-cultural and pragmatist 
approaches to teaching and learning practices.  
This paper aims at contributing to the discussion that has progressively given rise to a 
"theory networking space" in the previous Working Group sessions. We regard this 
work as an important step for several reasons. First, it accounts for the paradigmatic 
partition of the main theories currently used in mathematics education, ranging from 
the more cognitive ones that focus on the understanding processes of individual 
learners, to the more cultural ones, that are oriented by institutional and collective 
structures in which knowledge is subjected to social transactions. It sheds a new light 
on certain theories we are familiar with, since they are contrasted with some others on 
certain aspects like the role of social interaction, the role of learning environments, 
the role of the teacher…etc. Second, some very interesting mechanisms are disclosed 
about the ways researchers may attempt to connect theses theories, while preserving 
their specificities. We especially value the tension between integration possibilities 
and boundaries to preserve, but also the triplet [principles, methodologies and para-
digmatic research questions] that is worked out by Radford (2008).  
As we support the development of comparative studies in didactics, these questions 
are of premium interest for delineating both the generic and the specific (i.e. content 
knowledge related) principles of the intricate processes of teaching and learning. 
More particularly, the work in progress in this CERME Working Group is an oppor-
tunity for us to reflect on the development of the Joint Action Theory for Didactics 
(JATD), for the purpose of grasping teaching and learning complexity under ordinary 
classroom conditions.  
PART I : SKETCHING A NETWORKING SPACE FROM ATD AND TDSM 
In the first part of this paper, we contrast the two major theories developed by the 
French didactics of mathematics, i.e. the Anthropological Theory of Didactics (ATD; 
Chevallard, 1985/1991; 1992) and the Theory of Didactical Situations for Mathemat-
ics (TDSM; Brousseau, 1997). Since these frameworks have developed over more 
than 30 years, this has to be drastically reduced to their major orientations, without 
having here the opportunity to decline the various branches that they inspired further 
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on. Indeed, what we are most interested in is their epistemological stance rather than 
outlining these theories per se. In line with one of the most important principle under-
lying both the ATD and the TDSM, we consider that theories, like knowledge, 
emerge as a collective elaboration to face a set of problems and questions that human 
groups experience in the development of societies. Thus, a good starting point for 
inquiring into theories may be to compare the realm of reality they account for, 
through their paradigmatic research questions (Radford, 2008) along with their epis-
temological roots in human sciences.  
From an historical standpoint, the theorization of an "experimental epistemology for 
mathematics" that was worked out by G. Brousseau in the mid 70's is a mean to ac-
count for the generation of meaningful mathematical knowledge in classrooms. Then, 
in the early 80's, Y. Chevallard's anthropological analysis of the conditions of knowl-
edge dissemination within institutions, shed a new light on knowledge taught as re-
worked from its genuine context of emergence in expert (or academic) communities. 
Therefore, the knowledge coherence and legitimacy as presented in school, has to be 
studied in terms of epistemic affordances and constraints. In both cases, the epistemo-
logical account of the knowledge content at stake as the third pole of the didactical 
system opened the era of the didactics of mathematics as a science taking off from the 
psycho-pedagogical stance on teaching and learning.  
Since the early works, the ATD relied upon an assumed structuralist point of view of 
knowledge development within institutions that can be referred to the background of 
a Durkheimian sociology and eventually to certain socio-cultural approaches. In line 
with Douglas (1986), the basics of the ATD are that (1) ways of thinking of individu-
als are shaped by the collective practices to which they partake and (2) these collec-
tive practices are oriented by purposes whose coherence defines the primary goal of 
an institution as a social organisation bound to achieve a type of task. In the case of 
educational institutions, the transmission of a socially agreed culture is the core of the 
activity, relayed by an "intention to teach" and an "intention to learn" at the level of 
the teacher and the students respectively. Thus, the determination level of what the 
participants do is to be studied in the institutional patterns of the teaching and learn-
ing culture. Early works from Chevallard (1985/1991) have stated that the way 
mathematical knowledge is ordinarily presented within educational institutions does 
not match the epistemological way the mathematics are built (i.e. the mathematical 
praxeologies in the ATD). Differences in goals generate differences in tasks to be 
achieved and so the patterns of school mathematics are somewhat distant from aca-
demic mathematics. The transposition process as the starting point of the ATD ac-
counts for the specific organisation of knowledge in the purpose of its transmission 
within educational institutions. In particular, the didactical transposition process is 
characterised by (1) a decontextualisation of mathematical practices from the prob-
lems they originally attended, into sequence of topics to fit the curricula constraints 
and the frames of teaching time; (2) a recontextualisation of these topics by the 
teachers, in order to make the students encounter the knowledge to be taught within 
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the classroom practices. This process has long been regarded to be consubstantial to 
the functioning of didactical systems as ruled by institutional practices. In recent 
works, it has been refined by featuring the didactical praxeologies as a set of prac-
tices, combining with each other, in order to describe the possibility of studying the 
process of mathematics in the classroom. It is structured in terms of moments that are 
theoretically inherited from the praxeological structure of the mathematical knowl-
edge, i.e. the two levels of practices that correspond respectively to the techniques for 
solving a type of problem and the formulation / justification of these techniques. In 
furthering this, the ATD also attempts to account for the role of words, graphics and 
gestures as "ostensive objects" that shape the mathematical activity. Ostensives en-
capsulate the socio-cultural definition and values of the mathematical knowledge and 
they provide tools for a praxeology to develop. In our view, the ATD's paradigmatic 
research questions attend to a top-down systemic approach of the mathematical 
studying process. A description of the mathematical tasks and the possible didactical 
praxeologies are attempted as forms of institutional practices.  
The epistemological roots and the research questions of the TDSM are more complex 
to depict. Brousseau's well-known starting point is that a given mathematical knowl-
edge can be functionalised by a fundamental situation gathering the epistemological 
conditions for the emergence of the considered piece of knowledge in the human cul-
ture. This major underlying principle is somewhat compatible with the definition of 
the mathematical praxeologies in the present works of the ATD. Whereas ATD con-
siders this principle as a mean to describe the possible structures of human practices 
in studying mathematics, at the level of institutions, the TSDM refers to the same 
principle for modelling the epistemological conditions in which the students may de-
velop some meaningful mathematical knowledge, within the classroom.  
A major concern in G. Brousseau's work is to identify such fundamental situations in 
the primary school mathematics and to derive some didactical situations from them. 
In such situations, students encounter some constraints requiring an adaptation of 
their prior knowledge towards the learning of a new one. The students have to work 
out the solution of a problem in which specific knowledge cannot be avoided. Brous-
seau explicitly refers to the Piagetian theory of learning. The core of the learning 
process relies upon the students’ adaptation to a milieu as a set of epistemological 
constraints. The milieu is designed to orient the students' actions by providing some 
positive or negative feedbacks to the strategies used. To achieve meaningful learning, 
the students have to take the responsibilities of their game (devolution) without rely-
ing on the teacher's feedbacks. This is what Brousseau defines as an a-didactical 
situation, in which the student is supposed to focus his/her interest on a "game" 
against the milieu and "forget" the teacher's expectations at least for a while. From 
the student’s point of view, the outcome of the game is a new "connaissance" that is 
being progressively socialised within the classroom debate. Typically, the student 
first acts to find a local solution to the problem, then formulates his/her strategies 
through a communication game and finally, the strategies may be validated within a 
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controversial debate in the classroom. Moving from the peculiar answer to the prob-
lem to a generalised pattern of knowledge is supported by some changes in the milieu 
with which the student interacts. Then, the institutionalisation process managed by 
the teacher makes sure that the "connaissance" constructed by the students within the 
didactical situation, is adequate to the definition of knowledge in curricula. Thus, the 
outer horizon of Brousseau's didactical situations remains coherent with a cultural 
approach of knowledge. However, the kernel of this theory relies upon a constructiv-
ist epistemology where the student-milieu relationship primes the learning process, by 
the mean of the a-didactical situation. Social interactions come into play for anchor-
ing the "connaissances" built by students as individuals, within the pre-existing socio-
cultural knowledge. As noticed by Radford (2008), they are "a mere facilitator of in-
dividual's development of mental structures"(p320). In our view, the paradigmatic 
research questions that the TDSM addresses is the design of epistemic models of 
knowledge, i.e. situations that enable an adaptive shift of the student towards the con-
struction of new knowledge, without relying onto the teacher's indications at some 
points of the didactical contract.  
Both these theories attempt a model of teaching and learning mathematics as a three 
poles system where the "being teaching" (teacher) and the "being taught" (student) 
are two epistemic instances constrained by the knowledge structure. In the ATD 
framework, the diffusion of mathematical knowledge is studied merely at the collec-
tive level of the social structures whereas the TDSM attempts to link the conventional 
patterns of knowledge and the connaissances constructed by individuals in a rather 
functionalist way (the milieu originates in the student's actions 
/formulations/validations). These structural and / or functional stances on the teaching 
and learning process were crucial in the development of the French didactics of 
mathematics. We regard it as a major epistemological break from the merely psycho-
logical approaches to students' difficulties in mathematics and the pedagogical posi-
tivism more generally. It afforded the premises of a science of the teaching and lean-
ing phenomena in mathematics, and it also inspired other subject matter didactics in 
the French speaking community.  However, moving back to the major features of 
each theory allows to highlighting some irreducible boundaries between them.  
The epistemological boundary: The TDSM draws strongly on the student – milieu 
interactions, as an epistemic model of the adequate conditions for reconstruction of 
knowledge to occur within didactical conditions. The teacher's role in the devolution 
and the institutionalisation phases is an add-on. In between, the teacher organises the 
constraints of the milieu to sustain the optimal interactions. The dualistic relation-
ships between the student and the milieu exclude the vision of the classroom social 
environment as a "thought collective" (Douglas, 1986) to which each student is sub-
jected ipso facto through the use of language and more generally signs that are so-
cially agreed. The predominance of the milieu, as a pre-structured environment made 
of material, symbolic and social objects to which students have to adapt themselves, 
shadows the reflective activity that they may also activate to make meanings from 
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collective practices. The adaptive function of the milieu addresses the individual 
minds as independent structures that become intertwined through the formulation and 
validation games. The reference to the collective practices is not continuous in the 
participants’ experience as it is supposed to be in the underlying principles of the 
ATD framework. However, one can also argue that the ATD focuses on the institu-
tional practices mainly but the way individuals may get the ownership of these prac-
tices and eventually make them evolve, is not accounted for. Very few elements de-
scribe what the participants effectively do within the didactical system, in order to 
teach and learn. As stated by Arzarello, Bosch, Gascon & Sabena, "the non-ostensive 
objects exists because of the manipulation of the non-ostensive ones within specific 
praxeological organizations" (2008, p181). The interpretative process of the collec-
tive meanings by individuals are shadowed by the schemes of institutional practices 
that (over)structures local purposes and psychological processes. Although the con-
cept of "mesogenèse" was promisingly introduced (Chevallard, 1992) to account for 
the dynamics of the relations between individuals and objects in their environment, it 
did not deepen, for instance, how the semiotic systems handled by students (i.e. os-
tensives) may generate meanings, i.e. non-ostensives (Schubauer-Leoni & Leuteneg-
ger, 2005).  
The methodological boundary: Early works from Chevallard stated that, ordinarily, 
the knowledge presented to students in classrooms does not appear according to the 
epistemological conditions in which it was born, due the decontextualisation and se-
quentialisation processes in curricula. From this point of view, the works carried out 
by Brousseau's team may be regarded as an attempt to counter the transposition proc-
ess by redesigning school mathematics into meaningful situations that are not ordi-
narily supported by didactical institutions. Indeed, a didactical situation is supposed 
to restore some of the epistemological conditions for knowledge to be built, by de-
signing specific learning environments. A series of fascinating designs were produced 
in which cultural knowledge is genuinely functionalised (numbering with integers, 
measuring capacities, introducing rational and decimal numbers, Euclidean divisions, 
linear functions…etc.). But the way ordinary school institutions may incorporate 
these situations is not investigated, leaving some opportunities to misleading interpre-
tations of certain examples of didactical situations in some teaching materials. Fur-
thermore, the design process tends to minimize the teacher's work which is then 
strongly supported by the research team. One can say that it shunts the "repersonnali-
sation" process of the institutional patterns of knowledge, which is ordinarily carried 
out by the teachers. The relationships between the milieu to be organised and the in-
teraction arena which is ruled by the reciprocal expectations of the didactical contract 
is the main concern. But the relationships between the ordinary resources that the 
teachers use and the effective teaching environments they implement cannot be inves-
tigated from Brousseau's paradigmatic research questions because they strongly rely 
upon research designs.  
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From these boundaries, we argue that (1) the TDSM cannot be regarded as a direct 
continuation of the ATD framework in terms of classroom practices and interactions 
among individuals ; (2) the structuro-functionalist stances that are consubstantial to 
both these theories does not allow an account of the interpretative motions of the sub-
jects within the didactical system as an social institution. These two points could be 
said to be out of synch with the purposes of those researchers who actually work with 
one or another theory. Nevertheless, we argue that if didactics is to be a science of the 
teaching and learning phenomena about a given content knowledge, then some new 
research questions have to be addressed.  
PART 2 : THE GROWTH OF J.A.T.D. AS AN INTEGRATIVE THEORY 
In this part, our purpose is not to feature details and examples of use of the Joint Ac-
tion Theory in Didactics, since this is presented in Sensevy (this group of papers). We 
rather would like to present the conditions of emergence of its paradigmatic research 
questions and how some principles and concepts may be borrowed from the ATD and 
TDSM, by the mean of a conversion process in the light of some pragmatist theories 
to match a socio-historical perspective of knowledge development in teaching and 
learning (Forget & Schubauer-Leoni 2008; Ligozat, 2008).  
Many empirical studies have reported that the specific role played by the milieu in 
TDSM's is a feature that is hardly observed as controlled by the teacher in ordinary 
classes. Most of time, the set of objects partaking to the situation is not self-sufficient 
to enable students develop an epistemic relation to the problem or task to be 
achieved. Or, to reformulate this in the terms of the ATD, consistent bodies of 
mathematical praxelogies are hardly managed by the teacher. However, in these ordi-
nary conditions, that we consider to be the most common teaching and learning real-
ity for mathematics, we cannot envision that no learning happens at all. It progres-
sively leads us to consider that didactical situations that would be a priori endowed 
with some a-didactic affordances may not be an adequate model to theorize the ordi-
nary teaching and learning practices. In other words, the "obdurate reality" of class-
rooms as an empirical field has to be investigated. What kinds of meanings are con-
structed in students' "ordinary" learning experience? How does the teacher support 
them? What kind of common ground is being built for the whole class and how does 
it fit with the cultural definition of knowledge? What do we know about the way 
teachers select, structure, refine and adjust instructional settings? ...etc. Such ques-
tions arose from empirical observations of classrooms at primary school mainly and 
with an increasing demand for professionalizing teacher education. The institutional 
location of researches in didactics in teacher training institutes (IUFM in France, 
since the early 90's) and/or in some department of educational sciences (e.g. Geneva) 
has broadened the scientific scope of the subject matter didactics toward a compre-
hensive account of the didactical phenomena as an educational matter. The realm of 
studies of the didactics of mathematics as a science meet the opportunity to grow 
from a merely epistemological programme to a quest for an account of human prac-
tices that are specified by the conveyance of a socio-historically built culture.  In this 
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context, the paradigmatic research questions of the JATD are new ones compared 
those featured by the ATD and the TDSM. The teacher and the students cannot be re-
garded any longer as epistemic instances merely subjected to the structure of knowl-
edge. The interpretative part of their activity within the educational institutions as a 
social framework has to be accounted for too. To be clear, we are not arguing that the 
JATD could replace the fields of investigation that are at the focus of the ATD and/or 
the TSDM. We would like to point out that it is a complementary framework aiming 
at giving a status to the subjects' actions and interpretations relatively to the institu-
tional contexts for teaching and learning a given subject matter.  
In producing such a framework, we call in some principles that are rooted in both 
human activity as primarily social and historically built and in a pragmatist view of 
the situations in which the activity develop. Against this background, the transposi-
tion process sketched by Chevallard and the didactical contract theorized by Brous-
seau, can be viewed as the starting point of a hybridizing plot.  
First, we postulate that the interpretation of classroom events cannot be performed by 
focusing solely on either the teacher’s actions or the students’ ones. We propose to 
look at the teacher and students “joint” action to account for both the historical and 
the situated interdependence of the classroom actions. Such a joint action may in-
volve separate and distinctive acts that are bound together to make the collective ac-
tion progressing in some cooperative patterns. The genesis of joint action is based 
partially on orderly, fixed and repetitious definitions of previous acts through the col-
lective memory that is relayed by the use of signs (graphical, gestual, or vocal). Of 
course, such joint action is also open to uncertainty and so the transformation of the 
use of signs to sort new tasks and problems. These statements are general to many 
actions in human activity (Clark, 1996). A way of specifying them is to consider both 
the specific purposes of educational institutions and the forms of knowledge to be 
taught.  
i) From TDSM, the didactical contract is probably the most likely principle to address 
the problem of the individuals' interpretation of contextual practices. We consider 
that the intention to teach a given topic supported by the teacher generates an expec-
tation to learn "something" from the students. Regularities in the functioning of the 
classroom as a didactical institution progressively makes the students aware that a 
teacher usually has "something" in mind beyond the concrete tasks or questions they 
have to sort. On his/her side, the teacher organises didactical time slots for making 
the students develop a reflection, an inquiry, the achievement of a task…etc. As soon 
the student is aware of what is being taught, he/she supposed to know, and the teach-
ers moves on toward another topic. Therefore, teachers and students always remain in 
an asymmetrical relationship due to the difference in the respective status of their 
knowledge. We consider the cultural stance of the didactical contract as a system of 
reciprocal expectations merely, according to which the teacher and the students adjust 
their actions. The asymmetrical status of the teacher and the students relative to their 
respective relationship to knowledge is consubstantial to the chronogenesis and topo-
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genesis processes that were initially sketched by Chevallard (1985/1991) to describe 
the structure of recontextualisation of knowledge in the classroom. 
ii) However, we do not maintain the constructivist stance of the didactical contract, 
i.e. the contract as regulating an antagonist set of objects that would constrain the 
students' actions. A converting plot is then required to describe the relationships of 
the participants to the objects partaking to the situation. Following Mead's definition 
of the social act (Mead, 1934), we consider that individuals indicate the objects to 
themselves in line with the function these objects have in collective practices. The 
meaning-making process is supported by actions –gestures and discourses- in com-
municative situations. Objects have a meaning for one-self only because they have 
also have a meaning for otherselves in the situation but also in the culture pre-
existing to the situation. Such processes, as indications of objects within the back-
ground of language games (Wittgenstein) are actually under investigation for describ-
ing the articulation of collective practices and meanings made by individuals. The 
distinction of "which object counts for which participant", or "from whom this kind 
of relation comes out" and "who grasps it" is important in determining 1) the set of 
objects that participants indicate to themselves, 2) the meaning that they may ascribe 
to their own actions with these objects, 3) the control they gain from it and that may 
be re-allocated in further experiences. This threefold meaning-making process over 
time is described as a mesogenesis.  
iii) Then, it follows that the topogenesis and the chronogenesis are strongly related to 
the teacher's actions because of his/her leadership in the didactical relation. The 
teacher is the one supposed to orient the student's actions in order to help him/her 
learn, but also to notice the student's elaborations in order to designate them a new 
knowledge. Therefore, some chronogenetic and topogenetic techniques contribute to 
the building of a common reference (objects, relations) in the mesogenetic process. 
Chronogenetic techniques are anything that the teacher may do in order to orient the 
students' actions toward the piece of knowledge to be learnt. The topogenetic tech-
niques are anything that the teacher does to regulate his/her involvement in the joint 
action and to assign a role to the students all together or as individuals. The devolu-
tion and institutionalisation categories for the teacher's action primarily exist in 
Brousseau's didactical situations, but they may be revised as generic to any teaching 
process.  
iv) The specification of the joint action also operates through the epistemic tasks that 
are to be achieved. The pre-existing culture necessarily comes in when studying how 
knowledge to be taught is presented in the teaching materials and curriculum texts. 
But the purposes of the ordinary practices in classrooms may be rooted in some 
multi-determination levels other than merely mathematical ones. Thus, acknowledg-
ing for the individuals' interpretations of the situations they encounter lead us to re-
consider the transposition of knowledge within the didactical institutions from a bot-
tom-up point of view that is coupled with the top-down analyses typically performed 
by the ATD framework. We conduct an analysis of the epistemic tasks that are em-
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bodied in the teaching materials that the teacher uses (Ligozat & Mercier, 2007). For 
instance, from the worksheet proposed by the teacher to the students, we may inquire 
1) what could be learnt in performing it and then 2) what could be taught according to 
the curriculum of a given grade. At this step, the fundamental mathematical situations 
or the mathematical praxeologies provide some useful ways of modelling the epis-
temic knowledge. The possible gaps and contradictions that are issued by the decon-
textualisation process may be disclosed against the background of the mathematical 
practices. Then a bottom up process aims at reconstructing the meanings that objects, 
situations and practices may have for the participants to the classroom joint action. In 
this second process, the epistemic model of mathematical knowledge is used as refer-
ence to understand 1) what is actually taught and learnt in the joint actions; 2) what 
the distance left toward the cultural knowledge is and 3) what the epistemic necessi-
ties that bend the joint action in some specific ways are. This type of analysis may be 
carried out at various scales of analyses (a classroom episode, a whole lesson, a 
teaching unit spread over several lessons…etc.) that can be nested together. The cou-
pling of both the transposition and the social transactions analysis with the classroom 
supports the investigation method in the JATD framework. A full study of the course 
of joint actions in the classroom against the transposition of measurement at primary 
school was achieved in Ligozat (2008).  
CONCLUSION 
The JATD attempts to encompass a huge programme for didactics as a scientific do-
main studying the human transactions organised about the transmission of a socio-
historically built culture. The need for a theory that aims at theorising teaching and 
learning practices as they occur in ordinary classroom seems unavoidable. However, 
in its present state, the JATD has to face different kinds of problems: 1) defining its 
identity as a generic theory for the study of the didactical facts but which develops 
and produces results by accounting for the specificity of knowledge domains; 2) the 
further clarification of its epistemological stances with respect to the principles and 
concepts that are borrowed from other theories and 3) the definition of some meth-
odological units from its very extended realm of reality, that may be worked out in-
dependently without taking the risk of generating some misleading interpretations. 
The very intention of this paper can be regarded as an attempt to contribute to the 
first and second points with respect to relationships the JATD has with other theories 
concerning specific domain didactics. However the clarification of the epistemologi-
cal stances of the action theories that we invoke still remains a major stake for the 
works in progress. 
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We are looking for the explanation of the differences in learners’ flexibility when us-
ing the learned knowledge in new contexts. The main aim of our contribution is to 
combine various theoretical perspectives of investigating teachers’ variability and 
students’ flexibility when applying the learned knowledge. We consider the inter-
personal differences as an effect of the teacher’s didactical variability. Sarrazy 
(2002) claims that the question of the use of algorithms and taught theorems by stu-
dents is more an anthropological than psychological problem. The contribution re-
lates to the question B2: Do different frameworks make us look at different aspects of 
the learning process, that is, at different research questions and different data, or at 
different interpretations of the same data about the learning process?  

1  INTRODUCTION 
Learning mathematics is successful only when the learner is able to identify condi-
tions for the use of knowledge in new situations. These conditions, however, are not 
present in the algorithms itself and cannot be carried over by teachers to their learn-
ers. This is one of the didactical contract paradoxes: “The more the teacher gives in to 
her demands and reveals whatever the student wants, and the more she tells her pre-
cisely what she must do, the more she risks losing her chance of obtaining the learn-
ing which she is in fact aiming for.” (Brousseau, 1997, p. 41).  
In (Novotna, Sarrazy, 2005) we presented two studies originally carried out as inde-
pendent entities both dealing with the same topic: problem solving. One of them be-
longed more to the psychological perspective while the second one examined the ef-
fects of variability in the formulation of problem assignments on students’ flexibility 
when using taught algorithms in new situations; the research was developed in the 
framework of the theory of didactical situations. These two studies proved themselves 
to be perfectly complementary. The first one allowed the detection of a set of phe-
nomena, whereas the second gave them precision through an action model of the 
problem focusing on the variability in word problems. Connecting these two ap-
proaches allowed opening interesting perspectives for a better understanding of the 
role of problem solving in teaching and learning mathematics by giving precision to 
certain conditions of their use.  
Why is it worth to combine the two approaches? Novotná (2003) showed that the 
analysis of models created by students enables the teacher to help them in case that 
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their effort to solve the problem correctly is not successful (mainly in determining the 
type of obstacles the student has faced). The individual differences in the form of 
graphical models could be explained by the internal student’s cognitive processes 
(Novotná, 1999). However, this approach did not enable us to explain the striking dif-
ference “spontaneity versus copying” in the student groups. The psychological per-
spective did not offer any explanation of the fact observed. It was to be searched for 
outside the psychological approach. A suitable tool for the explanation was found in 
the frame of the Theory of didactical situations by Brousseau (1997), namely in the of 
variability of teachers introduced by Sarrazy (see Part 3).   
Sarrazy (2002) presents a model based on the following idea: The more versions of 
realisations a particular form includes, the more uncertainty is attached to this form. 
To satisfy the teacher’s expectations, the student must ‘examine’ the domain of valid-
ity of his/her knowledge much deeper than a student who is exposed to strongly ritu-
alised (repetitive) teaching and therefore considerably reduced variability.  

2  INTERPRETATION OF EFFECTS OF VARIABILITY 
We are investigating effects of variability of teachers on learners’ flexibility in apply-
ing algorithms from three perspectives (for more details see Novotná, Sarrazy, to be 
published): 
a1 – Psychological interpretation: Variability gives priority to the change of learners’ 
operational register by diversifying their relationship to the object of teaching or to 
their action (Richelle, 1986; Drévillon, 1980).  In fact, the diversity of modes of rela-
tionship to the object of teaching, which is typical for didactical environments with 
strong variability, brings in an alternation between the phases of knowledge integra-
tion and differentiation in their usage. Drévillon (1980, p. 336) states that learners 
would possess a plurality in their access to objects that would be efficient to help “not 
only to proceed to the operational formal stage but to construct a repertoire of cogni-
tive registers. This repertoire enables, if asked or needed, to examine a problem and 
solve it at the functional level, i.e., practical and objective, or to extract the opera-
tional quintessence and thus to construct a more general activity model”1.   
According to Piaget (1975, 1981), it is also possible to consider variability as one of 
the sources of perturbations resulting from variations of didactical environments; this 
variability enables to provoke cognitive adaptations (accommodations) and thus to 
increase the student’s cognitive register in relation to a conceptual field – e.g., addi-
tive and multiplicative structures studied by Vergnaud (1979, 1982, 1994). 
This first aspect can be précised didactically by changing the frameworks as proposed 
by Douady (1986) in the theory of “dialectic ‘tool-object’ (outil-objet)”: “A student 
possesses mathematics knowledge if he/she is able to provoke its functioning as ex-
plicit tools in problems he/she must solve [...] if he/she is able to adapt it when the 
normal conditions of its use are not exactly satisfying for interpreting problems or for 
posing questions with regards to it”2 (Douady, 1986, p. 11).   

WORKING GROUP 9

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1626



  
a2 – Anthropological interpretation: When interpreting variability effects in relation-
ship to what could be called “school culture” of the class, variability creates a charac-
teristic of the environment in which learners develop and learn mathematics. In case 
of weak variability, a repetitive teaching, poorly varying in its forms of organisation 
and in the content, leads the learners to a hyper-adaptation to proposed situations. In 
order to adapt themselves to the usual teacher’s demands, the learners develop strate-
gies of coping (Woods, 1990) with the criteria usually used. They can easily detect 
indicators allowing them to adapt their decisions and their behaviour to their 
teacher’s didactical requests. In that case, learners can very well apply suitable behav-
iour without exactly understanding the sense of the lesson or of the problem they 
were assigned. In case of strong variability, the learners cannot rely solely on the 
“rituals” because they can neither anticipate nor manage the succession of sequences 
or behaviours expected by the teacher. The learners’ engagement in the situation is 
much more probable. 
It is well known that a particular teacher’s attitudes create educational environment, 
let us call it climate. Flanders (1966) showed the influence of teachers’ ways of func-
tioning on the class climate. This climate was defined as “common attitudes that 
learners have, in spite of their individual differences, with respect to the teacher and 
the class”. In individual cases, this climate can support or block learners’ future suc-
cessful development of their relation towards learning. Certain works in the domain 
of didactics of mathematics, e.g., Perrin-Glorian (1993) or Noirfalise (1986) support 
the previous interpretation. 
The authors observe that some teachers focus their teaching more on the content to be 
taught while others on their learners privileging the relationship with the student. The 
first mainly look for progress in the subject matter and gaining new knowledge, they 
appreciate all attitudes with which the learners manifest their interest in what they are 
taught; the latter prefer production of ideas and communication among students. 
Achievements obtained by students differ significantly according to the considered 
domains: focus on the content favours success in algebra while focus on the students 
leads to better results in geometry and to making mathematics more attractive for the 
student.        
a3 – Didactical interpretation: As mentioned in a1, Douady’s results (1986) allow 
clarifying the processes enabling to report on the effects of variability. This research 
is done in two frameworks: Theory of conceptual fields by Vergnaud (1990) and 
Theory of didactical situations by Brousseau (1997). For Douady, teaching a mathe-
matical concept requires a transformation, a completion to see even the rejection of 
learners’ previous knowledge. The proposed problems must be perceived in such a 
way that the learners have an opportunity to engage at least one basic solving strategy 
but this strategy is insufficient: the taught knowledge (object) must correspond to the 
tool best adapted to the problem. 
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Douady distinguishes 6 different phases constituting the process of the “dialectic 
tool-object”: 
Phase a – Mobilisation of “former”: Corresponds to the phase of the problem adapta-
tion by the student. 
Phase b – “Research”: Corresponds to the phase of action of the Theory of didactical 
situations (Brousseau, 1997). During this phase, students encounter difficulties 
caused by the insufficiency of their previous knowledge and consequently look for 
new, better adapted instruments. 
Phase c – “Local explication and institutionalisation”: The teacher points out the 
elements that played an important role in the initial phase and formulates them in 
terms of the object with the condition of their use at the given moment. 
Phase d – “Institutionalisation” (in the sense of the Theory of didactical situation by 
Brousseau, 1997): The teacher gives a cultural (mathematical) status to the new 
knowledge and he/she requests memorization of current conventions. He/she struc-
tures the definitions, theorems, proofs, pointing out what is fundamental and what is 
secondary. 
Phase e – “Familiarisation - reinvestment”: It concerns the maintenance of what was 
learned and institutionalised in the various exercises. 
Phase f – “Complexification of the task or a new problem”: The aim of this last phase 
is to allow the students to make use of the new knowledge in order to allow new ob-
jects to occupy their position in the students’ previous knowledge repertoire. 
According to Douady, the aim is to exploit the fact that most mathematical concepts 
operate in several frameworks – in fact in diverse types of problems. For example, a 
numerical function can be presented at least in three frameworks: numerical, alge-
braic, and geometrical. These changes of frameworks (“game of frameworks”) allow 
varying the significances (supports of significations) for the same concept and allow 
avoiding that the learners make them function in a partial or in over-contextualised 
ways. The interactions among diverse frameworks allow, according to Douady, to 
make the knowledge progress and to keep all the conceptual potential of the taught 
object.  

3  EXAMPLE: SARRAZY’S MODEL OF TEACHERS’ VARIABILITY  

For the characterisation of teachers’ modes of didactical activity, typology of modes 
and examination whether these modes enabled awareness of the differences in the 
sensitivity to didactical contract in groups of students, Sarrazy (1996) introduced a 
model that allows describing the modes of teachers’ actions. This model is sensitive 
in learners’ treating of problem types. It uses the following three dimensions, the six 
variables being defined in order to measure variability in organisation and manage-
ment of the teacher’s work during and between lessons: 
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i) Didactical structure of the lesson (what the teacher really does from the perspec-

tive of the knowledge to be taught); 
v1. What is the type of didactical dependence? Does the teacher proceed from 

simple to more complex tasks or the other way round? 
v2. Place of institutionalisation: At which moment does the teacher present a solv-

ing model? Closer to the beginning or to the end of the lesson? Or only at the 
beginning or at the end? 

v3. Types of validation: How are the students informed about validity of their an-
swers? Does the teacher always use the same type of evaluation and assess-
ment (by the milieu, by direct evaluation, by the Topaze effect3, by peers …)? 

ii) Forms of social organisation (this domain corresponds to the teacher’s activities 
regarding class management) 
v4. Interaction modes: teacher-student(s), student(s)-student(s) … . 
v5. Management with regard to the students’ groupings: the whole class, small 

groups, individual work … . 
iii) Variability of arithmetical problem assignment 

v6. The variable is related to editing the problem assignment. It is given by an in-
dicator which measures the teacher´s “capacity” to consider diverse modali-
ties of the same didactical variable in the assignment. 

This model makes it possible to describe the teacher’s teaching practices from a triple 
perspective: presentation of the content (i), desired forms of teaching (ii) and variety 
of the proposed situations (iii). It is not an isolated variable that affects the students’ 
learning (mainly defined by the notion of sensibility – i.e. their ability to use the 
taught algorithms in various contexts). On the contrary, it is an effect linked to a set 
of variables (that may be called a profile of the didactical action); this profile enables 
a characterization of one way of letting the students do mathematics. This is why we 
proceeded to a hierarchical classification in order to show similarities by clustering of 
variables. 
Using the above variables, teachers’ different profiles were hierarchically classified 
(Sarrazy, Novotná, 2005, where the experimental disposition, that allowed character-
ising teacher’s variability and thence to show the influence on the way how the stu-
dents do mathematics, is presented; the crucial role of didactical contract and the sen-
sitivity to it is documented). 
Let us recall here the general idea: Submission of students to a teaching style poorly 
varied (and strongly repetitive in the forms of organisation in the presentation of the 
content) will decrease the possibilities of opening the didactical contract; vice versa, 
more variable the teaching is, the more the students will be confronted with new 
situations and the more flexible their use of the taught algorithms will be. Let us con-
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sider a simple (and therefore caricaturing) example which serves as an illustration of 
the theoretical position: 

The mother spent 13 EUR at the market. Now, she has 19 EUR. How 
much had she had when she went to the market? 

This problem, although simple, presents several difficulties to the students. These dif-
ficulties are based on the fact that the problem evokes the framework of subtraction 
but the numerical operation to be executed is addition. Here is an example of the va-
riety: the more the student will be confronted with the situations that involve divers 
contexts of the use of additive structures, the higher the probability that his/her an-
swer will be guided by conceptualising the relations in play; vice versa, the less di-
verse the situations are, the more the students will be lead to rely on the apparent 
characteristics of the tasks when producing their answer (e.g.: every time seeing the 
verb “spent” they will subtract, “anybody” divide etc.).      
Using the above variables we defined three teaching styles of the school culture that 
are in strong contrast: 
“Devolving”: This style corresponds to what, in the first approximation, could be 
called “active pedagogy” in which the students need to be “active”. This style is char-
acterised by strong variability in the organisation and management of situations: the 
teachers regularly use group work although they by no means restrict only to this 
form of student work; generally speaking, the problems are complex; classroom work 
is very interactive (students interact spontaneously, “choral” answers are not rare, 
…); in the lesson, institutionalisation is diverse. These are the main features of the 
first style.  
The other extreme is the “institutionalising” style. This climate is characterised by a 
weak introduction and a weak variety of situations presented to students; we could 
call it ‘classic teaching’ in which the scheme “show–remember–apply” seems to be 
the rule. These teachers institutionalise one solving model very quickly and then pre-
sent students with exercises of growing complexity. First, the exercises are corrected 
locally – the teacher passes through the rows and corrects them individually. Then the 
teacher gives the complete correction on the blackboard; here he/she gives details of 
the solution and, depending on the time he/she has, occasionally invites some stu-
dents to the board either to make sure that they are paying attention, or to recall cer-
tain knowledge. Now, the interactive climate is quantitatively as well as qualitatively 
very different from the interactive climate of the preceding style: Students’ spontane-
ous interactions or “choral” answers hardly ever occur.  
The third style is the “intermediary” style. As its name indicates, this style is closer to 
the institutionalising style, even if the teachers ‘open’ the situations more and more 
frequently. In any case, here the students have more chances than students of “institu-
tionalising” teachers to encounter research situations, and debate, but markedly less 
than those exposed to the “devolving” style. 
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As we expected, we observed strong internal coherence of each of the styles (cli-
mates) confirmed by the stability of the results acquired using various methods of 
data analysis (implicative analysis, dynamic clusters, hierarchical classification, and 
so on). It seems to provide evidence in favour of the existence of an organising prin-
ciple for the practices. This organising principle could at the same time be linked with 
didactical conditions (meant in relation to the knowledge dealt with) and with anthro-
pological conditions (independent of knowledge but linked with teachers’ pedagogi-
cal or political convictions, with influences of fashionable constructivist, cognitive, 
and other psychological models).  

4  CONCLUDING REMARKS 

There are two concluding topics to be discussed: the consequences of the presented 
results for teacher training and the theoretical positions of the studies about variabil-
ity. 
The presented results are of great interest for improving the teaching of mathematics 
by focusing on the flexibility in the use of the taught algorithms. But is it possible to 
foster an increase in the variability of the teachers? It seems to be difficult to directly 
influence the conditions allowing increasing the variability of teachers. Even if we 
find it important to present teachers with models of the analysis of problem assign-
ments (e.g. those of Vergnaud concerning additive and multiplicative structures), 
there are good reasons to believe that mere presentation is not sufficient. In fact, on 
the one hand these models when only presented to teacher trainees to have a look at 
them do not affect their variability directly (Sarrazy, 2002); on the other hand, we 
could observe that variability is the dimension of the teacher’s activities that is statis-
tically linked with other dimensions of his/her didactical activities (e.g. the use of 
group work, the volume of didactical interactions, his/her pedagogical philosophy). 
Variability should be understood as one of the elements of the teacher’s system of di-
dactical activities that interacts with other components. 
This last aspect bids for discussion of its theoretical status. We do not pretend to 
submit here a new theoretical concept of a teacher’s didactical activity but more mod-
estly, we situate this approach as an extension of the Theory of Didactical Situations 
by Brousseau (1997). During the “ordinary” teaching situations that we observed, we 
found rarely those where the “milieu” contained an a-didactical component, i.e. those 
where the situation allowed to delegate to students the retroaction to their actions. We 
believe that a developed variability when the a-didactical “inside” of the situation is 
absent, would allow the students to establish a quasi a-didactical relation only. As we 
indicated, it is the consequence of the fact that they cannot go upon the formal aspects 
of the proposed assignments. 
An important question arising from our research is: What kind of training is likely to 
increase the variability of teachers? Although it is certainly an important question, we 
find solving it premature as long as the problem of conditions favouring the variabil-

WORKING GROUP 9

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1631



  
ity has not been clarified. This problem, first opened in anthropo-didactical approach 
in DAESL about fifteen years ago, needs to be explored in further research in the area 
where didactics and pedagogy meet. 
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1 Translation from French by J. Novotná. Original text: « non pas seulement à passer au stade opéra-
toire formel mais à construire un clavier de registres cognitifs. Ce clavier permet à la demande, et 
en cas de besoin, d’examiner un problème et de le résoudre au niveau fonctionnel, c'est-à-dire prati-
que et objectif, ou d’en extraire la quintessence opératoire et de construire ainsi un modèle plus gé-
néral de l’activité. » 
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2 Original text: « Un élève a des connaissances en mathématiques s'il est capable d'en provoquer le 
fonctionnement comme outils explicites dans des problèmes qu'il doit résoudre […] s'il est capable 
de les adapter lorsque les conditions habituelles d'emploi ne sont pas exactement satisfaites pour 
interpréter des problèmes ou poser des questions à leurs propos ». 
3 Topaze effect. When the teacher wants the pupils to be active (find themselves an answer) and 
when they can’t, then the teacher suggests disguises the expected answer or performance by differ-
ent behaviours or attitudes without providing it directly. Example: Teacher: 6 x 7? Pupils: 56. 
Teacher: Are you sure? 
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THE POTENTIAL TO ACT FOR LOW ACHIEVING STUDENTS 
AS AN EXAMPLE OF COMBINING USE OF DIFFERENT 

THEORIES  
Ingolf Schäfer 

University of Bremen 

In dealing with low achieving students one needs a fine grained measure for their 
gain in knowledge. I will show that the concept “potential to act” helps to understand 
the students’ difficulties and to support their construction of knowledge. The concept 
connects parts of theories of different scope: a model for abstraction in context, self-
determination theory and a psychological theory of action. The relevant parts of the 
theories will be discussed, and, more specifically, to which extend they are compati-
ble.  I shall utilize an example to illustrate the concept of the “potential to act” and 
to show the interplay of the different theories at work. Further, I will explain how 
their combining use gives rise to additional insight about the construction of knowl-
edge.  

INTRODUCTION 
As part of an on-going project at the mathematics education department of the Uni-
versity of Bremen, I am working on a theory of support for low achieving students in 
Hauptschule[1], aged between 13 and 18. In the project, we want to identify what 
kind of potential to act in certain situations these students have in order to be able to 
adapt the supporting lessons better to them, and to understand how they construct and 
reconstruct mathematical knowledge. For this it is necessary to get finer information 
about the students’ gain of knowledge than is possible by error analysis of direct 
tasks or questionnaires. 
We are not discussing the phenomenon of low-achieving students in terms of “dys-
calculia” or similar notions (cf. (Moser Opitz, 2007) for a recent review). Those stud-
ies concentrate mainly on primary school students and on typical problems with 
arithmetic and numeracy tasks. In contrast, I am interested in the problems of motiva-
tion for low-achieving students, which seem to have gained little interest so far. A no-
table exception is the article of Pendlington (2006), where the author describes the 
effect of supporting lessons on self-esteem. 
I will not use the concept of self-esteem in this paper, but I will make use of self-
determination theory for the motivational aspect. Furthermore, I complement this ap-
proach with the theory of abstraction in context and a theory of action. By applying 
these parts of different theories we can accomplish a more complete understanding of 
the learning process for low-achieving students. 
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In this paper I present a case of combining three different theories that in their cores 
may not be fully compatible and this case raises the question what compatibility 
means in this context. 

THEORETICAL BACKGROUND 
I will restrict the description of the three theories to their main parts.  
Abstraction in context – the RBC model 
Hershkowitz, Schwarz & Dreyfus (2001, p. 202) regard abstraction as “an activity of 
vertically reorganizing previously constructed mathematics into a new mathematical 
structure”. This means that abstraction is an activity in the sense of Leont'ew's activ-
ity theory that comprises actions. Hershkowitz et al. identify three characteristic epis-
temic actions, namely recognising (R), building-with (B), and constructing (C). Rec-
ognising is described as an action in which a student becomes aware of a familiar 
mathematical structure in the situation, and building-with as “combining structural 
elements to achieve a given goal” without gaining new complex knowledge about the 
situation. When this happens constructing takes place.  
These epistemic actions are observable in social interaction and provide evidence that 
a process of abstraction is taking place. The actions are nested, e.g. constructing re-
quires that the subject has already recognised and built with existing structures to 
construct a new mental structure. 
Self-determination theory (SDT) 
The self-determination theory (Deci & Ryan, 2000; Ryan & Deci, 2000b) explains 
how different kinds of motivation emerge. For this the existence of three innate psy-
chological needs is postulated: the need for autonomy, the need for competence and 
the need for social relatedness. These needs “specify the necessary conditions for 
psychological health or well-being” (Deci & Ryan, 2000, p. 229) and are indispensa-
ble for intrinsic motivation or integration of extrinsic motivation. Following Bikner-
Ahsbahs (2005) I specify the innate needs for students in mathematics as follows: 
autonomy as the experience of being able to initiate learning processes and decide 
about them, relatedness as the experience of integration in the social environment and 
of social support. Bikner-Ahsbahs’s definition of competence as experience of broad-
ening or deepening one’s mathematical abilities seems to be too narrow for our pur-
pose, because low achieving students might get a feeling of competence simply by 
successful application or reproduction of their mathematical knowledge. 
Theory of action 
Oerter (1982) discusses the notion of action and the relation of objects and action. He 
follows the tradition of Leont'ew's activity theory and considers action to be of “pri-
mary reality” for each subject, i.e. action is the sole link between an individual and its 
environment. 
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“There is no remembering, imagining or thinking as such, other than with respect to the 
objects of the environment.” (Oerter, 1982, p. 103, transl. by the author) 

This implies that any kind of relation to objects or between different objects can only 
be accomplished by action. There are three layers of object relations[2]. 
1. no separate object, i.e. the object is a fixed part of the situation and cannot be 

thought of after the current action. It will not even be recognised as an object. 
2. object separated from subject, i.e. a relation beyond the current action. A subject 

can recognise the object and name it after the current action but it may still be de-
pendent on the given situational context. 

3. abstract, formal object, i.e. the common structure of the contextualized objects. 
Our experiences with low-achieving students lead to the hypothesis that these stu-
dents often fail at the transitions from one level to the other. For example, let us take 
a quarter of a certain cake. At the first level, the student does not realize a separate 
object at all, i.e. this quarter has no meaning by itself and after it has been eaten there 
is nothing left to think about. At the next level, the meaning of a quarter of this cake 
can be transferred to similar situations. So, we might think of a quarter of a piece of 
chocolate, but all of those quarters are still tied to their context. Finally, at level three 
a student might have a concept of a quarter of something, meaning one of four equal 
parts of an entity. Thus, this concept has become abstract and does not depend on the 
concrete action. 

THE POTENTIAL TO ACT 
We start with the definition: The potential to act consists of all possibilities a subject 
has to act in a given situation with respect to given objects. This rather abstract defi-
nition requires some explanation and we shall discuss it in a more concrete setting:  
Imagine that you are working with a student on some mathematical concept, 
e.g. division of natural numbers. Using a traditional test you have already found out 
that he fails to solve most division tasks. Furthermore, you have experienced that he 
cannot make use of most basic ideas associated with division of natural numbers. 
However, if you ask him to explain how something might be divided in a certain fam-
ily situation, he can explain some of these basic ideas. In this case his potential to act 
includes these concepts in the family situation, but not in the written test. So, using 
the family situation, you might be able to help him enlarge the potentials to act for 
division tasks. 
It is obvious that it is impossible to describe the potential to act of a given student 
completely. Nevertheless, by looking at the real actions (in contrast to the potential 
ones) a researcher is able to identify indicators for them and can develop hypotheses 
about how the student’s potential to act might look like in this specific situation and 
similar ones. 
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A potential to act can be described by two dimensions: the cognitive dimension and 
the motivational dimension. The RBC-model and the SDT provide tools to gain indi-
cators in these dimensions. Let us briefly describe what these dimensions mean and 
how to get indicators for their description. 
The motivational dimension is thought of as the degree of intrinsic motivation. 
Whenever an innate psychological need is satisfied, we interpret this according to 
SDT as an indicator for an increase in the motivational dimension. If the needs for 
competence, relatedness or autonomy are not satisfied, we infer that intrinsic motiva-
tion will decrease. At this stage of research we use the words increase and decrease 
in a qualitative sense without any quantification. 
The epistemic actions of the RBC-model may serve as indicators for the cognitive 
dimension of the potential to act. This dimension inherits the hierarchy of the nested 
epistemic actions. 
Besides the cognitive and motivational dimension, one has to cope with situational 
aspects of the potential to act including the objects involved. The layers of object re-
lation are used as a tool to structure and categorize the objects in different situations. 
Let me briefly comment why those three theories were chosen for the aspects of the 
potential to act. In order to have a framework for the notion “potential to act”, I chose 
the theory of action according to Oerter, which has the advantage to offer a descrip-
tion of relations to the objects. The theory of abstraction in context is used, because it 
allows gaining information about the process of construction of knowledge and fits 
well with Oerter’s framework of action. Self-determination theory was chosen, be-
cause it captures the motivational aspects of the potential and has already been suc-
cessfully used in describing the motivational problems of low-achieving students in 
general (Skinner & Wellborn, 1997). 

SOME DATA 
The data shown below stems from an explorative study conducted at the University 
of Bremen to explore the potential to act for a group of low achieving students. The 
students where of age 14 to 18 and took part in weekly supporting lessons, which 
were done either for groups of three students or individually. The lessons were video-
taped and the video was analyzed afterwards to reconstruct the potential to act and to 
set up the tasks for the next lesson based on this analysis.  
The following transcript shows part of supporting lessons that were intended to help 
the student (S) to understand the concept of equivalence of fractions. This specific 
task was chosen to help S to develop connections between different representations of 
extending fractions. S is 14 years old and has been taught by a special school teacher 
in mathematics for over a year before she came into our project. In her math class 
fractions had already been introduced the year before and were again the topic of 
various lessons in class during the weeks before this episode was conducted. After S 
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has been given a worksheet showing figure 1 the teacher (T) asks her to explain the 
diagram.  

Figure 1: “What has happened …?” (translation by the author)  
# Speaker  
2 S Well – erm – they have one half – times – they have calculate one 

times two – up here, haven’t they? (S points at calculation in the de-
nominator) 

3 T  Hmm. 
4 S  And – erm – what then four – erm – to get four as a result, they have 

calculated two times two. 
5 T  Hmm, exactly. 
6 S  Well, they have extended by two. 
7 T  - And what is this picture? 
8 S  Erm, that is one half and … quarter. Two quarters. 
9 T  Hmm. And what exactly has this picture to do with – erm – the calcu-

lation? 
10 S  This is one half and this – and these are two halves. (S points at ½ in 

calculation and left circle, 2/4 in calculation and right circle in fig. 1)  
11 T  Hmm – exactly, fine, and – er – now in here there is this, this calcula-

tion described, isn’t it? You have said this correctly already. Erm, can 
you find this, what has happened here, this calculation. Can you find it 
in here again? 

12 S  (S pauses for 17 seconds) one times two is this (S points at left circle 
in fig. 1) and two times two this (S points at right circle in fig. 1) two 
and two (S smiles) – 

13 T  (T shrugs, then smiles) Erm, two times two – where does it say that? 
14 S  Down there. 
15 T  Erm. And do you know, what it means, if it is written down there? 
16 S  (S pauses for five seconds) If it says 2 times 2 below, then we must 

do “times two” above. 

Transcript 1: “What has happened…?” (translation by the author) 
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Before we analyze the potential to act, let us first summarize the situation. The lines 
11 – 13 point at the crucial situation. The student is asked to explain how the process 
of extension by two is visualized in the picture. She is expected to say that this is 
done by refining the given fraction. While the teacher explains to S after line 16, what 
the answer should have been, S is looking out of the window and seems frustrated. S 
does not engage herself anymore in the rest of the supporting lesson and is very seri-
ous.  
We reconstruct S’s potential to act in three steps. First, let us consider the epistemic 
actions. There are a number of recognising actions in lines 2, 4 and 6. S recognises 
the calculation in the numerator and the denominator of the fraction in the blue box in 
fig. 1. She also recognises the left circle as a half and the right circle as two quarters 
(8) and is able to relate them to the corresponding fractions in the calculation. In line 
11 she is asked where to find the calculation inside the blue box in the picture. After a 
short pause, she identifies “one times two” as the left circle, and “two times two” as 
the right circle. This should be considered as a building-with action, because she puts 
together the things she has already recognised and she has to think about this ques-
tion. In line 16 she also builds-with, because she states a general rule for the objects. 
Unfortunately, we do not know why she thinks this rule is valid. 
What about the motivational component in this situation? There is no experience of 
autonomy in this transcript, because the task is very explicit and she has not been 
given much choice how to deal with it on her own. But we can see some experiences 
of competence here. She is able to identify the fractions in lines 8 and 10, and the 
teacher supports her by saying “exactly” and “fine”. This experience of competence 
is deepened by S’s answer to the question in line 11. S thinks for 17 seconds and 
manages to give an answer that makes her smile; she seems content with her own 
abilities. But the reaction of the teacher (shrug) and the teacher’s later explanations 
reverse this experience of competence into the opposite. S realizes that her answer 
was wrong and may feel even more incompetent because she did not manage to un-
derstand that this answer was wrong. Likewise the need for relatedness might be ful-
filled by the support S gets from the teacher and the smiling, a bit later this support 
might seem hollow and misleading. In summary, none of the three innate needs is sat-
isfied here.   
Using Oerter’s layers of object relation we may interpret this episode further. For S 
the calculation is not one object, but likely she thinks of a pair of objects, i.e. two 
separate multiplications. Therefore she looks for a corresponding pair of objects that 
are given by the two circles in fig. 1. She uses the name “extend by 2” only once in 
line 6 and it may just be, because it is written on the sheet. Given she names the proc-
ess of extension on her own, then her relation to this process as an object is in the 
second layer. But she does not even seem to be able to identify this process as an ob-
ject of its own right (Oerter’s first layer). Thus, her relation to the object “extension 
by 2” is somewhere between the first and second layer. Line 16 indicates that she 
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might actually be closer to the second layer, but we do not know, why S thinks one 
“must do ‘times two’ above”. We do not know whether she is really able to under-
stand this extension as an object of its own right, i.e. as a process that transforms one 
fraction into an equivalent one. 
In summary, S is involved in the situation up to line 16, recognises and builds-with 
the corresponding mathematical objects. Her innate psychological needs are satisfied 
up to here. Since S is not able to identify the calculation in the picture correctly, T 
starts explaining how to understand the picture after this episode, which leads to the 
experience of incompetence for S. Using the layers of object relation we argue that S 
cannot correctly identify the extension process for the circles because she is only par-
tially able to think of the extension by two as an object. Thus, she cannot recognise it 
or build-with. Moreover, this information in mind future supporting lessons can be 
planned to foster S in the transferring to the next layer of object relation. 
The analysis above demonstrates that the use of only one theoretical perspective is 
not enough to understand the data in sufficient generality for the given purpose. Us-
ing the RBC-model we saw that S built-with the structures she recognised, i.e. she 
was engaged in the process so far. SDT can explain why her engagement stops and in 
terms of the layers of object relation we can understand her epistemic problem and 
why she could not construct or reconstruct the concept of “extension by 2” in the 
given situation. Leaving out one perspective results in serious loss of information, 
e.g., if the SDT was left out, we would know the epistemic problem but could not ex-
plain the sudden change in S behaviour.   

SOME PRELIMINARY FINDINGS 
It should be kept in mind that the following results are only some preliminary find-
ings from the explorative study. They should be thought of as hypotheses for a larger 
study to be tested. 
Low achieving students seem to make use of a large repertoire of avoidance strategies 
in order to cope with given tasks. Especially, if their basic psychological needs were 
not satisfied the students responded by withdrawal, denial or similar actions, as seen 
above. 
Furthermore, the students’ potential to act seems to be very dependent on the situ-
ational context. Frequently, their relations to the objects were found to be at the first 
or second layer, hence, the students had no abstract understanding of the objects. If 
the object relation was at the first layer, the students were not able to recognise the 
objects and thus could not do building-with actions. At the second layer students fre-
quently developed different versions of an object depending on the context, e.g., a 
student had developed two different and unrelated object relations of a hexahedron 
having only the name in common. 
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TOWARDS THE USE OF THE DIFFERENT THEORIES 
Prediger, Bikner-Ahsbahs & Arzarello (2008) suggest a landscape of strategies for 
connecting theories, which can be ordered by the degree of integration of theories. I 
shall now explain where the position of my approach in this landscape is. 
I use the three theories as a way to understand the different dimensions and aspects of 
one concept. In terms of Prediger et al. I combined the different parts here “in order 
to get a multi-faceted insight into the empirical phenomenon in view” (Prediger et al., 
2008, p. 173).  It may even be that I coordinated, i.e. developed “a conceptual frame-
work built by well-fitting elements from different theories” (ibid., p. 172). For this “a 
careful analysis of the mutual relationship between the different elements” is neces-
sary and it “can only be done by theories with compatible cores” (ibid., p. 172). To 
decide the question whether I combined or coordinated let us consider the relation-
ship of the theories: 
From the broadest perspective, we have two psychological theories (SDT and the 
theory of action) and a theory originated in mathematics education research (RBC). 
SDT and RBC focus on the individual, Oerter’s theory on social interaction, but there 
is no obvious contradiction at this level between these approaches. 
The epistemic actions of the theory of abstraction in context have their roots in activ-
ity theory (Pontecorvo & Girardet, 1993). Oerter’s concept of action is also motivated 
by activity theory and as far as foundations and basic assumptions are concerned, 
both theories are compatible. 
How do these theories relate to SDT? SDT is a theory in cognitive psychology and at 
its core are the three innate psychological needs, which act as inner regulation proc-
esses that regulate and determine behaviour: 

“SDT describes and predicts the occurrence of distinct processes by which behavior is 
determined or regulated, some of which are characterized as autonomous and some as 
controlled or amotivational. We assume not only that these forms of regulation differ ex-
perientially, but they also differ in their antecedents, their consequences, and their neuro-
psychological underpinnings.” (Ryan & Deci, 2000a, p.330) 

It seems impossible to express the above quotation from Oerter’s point of view. His 
fundamental critique is that action should not be thought of as an intentional but as 
the primary concept in psychology (Oerter, 1982, p.102). Every other concept has to 
be developed based on and connected to action. It is not clear to me, whether this im-
plies contradicting basic assumptions, since the notion of “behaviour” by Deci and 
Ryan is not compatible with Oerter’s actions.  
What are the relations between different terms in the theories? The potential to act is 
a concept defined in the notions of Oerter’s framework. The epistemic actions are ex-
pressed in terms of activity theory and can be understood in Oerter’s framework 
without any change. The three innate psychological needs are defined through experi-
ences of the subject that are the results of certain actions. Autonomy, for example, 
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was defined as the experience to be able to initiate learning processes and decide 
about them. This experience is the result of a successful initiation or decision action 
by the individual itself or by the social group, e.g. the class. In this way the potential 
to act and all terms used to investigate it can be coherently expressed in terms of the 
theory of action. 
Since the main difference between coordination and combination of theoretical 
frameworks is whether the theories are compatible, which includes non-contradicting 
assumptions, I cannot say which one I did, although I have built up a coherent phi-
losophical base above. 

SUMMARY AND OUTLOOK 
In this paper I presented the definition of the potential to act and applied it to an ex-
ample using empirical data. It was utilized and helped to gain insight in the process of 
the construction of knowledge and the motivational aspects of it. 
The interplay of the three theoretical parts in the potential to act was described and I 
tried to position myself into the landscape of connecting theories following Prediger 
et al. (Prediger et al., 2008). 
Bearing in mind the difficulties I had to find the position of my approach, I ask what 
the meaning of the notions “compatibility of theories” and “non-contradicting cores 
of theories” is. Does it mean a theory is compatible with another one just because 
their terms are incommensurable? When do basic assumptions contradict? Cobb 
(Cobb 2007) remarks that there is no algorithm how to deal with different theoretical 
perspectives. I suppose that there is also no algorithm to guarantee enough compati-
bility such that one has not build up “inconsistent theoretical parts without a coherent 
philosophical base” (Prediger et al., 2008, p. 173), but there might be general strate-
gies which can serve as guide lines for he process of analyzing compatibility. 
The “potential to act” is part of my research on low achieving students. The long-
term goal is to have a theory of support for low achievers which builds upon the en-
largement of the potential to act.  A first explorative study has been done on this and 
my next step is to use the experience gained there in a larger study on support for low 
achieving students.   

NOTES 

1. Hauptschule is a secondary school for children, which are supposed to be in the lowest achievement category 

2. It should be noted, that these layers are simplified versions of Oerter’s layers adapted for the purpose at hand.  
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ABSTRACT 
In this paper my goal consists of presenting aspects of the Joint Action Theory in Di-
dactics on the principle of a twofold specification (Didactic Game and Learning 
Game), after integrating it in a more general picture. I first make a general presenta-
tion of the epistemological background against which the Joint Action Theory in Di-
dactics could be seen. Then the second part of the paper is devoted to the description 
of a system of tools which constitutes the core of the JATD. In the third part, I give an 
example of empirical analysis in order to illustrate the categories presented previ-
ously. In the last part of the paper, I make some conclusive remarks in order to con-
tribute to the networking process that this group is elaborating. 
 
INTRODUCTION 
In this paper I present some aspects of a collective work (Sensevy & Mercier, 2007; 
Schubauer-Leoni, Leutenegger, & Forget, 2007; Ligozat 2008), which functions as a 
collective thought from which I take most of the ideas I express in this contribution. 
 
1. THE JOINT ACTION THEORY IN DIDACTICS: AN 
EPISTEMOLOGICAL BACKGROUND 

1.1 The logic of practice, language-game and semiosis  
In Social Sciences, the main challenge is probably to understand the meaning-making 
process in practices, thus understand the logic of practice on which people base their 
behaviors. In our conception, acting according to the logic of a practice is to be able 
to master a specific language-game in a particular life-form (Wittgenstein, 
1953/1997).  In order to master this language game, one has to be able to decipher 
signs of various kinds in an appropriate way. Acting according to the logic of the 
practice is therefore to be able to participate in a specific semiosis process (see Lo-
renz, 1994). To do that, people have to draw the same conclusions from a given envi-
ronment, to give the same meaning to the prominent features of this environment. 
Inside this frame, I argue that the fundamental meaning-making process is an infer-
ence process, by which one can grasp and express the logic of the practice, and, doing 
that, can demonstrate understanding and agency.  

1.2 The inference-reference process: institution and thought style  
I assume that meaning is mainly processed in analogical inferences. In order to un-
derstand how these analogical inferences are made, one must consider that they are 
processed in context, the analogies being produced from a context to another. A theo-
retical point is thus to characterize what is a context, that I consider as an institutional 
milieu. Such an institutional milieu can be viewed as a specific reference, a back-
ground against which the agreement on inferences (“joint inferences”) is made. Lan-
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guage-game mastering, semiosis process, and inference-reference strategies in an in-
stitutional milieu gather in the process of recognition of forms, which is the central 
feature of our conception of cognition and language. A way of conceptualizing the 
inference-reference process occurring during this ongoing attempt of recognition of 
appropriate forms is to consider meaning-making as unfolding in institutions (Doug-
las, 1987, 1996), which produce thought collective and thought styles (Fleck, 
1934/1979). A thought style can be viewed as a kind of shared semiosis, by which 
people infer similar meanings from signs perceived in a same way, in a common rec-
ognition of forms. This common recognition of forms can be seen as a seeing-as 
(Wittgestein, 1953/1997), which is a habit of perception, and make possible the joint-
inferences. The whole teaching-learning process can be viewed under this description 
(Sensevy, Tiberghien, Santini, Laubé & Griggs, 2008). 

1.3 The logic of practice: the grammar of situations 
In analyzing the social world, our concern is a grammatical one. We do think that 
every practice is unfolded according a specific logic, which over-determinate a great 
deal of it. Thus, as researchers we take a grammatical stance, which means that we 
try to understand the specific situational logic, the peculiar grammar, of a given prac-
tice. This concern logically stems from the conception of cognition and language we 
outlined below. If meaning-making is a matter of recognition of forms which are 
given by the collectives we are in, the description of meaning-making process rests 
on the identification of such forms, that is, a grammatical perspective. We must point 
out that a general way of understanding the logic of the practice lies in the compre-
hension of the situations in which this very concrete practice unfolds. The logic of 
practice is the logic embedded in the situations of practice. This kind of description 
helps understand why the meaning making process is viewed as mainly analogical. If 
the logic of practice is determined by the logic of the situations of the practice, mean-
ing is made by relating the actual situation in which we are acting to the previous 
ones which resemble to the current one.  

1.4 Game, situation, institution 
In order to describe the grammar of the situations, we use a way of describing the so-
cial world in terms of games, by developing a “bourdieusian” perspective (Bourdieu, 
1992). We consider the human activity as developing in games. By using the notion 
of game, we may use the following descriptors: the stakes of the game; the invest-
ment of the players in the game; the “feel for the game” that the players can or cannot 
display; the different kind of capitals related to the different games, that is, a way to 
acknowledge power phenomena in the social world. Thus the game is for us a funda-
mental grammatical structure, as a model of the social world, and also as a mean to 
relate institution and situation. Learning to act in a specific part of the social world is 
learning to play a certain game in situations embedded in institutions. 
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2. THE JOINT ACTION THEORY IN DIDACTICS: SOME TOOLS 

2.1 The Didactic Game as a general pattern 
We can try to describe the didactic interactions between the teacher and the students 
as a game of a particular kind, a didactic game. What are the prominent features of 
this game? It involves two players, A and B. B wins if and only if A wins, but B must 
not give directly the winning strategy to A. B is the teacher (the teaching pole). A is 
the student (The studying pole). This description allows us to understand that the di-
dactic game is a collaborative game, a joint game, within a joint action (Clark, 1996). 
If we look at a didactic game more carefully, we see that B (the teacher), in order to 
win, has to lead A (the student) to a certain point, a particular “state of knowledge” 
which enables the student to play the “right moves” in the game, which can ensure 
the teacher that the student has built the right knowledge. At the core of this process, 
there is a fundamental condition: in order to be sure that A (The student) has really 
won, B (The teacher) must remain tacit on the main knowledge at stake. The teacher 
has to be reticent in order to let the student build proper knowledge, her proper 
knowledge. The teacher has to withhold information, because the student must act 
proprio motu. The teacher’s scaffolding must not allow the student to produce the 
“good behavior” without mastering the adequate knowledge. This proprio motu 
clause is necessarily related to the reticence of the teacher. Indeed, according to us, 
the didactic game, with the proprio motu clause and the teacher’s reticence, provides 
a general pattern of didactic interactions. 

2.2 From the Didactic Game to the Learning Games 
The Didactic Game refers to what we consider to be the fundamental grammar of the 
teaching-learning process. In order to deeply characterize this process, we use a sys-
tem of concepts that we aim to unify under the notion of Learning Game. Learning 
Game, as a way of describing the Didactic Game as it occurs in situ, requires itself a 
structure of particular descriptors : the didactic contract/milieu doublet ; the genesis 
triplet (mesogenesis ; chronogenesis ; topogenesis) ; the game quadruplet (defining, 
devolving, monitoring and managing the certainty/uncertainty dialectic, institutional-
izing). In the following, we will give some rapid descriptions of this system of con-
cepts. First of all, a Learning Game can be identified by describing the didactic con-
tract and the milieu referring to the piece of knowledge at stake. 

The didactic contract and the milieu 
We consider the didactic contract (Brousseau, 1997) according to a threefold view-
point. The didactic contract can be viewed as an implicit system of mutual expecta-
tions (Mauss, 1989) between the teacher and the students, about the knowledge at 
stake, an implicit system of joint habits (Dewey, 1922) about this knowledge, and an 
implicit system of mutual attribution of intentions (Baxandhall, 1985). It is important 
to point out that this definition emphasizes the permanent features of the contract, and 
may explain the analogical process of meaning-making. We consider the didactic mi-
lieu under a 2 components description.  On the one hand the milieu is a cognitive 
context, as a common ground, which notably provides the expectations and the mu-
tual attributions of intentions on which the didactic contract rely. With this respect, 
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the milieu is a system of shared meanings which makes possible the joint action. But 
this kind of description is not efficient enough to provide a good understanding of the 
teaching-learning process. One has to acknowledge that in order to learn, the students 
have to encounter an antagonist milieu (that Brousseau called adidactic milieu), a 
kind of resistance to their action, which is also a resistance to the joint action. Thus 
this notion refers to the part of knowledge that the students cannot directly assimilate, 
which resists to their habits, and which prevents them to play the right game. The 
way in which the milieu provides such a resistance can be figured out (or not) a pri-
ori by the teacher, and even modelled by a researcher. It is important noticing that 
encountering the resistance of the milieu requires a certain grasp of consciousness. 
Indeed, by experiencing this resistance, the students have to encounter their igno-
rance, and the need for a specific piece of knowledge which will bridge this “igno-
rance gap”. 

The dialectic between contract and milieu 
When students try to play a learning game, some moves are directly given to them by 
the habits of action related to the knowledge they have recognized as the knowledge 
at stake. Some of these moves don’t enable them to act accurately to meet the didac-
tic situation requirements. In some cases, it is why they encounter a resistance to their 
action, and they just no longer play the game. It is critical to understand that these 
encounters and the shared awareness of their reality are a matter of joint action. 
Among all categories which are used for the description of learning games, the rela-
tionship between contract and milieu holds a prominent position. In order to charac-
terize the didactic joint action, one has to identify how the students orient themselves, 
either by enacting the didactic contract habits or by establishing epistemic relations 
with the milieu. It means that empirical studies have to reveal what kind of dialectic 
is built between the “contract-driven students’ orientations” and “the milieu-driven 
students’ orientations”, in order to understand the Didactic Joint Action and the way 
mathematical knowledge is processed. 

The game quadruplet 
What we call “the game quadruplet” is a set of categories that we use to describe the 
way the teacher has the students playing the game in the joint action (Sensevy, 
Mercier, Schubauer-Leoni, Ligozat, & Perrot, 2005). Defining. The defining process 
can be viewed as a way of introducing the definitory rules of the learning game, in 
order for the students to be able to play this game. Devolving. When a game is de-
fined, it has to be accepted by the students. That means that the students have to 
elaborate an adequate relation to the milieu. Monitoring, managing the cer-
tainty/uncertainty dialectics. The monitoring process refers to any teacher’s behav-
iors produced to modify the students’ behavior in order to enable them to produce the 
relevant strategies they need to win the game. In doing so, the teacher plays on the 
level of certainty/uncertainty of the students’ action. Institutionalizing1. In the ongo-
ing didactic process, the teacher needs to recognize parts of the targeted knowledge in 
the students’ activity as the relevant one for the learning game at play. In doing so, it 
                                                 
1 The terms 'devolving' and 'institutionalizing' refer to Brousseau’s concepts (1997). 
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makes the student understand that their activity reached the knowledge at stake, 
which is not only the “classroom knowledge”, but also the knowledge of a social 
community, which is larger than the school community. 
At another scale and with other purposes, we consider a triple dimension that de-
scribes the teacher’s work, relative to starting and maintaining a didactic relationship 
(Chevallard, 1991, 1992; Sensevy, Mercier, Schubauer-Leoni, Ligozat, & Perrot, 
2005) in the playing of the game. 

The genesis triplet  
Mesogenesis (i.e. the genesis of the milieu) describes the process by which the 
teacher organizes a milieu, with which the students are intended to interact in order to 
learn. Chronogenesis (i.e. the genesis of the didactic time) describes the evolution of 
knowledge proposed by the teacher and studied by the students, as it unfolds in the 
joint action. The teacher has to monitor the knowledge process through a lesson or 
several lessons, in order to meet his didactic intentions. Topogenesis (i.e. the genesis 
of the positions) describes the process of the division of the activity between the 
teacher and the students, according to their potentialities. The teacher should define 
and occupy a position, and enable the students to occupy their positions in the didac-
tic process. 
 
3. AN EMPIRICAL ILLUSTRATION 
We focus now on an empirical example. The learning game occurred in an adidactic 
situation: the puzzle situation (Brousseau, 1997, p. 177) within a very large “didactic 
engineering” (N & G. Brousseau, 1987). I will make a first analysis of this episode, 
before trying a more general description of the same episode. The puzzle situation is 
a first situation for the study of linear mappings. It is put to students as following 
(Brousseau, 1997): “Here are some puzzles (Example: “tangram”). You are going to make some 
similar ones, larger than the models, according to the following rule: the segment that measures 4 
cm on the model will measure 7 cm on your reproduction. I shall give a puzzle to each group of 
four or five students, but every student will do at least one piece or a group of two will two. When 
you have finished, you must be able to reconstruct figures that are exactly the same as the model”. 
Development: after a brief planning phase in each group, the students separate. The teacher has put 
an enlarged representation of the complete puzzle on the chalkboard. 
In the studied episode, as usual in this case, the students have added 3 cm to every 
dimension. The result, obviously, is that the pieces are not compatible. The teacher 
comes to a group at this moment. We give the transcription of the dialogue between 
the teacher and the students. 

The puzzle episode 
1. Student There’s a problem it looks as if one is missing 
2. Teacher There’s a problem, yes 
3. Student But already here it’s leaning a lot here and then it’s there 
4. Teacher Yes and it should be leaning in the same way? 
5. Student Here we can see that the pike/point it touches the other one here again there is a problem and here it 

should be there it does like this there it does like this it would have been correct 
6. Teacher And everywhere here you have added 3  are you sure you’ve added 3 
7. Student yes 
8. Teacher 1,2,3, 1,2,3, 1,2,3 
9. Student Well not to this one 

10. Teacher 1,2,3, have you added 3 everywhere?  
11. Student Well it is correct 
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12. Teacher Then what must be challenged? 
13. Student Well It’s wrong well this piece is a good one  
14. Teacher Well no it’s not because it doesn’t make up the good puzzle 
15. Student Here it doesn’t make 3 
16. Teacher Where 3? 
17. Student It only makes 2 
18. Teacher Well 3? It’s 3 more where? 
19. Student On each side 
20. Teacher If I were you I’d think about the method I used maybe this is what’s not good 
21. Students Yes 
22. Teacher Maybe it’s you’re sure you’ve added 3 you didn’t make any mistakes when you cut out the pieces, ok ? 

Everyone has cut on the lines? 
23. Students Yes 
24. Teacher Well so maybe you mustn’t add 3 you must do something else 
25. Tony But from 4 to find 7 
26. Teacher Ah 
27. Student There’s a problem here too 
28. Teacher Are you listening Tony 
29. Students Yes 
30. Teacher Go on try to look into this problem 

3.1   The puzzle episode: a first description 
A possible structure of the episode 

In ST (Speech Turn) 1, the student acknowledges that “there is a problem”. We can 
analyze the excerpt by structuring it into for  parts : in the first part, from 1 to 11, the 
teacher want the children to agree that if there is a mistake, it is not a measurement 
mistake; the ST 12 (Then what must be challenged?) is the teacher’s first try to give 
to the students an incentive to challenge their method, but without effect; in the sec-
ond part, from 13 to 19, the teacher and the students return to the discussion of the 
measurement method, notably by arguing about what is a “good piece” (13-14); in 
the third part, from 20 to 26, the teacher takes a high topogenetic position, in order to 
focus the students’ attention on the “proper signs” of the situation; in the forth (last) 
part, one can think that the students are beginning to challenge their methods (25-27), 
so the teacher leaves the students and goes to another group. 

Some teacher’s moves in the Joint Action 
We can focus on several teacher’s moves in this excerpt. 1) In ST 4 (It should be 
leaning in the same way?), the teacher holds a “come-along position”, which means a 
low position in the topogenesis, at the same level as the students. We can think that a 
good students’ answer could be something like “Yes, because the model and the re-
production must have the same dimensions, the same properties” (this answer would 
be based on the conservation of proportions), but the students do not really under-
stand the question. 2) In ST12 (Then what must be challenged?), the teacher’s move 
is produced in order to make the students understand that they have to change their 
way of conceiving the problem. It is worth noticing that this calls for a different posi-
tion from the teacher: not a “come along position”, but an “analysis position”, in 
which the teacher does not use the same kind of reticence about his knowledge. But 
this move does not work, for the students go on discussing about their measurement. 
3) In ST 20, (If I were you I’d think about the method I used maybe this is what’s not 
good) the teacher takes a higher position, in a very interesting utterance: “If I were 
you” functions as a prominent sign in the didactic contract. For the students, that may 
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mean that the teacher is saying an important thing; by using the word “method” the 
teacher draws the students’ attention to the fundamental meaning in this episode; 4) 
In ST 22, the teacher makes a summary of the students’ work that one could para-
phrase by saying “Are sure that your measurement was right ?”. It functions as a kind 
of frame for an inference which could be: if you are sure that your measurement was 
right, then you have to challenge the method. 5) In ST 24 (Well so maybe you mustn’t 
add 3 you must do something else), the teacher draws herself the inference (if it is not 
a measurement error, then it is a method error). Tony’s reaction is very informative of 
his endorsing of the additive strategy; it’s a kind of encounter of ignorance. For the 
first time in the episode, the additive strategy is questioned, which may function as a 
sign for the teacher that the learning process is going on. 

3.2 The puzzle episode: a re-description 
Here the learning game takes place inside an adidactic situation (Brousseau, 1997)2. 
First of all, the students have to encounter their ignorance, with the resistance of the 
milieu. In this learning game, as we have seen, they have to make a clear distinction 
between what is a measurement error and what is a method (mathematical) error. In 
order to move the didactic time forward, the teacher has to be sure that the students 
are convinced they have not made a measurement error. It is a necessary condition for 
them to challenge their method (i.e. the additive method). We can re-describe the epi-
sode using some theoretical tools of the JATD. 

Reticence and proprio motu ; topogenesis and chronogenesis 
The topogenetic characterization of this learning game enables us to understand how 
the teacher is progressively taken more and more responsibility in the didactic trans-
actions. From a low topogenetic position (ST2, there’s a problem, yes), he reaches a 
rather high topogenetic position (ST 24, Well so maybe you mustn’t add 3 you must 
do something else). At the beginning of the episode, the reticence is very important, 
and the teacher does not unveil his didactic intentions. At the end of the episode, even 
if the teacher has displayed a part of his intentions, the reticence remains important. 
Indeed, nothing has been said about the proportional reasoning, which is at the core 
of this situation. The state of the milieu makes possible such an evolution, for there is 
a kind of agreement between the teacher and the students that the measurement is 
right. Thus we can acknowledge the specific interplay between chronogenesis and 
topogenesis in this rather short episode. The high topogenetic position is possible 
only because the didactic time - which is the knowledge time - has gone by, as we 
can see in the comparison of ST 2, 12, and 24. The teacher’s “feel for the game” en-
ables her to accomplish gradually this topogenetic rising while keeping an effective 
didactic reticence. 

                                                 
2 In order to be understood properly, this episode would have to be replaced in a more general structure, investigated at 
different scale-levels. We are focusing here on the micro-level of the didactic transactions, but a complete inquiry 
would necessitate a meso-level and a macro-level investigation (on this point, see Ligozat, 2008). This is a fundamental 
methodological issue for the Joint Action Theory in Didactics, which rests on the necessity to provide enquiry processes 
with a plurality of description levels, using for this purpose specific tools (in particular synoptic table and didactic plot). 
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The contract-milieu dialectic 
At the beginning of the episode, the students are caught in the didactic contract en-
acted by the situation. As a student said, “from 4 to find 7” one has to make an addi-
tion. This “additive contract” could be considered as a thought style in this episode, 
which provides a way of perceiving and a way of acting. Another feature of the di-
dactic contract at play could be found in a lack of experimental culture which pre-
vents the students to distinguish the “measurement realm” from the “conceptual 
realm”, and which brings a kind of “experimental fuzziness”. Thus the present learn-
ing game stems from the students’ observation that the puzzle pieces do not fit to-
gether. This observation has to be seen as a resistance of the milieu, a relevant feed-
back for the modification of the students’ strategy. But this resistance is not obvious 
for the students, and the teacher’s work consists of helping the students “read” the 
milieu. For the researcher (and for the teacher as well) a fundamental aspect of this 
episode consists in acknowledging how the contract/milieu dialectic needs to be built 
in the transactions. The milieu feedback is not at all naturally perceived by the stu-
dents. In the uncertain didactic transactions, what counts as an evidence for the 
teacher (the pieces do not fit together), which provides an accurate inference (the ad-
ditive strategy does not work) is very far from the students’ relationship to the milieu, 
given that this relationship is shaped by i) the “additive contract” and ii) the “experi-
mental fuzziness”. The students have to build another relationship, and they can’t do 
that alone. The teacher’s monitoring is fundamental to foster the students’ relevant 
relationship to the milieu and its events, which will enable them to “resist” to the con-
tract habits and to renew them. In that, for the teacher, enacting the contract-milieu 
dialectic in the didactic transactions is a way of taming the uncertainty while building 
a relevant certainty, and enabling the students to accurately recognize the “empirical 
facts”. 
4. NETWORKING MATHEMATICS EDUCATION THEORIES: SOME 
BRIEF CONCLUSIVE REMARKS 
0.  The Joint Action Theory in Didactics (JATD) is a didactical Theory. It responds to 
the fundamental definition of Didactics as a science: the science of conditions and 
constraints under which the diffusion of knowledge is enacted. In order to situate this 
theory (JATD) in relation with the Theory of Didactic Situations and the Anthropo-
logical Theory of the Didactic, we can argue that while these two theories first focus, 
from a logical point of view, on the nature of knowledge (what is knowledge which is 
taught?), the JATD first logically focus on the diffusion process (What is going on 
when a specific piece of knowledge is taught). This is what we may call the actional 
turn of the JATD. This difference of logic means a difference of problems: the kind 
of problems the JATD attempts to solve, in a bottom up process, are that of the didac-
tic action.  
1. Prediger (2008) proposes an interesting way of characterizing theoretical concep-
tualizations according to three types, as idealized poles: “individual learning”, “class 
teaching”, “institutional structuring”. In this perspective, it seems to me interesting to 
notice that a crucial point for the JATD consists in an attempt to understand how the 
institutions, in Douglas’ meaning (1987, 1996) shape the individuals’ personal life in 
thought styles (Fleck, 1934/1979). So, one can say that in the JATD the “institutional 
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concern” is the first one. It does not mean that the JATD is not interested in “individ-
ual learning” or in “class teaching”. On the contrary, we believe that the development 
of mathematics education theories needs a theory of didactic experience, if we call 
“didactic experience” these life events which enable people (and not only students or 
teachers) to gain knowledge as power of acting.  But an essential feature of the JATD 
lies in the theoretical principle which assumes that meaning-making is mainly at 
work in the situations that institutions enact. 
2. In the same paper, Prediger (2008) proposes another interesting way of charac-
terizing studies with respect to the “prioritized types of research intentions”. Thus the 
studies are located on an axis from “improved understanding” to “improved prac-
tices”. As the other theoretical endeavors in French didactics, the JATD is rather on 
the “improved understanding” pole. But I would like to say that this type of reasoning 
could be dangerous, if researchers do not succeed in building a kind of normativity. 
This normativity, rationally and empirically grounded, could enable them to identify 
some principles in order to understand the didactic value of teaching-learning prac-
tices. 
3.  As a conclusion I would refer to Radford’s paper (2008) about the problems of 
networking theories. In this paper, Radford considers theories as “flexible triples” of 
“principles, methodologies, and paradigmatic research questions” (Radford, 2008, p. 
322). He then argues that “If we dig deep enough, we will find that difficult to con-
nect theories are more likely to have fundamental differences in their system of prin-
ciples” (Radford, 2008, p. 325). As any theory, the JATD rests on some principles. It 
seems to me that it could be useful to distinguish epistemological principles, which 
represent a theory of knowledge for a given theory, from theoretical tools, which are 
used directly in the enquiry process. In a good deal of published papers, the epistemo-
logical principles in the background of the research, which one can see as the roots of 
the theoretical tools, are not really worked out. It seems to me very important to clar-
ify these epistemological roots if we want to network theories. In this perspective, a 
primary concern, following Kidron et al (2008), could be to shed more light on the 
role of social interactions in theoretical approaches, with respect to their epistemo-
logical roots. As Kidron et al show, all the researchers agree on the importance of 
taking into account this type of interactions in their theoretical frameworks, but what 
is the meaning and the value of such an agreement ? 
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THE TRANSITION BETWEEN MATHEMATICS STUDIES AT 
SECONDARY AND TERTIARY LEVELS;  

INDIVIDUAL AND SOCIAL PERSPECTIVES 
Erika Stadler 

Växjö University 
The aim of this paper is to illustrate how an empirical research interest in the transi-
tion between mathematics studies at secondary and tertiary levels generates a need 
for different theoretical approaches. From interviews with teacher students before 
and during their university studies in mathematics, three crucial aspects of the transi-
tion have been discerned; Mathematical learning objects, Mathematical resources and 
Students as active learners. Whereas the two former have both individual and social 
dimensions, the latter can be regarded as relational, constituting a link between the 
learning environment and the student in his or her intention to learn mathematics. 
Keywords: teacher students, transition, individual, social, grounded theory 

INTRODUCTION 
My ongoing research project examines the transition between mathematics studies at 
secondary and tertiary levels, from now on termed “the transition”. This research in-
terest stems from novice university students experiences with increased difficulties 
and changes in the conditions of mathematics studies at university, compared to up-
per secondary school. When novice university students begin their studies at univer-
sity, they learn mathematics in a new learning environment. From a student’s per-
spective, this situation presents new challenges in terms of, or changes in, their 
knowledge, skills and self-image. Dynamic processes are going on, whereby students 
and their learning environment are mutually influencing each other. There are no ob-
vious theories or methods at hand for dealing with this complex and extensive re-
search area. Consequently, this study exemplifies the question raised by Arzarello, 
Bosch, Lenfant and Prediger of “how empirical studies contribute to the development 
and evolution of theories” (2007, p. 1620). Thus, an important part of the study has 
been to develop an analytical framework for the transition as seen from a student’s 
perspective. In this paper, I will give an account of the theoretical considerations this 
empirical problem brings to the fore. 

TRANSITION-RELATED RESEARCH 

Learning mathematics at university level is a well examined area. Many studies have 
focused on students’ learning and understanding of specific topics within university 
mathematics, for example limits of functions, derivatives, linear algebra and group 
theory (Dorier, 2000; Juter, 2006; Nardi, 2000). Other studies have considered how 
students struggle with advanced mathematical thinking, and with changes in the sub-
ject itself, including transformations from concrete and intuitive to more abstract, 
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formal and general forms of mathematics (Tall, 1991) or demands for new ways of 
approaching the mathematical content (Lithner 2003, Schoenfeld, 1992). A common 
characteristic of these studies is an approach that focuses primarily on the students as 
individual learners. From a more situated and cultural perspective, the issue of transi-
tion between different contexts of mathematical practices has been carefully exam-
ined by de Abreu, Bishop and Presmeg (2002). They define transitions as individuals’ 
experiences of movements between contexts of mathematical practices. The transition 
as seen from a student’s perspective can be captured by studying students’ actions 
and interactions in a learning situation, looking for traces of conflict between differ-
ent learning cultures, or variations of meaning that students ascribe to phenomena in 
the learning situation.  

Artigue, Batanero and Kent (2007) suggest that research in learning mathematics at 
the post-secondary level must go beyond notions of for instance advanced mathe-
matical thinking and also involve more comprehensive perspectives on mathematical 
thinking and learning. In their article, they refer to Praslon, who states that the transi-
tion cannot be defined as a shift from school mathematics to formal mathematics, or 
from an intuitive approach to mathematics to a more rigorous one. Instead, the transi-
tion is rather a question of an accumulation of small changes in mathematical culture. 
It is a shift from studying specific mathematical objects towards an extraction of 
mathematical objects from more general conditions. It is a change from applying spe-
cific algorithms to a category of tasks towards general methods and techniques. Ac-
cording to Praslon this is a consequence of the increment of the mathematical content 
to be learnt, and the impossibility of learning a specific algorithm for every kind of 
task in a relatively short period of time.  

By gathering many research studies from different areas with different perspectives, it 
is possible to grasp a more complete picture of the transition. This has been done in a 
recently published study by Gueudet (2008), who states that the transition involves 
individual, social and institutional phenomena that call for different theoretical ap-
proaches. From my brief overview of transition related research it can be concluded 
that research concerning the transition has been conducted both from individual (von 
Glasersfeld, 1995), situated (Wenger, 1998), and cultural perspectives (Säljö, 2000). 
To examine the transition from a student’s perspective, where the transition is defined 
as learning in a new environment in light of previous experiences is to simultaneously 
consider individual and social perspective on learning. Thus, the challenge is to com-
bine an individual a social perspective on a local level within one empirical study.  

From a more general point of view, this issue refers to the discussion of whether in-
dividual and social perspectives on learning can be unified. Cobb and Yackel made 
an important contribution to this debate with their Emergent perspective (1996). 
Their notions of sociomathematical norms and mathematical beliefs and values coor-
dinate an individual and a social perspective on the collaboration between the teacher 
and the students in classroom environments. The strong emphasis on interaction in 
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the classroom can be regarded as a strength of this perspective. However, the transi-
tion from a student’s perspective is not limited to the classroom. Instead, an essential 
part of the study must concern individual previous experiences of learning mathemat-
ics, requiring one to base findings on interviews. Thus, there is a mismatch between 
the methodological implications of Cobb and Yackel’s Emergent perspective and the 
requirements of the research design of my study. My study requires a theoretical per-
spective that considers both an individual and a social perspective on the transition 
but from a methodological point of view, it requires more variety of data sources. 
Consequently, I was without a suitable theoretical framework and a pre-defined set of 
methods to follow to gather data and empirical considerations based on my definition 
of the transition had to serve as a starting point for the choice of research methods in-
stead. 

RE-ARRANGEMENT OF THE METHODOLOGICAL SEQUENCE 

From a more general point of view this question also refers to a future challenge, 
raised during the Cerme 6 conference in Lyon, France, namely the discussion of how 
to find methodologies for networking theories, where the link between theory, em-
pirical data and research results should be more highlighted. Methodological consid-
erations link theoretical perspectives with appropriate research methods. Often, the 
formulation and intention of a research question is formulated within a theoretical 
discourse that results in a specific theoretical perspective. Thus, the research process, 
frequently used in mathematics education can schematically be described as follows: 

Question  Theory  Method  Result 

Or alternatively: 

Theory  Question  Method  Result 

Here, theory may refers to a more comprehensive theoretical perspective, for example 
a social or situated perspective, but may also refer to a more local theoretical frame-
work as the Emergent perspective. The point is that often decisions about method 
seem to follow almost automatically once the initial choices of research question 
and/or theoretical perspective have been described. My research approach has been 
somewhat different. The starting point for my study has been a real world situation, 
from which the aim and the definition of the transition were developed. Because the 
definition of the transition - the students’ learning of mathematics in a new setting in 
the light of their previous experiences requires the study to combine an individual and 
a social theoretical perspective, there has not been a given choice of methodological 
approach. Instead, my intention to study the transition from a student’s perspective 
has been used as a methodical starting point, whereby the results contribute to new 
theoretical approaches and relations.  

This approach can be summarised as follows:  
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Aim  Method  Result  Theory 

With this rearrangement of the methodological sequence I want to emphasise how a 
real world problem implies a research process that ends up with a theoretical descrip-
tion of this phenomena. These descriptions have a local and specific character. How-
ever, based on their construction, they contain theoretical elements of both individual 
and social character. Thus, by studying them, conclusions can be drawn about how 
different theoretical perspectives come into play on a more general level. In accor-
dance with my definition of the transition three main parts can be discerned, namely 
the students’ previous experiences with mathematics studies, their learning of 
mathematics at university level, and the university as a new learning environment. To 
cover these parts empirically, I have collected different kinds of qualitative data from 
five teacher students during their first mathematics courses at university, i.e. individ-
ual interviews, observations from lectures and tutorials and written solutions to exer-
cises and examinations. In this paper, I present some extracts from interviews with 
two of the students, Cindy and Roy. The pre-interviews were carried out after the stu-
dents had enrolled at the university but before they had begun take courses in mathe-
matics. The aim was to gain a picture of essential aspects of the students’ understand-
ing of mathematics studies in general and in particular of their experiences from up-
per secondary school. During their first courses in mathematics, the students were 
frequently interviewed to follow shifts in their thinking about mathematics and the 
learning of mathematics as they progressed through the courses. The interviews were 
audio-recorded and transcribed in full. Transcriptions have been analysed using 
methods inspired by Grounded theory (Charmaz, 2006). The data have been coded 
and sorted into categories, and axial coding has been used to analyse how the catego-
ries relate to each other. The result is a local theoretical description of essential as-
pects of the transition that could be discerned in the empirical data. However, these 
descriptions will contain aspects of individual and social theoretical perspectives 
from a more general point of view. How they interact within these concepts can also 
spread light of how different theoretical perspectives can be connected, coordinated, 
combined or networked. 

RESULTS FROM INTERVIEWS 

During the pre-interview, Cindy tells that she always liked mathematics and describes 
it as “her subject”. She particularly enjoyed solving equations, which according to her 
demands accuracy and concentration. In lower secondary school, she was one of the 
best in her class, but in upper secondary school, she experienced that mathematics 
became more difficult. In her last courses, she had to “struggle to survive”, and “inte-
grals, strokes and such were not easy”. A mathematics lesson usually started with a 
10-15 minute lecture about the type of exercises the pupils were to work with. Next, 
the students would work individually with exercises from the textbook. During 
mathematics lessons, Cindy would collaborate with two classmates in a spontaneous 
group. By working together on the same exercise at the same time, they could explain 
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to each other how to solve many exercises. To work on her own was meaningless to 
Cindy, because she would get stuck and could not continue on her own. When Cindy 
did not manage to understand the mathematical content, she simply tried to learn how 
to solve different types of exercises. She emphasises that there is a huge difference 
between knowing what to do and understanding mathematics, but her experience is 
that she often had to be content with the former. A new experience concerning exer-
cises is that even if one finds the right answer, one cannot know if the solution is cor-
rect. For example, Cindy says that if she finds the limit of a function, she does not 
know if she has based her conclusion on the correct arguments or if she was simply 
lucky. 

Cindy also thinks that another difference between mathematics studies at upper sec-
ondary school and university is that “it is harder” at university. She experiences that 
the mathematical content is more difficult and that everything is always completely 
new. During a mathematics lecture at the university an extensive amount of mathe-
matics is covered, which results in many new things at the same time. This increases 
the risk of forgetting the first things that were said during the lecture. Cindy feels that 
the university teacher is good. When answering individual questions, he gives de-
tailed explanations from the beginning. On the other hand, Cindy remarks that it is 
hard to get a straight answer or a simple explanation. Cindy feels that the most useful 
part of the lectures is when the teacher shows examples on the whiteboard, and when 
all steps in the solutions of the examples are demonstrated.  

In the pre-interview, Roy tells that during upper secondary school he studied all 
available mathematics courses and got the highest grades. According to him, the first 
mathematics courses at upper secondary school were too easy. The majority of the 
mathematics consisted of using algorithms in a mechanical way and solving many 
similar exercises. This felt meaningless and bored him. It was not until later courses 
that Roy also met some challenges, which he defines as a need to “think for your-
self”. He tells that probability was one of his favourite subject areas, because it of-
fered the opportunity to reason logically and to try different solution strategies.  

Roy remembered that mathematics lessons usually began with a short demonstration 
by the teacher. During the remaining part of the lesson, the pupils worked individu-
ally or in spontaneous groups, solving exercises from the textbook. Roy’s strategy 
was to look at the last exercises in the chapter. If he managed to solve them, he con-
cluded that he could also solve the previous ones and that he had understood the con-
tent of the lesson. Most of the time, Roy worked on his own. However, if he did get 
stuck, he preferred discussing with his classmates instead of asking the teacher. He 
also frequently helped other students in his class and enjoyed explaining things to 
others. At university, Roy prefers working with peers rather than on his own, because 
it makes him more disciplined. From a social point of view, it is nice to meet with 
others and it makes studies more enjoyable. Often, he has solved more exercises than 
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his peers have, but Roy likes to help the others solve exercises and feels it is a good 
opportunity to review the mathematical content.  

When Roy compares mathematics studies at upper secondary school and university, 
he says that the main differences at university are longer lectures, a higher tempo, less 
time to work on exercises during lessons, the importance of “being in phase”, and 
really understanding. Another difference is that mathematics is no longer only a ques-
tion of understanding or not understanding; it is also necessary to read about mathe-
matics and learn some things by heart. This results in a need to study mathematics, 
not only to work on exercises. It is also essential to truly understand what one is do-
ing and not just work on exercises. Roy says that he is very satisfied with the teacher, 
who works thoroughly on “building up the concepts with understanding” and states 
that he can “buy his explanations”. He also states that understanding is more impor-
tant than ever, because if he is going to become a teacher, he needs a deep under-
standing to be able to explain even to gifted students. He feels very highly motivated.  

ANALYSIS OF INTERVIEWS 

From the interviews with Cindy and Roy, portraits of two individual students appear 
with very different experiences and abilities for mathematics studies. In the follow-
ing, I will give an account of three central aspects that can be discerned from the in-
terviews and that seem crucial to mathematics education in a learning environment, 
namely mathematical learning objects, mathematical resources and student as an ac-
tive learner.  

There are a number of objects and relationships that play an important role in stu-
dents’ mathematics education, for example the teacher, peers, the textbook and time. 
Cindy’s and Roy’s stories illustrate how these come into play in different ways and 
how they support their learning of mathematics. Thus, empirical data implies that 
students use both tangible and intangible issues to accomplish what they consider as 
learning of mathematics. Results also show that to obtain mathematical learning de-
mands making use of different entities in the environment. The Mathematical learn-
ing object refers to the main target of mathematics studies in a wider sense from the 
student’s point of view. This concept captures the very essence of what students think 
that mathematics is and what should be learnt. Though Cindy and Roy study the same 
mathematics courses, they give very divergent descriptions of the subject. While 
Cindy feels that mathematics gets harder and harder, Roy characterizes the increasing 
difficulty as a stimulating challenge. Cindy’s statement about integrals and strokes 
can almost be considered drivel, which in turn indicates a superficial view and mem-
ory of the mathematical learning object. Students use Mathematical resources to ob-
tain mathematical learning objects. In the interviews, Cindy and Roy explain how 
they collaborated with peers during mathematics lessons. However, while peers were 
an essential resource for Cindy to be able to solve exercises, peers rather had a moti-
vational and self-confirmational function for Roy. Thus, a mathematical resource is 
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relational rather than absolute and is constituted by students’ usage of it. Which 
mathematical learning objects students focus and what they experience as under-
standable and meaningful can also be related to which mathematical resources the 
students are able to use. Different ways of interpreting mathematical understanding, 
their assignments and what it means to learn mathematics will also influence their 
mathematical study methods, which mathematical resources they choose to use, and 
how they view themselves as learners. One example that is worthwhile to examine 
further is their view of what a mathematical problem is, and what it means to solve it. 
Thus, it is plausible that how students perceive the mathematical learning object af-
fects them as active learners, which in turn actualizes diverse mathematical resources 
and puts them into play in different ways.  

There is a mutual relationship between mathematical resources and mathematical 
learning objects. Students use mathematical resources to obtain mathematical learn-
ing objects, but on the other hand, a mathematical learning object requires students’ 
use of different mathematical resources. How they come into play depends on the 
characteristics of Students as active learners, which can also be discerned from the 
interviews. Students as active learners highlight the activities and actions they under-
take to learn mathematics, and the intentions behind them. In the interviews, Cindy 
and Roy tell how they participated in the mathematics education and their thoughts 
and feelings about it. From these narratives, central aspects are, for example, the stu-
dents’ self-conception, motivation and identity. Cindy and Roy show clear differ-
ences between most of their learning activities, but they also carry out the same activ-
ity with different intentions.  

As an example of how these three aspects interact, and how they interact in different 
ways for Cindy and Roy, I will return to an empirical example from the interviews. 
Even though Cindy wants to study mathematics, she often experiences the mathe-
matical content as difficult. From her perspective, the content can be described as in-
accessible. As a learner of mathematics, Cindy can be characterized as dependent 
with a view of the mathematical content as sometimes unmanageable and hidden. 
From her perspective, peers and teacher constitute a basic condition for her mathe-
matical learning by helping her to find solutions to exercises and explaining things. 
By using them as a mathematical resource, she gains access to her mathematical 
learning object. For Roy, the mathematical content is accessible. To gain access is 
rather a question of his motivation for, and time spent on, studying. Roy can be de-
scribed as an independent learner with a great portion of self-confidence in relation to 
the mathematical content. In his interaction with peers, they serve as a source of self-
confirmation. Thus, peers as a mathematical resource have a more social and motiva-
tional character for Roy. The words dependent and independent as a description of 
students as learners and the accessibility or inaccessibility of mathematical content 
may be interpreted as inherited properties. However, this is not the way they should 
be understood. Instead, these characteristics are activated in the dynamic and inter-
relational interplay between the individual and the social environment. The concept 
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of dependent-independent can rather be interpreted as an individual concept used 
with a social meaning. In the same way, the notion of access is used from an individ-
ual perspective. Thus, this example emphasizes and confirms that the transitions 
merge an individual and social perspective on learning. In relation to previous studies 
of mathematics studies at university level and the secondary-tertiary transition, it is 
obvious that the transition cannot be understood by limiting to learning a specific 
topic, ways of reasoning or advanced mathematical thinking. Instead, the interviews 
show that it is rather a question of an accumulation of small changes in the mathe-
matical culture (Praslon in Artigue, Bataneri & Kent, 2007). However, these changes 
occur as a consequence of both changes in the learning environment and students’ in-
tentions and abilities to relate to them in a favourable way. 

To further elucidate mathematical learning object, mathematical resources and the 
students as active learners, I will relate my analysis to the theoretical framework of 
Wenger (1998) regarding communities of practice. According to him, a practice is 
about meaning as an experience of situated activities. There are two interactively con-
stituted processes involved in the negotiation of meaning within a practice, namely 
participation and reification. While the former is used in a common sense, the latter 
needs some clarification. According to Wenger, reification refers to “the process of 
giving form to our experience by producing objects that congeal this experience into 
‘thingness’” (Wenger, 1988, p. 58). Thus, reification is tightly connected with the 
creation of meaning in relation to concrete or invisible objects and entities in the sur-
roundings. From the above description, a parallel between Wenger’s concepts of par-
ticipation and reification on the one hand and my concepts of students as active learn-
ers and the mathematical content on the other can be discerned, whereby the mathe-
matical resources constitute an interface between participation and reification or as 
the bridge between students as active learners and the mathematical learning object. 
Thus, it is clear that the concept of mathematical resources is more embracing than 
simply referring to something that gives rise to cognitive conflicts for the individual 
student from a constructivist point of view (von Glasersfeld, 1995). Neither does a 
mathematical resource equal a sociocultural artefact (Säljö, 2000). Instead, mathe-
matical resources must be considered relational and dynamic. They come into play in 
the interaction between a student’s intentional actions to learn mathematics in an ac-
tual situation, surrounded by a specific learning environment. From Cobb and 
Yackel’s “Emergent perspective” (1996), students as active learners and the mathe-
matical content can be related to both a social and a psychological perspective at all 
levels, while the mathematical resources appear between the individual and social 
columns in their model. 

CONCLUDING REMARKS 

My intentions with this paper is to show how a research interest can give rise to new 
theoretical concepts that do not fit in more established theoretical frameworks about 
thinking and learning. The case in question concerns secondary-tertiary transition. 
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The emergence of mathematical learning objects, mathematical resources and the stu-
dents as active learners are a result of my initial statement that the transition is best 
understood from both an individual and a social perspective. For example, a mathe-
matical learning object can be constituted by a specific mathematical concept or en-
tity, but the shape of the learning object and which mathematical resources the stu-
dent uses are both a matter of individual pre-knowledge, identity and overall aim with 
his or her studies, as well as the learning situation and availability of potential 
mathematical resources in the setting. There is a constantly ongoing interplay be-
tween these individual and social dimensions of the transition. The dynamical aspects 
of these categories capture essential aspects of the transition from the students’ per-
spective. The transition may change the students’ roles as active learners by contrib-
uting to shifts in their intentions with learning mathematics and in their actions in dif-
ferent learning situations. In turn these shifts may change the students’ use of mathe-
matical resources and their focus on different mathematical learning objects. This 
captures the core of the transition from the students’ perspective, but also elucidates 
the interplay between individual and social theoretical aspects, raised from a complex 
“real world situation” that lacks an obvious choice of theoretical approach. The next 
step is to analyse observations of students working with mathematics in tutorials and 
in clinical settings, both when they work alone, under the guidance of the teacher and 
in collaboration with peers. These analyses are to contribute to a more sophisticated 
definition of the concepts, which can be used to characterize different learners and 
their paths through the transition.  

REFERENCES 
de Abreu, G., Bishop, A. J. & Presmeg, N. C. (2002). Transitions Between Contexts 

of Mathematical Practices. Dordrecht: Kluver Academic Publishers. 
Artigue, M., Batanero, C. & Kent, P. (2007). Mathematics thinking and Learning at 

Post-Secondary Level. In: F. K. Lester, Jr. (ed.) Second Handbook of Research on 
Mathematics Teaching and Learning: a project of the national council of teachers 
of mathematics. Charlotte, NC: Information Age Publishing Inc. 

Arzarello, F., Bosch, M., Lenfant, A. & Prediger, S. (2007). Different Theoretical 
Perspectives in Research From Teaching Problems to Research Problems. In: D. 
Pitta-Pantazi & G. Philippou (eds.) Proceedings of the Fifth Congress of the Euro-
pean Society for Research in Mathematics Education. 22-26 February, 2007, Cy-
prus. 

Charmaz, K. (2006). Constructing Grounded Theory. A Practical Guide Through 
Qualitative Analysis. London: SAGE Publications Ltd.  

Cobb, P. & Yackel, E. 1996). Constructivist, Emergent, and Sociocultural Perspec-
tives in the Context of Developmental Research. Educational Psychologist, 
31(3/4), 175-190. 

WORKING GROUP 9

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1663



  
Dorier, J.-L. (eds.) (2000). On the Teaching of Linear Algebra. Dordrecht: Kluwer 

Academic Publishers. 
von Glasersfeld, E. (1995). Radical Constructivism – A Way of Knowing and Learn-

ing. London: RoutledgeFalmer. 
Guedet, G. (2008). Investigating the secondary-tertiary transition. Educational Stud-

ies in Mathematics, 67, 237-254. 
Juter, K. (2006). Limits of Functions. University Students’ Concept Development. 

Doctoral thesis, Luleå University of Technology.  
Lave, J. (1988). Cognition in practice: mind, mathematics and culture in everyday 

life. Cambridge: Cambridge University Press.  
Lithner, J. (2003). Students’ Mathematical Reasoning in University Textbook Exer-

cises. Educational Studies in Mathematics, 52, 29-55. 
Nardi, E. (2000). The Novice Mathematician’s Encounter With Mathematical Ab-

straction: Tensions in Concept-Image Construction and Formalisation. Unpub-
lished Doctoral Thesis, University of Oxford. 

Schoenfeld, A. (1992). Learning to think mathematically: problem solving, metacog-
nition, and sense making in mathematics. In D. Grouws (ed.), Handbook of re-
search on mathematics teaching and learning (pp. 334-370). New York: 
Macmillan. 

Säljö, R. (2000). Lärande i praktiken – Ett sociokulturellt perspektiv. Stockholm: 
Prisma. 

Tall, D. (ed.) (1991). Advanced Mathematical Thinking. Dordrecht: Kluwer Aca-
demic Publishers. 

Wenger, E. (1998). Communities of Practice. Learning, Meaning, and Identity. Cam-
bridge: Cambridge University Press.  

WORKING GROUP 9

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1664



 

 

 

COMBINING AND COORDINATING THEORETICAL 
PERSPECTIVES IN MATHEMATICS EDUCATION RESEARCH 

Tine Wedege 
Malmö University, Malmö, Sweden 

The author presents and discusses general issues related to combining and coordi-
nating different theoretical perspectives and approaches in ongoing work on people’s 
affective and social relationships with mathematics. The discussion is based on two 
concrete examples: Coordination of a sociological perspective (habitus) with an an-
thropological perspective (situated learning) in combination with a theoretical gen-
der perspective on the analyses of qualitative data. The ambition of the paper is to 
bring a terminological clarification of differences between “perspective” and “ap-
proach” into the work on networking strategies for connecting theories.  
 

INTRODUCTION 
For the last 15 years a new international research field has been cultivated in the bor-
derland between mathematics education and adult education. In order to study adults 
learning mathematics, conceptual frameworks and theoretical approaches has been 
imported from the two neighbouring fields and restructured (Wedege, 2001). Mathe-
matics education research has welcomed and incorporated this new field where adult 
numeracy versus mathematical knowledge is continuously debated (FitzSimons et al., 
2003). In this context, “diversity is not considered as a problem but as a rich resource 
for grasping complex realities” — as is stated in the call for papers from Working 
Group 9, Different theoretical perspectives and approaches in research, CERME6. 
As a consequence “we need strategies for connecting theories or research results ob-
tained in different theoretical approaches”, and Prediger, Bikner-Ahsbahs and Arza-
rello (2008) propose a terminology for dealing with this issue in the article “Network-
ing strategies and methods for connecting theoretical approaches”. As they state this 
is the “first steps towards a conceptual framework”, which is based on the work in the 
Theory Working Group of CERME5:  
The terminology of strategies for connecting theoretical approaches is presented as 
pairs of strategies (understanding others / making understandable; contrasting /  com-
paring; combining / coordinating; synthesizing / integrating locally) within a scale of 
degree of integration from “ignoring other theories” to “unifying globally”. The term 
coordinating is used when a conceptual framework is built by well fitting elements 
from different theories. This can only be done by theories with compatible cores. The 
term combining is used when theoretical approaches are only juxtaposed. This does 
not require complementarity or compatibility. Even theories based on conflicting 
principles can be combined. Finally, the term networking strategies is used to concep-
tualize those connecting strategies, which aim at reducing the number of unconnected 
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theoretical approaches while respecting their specificity (Prediger et al., 2008, pp. 
170-173). In this paper, I also follow Radford (2008) when he suggests considering 
theories in mathematics education as triples τ  = (P, M, Q), where P is a system of ba-
sic principles “which includes implicit views and explicit statements that delineate 
the frontier of what will be the universe of discourse and the adopted research per-
spective” (p. 320); M is a methodology supported by P; and Q is a set of paradigmatic 
research questions.  
The research project Adults learning mathematics in school and everyday life is an 
example of effort to grasp complex realities by connecting different theoretical ap-
proaches and perspectives (see http://www.mah.se/templates/Page____76536.aspx). Here, 
the purpose is to develop a comprehensive theory on conditions for adults learning 
mathematics, i.e. to establish an interdisciplinary theoretical framework to describe, 
analyse and understand the conditions of adults’ learning processes — including so-
cial and affective aspects (Evans & Wedege, 2004; Wedege & Evans, 2006). In the 
research process, we find the relational interplay between theoretical investigations 
and empirical studies crucial when developing the theoretical framework, and differ-
ent connecting strategies are used. Below, strategies of combining and coordinating 
are presented with two examples from this work. In the article “To know or not to 
know mathematics – that is a question of context” (Wedege, 1999), two theoretical 
perspectives (habitus and situated learning) are coordinated in the analysis of the data 
from a mathematics life history interview. In the paper “A gender perspective on 
adults’ motivation to learn mathematics” (Wedege, 2008), a theoretical gender per-
spective was adopted in the analysis of existing qualitative data from a large English 
research project on adults’ reasons for studying mathematics. 
In this paper, I present and discuss theoretical and methodological issues from the 
work in progress on people’s affective and social relationships with mathematics, 
drawing on the work of the CERME Working Group. The focus is on the influence of 
combining and coordinating different theories on the research process. But first, I 
shall propose a terminological distinction between a theoretical approach and a theo-
retical perspective. 

THEORETICAL APPROACHES VERSUS THEORETICAL PERSPECTIVES 
I adapt the understanding of “theory” as proposed by Prediger et al. (2008); i.e. the 
basic frame – or working definition – for discussion of conditions for connecting 
theories is “a dynamic concept of theory [or theoretical approach] whose notion is 
shaped by its core ideas, concepts and norms on the one hand and the practices of re-
searchers – and mathematics educators in practice – on the other hand” (p. 176; my 
insertion and italic). According to this dynamic understanding, theories and theoreti-
cal approaches are constructions in a state of flux and theoretical approaches guide 
and are influenced by observation (p. 169). The notion of theory is broad when “the-
ory” is synonymous with “theoretical approach”. A first consequence is that theory is 
not only a guide for thinking but also for acting – for methodology. In the article 
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“Theories of mathematics education: Is plurality a problem?”, Lerman (2006) exam-
ines the diversity of theories. He does not define “theory” but by looking at the ex-
amples and the proposed categorization of social theories within the mathematics 
education research community (1. Cultural psychology; 2. Ethnomathematics; 3. So-
ciology; 4. Discourse) it is obvious that Lerman’s understanding of “theory” encom-
passes methodology and even problematique understood as a paradigm for mathemat-
ics education research (cf. Wedege, 2001). This conception is in contrast to Niss 
(2007) who presents a static definition of theory as a stable, coherent and consistent 
system of concepts and claims with certain properties; for example, the concepts are 
organized hierarchically and the claims are either basic hypotheses and axioms or 
statements derived from these axioms. 
Another consequence of “theory” and “theoretical approach” being used as synonyms 
is that “theory” is implicitly distinguished from “theoretical framework”, which does 
not automatically involve a methodology. The same goes for “theoretical approach” 
versus “theoretical perspective” and, in what follows, I shall suggest a terminological 
clarification of the latter pair.  
I start by looking at the syntax and semantics of the two English nouns in the context 
of the debate in the Theory Working Group. According to the dictionary, “approach” 
is a verbal noun meaning the act of approaching (begin to tackle a task, a problem 
etc.). “Perspective” means a view on something from a specific point of view (seen 
through a filter) (Latin: perspicere = looking through). In our context, the noun does 
not have a verbal counterpart. The Danish verb “perspektivere” meaning “to put 
something into perspective” is not suitable here. In order to distinguish the two terms, 
I propose the following clarification: A theoretical approach is based on a system of 
basic theoretical principles combined with a methodology, as defined by Radford 
(2008), hence, guiding and directing thinking and action. A theoretical perspective is 
a filter for looking at the world based on theoretical principles, thus with conse-
quences for the construction of the subject and problem field in research; that is the 
field to be investigated (cf. Wedege, 2001). For example, in the literature reference is 
often made to socio-cultural perspectives on mathematics education, simply meaning 
that social and cultural aspects of the educational phenomena are taken into account 
in research. Within the suggested terminology, it would not make any sense to talk 
about socio-cultural approaches without a reference to a specific theory, e.g. a socio-
cultural approach – or problematique – like Engeström’s (2001).  
In order to exemplify how different theoretical perspectives which share an emphasis 
on the social dimension in mathematics teaching and learning lead to different inter-
pretations and understanding of a short transcript of students’ collaborative problem 
solving, Gellert (2008) compares and combines “two sociological perspectives” on 
mathematics classroom practice meaning. In order to “emphasise the theoretical 
grounds” of the two perspectives as he says, Gellert terms them “structuralist” and 
“interactionist” respectively. In this text, he is using the two terms “perspective” and 
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“approach” alternatively without any terminological clarification. However, it seems 
that his choice of terms is deliberate and that his usage matches the distinction pro-
posed above. He is talking about theoretical and methodological “approaches to re-
search in mathematics education” (pp. 216, 220, 222) and “research approaches” (pp. 
220, 221), and he concludes: 

The methodological approach I am sketching reflects a change of theoretical perspec-
tives: Having identified relevant passages within the data material (from the structuralist 
point of view), these passages are analysed according to the standards of interactionist in-
terpretation techniques (Gellert, 2008, p. 222). 

In his discussion of the general issue of combining two theoretical perspectives, Gel-
lert uses a piece of data – a short transcript of sixth-graders’ collaborative problem 
solving. He states that “by selecting and focusing on this particular piece of data I 
have already taken a structuralist theoretical perspective” because, from this perspec-
tive, the passage is “a key incident of specification of inequality in the classroom” (p. 
223).  

COORDINATING AND COMBINING THEORETICAL PERSPECTIVES 
A consequence of the terminological distinction between a theoretical approach and a 
theoretical perspective suggested above is this: In the network strategy of combining, 
theoretical approaches and theoretical perspectives are juxtaposed and they do not 
have to be complementary or compatible. But, in the strategy of coordinating, where 
well fitting elements from different theories are built into a conceptual framework, I 
consider only theoretical perspectives and they have to be complementary or com-
patible.  
When theories are combined, a subject area is studied with different theoretical ap-
proaches. The area is structured into different problem fields to be investigated and 
different results are produced. When compatible or complementary theoretical per-
spectives are coordinated, the subject area is studied from an integrated perspective 
and one result is produced. According to Prediger et al. (2008) the strategies of coor-
dinating and combining theories are mostly used for a networked understanding of an 
empirical phenomenon or a piece of data. In the following examples the aim of the 
networking is partly this and partly directed towards developing a theoretical frame-
work.  
Coordinating theoretical perspectives 
As an example of coordinating theoretical perspectives for networked understanding 
of a piece of data, I have chosen the analysis of a life history interview (Wedege, 
1999). In a narrative interview with a 75 year old woman, Ruth, about mathematics in 
her life there is a contradiction which is well known in adult education: many adults 
resist in learning mathematics in formal settings while they are mathematically com-
petent in their everyday life. This particular woman, who had really bad experiences 
with mathematics in secondary school, went to a Technical School to be a draughts-
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man as 50 year old and she got the top grades in mathematics. But her dispositions 
towards having to do with mathematics did not change, neither did her beliefs about 
herself and mathematics. While some adults change their attitude to mathematics dur-
ing a training course, others fail to do so. For some people, this means something for 
their image of themselves and their life project, for others not. These differences cannot 
be explained solely within the educational context and the students' current situations 
and perspectives. In order to expand the context for analysing learning processes and 
drawing a link to the lives lived by adult students, I have attempted to combine Lave and 
Wenger's concept of situated learning with Bourdieu's concept of habitus, i.e. systems of 
durable, transposable dispositions as principles of generating and structuring practices 
and representations (Bourdieu, 1980). 
Lave and Wenger (1991) see learning as a social practice and the context of their 
analysis of learning processes is the current community of practice. The theory of 
situated learning is about learning as a goal-oriented process described as a sequence 
from legitimate peripheral participation to full participation. Throughout her life Ruth 
has participated in a number of different communities of practice (family, school, 
work, etc.). She learned a number of things in her mathematics lessons: that she was 
stupid at mathematics, that she was not interested in it, and that in any case mathe-
matics had no relevance for her life. She was confirmed in this by never having failed 
in practical situations due to a lack of mathematics knowledge. When, much later in 
her life, Ruth got the highest grade in the subject of mathematics while being trained 
as a draughtsman, this did not change her idea of mathematics, the world around her, 
or herself. But the theory of situated learning does not present the possibility of ex-
plaining why her perception of herself had not changed, and why she never had any 
appreciation of mathematics. 
Ruth's motivation to be a draughtsman made her overcome her blocks, but not her re-
sistance to learning mathematics. Her intentions had changed but not her dispositions 
towards mathematics, incorporated through her lived life. According to the theory of 
Bourdieu, the habitus of a girl born 1922 in a provincial town as a saddler's daughter, 
of a pupil in a school where arithmetic and mathematics were two different subjects, 
at a time where it was "OK for a girl not to know mathematics", and the habitus of a 
wife and mother staying home with her two daughters is a basis of actions (and non-
actions) and perceptions. Habitus undergoes transformations but durability is the 
main characteristic. 
I have argued that the concept of habitus, developed and belonging in a sociological 
problematique as a concept of socialisation, can be coordinated1 with Lave and 
Wenger’s concept of situated learning in a problematique of mathematics education 
(Wedege, 1999). In the first place, Bourdieu emphasises that the theory of habitus is 
not ‘a grand theory’, but merely a theory of action or practice (Bourdieu, 1994). The 
                                           
1 The word I used in (Wedege, 1999) was “combined” and not “coordinated”. 
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habitus theory has to do with why we act and think as we do. It does not answer the 
question of how the system of dispositions is created, and how habitus could be 
changed in a (pedagogical) practice. This means that the concept of habitus can be 
used in a descriptive analysis of the conditions for adults learning. Lave and 
Wenger’s theory of situated learning is also a partial theory, a theory of learning as an 
integral part of social practice. They are precisely trying to find an answer to the 
question of how people’s dispositions are created and changed through legitimate pe-
ripheral participation (Lave & Wenger, 1991). Bourdieu and Lave/Wenger both aim 
at challenging the dichotomies of subject-object and actor-structure. Both are critical 
of phenomenology and structuralism while simultaneously having social relations as 
the focus of their subject areas. Bourdieu set himself the task of constructing a theory 
of action as social practice and Lave a theory of learning as an integral part of social 
practice.  
A common core – or basic principle – in both theories is the understanding of learn-
ing as social practice. Furthermore, the two theories reject the idea of internalisation 
of knowledge and attitudes/norms, respectively. They mention instead active incorpo-
ration. Thus, the theory of habitus, as a social practice theory, does not encompass the 
theory of situated learning, but I have argued that the two theories are compatible and 
that the concept of habitus, which is developed and belongs in a sociological prob-
lematique, can be imported into an educational problematique about adults’ learning 
mathematics together with the concept of situated learning.  
Combining these with a theoretical gender perspective  
In the interview with Ruth, gender was an obvious aspect which might have been in 
the foreground of the analysis. The theories of habitus and of situated learning do not 
exclude gender aspects, but are a background dimension. In this section, I present an-
other example of networked understanding of a piece of data – this time by combin-
ing the above with a theoretical gender perspective. 
Complexity is a characteristic of the problem field in mathematics education, and di-
versity (gender, ethnicity, social class etc.) calls for multi- and inter-disciplinary stud-
ies and for different research methodologies. However, focus and methodology of 
any study are determined by its purpose, theory and research questions. For example 
Evans and Tsatsaroni (2008) have argued that research into gender within a social 
justice agenda requires both quantitative and qualitative methods.  
When the research problem is formulated and the method and the sampling strategy 
are to be decided, the researcher has to choose among a series of factors and dimen-
sions to reduce complexity. Gender is one of the aspects to be decided upon. In some 
studies, gender is a dimension in the foreground: the study is designed to investigate 
gender and mathematics – and gender is focussed in the purpose and the research 
question. In other studies, gender is a variable in the background: gender is just one 
independent variable among others.  
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Gender is in the foreground as an important analytical dimension in our on-going 
work on people’s motivation and resistance to learn mathematics (Wedege & Evans, 
2006). So far we have not designed a new empirical study with gender in the fore-
ground but we have access to rich empirical data from 81 semi-structured interviews 
with students (2/3 female and 1/3 male) from an English research project on adult 
students’ reasons for learning mathematics, “Making numeracy teaching meaningful 
to adult learners” (Swain et al., 2005). In this project gender is in the background: 
none of the research questions are about gender but information about gender is 
available in the data. In a pilot case study with one of these students, Monica, I have 
tried to adopt a gender perspective for a small part of this data (Wedege, 2008). The 
theoretical framework for this analysis consists of four analytical gender viewpoints2 
(structural, symbolic, personal, and inter-actional) (Bjerrum Nielsen, 2003). The 
analysis shows that the framework of gender viewpoints can be productive in locating 
gender in the data collected in the English project. The four gender viewpoints – 
separate or inter-connected – create new meanings to Monica’s narrative. 
From the structural gender viewpoint, gender constitutes a social structure, and men 
and women are, for instance, unevenly distributed in terms of education. For Monica, 
not having a high level of education has been a structural consequence of being a 
woman. As in many other families, girls were not educated in her family. They were 
brought up to fulfil traditional women’s roles. Today, Monica is a single parent. In 
England – as in Scandinavia – the situation of being a single parent is closely con-
nected with being a woman. Talking about reasons for attending the numeracy 
course, the students talked about the new governmental demands that single parents 
have to go back to work or alternatively go into training. 
The core of our ongoing work is understanding motivation as a social phenomenon, 
which is also the case in the English project. Their theoretical framework is based on 
the work of, for example, sociologist Bourdieu and anthropologists like Lave (Swain, 
2005 p. 31 ff) whom we have also used in our research. This theoretical choice had 
consequences for the questions asked to the students during the interviews, which in 
the case of Monica, for example, made it possible for her to talk about her childhood.  
In the majority of studies in mathematics education, we find gender in the back-
ground. Hence, internationally, we have a large amount of data which has not been 
investigated from a theoretical gender perspective. In a recent overview of mathemat-
ics education research in Denmark and Norway, it was shown that very few studies 
were designed with gender in the foreground (Wedege, 2007). However, a series of 
Nordic researchers intend to bring gender into the foreground and, through the latest 
15 years, they have presented papers with a focus on gender. These presentations 
were based on data from their own previous research (quantitative or qualitative stud-
                                           
2 The term used by Bjerrum Nielsen (2003) is “perspectives”. However, due to terminological con-
straints from the discussion in this paper, I have changed the term into “viewpoints”.  
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ies) with gender in the background. That is, the researchers returned to their “own” 
data with questions related to their original problem. 

CONCLUSION AND PERSPECTIVE 
Diversity of theoretical approaches and perspectives is a challenge in research on 
adults learning mathematics, as in mathematics education research generally speak-
ing. Inter-disciplinarity is also a significant feature of this field where theoretical 
frameworks are imported and restructured (Wedege, 2001). However, the researchers 
often import concepts from other disciplines, like psychology, sociology and anthro-
pology, without any reflections on the process of import, integration and restructura-
tion of the framework. Hence, there is a need for strategies for connecting theories 
from disciplines. Another problem is terminology and I see the present work, on de-
veloping terminology in parallel with strategies (Prediger et al., 2008), as very impor-
tant in terms of quality. Hence, I hope that the proposed clarification of differences 
between the two terms “theoretical approach” and “theoretical perspective” will be 
adopted in the continuation of this work.  
As mentioned above, the purpose – or the overall aim – of the research project 
“Adults learning mathematics in school and everyday life” is to develop theory, thus 
research with a top-down profile (cf. Arzarello et al., 2007). But if we look at the re-
search process beginning in the 1990s, the aim of networking theories in the studies 
of adults learning mathematics alternates between top-down development and bot-
tom-up development with the aim of understanding a concrete empirical phenomenon. 
The theoretical investigations and constructions iterate in continual interplay with 
empirical studies. In Wedege (1999), the aim of coordinating theories is understand-
ing and explaining a concrete empirical phenomenon combined with intentions of 
theory development; in Evans & Wedege (2004) and Wedege & Evans (2006), the 
purpose is conceptual clarification and development; and in Wedege (2008), the in-
tention is to combine with a theoretical gender perspective to revisit empirical data 
for new purposes. The aim of coordinating theoretical perspectives on habitus and on 
situated learning was to understand and explain a mathematical life history. But the 
arguments for compatibility of the two perspectives were general and not restricted to 
the data. In this and in the other studies, the development is driven by the concrete 
study combined with a general interest. 
Combining and coordinating theories are steps on the road towards networking theo-
retical approaches in a new theory, but it is too early to say if our final networking 
strategy will be synthesizing between two or more equally stable theories or integrat-
ing locally some concepts or aspects of one theory into another more elaborated the-
ory. 
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COMPARING THEORETICAL FRAMEWORKS 
IN DIDACTICS OF MATHEMATICS: THE GOA-MODEL 

Carl Winsløw 
Department of Science Education, University of Copenhagen, Denmark 

 
In this paper we propose a meta-model for comparing different theoretical frameworks in didactics, 
focusing on three components of the study object of didactics: a set of human beings with relations 
(e.g. students and teachers in a classroom), an organisation of human practice and knowledge, and 
a set of artefacts used to mediate and relate the previous two. We argue theoretically and through 
an example (related to the transition from secondary to tertiary education) that this meta-model 
helps identifying complementarities, similarities and differences among four leading theories or 
models of the didactical field, and thereby to facilitate rational justifications for selecting a theo-
retical framework with respect to a given purpose of research. 
 
1. INTRODUCTION 
The comparative study of theoretical frameworks in didactics of mathematics (for 
short, didactics) was the subject of a special issue of ZDM (no. 40, 2008), drawing on 
papers and discussions from working groups at CERME-4 and CERME-5 (cf. 
ermeweb.free.fr), as well as on other papers, many in previous issues of ZDM. Predi-
ger et al. (2008, Fig. 1) subsumes the “landscape of strategies for connecting theoreti-
cal approaches” as ranging from “ignoring other theories” to “unifying globally”, be-
tween which we find intermediate positions for “finding connections as far as possi-
ble (but not further)” that the authors call “networking strategies”. Some consensus 
seems to have emerged to pursue the latter type of strategies, while considering the 
uses of a small number of theories (mostly 2-4) in concrete “cases” for research, such 
as studying or developing a classroom design based on a simple task. A general 
“metalanguage” to compare theoretical frameworks was proposed by Radford (2008, 
320): a theory is considered as based on a triple consisting of a set of implicit and ex-
plicit principles of the theory, a methodology and a set of paradigmatic research ques-
tions. This idea seems to be applicable to theories in any field of research, and fo-
cuses essentially on aspects of the epistemology afforded by theories. 
This paper proposes another, possibly complementary, approach to the issue: namely 
to compare the characteristic ways in which different theories build models of the 
object of study in didactics. The basic hypothesis is that significant differences among 
theories of didactics come from focusing on different phenomena within the complex 
reality of mathematics teaching and learning. In short, we propose a meta-model for 
the ontology of the theories, understood as the models they propose of their object. 
2. EPISTEMIC SYSTEMS – THE GOA MODEL  
Every science is about “something” – the objects of study. For an empirical science 
like didactics, which sets out to study a certain realm of mental, social or physical 
entities, the objects of study are delimited and to a certain extent constituted by the 
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development of theoretical models. Such models are more or less systemic in the 
sense that they imply relations among the objects; models are not simply lists of in-
dependently defined objects.  
Without assuming (or saying) much, the “object” of didactics can be loosely de-
scribed as the teaching and learning of a specific knowledge domain. Teaching and 
learning implies subjects who teach and learn – that is, teachers and students, or more 
generally a structured group of people (where structure implies that members of the 
group may have different roles and relations to each other, such as being teachers or 
students). The knowledge domain itself can be modelled and analysed as a coherent 
organisation of knowledge and practice. Finally, knowledge and “knowers” (be they 
teachers or learners) cannot be related without artefacts of different forms (texts, me-
dia, other tools and materials of various sorts). Given these basic observations we 
suggest that the systems of objects studied in didactics can be described as a triple  

(G, O, A)  
where: G is a group of people structured by a certain set of relationships, O is an or-
ganisation of knowledge and practice which G enacts, and A is a set of artefacts 
which G uses to access and communicate in and about O. Notice how relations on 
G∪O∪A are crucial not just to study but also to define the triple. We call such a triple 
an epistemic system (ES) because the system involves use, circulation, development 
or even production of knowledge. Of course, not all ES are likely to be objects of di-
dactical research, but surprisingly many types could need to be taken into account. 
An ES may be considered in synchronic and diachronic ways, corresponding to a 
snapshot of its state at a given time (or a shorter period where it can be considered as 
relatively stable), and to its development over a period of time. It is also important to 
notice that (G, O, A) may be considered as general systems corresponding to an insti-
tution (e.g. a professional community or workplace) where the artefacts may include 
such diverse objects as buildings, tools, texts and so on, giving identity and delimita-
tion to the institution. Finally, an ES may be naturally divided into “subsystems” (Gi, 
Oi, Ai), such as different divisions within a workplace. 
Here are four special cases which are of particular importance in didactics, in them-
selves and in interaction; they also show how varied phenomena ES include: 
2.1. Didactic systems may be described as the case where G consists of one or (rarer) 
several teachers  and a class of students, engaged in the teaching and learning of a 
knowledge organisation O while mobilising, possibly in different and changing ways, 
a set of artefacts A (including objects within the classroom). The knowledge organisa-
tion could be based on one or more problems or questions, mediated and tackled us-
ing A, and potentially mobilising or enabling the construction of the “intended 
knowledge or practice” (also part of O). In fact, these intentions – of the teacher(s) – 
are an important factor in didactic systems, but it could take many forms. 
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2.2. School systems consist of a certain collection of didactic systems, e.g. with G 
comprising all students and teachers of a given school, or of all schools within a 
given region or country; the boundaries of a school system (as regards all three com-
ponents) are sometimes institutional boundaries in the sense that they are defined 
quite explicitly, such as by law, or they could be considered pragmatically as (ob-
servable) systems of persons common aims, practices, and material surroundings. 
2.3. Teaching systems are parts of school systems but with G being a group of teach-
ers, who may work alone, or together, to construct or reflect upon one or more didac-
tic systems. The knowledge organisations and artefacts involved in such systems 
may, of course, also be quite different from those involved in didactical or adidactical 
systems. For instance, teachers could be involved in developing or sharing teaching 
plans and other teaching material (artefacts) related to the teachers’ knowledge and 
practice enacted within didactic systems. 
2.4. Noospheric systems consisting of a group of people G involved in generating, 
delimiting or defining all or parts of the knowledge and practice organisations O to be 
worked on in didactic systems, using or producing artefacts to this end; for instance, 
G may be one or more authors of a textbook (part of A) aimed to support O, or a 
group responsible for producing standards for school systems (A in this case involves 
documents setting up requirements or recommendations regarding the practice, target 
knowledge and artefacts of these). The term noosphere, originally coined by Cheval-
lard (1985), ironically refers to the “thinking about” school systems which takes place 
outside these systems from a peripheric yet superior position. 
3. The GOA model as a “meta-model” for comparing theories in didactics 
The above model of ES can be thought of as a meta-model since its use in practice 
requires finer models for each of its components and their interrelations. Supplying 
these details, we recover several “real” models or theoretical frameworks commonly 
used in didactical research. We now do this for some important ones, familiar to us. 
3.1. The theory of didactical situations (TDS, cf. Brousseau, 1997) considers, as its 
primary objects, didactical situations evolving around didactical milieus and regu-
lated by didactical contracts. The situations are themselves modelled as the interplay 
between students and teachers (forming G) and the milieu, which in turn is a com-
pound of both material elements (forming A) and a particular organisation OM of 
practice and knowledge. The system as a whole is analysed in terms of a wider or-
ganisation O of intended and prescribed forms of practice and knowledge, which in-
cludes also a dialectic between personal knowledge of the different members of G, 
and shared knowledge which develops over time. This means that the entire didactic 
system (G, O, A) is considered diachronically, albeit mostly over shorter periods (cor-
responding to a lesson or a sequence of lessons). The didactical contract consists of 
(mainly) implicit rules which govern the whole system, in particular the interactions 
within G and between G and the milieu. In sum, this theoretical framework models G 
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as consisting of a teacher and a group of students, with different relations to both O 
and A, a relation which varies over time and is interpreted as being governed of a rule 
system (contract) corresponding to expectations and obligations of the members of G. 
It can be said to be more “naturalistic” as regards G and A as such, and focuses par-
ticularly on the evolution of the relation between G and O. Moreover, diachronically, 
the theory focuses on subsystems existing at times where the teacher does not interact 
with the students, called adidactical situations; this refers to shorter time spans for a 
didactic system, which at other times involves interaction between teachers and stu-
dents. 
3.2 The anthropological theory of didactics (ATD) involves highly intricate models 
of O (mathematical and didactical organisations, cf. Chevallard, 2002), corresponding 
to forms of practice and knowledge related to mathematics and the teaching of 
mathematics, respectively. More precisely, it models both of these as organisations of 
praxeologies, each of which consist by definition in a quadruple (type of task, tech-
nique, technology, theory). Praxeologies are organised at various levels according to 
the techniques, technologies or theories they share. The researcher constructs a refer-
ence model to observe and analyse these organisations within different systems. 
Among artefacts explicitly considered in this theory are ostensives mediating and 
embodying the techniques and technologies of O, including also discursive media and 
tools. In this theory, G is mostly implicit, except for the strong emphasis on institu-
tions, viewed as the human ecologies in which praxeological organisations live and 
between which they are transposed. The theory also contains a structured view of in-
stitutions successively determining each other at different levels (Chevallard, 2002), 
from a didactic system considered synchronically (e.g., Barbé et al., 2005), to the 
noospheric systems (including the level of societies) considered in diachronic devel-
opment (e.g. Chevallard, 2002). Finally, a recent development in this theory, to de-
scribe the long term developments of didactic systems, is Chevallard’s notion of re-
search and study programme (see eg. Barquero et al, 2006), focusing again on O but 
with a community of learners G being perhaps more explicit in recent empirical stud-
ies of how such a programme evolves (ibid.). However, even more than TDS, the 
ATD focuses primarily on the analysis of the O component. 
3.3 Socio-constructivist theory of mathematics learning (SCT) exists in many forms 
and variants; we consider here the approach to didactic systems developed by Cobb 
and associates (e.g. Cobb et al., 2001). As the name suggests, the model has dual 
roots (ibid., 119-120): on the one hand, in constructivist learning theories going back 
to pioneers such as Steffe, Skemp, and ultimately Piaget; and in socio-cultural theo-
ries, with a lineage involving names such as Bauersfeld, Lave and Vygotsky. The 
idea is to study the learning – in particular mathematics learning – of participants in a 
classroom situation (students, teachers and even researchers) both as individuals and 
for the group collectively within a socio-cultural context. In fact,  
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there is an extremely strong relation between what we have described as the social and psycho-
logical perspectives that does not merely mean that the two perspectives are interdependent. 
Instead, it implies that neither perspective exists without the other in that each perspective con-
stitutes the background against which mathematical activity is interpreted from the other per-
spective (ibid., 122). 

The researchers’ interpretation of classroom activity aims to clarify this dynamics of 
(mainly students’) individual beliefs and sociomathematical norms developed and 
shared by G collectively. It is based on careful analysis of video recordings of class-
room activity (as a primary form of data, among others such as field notes and inter-
views). This allows for observing not only discursive and embodied practices related 
to a mathematical task, and thereby the emerging organisation O of practice and 
knowledge found in the classroom, but also the role played by artefacts (discursive, 
semiotic, material…). It is important to note that while G and A are theorised e.g. as 
communities of practice and semiotic ecologies (ibid., 153), the individual and shared 
knowledge organisations (including beliefs and norms) are considered to emerge 
from the interaction within G and between G and A: we take the local classroom 
community rather than the discipline as our point of reference (ibid., 120). In other 
versions of SCT, such as Ernest (1997), a wider perspective is adopted. 
3.4 The cognitive-semiotic theory (CST, cf. Duval, 1995) focuses on the relationships 
(mental schemes or processes) which exist for the members of G between a collection 
of signifiers (primary elements of A, organised in semiotic systems) and signifieds 
(mathematical objects within O). The fact that these relationships may be different for 
different members of G (and develop over time) is explicated in variants of this 
model through a triadic model of the sign relationship, including also the different 
interpretations or schemes for the relationship between semiotic artefacts and their 
“meaning”. Particularly important for the objects of mathematics is multimodal rep-
resentations, which occur in two distinctive forms (cf. Duval, 2000): different repre-
sentations of an object within the same semiotic system (register), which are obtained 
by treatments, sometimes based on complicated algorithms; and representations in 
different registers (like a function being represented symbolically and graphically), 
obtained from each other by conversion. Coordination of different representations of 
a given mathematical object is a key requirement in many common mathematical 
tasks. Notice that this model may be applied to all kinds of ES, but with a special fo-
cus on “semiotic” artefacts and the corresponding schemes, and sometimes relatively 
implicit models of O (although for the case of mathematics, the mathematical objects 
and their properties are often considered as constructed or even consisting in those 
schemes, cf. Winsløw, 2004). 
3.5 Comparison. The above four “snapshots” of theoretical frameworks enables a 
first comparison of them, as the modelling of certain parts of (G, O, A) occupy the 
foreground within each of them. In TDS, the interaction of teacher and students (G) 
around the didactical milieu (part of (O, A)), in ATD the praxeological organisations 
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(O) in their institutional context (G, A), in SCT the community of practice (G) with 
its evolving shared norms and individual beliefs which contribute to determine O, and 
in CST the semiosis and associated schemes (part of (G, A)) as a condition for access-
ing and enacting O. To compare these theoretical frameworks, it is crucial to realise 
that they model, to some extent, different parts of a common reality (such as a didac-
tic system). To a much lesser extent do we find apparent oppositions in their basic 
constitution, such as the deliberate absence in SCT of reference models for O “out-
side the classroom”, versus the strong emphasis on such models within ATD. 
4. CASE: THE TRANSITION FROM SECONDARY TO TERTIARY 
For about a decade, I have been studying the transitions problems which arise for stu-
dents at the beginning of university programmes in mathematics, along with devel-
opment projects aiming at enhancing the outcome of students’ work. The difficulties 
students encounter – and the strategies one may envisage to help them overcome 
those difficulties – may be approached using any of the theoretical frameworks con-
sidered in the previous section (as well as others, of course). In this section, a simple 
example will be used to show how contributions associated to each framework are 
different because they model the relevant ES with different foci and notions. Notice 
that Gueudet (2008) presents an overview of literature explicitly addressing the tran-
sition from secondary to tertiary, including more theoretical perspectives than those 
considered here.   
Globally, transition concerns students who move from one type of ES, (G, O, A), to 
another one, (G’, O’, A’), in which there may be some overlap in all three compo-
nents, including (by definition) the students themselves within G∩G’. An obvious 
place to locate the obstacles for students within (G’, O’, A’) is in the set of practices 
and knowledge components O’ which they have to acquire, as opposed to those they 
have previously known (O). As difficulties appear most strikingly in the setting of 
concrete tasks which the students experience as difficult or impossible, many studies 
focus on such tasks and how they relate to the global transition. Here, we shall con-
sider the following task, and expand our analysis of it as presented in (Winsløw, 
2007): 

a) Show that f(t) = t/(1+t) defines an increasing function on [0, ∞). 
b) Show that with f as above, f(s+t) ≤ f(s) + f(t) for all s, t ≥ 0. 
c) Show that the formula 

||1
||),(
ba

babad
−+

−
=  

defines a metric on .  
In fact, c) is the enunciation of a text book task (Carothers, 2000, p. 37) while a) and 
b) are provided as hints in the book. This is a typical task given to students as they 
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begin to study the concept of a metric, defined axiomatically by three properties: on a 
space M, a metric is a function on M×M which satisfies, for all x, y, z in M:  d(x, x) = 
0, d(x, y) = d(y, x) and d(x, z) ≤ d(x, y) + d(y, z). In the case of c), the first two proper-
ties are immediate and the last one is verified using a) and b), bearing in mind that 
δ(a, b) = |a – b| defines a metric on (corresponding to the usual concept of distance 
on ). 
In actual practice, our observations of numerous exercise sessions show that students 
take the “hint” to rephrase the exercise as a three step procedure, as formulated 
above; that almost all solve part a) by computing the derivative and showing it’s posi-
tive; that few students solve b), often by round-about methods involving functions of 
two variables (and sometimes even a computer algebra system); and that very few 
students were able to make use of a) and b) to solve c), in fact in 6 out of 8 groups of 
25-30 students observed, no student had succeeded to do so. Another point is that 
students having failed with b) did not even try to tackle c). 
4.1. TDS approach. The exercise can be considered as a didactic milieu devolved by 
teachers to students and presenting certain obstacles, the overcoming of which are the 
price of the experience which the teacher aims for the students to have, of applying 
the definition of metrics. The first parts seem more familiar to the students and its 
form activate existing contracts, in the sense that surface parts of the enunciation 
(“increasing” and “≤”, corresponding to artefacts in the milieu) trigger certain  tech-
niques of calculation. In particular, to show that a concrete function is “increasing” 
one computes the derivative and “see” that it is positive. To “see” an inequality may 
take some rewriting; the presence of two variables in b) (again, artefacts of the mi-
lieu) is responsible for many complicated attempts to use partial differentiation and 
the like. Finally, no contract has been established for a “right way” of showing that 
something is a metric; the tripartite nature of the definition is no doubt part of the 
problem (one has to verify three properties instead of one). In the classroom situation, 
the teacher can get no further than to make the students recite (or look up) the text 
book definition. The teacher’s (and the text book author’s) expectation that this will 
be a simple experience with applying the definition thus fails because the milieu leads 
the students to identify the problem with contracts at the “micro”-level of the individ-
ual steps. A more global contract is visible in the fact that failure with b) kept many 
from even considering c), amounting to an understanding of exercises as built of from 
increasingly difficult parts (“if you can’t do b) then you certainly can’t do c)”). The 
outcome of this analysis, in the setting of TDS, is that the milieu will have to be re-
designed to better fit the teachers’ intentions (the target knowledge, surely to be fur-
ther analysed!) as well as the contractual phenomena evidenced by the students’ re-
sponse to the original tasks. In particular, the properties of metrics – the key element 
of O’ for the above task – may have to be (re)constructed by students first, as a re-
sponse to a situation with a milieu that relates to their existing experience with (O, A). 
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4.2. ATD approach. Winsløw (2008) presents a two-step transition in terms of the 
praxeological organisations present in secondary schools and in universities: first 
practice blocks are completed to entire praxeologies (with theory blocks), then new 
practice blocks are built with tasks that take objects from “old” theory blocks. In the 
task above, it is mainly the second step which is in play: the function f and its (theo-
retically proved) properties are used to build a new object for a practice block related 
to metrics (task type: show that a given two variable function is a metric; technique: 
verify the axioms). Also, the “standard distance” δ (fundamental to the theory of cal-
culus on ) becomes one among an infinity of objects that this task type takes as an 
object. The institutional point of view provides a framework for explaining the appar-
ent necessity of this two-step transition O  O’. In secondary school, epistemic sys-
tems are constrained by noospheric systems pursuing aims that go much beyond the 
school institution itself (a range of continuing study programmes, a central examina-
tion, etc.). At universities, two types of ES coexist, those of research and those of 
teaching (cf. Madsen and Winsløw, to appear); the overlapping group of users con-
sists of “professors” (research mathematicians who also teach). The complete 
praxeologies O’ pursued in undergraduate mathematics programmes in research in-
tensive universities aim to converge towards those pursued in research (O’’). In par-
ticular, the practice of checking that a given object is a metric, as well as theories 
based on metric spaces, are indispensable in several branches of research mathemat-
ics. Tasks of the kind considered above are thus, at least to some extent, conse-
quences of the choice that O’ should approach O’’. 
4.3. SCT approach. Sharing some concerns with the TDS analysis presented above, a 
SCT analysis focuses more sharply on the beliefs and norms evidenced by the dis-
courses found in the classroom where the exercise is discussed. While we have no 
space to provide even excerpt of relevant data, these might well turn out to present a 
cleavage in the group G’, between the teachers and the few students on the one hand 
who have formed a conception of metrics – and a technical level in algebraic manipu-
lations – that allow for understanding and completing the task; and those students 
who try, quite desperately, to relate the task to norms and beliefs which they have 
acquired in secondary school practices. This may or may not proceed towards a pro-
gressive inclusion of the latter subgroup into a community of practice with shared 
norms and beliefs; but in this isolated episode, this seems to be out of reach. The fact 
that the majority of students did not get to consider the “real” task – because of their 
inability to follow the “hints” (or complete the preliminary tasks) –leads to a form of 
(at least) local alienation from the intended meaning-making. Such phenomena are 
frequently observed in studies of undergraduate mathematics within a socio-
constructivist approach. Dreyfus (1999, 106) subsumes the transition which many 
students fail to make as moving from questions of type ‘What is the result?’ to ques-
tions of type ‘Is it true that …?’, after arguing that even within the community of 
mathematicians, there are no universal criteria for whether an answer to the latter 
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type of question is complete and correct (cf. also Ernest, 1998). A SCT approach thus 
focuses on the process of building at least local consensus in G’ about this matter, 
given that G has mainly been engaged in practices where it does not occur. 
4.4. CST approach. Here, the first question could well to be: when addressing the 
three parts of the task, what are the forms of representation (including the variety of 
semiotic artefacts) available – actually and potentially – to students (relation of G to 
A)? For part a), the students can easily graph the function and thus become intuitively 
convinced of the claim (part of O). For a more formal argument, they can use the al-
gebraic register and either differentiate f to get (1+t)–2  > 0, or use a treatment like 
t/(1+t) = 1–1/(1+t). The latter (and simpler) ad hoc argument did not occur among 
students or even teachers, because it is not produced by an algorithm, and the stan-
dard procedure is reasonably easy. For b) there is no easy general procedure and the 
treatment required is equally non-standard; so only few students succeed. In fact, the 
complexity of required treatments not given by a standard algorithm also explains 
why the almost all students fail with c): here one has to combine previous results with 
the validity of the axioms for δ. Moreover, unlike a) and to some extent b), represen-
tations of the involved objects in other registers, such as the graphs or tables of the 
functions d and δ, are of no help to understand or intuitively support the sought con-
clusion. By contrast, in secondary level mathematics, the predominant mode of think-
ing involves coordination of several registers (e.g. graphical, symbolic, numeric) of 
the objects considered. While this is both a challenge and a support at the secondary 
level, it tends to disappear for more abstract mathematical objects at tertiary level. In 
the concrete case, a task on metrics on 2 (with ample possibilities for illustrating the 
different metrics) might help to enable a multimodal first encounter with the notion, 
on the condition that students succeed in coordinating the involved forms of represen-
tation. 
5. CONCLUDING REMARKS 
In this paper we compared four theories in general (see 3.5). While it would be too 
simplistic to maintain that the considered theoretical frameworks model only one or 
two of the three components of ES, they do exhibit very different foregrounds in the 
sense that each provides highly developed notions and principles for analysing certain 
components or relations between them, while leaving other in the background. One 
might also talk of ontological foregrounds in the sense that different parts of didacti-
cal reality are identified or constructed through these models. This is also illustrated 
by the case study (section 4). Serious integration of theoretical frameworks may 
eventually become possible and even useful to some extent; but I personally feel that 
it is more urgent to develop the rationality with which we choose frameworks accord-
ing to a given purpose of research. Analysing theoretical frameworks within the 
GOA model may contribute to this end because research purposes and ontological 
foregrounds are strongly interdependent. 
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INTRODUCTION 
FROM A STUDY OF TEACHING PRACTICES TO ISSUES IN TEACHER 

EDUCATION 
 

Leonor Santos (Portugal) 
José Carrillo (Spain) 

Alena Hospesova (Czech Republic) 
Maha Abboud-Blanchard (France) 

 
Group 10 is particularly interested in theoretical, methodological, empirical or 
developmental papers on issues concerning teachers’ practices, professional 
knowledge and teacher education. Several themes are possible to be discussed, such 
as teachers’ beliefs, teachers’ activity, the role of the teacher in the classroom, 
professional knowledge, professional development, strategies for teacher education, 
and links between theory and practice, research and teaching, and teacher education 
and collaborative research. 
This group received 57 proposals (48 for papers and 7 for posters). Each proposal 
was reviewed by the leader of the group and two authors, in general including one of 
the others co-leaders. Some proposals were immediately accepted (8 papers, 3 
posters), others were asked some revisions (31 papers, 4 posters) and 9 proposals for 
papers were recommended to be transformed into posters. Fifty five authors from 19 
nationalities participated in the sessions of the working group during the conference, 
through the presentation of 35 papers and 5 posters, all of them accepted to be 
included in the proceedings. 
All the papers and posters have been grouped in different topics that constituted five 
panels. Each panel began with short presentations (5 minutes each), where the 
authors presented their paper contributions to the topic and posed three questions 
(maximum) to be dealt with in the working groups and the further discussion. This 
first part ended with a comment related with all the presentations (10 minutes), made 
by a previous invited participant of the working group. Afterwards, a discussion part 
took place. In general, this discussion had a first moment in small groups and a 
second one with the whole group. 
The organisation of the sessions was highly valued by the participants, as well as the 
atmosphere. Nevertheless, due to the high number of presentations, the time for 
discussion was sometimes less than desirable. The group leader presented a different 
way to organize the working group for the future (some panels may occur in parallel), 
if the participation maintains so high, informing in advance the distribution of the 
papers in the different panels. One participant suggested that each author would be in 
a different small group permitting that the work in that group focuses on that author's 
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paper. It has been also proposed a possible change in respect of presentations: the 
participants would present other participant's paper. We didn’t get to any final 
agreement on this last proposition. 
 
Panels 
We present the emerging issues and ideas that rose during the different panels. 
Panel I: Mathematical curriculum and practice 
• Is it possible a renewal of the curriculum, which implies changes in the teacher’s 
style of work into the class, without any external stimulus (working at school in 
group, consulting only textbooks, even with the help of some experienced teachers)? 
If yes, what conditions are necessary at schools, and more widely in the social 
context? 
• How can one develop a new curriculum in a mode that integrates top-down and 
bottom-up approaches? 
• There is a specific role for mathematics educator, but which one and when? And 
for research? 
• How does curriculum management influence students’ learning of mathematics?  
• Is the study of teachers' efficacy meaningful without taking into account the 
teachers' views about mathematics?  
• What is the incidence and availability of such research, at international level? Can 
we think about common research on any topic in Europe without taking into account 
cultural and social differences among the countries?  
 
Panel II: Professional knowledge 
There are uses of similar, but different terms, within the notion of professional 
knowledge: knowledge base for teaching; pedagogical content knowledge; 
competence: disciplinary, didactic, and relational; subject didactical competence; 
practical knowledge (beliefs and knowledge) 
• How can one present mathematics for the teachers to contribute to the development 
of their pedagogical content knowledge? 
• What tasks can we use to diagnose the (students) teachers’ subject matter 
knowledge (its possible weakness)? 
• How can one change teachers’ conceptions on mathematical communication (as 
information trasmission) through a collaborative work (eg. centered on teachers’ 
reflection on their own practice)? 
• How can one promote lasting classroom culture among teachers, one of its focus 
being the discussion of students' (right or wrong) strategies? 
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Panel III: Professional development 
As for primary teachers, also for secondary teachers, mathematical content 
knowledge and pedagogical content knowledge must be interrelated in teacher 
education (having a mathematics degree isn’t enough to understand the mathematics 
to teach). 
• Professional development is about becoming autonomous and critical at designing 
and conducting classroom teaching. How do teachers develop professionally? In 
particular, what is the role of: 
 - theory (listening to lectures, reading papers, discussing issues, …)? 
 - practice (appropriating ideas from the practice of others, transforming ideas from 
his/her own practice)? 
 - reflection (reflecting on what? how? with what purpose?...)? 
• How is it possible that groups of teachers develop towards a real learning (inquiry) 
community? What kind of impulses do they need?  
•  Which role could/should researchers/teachers’ educators play in such professional 
development (taking account of their experience in international projects, in research 
studies, in the use of supporting tools of analysis…) 
• How is it possible to promote real changes in the beliefs and the teaching practices 
of in-service teachers?  

- How can we measure the sustainability of this professional development? 
- What is the impact (if any) of the changes on the mathematical experience and 
learning of pupils?  

• Co-learning is a means to promote professional development. But how to 
combine the expertise of teachers and that of mathematics educators/researchers in a 
way that can be useful to the two partners?  
 
Panel IV: Approaching reflection and collaboration in mathematics teachers’ 
professional development 
Collaborating is not just sitting or working together and reflecting is not just thinking 
about or thinking aloud. Content and depth of reflection are determinant. Reflection is 
a privileged way for professional enhancement. Collaboration is a mean for 
professional development and for research strategy. 
• What strategies, settings and content can we design to promote reflection and 
collaboration amongst teachers and between teachers and researchers in order to 
achieve a real professional development? 
- How can we categorise data, statements, and phenomena? And why? 
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- What data should be analysed to measure the improvement of teaching via (joint) 
reflection? 
 
Panel V: Models to analyse the practice 
The practice of teachers includes classroom teaching, as well as training and other 
professional development contexts, …There are different examples of models to 
analyse the practice, such as: focusing on teachers’ cognitions; focusing on 
interactions in a collaborative environment (bottom-up); and focusing on teachers’ 
use of curriculum materials, textbook in particular. 
• Enquiring into teachers’ beliefs about teaching and learning mathematics through 
focus groups: 
- What other uses might the focus group interview have in teacher education/teaching 
development? 
- What are the special techniques for managing a focus group interview? 
• How can we manage to make research results and instruments useful for teachers 
as means in their professional development, and for educators in training contexts? 
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EFFECTIVE ‘BLENDED’ PROFESSIONAL DEVELOPMENT FOR 
TEACHERS OF MATHEMATICS:  

DESIGN AND EVALUATION OF THE "UPOLA"-PROGRAM 
Lutz Hellmig 

University of Rostock, Germany 
 
The paper describes the implementation and evaluation of UPOLA, a one-year-long 
blended learning professional development (PD) program for teachers of 
mathematics. The use of polyvalent tasks in classes as the main issue of UPOLA 
proved to be appropriate to support changes in classroom practice. Based on a short 
overview of the concept of polyvalent tasks, a description of the design of the blended 
professional program is given by considering multiple dimensions of 'blending'. The 
evaluation of the program shows a shift in participants' perception over the time from 
rather environmental variables towards the impact of UPOLA for teachers’ acting 
and students’ learning. Furthermore, some findings on the implementation of web-
based communication and collaboration are presented. 
Keywords: Professional Development, Blended Learning, Co-Operation, Evaluation, 
Polyvalent Tasks  

INTRODUCTION 
The current practice of teachers' PD in Germany is predominantly a set of single 
events of limited time, with little impact on teachers' classroom activity and students' 
learning. Given the current situation in the field of PD of practicing teachers, a lack 
of effective, job-embedded PD for teachers can be observed (Sowder, 2007). Limited-
time events, rarely longer than a single day, are the current practice of teachers' 
further education in Germany. The impact of most of these lectures, meetings, or 
workshops is weak, since they do not affect teachers' behavior and students' learning. 
A detailed analysis of the present state is given by Jäger and Bodensohn (2007). 
According to Loucks-Horsley (2003) and Guskey (2000) PD should be an ongoing, 
intended and systemic process. However, there is no clarity about attributes of 
effective PD. A comparative study by Guskey (2003) shows that "[…] most of the 
identified characteristics [are] inconsistent and often contradictory” (Guskey, 2003, p. 
4). Overall, implementing peer-cooperation and collaborative activities are frequently 
named as key features to ensure changes in classroom practice (i.e. Garet, Porter, 
Desimone, Birman, & Yoon, 2001; McGraw, Arbaugh, Lynch, & Brown, 2003). 
Following Jäger and Bodensohn (2007), a successful PD-program has to consider the 
specific needs of participating teachers. Inside-differentiation in heterogenic classes is 
one of the most evident general issues for PD of teachers of mathematics (Jäger & 
Bodensohn, 2007). In the German province of Mecklenburg-Western Pomerania, 
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where heterogenic classes in grade 5 and 6 have been established since 2006 in 
opposite to the common trinomial school system, teachers identify a higher need for 
differentiation especially in their classes. 
UPOLA, which means "Teaching by using Polyvalent Tasks" (in German: 
“Unterrichten mit POLyvalenten Aufgaben”), focuses both on offering an 
appropriate topic (polyvalent tasks) to meet the needs of teachers and on a holistic 
blended approach for the design of PD. To adjust the ongoing program and to identify 
its strengths and weaknesses, evaluation on multiple stages was an essential part of 
the program. 

POLYVALENT TASKS – AN ISSUE OF PROFESSIONAL DEVELOPMENT 
According to the idea of "Open-Ended Approach" (Becker & Shimada, 1997), Sill 
and Hellmig (2008) defined the concept of "polyvalent math tasks". A mathematical 
task is polyvalent, related to a group of students, if (1) every student is probably able 
to find a solution, and (2) the task has a set of solutions on different levels according 
to the use of mathematical skills. These attributes distinguish a relative small set of 
polyvalent tasks from a broad range of general open tasks. Thus, polyvalent tasks are 
highly appropriate to meet the needs of differentiation. 
Asserting the benefits of these tasks requires an apposite style of teaching, which is 
different from the general practice in Germany. Hellmig et al. (2007) suggested a 
time-ratio of about 50% to 50% for two phases of implementing polyvalent tasks in 
classroom: First the students are asked to find answers to the task individually, by 
cooperating in pairs or in small groups. During the second phase students present 
their solutions. The teacher encourages less successful students to show their ideas 
first; further other students are asked to present different solutions with a higher 
degree of complexity. The aim of this phase is to develop a culture of communication 
about mathematics in classes. The course material (Hellmig et al., 2007), provided to 
every participant in the program, described the characteristics of these tasks, their use 
in classes, and contained a collection of 70 tasks for grade 5 and 6 students.  
The use of polyvalent tasks in classroom supports the idea of openness, 
communication and cooperation. To take the mentioned ideas into teachers' practice, 
the design of the program itself is dedicated to these characteristics.  

DESIGN OF THE PROJECT – A BLENDED APPROACH 
General considerations 
"All learning is blended learning." (Oliver & Trigwell, 2005, p. 20) Designing PD is 
always a blend of different goals, contents, and methods. Inspired by Cross (2006) 
the author sees a complementary interaction on several dimensions of PD with the 
main dimensions (1) instruction/construction, (2) presence/ distance, (3) 
individual/collaborative learning, (4) content/experience focus, (5) "traditional" 
media/e-learning. Regarding these dimensions, the project UPOLA was blended 
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through  

• Leading the course by two moderators; one with theoretical background, the 
other with more practical background.  

• Giving content-related input (during meetings) and constructing knowledge by 
the participants through activity, reflection and discussion. 

• Combining individual learning by teaching and reflecting with collaborative 
learning. This included discussions on didactical issues and about lessons, 
which were taught by the participants, as well as joint planning of lessons. 

• Using a guideline linked to the curriculum during the school year and self-
directed teaching, reporting and discussing. 

• Meetings "off the job" and phases of experience and reflection "on the job". 

• Using traditional channels and web-based environments to communicate. 
A factor for transferring the topics of PD into classrooms is engaging more than one 
teacher per school. Transfer is influenced by organizational support of principals and 
acceptance by staff members of a school (Guskey, 2000; Krainer, 2002; Loucks-
Horsley, 2003; Gräsel, Fussangel, & Parchmann, 2006). Thus, every teacher in grade 
5 of the participating schools has been invited to attend the program. We assumed 
that a vast amount of fruitful peer communication and co-operation during PD could 
affect the growth of the local professional communities of the participating schools. 
Implementation of UPOLA in 2007/2008 
After a pilot study in 2006/2007, "UPOLA" was put into practice in 2007/2008. We 
grouped 44 teachers of grade 5 classes of Mecklenburg-Western Pomerania and 
Berlin into five courses. These courses were integrated in "Mathematics Done 
Differently", an initiative for PD of teachers of mathematics. A key feature of the 
programs in "Mathematics Done Differently" was the moderation by a tandem of a 
school- and a university-teacher (Rösken & Törner, 2008). 
We combined four meetings "off the job" between August 2007 and May 2008 with 
three phases of PD "on the job"; each segment lasted 8-12 weeks in duration. This 
combination of presence and distance learning supports co-operative and 
collaborative work, associated with social interaction and flexible time management, 
which is important for preventing high drop outs (Lynch & Dembo, 2004; Nash, 
2005; Picciano, 2006). A valuable list of factors for blended PD-programs was given 
by Wideman, Owston, and Sinitskaya (2007). We used the learning-management-
system (LMS) "moodle" for online communication. 
Meetings 
The meetings mostly took place at the participating schools, the workplace of the 
attendants. We ensured a suitable atmosphere for the meetings, offered refreshments 
and agreed on an informal style to communicate with each other, even between 
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participants and facilitators. Typically, a meeting started with a structured group 
interview as a review on the recent period of work, which often turned into a spirited 
discussion. The review ended by writing a collective summary. Second, a facilitator 
linked selected theoretical topics to the issue of polyvalent tasks and encouraged a 
discussion. Finally, participants selected a concerted task for the next on-the-job-
phase and outlined first thoughts on teaching with the chosen task. Each meeting 
closed with a short written feedback on two open questions. A substantial amount of 
time of the first two meetings was spent for introducing the LMS "moodle" and the 
characteristics of asynchronous communication.  
Phases of experience and asynchronous communication 
During an "on-the-job-phase", the attendants planned and conducted a lesson about 
the chosen polyvalent task. They were asked (1) to report and reflect upon their own 
lesson, (2) to comment on the reports of their peers, and (3) to discuss different 
teaching approaches with polyvalent tasks by using moodle.  
For setting up the LMS we had to consider the skills and the attitudes of the 
attendants towards information technology. A certain number of teachers felt uneasy 
and tried to avoid the use of computers; some of the participants had to struggle with 
technical issues and deficient skills along the entire course. Hence we designed the 
structure of the moodle-course to be as clear and simple as possible into a general 
block and three topic-blocks, each for one on-the-job-phase. The main activity of 
each topic block was a discussion board for reporting everyone's experience in 
teaching polyvalent tasks and to discuss about didactical issues. Beyond that, we 
provided additional material such as manuals (i.e. how to write a report) and files of 
course-related content.  

EVALUATION 
Success of PD depends both on content and design. Hence, the evaluation followed 
two main questions: (1) Are polyvalent tasks appropriate to address a broad range of 
students with different skills and encourage communication about mathematics in 
class?, (2) How far is this kind of blended learning applicable for teachers' PD and 
what sort of items can increase the outcome of the program? In this paper, we put our 
attention to the second question. 
Methodology 
Guskey (2000) describes a model of evaluating teachers' PD that comprises five 
stages. We utilized this model, and gathered data for (1) participants' reactions, (2) 
participants' learning, (3) organizational support and change, (4) participants' use of 
new knowledge and skills, and (5) student learning outcomes. The author 
subclassified the second stage into (2a) process, and (2b) results of participants' 
learning. 
Determined by our blended view of professional development, we had to separate 
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two points of view from each other. On the one hand, we examined five courses in 
their entirety with certain attributes to find general correlations. On the other hand, 
we had to regard the participants as individual learners and teachers by case studies. 

Participants' 
Reaction

Student 
Learning 

Outcomes

Participants' 
Use of New 
Knowledge 
and Skills

Organization 
Support and 

Change
ResultsProcess

Participants' Learning

 

Figure 1: 5 Stages of Evaluation adopted from Guskey (2000) 

Use of different means for evaluation was necessary to gain reliable data. The most 
important means were different questionnaires, interviews with teachers and 
principals, classroom observations, and monitoring discussion groups by quantitative 
and qualitative criteria. Finally, a modified method of the Repertory Grid 
interviewing technique (Collet & Bruder, 2006) was employed to capture the system 
of participants' personal constructs regarding math tasks before and after the course. 
Reflective reports and discussions during every face-to-face-session delivered very 
rich and useful "soft" data to get insights in participants' learning. The variety of tools 
for evaluation generated two separate sets of data: a set of personalized data, gathered 
by interviews, online- and face-to-face-discussions, and sampled classroom 
observations; and a set of anonymous data, collected by surveys and Repertory Grid. 
On the one hand, it was not possible to avoid getting some personalized data of the 
participants; on the other hand, protection of privacy is a precondition to get objective 
and reliable responses by participants. Three examination papers about the influence 
of polyvalent tasks on grade-5-students with different abilities were written. 
Focusing on the use of the LMS, we analysed the number of insights in documents 
hosted on moodle, and quantitative and qualitative parameters of discussion threads. 
First, we simply counted the number of postings by every participant, differentiated 
by opening a thread and giving reactions to a posting. To rate the vitality of the 
discussion, we defined a scale for grading every thread. Beginning with the lowest 
degree we distinguished (1) posting by the moderator without a reaction, (2) posting 
by a participant without a reaction, (3) posting and one answer (one by the 
moderator) (4) posting and one answer without commitment of the moderator, (5) 
discussion (at least one posting regarding an answer) between a participant and the 
moderator, and (6) discussion without participation of the moderator. Furthermore, 
we viewed the dates of the postings to assess the continuity of participation. An 
analysis of qualitative variables (i.e. use of new terminology, deepness of reflection) 
complemented the observation of web-based communication. We compared these 
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data with additional attributes, such as group-size, schedule of school-year activities 
and holidays. 
Additionally, we could compare online activity of the participants with their 
contribution to the "off-the-job-meetings", and in some cases by observing 
classroom-activities concerned with the implementation of the subject.  
UPOLA, as a part of "Mathematics Done Differently", was also evaluated externally 
by the Centre for Educational Research (zepf), University of Koblenz-Landau. Since 
that external evaluation was designed for one-day-events of PD, the usability of these 
data and the comparability with our self-evaluated data was limited.  
Findings 
The description of the findings of the evaluation is grouped according to Guskey’s 
(2000) five stages of evaluation. 
On stage 1, participants' reactions, participants appreciated the open and informal 
atmosphere of the meetings with possibilities to share experience with facilitators and 
colleagues. They reported about the importance of face-to-face-communication, many 
felt more comfortable to participate verbally rather than by online-written 
contributions. Participants attended the meetings regularly; we rated a small drop out 
(4 of 48) as an indicator of general satisfaction. 
On stage 2, participants' learning, we observed that participants shared their 
individual approach to implement polyvalent tasks in profound discussions. We saw 
the quality of these discussions as a demonstration of increasing knowledge of 
participants. Frequently we heard that participants would rather communicate face-to-
face than by using a discussion board. 
In general, the use of the LMS for asynchronous communication felt short of our 
expectations. Although we defined a common and clear task for each experience 
phase, the number of postings by many participants did not match our demands. Most 
of the discussion-"threads" were only reports without a response by other 
participants. In some cases, participants received responses, but discussions 
developed rarely. We can confirm that the group size is an influential factor for the 
activity and intensity of discussion. Like Caspi, Gorski and Chajut (2003) and 
Wideman et al. (2007) we saw a better performance of courses with ten participants 
or more. The participants did not contribute postings continuously. First of all, the 
majority of the postings were written within the last two weeks before the meetings. 
This is critical regarding to the aim of developing discussions. Furthermore, we 
placed meetings into the last week before holidays. As a result, stimuli and 
motivation given during the meetings, faded out immediately due to the holidays. 
To keep the attention of participants, daily alerts of ongoing activities had an 
influence on the activity of participants. Components of the LMS without delivering 
alerts (downloadable materials as well as some discussion groups) received 
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measurably less attention or responses from participants. Since reading e-mails was 
not a daily routine for some participants, facilitators had to contact and motivate some 
teachers by using additional channels of communication, i.e. by making phone calls.  
Participants started to reflect about their lessons just by giving an overview about 
different approaches of the students to solve polyvalent tasks. By continuing the 
program many of the attendants included thoughts concerned with planning or 
reflecting about their lessons.  
Evaluating higher levels (stages 3-5 of Guskey’s model) of the impact of UPOLA has 
to regard the conditions of the attendants' workplace in addition to the program. Our 
research underlines the findings reported by Beaudoin (2002), who reported that a 
lack of online activity does not implicate a lack of adopting knowledge by 
participants. Observations of lessons of the UPOLA-project showed that in some 
cases teachers demonstrated sophisticated skills in teaching with polyvalent tasks, 
however, they gave no or very few reports to the discussion. Other participants 
admitted that they did benefit from ideas and experience of others, but hesitated to 
give themselves a reflection about their own work.  
Finding relationships between teachers' PD and students' outcome is crucial, but 
challenging. Polyvalent tasks are usually not suitable for grading students by giving 
marks. Effects of polyvalent tasks were anticipated and observed in terms of 
motivating students, especially of students with lower skills, to think mathematically 
and to communicate about mathematics. Attendants reported that polyvalent tasks 
gave them the possibility to observe and assess their students in a broader variety of 
classroom settings. At this point, evaluation of the design of the program is closely 
linked to the evaluation of content. 
Overall, an obvious change in teachers' perception of the PD program was 
observable. By classifying the comments of attendants on feedback-sheets (often so-
called "happiness-sheets") it has become clear that teachers shifted their attention 
about the meetings from assessing the atmosphere or appreciating refreshment (after 
the first meeting) to higher-order categories such as content, quality of cooperation, 
or transferability. Although we encouraged teachers with the last feedback-sheet to 
report explicitly on their adapted 'knowledge', they focused more than before on their 
use of knowledge in classroom. In many cases, a possible impact on students' 
outcome was considered. Figure 2 shows the development of teachers' thinking 
towards students' learning over time, and indicates a solid impact of the program, 
according to Guskey's model of evaluation. 
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4: Spring

3: Winter

2: Fall

1: Summer

Reaction Learning Organizational support Use of knowledge and skills Students' learning  

Figure 2: Ratio of participants' responses after each meeting, on Guskey's (2000) five 
levels of evaluation 

In general, data of the internal evaluation was confirmed by the results of the external 
evaluation by the zepf, Landau. 

CONCLUSION 
Constructing and developing lasting knowledge, skills and beliefs through teachers' 
PD must be seen as a process, which needs sufficient time and possibilities to gain 
experience situated at the workplace and to share ideas and experience in a 
collaborating group. Using a blended-learning setting – four face-to-face-meetings 
connected with three experience phases "on the job" – can be one way to meet the 
needs of participating teachers and to change classroom practice sustainably. We did 
not merely use a LMS-course to offer instructional and supporting material, but rather 
the teachers were asked to report and to discuss their lessons using discussion groups 
in the same moodle-course. 
We identified a high acceptance of the topic and of the main structure of UPOLA. 
Teachers reported the importance of collaboration and discussion among teachers for 
their situated learning, and their own work. Still, the participants met our expectations 
about the use of a learning management system only partially.  
Different types of weaknesses in terms of remote communication and co-operation 
have been observed. First of all, teachers were challenged by the faint culture of 
reflection and discussion about their own work, particularly in a written form. In 
some cases we identified a lack of motivation for continuous distance learning; 
teachers had not been aware of the benefits of informal, situated learning and ongoing 
cooperation. Insufficient technical skills and little experience and confidence, related 
to asynchronous communication with information technology, hindered the 
development of a vital and deep discussion. It was indicated that some attributes of 
the course-design, number of participants per group, dates of face-to-face-meetings, 
clear tasks for teachers' reports are key for the quality of web-based cooperation. 
Groups with a certain minimum of participants have to be built to ensure a vital 
discussion; however, exceeding a maximum of attendants could be a hindrance for 
developing social relationships.  
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Further suggestions for planning subsequent projects are to synchronize the course-
structure with the schedule of teachers' workload during one school year, to avoid 
face-to-face-meetings that are immediately followed by holidays, and to design a 
plain and clear structure of the e-learning-platform, which requires no more than 
elementary technical skills. In addition, sufficient time and support has to be given to 
develop technical skills of every participant, including a prior phase for signing in 
and discovering the LMS through the participants themselves. 
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TEACHERS’ EFFICACY BELIEFS AND PERCEPTIONS REGARDING THE 
IMPLEMENTATION OF NEW PRIMARY MATHEMATICS CURRICULUM 

Isil Isler and Erdinc Cakiroglu 
Middle East Technical University, Turkey 

Abstract  
The purpose of this study was to investigate primary school and mathematics 
teachers’ efficacy beliefs and perceptions in the context of the new primary 
mathematics curriculum in Turkey and identify differences, if any, in teachers’ 
efficacy beliefs and perceptions based on their area of certification, gender, and 
experience. The sample consisted of 805 teachers, 696 of whom were primary and 
105 of whom were mathematics teachers working in elementary schools located in 5 
cities of Turkey. The questionnaire administered to participants was adapted by the 
researchers throughout the study. The results of the MANOVA analysis indicated that 
teachers’ area of certification and experience had a significant role on the collective 
dependent variables, gender did not. 
 
Keywords: Teacher Efficacy Beliefs, Teachers’ Perceptions about the Curriculum, 
Mathematics Curriculum Implementation, Teachers’ Practices, Primary and 
Mathematics Teachers 
 
THEORETICAL FRAMEWORK 

Mathematics curriculum change for elementary and middle grades was 
initiated in 2004 in Turkey. After a period of piloting, a new curriculum was started 
to be implemented in public and private schools throughout Turkey. Parallel with 
mathematics education reform movements in many countries, the new elementary 
and middle grades mathematics curriculum requires a significant shift in the teaching 
and learning of mathematics within the classroom. Compared to its precursor, the 
new Turkish curriculum includes a larger emphasis on learner-centered instruction, 
problem solving, open-ended explorations, modeling real-life situations, and the use 
of technology as a tool to support mathematics learning (MNE, 2005). Teachers are 
considered to have a critical role for the actualization of the ideas in the new 
curriculum. Hence, no matter what the curriculum suggests, it is the teacher who 
makes the ultimate decisions about what is going on in the classroom. Teachers’ 
potential to learn and adapt to innovations can lead to students’ learning and 
acquaintance with the innovations in classrooms. In that sense, teachers are seen as 
both the means and ends of curriculum reform movements (Cohen & Hill, 2001). 
Therefore, any curriculum change should pay attention to what teachers know and 
believe. The purpose of this study was to investigate teachers’ efficacy beliefs about 
the implementation of the new national mathematics curriculum in Turkey. More 
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specifically, it was aimed to investigate possible differences in teachers’ efficacy 
beliefs based on their area of certification, gender, and experience. 

Teacher efficacy has emerged as an important construct in teacher education 
over the past 25 years. It has been defined as “teachers’ beliefs in their ability to 
actualize the desired outcomes” (Wheatley, 2005, p. 748).  Teacher efficacy has been 
linked to teacher effectiveness and appears to influence students in their achievement, 
attitude and affective growth. Researchers have shown that teacher efficacy has 
positive effects on teacher effort and persistence in the face of difficulties (Soodak & 
Podell, 1993), professional commitment (Coladarci, 1992), student motivation 
(Midgley, Feldlaufer & Eccles, 1989), and openness to new methods in teaching and 
positive teacher behavior (Ghaith &Yaghi, 1997). In addition, teachers with a high 
sense of efficacy are more likely to use student-centered teaching strategies, while 
low-efficacious teachers tend to use teacher-directed strategies, such as didactic 
lectures and reading from textbooks (Czerniak, 1990). Thus, the importance of 
teacher efficacy is well established.  

Teachers’ sense of efficacy and reforms in curriculum has many common 
points (Smith, 1996). The changes teachers apply to their practices and adaptation to 
innovations require that they have a high sense of efficacy. Nevertheless, while both 
the implementation of reform in mathematics education and teacher efficacy beliefs 
have been studied in depth over the years, there have been very few research studies 
completed on the possible connection between the two.  

The current study aimed to make a contribution to teacher efficacy research in 
the context of a major curriculum change initiated in Turkey. Furthermore, teachers’ 
sense of efficacy has been described as “context and situation specific” (Bandura, 
1986). Thus, many scales have been developed to serve different purposes, and some 
of them have been extensively used in different cultures.  Therefore, for the specific 
purpose of the study, a questionnaire was adapted and utilized throughout the study to 
assess teachers’ efficacy beliefs and perceptions regarding the implementation of the 
new curriculum.  
METHODOLOGY 

In this study, a survey research design was employed.  In the sampling method, 
schools rather than individuals were randomly selected.  57 schools selected for the 
study were public schools. The participants of this study included 696 primary 
teachers and 109 mathematics teachers who are teaching at upper primary level. 
Overall, there were 503 female and 302 male participants.  

The data in this study were collected through a survey instrument, one part of  
which was adapted from another instrument called “Teachers Assessment Efficacy 
Scale (TAES)” (Wolfe, Viger, Jarvinen, & Linksman, 2007) and the other part 
constituted of “ Teacher’ Sense of Efficacy Scale (TTSES)” (Capa, Cakiroglu, & 
Sarikaya, 2005) which was originally developed in English by Tschannen-Moran and 
Hoy (2001).   
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INSTRUMENTATION 
Within the adaptation process, the TAES was translated in respect to the 

Turkish school culture. A conceptual translation method was employed. This method 
“uses terms or phrases in the target language that capture the implied associations, or 
connotative meaning, of the text used in the source language instrument” (Braverman 
& Slater, 1996, p. 94). Moreover, there were no negatively worded items in the 
original scale. However, Gable and Wolf (1993) suggest that both positive and 
negative items should be included in an instrument in order to control the response 
style. Therefore, some of the items were reworded to include a negative stem by 
maintaining the corresponded sub-dimension of the item. In addition, the confidence 
items were rephrased with “can” as Bandura (2006) suggested using “can” to refer to 
capability while developing efficacy scales because self-efficacy is a perceived 
capability. After the adaptation process of the instrument, various expert opinions 
were obtained for the content validation.  

The final draft of the instrument consisted of four parts. The first part included 
11 items measuring teachers’ demographic characteristics such as gender, experience, 
educational level and area of certification. The second part included 22 items on a 5-
point Likert type agreement scale (1-strongly disagree, 3-undecided, 5-strongly 
agree) related to the sub-dimensions of (1) efficacy beliefs in terms of the 
implementation of the new curriculum (e.g. I can prepare assessment tasks in 
accordance with the new curriculum) (2) beliefs about the impact of the new 
curriculum on classroom instruction (e.g. When based on the new curriculum, 
mathematics classes motivate the students to learn), and (3) perceptions about the 
utility or practicability of the new curriculum (e.g. The new curriculum can help me 
to identify the knowledge a students must master). The third part included 24 items 
on a 5 point Likert type frequency scale (1-never, 3-sometimes, and 5-always) about 
teachers’ perceived utilization of the new curriculum (e.g. I use the new curriculum to 
plan problem-solving tasks for my students). Twelve items were added to the original 
sub-scale in order to assess teachers’ utilization of special techniques such as 
cooperative group work and their use of manipulatives during instruction (e.g. I 
organize cooperative group work activities for my students). The fourth and the last 
part included the short form of Turkish teachers’ sense of efficacy scale (TTSES) 
which consisted of 12 9-point scale items (1- inadequate, 5-moderately adequate to 9-
extremely adequate) (e.g. How much can you do to control disruptive behavior in the 
classroom?). 

In this study, common factor analysis was employed in order to discriminate 
the unique variance of each variable from common variance (Costello & Osborne, 
2005).  Factor analysis was conducted in two stages: factor extraction and factor 
rotation. Maximum Likelihood analysis with Direct Oblimin was used for each part 
of the questionnaire. Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO) 
produced values higher than .9 for all parts of the questionnaire which means the 
sample size is appropriate for factor analysis (Field, 2005). Moreover, Bartlett’s Test 
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of Sphericity was significant evaluating the correlation matrix is not an identity 
matrix (Tabachnick & Fidell, 2007).  

Results of exploratory factor analysis suggested six dimensions: Utility and 
Impact of the Curriculum, Impact of the Curriculum regarding Efficacy Beliefs, 
Efficacy Beliefs regarding the New Curriculum, Utilization of Curriculum, 
Utilization of Special Techniques, and Teachers’ Sense of Efficacy. The reliability 
coefficients of the sub-scales produced high levels of reliability coefficients except 
the Efficacy beliefs regarding the new curriculum subscale.  

Reliability of the subscales were satisfactory (Field, 2005) which were given in 
table 1. 
Table 1. Reliability Statistics of the Sub-scales 

Sub-scale Cronbach’s 
Alpha (α ) 

Number 
of Items 

Utility and Impact of the curriculum .873 9 
Impact of the curriculum regarding Efficacy 
beliefs .821 8 

Efficacy beliefs regarding the new curriculum .670 5 
Utilization of Curriculum .910 11 
Utilization of Special Techniques .864 13 
Teachers’ Sense of Efficacy .912 12 

 
DATA ANALYSIS 
For the inferential results, MANOVA was employed because of its advantage of 
controlling the risk of Type I error. Furthermore, MANOVA also provides univariate 
ANOVAs in the output to observe the separate effects of independent variables on 
each dependent variable (Field, 2005); however the significance of the follow-up 
tests should be evaluated by using Bonferroni method by dividing the alpha by the 
number of dependent variables in the analysis. In this study, three independent 
variables were chosen for investigations which were: teachers’ area of certification, 
gender, and experience. Therefore, the alpha level was adjusted first dividing by three 
(0.05÷6) and then by the number of dependent variables (0.02÷6). The assumption 
the homogeneity of population covariance matrix for dependent variables of 
MANOVA was checked by inspecting Box’s M Test of Equality of Covariance 
Matrices and Levene’s test.  

 
 RESULTS 

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1707



The results of the MANOVA indicated that teachers’ area of certification and 
experience had a significant role on the collective dependent variables, while gender 
did not (Table 2).  
Table 2. MANOVA Results for Area of Certification, Gender and Experience 

Effect Wilks’ 
Lambda F Hypothesis 

df 
Error  

df P Partial  
η2 

Observed 
Power 

Area of 
certification .976  2.800  6.000  697.000 .011 .024  .884  

Gender .966 4.124 6.000 697.000 .000 .034 .977 
Experience .929 4.124 24.000 2401.335 .001 .018 .993 

   
Further follow up analyses revealed that primary teachers (M = 3.76, SD = 

.538) had significantly stronger efficacy beliefs about the new curriculum than 
mathematics teachers (M = 3.57, SD=.545).   

Moreover, teachers with 11 to 15 years and 21 and more years of experience 
were significantly found to perceive a higher utilization of special techniques than 
teachers with 10 years or less experience. In a similar sense, teachers with 16-20 
years of experience were found to have a significant higher perceived utilization of 
special techniques than teachers with 5 years or less experience.  

 
Table 3. Utilization of Special Techniques according to Teaching Experience 

Teaching Experience M SD 
5 years or less 3.61a .485 

6-10 3.68a .484 
11-15 3.90a .473 
16-20 3.86a .458 

21 or more years 3.88a .521 
a The possible highest score is 5; the possible lowest score is 1.  
 
DISCUSSIONS 
 Results indicated that primary teachers had significantly stronger efficacy 
beliefs about the new curriculum than mathematics teachers. This result is interesting 
in the sense that primary teachers who teach all subjects possessed higher efficacy 
beliefs in the implementation of the curriculum than mathematics subject-matter 
teachers. One of the reasons may be that primary teachers teach younger students 
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than mathematics teachers. For example, Ross (1994) noted that declines occur in 
teacher efficacy when the grade levels taught are increased. Also, Capa (2005) found 
that elementary school teachers were more efficacious about student engagement than 
secondary school teachers in their first-year of teaching. Another possible reason for 
the lower sense of efficacy in the mathematics teachers may be because the new 
mathematics curriculum has been implemented since 2005 and it was first conducted 
in primary grades (1-5), then in the upper primary grades (6-8). Therefore, primary 
school teachers have been implementing the new curriculum for a longer time than 
mathematics teachers; thus, primary school teachers may be more acquainted with the 
new curriculum. Furthermore, primary teachers may have more congruent practices 
with the new curriculum such as developing and using hands-on activities with their 
students in the primary levels. Therefore, they may have felt more efficacious than 
mathematics teachers in the implementation of the new curriculum. A study was 
conducted by Wilson and Cooney (2002) including mathematics and primary 
teachers. The results showed that while the mathematics teachers focused on content 
knowledge; elementary teachers focused on different views of instructional strategies 
that claimed to have more “constructivist-oriented” views (p.143). Another claim for 
this result may be, in the grades between 6 through 8, middle grades, there are 
national examinations held at the end of each year for the purpose of placement of 
students to high schools after the 8th grade. Therefore, mathematics teachers may 
focus more on the scope of these examinations during their instructions rather than 
the requirements of the new curriculum, so that they may feel less efficacious about 
the new curriculum than primary teachers.  

Results indicated that teachers with 11 to 15 years and 21 and more years of 
experience had significantly higher perceived utilization of special techniques than 
teachers possessing 10 or less years of experience. Moreover, teachers with 16-20 
years of experience possessed significantly higher perceived utilization of special 
techniques than teachers with 5 or less years of experience. The first five years of 
teaching profession is a period where teachers are in the beginning of experiencing 
the learning to teach and developing ideas about themselves as a teacher. This may be 
a reason of why less experienced teachers perceive themselves to utilize the specific 
techniques suggested in the new curriculum less frequently. Ghaith and Shaaban 
(1999), founding their measurement on Veenman’s (1984) list of teaching problems 
pointed out that teachers’ concerns about teaching decrease after 15 years of 
experience. Therefore, more experienced teachers were expected to integrate special 
techniques more frequently than their beginning or less experienced counterparts 
since they may have less concerns about other issues such as maintaining classroom 
management and discipline. Veenman (1984) also called the first-year experience of 
teachers as a “reality shock” because of the gap between the theory they learned and 
the practice they are engaged in.  

The study also revealed that, although found to be insignificant, teachers’ 
efficacy beliefs about the new curriculum increased when teaching experience 
increased (Table 4). 
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 Table 4. Efficacy Beliefs regarding the New Curriculum according to Teaching 
Experience 

Teaching Experience M SD 
5 years or less 3.64a .521 

6-10 3.70a .523 
11-15 3.77a .510 
16-20 3.71a .512 

21 or more years 3.75a .581 
a The possible highest score is 5; the possible lowest score is 1.  
 

The findings of other studies in this issue is somewhat varying. Wenner (2001), 
for instance, indicated in his study with pre-service and in-service teachers that 
experience leads to greater perceived efficacy of teachers. De Mesquita and Drake 
(1994), on the other hand, investigated primary school teachers’ attitudes and efficacy 
beliefs towards a nongraded state mandated educational reform and found that 
teachers possessed a lower-sense of efficacy when their experience increased. 
However, in the current study teachers’ sense of efficacy beliefs, was found to 
increase when teaching experience increased although this increase was not 
statistically significant.  

Moreover, gender did not reveal a significant difference in this study. 
However, descriptive results revealed that the sense of efficacy beliefs of male 
teachers was higher than females; despite not being statistically significant. On the 
contrary, Evans and Tribble (1986) found that females had higher teaching efficacy 
than males and Cheung (2006) found that female teachers had significantly higher 
general efficacy beliefs than male teachers by employing TSES. However, there have 
been some studies which indicate no relationship between gender and teacher 
efficacy (Hoy & Woolfolk, 1993; Ghaith & Shaaban, 1999). 

It should be noted that change is a process rather than an event. Therefore, the 
teachers’ adaptation process should not be underestimated. In-service trainings may 
aim to develop new sources for teachers’ efficacy beliefs compatible with the reform 
efforts especially for mathematics teachers. For the design of the in-service training 
sessions, collaboration between schools and universities may provide educational 
opportunity for teachers. Furthermore, the in-service training should be parallel to the 
approach of what is expected from teachers as conductors of the curriculum, so that 
the teachers may gain mastery experiences which may provide them more efficacious 
about the new approaches of the innovation.  In order to achieve the intended changes 
through implementation of the new curriculum, teachers’ practices and beliefs in the 
adaptation process should continue to be analyzed well. Moreover, qualitative studies 
may be conducted to support teachers’ self-report measures such as classroom 
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observations and interviews in order to gain in-depth data about teachers’ efficacy 
beliefs regarding the new curriculum and their adaptation processes to the new 
curriculum. 
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CURRICULUM MANAGEMENT IN THE CONTEXT OF A MATHEMATICS 
SUBJECT GROUP 
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This paper analyses how Simon, a mathematics teacher, manages the curriculum, 
uses the textbook to plan his practice and conducts students’ assessment. It also seeks 
to understand the relationship between such curriculum management and the col-
laborative work undertaken by the mathematics teachers’ subject group. This is a 
qualitative and interpretative case study, with data collection through participant 
observation, interviews and documents. The results show that the teacher manages 
the curriculum adjusting the expectations of different educational players (colleagues, 
students and parents) and his own expectations. They also show that curriculum 
management supported by the collaborative context generates tensions when a 
teacher makes decisions that diverge from those assumed collectively. 
Key-words: Curriculum management, mathematics, mathematics subject group. 
A key aspect of professional practice is the way the teacher manages the official cur-
riculum in order to meet the stated objectives, taking into account the students’ char-
acteristics and the conditions and resources of the school. In Portugal, curriculum 
management is particularly complex, giving the social tensions concerning mathe-
matics teaching, largely fuelled by the performance of the students in mathematics in 
national (GAVE, 2002) and international assessments (OCDE, 2004). Innovative 
teaching practices are increasingly challenged in many forums, particularly in the 
public media. This paper aims to describe and analyze how a teacher manages the 
official curriculum, including the strategies and resources that he uses and how he 
assesses his students’ learning. 

CURRICULUM MANAGEMENT IN MATHEMATICS 
Different levels of the curriculum may be distinguished. There is the prescribed (or 
formal) curriculum of official documents, the available curriculum mediated by 
school textbooks, the planned (or shaped) curriculum by the teacher, the curriculum 
in action put in place by the teacher in the classroom, the curriculum learned by the 
students, and the curriculum evaluated, for example, through national examinations 
(Gimeno, 1989; Stein, Remillard & Smith, 2007). 
Curriculum management refers to the actions of the teacher that contribute to the con-
struction of the curriculum in the classroom (Gimeno, 1989; Ponte, 2005). The focus 
of the management process is students’ learning, and it is according to such learning 
(at least in theory) that decisions are taken. Curriculum management has to do, essen-
tially, with the way the teacher interprets and shapes the curriculum, on two levels: a 
macro level, concerning the overall planning of teaching for an extended period, and 
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a micro level, corresponding to the teaching process in the classroom. The teacher 
makes decisions selecting tasks, strategies, and materials appropriate to the objectives 
and purposes of mathematics teaching, taking into account his/her students and work-
ing conditions. The teacher adjusts the curriculum as he/she evaluates and periodi-
cally reflects on his/her professional practices. 
As a curriculum manager, the teacher faces new challenges. The cultural diversity of 
the student population requires the implementation and management of a dynamic 
curriculum that seeks to meet the demands of modern society. At the same time, the 
role of the teacher is changing from a “deliverer” of knowledge, to that of a facilitator 
of learning (Brooks & Suydam, 1993; Ponte, 2005). When planning his/her teaching, 
the teacher selects the tasks to propose to the students. These may be all similar (usu-
ally, exercises) or diversified (including, for example, problems, investigations, pro-
jects, and modelling tasks, as well as exercises) (Ponte, 2005). Tasks may be framed 
in mathematical contexts or refer to other contexts. According to current curriculum 
documents (ME-DGIDC, 2007; NCTM, 2000), the tasks should help the student to 
develop a comprehensive view of the mathematics activity, increase their understand-
ing of mathematical processes, and help them to develop their mathematical reason-
ing. 
School textbooks are important resources for curriculum management. Their use 
changes according to different perspectives on their role in different contexts (Ponte, 
2005). In Portugal, the Relatório Matemática 2001 (APM, 1998) indicates that text-
books are the teaching material most used by teachers from grades 5 to 12 (82% of 
the teachers use them always or in most classes). Textbooks have a large tradition in 
the field of education and occupy a central role in the classroom, influencing the 
work of teachers, and helping in delimitating the knowledge students are supposed to 
learn (APM, 1998). In general, teachers use textbooks to organize their classroom 
activity and to select tasks to propose to students to do in the classroom or at home. 
In this way, textbooks are key mediators between the different dimensions of the cur-
riculum, particularly the curriculum taught and prescribed by the central government 
and the curriculum learned by students (Pires, 2005; Ponte, 2005). 
Students’ assessment is closely linked to curriculum management, playing a regula-
tory role in the teaching and learning process. Santos (2002), for example, suggests 
that assessment should be diversified and occur in formal and informal situations, 
with the active participation of students, contributing to their development and to the 
success of learning. The negotiation and establishment of an appropriate contract for 
assessment are important issues that can determine the success of students’ learning 
(Nunes, 2004). 
These challenges require teachers to work collaboratively, in order to frame and solve 
the many problems that arise in developing and adjusting the curriculum. It also re-
quires the ability to reflect on teaching practice and students’ learning, creating dy-
namics that promote their professional development and the school culture (Har-
greaves, 1998; Nunes & Ponte, 2008). For schools to make a significant development 
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in curriculum management and teaching practices, teachers’ active involvement in 
innovative projects, carried out collaboratively, is an essential condition (GTI, 2008). 

METHODOLOGY 
This study follows a qualitative approach (Erickson, 1986), with a case study design 
(Stake, 1994; Yin, 1989). The study involves a group of 14 mathematics teachers of a 
secondary school with 12-18 years old students. The mathematics subject group has 
an extensive experience of working collaboratively and in recent years has developed 
various projects at the school. Most of these projects emerged from the need felt by 
the teachers to improve their practice and to help students to overcome their difficul-
ties. During the school year 2007/08 the subject group developed the project “Inves-
tigations, proof and problem solving tasks in textbooks and in curriculum manage-
ment”, involving all classes from grades 7 to 12. This project aims to diversify tasks 
in the mathematics classroom, to encourage the students’ in learning mathematics. 
This study focuses on the group of teachers of the project and within that group, on 
three teachers: Ana, the coordinator of the subject group, Matilde, a new arrival to 
school and to the group, and Simon a teacher at the school for 28 years. These cases 
provide several contrasts that may enable understanding to the relationships between 
professional knowledge and curriculum management, as well as with collaboration 
and leadership at the school. In this article, we present the case of Simon and give 
special attention to his curriculum management, because of his professional experi-
ence and role in the group. 
Collection of data was done during the school year 2007/08 and includes participant 
observation (Jorgensen, 1989) of the group working sessions and two classes, with 
record of field notes in a research journal, two interviews with each of the three 
teachers selected for case studies, and collection of documents (Adler & Adler, 1994; 
Patton, 2002; Yin, 1989). According to the research plan, data analysis began simul-
taneously with data collection, to identify the need for further collection of data. The 
second level of data analysis involves the development of categories focused on pro-
fessional knowledge, curriculum management, collaboration and leadership that may 
provide an interpretation of the data. The third level of analysis seeks to explain the 
meaning of the data, to provide contributions to the understanding of the phenomenon 
under study (Merriam, 1988). 

SIMON: MANAGING THE CURRICULUM 
Simon is a teacher with 28 years of experience teaching mathematics classes from 
grades 7 to 12. Throughout his career he played several roles in his school such as 
deputy head teacher, in-service teacher education coordinator, department coordina-
tor, and project coordinator (of mathematics projects and of other school projects). 
He is an in-service teacher educator in professional development courses and belongs 
to several working groups in and outside his school. Because of his professional ex-
perience and the initiatives he promotes in the group, Simon is recognized by his col-
leagues as the leader of the group. This academic year he has only grade 12 classes. 
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Planning. At the beginning of the school year, Simon makes the annual plan together 
with his colleagues who are teaching the same grades. This planning begins with the 
group of teachers browsing the school textbook and, together, making changes in the 
annual planning of the previous year. When questions arise, particularly about the 
number of lessons to assign to each unit, the group uses the mathematics curriculum 
and its “roadmap” with the methodological guidelines for planning. Once the overall 
plan is made, he and his colleagues direct their attention for the planning of the first 
unit [Group Working Session (GWS), 11/Sept/07]. At this stage, from inside his text-
book, Simon hands several sheets, handwritten in pencil. In a table with just two col-
umns he registered an analysis of all the tasks of the textbook, in a uniform way: 

This is my “curriculum management.” These sheets are worth gold! I have done 
this for all the textbooks that I use. (…) The first approach is always the text-
book. I solve all exercises (…) This symbol [a ring], here around the number in-
dicates that the task is very important and I note those tasks that are more diffi-
cult [marked with an arrow] and those that do not interest, because they are 
poorly structured or have errors [marked with a cross]. They [the teachers from 
the group] always ask me for my sheets. [GWS, 11/Sept/07] 
They [the students] know that everything I have decided to do I have solved be-
fore. I also see other textbooks, especially when I am introducing new units. [In-
terview, 16/Oct/07] 

Simon seeks to be well prepared for his teaching. Therefore, he knows well the text-
book that he uses, reading the sections on the subject that he is going to teach and 
solving all the exercises. His individual working plan is based on his vision for teach-
ing mathematics. For him, the most important thing is that his students enjoy what 
they are doing and develop capacities that allow them to be autonomous and mathe-
matically competent: 

To learn, students have to like what they are doing, then what I like most is that 
they solve their own problems. First, I would like them to be able to read a prob-
lem and not turn their arms down, not discouraging, therefore grasp the problem. 
(…) Achieving that with my classes is to get weapons to grasp and solve the 
problems which arise. [Interview, 16/Oct/07] 

To achieve these goals, Simon diversifies both the tasks that he proposes to his stu-
dents and the strategies he uses to solve them. However, he begins by assuming that it 
is not always possible to manage the mathematics curriculum diversifying the situa-
tions proposed to students. The major obstacles are time, or lack of it, coupled with 
the need to meet the official curriculum, taking into account the external evaluation 
of students at the end of grade 12: 

What I have more in mind, but I do not do always, is diversity, both of tasks and 
resources. I think it makes the lessons more attractive. Difficult things, easy 
things, open [tasks], closed [tasks], some [done] in groups, other individual (…) 
[I use] several resources: calculators, computers, manipulatives... I think some-
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times I have to do more! Until grade 12 I do. In grade 12 I do too little, just the 
calculator with great strength. [Interview, 16/Oct/08] 

Tasks. In addition to the tasks suggested in the textbook, Simon selects other tasks to 
offer his students a variety of experiences to foster the different aspects of their 
mathematical competency. However, in grade 12, this is not always the case. It is 
perceptible that, at this grade level, he assigns an important role to problems that re-
quire using the calculator and to tasks that promote the development of written com-
munication in mathematics. In such work, he highly values the textbook: 

First the textbook, then the other things. (…) We have a grade 12 textbook that 
has so many proposals that we have difficulty in selecting things. (…) We have 
to give everything and then we have no time for anything else! (…) Unfortu-
nately, the textbook doesn’t have much open tasks, but (…) problem solving, it 
has a lot. And it also suggests the use of technology, a little bit the computer, the 
calculator a lot. (…) The worksheets we have done [Law of Laplace, Slope, 
Lighthouse] were things related to communication, a bit following last year’s 
project [project communication in mathematics]. [Interview, 8/Apr/2008] 

Simon believes that the selection of tasks is not an easy job, and through the discus-
sion that he develops with his colleagues who teach grade 12, he attempts to address 
their difficulties: “The collaborative work between colleagues can be a great help to 
feel more secure and confident on what we do and we developed in our classes and 
the materials we propose to our students” [Final reflection, 14/Jul/08]. 
Curriculum materials. The textbook is the curriculum material most often used by 
Simon when he is planning the work and assigns it a central role in the classroom. 
Therefore, he considers vital to choose a good textbook, highlighting as key elements 
in a textbook the nature and the diversity of the tasks. For other curriculum materials, 
he likes to diversify its use, but he acknowledges that in grade 12, because of the na-
tional examination, he just uses the calculator. However, he states that this is not al-
ways so: “I do not use the computer in grade 12 and I always use it in other grades” 
[Interview, 8/Apr/08]. 
Classroom work and assessment. Simon argues that the classroom work must be fo-
cused on the student. So, he seeks to promote since early the students’ autonomy: 

Another thing I do is also autonomy, and as the years go they [the students] are 
increasingly autonomous. (…) I guide them! I say: “Look, I think that you 
should do this or that!” After, each one follows his/her path! There are some that 
do everything, others who do very little and I am not concerned to control it. 
The other day in a classroom, (…) they had questions in some exercises but they 
were all in different exercises and it could not be a lesson for all at the same 
time, so they made a request: “Look, do this and this and this,” and I did it! [In-
terview, 8/Apr/08] 

When performing tasks constructed by the mathematics group, Simon uses different 
strategies in the classroom, according to its purpose. Usually, he demands that stu-
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dents work in the tasks in pairs or in small groups. In assessment tasks, students work 
individually and in two phases.  
Decisions about assessment provide an interesting episode concerning the relation-
ship of Simon and the group. In fact, the other grade 12 teachers felt that the students 
should do assessment tasks just in one phase. That is what Ana and Diogo indicate: 

Ana – I think that if the task is to assess the students’ learning then it has to be 
done individually. (...) I do not agree to give a second chance, because there are 
students with private tutoring and already know the task and many of them can 
provide ready-made answers.  
Simon - I think that they perform much better in a second stage. And I do not 
agree with you [Ana] that the reason is that they have external help and they al-
ready know the task. 
Diogo - I agree with Ana. In addition, if it counts for assessment, we have to do 
all in the same way, so that some [students] benefit and others do not. [GWS, 
20/Nov/07] 

However, Simon decided to use a different strategy. He chose to give a second 
chance to his students to improve their first response to the task, once corrected and 
commented. He did so because he strongly believes that this helps students to im-
prove their learning. As he mentions, “students learn from the mistakes they do and a 
second chance allows them to improve their performance” [Interview, 8/Apr/08]. 
That decision was discussed in the following working session, as Simon announced 
his decision and suggested the group to analyze and reflect on the performance of his 
students in both phases. There were some negative reactions, especially from Ana 
and Diogo who have disagreed with Simons’ decision [GWS, 4/Dec/08]. The issue 
was taken up later at meetings in which the group built tasks and discussed how to 
implement them in the classroom [GWS, 15/Jan/08; 19/Feb/08; 8/Apr/08, 6/May/08]. 
As a result, some other members of the group began to use Simon’s strategy. In par-
ticular, at the end of the study Diogo admitted that this strategy can help students im-
prove their learning, as he has verified with his own classes [GWS and Final reflec-
tion, 14/Jul/08]. 
The assessment of the students is one of the tasks that Simon acknowledges be the 
toughest for him. A major problem is the classification of the open tasks and its visi-
bility in the students’ final grade. With the collaboration of the subject group, he tried 
to overcome the difficulties, investing more in the construction and assessment of 
diversified tasks and testing different criteria for classification, starting from the crite-
ria used in the national examination. Also the review of the assessment criteria estab-
lished by the department of mathematics and the construction of a self-assessment 
grid helps to minimize this issue:  

I add under the formula, the four tests we had done so far, the three composi-
tions [from open tasks], participation in the classroom in the first and second 
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school period… In terms of knowledge and attitudes, and I gave a number. [In-
terview 2, 8/Apr/08] 

Simon believes that to make decisions concerning curriculum management and to 
adjust his practices, the information concerning the work that he develops with his 
students in class is more useful than the one he collects from the tests: 

The assessment that I do all the classes is much more useful. Because everyone 
thinks they know [what I’m talking about], but when I come to the conclusion 
that they do not know I have to come back to do it in a different way. [Interview 
2, 8/Apr/08] 

However, the external assessment has a crucial role in the teaching strategies of 
Simon. That is visible in how the students do independent work in the classroom, in 
the tasks that he proposes, the curriculum materials and assessment instruments he 
most often uses (textbook, calculator, and tests). He is very concerned with the qual-
ity of his students’ learning and their success, particularly in the mathematics’ na-
tional exam and access to higher education. He also notes that,  

We [the math teachers] are always together, to speak of what happened [in class], 
and what we are going to do. (...) The assessment instruments are always made 
[together] and they are always the same. There are no complaints from our 
group, from anyone: the school community and parents. (...) The school realizes 
that we [subject group] work very, very in group. [Interview, 16/Oct/07] 

Simon’s words suggest that he seeks to take into account the expectations of students 
and parents. In this sense he also builds with his colleagues the assessment tools that 
he uses in order to harmonize them with the views of the other teachers and to sup-
port the decisions about his students’ assessment. 
Work with the mathematics group. Simon says that the discussions that the group has 
done in the project working sessions have been very “interesting” for him. In particu-
lar, he stresses the construction of open tasks, the definition of criteria to assess and 
to reflect on the results of students: 

The construction of tasks with a group of proofs, problems and explorations and 
investigations and their implementation in the classroom, the discussions we had 
in the sessions, has always been very enriching, and the exchange of ideas and 
clarification of points were a highlight of this project. (...) Discussions on the 
grading of the students’ work on their achievements and to give them feedback 
were undoubtedly very important aspects for my learning. The contributions of 
all colleagues made me to reflect on my practice in these aspects, questioning 
what we did and discovering ideas and suggestions perfectly workable in prac-
tice in the future. [Final reflection, 14/Jul/08] 

The collaborative work developed in the group played an important role in the indi-
vidual work of Simon. His activity has also a major influence in the way the mathe-
matics group works, with a culture of collaboration that has been strengthened over 
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the years with the development of various school projects. This culture of collabora-
tion seems to have been fostered by the way almost all teachers of the group have 
been involved in the project by joining and participating with enthusiasm. They ap-
pear to think that these initiatives are essential to their growth as teachers. These ini-
tiatives seem to be the key to the way they work as a group and have contributed to 
their working culture, where exchange of ideas, experiences and materials are wel-
come.  

DISCUSSION AND CONCLUSION 
The curriculum management carried out by Simon at the macro level contains a col-
lective and an individual side. The collective side involves the annual planning and 
the construction of units and tasks. In this process, we can see that he is an important 
element, particularly in its preparation, solving all the tasks of the textbook and feed-
ing in this way the discussions of the group. Simon’s curriculum management at mi-
cro level is markedly individual. He seeks to promote his students autonomy in 
mathematics learning, encourages them to take responsibility in their own actions and 
to be independent thinkers. This is much in line with the innovative teaching de-
scribed by Boaler (1998). That is, mathematics education carried out in line with cur-
rent curriculum orientations is possible at school level, both in Portugal and England. 
His decisions have as a starting point, first, the school textbook. He seeks to under-
stand the proposals presented and selects tasks in order to diversify the learning situa-
tions (planed curriculum). In addition to the tasks of the textbook, he offers other 
tasks to his students constructed together with his colleagues, and uses them for as-
sessment. The information that he gets from his daily practice with his students helps 
him to regulate the teaching-learning process. The test is the instrument that he uses 
most. However, the formal assessment of students at the end of each term takes into 
account the information from students’ work in the open tasks and involves the stu-
dents’ active participation. Simon manages the curriculum on the context of the 
mathematics teachers’ group, but there is an individual mark that differs from the 
group. For example, the classroom strategies that he uses to perform the tasks in two 
phases differ from those initially supported by his colleagues. Also, we see that he 
tries to conduct the curriculum management dealing with the tension between differ-
ent expectations in teaching and assessment of pupils, parents and colleagues and his 
own personal views. On the one hand, he proposes tasks from the textbook and, on 
the other hand, he gives his students more open and contextualized tasks which re-
quire the use of technology. Simon manages the curriculum taking into account its 
various dimensions. His practice (curriculum in action) goes beyond teaching from 
the textbook (mediated curriculum), exploring open tasks that involves students in 
significant mathematics activity (Boaler, 1998). 
Second, his formal assessment practices essentially use the results of the students in 
tests and open tasks. However, to regulate his teaching practices he uses the informa-
tion that it collects from his daily work with students (Nunes, 2004; Santos, 2002). 
Simon accepts the challenge of keeping diversifying his assessing practices, despite 
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considering this to be one of the most difficult tasks of his work as a teacher. The ex-
perience of Simon, the various projects in which he participates and the collaborative 
work that he develops within the mathematics group of his school are key elements to 
help him to manage the curriculum in order to promote his students’ learning (Har-
greaves, 1998). Equally essential, seems to be his ability to address and solve issues 
of professional practice, reflecting in action, and about action (Schön, 1983). 
Finally, the various initiatives of the group, in particular, its projects, are a key to the 
sustainability of the culture of collaborative work (Nunes & Ponte, 2008). This dy-
namic and working context seem to motivate the involvement of the teachers in 
teaching and learning. In particular, such dynamic appears to support the professional 
development of Simon and his capacity to accept new challenges. There are situations 
that generate conflicts in the group, especially when most participants favour some 
decision and some individual practices diverges from that. One important conclusion 
that we draw from this analysis is that Simon, the natural leader of the group, nurtures 
his relationship with his colleagues using curriculum management as a focal activity. 
The professional practice of these teachers, supported by this working environment, 
shows that current curriculum orientations may be implemented not just at an indi-
vidual or small group level, but by a whole school mathematics subject group. From 
this study new issues emerge for future research, namely: How teacher’s practices 
and curriculum management influence students’ learning of mathematics? What con-
ditions are necessary at schools, and more widely in the social context, so that this 
kind of collective curriculum management takes place, very much in line with current 
curriculum orientations? 
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GESTURES AND STYLES OF COMMUNICATION:  
ARE THEY INTERTWINED? 

Chiara Andrà 
Department of mathematics – Turin University 

The resources used by mathematics teachers include gestures, drawings and extra-
linguistic modes of expressions, which can be analysed through a semiotic frame. 
Teacher’s words may go with his gestures, his written signs on the blackboard or 
slides projection on a screen. Depending on the emphasis given to one among these 
three possibilities, the styles of communication could be classified into three main 
trends, where the body of the speaker, the speech and the blackboard play different 
roles with respect to each tendency. Gestures and styles of communication seem to be 
intertwined, since giving importance to the body or the written signs leads to different 
communicative styles; conversely, the style of communication influences the type, the 
frequency and the role of gestures/written signs accompanying the speech. 
Key-words: teacher, gesture, communication, multimodality, semiotic bundle. 
INTRODUCTION 
This paper focuses on teacher’s use of gestures, drawings and extra-linguistic forms 
of expression when talking about mathematical subjects. It investigates whether it is 
possible to define a relation between teacher’s modes of using gestures and his style 
of communication. An answer is given trough a case study. Moreover, in the same 
case study possible effects on students’ learning process are shown. 
Different resources, spreading from words to gestures to ICT instruments, are 
employed by teachers in the class. Sometimes they become communicative tools, 
supporting students in their comprehension and learning process. A semiotic 
approach to teaching-learning processes in mathematics is useful to understand the 
personal appropriation of signs by persons within their social contexts (Arzarello, 
Paola, Robutti & Sabena, in print).  
At a more or less deep conscious level, any teacher formulates his communication 
strategy. An analysis of communication strategies chosen by teachers is useful to 
understand the way mathematical concepts are told to the students. Specifically, it can 
be interesting to focus on the objectives of the message (in the case of mathematical 
lessons they mainly concern giving information and knowledge), on the target to 
which the lesson is managed; and on the definition of messages. 
It can be fascinating to combine both semiotic and communication approaches, when 
examining the acquisition of knowledge by students. In this paper teachers’ way of 
communicating mathematical concepts is considered. How they use gestures, what 
gestures they make, and which tools support their lesson, is taken into account. 
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This paper is divided into five main parts, this Introduction and a conclusion. Section 
1 focuses on the semiotic bundle, introduced by Arzarello (2006), who adopts a 
Vygotskian approach and presents an enlarged notion of semiotic system, which 
reveals particularly helpful for framing all the semiotic resources found in the 
learning processes in mathematics. Section 2 is centred on communication strategies 
(Di Raco, 2000) adopted by teachers. Considering a mathematical lesson, common 
features and a classification based on styles of communication is presented. Section 3 
presents the methodology used in the case study. In Section 4 the analysis of some 
videos is sketched and the main traits of different styles of communication are 
modelled on both bases of semiotic bundle and of communication strategies. Section 
5 reports some considerations about the relation between teacher’s communicative 
choice and its impact on students’ feelings. The Conclusion closes the paper. 
THE SEMIOTIC CONTEXT OF SIGNS 
In a semiotic approach to mathematical teaching, the role of signs and the way they 
are adopted by individuals within their social context is central (Arzarello, Ferrara, 
Paola & Robutti, 2005). According to Peirce, a sign is anything that “stands to 
somebody for something in some respect or capacity” (Peirce, 1931-1958). Within 
this wide perspective, Arzarello (2006) has introduced the semiotic bundle, which 
allows studying gestures – and teaching-learning processes – in a multimodal 
approach. Recent discoveries in neuropsychology (Gallese & Lakoff, 2005) underline 
the embodied aspects of cognition and show that the brain’s sensory-motor system is 
multimodal rather than modular. Multimodality consists in interactions among the 
different registers within a unique integrated system, composed by different 
modalities: gestures, oral and written language, symbols, and so on (Arzarello & 
Edwards, 2005 and Robutti, 2005).  
An important example of semiotic bundle is given by the unity speech-gesture. 
McNeill claimed that gesture and spoken utterance should be regarded as different 
sides of a single underlying mental process (McNeill, 1992). Gesture and language 
constitute a semiotic bundle, made of two deeply intertwined semiotic sets. 
Researches on gestures have discovered some important relationships between the 
two, for example match and mismatch has been studied (Goldin-Meadow 2003). 
The term “gesture” includes a variety of behaviours that do not form a single 
category. According to McNeill, the term designates any spontaneous movement of 
the hands and harms that people perform when talking. Gestures are characterized by 
the following features (McNeill, 1992): they begin from a position of rest (the 
preparatory phase), move away from this position (the peak), and then return to rest 
(the recovery phase). 
McNeill (1992) identifies two types of gestures: the propositional gestures, which 
have a main pictorial component, and the non-propositional gestures, which are 
discourse gestures. The propositional gestures could be iconic gestures, if they bear a 
relation of resemblance to the semantic content of discourse; metaphoric gestures, 
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similar to iconic ones, but with the pictorial content presenting an abstract idea that 
has no physical form; deictic gestures, if they indicate objects, events or locations in 
the concrete world. Among the non-propositional gestures, McNeill distinguishes the 
beats (e.g. the hands move along with the rhythmical pulsation of speech, lending a 
temporal or emphatic structure to communication), and the cohesive gestures, that tie 
together thematically related but temporally separated parts of the discourse. 
Since recent findings in psychology show that gestures can contribute to creating 
ideas (Goldin-Meadow, 2003), investigating how gestures are used by the teacher can 
be useful. In fact, it has been shown that – when gestures accompany the discourse – 
the listener retains more information with respect to a situation in which no gestures 
are performed (Cutica & Bucciarelli, 2003).  
The types, the frequency and the use of gestures vary not only from teacher to 
teacher, but also depend on the choice of supporting tools like the blackboard or the 
slide projector, during the lesson (Andrà, in print). 
STRATEGIES OF COMMUNICATION 
Semiotic activities are classically defined as communicative actions utilizing signs. 
This involves both sign reception and comprehension via listening and reading, and 
sign production via speaking and writing. In researches of the Turin group (Robutti, 
2006), it has been investigated both the role of gestures and written signs in the 
mathematical discourses of students, and the role of teachers’ gestures with respect to 
the learning processes of students: how they are shared among students and how they 
influence their conceptualisation processes (Furinghetti & Paola, 2003).  
In order to analyze the phases that a teacher follows to prepare a lecture, the 
classification used by Di Raco (2000) is adopted. The first phase is the phase of 
knowing, which consists of defining theoretical objectives, choosing communication 
policy and investigating about expectancies and needs of the target to which he 
refers; in this phase, the teacher get conscious of the teaching-learning situation in 
which he is involved. 
The phase of designing consists in modifying theoretical objectives and adapting 
them to the target, creating events and communicative situations, selecting 
communication channels and identifying tools that can help the teacher to talk as 
more clearly as possible. In this phase the teacher chooses tools that can support him 
while teaching (the blackboard or the slide projector). 
The phase of planning consists in defining lengths of time, resources, structure and 
style of the communicative activity. 
The phase of implementing: it is the only part that the researcher can analyse when 
watching videos (as it is the case of this paper), and by this examination it is possible 
to know something about the previous phases. 
METHODOLOGY 
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The case study focuses on teacher’s use of gestures, drawings and extra-linguistic 
forms of expression when talking about mathematical subjects. Defining a relation 
between teacher’s modes of using gestures and his style of communication is the 
purpose. Only university lectures have been chosen for the analysis, in order to avoid 
any noise given by lack of discipline from students. 
In a first step, seven videos have been analysed: they concern university lessons on 
mathematical subjects and each one lasts about 30 minutes. They have been examined 
from both the semiotic context and the communicative strategies perspectives. 
Contributes from communication strategy researches supply a background for the 
semiotic analysis that is the core of this paper. The results of the analysis in the first 
step are reported in the next section. 
In a second step, six new lectures (speakers are labelled respectively F, G, H, I, L, M) 
had been analysed, following the classification defined in the first step. At the end of 
each lesson, a questionnaire was given to students, in order to have an immediate 
feedback on their feelings. The questionnaire was structured in four parts: the first 
one contains a series of couples of opposite adjectives describing the teacher’s 
attitude (the students and the teacher were asked to agree at a certain level to one 
between the two adjectives of each couple); in the second part an opinion about the 
rhythm of the lesson was requested; the third part was focused on students’ 
perception of understanding: how they take notes, whether or not they remember 
previous lessons and what was the subject of the lecture. In the last part, an opinion 
about teacher’s gestures was asked. A similar questionnaire was given to each 
speaker, in order to have the possibility of comparing the teacher’s intentions whit the 
student’s receptions. The number of students involved in answering the questionnaire 
is 178: 35 students in lecture F, 18 in G, 70 in H, 26 in I, 24 in L and 5 in M. 
GESTURES AND COMMUNICATION STYLES 
From a semiotic perspective, it is possible to distinguish four phases in each lecture. 
In fact, the semiotic unity speech-gesture evolves in time. Each phase corresponds to 
a particular relation between words and use of signs, gestures, drawings and so on. 
The “zero” phase consists of the first few minutes: the speaker ties with his audience. 
In this phase, either the speaker does not gesticulate, or his gestures have few 
relevance. The introductory phase is characterized by a great number of gestures: 
during this phase the teacher introduces the language that becomes shared between 
him and his audience. The strong relation between speech and gestures is evident. 
The main phase is more extended temporally than the previous one, but is 
characterized by a decreasing number of signs. In fact, the teacher has already 
introduced the main concepts he needs and the words he uses evoke themselves the 
ones – combined with signs – he has utilized in the previous phase. Some signs, 
utilized in the introductory period, are utilized again. The concluding phase varies 
from teacher to teacher, but a common feature is that an increasing frequency of signs 
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is observed. A possible explanation could be that in this phase there is the need of 
fixing the concepts firstly introduced and then explained in the previous phases. 
On the side of communication strategies, all videos have in common some main 
features. In fact, the objectives are mostly cognitive and didactical ones (transmitting 
knowledge is at the core of the activity); the professor speaks neither to equals nor to 
a generic public: the target is a group of professionals with a lower level of 
knowledge; messages he communicates are mathematical contents; and channels of 
communication consist always in front lessons. 
There are some differences, from speaker to speaker, in communication policies and 
in tools accompanying talks (slides projection, blackboard...). Focusing on the 
semiotic bundle speech-gesture leads to consider also such supports the teacher may 
use. The role of such instruments is crucial. The choice of the communication policy 
influences not only the quantity and the quality of signs but also the preference for 
certain tools accompanying talk, instead of other ones. 
Referring to these choices, in analysed videos it is possible to distinguish three 
distinct trends. When the communication takes place mainly through the body of the 
speaker, iconic and metaphoric gestures are predominant, because it is the same body 
of the teacher that talks with the audience. In the speech-gesture unity, the second 
component has a central role. The use of the blackboard or slide projection is limited 
or it is absent. Among non-propositional gestures, beats are numerous. In the “zero” 
phase the teacher does not make signs nor gestures. The introductory phase is 
characterized by a great number of iconic and metaphoric gestures, and some signs 
are pictured on the blackboard. The strong relation between words and gestures is 
clear and it reveals its potential power. Gestures used in this phase are repeated in the 
subsequent phase. The speaker is introducing the lecture and the concepts he is 
talking about will return during his speech in the next phase. He will broaden these 
concepts, and gestures utilized at this time would be repeated, going with words as an 
inseparable unity. During the main phase the creation of iconic and metaphoric 
gestures falls off, while the number of beats holds steady. Some iconic and 
metaphoric gestures of the previous phase are utilized. At times cohesive signs are 
used, for example to connect what the teacher is telling to what had been written on 
the blackboard. Signs written on the blackboard are not erased and accompany the 
whole speech. Written signs enrich the semiotic bundle made of words and gestures. 
In the last phase gestures utilized during the introductory one get back. 
In the second trend observed in those videos, the communication takes place mainly 
through the blackboard, i.e. trough written signs that are contemporary of speech. 
The unity speech-written sign is central in the semiotic bundle, and gestures serve to 
enrich it. Deictic and cohesive gestures are dominant. In the “zero” phase the 
blackboard is already at the centre of attention, because the speaker is writing on it or 
because he just points it (e.g. no sign has already been made, but the speaker 
indicates, while he is introducing concepts, the point where he will start to write few 
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minutes later). The introductory phase is characterized by the use of the blackboard. 
Cohesive and deictic gestures as well as beats are frequent. At the beginning of the 
central phase the blackboard is erased. It is continuously utilized and it is erased 
many times. In the final phase the blackboard is employed in a manner that is, in 
some way, symmetric with respect to the introductory phase. 
In the last tendency identified, the communication happens substantially trough the 
projection of slides. In this case the signs produced by the speaker are very limited in 
number. Iconic and metaphoric gestures are absent. Beats are slightly incisive. It is 
hard to distinguish the phases shown for the previous trends. The semiotic bundle is 
made mainly of words and of signs projected on the screen.  
The reader is referred to Andrà (in print) for an exhaustive analysis of those seven 
videos. 
IMPACT ON STUDENTS 
It has been shown that it is possible to piece together theoretical aspects belonging to 
the semiotic context and to strategies of communication. The result of this mix is a 
framework in which one can analyse a didactical activity such as a lecture from a 
more complex point of view. Four different phases in the teacher’s speech have been 
distinguished. These phases are characterized by aspects referring to both gesture 
studies and to communication techniques. Different styles of communication involve 
different uses of signs, in quality and in quantity. And how a speaker uses his body 
rather than other didactical tools such as the blackboard determines different 
strategies for the communication of mathematical concepts.  
The question of interest is now about the effect of each strategy on students’ feeling. 
Till now, the semiotic analysis of gestures has focused only on the teacher. The 
teacher, however, communicates to students. Students are listening to him, they are 
learning the concepts he teaches. Following Vygotsky (1986), how do the choices he 
has made influence the way students internalize what he has said? 
According with the analysis from the six new lectures and the questionnaire, two 
professors (F and G) followed the first communication strategy: their body plays a 
central role when they speak. I, L and M followed the second communication 
strategy: the blackboard was the main tool to teach. Speaker H used slide projections 
in conducting her lesson. In tables 1, 2 and 3 the main trends in students’ answers are 
reported. When the proportion of students choosing a certain response is lower than 
¼, it is not reported, since it has revealed as little significant. 
In table 1 the six couples of opposite adjectives describing the teacher’s attitude are 
shown. For each couple, the major trend is indicated for each teacher’s style (the 
students’ proportion of the main trend is given). Looking at table 1, when in the unity 
speech-gesture the second component (i.e. the body) prevails, students’ perception is 
mainly in involvement. Students feel them near to the teacher’s world. If the 
blackboard plays a central role, this involvement is a little lost and it is not perceived 
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when the blackboard is replaced by the slide projections. In this last case, students’ 
perception of conciseness and of a schematic presentation increases with respect to 
the other two cases. 

 F 
(body) 

G 
(body) 

H 
(slides) 

I 
(blackb.) 

L 
(blackb.) 

M 
(blackb.)

Interesting 
Boring 

80% appealing 60% quite 
boring 60% appealing 

Involving 
Detaching 

70% involving 60% detaching 50% involving 

Concise 
Lengthy 

> 50% lengthy 60% concise 50% quite lengthy 

Schematic 
Convoluted 

>50% quite convoluted 80% schematic 50% quite convoluted 

Clear 
Confused 

60% sufficiently clear
50% 
clear 

60% in the middle 

Passionate 
Cool 

80% passionate 70% quite cool 50% passionate 

Table 1: Main trends (percentages) in judging teachers’ attitude are compared 

The opinion on the rhythm of the lesson varies from one strategy to another. How 
students perceive the speed of the lesson may reveal how quickly they interiorize 
concepts explained. If the rhythm is suitable or slow for a student, probably he finds 
little difficulty in understanding what the teacher is saying. 

 F 
(body) 

G 
(body) 

H 
(slides) 

I 
(blackb.)

L 
(blackb.) 

M 
(blackb.)

Teacher’s 
rhythm 

45% suitable 
45% quite fast 

25% slow 
25% suitable 

35% fast 

30% slow 
30% suitable 

30% fast 

Table 2: Main trends (percentages) in judging teachers’ rhythm are compared 

Table 3 reports the main trends in students’ perception of understanding. The body-
style had lead to a broaden spread of key-concepts perception. In the slide case, on 
the contrary, the key-concept is definitively perceived by a larger percentage of 
students. A possible interpretation is that grasping mathematical knowledge seems to 
be easier when slide projections are employed, rather than when the teacher speaks 
with no support like this. 
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 F 
(body)

G 
(body) 

H 
(slides) 

I 
(blackb.)

L 
(blackb.) 

M 
(blackb.)

Notes? 100% often 50% only displayed 60% often 

Previous 
lessons? 70% remember 

30% don’t remember 
30% remember 

30% know where in the 
program this lecture is

50% remember 
20% know at what point in the 

program this lecture is 

The subject 
of this 

lecture? 

50% skin-deep 
concepts 

70% quite good 
understanding 

30% quite deep 
40% superficial 

Table 3: Taking notes, remembering previous lessons and understanding the analysed 
lecture are shown by comparing the main trends 

Finally, an opinion on teacher’s gestures was asked. Students had to indicate whether 
the teacher had made signs during his lesson and whether these gestures were 
bothersome. The purpose was of knowing students’ perception of gestures and words 
as a unitary entity: if students did not notice teachers acts, movements or signs, one 
can hypothesize that gestures are felt as intertwined with the speech. 
In the body-centred case, iconic and metaphoric gestures are heavily utilized, but a 
percentage of 20% of students had never noted them, an analogous percentage said 
that the teacher wrote on the blackboard mostly and only a half of students realized 
that the speaker made gestures, and they were not bothersome. 
In the blackboard-centred case, only 5% of students said that the teacher wrote mostly 
on the blackboard, 40% said that he did not make signs or that it had never been 
noticed and 60% that the speaker gesticulated mainly. 
In the slide-centred case, 45% of students said that the teacher gesticulated but it was 
not bothersome, 40% said that they had never noticed it and 15% that the speaker did 
not make signs. 
It seems that the main tool chosen by the professor in communicating has not been 
noticed: students’ attention is driven on the other supports (on the blackboard in the 
body-centred lessons, or the body in the blackboard-centred ones). One can suppose 
that the main tool (the body, the blackboard and the slides respectively) has been 
perceived by the students as an underlying entity, which forms a semiotic unit with 
the speech. Conversely, students noted that the teacher has been using different tools, 
those tools he did not concentrate on. 
CONCLUSION 
Both semiotic standpoint and researches on communicative strategies can help to 
frame teacher’s way to conduct his lesson. It has been shown that types, frequency 
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and the use of gestures are closely related to the style of communication chosen by 
the speaker. The impact of each strategy on students learning process has been 
analysed from four distinct perspectives: how the teacher’s attitude has been 
perceived by students, how the rhythm of the lesson has been felt, what level of 
perception of understanding students had and how teacher’s gestures had been 
noticed. 
Students seem to be mostly involved in the case the professor used mainly his body 
when speaking. When the blackboard plays a central role, a little lost of such 
involvement has been observed and, when the blackboard is replaced by the slide 
projections, it has not significantly perceived. In the slides case, conciseness and 
precision have been more perceived, rather than in the other two cases. 
When the teacher used his body to communicate, students often take notes and are 
able to remember the previous lecture. When the slides were utilized, the notes taken 
are less, because they wrote only fundamental concepts, but a greater percentage of 
students was able to indicate in which part of the program the lesson was located. 
If the blackboard is heavily used, further investigation is needed. It is not clear 
neither if students remember the subject of the previous lesson, nor how they take 
notes. Their level of understanding is not evident. A possible interpretation of this 
fact is that the use of the blackboard assumes all the students be able to capture the 
concepts at the same speed, namely the speed of the teacher’s writing. 
As a final consideration, it has to be pointed out that students reversed the rule 
between the main and the accessory tools chosen by the teacher. For example, they 
had said that teacher F mainly wrote on the blackboard while he had primarily used 
his body, but whit a regular pacing on the blackboard: in the introductory phase he 
wrote the concepts he recalled at the end of the lecture, without erasing them. The 
main tool is perceived as integrated with the speech. The rhythm of the lecture is 
beaten by the use of this tool (e.g. the body). Students noticed a change in the rhythm 
(associated to a change in the tool used, for example from gestures to the blackboard), 
rather than the smooth use of the main tool. Accessory tools became central in their 
perception, since they corresponded to a change in the rhythm of the lecture. 
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TEACHERS’ SUBJECT KNOWLEDGE: THE NUMBER LINE 
REPRESENTATION 

Maria Doritou         Eddie Gray 
     University of Nicosia University of Warwick 

    Cyprus               United Kingdom 
This paper considers the perceptions that trainee and experienced teachers have of 
the number line. Grounded within the theoretical perspective highlighted by Herbst 
(1997) the paper examines the interpretations that ‘teachers’ place on a core 
classroom representation advocated for teaching the number system in English 
schools (DfEE, 1999; 2006). The outcome suggests that primary school teachers have 
conceptions of the number line that do not portray conceptual understanding of its 
abstract nature as a representation of the number system. Descriptive characteristics 
of visual models, ambiguity and an emphasis on use overshadow the deeper 
understanding that would lead to the realisation of the potential as a valuable 
metaphor.             
Key-words: Number Line, Teachers, Conception, Interpretation, Ambiguity. 

INTRODUCTION 
This paper brings to surface teachers’ knowledge about the number line 
representation. A representation used extensively within English mathematics 
classrooms and that appears frequently within curriculum documentation – the 
National Numeracy Strategy (DfEE, 1999; 2006) and the National Curriculum for 
Mathematics (DES, 1991). Within these two documents, there is no explicit reference 
to the conceptual knowledge associated with the number line’s form and use, despite 
the fact that this representation is identified as a “key classroom resource”. The 
number line appears not only as an alternative version of the number track, but it also 
is frequently fragmented to emphasise particular features of the number system such 
as whole number and fraction. The difference between a number track and a number 
line lays both in the perceptual and the conceptual sense identified by Skemp:   

The number track is physical, though we may represent it by a diagram. The number line 
is conceptual – it is a mental object, though we often use diagrams to help us think about 
it. The number track is finite, whereas the number line is infinite. … On the number 
track, numbers are initially represented by the number of spaces filled, with one unit 
object to a space. … On the number line, numbers are represented by points, not spaces; 
… The concept of a unit interval thus replaces that of a unit object.  
 (Skemp, 1989, pp. 139-141) 

Using evidence drawn from the way in which practicing teachers and teacher trainees 
perceive and talk about the number line, this paper indicates that knowledge based on 
the perceptual characteristics of the number line together with an ambiguous use of 
the term number line with that of the number track, express an incomplete and 
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compartmentalised understanding of the conceptions associated with a representation 
which is used on a frequent basis in their primary school practice.  

THEORETICAL FRAMEWORK 
The association between number (real number) and line has been evident since 
Babylonian times (Wilder, 1968). The Greeks intuitively conceived real numbers as 
corresponding to linear magnitudes. The Greek idea of “magnitude”, which is 
substituting magnitude for number, implied that one may think of “numbers as 
measured off on a line” (Bourbaki, 1984, p. 121). The number line is, therefore, an 
abstraction of a representation strongly associated with the notion of a measure 
instrument since continuity underscores it. Starting from the Euclidean line, a “sense 
of continuity” can be created for and by the individual and the result be used as a 
number line to represent natural numbers. 
Herbst (1997) concurs that the number line is a metaphor of the number system and 
in order to form a number line: 

one marks a point 0 and chooses a segment u as a unit. The segment is translated 
consecutively from 0. To each point of division one matches sequentially a natural 
number.  (Herbst, 1997, p. 36) 

All kinds of numbers can be represented on it. If a series of different number lines 
each introducing different numbers is built, then the number line could be in one-to-
one correspondence between numerical statements and number-line figures. Growing 
sophistication with its formation supports representation of a number line containing 
natural numbers, followed by number lines illustrating the positive rationals, the 
integers, the negative rationals and finally one containing all numbers — the real 
numbers number line, which would include all numbers. It is these features that 
would appear to suggest the use of the number line as a pedagogical tool whilst the 
“dense” quality of the number line enabled Herbst to write about what he calls the 
“number line metaphor” and the “intuitive completeness” (Herbst, 1997; p.40) of the 
number line, evolving from plane geometry. 
Such features are relevant in the context of teachers’ subject knowledge and 
awareness of conceptual issues associated with understanding the nature of the 
number line. Shulman (1986) defines subject matter (content) knowledge as “the 
amount and organisation of knowledge per se in the mind of the teacher” (p. 9) and 
distinguishes between the aspects of knowing “that” and knowing “why”. Aubrey 
(1994) suggests that every teacher has different subject knowledge and personal 
beliefs about teaching and learning, which are factors affecting their work in 
classroom; and in order for teaching to be effective, conceptual understanding of 
knowledge is essential. It is suggested, therefore, that in the context of the number 
line, teachers would be effective if they conceptualized the representation as a 
“metaphor” of the number system. 
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Ball (1990) argues that subject matter knowledge for teaching not only entails 
‘substantive knowledge of mathematics’ – specific concepts and procedures – but also 
‘knowledge about mathematics’ – mathematics as a field. Examining what teacher 
trainees understood about division with fractions as they entered formal teacher 
education, she focusing on what they have learned as students and what they need to 
know as teachers. She concluded that the students’ had narrow understanding of 
division that was compartmentalized and based on rules. This was a view supported 
by Ball, Hill & Bass (2005) who, as the result of their attempt to measure teachers’ 
mathematical content knowledge (an amalgam of common content knowledge and 
specialized knowledge) for teaching, concluded that teachers in general lack strong 
mathematical understanding and skill.  
This paper aims to present one aspect of primary school teachers understanding of the 
number line as identified by their conceptions of what the number line is. The insight 
may provide some indication of their potential effectiveness. 
METHOD 
The results presented in this paper form part of a broader study carried out during 
2003 and 2004 (Doritou, 2006) that, given the explicit recommendations regarding 
the use of the number line within curriculum material, investigated the relationship 
between teacher’s presentation and children’s understanding of the number line. The 
study is a case study of an English primary school that follows guidance within the 
National Numeracy Strategy (DfEE, 1999). The issues addressed the primary school 
teachers’ perception and understanding of the number line. This paper address one 
aspect of these issues but it draws its data from two samples that are considered to be 
related and complementary: (a) teacher trainees and (b) practicing teachers.  
As part of an examination of their understanding and perception of the number line 
the full final year cohort of BA(Ed) students within the Education Department of a 
large Midland University were invited, through a questionnaire, to “Define a number 
line”. The response to this question forms part of the focus of this paper. The 69 
teacher trainees in the sample, had had the benefit of a four year course associated 
with the content and pedagogy of primary school (children aged 5-11) mathematics, 
were fully conversant with the contents of the National Numeracy Strategy, had 
experience teaching it within school and been provided core lectures associated with 
the number line. The respondents were followed a mixture of subjects, such as 
English, art, music and a third of them followed mathematics and science. 
The full-time teachers’ sample (also referred to as practicing teachers) contained 
teachers who taught mathematics within each of the year groups 1 to 6 (median ages 
5.5 to 10.5). Through lesson observation and informal interviews on a one-to-one 
basis the teachers’ perspective of the number line at a personal level and the way they 
presented it to the children as a pedagogical tool was investigated. Placing the 
trainees conceptions of the number line within a perspective associated with 
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practising teachers, it is hypothesised a valuable insight may be gained into what 
primary school teachers think a number line is.  
RESULTS 
Teacher Trainees’ Conceptions of the Number Line 
When the participating Teacher Trainees (TT) were asked as part of a questionnaire 
to define a number line, only one student provided a definition that implied that the 
number line was infinite and contained all numbers: 

A line that contains all rationals and irrational numbers. It is an infinite line.  (TT4) 

One other suggested it was: 
A continuous line of all of the numbers within our number system.   (TT1) 

Two others provided definitions that evoked either the notion of infinity but with no 
further explanation, one indicated that the number line was limited to rational 
numbers, whilst one other defined a number line with a response that may be 
interpreted as an association with magnitude: 

A sequence of numbers arranged on a line which has an infinite number of divisions.  
            (TT23) 

A line of numbers on which any number can be placed.    (TT48) 

A line where you may place all the rationals at some point on the line.  (TT32) 

Representation of value according to how far the number is along the line.  (TT43) 

None of the above students gave any explicit reference to the notion of a repeated 
unit, which could be partitioned, although partitioning may be implied from the 
statement of TT4. However, almost one quarter of the students (16/69) did make 
reference to some form of equal spacing associated with the line, although there was 
some evidence of little formality about the way they articulated this underlying 
feature: 

A line which is separated equally into different portions.     (TT2) 

A straight line with equal distances marked.      (TT7) 

A piece of apparatus with equal divisions marked.      (TT10) 

13 of these sixteen students associated the notions of equal spacing with numbers 
although in two instances the students referred to digits: 

A line with digits equally spaced along it.      (TT47) 

A line with numbers attached at equal intervals.      (TT66) 

A line which numbers are spaced evenly across it in a specified pattern.   (TT17) 

An equally segmented line, each segment numbered in ascending order.   (TT20) 
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Although it is not certain, TT20’s definition suggests that she is thinking about a 
number line that only has positive numbers. This type of definition was relatively 
common: 

Numbers placed at identical intervals marked on a line in ascending order.  (TT15)  

and indeed, no student made explicit reference to the notion that a number line could 
contain negative numbers. 
TT17’s reference to pattern was, together with notions of order and sequence, a 
feature of the number line identified by 42% of the respondents: 

A string of numbers in a pattern.       (TT27) 

Numbers in a correct order.        (TT9) 

A sequence of numbers in a row.       (TT22) 

A sequence of numbers ordered from left to right.     (TT24) 

A line in which there is a number sequence reaching from lowest to highest number.  
            (TT11) 

An ordered set of numbers in sequence, horizontal.      (TT6) 

Here again we see no explicit reference to negative numbers. The implications in two 
of these quotes (TT24 and TT11) suggest that the number line only contains whole 
numbers, an issue confirmed by the comments of some trainees:  

A line with number patterns on it — or from zero to a number.    (TT12) 

Numbers that have been arranged in some form of sequence mainly from 0 to 10. (TT35) 

A horizontal line with a series of digits on it that have a pattern: one to ten; ten to one 
hundred.            (TT42) 

The above comments also give the sense that the number line is finite and none of 
these particular trainees made any reference to the notion of partitioning the intervals. 
However, one student did provide an indication that partitioning was associated with 
the line by using the word “divided”:   

A horizontal line divided into ten equal sections allowing it to be divided into fractions or 
quantities.            (TT64) 

Interestingly, in addition to these students who explicitly mentioned order, pattern or 
sequence, six others introduced the word “chronological” to define the number line: 

A chronological line of numbers.        (TT37) 

A line with marked number intervals in chronological order.    (TT56) 

A horizontal line where positive numbers ascend in some sort of chronological order. 
            (TT61) 
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We can see from the definitions provided by the trainees identified through the above 
examples, that reference to the underlying qualities of Herbst’s (1997) definition — 
the consecutive translation of a segment U as a unit from zero, the partitioning of U 
in an infinite number of ways — is extremely limited. We note that only three 
students referred to infinity, but only one of these implied that through partitioning all 
numbers could be represented. However, though there was no reference to the notion 
of “consecutive partition”, almost 25% of the teacher trainees indicated that a number 
line possessed equal divisions but these definitions appear to be founded upon 
partitioning rather than the continued replication of a defined unit.   
Herbst further indicated that a number line could be formed by choosing a unit, 
repeating it from zero and then attaching to the end of each repeated unit a natural 
number. Though just over 80% of the teacher trainees associated the notion of the 
number line with a number or numbers, the majority of the remainder focussed on 
defining the number line as a tool (see below) but, as TT6 (above) indicated, there 
was also some evidence that the reference to numbers was not linked to the notion of 
line. 
The overall impression left from the trainees’ definitions of the number line was that 
they did not define it, but instead indicated how it may be seen. The sense was that 
they were describing a specific number line but often this specificity was limited to 
the more obvious perceptual characteristics rather than conceptual aspects of the line. 
In doing this, essential features were often omitted. Only in the first six instances 
quoted above do we see the trainees’ explanations rise above specificity to give more 
sophisticated responses.  
An additional feature of the trainees’ definition of the number line was its 
identification as a tool. Almost 10% of the trainees suggested that the defining feature 
of the number line was either its use in calculation or in solving mathematical 
problems:  

A continuous line in which numbers can be placed and used to aid calculations.  (TT3) 

A piece of apparatus with equal divisions which children use to help them count.  
            (TT10) 

A line with numbers on representing intervals, aid to solving mathematical problems. 

             (TT34) 

or associated it with the notions of counting:  
A device to aid learning, involving counting on and counting back.   (TT39) 

A method used to count on or back horizontally.      (TT62) 

To aid children when counting up or down.       (TT65) 

In one instance, the identified process was left open to interpretation: 
A way of roughly finding out any numbers between any two given extremes at each end. 

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1739



  
             (TT52) 

Although the above responses emphasise the nature of the number line as a “helping 
tool” – used as a metaphor to support thinking – and although Herbst (1997) 
suggested that its dense nature meets such a requirement, there seems little indication 
from these particular responses that other qualities could be associated with the 
number line. Additionally, the responses suggest that those students who emphasise 
use are drawing upon experience, either as learner or as teacher and, it is 
hypothesised, were drawing upon episodes from within that experience. 
Practicing Teachers’ Perception of the Number Line 
When the practicing teachers were each informally interviewed about their 
conceptions of the number line, one issue that was raised was whether or not they 
thought that the number line was a good representation of the number system. 
3 of the 5 teachers identified the number line as a good representation of the number 
system because it carried the very ideas that 42% of the trainee teachers expressed 
with their definitions of the line. That is an emphasis on order and sequence: 

Yes! I suppose it is because it is natural order in a sequence, isn’t it?  (Y2 Teacher) 

It’s a good representation for them to be actually able to see it! It has it (numbers) all in 
order and they can see it!        (Y5 Teacher) 

The fact that children could ‘see’ the number line was one of the reasons why a Year 
4 teacher (teaching children with a median age of 8.5) thought the number line was a 
good representation of the number system 

Because it’s visual and children like visual things, and they can come up and interact 
with it.           (Y4 
Teacher) 

Having something to see enabled some of the teachers to be quite specific in talking 
about the number line although there was evidence that this could lead to the sort of 
confusion identified by Skemp (1989), particularly if we recognise the hundred 
square as a segmented number track:  

I have got the number line, which is really useful, but because it’s so long, it is quite 
hard… It’s at least two metres (a number line on laminated card under the board). I do 
refer to it quite a lot, but I do use the number square as well. I do try and encourage the 
children that it’s the same.        (Y2 Teacher) 

This similarity between the hundred square and the number line was also volunteered 
by the Year 3 teacher. He indicated that the number line is a good representation of 
the number system when used to develop subtraction, but not so easy as the hundred 
square which is 
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easier than sometimes using the number line. Really, they’re sort of similar things, but 
this goes zero to one hundred, this goes from one to one hundred, so it’s the same 
really…           (Y3 Teacher) 

Other evidence associated with seeing and with accessibility came from the Year 1 
teacher, who when asked if there was a difference between a number line and a ruler, 
replied: 

I just use the ruler, because it’s a good individual tool and easily accessible. So if they 
want to use the number line it’s immediately accessible.    (Y1 Teacher) 

Within her teaching of the classroom lessons, this teacher and the Year 2 teacher both 
drew an analogy between the number line and the ruler:  

A ruler is a bit like a number line.       (Y2 Teacher) 

The number line here is like a ruler. Use a ruler1 as a number line to help you.  
           (Y1 Teacher) 

However, the Year 2 teacher preferred to use the hundred square  
I do use the hundred square as well in the classroom, coz that’s easier to display to be 
honest.          (Y2 Teacher) 

One of the teachers explicitly thought the number line was a good representation of 
the number system, because of the arithmetic that could be done with it: 

Yes! Very good! Use it to bridge through multiples of ten. Partition the numbers and then 
the tens and then the units, if they’re doing addition. And if you’re working out 
subtraction.          (Y3 Teacher) 

The teacher teaching Year 6 among other classes was the only teacher who gave a 
response that made any reference to the fact that the number line (although finite in 
her terms) was a representation of the number system: 

… I think Year 6 children are quite good to see that the number line represents quarters, 
halves, numbers up to a thousand or even negative numbers. 

This teacher’s response to the question “Is the number line a good representation of 
the number system?” bore remarkable similarities to the trainee teachers’ conceptions 
of the number line. Two of the five teachers referred to pattern, order and sequence. 
There was reference to the number line as tool, but only one reference to the variety 
of numbers that could be represented on it. However, whilst all of the teachers could 
talk about what it may look like or what it may be associated with, none provided a 
sense of its continuity and density. Those teachers who referred to the hundred square 
or to the ruler did not make a distinction between the abstract nature of the number 

                                           
1 The ruler the teacher referred to and given out to the children was one that represented a number track. It was a 
wooden 30cm stick divided in squares, with the first coloured yellow, the next green, the next yellow and so on and so 
forth. Within each box a natural number was written, starting from 1. 
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line representing continuity and the more concrete nature of the alternatives that 
represented the discrete nature of number.  

DISCUSSION 
In their consideration of effective teachers Askew, Brown, Rhodes, Wiliam & 
Johnson (1997) suggest that effective teachers can be distinguished from less 
effective teachers in terms of increased fluency in discussing conceptual connections 
in the context of classroom practice whilst less effective teachers may express a more 
procedural rather than conceptual personal subject knowledge. The former, generally 
identified as “connectionist”, appeared to value both pupils’ methods and teaching 
strategies, in an attempt establish links with mathematical ideas. The latter, those 
associated with the notion of “transmission”, appeared to prioritise teaching over 
learning and considered mathematics to be a collection of routines and procedures. 
The data presented in this paper would suggest that connectionist values associated 
with the number line seldom featured in the responses of either trainees or 
practicising teachers. Indeed, most of the English curriculum material presents the 
number line as a concrete model supporting actions with little if any reference to its 
strength as an abstract representation of the number system. Such a focus may be 
more strongly associated with, and possibly even instrumental in, promoting beliefs 
that are associated with transmission. Though the classroom teachers in this survey 
applauded the pedagogical benefit of the number line as a tool, neither they nor the 
trainee teachers provided little explicit or implied indication that this benefit had a 
formality based upon the repetition of a unit interval and the partition of this interval. 
Instead we see that perceptual features, frequently implicitly associated with episodes 
and with a particular “line”, dominated the definitions and additional comments 
obtained, though, particularly in the case of the teachers, these were frequently 
tempered by representational ambiguity and supported by counting episodes 
associated with moving backwards and forwards.  
Gray and Doritou (2008) suggest that such conceptions lead to similar conceptions 
amongst children and though these do not appear to mitigate against the success of 
younger children in elementary arithmetic they eventually led to confusion amongst 
the older children. Specific interpretations of the features and use of a number line 
fail to provide children with a platform from which they may recognise its potential 
to contribute to the development of a global perspective on the number system. They 
also fail to contribute towards procedural efficiency as number size increased.  
Bright, Behr, Post & Wachsmuth (1988) suggest that the number line is currently an 
extensively used model in the teaching of mathematics in elementary school, and 
whilst generally effective is also the source of difficulty both in instruction and its use 
by children. This paper provides one explanation for this difficulty – a very limited 
conceptual understanding of the representation by the teachers who use it. It was 
more general for the number line to be conceptualised as a series of discrete 
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representations of particular elements of the number system. The notion that it 
evolved from a unit that could be repeated and partitioned was less important than the 
notion that actions could be carrying out with it. This emphasis essentially associated 
with transmission caused ambiguity in the way teachers referred to a number line and, 
it is hypothesised, a consequent limited understanding of a sophisticated 
representation by the children who are faced with it.  
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COMMUNICATION AS SOCIAL INTERACTION 
PRIMARY SCHOOL TEACHER PRACTICES 

António Guerreiro 
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Abstract. This article reports the reflections of a primary school teacher on her 
communication practices in the classroom and the interaction between the 
students. It is part of a large research which intends to study the evolution of 
collaborative work among three teachers and the first co-author of this article, 
with regard to the knowledge of and development of processes of mathematical 
communication and interaction in the primary school classroom.   

Key-words: mathematical communication; collaborative work; teaching practices; 
professional knowledge; teacher education. 
Communication as an instrument of the relationship between teacher and students has 
been the target of widespread dispute in the field of education, given its relevance in 
the teaching and learning process. The greater value given to the role of dialogue and 
the sharing of information is opposed to a more traditional form of communication 
based on a one-way discourse, undertaken by the teacher (Brendefur & Frykholm, 
2000). 
From this point of view, the transference of information and codes (linguistic and 
others) is not approached nor studied in itself, but in its use, and communication is 
characterised as a process of social interaction. It is in this process of interaction that 
the subjects as well as society itself undergo their construction, through the 
negotiation of meaning between individuals (Yackel, 2000). 
Founded on this desire to understand the role of communicational changes in the 
teaching and learning of mathematics, the first co-author of this article developed a 
collaborative research into mathematical communication with three primary school 
teachers, with the supervision of the second co-author. 
This article proposes to explore the way in which the communicative practices of the 
teacher can raise the value of the communication among the students in the 
classroom. It results from the work undertaken with one of the teachers who 
participated in the study – Laura.   
COMMUNICATION AS A PROCESS OF SOCIAL INTERACTION 
From the point of view of communication as interaction, learning by the subjects 
arises from interactions between the individual and the culture (Sierpinska, 1998), 
including the interactions between students and the teacher.   
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Communication is characterized as a process of social interaction, which permits the 
subject to identify himself/herself with the other, and at the same time, express and 
affirm his/her singularity (Belchior, 2003), and has the function of creating and 
maintaining understanding between individuals.   
Thus, teaching is understood as an interactive and reflective process, with a teacher 
continually engaged in differentiated and updated activities for his/her students. With 
these activities, meanings are formed in the process of interaction between the 
subjects, and not only in the transmission of a codified knowledge which is given 
beforehand (Cruz & Martinón, 1998; Godino & Llinares, 2000; Yackel, 2000).  
It is assumed that mathematics teachers’ knowledge is a specialized knowledge of 
and about mathematical (Ball, 2003), practical and personal knowledge (Chapman, 
2004; Elbaz, 1983) that teachers develop through the process of reflection. Thus the 
collaborative work between teachers and researcher is a privileged way for knowing 
the teachers’ professional practices (Boavida & Ponte, 2002). 
METHODOLOGICAL OPTIONS 
The background investigation for this article fits into a qualitative methodology 
(Bogdan & Biklen, 1994), which adopts the interpretative paradigm and follow the 
design of a case study (Stake, 1994; Yin, 1989).  Three primary school teachers 
participated in this study, in a context of collaborative work with the researcher, 
regarding the reflection about their professional practices concerning mathematical 
communication. 
The study has been conceived in two phases: the characterization phase in order to 
characterize the participants and interpret the state of the art (carried out during 
2006/2007 academic year) and the collaboration phase in order to work together on 
mathematical communication in the process of teaching and learning (carried out 
during 2007/2008 academic year).  
The data collection consisted of initial and final interviews (audio taped) with the 
teachers, description of the collaborative meetings (audio taped) between the 
researcher and the teachers (collectively and individually) and classroom reports 
(audio and/or video taped). The data were transcribed and reduced in expressive 
episodes.    
In the characterization phase an interview was carried out with each teacher. The 
researcher attended two lessons of each one and carried out two meetings with them. 
In the collaboration phase there were two meetings with each teacher and five 
meetings of collaborative work. The researcher attended nine lessons of each teacher. 
The final interviews were carried out at the beginning of 2008/2009 school’s year.   
The collaborative work implicated theoretical framing discussion, elaboration of 
mathematical tasks for the classroom and the reflection based on the transcription of 
teachers’ lessons and the video of teachers’ and students’ communication practices in 
the classroom. 
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The data analysis was organized in case studies. Each one with the characterization of 
the teacher and school context, namely the teacher’s mathematical communication 
conceptions and practices. These were the reflections of the teachers about the facts 
and situations that gave added value to social interaction between students and 
mathematical learning. 
INTERACTION IN THE CLASSROOM 
This section shows how the interaction in Laura’s classroom evolved from the 
beginning of the study and throughout the collaborative work.  
The initial reflections (in the characterization phase) of Laura about the interaction 
among the students in the classroom, in the class group, seem to reflect conceptions 
associated with the notion of communication as transmission of information: 

Normally explaining how they did things, the reasoning, the calculations, but also in 
relation to the problems. [Interview, December 2006] 

This presentation of strategies and reasoning is conducted by the teacher, requiring 
sometimes the participation of the rest of the class. The students were presenting their 
productions of rectangular panels constructed with twelve paper squares. (Appendix 
1): 

Teacher:    Which was the first one that you made together? 
[The students in the group, up by the blackboard, point to one of their stuck-on designs] 

Teacher:    That one.  How did you make this one here? [Points to the first rectangle] 
Student: Four… 
Teacher:    Four. 
Student:    Four, four and four… 
Teacher:    Was it like that? 
Another student: Four, three and three… 
Teacher:    And the second one? 
Student:   We made it two by two and four by four. 
Teacher:    Not four. 
Student:    One, two, three, four…five, six. 
Teacher: Ah, and the last one, how was that one? You just said: “We have to make three, 

three, three...”, I said, “no, you already have three, three, three…”, “ah, of course 
there is.  So we have to make four, four, four…”, “but you already made that here”, 
“Ah, of course that’s right.  So we have to make two”, “but you already have that 
here”. What did you say to me then? 

Student: We can make it one by one. [First Year Class, June 2007] 

The omnipresence of the teacher in the classroom, allied to the monologue of the 
students, appears to result in an understanding of communication as a way to put 
forward previously constructed ideas which have been validated by the teacher.   
Interaction and Exploration of Error. The avoidance of error in the construction of 
mathematical knowledge seems to be one of the causes of this constant validation of 
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the activities of the student by the teacher.  As Laura tells us, her main worry in 
relation to the work of her students was the attempt to avoid error, “always to get the 
thing right” [Collaborative Work, October 2007], given that “we really love it when they 
get it right straightaway” [Idem]. 

The reflection, in the collaborative group, on the role of off-the-cuff validation and of 
error, implied that teachers involved in the study made an effort to try to avoid 
validation of the activities of their students when group work was taking place. 
Laura tried to get the students to interact among themselves, in spite of her very much 
present mediation.  As Laura says, despite trying not to interfere so much, the 
students constantly need her approval, “Mine look at me and wait for me to say 
something”, while they are putting questions to each other [Collaborative Work, 
November 2007]. 

In the development of this strategy of communication among the students priority 
was given to presentation of the incomplete or wrong strategies of the students and 
consequently to the discussion of the mathematical aspects or other causes for the 
errors put forward.   
In the problem of the River Crossing (Appendix 2), the teacher opted to begin the 
discussion with a solution that was incongruent with the conditions of the problem.  
The student Monica presented the solution of her group, writing: 

Little Johnny takes the rabbit in the boat.  Little Johnny takes the cabbage in his lap and 
the dog on one side, and they go on their way 

While the student was writing on the board, some students were waiting with their 
hands up, as a sign that they wanted to question their colleague. 

Teacher:    There are hands up.   
The teacher alerted Monica to the questions of her colleague and she ended her 
presentation and chose one of the other students to ask her a question.  After an 
intervention directed towards the correct solution, one of the students who had 
identified the incongruency of the resolution with the statement of the problem 
explained: 

Gonçalo: The group wrote “the cabbage in his lap and the dog on one side” but he 
can only take one animal. 

Teacher:    Where? 
Gonçalo:    In the boat. 
Teacher:    One thing.  But three things went. 
Gonçalo:   Yes, but the cabbage can’t go on Little Johnny’s lap.  There can only go the 

dog or the cabbage, only one thing. [Second Year Class, March 2008] 
The teacher valued the interaction among the students and passed this conclusion on 
to the group which was at the blackboard, highlighting the impossibility of more than 
two passengers in the boat.  Faced with this rejection, one of the members of this 
same group – Tiago – presented a new proposal for the solution, writing: 
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First goes the dog [the students become agitated because they consider what their 
colleagues wrote to be wrong]. Second goes the cabbage. And last goes the rabbit. 

Gonçalo, observing the solution written by Tiago, says: 
Gonçalo:   I know what’s wrong. 
Teacher:   So go up there Gonçalo.  Go to the blackboard and say what’s wrong. 

Gonçalo went up to the blackboard and put his reasons to Tiago. 
Teacher:    Tiago, stay there to defend yourself. 
Gonçalo:    The dog can’t go first, because if Little Johnny took the dog…. If Little 

Johnny crossed the river with the dog, then the rabbit would eat the cabbage 
[idem] 

The comments of the teacher were intended to promote the interaction between the 
students – “There are hands up” – and to encourage the justification of student’ 
reasons - “stay there to defend yourself”.  This attitude of this teacher promoted a 
greater interaction between the students in the classroom. 
Interaction and Teaching and Learning. Laura recognizes and values the students 
change in attitude towards communication by the students, emphasizing that they 
have also changed their attitude in the other subject areas: 

I try to get them communicating among themselves, no matter what the subject is. 
[Meeting of the Teacher with the Researcher, April 2008] 

This attitude of the students also appears to be related to a significant change of the 
teacher’s attitude in the classroom, in particular with regard to her expectations about 
students: 

I bide my time, I wait, listening more carefully, because at times what they say is 
important, although sometimes it isn’t. [Idem] 

This seems to have contributed to a greater autonomy of the students in the learning 
and construction of knowledge: 

[The students] are more at ease, they have a different dynamism.  They participate more.  
They are more attentive to what they are doing.  [Idem] 

The development of communication and interaction among the students has changed 
the way of working in the classroom.  As Laura says, “we are working at a deeper 
level because there’s more discussion”. [Idem] 

SOME FINAL CONSIDERATIONS 
The teacher’s practice in relation to the interaction among the students is initially 
associated with the valorisation of the attitude of exposition of their activities 
according to the role of the teacher in explaining mathematical concepts.   
Teachers were involved in reflecting on their classroom practices in mathematics. 
With this reflection they began to give more importance to the role of error in 
mathematics learning, and to allowing students to interact with their peers. This led to 
increase the interaction among students, either mediated by teachers or not. 
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Appendix 1 

 
Appendix 2 

River Crossing - The hunting dog, the rabbit and the cabbage 
Little Johnny was crossing a dry, unshaded field on the way to his grandfather’s 
house.  He was taking with him a hunting dog to go with his grandfather on the hunt, 
a jack rabbit for his grandmother to put in her rabbit hutch with a pretty female rabbit 
and a nice cabbage for lunch. 
All along the way, the dog wanted to eat the rabbit and the rabbit to eat the cabbage.  
Little Johnny had to be very careful as he walked along to avoid anything going 
wrong.  After a while Johnny came to a river he had to cross. 
In order to cross the river there was a small boat which he could use, but it was so 
small that he could only take with him one passenger at a time: the dog or the rabbit 
or the cabbage.  He could never leave the dog alone with the rabbit, nor the rabbit 
alone with the cabbage, so how can he get all of them across without any problem?  
You are going to have to help to resolve this problem. 
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EXPERIMENTAL DEVICES IN MATHEMATICS  
AND PHYSICS STANDARDS IN LOWER AND UPPER 

SECONDARY SCHOOL, AND THEIR CONSEQUENCES  
ON TEACHER’S PRACTICES 

Fabrice Vandebrouck, Cecile de Hosson, Aline Robert 
University Paris-Diderot, Laboratoire André Revuz 

The new French Standards for the teaching of science subjects in secondary school 
advantage the experimental dimension by a revival of words such as "experiment", 
"experimental" and by the introduction of quite new teaching concepts such as 
“inquiry-based teaching” and “practical experiment test”. Our study deals with the 
introduction of a new teaching paradigm which includes a strong experimental 
dimension in both mathematics and physics instructions. The “double approach” 
frame, including both didactic and ergonomic approaches, constitutes the global 
frame for the analysis of the teachers’ practices we wish to focus on. This allows us 
to go back over some variables that could be essential to take into account in order to 
choose appropriate educational devices. 
The new French Standards for the teaching of science subjects in lower and upper 
secondary school advantage the experimental dimension by a revival of words such 
as "experiment", "experimental" and by the introduction of quite new teaching 
concepts such as “inquiry-based teaching” and “practical experiment test”. This novel 
approach is common to mathematics, physics, chemistry and biology instruction in 
lower secondary school. Conversely, in upper secondary school specificities appear 
depending on each scientific subject. In mathematics, this specific approach leans on 
more or less implicit references to the use of ICT. 
Our study deals with the introduction of a new teaching paradigm which includes a 
strong experimental dimension in both mathematics and physics instructions. First, 
we will survey the meaning and the possible place of experiments in the physics and 
mathematics learning by examining the textbooks and standards. Then, we will focus 
on the practices of the teachers who intent to implement such experimental elements 
in their classroom. In that perspective, we use a common frame of analysis (“double 
approach didactic and ergonomic”) in order to raise the predictable complexity of the 
recommended approach. Some examples are given which analysis leads to the 
conclusion that either the approach suggested by the teacher is too open and nothing 
happens or it is too restrictive or reductive, and students have no real access to what 
is required. 
In the “double approach” frame, a didactic point of view and an ergonomic one are 
interwoven. It constitutes the global frame for the analysis of the teachers’ practices 
we wish to focus on (Robert & Rogalski, 2005, Robert, 2008, Pariès, Robert, 
Rogalski, 2007). This frame allows us to describe both planed sequence and expected 
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tasks proposed by teachers (in terms of available knowledge and adaptations), and to 
confront them to an analysis of the possible children’s activity.  
To conclude, we will go back over some variables that could be essential to take into 
account in order to choose appropriate educational devices, that is, concepts or 
situations that fit with a relevant experimental approach. At the same time, the 
efficiency of our methodological frame will be thus attested. 

THE PLACE OF THE EXPERIMENT IN THE MATHEMATICS AND 
PHYSICS CURRICULA 
In an international context, a lot of researchers looked into experimental activities and 
enlightened their different objectives. Their results led the authors of curricula to take 
new directions for science education. It consists in showing a richer image of 
scientific processes, giving more autonomy to pupils and proposing more open tasks 
allowing them to develop higher level cognitive activities: the statement of scientific 
questions, the statement of hypotheses, the design of experimental protocols, the 
choice and treatment of data and the communication of the results. These different 
elements have been made explicit in several projects, such as Science for All 
Americans or in the recent report ordered by the European Commission. More 
particularly in France, this kind of process in the classroom at low secondary school, 
is a continuation of a pedagogical practice implemented at primary school since 2000. 
In France, it appeared in the curriculum in 2005, and was reasserted in 2007 under the 
name of “démarche d’investigation” in French, that has been translated here into 
“inquiry-based teaching” (IBT). This process concerns both mathematics and science 
teaching. 
Despite this common educational text for both mathematics and physics instruction 
(grade 6 and 7), it seems difficult to implement and to analyze this type of approach 
in the classroom in the same way in mathematics and physics, insofar as the actual 
objectives are on both sides different. Indeed, this requires at least to question the 
very nature of the subject itself (in an epistemological point of view) and the different 
type of problems involved in a scientific process learning such as modeling the real 
world, complex operating of tools previously elaborated, etc. 
In mathematics, the experimental test in upper secondary school (end of grade 12) 
includes a consistent and open problem. Students can be asked to model a part of this 
problem, but this is not systematic (BOEN HS n°7, 2000). From the perspective of 
potential acquisitions, the experimental test doesn’t seek to introduce new knowledge 
but to make students' knowledge (assumed available) operate. This type of process 
includes rich, various and possibly new adaptations of this knowledge. Students often 
face a number of choices: choice of cases to deal with specific software, choice of the 
software itself, etc. It seems appropriate to a priori consider what we want to “win” 
in terms of students’ knowledge (start-up knowledge, knowledge supposedly already 
there, and also the distance between the two). It is to estimate how students can stage 
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and work with the "experimental" part itself, given the management developed by the 
teacher that determines the whole work in the classroom and also number of other 
constraints such as time, material organization, etc. 
In the IBT context, physics teachers are now invited to elaborate problems that are 
favorable to the development of processes and construction of new knowledge by the 
pupils themselves (BOEN HS n°6, 2007). At the same time, pupils are given more 
responsibility and autonomy (the statement of hypothesis or conjectures, the 
elaboration of an experimental device in order to test these hypotheses). At last, 
teachers are expected to know pupils conceptions in various subjects and be able to 
exploit them in the elaboration of sequences that would aim at making these 
conceptions evolve by using a hypothetico-deductive process. The implementation of 
the IBT in the classroom requires profound changes in science teachers’ practices and 
experience. A focus on the spontaneous transition between IBT in the curriculum and 
teachers’ practices leads us to draw a picture of the way teachers appropriate the new 
instructions and allows us to identify the underlying difficulties. 

SOME COMMON ELEMENTS OF METHODOLOGY FOR ANALYSING 
TEACHERS’ PRACTICES IN THE CLASSROOM 
The « double approach frame » (Robert & Rogalski, 2005) postulates that the analysis 
of teachers’ practices requires for the researcher to draw what tasks are chosen by the 
teacher for its pupils, and to derive the way its courses are organized. The 
corresponding analyzes lead to reorganize the activities the pupils could have 
performed. These analyzes are guided by the choices of the teachers, but they remain 
inadequate to understand teachers’ practices as a whole. Other analyzes, inspired by 
the ergonomic framework complete the former ones: they include the constraints and 
the resources associated with the profession of “teacher”: institutional constraints 
(connected with the curricula), social constraints and the constraints connected with 
the personal resources of the teacher, that is, his beliefs, knowledge and experience.  
This theoretical framework is not a model; it is drawn from the Activity Theory 
(Leont’ev, 1984, Vygotsky, 1997, Vergnaud, 1990). The conversion of fundamental 
elements of this theory into specific theoretical elements adapted for mathematics or 
physics and for learning situation allows us to question teachers’ practices and to 
legitimate our research questions whether there are local or global. Thanks to this 
approach, our questions can be in kipping with a unique framework associated with 
specific methodologies.  
These methodologies involve on the one hand the presentation of a large planed-
teaching course that includes the analyzed sequence(s) (either because many 
sequences are involved or at least to clarify the place of the sequences into the whole 
course), and on the other hand, the statement of the possible activities of the students. 
The latter is done trough the confrontation of an a priori analysis (including the study 
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of expositions or instructions and the examination of the data given by tools) with an 
analysis of the teaching processes. 
The a priori analysis provides the tasks the students should perform and the 
corresponding knowledge (Horoks and Robert, 2007). The second analysis (the 
analysis of the teaching processes) refines the a priori analysis by taking into 
account teachers’ interventions. This concerns the organization of students’ work 
(including the timing of the different phases) and this also covers their actual work 
(self-working, part of initiatives, students’ involving, teachers’ help to the making 
tasks, aid to overcome the action, reports). Starting from the recovery of students’ 
activities we can question and understand the choices done by the teachers and think 
about alternatives strategies that take into account the standards, different constraints 
(e.g. time), the habits of the job, and individual characteristics. 

CASE-STUDIES 
In mathematics 
We develop in this communication two examples of grade 12 teaching sequences 
(12th grade). The two sequences last one hour, with pupils working alone on a 
computer, and with the teacher helping them individually. 

The objective of this session is to discover a property of the slope of the 
exponential curve, then to prove this property. 

EXPERIMENTAL PHASE 

To answer this question, you will use the software Geogebra 

1) Realization of the diagram 

(…) 

2) Experimentation 

Vary the point A on the curve. Observe simultaneously the X-coordinates of A and 
B 

3) Hypothesis 

What property seems to be true for all positions of the point A? Try to imagine 
a method to confirm this hypothesis with experimentation. 

RESEARCH OF A PROOF 

1) Let a be a real and A the point on the curve y=exp(x) which X-coordinate is a. 
Find the equation of the slope T of the curve on A. 

2) Can you use this equation to prove your hypothesis? 

3) Make the proof of the hypothesis. 

Table 1: exposition given in the first example of mathematics teaching sequence 
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The a priori analysis shows that the experimental activity potentially made by the 
pupils is banished. Indeed, the ICT tool to be used is given and the objective 
“discover a property of the slope of the exponential curve” is too hazy to allow an 
autonomous pupils’ activity. Then, the experimental construction is given by the 
exposition “realization of the figure” (question 1) and the activity described as 
experimental (question 2) is reduced to vary a point on the curve and to observe the 
conjecture as an evidence (question 3): “The X-coordinate of A is always the one of 
B plus 1”. There is no more one demonstration exercise fairly traditional with no 
experimental dimension anymore. Even if the introduction of the parameter and the 
calculation of the equation of T is explicitly asked in the exposition, some 
intermediary tools have to be introduced by pupils. So this traditional exercise is 
complex in comparison with the task. 
The analysis of the teaching process confirms this complexity: the teacher says that 
“even the best student asks for an indication” and that she finishes the session by 
showing in a collective way how to do the proof. So, in this first example, there is no 
experimental activity of students but only several immediate applications of some 
explicit pieces of knowledge. 
The exposition for the second studied sequence is the following: 

Let k be a real positive. We are interested about the number of roots of the 
equation ln(x)=kx² for x positive.. 

1. Open the software Géogébra. 
2. In the entry windows, enter f(x)=ln(x) then validate. Enter x^2 then validate. 

Do the same with 0.5x^2, then 0.1*x^2 and then −x^2. Fill in the table : 
Value of k     

Nomber of roots according the 
graphical curves 

    

3. We want now to determine in a more precise way the number of roots. Click 
on “Fenêtre”, then “Nouvelle Fenêtre” and then let appear the curve of the 
function ln in this new frame. 

4. Enter 1k =  in the entry window then validate. This number appears in the 
algebra window. In the entry window, define now ( ) ²g x k x= . 

5. Vary the number k, then click with the right button of the mousse on this 

number, then click on “Afficher l’objet”. A cursor appears. Click on   to 
define the mode “déplacer”, and then displace the cursor with the mousse.  

6. Conjecture following the values of k the number of roots of the 
equation  ln( ) ²x kx= . 

Call the teacher to validate your answer. 
7. If 0k > , graphically find a value of k with two right digits after the decimal 

point for which the equation admits only one solution (you can right click on 
k and then on “Propriétés”, “Curseur”, to reduce the increment inside the 
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interval) 

Call the teacher to validate your answer. 

Demonstrate on your sheet that for any negative value of k, the equation admits a 
unique solution. 

Table 2: exposition given in the second example of mathematics teaching sequence 

This second example assumes a level of software’s competencies which is lower than 
the first one but we don’t want to enter in this problematic for this communication. 
However, the a priori analysis shows that the experimental construction is again 
given by the exposition (questions 3, 4, 5, 6). Moreover, the exposition initiates the 
activity of testing some particular cases of the whole open problem (question 2). The 
so called experimental part is again isolated from the one more strictly mathematical. 
This last one is cute in two sub tasks (questions 7 and 8) while a real experimental 
activity should lead to treat the whole task. 
The teaching process shows that lot of pupils don’t see the link between the curve 
they draw during question 2 and some particular cases of the problem. The teacher 
says that they didn’t see how to fill in the table. This reinforces the idea that there is 
not at all experimental activity during this sequence. Moreover, the question 8, even 
if it is simplified by the exposition, remains very difficult for pupils. 
With these two examples, we understand that the expositions, as in educational texts, 
are effectively open problems: “to discover a property of the slope of the exponential 
curve” and “we are interested in the number of roots of the equation ln( ) ²x kx=  for x 
positive”. But the field of activity is too large to allow an autonomous activity of 
students and the tasks are simplified by the expositions: “Realization of the figure”, 
“Fill out the table”. In other words, the experimental management is not in charge of 
the students but it is explained by the detailed expositions. So the hypotheses are 
evidenced at the end of the explained manipulations. There is no reason to question 
these hypotheses even if some questions can be awkward in this direction, as in the 
first example: “Try to imagine a method to confirm this hypothesis with 
experimentation”. 
Then, a classical proof (“research of a proof”, question 8), isolated from the 
manipulation phase, is asked. Moreover this proof can be difficult for students 
because of complex uses of available knowledge and because manipulations don’t 
help for this purpose at all. However, in general, we think that there could be an 
interaction between the two parts of the session. For instance, in the first example, the 
manipulation of software Géogébra requires the internalisation of some commands. 
More precisely, the command “curseur” of the software is deeply associated to the 
introduction of parameter to prove the hypothesis. So there could exist a though to 
help students to introduce parameters in their proofs by training them to associate 
parameters and “curseur” in ICT environment. 
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In physics 
An analysis of 26 teachers’ worksheets available on pedagogical websites and 
supervised by the educational authorities was conducted a few months ago (Mathé & 
al. 2008). This analysis revealed important gaps between IBT in the curriculum and 
teachers’ perceptions or appropriation. In particular, it has been shown that few of 
them make pupils’ conceptions explicit in their worksheets and build their sequence 
in order to destabilize these conceptions. Moreover, while the curriculum comprises a 
phase of statement of hypotheses, only 11 worksheets ask pupils for stating 
hypotheses. Furthermore, only 9 protocols are entirely designed by the pupils. In the 
other worksheets, the teacher plays a more or less important part: whether he designs 
the protocol himself or he imposes the experimental equipment, or corrects the 
pupils’ propositions (Mathé 2008, Mathé & al. 2008). 
The sequence we take as an example concerns combustion processes. The new 
knowledge aimed by the sequence is exposed as following:  
- the combustion of carbon requires oxygen and produces carbon dioxide; 
- a fire naturally occurs when air, heat and fuel are combined.  
These three elements form the “fire triangle”. When one of these elements is missing, 
the fire stops. The problem to be solved –“How to extinguish a fire”– is connected to 
an everyday-life starting situation which is supposed to motivate the pupils. They are 
asked to go outside the classroom, to find all the anti-fire and fire protection devices 
of the school and to explain the way they operate. Doing so, the teacher expects the 
children to make hypotheses on combustion process such as “oxygen is necessary for 
the combustion process” or “combustion produces carbon dioxide”. This hypothesis 
should be tested by appropriate experiments elaborated and performed by the 
children. The sequence is implemented with grade 7 children and last two hours. It is 
video-recorded and transcribed. We focus here on specific heading: children’s 
conceptions, the statement of hypotheses, and the hypothetico-deductive process. 
The a priori analysis shows that the tasks proposed to the pupils can’t destabilize 
children’s conception about fire such as “fire is an object endowed with material 
properties” widely studied by philosophers and science education researchers 
(Bachelard 1938, Méheut 1982), and we wonder to what extent it doesn’t strengthen 
it. Indeed, attention to the anti-fire devices operation does not automatically leads to 
the idea that the air supply is necessary in the combustion process. Consequently, the 
problem to be solved can’t lead to the statement of the expected hypotheses either. 
Thus, no spontaneous hypothetico-deductive process can be expected. 
The analysis of the teaching processes confirms this difficulty. Children are easily 
involved in the preliminary activity which consists in describing the anti-fire and fire 
protection devices of the school. A difficulty appears when the teacher asks them to 
describe the way the devices operate. We observe a misunderstanding between the 
teacher’s expectation which concerns the underlying chemical process and the pupils’ 
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answers that exclusively focus on the description of the way the device is used. This 
unexpected difficulty leads the teacher to formulate a more precise and guided 
question: “can you explain why these devices extinguish the fire?”. At that time, a 
second difficulty occurs which is directly connected to the way that “the fire” is 
considered in pupils’ mind. As an example, pupils think that fire-resisting doors close 
in order to prevent the fire to move forward. According to them when the doors are 
closed the fire “bounces” on them. None of the pupils spontaneously establish a link 
between the air (specifically the oxygen) and the existence of the fire. This difficulty 
is widely underestimated by the teacher during the effective sequence. Finally, after 
one hour of discussion, the expected hypotheses are given by the teacher himself: 
“oxygen is necessary for a fire to exist” and “a fire produces carbon dioxide”. Pupils 
are then invited to elaborate experiments in order to test the hypotheses. In this phase, 
they must isolate the different air contents to prove that only the oxygen plays a part 
in the combustion process. They also have to elaborate an experiment in order to 
evidence the carbon dioxide. In the next course, contrary to what was planned, the 
experiments are imposed and performed by the teacher. This is directly connected to 
management constraints. 
According to the a priori analysis, we observe significant gaps between the teacher’s 
intentions and what really occurred during the effective sequence. Children’s ideas 
about the burning process and the fire are not destabilized by the inquiry-based 
activity itself. The teacher plays a determining part in the knowledge transmission 
and the starting situation doesn’t allow the implementation of a cognitive-conflict as 
expected in the IBT. Moreover, the teacher asks the pupils to design an experimental 
protocol but he finally imposes his own experiment. 

CONCLUSION 
We assume that no generalities can be asserted as the analyses previously presented 
remain clinical. Nevertheless, some regularity seems to emerge that form tracks to 
explore. 
What is specific to us is the need for teachers to make a quadruple prior analysis, 
lighter than the researcher’s one of course, in order to effectively implement this type 
of process in their classroom:  

• an analysis of the aimed knowledge or the knowledge to be used (different 
from a subject to another); 

• an analysis of the available knowledge to permit an autonomous activity of 
pupils;  

• an analysis of the role played by the experimental process in the connection 
between the aimed knowledge (or knowledge to be used) and the available 
knowledge considering both content and teaching processes; 

• an analysis of the way the teacher can manage this experimental activity. 
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Moreover, in physics, depending on the nature of the referred content, an inquiry-
based teaching can be adapted or not. IBT in the classroom requires choosing relevant 
scientific content and problem that aim at destabilizing pupils’ conceptions and that 
allow the implementation of a hypothetico-deductive process by the pupils implying 
more autonomy for the statement of hypotheses and the design of a protocol. 
However, it may be that students cannot develop hypotheses highlighting their 
misconceptions. In that perspective, the choice of the scientific subject remains 
fundamental. 
In mathematics, we have seen that there is a problematic amalgam between an 
experimental approach of mathematical activity and an activity with ICT tools, these 
tools being able to lead pupils easily to emit correct conjectures for complex 
problems. The experimental constructions being given by the expositions, the 
experimental activity can only exist in a one to one correspondence between 
manipulations (not experimentations) and proofs. This activity, even if it is far from 
scientific one, can be interesting for using mathematical knowledge (activity with 
available knowledge or activity with adaptations of knowledge). But it is difficult for 
students who are not accustomed with these activities. It is also difficult for teachers 
who have to find adequate situations permitting these go and return between 
manipulations and proofs and who have to manage at the same time the learning of 
the new knowledge as well as the learning of software’s competencies. This kind of 
studies has to be completed by some results on individual different students’ attitudes 
when working on computers (Vandebrouck, 2008). 
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PROFESSIONAL DEVELOPMENT FOR TEACHERS OF 
MATHEMATICS: OPPORTUNITIES AND CHANGE 
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Birmingham 4 
The RECME research was set up to develop understanding of ‘effective’ Continuing 
Professional Development (CPD) for teachers of mathematics by looking at a large 
number of initiatives adopting a variety of models, taking a non-interventionist, non-
participatory approach. In addition to building a ‘big picture’, it also aims to 
develop an in-depth understanding of the individual initiatives by looking at the 
structure and organisation and at the responses of individual teachers to their CPD. 
The paper develops and uses an analytical framework to help us understand one 
particular initiative and the learning and teacher change of individual teachers 
participating in this initiative. We conclude with a discussion of the factors 
contributing to the effectiveness of the CPD.    
Keywords: Professional development, mathematics, teachers, CPD 

INTRODUCING RECME 
In 2006 the National Centre for Excellence in the Teaching of Mathematics 
(NCETM) was set up in England in order to build a coherent infrastructure to support 
the continuing professional development (CPD) needs of teachers of mathematics. In 
2007 the NCETM funded an eighteen month research project, Researching Effective 
CPD in Mathematics Education (RECME). The aims of the project include the 
characterisation of different types of CPD for teachers of mathematics and the 
investigation of the factors contributing to ‘effective’ CPD. In order to understand the 
range and scope of CPD opportunities existing in the UK, the project team researched 
a sample of thirty initiatives representing different models of CPD in mathematics 
education, run by a variety of providers, in different locations, and aimed at about 
250 teachers of students in pre-primary, primary, secondary, further and adult 
education settings.  
RECME is an ongoing project and has not yet produced comprehensive findings or 
recommendations. These are due by March 2009. However, most of the data for the 
project has been collected and this paper introduces a framework for the analysis of 
the data and uses it to analyse the data from one initiative. 

THEORETICAL FRAMING AND METHODOLOGICAL DECISIONS 
We adopt a broad sociocultural perspective which suggests that all human activity, 
including the learning of teachers, is historically, socially, culturally and temporally 
situated. This suggests that the experiences and contexts of teachers will have a major 
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influence on their learning and implies a need to pay attention not only to the 
situation, the opportunities and the context of sites of learning (in our case initiatives 
of professional development), but also to the individuals (teachers of mathematics) 
taking part in professional development.  
Data collected 
For each initiative we asked the leader/ coordinator for data concerning the form and 
structure of the professional development. We also observed at least one professional 
development meeting and took observation notes. The data we collected included 
dates of meetings, structure of meetings, number of participants, duration of the CPD, 
what takes place in meetings, funding/costs, support and communication structures, 
recruitment procedures and leaders of the meetings. For some initiatives not all this 
data was applicable.  
With the help of the leaders/co-ordinators, we identified two teachers from each 
initiative. We visited these teachers in their classrooms and observed them teaching 
mathematics in order to develop understanding of the context in which they work, 
and interviewed them after the observed lesson. The interview data included 
questions about professional background, perceptions of their professional identity, 
thoughts on the observed lesson, influence of the CPD on the way they teach, 
motivation to take part and remain involved in the CPD, their CPD histories and how 
they felt about the CPD. 
Analytical framework 
An initiative of professional development can be described in terms of the content, 
context and processes in which participants engage (Harwell, 2003). There is a wide 
range of different models of CPD (see for example Kennedy, 2005) but most CPD 
aims to provide opportunities for teachers to become involved in processes of 
learning and change. We suggest that different teachers, influenced by the contexts in 
which they work and their personal motives, beliefs, theories and experience, will 
perceive different opportunities, and these perceptions may shift over time.  
The professional development of the individual teachers inevitably relates to the 
opportunities provided by the CPD initiative (Muijs, 2008), and may lead to learning 
and changes in attitudes and beliefs (actual PD). Teachers may also change their 
classroom practice, but it is possible that changes in classroom practice could also be 
influenced by other formal and informal learning. Changes in practice could lead to 
changed student behaviours and possibly improved student learning (Guskey, 2002), 
although once again there are other factors which might influence any changes that 
do take place. In turn, changes in student behaviour and learning could influence the 
teacher learning (Cooney, 2001), their perceptions of the opportunities and 
experiences offered by the CPD, and the opportunities and experiences they decide to 
take up. 
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Finally, a sociocultural perspective  suggests that we also need to take into account 
the influences of the school and national context on the design of the CPD initiative  
(Bishop & Denleg, 2006; Cobb, 2008) and of the motives, beliefs, theoretical 
understanding and experience of the designers of the CPD (Rogers et al., 2007), the 
feedback they receive from the ongoing CPD, as well as the specific aims of the 
initiative (Goodall, Day, Lindsay, Muijs, & Harris, 2005)  
Figure 1, below, provides a diagrammatic representation of the interrelationships of 
all these factors.  

 

Figure 1: Understanding a CPD initiative 

As with many analytical frameworks, this representation could be seen as ‘too neat’, 
yet the data is messy and complex. Further, it is a static diagram which cannot 
represent the ways in which the nature of the CPD may be dynamic and changing in 
response to feedback from teachers and their changing needs over time. However, we 
suggest that it provides a useful lens for understanding both the CPD initiative itself 
and the participation of individual teachers. In addition some of these asrrows could, 
in many cases, be two ways. 
Further it explicitly attends to the teacher professional development intended by the 
organisers of the CPD and the intended changes in teachers’ practice, and to learning 
and changes that do take place. This is important in our view, because both these can 
be seen to provide some ‘measure’ of the effectiveness of the CPD (Garet, Porter, 

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1763



  
Desimone, Birman, & Yoon, 2001; Goodall, Day, Lindsay, Muijs, & Harris, 2005; T. 
R. Guskey, 2000; Thomas R. Guskey, 2003) (although we do recognise that the 
ultimate aim of the CPD is usually improved student learning).  

CASE STUDY: ONE INITIATIVE AND TWO TEACHERS. 

Context, content and processes of the CPD initiative 
This initiative is run by a local authority mathematics adviser and a university-based 
teacher educator. The initiative is now in its third year; two cohorts have already 
completed the programme. The participants are all secondary school mathematics 
teachers who attend five separate day-long meetings over the course of a year.  
During the meetings the course leaders initiate discussion, frequently asking the 
participants to discuss issues (for example, how they feel about group work in the 
mathematics classroom) and then to report back to the group. Frequently one of the 
course leaders notes down the points made on a flip chart and, when each small group 
has reported back, draws out some of the key points. During the meetings they also 
introduce new resources to the teachers and discuss how they might be used and hand 
out research papers and give the teachers time to read them and then lead a discussion 
about them. Much of the material they hand out focuses on questioning techniques 
and much of the discussion concerns using open questions and tasks rather than 
closed questions and tasks. 
In addition, they introduce various classroom mathematics activities and ask the 
teachers to work in small groups to complete them. For example, one of these 
activities uses small cards with equations, graphs and co-ordinates of points printed 
on them, although some are left blank. The task is to decide how to group them, but 
importantly there is no correct or incorrect answer, and consequently can be seen as 
providing rich learning.  Further, when these activities are used in the classroom, they 
provide opportunities for teachers to assess their students’ prior knowledge. The 
teachers are asked to experiment in their classrooms between the meetings by using 
either this activity (suitably adapted for their particular circumstances) or some other 
activity designed by themselves. The activity they choose to use is called a ‘gap’ 
activity (because it is to be carried out in the ‘gap’ between meetings). There is no 
prescribed type of gap activity; the key point about the gap activity is that it 
represents something new for the teacher to try out in the classroom.  Teachers are 
asked to bring some of the students’ work from these gap activities to the next day 
meeting to form the basis of discussion.  
Teachers are also asked to keep a journal. At the last day meeting, they are asked to 
make a presentation to the group, outlining how their practice has developed through 
the project. 
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Aims of the CPD 
Although the course leaders state that ‘this project focuses on helping teachers to 
understand the underlying principles of assessment for learning and applying these to 
embedding effective practice in the classroom’ (www.nctem.org/recme), they told us 
that the actual content addressed in each of the days is, to some extent at least, 
informed and influenced by the work of the teachers both during the meetings and in 
the classroom, and by their concerns and questions. In order to be free to follow this 
flexible approach, the course leaders deliberately do not have any further documented 
specific aims.   
However, they told us that their general aims are threefold and they see them as 
related and interdependent: to provide time for the teachers to reflect, to encourage 
teachers to put their learning into practice in the classroom and to engage the teachers 
with relevant research.  
They also said that the course aims to create a community in which teachers meet, 
talk, share and learn from one another. The leaders have created a community web 
page where the teachers are able to share resources, thoughts and ideas, away from 
the face-to-face sessions. 

Intended professional development (teacher learning) 
The course leaders told us that they hoped that by providing the opportunities 
described above, participating teachers would be inspired to think more critically 
about their own practice and revise it accordingly, to pay more attention to how 
pupils learn mathematics, and to develop the confidence to allow pupils to follow 
their own directions rather than scripting their lessons in detail.  

Intended changes in practice 
The intention is that teachers will change their practice in the short term by 
experimenting with the gap tasks. In the longer term the course leaders said they 
hoped that teachers’ practice would change in three main ways: 

• They would use more challenging and open tasks in the classroom, with less 
reliance on textbooks and closed questions, leading to more exciting and 
unpredictable lessons for the students 

• They would reflect more on what happened in mathematics lessons, thinking 
more about what the learning had been rather than about how much material 
had been covered 

• They would become more relaxed in their interactions with the students and 
develop more collaborative classroom practices. 
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The teachers: Barbara Bircher and Peter Millward 
This section discusses the CPD experiences of Barbara and Peter, the two teachers 
who were invited to take part in the in-depth part of the research. It reports on what 
they said when our researcher interviewed them and on the observation of their 
lessons, and uses the framework developed above to structure the discussion. It 
begins by describing the backgrounds of the teachers and the contexts in which they 
work. 
Barbara has been teaching mathematics in secondary schools since 1976 and is now 
subject leader for mathematics in her school. Peter is in his third year of teaching at a 
large comprehensive 11 – 18 school where he has overall responsibility for the first 
three year groups in the school (known as Key Stage 3 and culminating in a 
standardised national test). 
Barbara became involved in the current CPD because she had heard a lot about the 
course, which is now in its third year, and she liked what she heard: the approaches 
she heard they promote are similar to the ones she believes in. She thought it would 
be valuable for someone in the department to attend and decided to go herself (rather 
than sending someone else from the department), because then she could cascade her 
learning to the rest of the department. She saw this as an opportunity for her to 
develop herself in order to ‘move the department forward’.  
Peter said that he decided to take part in the CPD because a member of the senior 
leadership team asked him if he wanted to go. He said that much of the CPD he had 
previously experienced had taken place in school and ‘seems to be more about 
technical jargon than new stuff but that he chose to attend this CPD because he was 
looking for something with more mathematics. 

Opportunities  
In this section we report on those opportunities provided by the course that Barbara 
and Peter seemed to value. Both teachers mentioned the resources they had been 
introduced to, with Barbara saying that she valued having time to investigate them 
and Peter saying they were useful.  
Barbara said that she values the time out of school to reflect and think and discuss, 
she enjoys having time to read. Peter also said he liked the fact that there was enough 
time for discussion and he seemed to value the opportunity to meet with other people 
in order to ‘stock up’ with ideas to try out in the classroom.  
Peter did not mention the value of gap tasks, but he did say that, as a result of the 
course, he has to ‘push’ himself to try something out and this is the most useful thing 
about the course. Barbara told us that she had used most of the gap tasks with her 
classes and reported back on them. She said that knowing that she ‘had to’ report 
back on how she had found teaching these gap tasks meant that she had actually done 
them, and that otherwise she may not have. She said she enjoyed reporting back to 
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the group after doing a gap task. She said that the course had given her the 
opportunity to do what she believes is good maths teaching. 
To Peter, the course leaders are very important; ‘they prepare the stuff, they help us 
along’. He says that they provide a link between the theory and practice in both his 
own classroom and what other schools are doing. The local authority advisor has a 
good overview of what happens in his local authority, and he says this is useful for 
the teachers. 

Actual professional development 
Barbara said that using the gap tasks had challenged her embedded practice of 
expecting the students to work in a predetermined direction and reawakened her 
awareness that ‘the obvious isn’t obvious’. She said that it has kept her interest in 
mathematics teaching and her desire to be a reflective practitioner continuing to 
improve. She said that the course had reminded her about what she really liked doing; 
teaching mathematics, adding that in recent years she has moved gradually away from 
her passionate interest in teaching, because of the pressures of school and 
management. Barbara said the course made her very excited and gave her the 
opportunity to do what she believes is good maths teaching. She finished the course 
wanting more. More specifically, she reported that she had learnt the value of sharing 
students’ work and of developing a classroom culture in which ‘it is ok to be wrong, 
as long as you are thinking about your learning’.  
Attending the course had made her think about the direction she wanted to move in, 
in terms of her role in the school, and has provided her with clear ideas about the way 
she intends to develop the department.  
Peter was much less forthcoming about telling us about his learning and changes in 
beliefs. However, he did report that the course ‘replenishes my enthusiasm’. He also 
remarked on a change in awareness: 

‘I am more aware of what I am doing and thinking much more about what I am doing and 
why’. 

Changes in practice 
Both teachers reported that they had implemented some new teaching tasks as a result 
of the CPD. Barbara had tried some of the gap tasks and is now incorporating more 
open and investigative tasks in her everyday teaching. For example, she gave the 
class coloured paper and scissors and provided the students with instructions on how 
to create the shapes she wanted them to work with. Over the course of several 
lessons, the students investigated angles and lengths in the shapes, as well as 
tessellation properties.  
Peter, on the other hand, did not use a gap task but told us that he has tried to 
integrate some of the ideas from the CPD into his normal practice, rather than relying 
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on the textbook too much. He has also used ideas for new tasks which came from 
another teacher in the group. For example, he asked a year 9 class to write a test and 
devise a mark scheme and he was very pleased with the work they produced. He was 
particularly pleased with the work one of his students produced. He said: 

‘I will use this idea again - its fairly easy to setup, although grading is quite a challenge.  
It’s effective because it allows students to show what they have learnt and it always 
easily differentiates between students’ abilities.  Answering a question on a test can be 
algorithmic, writing a challenging question (with a mark scheme) can show greater 
understanding’.  

Both teachers reported that they used more open small tasks at the beginning of the 
lesson (sometimes called starter tasks in the UK). For example, Barbara said she 
might present a diagram and ask students to write a statement about it; she remarked 
that previously she would probably have asked a more direct question. She said she 
allowed them to make any points they wanted before she directed the discussion 
towards her main teaching points. She chooses some starter tasks in order to promote 
discussion, such as asking the students to find a number with exactly five factors, 
which led to a discussion of the fact that numbers with an odd number of factors are a 
special sort of number (square). She said that in the past she would probably have 
given the class a more closed starter such as ‘What are the factors of 16?’ Peter 
provided an example, saying he might say ‘The answer is a quarter, what is the 
question?’ and he said this provided the students with opportunities for creative 
thinking.  
Barbara told us that in order to share students’ work she obtained a visualiser (a 
device which projects anything put under its lens onto a whiteboard) for her 
classroom. She now regularly shares student work in lessons. She also told us that 
because of her participation in the course, she has talked freely with her team about 
her own learning and she thinks this is good for the team. When our researcher spoke 
briefly to the second in charge in the department, he reported that the whole 
department had benefited from Barbara’s CPD because she shared new ideas with 
them and encouraged them to experiment in their own classrooms. 
Peter says that since he has been doing this CPD his teaching has changed. He says 
that he tries hard not to talk to the students from ‘high up’ and that he likes to get 
down to them (physically). He has started to move away from writing the lesson 
objectives on the board, and now has primary and secondary objectives (skills-based 
and content-based respectively). Sometimes he leaves an objective blank and asks the 
students at the end of the lesson what it they thought it was. This is an idea that came 
from someone at the CPD. 

THE INTERRELATED FACTORS CONTRIBUTING TO EFFECTIVE CPD 
The discussion above provides some evidence that for both teachers some learning 
and changes in practice took place. In-line with the learning and changes the course 
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leaders intended (see page 5), both teachers took some risks, using more open and 
challenging tasks in the classroom, and developing more relaxed interactions with 
their students. Barbara appears to have developed confidence to allow pupils to 
follow their own directions more and she had begun to think more critically about her 
own practice. We argue that this demonstrates that, to some extent at least, the CPD 
was ‘effective’.  
This raises the questions of the factors that may have contributed to this effectiveness, 
and what barriers may have been present to reduce effectiveness. First, both teachers 
confirmed the importance of experimenting in the classroom as suggested in the 
literature (see for example, Guskey), and what is perhaps interesting is how the CPD 
is set up to encourage this experimentation. We suggest that teachers involved in this 
CPD felt they have to try something new in their classroom,  because it is expected 
and because of the need to report back to the group. There was also some 
encouragement from the leaders’ comment that attending the course gave permission 
to take risks.  It is interesting that Barbara chose to do the gap tasks, whereas Peter 
decided to try something suggested by one of the other teachers participating in the 
CPD. This  may demonstrate that, although it was expected to do something between 
meetings, it seems that the way the task was set up allowed a great degree of personal 
choice in the selection of gap tasks.   
The differences between the gap tasks chosen by the two teachers may be explained 
by the differences in their experience and positions in their respective schools and by 
the culture of the schools. For Barbara, as an experienced teacher and head of 
department it may have been much easier to implement the gap task suggested by the 
leaders of the CPD, but as Peter told us, he was not able to experiment and try out 
new things in the classroom as much as he wanted (this was partly because of an 
intervention programme that has been put in place in his school to address the whole 
school emphasis on raising attainment). 
Second, being part of the CPD group was important to both teachers. This does not 
surprise us, as again the literature suggests that working collaboratively may 
contribute to effective CPD. However, we are interested in what it was for the two 
teachers that they valued. What seemed to be important for Peter was having access 
to new ideas, whereas Barbara’s emphasis was on the sharing of what she had done 
and the out-loud reflecting on it. 
Thirdly, and again unsurprisingly (Borasi, Fonzi, Smith, & Rose, 1999; Day, 1999; 
Olson & Barrett, 2004), it seems that having time away from school to think and 
discuss was important to the teachers, although we cannot tell what contribution this 
discussion made to the professional development of the teachers. However, our 
suggestion is that they found it stimulating and enjoyable, and that this sort of 
discussion has an important role in retaining the interest and motivation of teachers. 
As a final point, our observation of two of the meetings suggests that the participants 
enjoyed ‘doing’ the mathematics and our suggestion is that this is an important factor 
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contributing to ‘effective’ CPD. However, interestingly, neither teacher commented 
on the enjoyment they experienced when they were given the mathematical gap tasks 
to work on in the meetings.  
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TEACHERS’ PERCEPTIONS ABOUT INFINITY: 
A PROCESS OR AN OBJECT? 
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The present study aims to examine elementary school teachers’ perceptions about the 
notion of infinity. In particular, the two aspects of the concept- as a process or as an 
object- were examined through participants’ responses. In addition, teachers’ 
reactions during the comparison of infinite sets or numbers with infinite decimals 
were analyzed. Data were collected through a self-report questionnaire that was 
administered to 43 elementary school teachers in Cyprus. Data analysis revealed that 
the majority of teachers comprehend infinity as a continuous and endless process; 
thus, teachers confront difficulties and hold misconceptions about the concept. 
Key words: infinity, teachers’ perceptions, misconceptions, actual and potential 
infinity 
INTRODUCTION  
A major component of the research in mathematics education in the last decades has 
been the study of students’ and teachers’ conceptions and reasoning about 
mathematical ideas. Most of the research purported to examine the existence and 
persistence of alternative conceptions (preconceptions, intuitions) which diverge from 
the accepted mathematical definitions (e.g. Monaghan, 1986; Tall, 1992). The 
concept of infinity may be seen as a mathematical idea that causes various obstacles 
to learners due to the duality of its meaning, as an object and as a process 
(Monaghan, 2001). Thus the present study examines how primary school teachers 
conceive the notion of infinity in an attempt to define the notion, to provide suitable 
examples and to comprehend numbers or sets with infinite elements. 
THEORETICAL FRAMEWORK 
Definition of the concept of infinity 
The notion of infinity constitutes an intuitively contradictory concept that has long 
occupied many philosophers and mathematicians. Concretely, infinity emerged as a 
philosophical issue in the work of Aristotle, who separated the concept in two 
different aspects- potential and actual- that correspond to the ways of looking at 
infinity- as a process or as an object (Sacristàn & Noss, 2008; Tirosh, 1999). 
According to Aristotle the potential infinity can be conceived as an ever lasting 
activity that continues beyond time, while the actual infinity as the not finite that is 
presented in a moment of time (Dubinsky et al., 2005). The former category of 
infinity appears as something that qualifies the process, whereas the latter category 
refers to an attribute or property of a set (Moreno & Waldegg, 1991).  
The acceptance of potential infinity elicited a mathematical way of thinking that gave 
rise to great accomplishments in Greek mathematics - such as, the Eudoxus method 

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1771



of exhaustion– but ruled out the possibility of developing an actual conceptualization 
of infinity (Moreno & Waldegg, 1991). In the 19th century, actual infinity through 
Cantorian set theory has profoundly contributed to the foundation of mathematics and 
to the theoretical basis of various mathematical systems (Tsamir & Dreyfus, 2002). 
According to Galileo and Gauss, the use of actual infinity leads to inherent 
contradictions since it cannot be included in a logical, consistent reasoning. Due to 
the fact that the human brain is not finite, individuals cannot consciously focus on all 
the information at a given time- and therefore conceive infinity as an object- but they 
move between different aspects- and conceive infinity as a process (Tall, 1992). 
Usually, learners define infinity as "something that continues and continues" and not 
as a complete entity (Monaghan, 2001; Tirosh, 1999) or they conceive infinity using 
the limit notion, referring to a process of “getting close”, with the limit perceived as 
unreachable (Cornu, 1991). On the other hand, the concept of actual infinity ascribed 
to learners through the reference to large finite numbers or to collections containing 
more than any finite number of elements (Monaghan, 1986). 
The construction of the N set  
From the time that Aristotle introduced the two meanings of infinity- potential and 
actual- difficulties in the understanding of the set of natural numbers were provoked. 
For example, regarding the formation of the set of natural numbers, a simple, not 
finite process begins from number 1 and adds one in each step indefinitely without 
stopping. This results to a line of infinite sets ({1}, {1,2}, {1,2,3}, …), which is an 
instance of potential infinity, a series of sets without end (Lakoff & Núñez, 2000). On 
the contrary, someone may consider the set of all natural numbers, without having the 
ability to enumerate all the elements of the set. By the encapsulation of the process, 
the object of N= {1,2,3,…} is created, that corresponds to the set of natural numbers 
(Monaghan, 2001). That is an instance of actual infinity - a completed infinite entity 
(Lakoff & Núñez, 2000). 
Comparing infinite sets 
One of the misconceptions that appears in the comparison of infinite sets is the 
application of properties that apply only to finite sets. Tsamir and Tirosh (1999) 
mentioned that methods used by learners for comparing infinite sets are largely 
influenced by the methods they tend to use when comparing finite sets. As Galileo 
(1945) pointed, a finitist interpretation that prevails upon the comparison of infinite 
sets is the use of the inclusion idea: that a set and a proper subset cannot be 
equivalent (Sacristàn & Noss, 2008; Tirosh, 1999). For instance, every natural 
number has its square and vice-versa, which means that the set of natural numbers 
and the set of their squares are equivalent, although the set of squares is a subset of 
natural numbers. Such a conclusion is not consistent with simple logic since the 
whole and the part cannot be equivalent. Therefore, an individual, in an attempt to 
reinforce his/her beliefs that a set has a different cardinality from any of its subsets, 
uses the justification of “part-whole” (Singer & Voica, 2003) than the one-to-one 
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correspondence among the elements of sets that determines the equivalence between 
infinite sets (Tirosh & Tsamir, 1996). 
Furthermore, many researchers (e.g. Tirosh, 1999; Tirosh & Dreyfus, 2002) explored 
the impact of different representations on the comparison of the same infinite sets. 
Researchers have focused on students’ inconsistencies in relation to the concept of 
infinity using four different representational registers: horizontal, vertical, numeric 
explicit and geometric. Tirosh and Tsamir (1996) found that a numerical horizontal 
representation- in which the two sets are horizontally situated one next to the other- 
encouraged part-whole argumentation. On the contrary, the geometrical 
representation that is constituted of a schematic drawing of sets, triggered equivalent 
responses and “matching consideration“ through a notion of pairing elements (Tirosh 
& Tsamir, 1996). It seems that geometrical representation prevents access to higher 
levels of conceptualisation and allows better understanding of one-to-one 
correspondence among the elements of infinite sets (Moreno & Waldegg, 1991).  
Conceptualising the equalities 0.999…=1 and 0.333…=1/3 
Various obstacles are presented with limiting processes that deal with the properties 
of the set of real numbers and of the continuum (Sacristàn & Noss, 2008). In 
particular, difficulties are observed during the comparison of irrational numbers 
which consist of infinite repeating and non-repeating decimals (Vinner & Kidron, 
1985).  
Many studies focused on the conceptualisation of the equalities 0.999…=1 and 
0.333....=1/3 (Edwards, 1997; Monaghan, 2001). The majority of students tend to 
reject the former equality, on the ground that the two numbers have a negligible 
difference from one another (Monaghan, 2001) and with the limit being viewed as a 
boundary, rather than as the value of infinity (Cornu, 1991). With respect to the 
second equality, students seem to accept that 0.333… tends to 1/3, as it may result by 
dividing 1 by 3, something unfeasible in the case of the equality 0.999… =1 
(Edwards, 1997). This happens because most students conceive number 1 more as an 
object, as an entity, while 0.999… is conceived as a process (Monaghan, 2001). 
So far, several studies have examined learners’ perceptions and misconceptions about 
infinity (Tsamir & Tirosh, 1999; Monaghan, 2001; Edwards, 1997). However, there 
is a lack of research studies that examine teachers’ perceptions about infinity and this 
fact has served as a motivation to conduct this study. Namely, the purpose of the 
present study is threefold. Firstly, this study aims to examine the perceptions of 
elementary school teachers regarding the concept of infinity. In particular, the two 
aspects of the concept- as a process or as an object- are examined through the 
definition and participants’ responses. Secondly, misconceptions that participants 
have during the comparison of infinite sets or numbers with infinite decimals will be 
discussed. Finally, the impact of different representations in the comparison of 
infinite sets will be investigated. 
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METHODOLOGY  
Sample 
The present study involved 43 participants, 25 pre-service and 18 in-service primary 
school teachers, 12 men and 31 women. The experience of in-service teachers in 
instruction varied from one to 32 years. In addition, 25 participants possessed a 
master degree and one of them was a PhD degree holder. It is worthy to notice that 
the participants were randomly selected from a seminar offered in Mathematics 
Education at the University of Cyprus during the fall semester 2007-2008, without 
taking into consideration if they were pre-service or in-service teachers. 
Instrument  
Data were collected through a self-report questionnaire (Figure 1), which took 20 
minutes to complete. The questionnaire was comprised of four tasks that aimed to 
identify perceptions related to the concept of infinity.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The tasks of the questionnaire. 
The first task aimed at eliciting teachers’ perceptions about the concept of infinity.  
Participants were asked to report a definition for infinity and to present two examples 
that would involve the particular concept. The definitions were not coded as right or 
wrong answers according to formal mathematical concepts and notations, since the 
goal of the task was to address the underlying conceptions of infinity as a process or 
as an object.  
The examples suggested by participants were grouped as mathematical or empirical 
examples according to their context. In particular, the examples that referred to 
mathematical concepts were categorized as mathematical examples. At the same 
time, the examples related to personal experiences or knowledge from real life were 
considered as empirical. 

1. a) Please give a definition of the concept of infinity. 
    b) Give two examples for the concept of infinity. 
  
2. How many elements are there in the set S= {-3, -2, -1, 0, {1, 2, 3,…}}? 
 
3. Which of the following sets has the bigger cardinality? Please justify your answer. 
   a) The set of natural or the set of even numbers? 
   b) The set A= {1, 2, 3, 4, …} or the set B={1, 3, 5, 7,…}? 
   c) The set A= {1, 2, 3, 4,…} or  
        the set B = {1,½,1/3,¼, …}? 
 
 
    d) The set of squares   A=  {       ,                 ,                       , …    },  
 
         or the set of numbers B= {12, 22, 32, …}? 
 
4. a) Is the equality 0.999…=1 true? Please justify your answer. 
    b) Is the equality 0.333…=1/3 true? Please justify your answer. 

1 cm 
2 cm 

3 cm 
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The second task examined teachers’ understanding about the construction of an 
infinite set. Specifically, participants were asked to determine the cardinality of the 
set S={-3,-2,-1, 0,{1,2,3, ...}}, in which the infinite set of natural numbers appeared 
as an element of a different set. Moreover, the task attempted to investigate teachers’ 
understanding about the construction of the N set as an entity or as a process.   
The third task aimed to investigate the methods that teachers use during the 
comparison of infinite sets: the part-whole and the one-to-one correspondence. In 
addition, this task examined the impact of different representations in the selection of 
a criterion to determine the equivalence of infinite sets. The impact of four 
representations- horizontal, vertical, numeric explicit and geometric- were 
investigated in the comparison of infinite sets (Tirosh & Tsamir, 1996). 
Finally, the fourth task included two sub-tasks that examined teachers’ 
comprehension of the equalities 1=0.999… and 1/3=0.333… (Fischbein, 2001; 
Dubinsky et. al, 2005). The task aimed to observe the way teachers understand 
numbers with infinite digits and to compare the answers of the sample between the 
two equalities. The comparison was based on the different nature of the numbers, 
since the division of 1/3 can result to 0.333…, in contrast to 1 that can not be 
produced directly by 0.999… 
The questionnaire required teachers to complete the four tasks and to justify their 
responses. Quantitative data were analyzed with the statistical package SPSS using 
descriptive statistics. The justifications and the examples provided by the sample 
were analyzed using interpretative techniques (Miles & Huberman, 1984), as 
evidence of teachers’ perceptions about the concept of infinity. 
RESULTS 
Task 1. Definition of the concept of infinity 
Two out of three participants (72.1%) defined infinity as an endless process. Teachers 
used phrases such as: “it goes on forever”, “it’s a process that never ends”, “it has no 
beginning and no end…always follows another number”, “keeps going and 
increasing”. The remaining teachers (27.9%) defined infinity as an object. In their 
own terms: “it is an infinite whole”, “it is something countless”, “it is a set with 
unlimited elements”, “it is an undefined set”.  
The majority of teachers (79.1%) were able to provide two examples for the concept 
of infinity, either mathematical or empirical, while 11.6% provided only one. The 
remaining 9.3% of the participants were unable to provide at least one example. 
Specifically, 62.8% of teachers presented two mathematical examples and 86.1% 
provided at least one mathematical example. The mathematical examples that were 
provided can be grouped as: (a) sets of numbers (e.g. natural, odds), (b) infinite 
sequences and series, (c) numbers that can be expressed as an infinite sequence of 
decimal digits (e.g. √2, 1:3), (d) geometrical examples (e.g. the set of straight lines 
through a point, the set of rectangles with perimeter 20 cm) and (e) trigonometric 
examples (e.g. the tangent of 900). 
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On the other hand, only 30.3% of the participants gave empirical examples. The 
empirical examples that were provided in their own words were: “sunrays”, “earth’s 
rotation about its axis” and “the number of a satellite’s tracks in the void”. 
Participants provided wrong examples for the concept of infinity using objects the 
quantity of which is a large finite number, as stars, universe, sounds, grain of sands, 
and the number 1010^10. In addition, it is worthy to notice that 2.3% of the participants 
did not provide any example at all. One interesting statement was the following:  

“There are no specific examples for the concept of infinity. By the moment you define it, 
it stops being infinity any more”!  

Task 2. The construction of the N set  
In the second task, that referred to the cardinality of the set S={-3,-2,-1,0,{1,2,3,...}}, 
two different answers emerged. Even though it may seem to be striking, 38 out of 43 
teachers (88.4%) considered the cardinality of the set S as infinity, while the rest of 
them (11.6%) considered that the cardinality is 5. The majority of the participants 
used explanations such as: 

“Set S has infinite elements, since it is an overset of {1, 2 , 3…} that is infinite.” 
“The set consists of infinite elements, because this (showing the N set) is unlimited.” 
“The cardinality of S is infinity because if you add 4 elements to infinity, you get infinity 
again: ∞ +α = ∞. ” 
“Elements included in S are: -3, -2, -1, 0 and all natural numbers.” 
“S is an infinite set in its positive direction.” 

Task 3. Comparing infinite sets 
The third task aimed to investigate the way different representations influence the 
comparison of infinite sets. As expected, the geometric representation helped the 
comparison more than the others, since 76.7% of teachers realized that the two sets 
presented, had the same cardinality. The respective percentages of correct answers for 
the other representations were: 46.5% for verbal, 51.2% for horizontal, and 55.8% for 
vertical representation. 
As Table 1 shows, the geometric representation facilitated the participants to 
understand the one-to-one correspondence among the elements of the two sets rather 
than the remaining representations. Nevertheless, none of the teachers showed a 
coherent reasoning that connects infinite sets to confirm their explanation. 

Justifications Representation 
 Verbal Horizontal Vertical Geometric 

1-1 correspondence 3 (7.0%) 3 (7.0%) 5 (11.6%) 13 (30.2%) 
Part-whole 18 (41.9%) 17 (39.5%) 15 (34.9%) 6 (14.6%) 

None  22 (51.2%) 23 (53.5%) 23 (53.5%) 24 (55.8%) 

Table 1: Justifications for the comparison of infinite sets 

Moreover, the geometric representation reduced the misconception “the whole is 
greater than the part” that in other cases causes false answers. Some indicative false 
answers using the “part-whole” justification are presented below:  
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“There are more natural numbers than odd numbers. Odd numbers are only a part of 
natural numbers.”  
“Set A={1,2,3,4,…} has more elements than set Β={1,3,5,7,…}, because set A contains 
also even numbers.” 
“Set Β={1,½,1/3,¼,…} has additional elements than Α={1,2,3,4,…}, since you can find 
many fractions between two natural numbers. ” 

Task 4. Conceptualising the equalities 0.999…=1 and 0.333…=1/3 
Participants conceived the above equalities differently, providing three categories of 
answers. Specifically, 41.9% of teachers thought that the equality 0.333…=1/3 is 
right in contrast with 4.7% that accepted the equality 0.999…=1 as correct. The 
majority of the teachers (58.1%) used the concept of limit to confirm the correctness 
of the equality 0.999…=1, while only 27.9% of them used a similar explanation for 
the equality 0.333…=1/3. The difference between the two conceptions was supported 
by the following statement:   

“0.333…=1/3 because if you divide 1 by 3 you get 0.333… but you don’t get 0.999… if 
you divide 1 by 1.”  

A considerable number of participants answered that the two equalities are false 
(34.9% for 0.999…=1 and 27.9% for 0.333…=1/3). Some indicative false 
explanations offered by teachers regarding the equality 0.999…=1 were the 
following:  

“Number 1 will always be larger than the largest decimal number 0.999…” 
“In daily life, the equality can be right due to rounding-up, but in mathematical contexts, 
the numbers 0.999… and 1 are different.” 
“There is an infinitesimally small difference between the two numbers.” 
“An equality is not right unless a=a is valid.” 

Teachers’ explanations for the equality 0.333…=1/3 were similar to the former ones. 
DISCUSSION 
The present study examined elementary school teachers’ conceptions about infinity. 
Specifically, the aim of the study was threefold: to examine teachers’ perceptions 
about the nature of infinity as an object or as a process, to investigate teachers’ 
misconceptions during the comparison of numbers or sets with infinite elements and 
to discuss the impact of different representations in the comparison of infinite sets. 
The majority of teachers comprehend infinity as an unlimited process as indicated by 
their responses on tasks 1, 2 and 4. This finding is in accordance with the work of 
many researchers (Tall, 1992; Monaghan, 2001; Tirosh, 1999) who stated that a 
person’s comprehension regarding the notion of infinity is supported by the strength 
of his intellectual finite schemes that are mainly referred to the process that creates 
infinity than to the completed entity. The intuitive interpretation of infinity as 
potential constitutes a cognitive obstacle in the understanding of the concept and 

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1777



therefore individuals confront difficulties and hold misconceptions about the concept 
(Fischbein, 2001). 
Teachers mainly conceive infinity as a mathematical idea with limited applications to 
daily life. The fact that teachers quoted examples from various fields of mathematics 
(e.g. geometry, trigonometry, and series) indicates that the concept of infinity is 
presented throughout the mathematics curriculum. Although some empirical 
examples were provided, these included large finite numbers. According to Singer 
and Voica (2003), due to the human’s disability in counting the grain of sands or in 
computing the number 1010^10, the person correlates them with the concept of infinity. 
Indeed, when an individual cannot observe something with his/her senses totally, then 
this thing is connected with the notion of infinity, which is by definition something 
unreachable. 
The results of the study reveal the correlation between the definitions of infinity with 
its mathematical implications during the construction of an infinite set, as the N set. 
Although teachers were expected to determine that set S={-3,-2,-1,0,{1,2,3,.. .}} is 
identical to set S={-3,-2,-1,0,N}, it seems that they couldn’t perceive {1,2,3,...} as a 
single object, as an entity. According to Dubinsky and his colleagues (2005), an 
individual is able to construct a completed idea for the concept of infinity after 
interiorizing repeating endless actions, reflecting on seeing an infinite process as a 
completed totality, and encapsulating the process to construct the state at infinity, 
understanding that the resulting object transcends the process.  
Teachers’ decisions as to whether two given infinite sets have the same cardinality 
depend on the specific representation in the problem (Tirosh & Tsamir, 1996). 
Geometric representation yielded one-to-one correspondence during the comparison 
of infinite sets and helped teachers avoid the justification “part-whole”. The 
schematic drawing, in combination with the vertical representation, facilitated 
teachers to understand that infinite sets had the same cardinality. In contrast, the use 
of horizontal and verbal representations caused misconceptions of the form “part-
whole” similar to those reported by Singer and Voica (2003). This particular finding 
shows that teachers give contradicting answers during the comparison of the same 
sets that are presented in different representations, not acknowledging that 
incompatible responses are not acceptable in mathematics. 
Participants’ responses about the equalities 0.999…=1 and 0.333…=1/3 confirm the 
results of previous researches (Monaghan, 2001; Cornu, 1991; Fischbein, 2001). 
Although the aim and the context of the two equalities were similar, they caused 
different answers. The equality 0.333…=1/3 was accepted as valid easier than the 
equality 0.999…=1 which reinforced the use of limit. As Edwards (1997) stated, 
0.333… equals to 1/3 because it might result from the division 1 by 3. Indeed, the 
number 0.333… can be constructed from a process, in contrast with 0.999… that is 
not intuitionally or visually understandable (Dubinsky et al., 2005). For this reason, 
the concept of potential infinity is used in the first case, while in the second case there 
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is a mixed understanding of potential (0.999… as an infinite sequence of 9’s) with 
actual infinity (object conception for the number 1).  
The present study offers teachers an opportunity to consider the misconceptions 
related to the concept of infinity. If these misconceptions are reproduced during 
teaching, then students’ misconceptions about the concept of infinity will be 
empowered and in turn become very difficult to overcome. The notion of infinity is 
related with important mathematical concepts, such as number configuration, number 
comparison and the numerical line, that are important for arithmetic and algebra. For 
this reason, teachers must be aware of the difficulties encountered regarding the 
specific concept, in an attempt to avoid “problematic” teaching. In addition, it is 
important for teachers to develop conceptual understanding of the notion of infinity 
that is to connect potential and actual infinity with concrete examples from real life 
(Singer & Voica, 2003). 
Furthermore, the present study offers educators an opportunity to consider the 
abovementioned misconceptions and to propose ways to overcome them. In 
particular, academic programs offered to teachers should include mathematical 
knowledge regarding to infinity in combination with instructional approaches related 
to the concept. A proposed teaching approach could include the following steps: 
presentation with several typical tasks aimed at uncovering teachers’ intuitions about 
the concept, discussion about infinity’s applications in real life, introduction of the 
formal definition of infinity and the two aspects- potential and actual- and attempt to 
distinguish them in examples. Furthermore, students’ difficulties for the concept, 
comparison of the intuitive beliefs in light of the formal definition, and explanation of 
the symbols and other representations of the concept may be presented. Thus, in the 
framework of the training program teachers could be exposed to opposing views of 
the concept that may be used to develop a more coherent appreciation of the formal 
definition and to the refinement of intuitions (Mamona-Downs, 2001). As Fischbein 
(2001) noted, appropriate teaching may help the learners to cope with counter 
intuitive situations while it makes them aware of intuitive constraints and of the 
sources of the mental contradictions. 
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PERCEPTIONS ON TEACHING THE MATHEMATICALLY 
GIFTED 
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The aim of this study is to describe and analyze the structure of the perceptions of 
elementary school teachers concerning mathematically gifted students. The study was 
conducted among 377 elementary school teachers, using a questionnaire of 21 
statements on a 5-point Likert type scale. The results of the study revealed that 
teachers’ perceptions regarding gifted students in mathematics can be described 
across four dimensions based on the following factors; teachers’ needs, teachers’ 
self-efficacy beliefs, characteristics of the gifted and the different services delivered 
to meet the needs of the gifted. Implications for teachers, researchers and policy-
makers are discussed. 
Keywords: giftedness, teachers’ perceptions, teacher training, self-efficacy beliefs, 
special education 
INTRODUCTION 
Gifted students differ from their classmates. Therefore, differentiated instruction is 
required, in order to maximize their talents. However, according to Archambault et 
al. (1993), as well as Westberg et al. (1993), very few instructional or curricular 
modifications are made in regular elementary classrooms in order to enhance gifted 
students’ abilities. 
The present study purports to examine the perceptions of elementary school teachers 
regarding gifted students, with reference to mathematics. In particular, in this paper 
we firstly aim to confirm that teachers’ perceptions can be defined accross four 
dimensions which correspond to teachers’ needs, teachers’ self-efficacy beliefs, the 
characteristics of the gifted and the different services delivered to meet the needs of 
the gifted, as described in the model developed specifically for this study. Secondly, 
we intend to investigate the structure of teachers’ perceptions about the ways to 
address the needs of gifted students, the characteristics of mathematically gifted 
students and the importance of  the teacher in order to be able to provide the 
appropriate support and guidance to these students. 
Investigating the views of teachers regarding gifted students is expected to provide 
valuable information on the aspects which are susceptible of improvements. In 
addition, this study could serve as a starting point for the development of inservice 
programs for teacher education concerning mathematical giftedness.  
THEORETICAL FRAMEWORK 
Characteristics of gifted students in mathematics 
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Mathematically gifted students are characterized by an expanded cognitive base and 
are more capable of exploiting knowledge in order to realize their objectives. A 
necessary trait of a teacher of the gifted should be the knowledge of their 
characteristics and needs, as stated by Kathnelson and Colley (1982). Several 
characteristics of mathematically gifted students have been discussed in previous 
studies. Maker (1982) pointed out three key areas in mathematics that gifted students 
differ from their peers; pace at which they learn, depth of their understanding and 
their interests.  
Regarding the first area, gifted students are capable of providing answers with an 
unusual speed and precision (Heid, 1983), namely they are able to solve mahematical 
problems faster (Hettinger & Carr, 2003). Their ability in identifying relationships in 
subjects, concepts and ideas without previous related teaching (Heid, 1983), increases 
the pace at which they learn. The fact that gifted students are flexible in using 
different strategies and they are able to select the most suitable strategy for each 
situation in compination with the possession of complex metacognitive and self-
regulative skills (Hettinger & Carr, 2003) proves the depth of their understanding. In 
addition, Johnson (2000) reported that mathematically gifted students give original 
explanations and have the ability to organize data, transfer knowledge and generalize 
ideas. It has also been observed that gifted students are often more interested and 
perform better in tasks that require mathematical reasoning than computational 
processes (Rotigel & Lupkowski-Shoplik, 1999). As far as their interests are 
concerned, gifted students prefer to discuss with adults and to be involved with 
professionals. They are more favorable to advanced issues than their classmates, e.g. 
mathematical proof, politics, space. 
Nurturing gifted students 
Α number of methods have been proposed and developed to fulfill the needs of gifted 
students. Among them, enrichment activities, differentiation of teaching, flexible 
grouping, acceleration and increased use of technology are the most common ones. 
Research by Rotigel and Pello (2004) has shown that a combination of the 
aforementioned approaches is the best solution for the gifted.  
Enrichment refers to the presentation of content in more depth, width, complexity or 
abstraction related to the curriculum delivered to all students (Florida Department of 
Education, Bureau of Exceptional Education and Student Services, 2003; Rotigel & 
Pello, 2004). According to Lewis (2002) and Renzulli (1976), new content is added 
to the curriculum, existing content is explored in more depth and the curriculum is 
expanded with additional tasks that require cognitive and research abilities.   
Acceleration is defined as the practice of presenting content sooner or in a faster 
pace. Brody and Benbow (1987) argued that acceleration can be obtained in a variety 
of ways. For example, acceleration can be achieved in one or many subjects or by 
skipping grades. In addition, university courses offered to secondary education gifted 
students or early graduation from secondary education and early enrolment in a 
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higher institution may be considered as acceleration options (Brody & Benbow, 
1987). Acceleration provides the appropriate level of challenge in order to avoid 
boredom from repeated learning and to decrease the time required to graduate from 
an educational level (National Association for Gifted Children, 2004). 
Useful suggestions about ways teachers can use in their classrooms in order to 
differentiate teaching to fulfill the needs of gifted students are provided by Johnson 
(2000). In particular,  Johnson (2000) pointed that gifted students need inquiry-based 
learning approaches that emphasize open-ended problems with multiple solutions, as 
an opportunity to show their abilities. To this end, the teacher should pose a variety of 
higher-level questions during justification and discussion of problems. Moreover, 
technology can serve as a means for the gifted student to reach the appropriate depth 
and width of the curriculum (Johnson, 2000). 
Teachers’ needs 
There is a prevailing myth that gifted students do not need special attention since it is 
easy for them to learn what they need to know (Johnson, 2000). On the contrary, their 
needs require a deeper, broader, and faster paced curriculum than the regular one. 
Due to the complexity of giftedness, it is of great importance that teachers have 
specialized preparation in gifted education, namely in identifying and nurturing the 
mathematically gifted (Johnson, 2000; VanTassel-Baska, 2007). Not only strong 
pedagogical knowledge is needed, but also a strong background in mathematical 
content. Providing a more general framework, Jenkins- Friedman and her colleagues  
(1984) argued that an effective teacher should have five kinds of skills; managerial-
facilitative, pedagogical, social-consultative, directive and planning and interactive 
skills. 
In this direction, Gear (1978) observed that teacher effectiveness can be improved 
with specific training. VanTassel-Baska (2007), commented that teachers of the 
gifted need to be able to address multiple objectives at the same time, recognize how 
students might manipulate different higher level skills in the same task demand, and 
easily align lower level tasks within those that require higher level skills and 
concepts. 
Despite all recommendations and efforts in providing appropriate support to gifted 
students, previous studies have shown that the majority of teachers have neither the 
time, qualifications nor sources to develop and implement a differentiated curriculum 
(Tyler-Wood et al., 2000). In addition, low teacher efficacy beliefs in meeting the 
needs of gifted students, their lack of relevant teacher training which is partially 
originated by the lack of preparation for this task during their graduate studies (Lee & 
Bailey, 2003), reveals the intensity of this phenomenon.  
Teachers’ perceptions regarding gifted students 
Teachers’ perceptions about teaching and learning have a powerful influence on the 
ways teachers act in the classroom and interact with their students (Bain et al., 2007). 
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Despite their importance, little is known about the current perceptions of individuals 
in teacher-education programs regarding the educational practices for gifted children 
(Bain et al., 2007). Particularly in the case of gifted students, there is a disparison 
between teachers’ perceptions; on the one hand teachers are overwelmed to work 
with gifted children and on the other hand they are negatively prejudiced towards 
them.   
Regarding positive perceptions held by teachers about gifted students, Rothney and 
Sanborn (cited by Martinson, 1972) noted that teachers believe that the gifted will 
reveal themselves through academic grades and they need all existing content plus 
more. Therefore, teachers should add to the existing curriculum material 
requirements rather than delete anything. Studies conducted by Justment and 
colleagues (cited by Martinson, 1972) revealed that teachers experienced with special 
programs were generally enthusiastic to work with gifted students, since the 
experience with training programs produces more favorable attitudes toward gifted 
children (Martinson, 1972).  
Nevertheless, teachers of the gifted often feel threatened by these students since they 
are sometimes confronted with students with more knowledge and abilities than 
themselves (Shore & Kaizer, 1989). In addition, the often stated misconception, as 
suggested by Bain and her colleagues (2007), namely that gifted children will find 
their way on their own, provides an alibi for educational system to continue 
neglecting their needs.  
METHODOLOGY 
Subjects 
The sample consisted of 337 elementary school teachers. Table 1 presents 
demographical data of the study sample. The percentage of each category is presented 
in parenthesis.      
Years of service Men Women Total 
1-10 39 (11.57) 174 (51.63) 213 (63.20) 
>10 26 (7.72) 98 (29.08) 124 (36.80) 

Total 65 (19.29) 272 (80.71) 337 (100.0) 

Table 1: Sample demographic data    

Data Collection 
In order to collect data for this study, a questionnaire was administered to 337 
elementary school teachers in Cyprus. The questionnaire consisted of 21 statements 
in a 5-point Likert scale with number 1 referring to the complete disagreement of the 
teacher and number 5 represented complete agreement with the statement. 
Participants indicated the degree that better expressed their opinion. In addition, 
empty space was provided to optionally add any remarks.  
Data analysis 
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Data collected were analyzed in an effort to explore the perceptions of elementary 
school teachers regarding mathematically gifted students. In particular, the statements 
focused on four aspects; teachers’ role, teachers’ self-efficacy beliefs, ways to meet 
the needs of gifted and their characteristics. Given that on the theoretical part of the 
study several issues regarding mathematical giftedness have been highlighted, an 
effort was made to assess whether a theoretically driven model would fit to the data. 
To achieve this, confirmatory factor analysis was performed.  
The statistical modeling program MPLUS (Muthen & Muthen, 2007) was used to test 
for model fitting in the present study. Three fit indices were calculated, before 
evaluating model fit: The ratio of chi-square to its degree of freedom (x2/df ), the 
comparative fit index (CFI), and the root mean-square error of approximation 
(RMSEA). According to Marcoulides & Schumacker (1996), in order to support 
model fit, the abovementioned indices required to be verified. In particular, the 
observed values for x2/df should be less than 2, the values for CFI should be higher 
than 0.90, and the RMSEA values should be close to or lower than 0.08. 
RESULTS 
In this study, we hypothesized an a-priori structure of teachers’ perceptions regarding 
the mathematically gifted and then tested the ability of a solution based on this 
structure to fit the data. The proposed model consists of four first-order factors: 
teachers’needs (F1; statements 15, 17, 18 and 21), teachers’self-efficacy beliefs 
toward teaching the mathematically gifted (F2; Statements 5 and 13), ways to meet 
the needs of these students (F3; Statements 9 and 20) and characteristics of gifted 
students in mathematics (F4; statements1, 2 and 3) that form the second-order factor 
of teachers’ perceptions concerning the mathematically gifted.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: The structure of teacher perceptions about gifted students in mathematics.
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Figure 1 presents the structural equation model with the latent variables of teacher 
perceptions regarding mathematically gifted students and their indicators. The 
descriptive-fit measures indicated support for the hypothesized model (CFI=0.97, 
χ2=66.07, df=40, χ2/df=1.65, p<0.05, RMSEA=0.04). The parameter estimates were 
reasonable in that almost all factor loadings were statistically significant and most of 
them were rather large (see Figure 1). Several statements were excluded from the 
model due to their low factor loadings compared to the remaining statements. The 11 
statements included in the model are shown in Appendix 1. 
In particular, the analysis showed that each of the statements employed in the present 
study loaded adequately only on one of the four factors (see the first order factors in 
Figure 1), indicating that the four factors can represent four distinct aspects of 
teachers’ perceptions concerning gifted students in mathematics.   
Teachers’ comments that were written in the empty space provided are presented 
below to enhance the proposed model, after being categorized in the four factors 
formed by the abovementioned model.   

Factor Teachers’ comments 

1.
 

T
ea

ch
er

s’
 

ne
ed

s  

- It is necessary for the teachers to receive training in teaching gifted students. 
Having a counselor in each school will be very helpful for the teachers. 

- The ideal is to have special teachers for gifted students in each school. 

2.
 T

ea
ch

er
 

se
lf-

ef
fic

ac
y 

be
lie

fs
 

- Gifted students might ask difficult questions that I will not be able to answer. I 
prefer not to have one in my classroom. 

- I am not aware of the criteria to identify a truly gifted child. 

3.
 W

ay
s t

o 
m

ee
t t

he
 n

ee
ds

 o
f t

he
 g

ift
ed

 - The Ministry of Education should send material for the gifted in order to 
differentiate their work.  

- The school should support gifted students, not only students who experience 
difficulties. They should be given opportunities to take advantage of their 
talents and experiences according to their interests. Challenging activities 
should be provided in order to avoid boredom.  

- It is difficult for them to follow a mechanical learning path. Thus, the learning 
process should conform to their personality and allow for creative activities. 

- Gifted students do not always prefer to have differentiated work. Sometimes 
they prefer to work like the others. Particularly in the first grades, they do not 
want to differ.  

- They should help low-ability students and facilitate teacher’s work.  
- They can develop their talents out of school motivated and supported by their 

parents.  
- The fact that they have different potentials than those of their classmates, is 

enough. They do not need any other differentiation. 
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Table 2: Teachers’ comments    
DISCUSSION 
Given the importance of the role of the teacher both in identifying and nurturing 
gifted students, the aim of this study was to examine the structure of the perceptions 
of elementary school teachers concerning gifted students in mathematics. The study 
reported in this paper provided evidence that teachers’ conceptions about 
mathematically gifted students can be described across four dimensions based on the 
following factors. Specifically, the first factor is teachers’ needs to appropriately cater 
this special group of students. The second factor refers to self-efficacy beliefs held by 
teachers, such as considering themselves able to provide adequate support to 
mathematically gifted students and help them realize full potential. The third factor is 
the different ways used during teaching to meet the needs of the gifted, i.e., providing 
them with more challenging activities than those of their peers. The fourth factor 
consists of the characteristics of the gifted; for instance, that gifted students prefer to 
reason than proceed to computational processes. The abovementioned structure 
suggests that teachers need to work not only on their knowledge regarding the 
characteristics of gifted students and the different approaches that proved to be useful 
in providing appropriate services, but also knowledge and skills required for the 
teachers to possess, as well as their self-efficacy beliefs. Based on this assumption, 
we could speculate that programs aimed at educating teachers in the domain of gifted 
education and more specifically in the field of mathematics, should focus on these 
four aspects.  
The high factor loadings of the statements regarding the existence of counselors of 
the gifted in schools (S15 and S21) to the corresponding factor might be explained by 
the fact that teachers receive no guidance or training regarding educating the gifted. 
This is also reported in the remarks provided by teachers after completing the 
questionnaire. In Cyprus, there is no provision for gifted students stated in the 
mathematics curriculum. Therefore, the need for gifted education programs inside or 
outside the school boundaries is apparent. The teachers’ concerns about the absence 
of relevant support by the state is also evident by the factor loadings of  F1 and F3 in 
the second-order factor which is the teachers’ perceptions. The results verify similar 
findings by Tyler-Wood et al. (2000) as well as by Lee and Bailey (2003).  
It is evident from teachers’ remarks related to the ways of meeting the needs of gifted 
students, that although they are aware of various approaches, such as differentiation 
as suggested by Johnson (2000), enrichment discussed by Lewis (2002) and Renzulli 
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- Being gifted does not mean being perfect in everything. Usually, you meet 
students gifted in one or more domains.  

- I think that nowadays it is difficult to talk about gifted students. Many children 
have special abilities-talents in specific domains. Intelligence is defined from 
various factors. A student may be gifted in mathematics, while another student 
may me gifted in art. I would say that there is no general giftedness. 

- In my opinion, the term “gifted” does not exist or it is used erroneously.  
- There are no objective criteria to define a student as gifted.   
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(1976), they also hold various misconceptions. In particular, a remark that was noted 
by a teacher is that gifted students should help low-ability students and facilitate 
teacher’s work. Another view held by a teacher is that the fact that gifted students 
have different potentials than their classmates is already enough and they do not need 
any other differentiated teaching. The aforementioned perceptions contribute to the 
prevailing myth that gifted students do not need special attention since it is easy for 
them to learn what they need to know (Johnson, 2000). Another teacher pointed out 
that students can advance their talents out of school motivated and supported by their 
parents. It is also important to note that no teacher mentioned anything about the use 
of technology as a way of supporting mathematically gifted students as proposed by 
Johnson (2000). 
The results reveal that teachers are also concerned about their efficacy. In fact, a 
teacher acknowledged the fact that he is not able to identify a gifted student, while 
another teacher stated that gifted students might ask difficult questions, thus 
embarrassing the teacher and causing negative attitudes towards the gifted. This 
remark enhances the findings of Lee and Bailey (2003), according to which teachers 
have low efficacy beliefs in meeting the needs of the gifted.  
At the same time, the characteristics that distinguish mathematically gifted students 
do not seem to be of great significance to the teachers. This could be owed to the fact 
that teachers are more interested in providing suitable experiences and activities for 
their students, without being aware of their distinctive characteristics. This implies 
that whether teachers have high ability or gifted students in their classrooms, they 
treatall students in the same way. In order to succesfully deliver the appropriate 
services to gifted students, teachers need first to identify them. Therefore, a solid 
understanding of characteristics observed in gifted children should be a requirement 
for teachers.   
The present study extended the literature in a way that a model was validated 
examining the structure of teachers’ perceptions concerning the mathematically 
gifted. The model proposed in this study offers teachers, researchers and policy 
makers a means to examine mathematical giftedness as it is experienced through the 
eyes of the teachers. From the perspective of teachers, the model may be used in 
order to aknowledge their lack of knowledge regarding behaviors that characterize 
gifted students and receive the appropriate support to feel confident to help 
mathematically gifted students realize their potentials. From the perspective of 
researchers and policy makers, it is likely that the model could serve as a starting 
point for the development of appropriately designed teacher training programs for the 
identification and nurture of the gifted. As a consequence, the change observed to 
teacher beliefs towards the gifted could be examined by researchers, as well as their 
shift in using various instructional approaches regarding mathematically gifted 
students. Finally, policy makers could exploit the results of this study by adding a 
special section in the curriculum for gifted students, acknowledging the fact that they 
have special needs that should be met.  
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Appendix 1: The 11 statements included in the model. 
S1 Mathematically gifted students solve problems faster. 
S2 
S3 
S5 

A mathematically gifted student prefers to reason than compute.  
Gifted students might have attitude problems. 
I believe that I have the appropriate means to provide adequate support to gifted 
students. 

S9 
 
S13 
S15 

Gifted students should be provided with more challenging activities compared to their 
classmates. 
Having a gifted student in my classroom makes me feel very nervous. 
It is important to have at least one specially trained teacher for gifted students in each 
school. 

S17 
S18 

It is important to use identification procedures for gifted students. 
University programs should include teacher training regarding teaching gifted 
students. 

S20 
S21 

Acceleration of gifted students should be permitted through grade-skipping. 
I believe that there should be councelors/mentors for gifted students. 
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THE NATURE OF NUMBERS IN GRADE 10: 
A PROFESSIONAL PROBLEM 

Mirène Larguier and Alain Bronner 
LIRDEF, IUFM de Montpellier, Université Montpellier 2 

 
Teachers who teach grade 101 in France have to ensure the continuity of the 
mathematics taught between Junior High and Senior High2 without doing any 
systematic revision. It seems to be a difficult task as teachers have to elaborate on 
reprise gestures3 (Larguier, 2005) to go over knowledge already taught in Junior 
High while also introducing new knowledge. It is thus this problem of the profession 
(Cirade, 2006), which we analyze through direct observations of classes and data 
collected, about the way teachers tackle this. This study has allowed us to show some 
characteristic elements of this teaching problem. For example, the determination of 
the nature of numbers is a type of tasks between the two institutions; it can also be 
gone over as a reprise in various niches of the syllabus throughout the year. 
However, we show that teachers do not seem to take advantage of these 
opportunities.  
Keywords: reprise, professional gestures, the filter of the numeric 
 
A PROBLEM IN THE PROFESSION OF TEACHING THE NUMERIC  
Going into grade 10 in France is a threshold to be crossed between Junior High and 
Senior High; it is an important passage between the two institutions. The mathematics 
syllabus states that in grade 10 students have to master the knowledge and know-how 
that most of them have already been taught in Junior High. A question then becomes 
central: the relationship between the professionnal reprise gestures and the 
knowledge and know-how. It takes us to the broader question of interweaving 
(Bucheton, 2009). We analyze the kind of gestures about the synthesis of numbers 
encountered during Junior High which must be done thoroughly during Senior High. 
We update the problems for teachers even though this part of the syllabus does not 
seem to be problematic for them to teach. 
THEORETICAL FRAME 
To study the question of the construction of numeric space in grade 10, we essentially 
use the framework of the “anthropological theory of didactics” which has been 
developed by Chevallard (2007) and studies concerning the numeric and the algebraic 
                                           
1 In France, there are two distinct institutions after primary school: “collège” for students aged 11 to 15 and “lycée” for 
students aged 15 to 18. The first Senior High class is called “seconde” and corresponds to grade 10.  
2 Junior High school will be used for “collège” and Senior High school will refer to “lycée”. 
3 “Reprise” can mean to go over, to patch together, to interweave. We shall use the word “reprise” for reasons of 
economy. 
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in Alain Bronner's works (1997, 2007). Bronner developed a tool for the study of 
numeric space: the “filter of the numeric”. The function of this filter is to " pursue" 
the numeric, whether it is at a practical level or an institutional level. Various 
elements of a numeric space can be identified: 
- The objects: the number systems, the set operators (taking the square root) and 
comparators (< …); 
- The types of practices (exact calculation, approached calculation and mixed 
calculation) as well as the various institutional contracts of calculation;    
- The articulations and the dynamics of the numeric domain with the other domains 
as well as the underlying contracts; 
- The rationales (“raisons d’être” in French) of the numeric. 
Analysis of the numeric domain is completed by the identification of the 
“mathematical organizations” of the numeric. Together they make up a numeric 
space. The observation of the numeric space also includes the “didactic organization” 
to say what is specifically numeric. We also take from Chevallard (1999) the notion 
of praxeology which is broken down into four elements: type of tasks, technique, 
technology, theory. It permits us to model a teaching task which we indicate by 
professional gestures. We also use the levels of didactic determination defined by this 
author (1999) to question the conditions and restrictions of various origins which 
weigh on the didactic choices of the teachers. These levels as defined by Chevallard 
are: civilization, society, school, pedagogy, discipline, domain, sector, theme, and 
subject. 
The study of the reprises can be analyzed according to different criteria (Larguier, 
2005). The principal criteria of all the reprises can be represented on an axis, the 
extremes of which are: 
- on the one hand, systematic revisions which do not meet with the new knowledge 
required by the syllabus; 
- on the other hand the reprises which link up with new knowledge. In other words, 
the new learning and knowledge are the continuation of the study which began in the 
previous classes. This first criterion can also vary between systematic revisions (a 
kind of repetition of the same), a form denounced by the official curriculum; and 
reprises in accordance with the syllabus which introduce something new.   
The second criterion of analysis of the reprises concerns the mathematical contents 
institutionalized at the end of the learning experience. It involves the targeted 
mathematical praxeologies, in other words the mathematical organization. This 
establishes a connection with the objectives of the teacher with regard to the types of 
mathematical tasks which are given. These objectives are: 
- techniques to be reproduced by imitation and without a justification, so that 
technologico-theoretical elements of the praxeology are missing; 
- know-how only for action, legitimized only by explanations which do not allow for 
updating mathematical rationales. Technologico-theoretical elements of the 

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1792



praxeology are then incorrect towards the epistemology of the discipline; 
- knowledge constituted with complete praxeologies that supposes that four elements 
of the praxeology are present and based on mathematical rationales. 
This second criterion is called completeness of the praxeologies. It identifies the 
degree of completeness between two extremes: they are complete, and it seems that 
they are mathematically valid; otherwise they are incomplete. 
METHODOLOGY 
Our research on the teaching praxeology concerning the reprises of the numeric leans 
on the study of grade 10 with a particular methodology. It differs from usual methods 
in the didactics of mathematics; in fact the analysis of the teaching practices in the 
classes is not conditioned by the objectives and the expected behavior of the 
researcher. This would have been clarified by an analysis a priori according to the 
research project. Here, observation in class comes first, permitting discovery and 
access to the knowledge taught, without any interaction between the teacher and the 
researcher. From elements revealed to the researcher in the dynamic of the teaching, 
an analysis a priori is elaborated. This is done by taking into account the previous 
experiences of the students, the didactic memory (so called by Brousseau) of the class 
and the requirements of the syllabus. It is then possible to make parallels between this 
analysis a priori and the project of the teacher reconstituted by the researcher after the 
session. In the same way, parallels can be drawn between this analysis a priori and 
the analysis a posteriori of the observed session. The collected data by observing 
sessions in a class throughout the school year are completed by interviews with 
teachers and with some students representing various levels, as well as by all the 
written traces of the year (exercises, lessons, homework …). Teachers and students 
only knew that the researcher was interested in the teaching of mathematics. They did 
not know about our interest for numerical domain. So the interviews with teachers 
and students were open and the focus of research was hidden. This condition was 
important to capture ordinary practices with the least possible influence of the 
researcher. Two experimented teachers (but not experts) agree to the researcher's 
presence in their classes, Mathieu in 2006 2007 and Clotilde in 2007 2008. This 
research follows a study in the framework of a Master 2 qualification (Larguier, 
2005) which had made it possible to track down the difficulty of reprises at the 
beginning of the school year for novice teachers in grade 10, notably Rosalie. 
THE PROBLEMATIC OF NUMERIC 
In the document which accompanies the syllabus (June 2000) we found the following 
commentary concerning the sector “numbers” and the theme “nature and writing of 
numbers”: “We will make a summary of the knowledge encountered so far by the 
students and we will introduce the ordinary notations of the different sets. The 
students will have to know how to identify which numbers belong to which set”. So, 
the recognition of the nature of the numbers is a well-defined task in the syllabus and 
is faithfully followed by the teachers according to the researcher's observations. We 
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are going to develop our analyses concerning the following task: “recognizing which 
sets the given numbers belong to”. This type of tasks is emblematic of the numeric 
domain worked on at the beginning of the year during the resumption of the school 
year. It is also equally symbolic of the Junior High/Senior High link by allowing a 
reprise of former knowledge and at the same time working on completely new 
knowledge (like the nomination of sets). This type of tasks will be written as T, this 
represents an essential problematic to the numeric domain. This restriction is found at 
the level of the discipline in Chevallard's terminology. 
In Clotilde's and Mathieu’s classes many specimens of T are worked on in the first 
chapter. In general the justifications are not asked for. In Clotilde’s workbook the 
following affirmations without any justification are found: 18 irrational or 1/3 
rational. The decision theory made in the relative class to this type of task T is 
incomplete. The technologico-theoretical block elements are absent, the expected 
response of the teacher rests on the numerous implicit elements which are certainly 
not shared by all the students. 
The same observation concerning the incompleteness of the praxeologies relative to T 
was carried out on the 17th of September 2004 in Rosalie’s class. We will take the 
same example which has been indicated and which concerns written numbers under 
the quotient form of two whole numbers. Rosalie does a particular study of two 

specimens 7
22

and 33102
103993

prompting this study with the fact that they are 
approximations of π. In other words, a cultural condition which is not based on a real 
mathematical problem.  
For the first example, a possible technique known from Junior High, is to carry out 
the division of 22 by 7 in order to prove that the decimal writing of the number is 
unlimited and periodical. Rosalie expected this proof from the students as a relative 
technique to 22/ 7, which corresponds to an interesting reprise to continue to work on 
the concept of decimal numbers as is seen in this extract:   

A student wrote his answers on the board. Rosalie hears another student in the class: 
Alexis: It’s a rational number 
Teacher: Why? 
Alexis: Because it’s a fraction and the decimal part is infinite 
Teacher: How do we know that? …. It’s best to write down the division because the 
calculator will always give a finite amount of numbers…of terms since it shows the 

numbers it has on its screen. Now this one here (she points out “ 33102
103993

 ∈R” written on 
the board by a student) who doesn’t agree? 

The proof for the first quotient 22/7 is brought up orally, but it is not carried out 
effectively by the students, or the teacher. With the calculator experiment, Rosalie 
does not leave the students enough time to do it themselves. In doing this, she also 
avoids a debate which could have taken place on the nature of numbers displayed on 
the calculator screen. This certainly would have allowed her to consolidate the 
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necessary learning of this tool and the numbers in play (moreover, registered learning 
in the syllabus as one of the numeric themes). The mathematical decision theory 
linked with T is just a draft, it is not completely developed yet. We can therefore ask 
ourselves what is going to remain of this for the students. We equally make a 
hypothesis that the personal relationship between the students and the mathematical 
activity in general runs a risk of not conforming to the institutional relationship. 
Rosalie may let her students believe that it is enough to bring up a possible proof 
during a demonstration.  
For the second example, the possibility of articulation with the new parts of the 
Senior High syllabus is interesting. Indeed, the two rational numbers 22/7 and 
103993/33102 are both idecimal numbers4 (Bronner, 1997) but the choice of 
numerator and denominator for 103993/33102 makes it necessary to change the 
technique compared to the previous example. The technique expected by Rosalie for 
the first number, to know the division “by longhand” of 22 over 7 cannot lead to the 
underlining of idecimality for the second number. The quotient obtained for the first 
number is 3,142857 while the length of the period from the second quotient is too big 
for the quotient to be calculated by longhand. We see a change of the didactic 
variable between the two tasks. We wonder if this is really what the teacher 
anticipated. Indeed, in the observed session, the fact that the second number is 
idecimal is not shown and is not even questioned:

  
Teacher: (…) Now this one (she points out 33102

103993
 ∈R written on the board by a 

student) who doesn’t agree? Yohan, Kamel? 
Kamel: I agree but it’s also a rational number 
Teacher: It is, that’s true but the answer to the question lies in Q. It’s the R of real and 
it’s the Q from quotient (she corrects what is on the board at the same time). But we 
suppose that Xavier is using the notations that he knows. Now the last one... (she points 

out 
3
10

80
167

+  ∈R). 

The study of the nature of numbers, beyond knowing whether a number is rational or 
not, is not made. There is not even a technique brought up contrary to what is brought 
up for 22/7. Consequently there is no implementation of a new decision theory, it is 
avoided. A possible technique in grade 10 uses a theorem which is in the syllabus 
(optional). It is not available to the class at this moment of the year. The question of 
knowing if the number belongs to D is thus left aside. In the second case, the 
demonstration of the idecimality of the rational number is not even brought up, it is 
simply completely avoided. 
Nevertheless a decision theory corresponding to the syllabus could have been   built 
into this class for task T. Here is the description: a possible technique in grade 10 is 
                                           
4 Idecimal: in Bronner's terminology, following the model of rational/irrational, decimal/idecimal 

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1795



to determine the irreducible fraction which is equal to the given quotient. In this case, 
Euclide's algorithm allows us to demonstrate that the numerator and the denominator 
are coprime, and that the given fraction is irreducible. The denominator has a 
decomposition in product of prime numbers 2×33×613, it is not a product of powers 
of 2 and 5, the number is idecimal. This technique is possible only from grade 10 
onwards, but it also uses tools which are taught in Junior High, like the idea of 
irreducible fractions. This also permits another way of conceiving the decimal 
number in the register of fractional writings (Duval, 1995). Therefore, it gives us the 
opportunity to really strengthen our knowledge of numbers. So, T is indeed in a 
moment of reprise in the numeric space, which allows us to connect past knowledge, 
and new knowledge. 
The comparison between what could have been done with T and what was effectively 
done clearly shows what is avoided in the targeted mathematical organization. We 
wondered why Rosalie made these choices: 
- Is it about a lack of reflection in the analysis of the session?  
- Is it the decision about the mathematical theory regarding the syllabus which is seen 
as not being a suitable teaching form in this class? 
- Does Rosalie anticipate that the technique is too difficult to set up and might 
discourage students at the beginning of school year? This technological element of 
the professional gesture was confirmed in an interview with her. She said that she 
does not want to put students off learning mathematics. 
This observation brings to light one of the difficulties that teachers have in building 
numeric space. The work in this numeric domain assumes a very precise study of the 
mathematical decision theory in accordance with the knowledge of the students. 
Another symptom of the problem of the profession is probably the misunderstanding 
of teachers on these difficulties. It asks the following question: what is the knowledge 
necessary for teachers in order to achieve the process of didactic transposition 
between the reference mathematical knowledge and the knowledge to be taught 
(Bosch et al., 2005)? 
But what are the raisons d’être of this emblematic task? What essential mathematical 
problem for the discipline motivates the mastery of decision theory linked to T? By 
asking these types of questions, we refer to Yves Chevallard who denounces the 
teaching of mathematics as being like a museum visit, or the traditional way of 
teaching answers, even when the original questions have been lost (Chevallard, 
2000). He questions what motivates the calculation of numbers in order to express 
them under these particular forms. He makes us become aware of the problem which 
legitimizes this work in the numeric domain: 

“We come to […] a big problem in mathematics: how to recognize if two mathematical 
objects of a certain type are or are not the same object? How to know for example if 7×5–

8 = 23? Or if 60
84 = 380

532? Or again if n(n+1)(2n+1)
6  – (n–1)n(2n–1)

6  = n2? There is one 

solution to this one generic, universal problem: to respond to the question asked. We 
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need to use a considered type of written system for the objects, where each of these 
objects has a writing expression and a written expression of its own. The calculation of 
the «canonic» writing of the objects to be compared therefore allows us to answer: so we 
have 7×5 – 8 = 35 – 8 = 27, which shows that 7×5–8 ≠ 23. Similarly it comes from a part  
60
84 = 4×15

4×21 = 3×5
3×7 = 57, from another part 380

532 = 190
266 = 5×19

19×7 = 57, meaning that we can 

positively conclude this time that we have equality  60
84 = 380

532.” 

In this citation Chevallard wishes to show that the only question about numbers 
which is important is to know how to write a number in relation with its nature. 
Different kinds of writing are possible, and we have to know the canonic one, useful 
to compare and calculate with several numbers. So it is not the knowledge of the 
nature of the number that is important, but the knowledge of the canonical writing 
given for a type of number. This necessity is backed up by another necessity of 
mathematical work, which is the rule of the institutional contract of calculation 
(Bronner, 2007). For demonstration work in mathematics, we are obliged to use exact 
values. The following reasons explain then why it is important to know the exact 

values of trigonometric lines of particular angles such as: 
3cos

6 2
π
=  and why we 

keep this way of writing with a radical. We are going to further develop this example, 
various types of numbers appearing within the framework of trigonometry, a reprise 
of work on the numeric is then possible.  
THE EMBLEMATIC TASK AND TRIGONOMETRY 
In the part concerning irrational numbers we are going to come across “products” 
(Bronner, 2007) within the framework of trigonometry, but neither their appearance 
nor their nature is questioned. In Mathieu’s and Clotilde’s classes, the chapter on 
trigonometry was approached late in the year, for Mathieu from May 23rd, 2007 and 
for Clotilde from April 30th, 2008. By using our methodology, a work of 
comparative analysis was able to be carried out.  
The comments of the syllabus of grade 10 state: “The definition of sin x and cos x for 
a real x will be made «rolling up R » on the trigonometric circle. We will make the 
link with sine and cosine of 30°, 45° and 60°”. 
During Clotilde's lesson on May 16th, 2008, at the end of the sequence on 
trigonometry, she gives out a table which the students have to complete.  
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This document presents an extraordinary showcase of numbers which appear in the 
numeric space of grade 10 with whole relatives, decimals, irrationals formed with the 
typical examples often used like , 2π  and 3 . We observed that it does not become 
the student’s responsibility to know that it is necessary to keep complex writings of 

these numbers, for example 2
2

. If the teacher had given the responsibility of this 

question to the students, then he would have been able to carry out a reprise of the 
emblematic task T to justify the canonical writing of these numbers. But the 
awareness of the nature of the numbers is completely absent in this entire sequence 
even though it is very rich in respect to possible work on the numeric. The only 
justifications are under the form of conventional rules not referred to as necessities of 

the discipline. So, Clotilde does not accept the answer 
1
2

and transforms it into 

2
2

by arguing that: “as we already said we did not like the roots of 2 under the line 

of fraction, we write it like that”. 
Thus, teachers accustom the students to practices of exact calculation, which are 
governed by conventional rules only decided on by the teacher, while epistemological 
reasons support them. The institutional contract of calculation remains in this context 
of trigonometry entirely the responsibility of the teacher. Nevertheless, the 
underlying questions could be seen by the student as being an aspect of the 
mathematical work. 
The numeric space elaborated in grade 10 is so enriched by new elements which are 
operators (Bronner 2007), namely the operators cosine and sine, generators of tables 
of real numbers containing many irrational numbers. These operators allow a 
production of numbers in a procedural way. The interest is centered on the way of 
obtaining the numerical values, and not on their nature. In the same way, there is no 
interest in the change of status of the number which must be seen as a variable of the 
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function cosine.  
The dynamic implemented by both teachers is a numerico-geometrical dynamic 
(Bronner 2007). Numbers of various natures are generated by the operator cosine 
from the trigonometric circle and from the right-angled triangle. However, another 
dynamic remains implicit, it is an inter-numeric dynamic. This one could exist thanks 
to the numeric resumption of work at the beginning of the year linking with the 
symbolic task and the canonical writing of the numbers according to their nature. 
However, it would seem that this symbolic task is not exportable except the sector 
“Numbers” of the domain “Calculations and functions”. This place of trigonometry in 
grade 10 would allow the numeric to work, because irrationals come “naturally”. But, 
the awareness of the nature and the writing of these numbers is not the responsibility 
of the student. Nevertheless, it would be interesting to ask the question about the 
exact value of a number like for example cos17 and to make the students aware that 
the writing of the exact value is cos17, in the same way that the exact value of  
cannot be written without using a radical. These examples could enrich the usual 
prototypes used as irrationals. Nevertheless, from the synthesis of numbers 
encountered in the vast mixed-bag of school, this type of number has been popular 
and can be reused as an example. 
IDENTIFICATION OF A PROBLEM IN THE PROFESSION  
We asked the question of the reprise gestures concerning the study of the nature of 
numbers by focusing our gaze on an essential problem in mathematics: writing 
numbers according to their nature. Obviously, this question takes its meaning only in 
the context of a problem. The most relevant register of writing is conditioned by the 
work to be done with these numbers. But what we also observed with the teachers 
was the absence reprise whenever the problem arose. The notions are only worked on 
as objects, the “raisons d’être” posed about the writing of the numbers becomes 
nothing more than a question of habit. 
In the reality of our observations, the teachers introduce T to the students at the 
beginning of the year in a certain number of cases in accordance with the syllabus. 
They do this without taking into account the specific problems of the discipline, nor 
is it used later to pursue the study of synthesis relative to numbers. Nevertheless we 
have seen that a reprise of T is possible during the grade 10 syllabus (we have only 
quoted the case of trigonometry). Teachers do not see these new niches for 
reactivating this type of tasks no matter how essential it is to work on the numeric. 
Our study opens new ways for identifying specific teachers' knowledge in the matter 
of numeric domain. It is especially useful for the formation of teachers and the 
necessary practice of particular gestures of interweaving. 
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The European project (PDTR)1, which this paper deals with, is aimed at the 
development of research based methodologies for teacher training to promote new 
classroom approaches in the sense of PISA competences. After a short description of 
the Project, we present in some details the cultural choices, the work methodology 
and the outcomes of the Italian teams. Some reflections are made about the main 
problems involved, in particular on the intense attempts to clarify the meaning of the 
figure of the teacher-researcher, the true core of the Project. In a few final remarks 
we discuss the validity and the potentialities of the Project. 
Key-words: European cooperation. Teachers’ professional development. Educational 
methodologies. Teacher-Researcher figure. 
 
INTRODUCTION 
The PDTR is a project finalized to induce in teachers structured view and knowledge 
of mathematics, in coherence with new pedagogical approaches and social needs, and 
to promote, by means of suitable classroom practices, motivation and sense-making 
in students involved in mathematical activities. A key idea of the project is that of 
Teaching-Research, based on the principle of inseparability of classroom practice and 
educational theory in the context of the action aimed at the improvement of learning. 
The intention is to build a formation and teaching path where instruction, research 
and professional development mutually support each other. The underlying 
hypothesis is that the involvement of teachers in “mentored” collaborative study 
within a research team and a familiarity with theoretical studies increase their 
awareness as school teachers, and bring them to change their beliefs, to conceive 
their professional development as a life-long process and to assume a scientific 
inquiring approach in their classroom pedagogy. 
The central aim of the Project has been to initiate a process of transformation of the 
ways to teach mathematics, while respecting the standards and contents of national 
curricula. The main specific goals have been: a) introducing Teaching-Research into 
daily classroom practice, with special emphasis on the integration of mathematical 
and didactic knowledge; b) developing instructional research based materials, which 
improve students’ understanding and mastery of mathematical competences as 
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assessed by the OCSE-PISA tests, while, at the same time, increase their enjoyment 
of mathematics; c) promoting in teachers the attitude to give more weight to students’ 
process of thinking than to formal skills and knowledge. 
The Project has lasted three years: the first one mainly devoted to the study of general 
methodological-curricular choices, that be coherent with the approach to 
mathematical competences in OCSE-PISA tests; the second one centered on 
designing, implementing and analysing didactic experiments and producing shared 
materials; the third one devoted to a critical review and refinement of 
experimentations, and to the production of reports to be published. An additional task 
has been the study of the English language, to favour exchanges among participants.  

THE ITALIAN CONTRIBUTION WITHIN PDTR 
In Italy, many research projects were promoted by the National Research Council 
since the seventies, for the renewal of mathematics teaching. This implied the birth in 
several universities of the ‘Nuclei di ricerca didattica’ (that is, groups formed by 
university and school teachers of all levels, working jointly) and contributed to the 
emergence of a new “bivalent” figure of teacher: the ‘insegnante-ricercatore’. Such a 
figure can be considered the result of a slow evolution of a motivated and able 
teacher through stages of active involvement at different levels, stages which can be 
said the steps of a process of training to research. This process, starting from simple 
experimentations, brings gradually the teacher to collaborate in the formulation of 
research hypotheses and in the theoretical analysis of research data, until to be able to 
autonomously realize a research project and to write scientific papers. This national 
frame constitutes the background of our cultural and methodological choices within 
PDTR, and of our way of conceiving the participants as perspective teachers-
researchers, novice in research. 
The two Italian (Modena and Naples) teams share not only this general framework, 
but also common research themes and a long habit of mutual collaboration. Therefore 
their work has been done along the same lines. Here, we want to report in some 
details three aspects of our activity: the theoretical and laboratorial work, the 
conduction of teaching experiments, the production of the final reports.   
The work at theoretical level and the laboratory-based activities 
We worked at three levels, facing: theoretical questions concerning mathematics 
education, with particular reference to the teacher figure; questions related to 
mathematical contents and questions devoted to a renewal of classroom practice.  
We have taken inspiration from two related models of teacher, as resonance mediator 
(Guidoni, Iannece & Tortora, 2005) and as decision maker (Malara & Zan, 2002). In 
our view, teachers are influenced by important factors that the research should not 
neglect, such as knowledge, beliefs and emotions. Thanks to close contacts with 
Math Education ideas and theories, they can become more and more aware of all 
these components and to be able to possibly change them. For this reason we have 
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devoted special sessions to introduce teachers to selected literature samples, in order 
to clarify our theoretical reference framework. These include epistemological studies, 
mathematics oriented papers, and papers focused on didactic-methodological aspects 
and on classroom practices. 
For what concerns didactic and methodological aspects, we have assumed a socio-
constructive approach, with particular emphasis on studies about the mathematical 
discussion, the didactic contract and the classroom norms. A particular importance is 
also assigned to reflections on class processes, and to the role of teachers (and of their 
beliefs, actions, wordings, …); for this we refer to Mason studies (see for instance 
Mason, 1998). Moreover, we have taken into account the linguistic and 
communication dimensions, as described by Pimm (1987) and Sfard (2000).  
As to mathematical content we worked in Shulman’s sense (1986). We privileged the 
arithmetic-algebraic field, directing our attention towards the competences promoted 
by the PISA tests.  
For the renewal of classroom practice, we studied the units of the ArAl Project, 
which can be seen as models for socio-constructive teaching, and some protocols of 
classroom processes on them, highlighting the incidence of different variables in the 
process (teacher’s behaviours, students’ participation, affective relationships, gender 
issues). 
The work related to teaching experiments and the methodology adopted 
The work with teachers has been carried out in small groups and has been structured 
through: design and planning of teaching sequences, experimental setting in the 
classes, critical analysis of the enacted didactic processes, editing of reports for 
dissemination. The chosen themes concerned: a) problem solving, according to the 
theoretical framework of the PISA tests and with reference to the development of 
proportional thinking; b) the approach to the algebraic language as an instrument to 
represent relations, to interpret graphs, to solve optimization problems and to solve 
proof problems. Teacher were engaged in teaching experiments for at least two years, 
and in the second year the experiments were broadened and refined on the basis of 
the initially implemented ones. They involved students of school grades between 6 
and 11, with a high concentration of grades 6-8.  
In order to implement a given teaching sequence, we faced: a joint study of selected 
research papers on the chosen theme for the clarification of didactic key points and 
hypotheses to be tested; the construction (or adjustment) of tasks constituting the 
main steps of the path and the a priori analysis of pupils’ potential difficulties. This 
work was not easy, due to: a) the need to combine the progressive development of the 
mathematical set of questions with curricular time constraints; b) the analysis of the 
difficulties of the tasks from both linguistic and mathematical points of view; c) the 
planning of discussions related to questions to be tackled and solved collectively. 
In the classroom the teachers worked constructively, stimulating and orchestrating 
pupils' interventions, promoting reflections on what was gradually being carried. 
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They promoted verbalisation, by always inviting the pupils to write down their ideas, 
conjectures, reasons for their procedural choices, etc. Moreover, they (video) 
recorded classroom discussions, transcribed them, adding local and general 
comments on classroom processes. 
The driven analysis of classroom processes and the birth of the ‘multi-
commented diaries’ 
We carried out a complex activity of critical analysis of the transcripts, looking at the 
relationships between the knowledge constructed by students and the teacher’s 
behaviour in guiding them to such achievements. Our main aim has been to lead 
teachers to get a higher and finer control over their own behaviours and 
communicative styles and to observe the incidence of a critical analysis on both 
classroom processes and pupils’ behaviours and learning. This critical and reflective 
activity, based on the classroom transcripts commented by the teachers (shortly called 
diaries) developed along different moments of comparison between: the pair ‘teacher-
mentor’; the teachers involved in the same teaching sequence; the whole team 
(teachers, mentors and the leader). Within some projects – due to participants’ 
different locations and therefore to the difficulty to meet – the diaries have been 
commented by at least three people: the mentor assigned to the teacher; the co-
ordinating mentor; the head of the project. The diaries, so enriched by a multiplicity 
of written comments, reflect a variegated range of points of view and interpretations, 
which highlight crucial points of the process as well as critical elements in the 
teacher’s behaviour.  
They allowed us to identify five key areas of teachers’ weakness concerning: beliefs 
on cultural and/or educational issues; pedagogical content knowledge; bifurcation 
between theory and practice (e.g. difficulties in realising what has been studied or 
planned, and in working on the basis of relational thinking); linguistic issues (massive 
use of operative linguistic expressions coming from the received model of teaching; 
difficult balance between colloquial language and language of scientific teaching; 
scarce attention to word paraphrases in view of an algebraic translation); management 
of classroom discussions (dialogues mainly between teacher and pupil; widespread 
prompting; yes/no questions; lack of attention to the development of ‘social 
intelligence’ in the classroom). But two issues seem to be crucial and dramatic at the 
same time: the teacher’s language in communication, often imprecise, not correct, 
full of slang expressions and rich in not always appropriate metaphors; the 
conception of mathematics, too often operative, where ‘calculate’ and ‘find’ often 
prevail over ‘represent’, and ‘do’ over ‘reason’ and ‘reflect’ (for more details see 
Malara’s contribution, in Czarnocha, 2008). 
The reports editing 
In the third year of the project teachers were asked to produce written report about 
their teaching experiments following the rules of the Mathematical Education 
community. This phase of teachers’ work turned out to be a true pivot toward the 
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acquisition of a researcher behaviour. In fact, teachers are used to report their 
classroom experiences within their own community, but this kind of “internal” 
communication, having its focus on students’ performances, leaves behind any 
information about one’s own role in the process and about the choices made for its 
development. In the first version of the report, almost all teachers applied this model 
of communication to the new situation, in spite of the attitude, developed in two years 
of participation in the project, to reflect on the influence of their own role in the 
development of a discussion, and more in general, on the relationship between 
teacher and pupils, with a special focus on the impact of their own knowledge, beliefs 
and emotions on the process itself (see next Section). The experts faced the problem, 
trying to change this communication praxis. Several individual and collective 
comparisons were needed to lead teachers to become aware they had to change their 
usual point of view and to include, in their writings, themselves as determinant 
components of the process itself. This way, by means of successive approximations, 
always mediated by interaction with the experts, teachers succeeded in writing their 
reports. Then these reports were reviewed by international reviewers before being 
accepted for publication (in the books edited within the project2).  
From the point of view of the research training, this final phase has been crucial to 
attain project aims: the necessity of communicating lead teachers to make explicit for 
other people, but for themselves too, the key points of change in their classroom 
behaviours. 
Reflections on the project spin-off for teachers  
The project turned out to be a great opportunity for teachers to engage with a new 
way of conceiving and teaching mathematics and to reflect on their own conceptions 
and ways of being in the classroom. Teachers met major difficulties in transposing in 
their practice what they had learned at theoretical level, especially concerning the 
didactic-methodological aspects.  
Here is a list of the main problems concerning the role of the teacher in managing 
class-based activities, in particular discussions: the problem of the language used, 
often misleading for the pupils; the problem of the pertinence and consistency of the 
indications provided at crucial moments of the discussion; the problem of listening to 
pupils and being unable to grasp the potentiality of interventions that diverge from 
predicted ones (especially when they come from pupils who are not viewed as 
leaders); the problem of a real social knowledge construction: the issue of sending 
back ideas to the class so that they might be validated and shared, the issue of 
institutionalizing knowledge, the issue of individual learning (the teacher often took 
for granted that pupils had understood or intuited something, only on the basis of 
reassuring ‘yes’ in chorus); the problem of checking that participation is actually 
collective (discussions often developed with the contribution of a few pupils and 
there were no interventions aimed at involving everybody). 
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Nevertheless, at the end of three years, several appreciable improvements can be 
noticed in teachers’ classroom practice, as well as changes in their beliefs and a better 
awareness of their professional role. All this is also witnessed by the teachers 
themselves within their final essays. In the Appendix we will report a few excerpts 
from these essays. 
THE INTERNATIONAL ACHIEVEMENTS. THE FIGURE OF THE 
TEACHER-RESEARCHER 
At the international level, the Project did not fully meet our expectations. Many 
substantial disagreements emerged along the common work, concerning first of all 
different views about Math Education research contents and methodology, between 
Eastern and Western countries and, as a consequence, disagreements emerged on the 
way to conceive a teaching experiment. Therefore, only in the last year a first true 
international collaboration, a bilateral teaching project between Italy and Hungary, 
occurred (see Navarra, Malara & Ambrus, 2008).  
The main points of difference concerned: variables to be observed (students vs the 
pair “teacher-students”); time (short vs long term experiments); types of intervention 
(simple proposals of PISA question vs insertion of suitable PISA problems into 
didactic paths designed for the whole year workplan); way to refine a teaching 
experiment (proposals of ‘corrective tasks’ for students vs critical analysis of 
classroom processes with/for teachers); and, dulcis in fundo, the figure of the teacher-
researcher. 
The question of defining what the word “(mathematics) teacher-researcher” means is 
by no means a rhetorical one and, well beyond the limited range of the Project, is of 
deep interest for the whole Math Education research community. Indeed, for some 
authors, the two domains of academy and school are incommunicable worlds, and 
therefore the unique possible concern of the teachers is their school-practice 
(Crawford & Adler, 1996). For others the two roles are still separate, even if there are 
teachers who are able to investigate about their practice; but it is very rare that a 
teacher can identify by himself a research question (Jaworski, 2003; Brenn quoted by 
Peter-Koop, 2001). Some other authors believe that the teachers can become true 
researchers, provided they frequent for enough time an academic environment 
(Malara & Zan, 2002). 
One of the, so to call, side achievements of the project PDTR, but, in our opinion, a 
valuable one, has been that of trying to share a common view on this question, 
naturally arisen in order to achieve the main goals of the Project. So here we want to 
report some conclusions about it, reached at the end of several discussions and 
collaborative work, together with some reflections of ours. The question has received 
several interpretations and answers by the members of the PDTR staff, due to their 
different views deeply dependent on different theoretical frameworks and social and 
cultural traditions. 
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Moreover, the following related questions have arisen: “How do the double roles of 
teacher and researcher acting simultaneously in concrete situations accord to each 
other? How can the possible conflicts between the two roles, each embodying its own 
objectives and its own ethics rules, be managed? How can one harmonize the two 
roles in the different real situations or perhaps in the different phases of the work?” 
Of course, all the above questions are open ones. But the wide debate developed has 
given some contribution to them, witnessed by specific papers devoted to these items 
in the two books edited within the Project. It seems to us that they well represent the 
variety of positions.  
The main task remained of reconciling the different views about the crucial point: 
when a teacher can be identified as a teacher-researcher. A shared conclusion has 
been that of recognizing some steps by which a teacher can become a teacher-
researcher. Teachers teach following textbooks and external indications. Good (or 
excellent) teachers utilize natural skills and their own intuition to obtain good results 
from their students, following textbooks and other resources filtrated by their 
personality. A teacher-researcher adds to this a personal aspect: the habit to reflect 
upon one’s own teaching action and to utilize such reflections to interpret and to 
improve practice (one can also recognize this habit in a reflective teacher); and a 
social aspect: the readiness to face a matching, comparing one’s own actions with 
others’ actions, to identify and to clearly formulate research questions, to be able to 
communicate with other people according to the rules of an evolving scientific 
community. In particular, what surely characterizes teacher-researchers and 
distinguishes them from, may be, excellent teachers, is the capability to share ideas 
within a scientific community. This implies to follow some general and specific rules, 
for example to put well identified research questions into a general theoretical 
framework, to utilize experience and materials in order to argue about some well 
declared thesis, to accept criticism and to be continuously well disposed to changes. 
We believe that to fix some minimal condition that characterize a teacher-researcher 
is necessary in order to satisfy the standard of a scientific community: in this sense it 
is important to have shared criteria to carefully distinguish an acceptable contribution 
for a research journal, from more freely written, though interesting, accounts of a 
teaching activity. At the same time we are aware that pretending to strictly satisfy 
those requirements as a necessary goal of the enterprise of forming reflective teachers 
or perhaps teacher-researchers could entail the risk of discouraging willing young 
teachers from realizing their urges for improving their professional behaviour. This 
recommendation has been one of the main points of discussion in the Project. 

 
SOME FINAL REMARKS 
The outcomes of the international meetings allowed us to understand the depth and 
the multiplicity of problems to be overcome, in order to achieve an effective 
collaboration between researchers belonging to different cultures. A necessary 
condition for such a collaboration goes through: a real willingness of sharing 
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problems; listening to others and taking into account the working and operating 
conditions of a certain group (in order to understand and to search for solutions after 
common studies and efforts). 
In our opinion, the main result of the project might be considered a deeper awareness 
of the problems that make an effective collaboration between Eastern and Western 
countries difficult. By making these problems explicit, we might help others to 
overcome the rigid barriers we met. It is not an easy task, due to the weak common 
background, which makes actual interests often diverge.  

NOTES 
1. The Project PDTR (Transforming Mathematics Education through Teaching-Research 

Methodology) has been realized in 2005-2008 under the leadership of S. Turnau (Rzeszów 
University, Poland), with the help of B. Czarnocha and the expertise of H. Broekman, J. 
Mason, N.A. Malara. It has involved seven teams of mathematics teachers, apprentices in 
the craft of “teaching-research”, from Hungary, Italy, Poland, Portugal and Spain.  

2. The two books (Czarnocha, 2008) and (Turnau, 2008) are downloadable from 
http://www.pdtr.eu/index2.php  
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APPENDIX 

Excerpts from the teachers’ final global reflections revealing the impact of the 
project on them 

NG (Primary school teacher). Thanks to PDTR project I have understood that my 
professional growth is still at the beginning, and it is a process that has never to be 
considered concluded. To sum up, in these three years I have learned to reflect on: 
cognitive processes (How have I done? How does my mind work when I learn? How 
does children's mind work when they learn? etc.); metacognitive activities of control 
(I have learned how to carry out this activity… I have used these strategies… such 
strategies allowed me to… Which structures or models do my pupils construct? How 
do they use these structures?…); the disciplinary structures on which I've been 
working with my pupils (above all arithmetical structures and “proportional 
thought”). 
RF (Middle school teacher). Transcriptions, that have demanded time and energy, 
allowed for a self-evaluation of my own professionalism, a critical meta-reflection on 
my own way of managing collective discussions, on my way to send pupils’ 
suggestions back to the class, to intervene and direct the discussion itself. After this 
process I got to a higher professional awareness: I became aware of the need to refine 
my capacity of grasping immediate feedback by pupils in a meaningful way, always 
keeping in mind the aims of the route I undertook. I also reached a higher awareness 
of the need for a careful control of didactic methods and of knowledge about the 
discipline. This has led an empowerment of my professional awareness on the 
pedagogical sensitiveness that needs to be used in order to favour pupils’ cognitive, 
relational and affective increase. 
MP (Middle school teacher). Through the training activities I actually saw the 
relevance of linguistic obstacles, which make the interpretation of texts with a 
mathematical content problematic well before their translation into the most typical 
languages of this discipline (numerical, algebraic, tabular, graphic). For many 
students this process implies an extremely hard move from a narrative context to a 
logical relational one. This aspect is often neglected in the ordinary mathematics 
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teaching activity, whereas it would require an in-depth reflection by teachers. … 
Since the whole teaching sequence was video recorded, the careful analysis of the 
recordings strongly highlighted the main features of my modus operandi in the 
classroom. It is embarrassing and instructive at the same time to see yourself during 
the class, to find out that you did not grasp immediately the opportunities offered by 
students to guide the lessons towards fertile grounds for a discussion. 
MB (Secondary school teacher). The a-posteriori analysis of my lessons sometimes 
meant realizing the inefficacy of my own didactical methodologies and behaviours. 
During this project of research on our own practice we had the possibility to learn to 
consider failures, not as negative events to be cancelled without trying to find a 
remedy, but as “launching pads” to bring ourselves into question. During this phase, 
the work with the mentor particularly helped me. The numerous pre and post class 
activities meetings and the crossed analysis of excerpts of class discussions 
represented a further source of reflections. Cooperating with the mentor gave 
coherence to my work, aimed at reaching prearranged objectives: the didactic ones, 
those related to the relationship to be established with my students and those 
correlated with the research on my practice. In these three years I gradually acquired 
more confidence in the tutoring-relationship with the mentor, who initially was an 
“uncomfortable” presence and quickly became an important reference. 
SD. (Secondary school teacher). The relationship with the mentor and the coordinator 
must be particularly taken into account because, with their experience, they helped us 
in keeping the coherence between the path we planned and the objective of the 
project. Their advices concerned not only the theoretical framework of reference, but 
also the planning of the different phases of the path, the organization of the 
methodology of work in our classes and the a priori and a posteriori analysis of class 
activities. Thanks to this collaboration, I understood the importance of considering 
the didactic action as a set of measured choices of contents, proposals, methodologies 
and teacher’s behaviours. In this perspective, students’ contributions are interpreted 
as a resource, rather than a dreadful unforeseen event… Numerous aspects have 
made my participation in the Project significant, even if I am aware that I have only 
taken a little step in the professional development of a teacher, which is full of shades 
and potentialities. 
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WHY IS THERE NOT ENOUGH FUSS ABOUT AFFECT AND 
META-AFFECT AMONG MATHEMATICS TEACHERS1? 

Manuela Moscucci - University of Siena (I) 
The role of affect in the teaching and learning of mathematics is widely recognised by 
researchers in the field of mathematics education, and a plethora of literature has 
been published on the subject. However, the related issue of meta-affect has been 
addressed only minimally. This paper aims to increase awareness of its importance 
within the community of mathematics teachers and mathematics teacher trainers. 
More specifically, it suggests how a meta-affective approach may be usefully adopted 
by mathematics teachers in the classroom as well to catalyse the personal and 
professional growth of current or future mathematics teachers.  
Keywords: affect, awareness, belief, emotion, meta-affect. 
 
Introduction 
The realm of affect is an especially rich area of research in mathematics education. 
However, the impressive scientific achievements in both qualitative and quantitative 
terms have failed to adequately influence practice among mathematics teachers or 
moreover, to drive investigation into the application of scientific research to practical 
mathematics instruction in the classroom. To no avail, Burkhardt and Schoenfeld 
(2003) invited researchers to “make progress on fundamental problems of practice”. 
With twenty-five years of experience imparting in-service training for mathematics 
teachers and ten years of experience as a mathematics teacher trainer (in Italy a two-
year postgraduate degree leading to teacher certification was launched ten years ago), 
the author has investigated the relationship between affect, meta-affect and changes 
in teaching practice among mathematics teachers. The adoption of a teaching 
methodology based on the resulting experience would appear to offer considerable 
promise.  
Theoretical framework 
McLeod (1992) identified beliefs, attitudes and emotions as the constructs upon 
which affect regarding mathematics is based. De Bellis & Goldin (1997) also 
recognised the role of values in this sense. Research into affect has evolved 
considerably since then, with growing investigation into the issues involved and a 
broadening of the theoretical background, to the point where multiple theoretical 
frameworks have emerged. We may thus address affect as a system of representation 
and communication (Goldin, 2002) in which beliefs, attitudes, emotion and values – 
the four elements in Goldin’s “tetrahedral model”- are viewed as a sub-domain; as a 
                                           
1 The author hopes the title doesn’t sound disrespectful to Schoenfeld (Schoenfeld, A. H.(1987). What's all the fuss 
about metacognition?. In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189-215). 
Hillsdale, NJ: Lawrence Erlbaum Associates), who wrote the paper in question when asked to explain ‘metacognition’. 
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system “strongly, naturally and in a dynamical way” linked to cognition (Malmivuori, 
2004); within a socio-constructivist framework (Op ‘t Eynde, 2004) or with an 
embodied cognition approach (Brown & Reid, 2004). The various theoretical 
frameworks highlight two elements which should attract the attention of researchers. 
The first of these regards the frequent appearance of the terms ‘metacognition’, 
‘consciousness’, ‘awareness’, ‘self-awareness’ and ‘meta-level’ in relevant literature. 
An important step in developing the debate and research field would be taken by 
investigating the meta-levels of the four constructs, their theoretical collocation and 
their correlations with metacognition. Hannula (2001) offered an approach to the 
issue, but there remains much more to be learned. The importance of metacognition 
in the learning processes was first highlighted by Flavell (1976). LeDoux (1998) and 
Damasio (1999), by conducting investigations based on fMRI (functional Magnetic 
Resonance Imagining), CAT (Computerized Axial Tomography) and PET (Positron 
Emission Tomography), have demonstrated that the functioning of the cognitive and 
emotive systems are closely related. In light of these studies one might plausibly 
wonder whether the term metacognition still means anything, or what its role might 
be within the new scientific framework. Must it be accompanied by the term meta-
emotion, must a new term be coined to comprise the two, or must yet other terms be 
coined? The second element to emerge from the theoretical frameworks of affect is 
how consistently they display links between affect and neuroscientific research 
(Schlöglmann, 2003). This has made it possible to create a neuroscientific basis for 
the interdependence of affect’s four constructs, so frequently emphasized in research. 
It has also afforded clarification of other hotly contested issues, such as the nature of 
beliefs, which must necessarily be hybrid (i.e.Furinghetti & Pehkonen, 2002): that is, 
both cognitive and emotive. This supports author’s hypothesis (Moscucci, 2007) 
beliefs are the ‘best’ element, among the four constructs of affect, which to act on, 
and this is the reason why, in this contest, the author is particularly interesting in 
‘beliefs’, which seem, together with emotions, to shape attitudes (Hart, 1989). The 
matter of defining ‘belief’ remains unresolved within the research field. Hence, here 
the term ‘belief’ will be taken to represent some sort of ‘primitive entity’, and every 
belief some sort of ‘axiom’ assumed as a result of personal experience; basically an 
affirmation which is accepted without proof. Furthermore, different mathematics-
related belief systems (Schoenfeld, 1992; Leder, Pehkonen & Törner, 2002) are in 
some way all correlated. So we might say, by adopting terminology from algebraic 
structure language, that the individual’s beliefs regarding mathematics (although the 
choice of subject is inconsequential) do not make up a ‘set’ of beliefs but rather a 
‘structure’ of beliefs. Researchers have not simply investigated the role of student 
beliefs in their learning processes, but also the role of the beliefs of mathematics 
teachers. As regards definitions, Richardson (1996) identifies teacher beliefs with 
their theoretical perspective of teaching methodology. This underlines the effect of 
teachers’ beliefs on their teaching practices. It would seem logical to deduce that 
teachers’ beliefs determine the quality of their practices (Cooney, 2001). However, 
almost twenty years ago, Cobb, Wood and Yackel (1990) noted that these influence 

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1812



  
each other reciprocally, rather than in terms of ‘side of the implication’. The 
interrelations among teacher beliefs and student beliefs are equally complex and 
controversial (Beswick, 2005) and it appears currently impossible to hypothesize the 
entity of these relations, given that student beliefs have not been proven to be the 
product of teacher beliefs, nor vice versa. Nevertheless, although the theoretical issue 
has not been resolved, the impact of belief systems on the classroom behaviour of 
teachers has been recognised in numerous studies involving mathematics teachers 
(for instance, Pehkonen, 1994; Chapman, 1997, 1999).  
From the realm of theory to didactic practice  
As mentioned in the introduction, this proliferance of scientific research has failed to 
produce significant developments that may be of direct use to mathematics teachers 
in the classroom. And yet, such developments are sorely needed by mathematics 
teachers, students, school systems and indeed society in general. Thus any efforts to 
impact on the belief systems of teachers, and especially on any beliefs that are 
damaging to students, are more than welcome. Damaging ideas might be identified as 
‘inefficacy beliefs’ (e.g.“A special inclination is needed to be good at maths in 
school”), in contrast with ‘efficacy beliefs’ in teaching mathematics, which have been 
investigated and illustrated (Philippou and Christou, 1998; 2002). The question to be 
answered is how to progress from inefficacy beliefs to efficacy beliefs and efficacy 
teaching practices. An approach addressing meta-affect may well prove useful. 
Goldin (2002) considers meta-affect as a key construct, “including affect about affect, 
affect about and within cognition that may be again about affect, monitoring of affect, 
and affect as monitoring”. The potential of meta-affect as a vehicle for the 
development of the professional profile of mathematics teachers has been confirmed 
throughout ten years of successful2 mathematics teacher training carried out by the 
author with teachers undergoing training and already in service. Due to space 
restrictions, only in-service teachers will be considered here.  
Towards a holistic approach to maths teachers affect 
Fifteen or so years of training courses proved that, in spite of apparent success, the 
impact on classroom practice was undeniably disappointing, with the didactic 
practices of the teacher participants evolving only rarely. Few teachers could bear the 
prospect of giving up the “school mathematics tradition” (Cobb et al., 1992) (frontal 
lessons aimed at the introduction of the new technique, presentation of examples and 
setting of exercises), even if the main goal of the courses was precisely didactic 
quality. Indeed, within the Italian school system the proportion of failures in 
mathematics with respect to all academic subjects has been and continues to be 
                                           
2Training is reputed successful when: 1) the participating teachers express their satisfaction with the training by means 
of their responses to a survey presenting questions in a 4-point Likert scale format; 2) the participating teachers begin to 
modify their teaching practices as suggested during the training course; 3) the modification of classroom practices by 
teachers produces positive effects (in the sense that the students benefit both in terms of their affect toward mathematics 
and their actual performance in this discipline). 
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telling: the Ministry sets this year’s figure at 42%. Moreover, the ‘discomfort’ (lack 
of success but also, for instance, ‘negative’ emotions and ‘inefficacy’ beliefs towards 
maths) of Italians with mathematics was believed (and subsequently proven 
(Moscucci et al. 2005) to be an ‘endogenous cause’ (e.g. arising within the school 
system itself) of student dropouts. This alarming situation called for the creation of an 
intervention scheme based on the following principles: 1) teaching methodology and 
teacher affect are closely linked (this was contextualized above from a theoretical 
perspective); 2) dealing with beliefs as a purely psychological construct is limiting, as 
mathematics teachers work together with their colleagues within a social context that 
tends to perpetrate traditional, time-tested teaching techniques (Op ‘t Eynde, 2004); 
to consequently avoid marginalising teachers who attempt to update their approaches, 
the teacher educator needs to undertake group work as has been carried out during 
well-documented experimentation (Jaworski, 2003); 3) the teacher trainer must 
obviously make use of the same didactic methods that are presented to the teachers 
for use with their students. The outcome of these considerations was the creation of 
an intervention scheme (Moscucci, 2007), in which beliefs systems role was 
highlighted. Meantime, the author has understood the synergy springing out the 
contemporaneous work about emotions and beliefs. As has been repeatedly debated 
within the theoretical framework, the affect of an individual (be it a student or 
teacher) is a complex structure comprising closely-linked constructs. Therefore any 
effort to influence it must simultaneously address all the elements on which it is 
based. So, perhaps, the success of that intervention scheme is due to the global – we 
would say ‘holistic’ – approach to teacher affect.  
Meta-affect: a ‘tool’ not enough used by mathematics teachers?  
About thirty years have passed since Flavell (1976; 1979) published his 
metacognition research and the importance of this concept to the learning process has 
been proven and reported (for instance, Hartman (1998)). However, it is rare to meet 
mathematics teachers who make use of didactic techniques informed by the 
abundance of metacognition research. The big step in the field of metacognition 
might involve equipping maths teachers with tools of observation and intervention 
that could be applied first and foremost to themselves: “...increasing metacognitive 
activity through private reflection and shared conversations increases teachers’ 
awareness of their subjective knowledge… beliefs are often challenged through this 
process, which lays the groundwork for the construction of new knowledge and for 
real change in teaching practice” (Hart, 2002). The training courses for mathematics 
teachers conducted by the author over the last ten years were structured by means of a 
method (Moscucci, 2007) that seeks to achieve meta-affective goals with the teachers 
prior to addressing discipline-specific issues. The distinguishing characteristic of this 
method is its emphasis on awareness (Marton & Booth, 1997): the teachers are put in 
a position to autonomously become aware of their own belief systems and emotions, 
without being obliged to openly declare their beliefs and emotions. There are two 
reasons for this. The first, as regards beliefs, is the well-known distinction between 
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“beliefs espoused and beliefs in practice” (Schoenfeld, 1989). What’s more, teachers 
often are not conscious or even aware of the beliefs underlying their teaching 
practice. The second regards emotions. Awakening the emotions that have 
accompanied teachers during the development of their professional capacity is 
extremely beneficial. The emotions experienced almost certainly influence their 
beliefs regarding mathematics learning and teaching. Even memories of what it was 
like to be a maths student as far back as primary school need to be evoked. 
Remembering is the first step. Then the emotion recalled must be elaborated to try to 
analyse its immediate impact and understand any eventual lasting repercussions. This 
means engaging teachers in ‘meta-emotive’ activity without attempting to place 
educators in the role of psychologist, but rather assisting teachers to self-analyse their 
memories. Let us briefly examine the close link between meta-emotion, meta-
cognition and the awareness of beliefs. Emotion3 is a personal response to an event 
signalled by physical symptoms such as an accelerated heart rate, blushing and facial 
expression. With time (a matter of seconds or minutes) these symptoms lessen and 
eventually disappear. There is consciousness of the emotion, but awareness takes 
hold only as the intensity of the physical reaction diminishes and it again becomes 
possible to ‘think rationally’, as we say. If the emotion has been particularly intense 
or is part of a series of emotions related to a single situation (such as learning 
mathematics), it begins to generate thoughts regarding the emotion’s cause, origins, 
consequences and responsibilities. These spontaneous or subsequent thoughts may set 
off a chain of further thoughts as well as further emotions. The initial emotion and its 
related physical manifestations have only short-term effects, thus failing to directly 
influence an individual’s future. However, the resulting chain of thoughts and 
emotions may lead to the creation of certain beliefs that are known to be highly 
influential. Most beliefs are generated in this way. Thus awareness of this process is a 
fundamental step in controlling negative emotions, neutralising their impact on the 
present and re-elaborating the beliefs generated by them. When considering this 
process, a distinction must be made between maths teachers with a mathematics 
degree and those with a different degree (in Italy this is not only possible but 
predominantly the case with teachers of the grade 6-9 levels). With this latter group a 
greater effort must be dedicated to developing awareness of emotions, as such 
teachers often experienced difficulty with mathematics, as student, at school or at 
university. As also regards teacher attitudes, activities that develop awareness of them 
must be provided, and teachers can be left free to define ‘attitude’ as they wish. 
Awareness of one’s attitudes is intended as awareness of what teachers consider to be 
their attitudes toward mathematics both as a learner in the past and as a teacher 
presently. To give an example, the following activity frequently proves useful. 
Teachers are asked to put down in writing – informally, without attention to 
composition – how they perceive their attitudes. Then their students are asked to 
repeat the exercise anonymously by the researcher - trainer. The students may find it 

                                           
3 When especially intense, the amygdale may come into play (LeDoux, 1995).  
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easier to express their opinions if they are provided with a guideline such as the 
beginnings of sentences to complete. The teachers observe the opinions expressed by 
their students and, following a personal analysis, are asked to put in writing their 
comments regarding both their and their students’ tasks. As this brief description 
illustrates, this approach concentrates on beliefs and emotions, inasmuch as they are 
considered to shape attitudes, as underlined in the theoretical framework. The aim of 
this approach is to create a virtuous cycle between the re-elaboration of beliefs and 
emotions on one hand, and the adoption of non-traditional methods on the other (the 
non-traditional methods are, in certain cases, ‘discovered’ by the teachers in a socio-
constructivist learning environment, in other cases by questioning their classroom 
practices). The first feeble attempts to make use of new methodologies and non-
traditional disciplinary approaches produce initial resources that encourage teachers 
to progress in their development. The teachers begin to experience new emotions, 
thus they re-elaborate their beliefs, and recontextualise their previous emotions. This 
is how the virtuous cycle is catalysed. The awareness of one’s own awareness 
represents another step toward quality in a teacher’s meta-affective competence.  
A short description of one experience 
Of many cases observed, the following - chosen to give a ‘hint’- offers elements to 
ponder as far as different teacher typologies are concerned. In 2005 the author was 
invited by the principal of a vocational school to set up and implement a three-year 
project aimed at reducing student failures in mathematics, which regarded over 60% 
of students (official data provided by the School Administration). The situation was 
in line with that of all schools of this kind, so it was actually no worse than average. 
Due to the lack of space, it is impossible to describe the details of the project. Briefly, 
it consisted in conducting activities based on meta-affect, as described in the previous 
section. The author worked with the teachers and the teachers worked with their 
students. As for subject teaching, the teachers were required to ‘embrace’ a socio-
constructivist teaching methodology. The author personally met the students with 
special difficulties (three-four times -two hours- for each class involved) in order to 
diagnose their nature. The school’s three mathematics teachers -all of them- were 
more or less of the same age, between forty and forty-five, while their psychological 
and professional profiles varied. One teacher, who will be called Victoria, was very 
cordial and outgoing, had a degree in mathematics, attended mathematics teaching 
conferences regularly, had previously participated in various innovative mathematics 
teaching projects and had always attempted to put into practice the developments 
presented in mathematics teaching journals. In spite of her efforts to improve her 
students’ results, she had never been successful. She participated in the project with 
great expectations. Another teacher, who will be called Angela, had a degree in 
mathematics and was disappointed by the poor results and scarce interest of her 
students, to the point where she simply wanted to retire. Angela was more insecure 
than Victoria but sincerely wanted to help her students. Perhaps it was a sense of 
impotence that made her want to retire. Although without great hopes, she 
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participated in the project willingly. The third teacher, who will be called Bill, had a 
degree in IT and had taken the teaching job following a frustrating experience as an 
IT technician. He had acquired a reputation for strictness with the students. He 
commented that “his students didn’t work enough” or “lacked the basics”, and that 
“some of them simply couldn’t be helped”. He participated in the project only 
following the insistence of the principal. As questions came up during the initial 
meetings (What is the role of school in educating individuals? And what is the role of 
mathematics? What is ‘school mathematics’?), his interest seemed to grow. “The 
answers to certain questions should be obvious to a teacher while they may not be; 
most answers are simply rhetorical!”. The three teachers attended an introductory 
course (about 30 hours, as a whole), using the intervention scheme mentioned in the 
previous paragraph (Moscucci, 2007), during the month of September 2005, prior to 
the beginning of the school year. They worked as usual together with their 
mathematics-teaching colleagues, but in an atmosphere of “contrived collegiality” 
(Hargreaves, 2004), while in this new context they began to appreciate the value of 
‘collaborative work’, undoubtedly benefiting from collaboration in “small groups”, as 
underlined by Santos (2007). They used the same methodology with their first -and 
second- year classes (involving more than 150 students). Throughout the year their 
work in class was supported by means of meetings with the author, every two weeks 
during the first three months of the year, later monthly, as well as long phone calls to 
provide emergency help. The author decided not to attend teachers’ lessons not to 
intrude a ‘strange’ element in the ‘classroom ambience’ and it was impossible to 
organize recording tools (but author’s meeting with the students in special 
difficulties). Unbeknown to the teachers and the author, the project was monitored by 
the principal through inspection of the attendance registers. At the end of the first 
school semester, appreciable improvements were noticed of the average final marks 
for the same level classes with respect to preceding years (data, and the following 
ones, from the Minutes of Class Meetings). The only change undertaken regarded the 
teaching methodology introduced in the project, so it is ‘highly’ likely that this was 
precisely the reason of these improvements. Victoria and Angela’s classes proved to 
be the most successful in the project, as, at the end of the first year, the number of 
failures in mathematics was reduced by about 90%. Angela also regained enthusiasm 
in her teaching. Bill encountered greater difficulty than his colleagues in applying the 
initial methodology focussing on meta-affect and the subsequent content 
methodology: while Victoria and Angela showed their enthusiasm for the activities 
suggested by the author, Bill always needed additional time to accept the proposals, 
and, above all, he was hesitant to update the activities in his classes. In any case his 
students achieved much better results with respect to previous years. Even if each 
teacher made up their own test, they were very similar except for insignificant details. 
Overall, at the end of the project’s first year, the only students to fail mathematics had 
also failed most other subjects and consequently had to make up the year. At the end 
of the year the school’s vice principal conducted a school-wide survey (completely 
unrelated to the project), and the results showed mathematics to be the students’ 
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favourite subject. Undoubtedly the aspect of the project regarding course content 
played a part in the project’s success, but it would have been impossible to even 
address course content without first eliminating the negative preconceptions towards 
mathematics of most students. In the third year of the project Victoria was transferred 
to a scientific high school renowned for its strictness and traditional methodology. 
The classes she adopted the method with achieved better results than all the other 
classes of the same year on a standardized test administered to all. In the last year of 
the project Angela suffered the lack of (mostly psychological) support from Victoria 
and lost some enthusiasm, but is still convinced of the method’s validity. Bill seems 
to have become less strict and perseveres in trying to apply the method. The author 
has obtained such surprising outcomes as those described in this paper on many other 
occasions. Now she is planning to monitor wider experimentation in a vocational 
school. At present it seems important, at first, to spread a research hypothesis: the 
awareness  of one’s own belief systems accompanied by a personal reworking of the 
emotions felt during mathematics tasks, may be key in removing ‘inefficacy beliefs’ 
and ‘recontextualising’ past emotions so that they are innocuous in the present. 
Secondly, the author hopes other researchers, teacher trainers and teachers will try to 
adopt these teaching methods and schema so as to confirm or contrast the hypothesis.  
Remarks 
The positions of numerous researchers on meta-affect recognising its central role in 
affect, the relationship between meta-affect and metacognition revealed by 
neuroscientific research and the success of certain teaching methods based on meta-
affective methodology should encourage researchers to investigate this subject from a 
theoretical perspective. After all, like many fields of education science, mathematics 
education displays distinct characteristics. In disciplines such as medicine or 
pharmacology, before a treatment such as pharmacological therapy can be applied, 
various levels of experimentation must be carried out. Instead, in the field of 
education it is possible and often especially effective to alternate research and the 
application of research outcomes to practice. Or better, this is a very fruitful way to 
proceed. This makes it particularly important to spread the use of practices with a 
high potential for success. The resulting discussion, rebuttal and development can 
only contribute to furthering research and increasing didactic quality.  
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THE ROLE OF SUBJECT KNOWLEDGE 
IN PRIMARY STUDENT TEACHERS’ APPROACHES 

TO TEACHING THE TOPIC OF AREA  
Carol Murphy 

University of Exeter  
This study reviews the relationship between student teachers’ subject knowledge in 
the topic of area and their approaches to teaching that topic. The research was 
carried out with four primary student teachers and examines the similarities and 
differences between the nature of their subject knowledge and their plans to teach the 
topic. In this paper results of two of the four student teachers are focused on to 
illustrate the contrasts in planning and subject knowledge. The intention is not to 
generalise relationships but to examine the phenomena presented. It raises questions 
related to the variables in connecting student teachers’ subject knowledge and their 
knowledge of how to teach.   
Key-words: subject knowledge; area; student teacher; approaches to teaching; 
understanding 

INTRODUCTION  
The importance of subject knowledge in the preparation of teaching activities is 
clearly recognised (Ball, Lubienski & Mewborn, 2001). If we see teaching 
fundamentally as an exchange of ideas it would seem evident that a teacher’s 
understanding of a topic will impact on how the idea is ‘shaped’ or ‘tailored’ when 
presented in a classroom. As such “teaching necessarily begins with a teacher’s 
understanding of what is to be learned and how it is to be taught” (Shulman, 1987, 
p.7). Shulman emphasised the transformation of a teacher’s knowledge of a subject 
into ‘pedagogical content knowledge’ and consequent pedagogical actions by “taking 
what he or she understands and making it ready for effective instruction” (p.14). In 
this way mathematical content knowledge is ‘intertwined’ with knowledge of 
teaching and learning (Ball & Bass, 2003). 
It is generally accepted that mathematics should be taught with understanding 
(Hiebert & Lefevre, 1986; Skemp, 1976). In the topic of area it would seem that 
children often rely on the use of formulae with little understanding of the 
mathematical concepts involved (Dickson, Brown & Gibson, 1984). They are unable 
to see the reasonableness of their answers and so are unable to monitor their use of 
these formulae. There is also evidence that student teachers have a similar reliance on 
formulae (Baturo & Nason, 1996; Tierney, Boyd & Davis, 1990).  
It would seem that a student teacher with limited understanding of the mathematical 
topic such as area would not be effective in developing children’s understanding. 
This study aims to investigate the impact of primary student teachers’ subject 
knowledge on approaches to teaching the topic of area.  As an interpretive study the 
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intention is not to generalise any relationship but to examine phenomena related to 
differences and similarities in the student teachers’ understanding of the topic and in 
how they plan activities to teach the topic.  

DEVELOPING UNDERSTANDING IN THE TOPIC OF AREA 
Measuring area is based on the notion of ‘space filling’ (Nitabach & Lehrer, 1996). 
However, unlike children’s other common experiences of measure such as length, the 
use of a ruler in measuring area is indirect. In this way instruction that focuses on 
procedural competence with measuring tools such as rulers “falls short in helping 
children develop an understanding of space” (p.473) and it is not surprising that many 
children confuse area and perimeter (Dickson et al., 1984). Instruction that models 
the counting of squares on grids provides more success and may represent the notion 
of ‘space filling’. However this does not represent the full nature of area. As Dickson 
et al. (1984) commented the possible restriction to a discrete rather than a continuous 
view of area measure might not lead to the notion of Π and the formula of the area of 
a circle.  
Further to this, figures used as representations in the classroom often provide a static 
view rather than a dynamic view. That is, as a boundary approaches a line, the area 
approaches zero (Baturo & Nason, 1996). This may lead to misconceptions about the 
conservation of perimeter and area. The recognition of such a misconception goes 
back at least to the 1960s with Lunzer’s (1968) notion of ‘false conservation’. This 
false notion has more recently been cited by Stavy and Tirosh (1996) as an example 
of the intuitive rule ‘more A, more B’, in that as the perimeter increases so the area 
will increase. Alternatively the intuitive rule can be manifested as ‘same A, Same B’ 
in that the same perimeter will mean the same area.  
It would seem that once introduced to the formulae, children have a tendency to use 
these regardless of the success of their answers (Dickson, 1989). Studies such as 
Pesek and Kirshner (2000) and Zacharos (2006) suggested that, where instruction 
involved procedural competence and use of formulae, children would insist on 
repeating strategies that caused errors and they often had difficulty in “interpreting 
the physical meaning of the numerical representation of area” (Zacharos, p. 229). 
Where instruction was based on measuring tools such as dividing rectangles into 
squares children demonstrated flexible methods of constructing solutions and often 
achieved more success. The studies suggested that the early teaching of formulae 
presented ‘interference of prior learning’ (Pesek and Kirshner) or ‘instructive 
obstacles’ (Zacharos).  
Such ‘interference’ or ‘obstacles’ could explain why many children at the beginning 
of secondary school take algorithmic approaches to the solution of area measurement 
problems (Lehrer & Chazan, 1998).  It follows that student teachers are likely to have 
a similar reliance on algorithms. If we refer back to Shulman’s model of 
transformation and Ball and Bass’s idea of ‘intertwining’ content and teaching 
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knowledge, then a student teacher’s understanding of the nature of area would seem 
key to the way they would teach it. Studies that have examined student teachers’ 
subject knowledge in the topic of area (Baturo and Nason, 1996; Tierney et al, 1990) 
found that student teachers often demonstrated a lack of understanding of how 
practical concrete experiences could relate to the use of formulae and how area 
measure evolves from linear measure. They were often uncertain about the 
reasonableness of their answers and were unable to explain how formulae were 
related. A study that has examined student teachers’ lesson plans for teaching the 
topic of area (Berenson, Van der Valk, Oldham, Runesson, Moreira, and Brockman’s, 
1997) found that many student teachers represented the topic of area through the 
demonstration of procedures and use of formulae rather than focusing on the 
activities that would support understanding. What we do not know from these studies 
is whether the student teachers that planned to teach the topic through the 
demonstration of procedures were the students who demonstrated a lack of 
understanding of the topic.  

THE STUDY 
The four student teachers involved in this study had varied backgrounds in 
mathematics. At the time of the study they had completed the taught university based 
element of a one year Post Graduate Certificate in Education (PGCE) and they were 
about to start their final teaching practice. The student teachers had attended 
workshop seminars on the teaching of primary mathematics. All four student teachers 
had the same course tutor so would have followed the same content in their 
mathematics seminars. The student teachers were also reassured that the work for this 
project would not be used as part of their course assessment.  
Clinical interviews were carried out with each of the student teachers to reveal 
underlying processes in their understanding (Swanson, Schwatz, Ginsburg and 
Kossan, 1981; Ginsburg, 1997). The first part of the interview examined the 
development of the student teacher’s lesson plan and the second part of the interview 
involved the use of mathematical tasks to investigate the nature of their understanding 
in the topic of area. The mathematical tasks were equivalent with some 
standardisation of probing questions but further interrogation was managed flexibly 
in order to be contingent with the student teachers’ responses. The interviews were 
audio taped and transcribed. 
The use of lesson plans 
Planning is central to teaching and the development of lesson plans is a key aspect of 
teacher training. Lesson plans provide a source of data in assessing student teachers’ 
professional development. They can also provide useful cues in follow up interviews 
when the activities, explanations and questions used by the student teachers help to 
generate further descriptions (John, 1991, Berenson et al, 1997). Although lesson 
plans are limited to demonstrating the student teacher’s ‘espoused’ theory of action 
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(Argyris and Schon, 1974) they can be seen as effective in indicating the student 
teacher’s perceptions of teaching.  
The student teachers were asked to plan a lesson to introduce the topic of area to a Y4 
class (8 to 9 year olds). The student teachers were advised that they could use any 
sources they normally would to help plan the lesson. The only restriction being the 
ideas would be their own or their own interpretation of teaching ideas from other 
sources. The student teachers were questioned about the following: 
1. How they had developed the activities  
2. How they felt the activities would facilitate the children’s learning 
3. The instructions or explanations they intended to give 
4. The questions they intended to ask the children 
5. The difficulties that they felt the children would encounter 
Area Tasks 
The second part of the interview involved four tasks adapted from Baturo and 
Nason’s (1996) and Tierney et al. (1990) studies to ascertain the subject knowledge 
of the student teachers.  
Task 1 (Baturo and Nason, p.245) includes both open and closed shapes to test 
student teachers’ understanding of the notion of area (see fig 1). Shapes G and F were 
included to test the ability to differentiate between area and volume, shapes J and K 
test the notion of area as the amount of surface that is enclosed within a boundary and 
shapes E, H and L test the understanding of area from a dynamic perspective. 

  
Fig 1: Task 1 

Task 2 (adapted from Baturo and Nason) was designed to test the ability to compare 
areas, initially without the use of formulae (see fig 2). The student teachers were 
presented with two pairs of cardboard shapes. Dimensions were not given.  
Comparison by visual inspection alone would be inconclusive so the student teachers 
were asked to consider ways to compare area. This was used to determine if the 
student teacher was able to use measuring processes other than external measures and 
use of the formulae.  
 
            Pair A:                                                                                Pair B: 
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                                                     12 cm       

                               12 cm                         6cm                                                        6cm 

                 12 cm             12 cm                                                           12cm                                           

                                                      6 cm                                                       18 cm 

Fig 2: Task 2 (shapes not drawn to scale) 

 

Task 3 (adapted from Tierney et al.) was intended to determine a dynamic view of 
area and the ability to consider changes in area and perimeter (see fig 3). The student 
teachers were given three cardboard shapes.  Dimensions were not given. 
1. a rectangle 9cm by 4cm  
2. a parallelogram where the area is the same as the rectangle but the perimeter 

has changed (base 9 cm and height 4 cm) 
3. a parallelogram where the perimeter is the same as the rectangle but the area 

has changed 

   1.                                                                      2.                                                              3. 

 

                               4cm                  4cm                                                                          4cm 

              9cm                                              9cm                                                     9cm 

Fig 3: Task 3 (shapes not drawn to scale) 

 

Task 4 (adapted from Baturo and Nason) aimed to test the correct use of formulae. It 
also tested for an understanding of the relationship with non-rectangular figures, 
including the use of the ratio П (see fig 4).  

 
Fig 4: Task 4 (shapes not drawn to scale) 
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RESULTS AND ANALYSIS 
In this paper it is presented the results of two of the four student teachers, Alan and 
Charlotte, are focused on to illustrate the contrasts in planning and subject 
knowledge.  
Alan 
Alan’s highest qualification in mathematics was an ‘A’ level taken over 5 years ago. 
He felt that his confidence level was moderate to high. In his lesson plan he intended 
to model the use of the formula using a transparent grid over a rectangle and by, 
“thinking out loud”, would state, “Find this side, this side and multiply together”. He 
would then show the children how to check by counting the squares. He was 
concerned that the children might confuse area and perimeter and that they might add 
the lengths rather than multiply. In order to overcome this he would show how to use 
a ruler to measure the lengths and repeat the instructions from the introduction. He 
felt that he would have to tell the children what units to use and that the ‘2’ means 
squared. Alan would continue the lesson with further practice of the formula with 
other rectangles and with shapes composed of rectangles. He suggested using a ‘real-
life’ context by extending the use of units to square metres and finding the area of the 
classroom.  
Alan’s use of formulae and calculations in Tasks 2, 3 and 4 were quick and accurate. 
He used the formulae as a first resort in comparing areas of shapes in Task 2 and 
Task 3 rather than reasoning or comparing by placing the shapes on top of each other. 
Alan gave a clear definition of area related to the covering of surfaces. He was also 
aware of the relationships between formulae and the notion of Π as a ratio in finding 
the area of circles. He was able to consider the dynamic view of area with the 
parallelograms in Task 3 but did not identify the area of the open shapes as zero in 
Task 1.  
Charlotte 
Charlotte had obtained a grade C GCSE qualification in mathematics, the minimum 
entry requirement for a primary PGCE course, and she spoke of lacking confidence in 
mathematics. Charlotte stated that she found the lesson difficult to plan and had 
researched pedagogy based texts. Charlotte intended to introduce the topic with a 
large paper rectangle and ask, “How many children can fit onto this shape?” She 
would use these arbitrary units to determine the area of other shapes and then draw 
rectangles on the board and pretend that each child is a centimetre square. Charlotte 
felt that the activities would “lead naturally” to a definition of area as the “amount of 
space within a shape” and she intended to note the strategies that the children used. 
She also intended to set an activity to investigate the area of rectangles and changes 
in perimeter. She would encourage the children to talk together about the patterns 
they had found. Charlotte would ask, “What do you notice about the perimeter and 
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area of the two classrooms?” (sketches on the board) and “Can you draw different 
shaped rectangles with an area of 12 squares?”. 
Charlotte’s notion of area from Task 1 seemed inconsistent. Although she stated that 
the area was the amount of space inside a shape she attempted to include some of the 
open shapes as those that had an area. She was uncertain as to whether the three-
dimensional shapes would have an area, and if so, how to measure it. She was, 
however, secure in the relationships between the formula for the area of a rectangle 
and the area of a triangle and was aware of an activity to determine Π as a ratio. 
Charlotte was aware of the dynamic view of area from Task 3 and was able to 
compare the areas of the parallelograms with little difficulty. Charlotte made errors in 
using the dimensions and formulae for calculating areas in Task 4. She was also not 
aware of the correct units and confessed that she never knew when to use cm2 or cm3. 

ANALYSIS AND DISCUSSION  
Performances on the mathematical tasks suggested that Alan had a good 
understanding of the nature of the topic of area.  In particular Alan demonstrated 
quick and accurate use of formulae. In contrast Charlotte’s performance on the tasks 
demonstrated limited knowledge in the use of formulae and units. Her understanding 
of the nature of the topic of area appeared to be inconsistent.   
Charlotte based her intended introduction to the topic of area on the counting of 
regions. Charlotte initially started with arbitrary units that would be used later to 
introduce the square unit. Charlotte was aiming to provide children with activities and 
problems that would help them realise the notion of area ‘naturally’. On the other 
hand, Alan’s lesson was focused on teaching the use of the formula. He was 
concerned that the children would not use the correct formula for area and he would 
articulate explicitly how to do this. There was an attempt to relate the use of the 
formula to ‘real-life’ by finding the area of the classroom.  
According to the review of research above, Alan’s intended focus on the use of the 
formula from the start of his lesson might suggest a premature introduction that 
would create  ‘interference’ or ‘obstacles’. However Alan was a confident 
mathematician who demonstrated accurate use of formulae and secure understanding 
of the nature of the topic. In contrast, the activities that Charlotte planned to use 
would be more likely to support children in developing a notion of area as ‘space 
filling’. This might reduce the children’s reliance on the use of formulae and 
consequently support their understanding. However Charlotte was less confident in 
mathematics and she demonstrated weaker subject knowledge.   
Ambrose (2004) has suggested that student teachers may often believe that teaching 
mathematics is straightforward. They assume that, if they know the mathematics they 
need to teach, and then all that is needed is to give clear explanations of this 
knowledge. Further to this the student teacher may believe that the aim of teaching 
mathematics is to explain useful facts and skills to children to help them become 
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skilful and efficient in their use and to know when to apply them.  The analysis of 
Alan’s lesson plan indicates that he may have this belief of teaching. Stipek, Givvin, 
Salmon and MacGyvers’s (2001) referred to this belief as a traditional ‘knowing’ 
orientation.  They suggested that a shift away from such a traditional orientation 
towards an ‘enquiry’ orientation where mathematics is seen as a tool for problem 
solving, would be more effective.   Analysis of Charlotte’s lesson plan suggests that 
she may have been more inclined towards an ‘enquiry’ orientation.  
In order to avoid the ‘interference’ or ‘obstructions’ that might become apparent by 
focusing on the procedures of area measurement we would want student teachers to 
move towards this ‘enquiry’ orientation. Stipek et al.’s empirical study indicated that 
teachers’ beliefs about mathematics predicted their instruction. However they also 
suggested that less confident teachers were more likely to be oriented towards 
mathematics as ‘knowing’ due to lack of confidence in dealing with the questions that 
might be asked through an enquiry based approach.  If we interpret Alan’s orientation 
as ‘knowing’ and Charlotte’s approach as moving towards ‘enquiry’ then this 
suggests an anomaly as Charlotte was less secure and lacked confidence in her 
knowledge of the content.   
It could be said that as Alan used the formulae with particular ease and accuracy his 
aim was to support the children in developing such a use. Although he was able to 
realise relationships he did not see this as an important aspect of mathematics and 
hence he did not focus on this pedagogically. Charlotte’s emphasis was not on 
ensuring clear explanations were given but that the children arrived at an 
understanding through the activities.  She suggested that the children would use their 
own strategies and she intended to employ activities that would ‘lead naturally’ to 
their understanding. Could it be that Charlotte’s lack of confidence and knowledge 
meant that she was uncertain of how to explain the mathematical ideas to the 
children? In this way she may have researched pedagogical approaches further. Or 
could it be that Charlotte’s beliefs in the teaching of mathematics differed from that 
of Alan? Despite a lack of knowledge in mathematics, Charlotte’s pedagogical 
approach may have been based on a belief that children develop understanding 
through active engagement in activities and that this belief has been carried over from 
her view of what is important in mathematics.   
This is not to suggest that Charlotte would be more effective in teaching the topic. 
This study has not investigated how the student teachers responded to the children’s 
learning in the classroom and Charlotte’s misunderstandings are likely to inhibit her 
ability to develop the children’s learning at some point.   

CONCLUSION 
Hill, Rowan and Ball (2005) have suggested that it is not knowledge of content but 
knowledge of ‘how to teach’ the content that is influential in considering teacher 
effectiveness. What remains a question is how this knowledge of ‘how to teach’ is 
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arrived at? Although this research does not provide any generalisable evidence it does 
raise questions regarding the nature of subject knowledge in relation to the 
knowledge of ‘how to teach’, and whether there may be other variables at play, such 
as orientations and beliefs about what is important in mathematics.  
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DEVELOPING OF MATHEMATICS TEACHERS’ COMMUNITY: 
FIVE GROUPS, FIVE DIFFERENT WAYS 

Regina Reinup 
Tallinn University, Estonia 

 
Developing a mathematics teachers’ learning community is one of the in-service 
teacher training methods in the university. At the beginning of 2006, from the 
initiative of some teacher training educators, a mathematics teachers’ community 
formed at Tallinn University. The aim of the project was to focus on two of the main 
problems in school mathematics: teaching percentages and functions. Although all 
the groups were given the same problem by the tutors, a different approach was used 
by each group. The article presents an overview of the division of task inside the 
groups at the end of the first stage of the whole process, and also in what way each 
group reached its final decision with the matter of how to teach percentages. It 
turned out that at this stage the workgroups had developed differently. 

INTRODUCTION 
By Wenger’s (1998) theory, working in the communities of practice is one of the 
most common and natural ways of cooperation and it can be seen in every sphere of 
social life where there is communication between colleagues. The aim of the 
communication is to solve a certain problem, and in this solving process there occurs 
constant intercommunication between the group members and the participants learn 
from each other (Wenger, 1998; Olson & Kirtley, 2001). Communities of practice are 
mostly informal groups. In a well-formed community of practice people have to 
know each other well, which implies that the following qualities apply: (Q1) the 
members of the community know each other’s abilities, (Q2) they can be set to work 
quickly, (Q3) there is a quick flow of information inside the community, (Q4) there is 
a fluent exchange of information, (Q5) there is a good grounding for finding new 
strategies, (Q6) the group finds original solutions to problems that have been solved 
already (Wenger, 1998; see also McGraw, Arbaugh & Lynch, 2001). 
The mathematics teachers’ learning community, as a part of the in-service teacher 
training method has, according to a number of researchers (e.g. McGraw, Arbaugh & 
Lynch, 2001; Goodchild & Jaworski, 2005; Olson & Kirtley, 2005), proved to be 
successful. The exchange of different opinions and views in the course of discussions 
gives the participants a chance to view the problems from different angles, and 
therefore it is instructive for every member (Olson & Kirtley, 2005). Jarowski (2005) 
points out the importance of disputes and constructive discussions inside the circle, as 
it is by this process that all conclusive decisions are made. Grossman, Wineburg & 
Woolworth (2001) also warn that at the initial stage of work the group is liable to 
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become a pseudocommunity, as discussions lack subject matter and the members 
reach agreement too easily when trying to find solutions. 
A mathematics teachers’ learning community (referred later as MMM-project [1]) 
was assembled at Tallinn University for the first time in 2006. The MMM-project was 
part of a wider project of enhancing mathematics teaching in Estonia (Hannula, Lepik 
& Kaljas, 2007). A preparation period of about seven months preceded the 
assembling of the MMM-project, during which mathematics educators at the 
university acquainted themselves with research on mathematics teachers’ 
communities worldwide (e.g. Olson & Kirtley, 2005; Jaworski, 2005; Goodchild & 
Jaworski, 2005) and thereby planned the MMM-project. The project awoke great 
interest among mathematics teachers – there were 34 applicants (initially it was 
planned for 10 teachers), and all of them were invited. I was one of these 
mathematics teachers. The planning of the MMM-project and its initial stages has 
been described by Hannula et al. (2007). 
The teachers participating in the MMM-project were divided into groups of 6 or 7 
members (referred to as G1-G5 in the text) at random. I was a member of G1. At the 
first two seminars we discussed the problems which resulted from the teaching 
process of percentages. We worked in the groups only at the seminars, as more rather 
individual homework was given by the tutors (designing and mediating artifacts). At 
the third seminar in October 2006 the groups were given a collective task: to make a 
detailed schedule for 20-25 lessons, about teaching percentages for grades 6-9 (pupils 
aged 13-16), and producing worksheets for them. The present article focuses on the 
fourth seminar of the MMM-project, which took place seven weeks later where the 
groups presented their respective views on teaching percentages. Most of the groups 
(G1, G2, G4 and G5) also gave reasoning in their presentation of how they reached 
their conclusions, and how they divided the tasks between the group members. In 
principle, the fourth seminar also marked the end of the first stage of the project, as at 
the next seminar the groups had to present their completed work of teaching 
percentages, and then to start discussing a new topic. 
This paper seeks answers to the following questions: (1) did any similarities occur in 
the division of task inside the groups and (2) on what did each group base their 
approach (the ideas given by the university mathematics educators, scientific articles, 
or the participants’ own experience). According to Jaworski (2005), the approach is 
only taking shape at the first stage of the learning community’s work. Therefore, it 
would be interesting (3) to analyse whether the groups, as learning communities, had 
acquired qualities of a solid community of practice at the end of the first stage of the 
MMM-project (Wenger, 1998), or if they were still pseudocommunities (Grossman et 
al., 2001). 

METHODS 
In the study I analyze the division of labour inside the groups, the level of 
development of the groups at the end of the first stage of the MMM-project, and on 
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what were the groups approaches based, apart from each member’s own thinking and 
experience. Unfortunately there isn’t much authentic evidence of the division of task 
inside the groups. The participants were not interviewed about it by the tutors, 
although the results might have proved interesting, and there are no video recordings 
of the process of working in the group(s). One of the authentic materials is a video 
recording of the fourth seminar (hereafter Video), where the representatives (or a 
representative) of each group tell(s) about the work inside the group and what 
conclusions they have reached. Parts of this recording have been used as the material 
to warrant conclusions and as illustrative examples in the present article. At the 
Estonian mathematics teachers’ annual conference (November 2-3, 2007) every 
group gave its view on how percentages should be taught at school, and each group 
also had an article about it in the proceedings of the aforesaid conference. These 
articles were another source that I could use. As the third source I used the teaching 
materials in each member’s folder on the MMM-project’s home page [2] and also in 
the folders of the different groups. In the autumn of 2008 I sent an e-mail to the 
participants of the MMM-project in which I asked them to explain the first stage of 
our project as they recalled it. In this paper I use excerpts of some of their answers to 
me. 
By comparing the above sources it is possible to make some conclusions about the 
work inside the groups. I searched for certain similarities in the division of task. I 
also tried to specify the level of development within each group by seeking the 
qualities of Wenger’s (1998) community of practice (see in the introduction, hereafter 
Q1 to 6). I got data based on each group’s approach from their articles (used 
references), and from the video (the tutors’ suggestions to groups). 

RESULTS 
Division of task 
The majority of the groups (G2, G4 and G5) used division of task so that each 
member of the group had to prepare one subtopic in depth. The unified form and 
structure was either agreed upon earlier or at the fourth seminar during the group 
work. 

“… We also divided the material by the topics so that each teacher could have one topic 
to think over more thoroughly … what it might consist of. And this is exactly what all 
our members have been doing. And today we tried to unify a little … what items to put 
down and where …” (member of G2, Video).  
“… On the basis of it we divided the lessons between us…who is taking what part of 
these lessons to analyse, and we realised that we had to put down worksheets for the 
pupils and worksheets (with answers, R. R.) for the teacher, and we agreed on what it 
should look like. And now we will start writing them, as we do not have anything else 
today,” (member of G4, Video). 
“ … First we relied on our division of tasks as we had agreed earlier … we had divided 
the topics between us as we had previously, and how many lessons might be 
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reasonable… Then we gave to every member of our group – we chose it ourselves – 
which topics for whom to analyse in detail. Each teacher ... or a colleague here can 
choose a topic to his own liking and then we write a program for pupils and for the 
teacher. We communicate by e-mail; we are trying to put our materials in the internet 
(MMM-project’s home page, R. R.),” (member of G5, Video).  

G1 compiled their own home page on how to learn and teach percentages, and how to 
go over the material, which refers to Q6 of Wenger’s (1998) community of practice. 
This group had chosen a slightly different way of dividing tasks, although here also 
each member was responsible for a certain part of the whole work (Q1). One of its 
members had knowledge of the program eXe-Learning, which he used in making 
their home pages. There were two experienced teachers in the group with good 
teaching methods and they prepared the theoretical part. Others prepared exercises 
and searched for some tests in the web, and my task (as I was the member of G1) was 
to find visual material and suitable games in the internet.  

“Visualization is very important and … we had one member who specialized on this…” 
(member of G1, Video).  

G1’s teamwork can be characterized as very active. In other groups the report was 
made by one member and all the others were only listeners, whereas in G1 all the 
members took part in the discussion by reporting (Video).  
The division of tasks is not clear in G3. There were two members who gave a report 
and one of them gave an overview of how he had taught percentages at school 
(Video). G3’s folder on the project’s home page is empty; there are some teaching 
materials in the group members’ folders, but they do not follow the principles set for 
the group work. 
Different approaches 
The university mathematics educators gave all the groups the same task: to make (1) 
a detailed schedule of 20-25 classes and (2) worksheets to help pupils to understand 
percentages better. Yet every group had a different approach. 
G1 did not give any detailed schedule of classes. Their group website was meant first 
and foremost for repetition, so that both the teacher and the pupil can go over the sub-
themes (Pihlap, Aluoja, Kopli, Koppel, Lepik & Reinup, 2007; Video; MMM-
project’s home page). 

“We had one more idea; we wanted to introduce something new, to do it this way as to 
put the picture and the text side by side, running simultaneously. So that those pupils who 
do understand the text perhaps do not need it, while others have difficulties with it and so 
the text keeps running alongside the picture.” (member of G1, Video). 

The university mathematics educators gave G1 an idea to add to the homepage a test 
on the basic knowledge and skills of multiplicative thinking (Video). The group work 
of G1 on the MMM-project’s home page and the sketch which they presented at the 
fourth seminar are very similar.  
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G2 gave a schedule of classes for teaching in different grades as suggested. The 
group presumed that the teacher would be using current textbooks and workbooks, 
and concentrated on making additional worksheets to them. G2 planned to present the 
most important items of their theory in a PowerPoint slideshow (Video). Their work 
on the MMM-project’s home page is left unfinished and the group’s folder is empty, 
although there is a lot of different teaching materials (PowerPoint slideshows as well) 
in the members’ folders.  
In G3 there were two teachers who had been teaching percentages in differing ways 
for a number of years. This explains why the approach in G3 was influenced by these 
two teachers.  

“For the beginning I must say that it seemed to me that in other groups there have been 
attempts to teach percentages as it has been suggested; as to our group it is interesting to 
notice that we happen to have two teachers here (A and H) who have already practiced 
teaching in the way we advocate now. … We have tried to have percentages together 
with fractions, or more precisely: finding a part. … And now A, who practiced this in his 
class, is playing his videotape,” (H, member of G3, Video). 

The presentation of this group’s research work was the longest of all. The report was 
very interesting in my opinion, and full of subject matter. Yet, as mentioned before, 
one of the members of the group presented his own personal view of how to teach 
percentages (Video). 

 “And therefore I consider it very important that, namely, to began with, I do not ask the 
pupils to do any operations, I take simple numbers and you will have to say quickly – 
three quarters, a half, one quarter or ten percent as well,” (A, member of G3, Video). 

The group’s article (Ojasoo, Kaasik, Lahi & Pärnamaa, 2007) is based mainly on the 
same report (Video). The group does not have a collective folder on the MMM-
project’s home page. 
G4 based its work on Merrill’s taxonomy (Gagne & Merrill, 1990; see Matiisen, 
Kalda, Kasendi, Tamm & Vahtramäe, 2007). The proportional number of classes was 
not fixed, and the work was divided into three major subdivisions: (1) immediate 
understanding (grade 6), (2) arithmetic/basic rules of calculation (grade 7), and (3) 
“life itself” (grades 8 & 9). On the given theoretical basis this group created entirely 
novel teaching material – different worksheets for pupils and for teachers (Q5 and 
Q6). The possibility to use current textbooks and workbooks was excluded (Video). 

“As far as I understood we were given such a task … we cast aside all schoolbooks and 
we have that batch, and the teacher goes in front of the class with that batch and the 
pupils will learn how to do percentages.” (member of G4, Video). 

In an e-mail a member from G4 brought to mind the period when they had dealt with 
percentages in the MMM-project. 

“I had read about and also practiced in my classes the heuristic approach that has been 
used in schools, and as it sounded interesting to my colleagues they were willing to try it. 
… About specialised literature. It is difficult to tell now from which sources exactly. … 
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Anyway, some articles written by our mathematics educators are among them.” (member 
of G4, from e-mail to R. Reinup, Sept.10th 2008). 

The results of G4’s work in full are on the MMM-project’s home page in the group’s 
folder.  
G5 based its program of teaching percentages on the official program for schools. 
The group members’ experience in teaching at school was their main starting point. 
In addition to this they read articles written by different researchers and thereby got 
an overview of the main problems teachers have when teaching percentages at school 
in Estonia (see Laanpere, Kattai & Sasi, 2007). The group decided to make some 
additional worksheets to complement the existing teaching materials. The new 
teaching materials were to be of help to teachers with little experience (Laanpere et 
al., 2007; Video).  

“We presume that we will use current schoolbooks and teaching materials as well. And 
when we are making those worksheets we will surely refer to the sources. ... Then each 
member in our group did some searching and found the teaching materials which have 
proved helpful in his work. Indeed, we have a number of different worksheets,…tests in 
our computers, games, and now we can see that they all prove useful.” (Member of G5, 
Video) 

The work produced by G5 is on the MMM-project’s home page. However, it can be 
noticed that most of the teaching materials come from only one teacher. 
Community or pseudocommunity 
It is a rather difficult task to detect whether any learning community characteristic 
features can be found in any group (see also McGraw et al., 2001). As I did not have 
any focused video recordings of the groups when working together at the seminars, 
there are no direct sources of what the work inside the group was like. It can be 
decided only indirectly whether we consider a group a learning community or a 
pseudocommunity, although videos, division of task inside the group, written 
materials, and above all the teaching materials in the groups’ folders on the MMM-
project’s home page can be of help. This sort of complex analysis allows drawing 
some conclusions of the developing degree of the groups.  
I have some difficulties when judging the work of G1 because I was the member of 
this group. There is not much material in the members’ folders on the MMM-project 
home page, but I know that all the members of the group sent their materials by e-
mail to the member who created the groups’ home page, on which rather intensive 
correspondence took place, especially during the last week before the fourth seminar. 
The address of G1’s home page was sent to all the group members so that everyone 
could suggest any alterations to be made. Also, at the presentation all the group 
members were very active (Video). So the qualities of Q2, Q3 and Q4 appeared, and 
earlier we have referred to Q1 and Q6 in connection to G1. Due to the intensive 
interaction and the fact that all group members contributed, G1 can be considered to 
be a community of practice in the sense of Wenger (1998).  
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All the members of G2 worked hard, collecting teaching materials in their folders on 
the MMM-project home page (the biggest amount of materials compared with the 
other groups), however their processes did not converge towards a shared conclusion, 
and the group’s folder is empty. On the video it can be seen that at the presentation at 
the fourth seminar the members of the group remain rather passive. Because of the 
passivity in producing their own material and in interaction, G2 can be considered to 
be in the developing phase as a group at the end of the first stage of the project. A 
weak developing degree of working communities at their first stage is also mentioned 
by Jaworski (2005). 
G3 contained a very influential person and my understanding is that the other 
members in the group accepted his views about teaching percentages, without adding 
any or very little of their own. The analysis of the group members’ folders on the 
MMM-project’s home page affirms the assumption – their content was not in 
accordance with the group’s explicated common aim as it was presented in a seminar 
meeting (MMM-project’s home page; Video). Onward, when analysing the materials 
on the MMM-project’s home page, it can be noticed that all the materials in the G5 
folder mainly originated from only one group member, although at the initial phase 
all was planned differently (Video). In the work of G3 and G5 the qualities of a 
community of practice (in sense of Wenger, 1998) do not appear. Grossman et al. 
(2001) refer to the basic quality of a pseudocommunity is that the members of it “act 
as if they are already a community that shares values and common beliefs”. In my 
opinion these groups (G3 and G5) are not pseudocommunities in this sense exactly. 
In both cases there is some inherent discordance between the group’s public report 
and the group’s actual work on the MMM-project’s home page. Yet, one might call 
them pseudocommunities as most of the work seems to be done by a single (or a 
couple of) member(s) and other members remained rather passive.  
In my opinion G4 compiled a very interesting, complete and novel collection of 
teaching materials (Q6). According to the recollections the work process was very 
intensive (Q3, Q4).  

“Common understanding developed among us on the grounds of everyday activities and 
experiences. We all had tried something new and we all could point out the benefits or 
weak facets of our experiments. As far as I know we all tried to put into practice most 
parts of other members’ experiments in our schools. … I have a sad story to tell, I cannot 
be blamed for having a small ego, and as a vice-principal (at a school, R. R.) I have 
acquired an ability to force my views upon others and I tend to do it in every situation. 
Therefore, I claim that I influenced other members of the group – but it’s no use crying 
over spilt milk.” (member of G4, from e-mail to R. Reinup, Sept. 10th 2008).  

Although this one member was concerned with having too much influence, the 
material produced did not originate from a single group member. Moreover, the 
material was produced in collaboration, not simply collected together. Therefore we 
can consider this group to have developed into a community of practice (Wenger, 
1998). 
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SUMMARY 
Every group of a learning community consists of different people and that’s why 
every different group develops its individual face. One of the main aims with the 
communities is to gain a new quality through the cooperation of different members 
with different experiences (Wenger, 1998). In the first phase of the MMM-project the 
groups had to make new proposals and give their solutions to some problems that 
might help to improve the quality of teaching percentages at Estonian schools. The 
task set by the tutors was the same for every group, yet every group had a different 
approach. 
There were certain similarities as to the division of task: each group member was 
responsible for one specific sphere (G1, G2, G4 and G5). The most typical division 
of task was the thematic approach (G2, G4 and G5). In group G1, taking into account 
each members’ abilities, the participants divided tasks according to the contents of 
the task. This is a more sophisticated approach. 
The group members relied on their own experiences when finding solutions to the 
tasks given to them, although in some groups (G3 and G5) it can be seen that the 
whole group relied on the experience of a couple of its members. During the whole 
project the tutors commented on the work inside the groups. G1 received a concrete 
suggestion from the tutors and the group took it into account. From references of the 
articles written by the groups it can see that G4 & G5 gained ideas from the literature. 
There were no concrete proofs of how the communities developed. In my opinion G1 
and G4 were the most highly developed groups. In G1 the group members understood 
each other’s abilities well (the tasks were given to the most able members), and there 
was a quick flow of information (e-mails, supporting each other at the presentation); 
they found suitable strategies and original solutions (they made their own home 
page). The work in G4 can be characterised as a fluent exchange of experiences 
(most of it was put into practice by various members). They found suitable strategies 
(the work was based on Merrill’s taxonomy) and they found an original solution (a 
set of worksheets). In the work of both groups G1 and G4 appeared to contain most 
of the qualities of communities of practice (Wenger, 1998), so I think that these 
groups can be called communities of practice. In the other groups the progress is 
somewhat questionable at the end of the first stage. G2 could not give a unified 
original solution, although there were a lot of teaching materials in the group 
members’ folders. Generally, only two members of G3 put their views and 
experiences together and one of them presented it (based on the analysis of the 
Video). In G5 there was some cooperation formally, but the main author of the whole 
report is a single member of the group (based on the analysis of the group’s folder on 
the MMM-project’s home page). 
The project with Estonian mathematics teachers confirmed Jaworski’s (2005) 
presumption that in the first phase of the work the community is still developing.  
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“The reports we heard gave us lots of ideas to think over but they all did not have enough 
time to mature, and to put them into practice when teaching percentages at school. I am 
quite sure that the result here is rather a reflection of some former experiences than 
anything new, created in the course of the MMM-project.” (member of G4, from e-mail 
to R. Reinup, Sept. 10th 2008). 

Some of the groups in the MMM-project developed more than the others, but 
participation (either actively or passively in the community’s work) was instructive 
for all its members. 

“In my opinion, cooperation was the major driving force. An idea emerged, then 
someone made it clearer and someone else explained something. We all brought some 
worksheets; I was discussing my plans on my worksheet, but ideas began to spring up 
and everyone contributed – some gave more, some gave less. I am convinced that this 
sort of cooperation gave us lots of ideas and added willingness to achieve better results 
with pupils at school.” (member of G1, from e-mail to R. Reinup, Sept. 6th 2008).  

Every idea needs time to mature. When comparing the teachers’ views during the 
whole MMM-project (from the beginning to the final phase), it can be noticed that 
during the project the participants developed a much more positive attitude in the 
subject (Kaljas, Kislenko, Hannula & Lepik, in press).  
All five groups also presented their concepts and ideas worked out during the MMM-
project at the Estonian mathematics teachers’ annual conference, which is one of the 
biggest mathematics teachers forums in Estonia. The large amount of teaching 
materials on the MMM-project’s home page is available to all mathematics teachers 
all over Estonia. Today the MMM-project has ended. The researchers can make 
conclusions and also start planning other projects of a similar kind in the future. 

NOTES 
1. In Estonian Meile Meeldib Matemaatika (MMM) – We Like the Mathematics 

2. http://zope.eenet.ee/mmmprojekt 
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FOUNDATION KNOWLEDGE FOR TEACHING: CONTRASTING 
ELEMENTARY AND SECONDARY MATHEMATICS 

Tim Rowland 
University of Cambridge, UK 

This paper describes and analyses two mathematics lessons, one about subtraction 
for very young pupils, the other about gradients and graphs for lower secondary 
school pupils. The focus of the analysis is on teacher knowledge, and on the 
fundamental mathematical and mathematics-pedagogical requisites that underpin 
teaching these topics to these pupils. The claim is that, in the case of the elementary 
mathematics, the relevant ‘foundation’ knowledge is to teachers what Foundations of 
Mathematics is to mathematicians: invisible until it becomes necessary to know it: 
and that this very invisibility poses particular challenges to teachers of young 
children. 
Keywords: teacher knowledge, subtraction, gradient, foundations of mathematics 

INTRODUCTION 
The complex and multi-dimensional character of mathematical knowledge for 
teaching is now better understood thanks to the seminal work of Lee Shulman (1986) 
and several subsequent studies. Mathematics teacher knowledge has also been 
analysed and discussed in several papers at earlier CERME meetings. Recurrent 
concepts in these discussions are subject matter knowledge (SMK) and pedagogical 
content knowledge (PCK). For mathematics educators, PCK is perhaps particularly 
interesting, in that it captures the notion of mathematical knowledge of a kind specific 
to the teaching profession. That is to say, it encompasses a large, and increasing, body 
of mathematical knowledge that would not be acquired in the process of learning 
mathematics for non-pedagogical purposes. The otherwise well-educated citizen does 
not need it, neither does the engineer, economist, biologist – or mathematician, for 
that matter. Instances of such knowledge include diverse representations of fractions, 
for example, or the Principles of Counting (in this latter case see, for example, 
Turner, 2007).  
Another strand of CERME thinking on mathematical knowledge in and for teaching 
includes the examination of teaching episodes against different kinds of descriptive 
and analytical frameworks (see e.g. Ainley and Luntley, 2006; Huckstep et al., 2006, 
Potari et al., 2007). The Knowledge Quartet framework of Rowland et al. (2005) 
emphasises three ways in which ‘Foundation Knowledge’ becomes visible in the 
classroom, for example in the teacher’s choice and pedagogical deployment of 
representations and examples. The underpinning Foundation Knowledge is rooted in 
the teacher’s ‘theoretical’ background and in their system of beliefs.  

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1841



  
[Foundation Knowledge] concerns trainees’ knowledge, understanding and ready 
recourse to their learning in the academy, in preparation (intentionally or otherwise) for 
their role in the classroom. It differs from the other three units [of the Knowledge 
Quartet] in the sense that it is about knowledge possessed, irrespective of whether it is 
being put to purposeful use. […]  A key feature of this category is its propositional form 
(Shulman, 1986). It is what teachers learn in their ‘personal’ education and in their 
‘training’ (pre-service in this instance). We take the view that the possession of such 
knowledge has the potential to inform pedagogical choices and strategies in a 
fundamental way. By ‘fundamental’ we have in mind a rational, reasoned approach to 
decision-making that rests on something other than imitation or habit. The key 
components of this theoretical background are: knowledge and understanding of 
mathematics per se; knowledge of significant tracts of the literature and thinking which 
has resulted from systematic enquiry into the teaching and learning of mathematics; and 
espoused beliefs about mathematics, including beliefs about why and how it is learnt. 
(Rowland 2005, p. 259) 

The study of Potari et al. (2007) is unusual in this field (of teacher knowledge) in that 
it sets out “to explore teachers’ mathematical and pedagogical awareness in higher 
secondary education and more specifically in calculus teaching.” (p. 1955). The 
authors note the substantial body of work on teacher knowledge in primary or early 
secondary education, and assert that “teachers’ knowledge in upper secondary or 
higher education has a special meaning as the mathematical knowledge becomes 
more multifaceted and the integration of mathematics and pedagogy is more difficult 
to be achieved.” (p. 1955). The claim, then, is that the task of coordinating content 
and pedagogy becomes more complex as the mathematics becomes more advanced. 
This paper sidesteps that particular claim. Instead, I examine two lessons conducted 
with pupils whose ages differ by about seven years. One is at the beginning of 
compulsory schooling in England (Year 1, pupil age 5-6), the other in lower 
secondary school (Year 8, pupil age 12-13). The analytical framework is the 
Knowledge Quartet in both cases, and the focus is on Foundation Knowledge in 
particular. My claim will be as follows: that whereas from the mathematical point of 
view, the subject matter under consideration with the Year 8 class is significantly 
more complex than that in the Year 1 lesson, the PCK necessary to teach the latter 
well has something in common with Foundations of Mathematics in the 
mathematician’s repertoire. Therefore it is difficult to conclude, in any 
straightforward way, which teacher has the more demanding task mathematically, 
where this [‘mathematically’] is taken to encompass mathematical knowledge for 
teaching in the widest sense, as indicated by Shulman and made explicit by Ball et al. 
(2005). 
The pattern in the following two sections will be to give a descriptive synopsis of the 
lesson first (i.e. to say what the lesson was about), followed by an account, 
necessarily selective, of the teacher Foundation Knowledge relevant to teaching this 
lesson. 
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YEAR 1 LESSON: SUBTRACTION 
The teacher, Naomi, was in preservice teacher education. The learning objectives 
stated in her lesson plan are as follows:  

To understand subtraction as ‘difference’.  
For more able pupils, to find small differences by counting on.  
Vocabulary - difference, how many more than, take away. 

Naomi begins the lesson with a seven-minute Mental and Oral Starter1 designed to 
practise number bonds to 10. In turn, the children are given a number between zero 
and ten, and required to state how many more are needed to make ten.  
The Introduction to the Main Activity lasts nearly 20 minutes. Naomi sets up various 
‘difference’ problems, initially in the context of frogs in two ponds. Her pond has 
four, her neighbour’s has two. Magnetic ‘frogs’ are lined up on a vertical board, in 
two neat rows. She asks first how many more frogs she has and then requests the 
difference between the numbers of frogs. Pairs of children are invited forward to 
place numbers of frogs (e.g. 5, 4) on the board, and the differences are explained and 
discussed. Before long, she asks how these differences could be written as a “take 
away sum”. With assistance, a girl, Zara, writes 5-4=1. Later, Naomi shows how the 
difference between two numbers can be found by counting on from the smaller. 
The children are then assigned their group tasks. One group (‘Whales’), supported by 
a teaching assistant, is supplied with a worksheet in which various icons (such as cars 
and apples) are lined up to ‘show’ the difference, as Naomi had demonstrated with 
the frogs. Two further groups (‘Dolphins’ and ‘Octopuses’) have difference word 
problems (e.g. I have 8 sweets and you have 10 sweets) and are directed to use 
‘multilink’ plastic cubes to solve them, following the ‘frogs’ pairing procedure. The 
remaining two groups have a similar problem sheet, but are directed to use the 
counting-on method to find the differences.  
Nine minutes later, Naomi calls the class together on the carpet for an eight-minute 
Plenary, in which she uses two large, foam 1-6 dice to generate two numbers, asking 
the children for the difference each time. Their answers indicate that there is still 
widespread confusion among the children, in terms of her intended learning 
outcomes.  
Foundation knowledge: subtraction 
Carpenter and Moser (1983) identify four broad types of subtraction problem 
structure, which they call change, combine, compare, equalise. Two of these problem 
types are particularly relevant to Naomi’s lesson. First, the change-separate problem, 
exemplified by Carpenter and Moser by: “Connie had 13 marbles. She gave 5 
                                           
1 The National Numeracy Strategy Framework (DfEE, 1999) guidance effectively segments each mathematics lesson 
into three distinctive and readily-identifiable phases: the mental and oral starter; the main activity (an introduction by 
the teacher, followed by group work, with tasks differentiated by pupil ability); and the concluding plenary.  
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marbles to Jim. How many marbles does she have left” (p. 16). The UK practitioner 
language for this is subtraction as ‘take away’ (DfEE, 1999, p. 5/28).  
Secondly, the compare problem type, one version of which is: “Connie has 13 
marbles and Jim has 5 marbles. How many more marbles does Connie have than 
Jim”. (Carpenter and Moser, 1983, p. 16). This subtraction problem type has to do 
with situations in which two sets (Connie’s marbles and Jim’s) are considered 
simultaneously - what Carpenter and Moser describe as “static relationships”, 
involving “the comparison of two distinct, disjoint sets”(p. 15). This contrasts with 
change problems, which involve an action on and transformation of a single set 
(Connie’s marbles). Again, the National Numeracy Strategy Framework (DfEE, 
1999) reflects the tradition of UK practitioners in referring to the compare structure 
as ‘subtraction as difference’. We return to this point in a moment. 
Carpenter and Moser go on to show that the semantics of problem structure, as 
discussed above, by no means determines the processes of solution adopted by 
individual children, although the structure might suggest a paradigm, or canonical, 
strategy. They describe six broad categories of subtraction strategy identified in the 
research literature. Some involve actions with concrete materials, others depend on 
forms of counting, yet others on known facts (such as 10-5) and derived facts (such 
as 11-5, derived from knowing e.g. 5+5). Most strategies with materials are 
associated with a parallel counting strategy. For example, separating from, the 
canonical strategy for the change-separate (‘take-away’) structure described above, 
involves constructing the larger set and then removing a number of objects 
corresponding to the subtrahend number. Counting the remaining objects yields the 
answer. The parallel counting strategy is called counting down from. The child counts 
backwards, beginning with the minuend. The number of iterations in the backward 
counting sequence is equal to the subtrahend. The last number uttered is the answer. 
Clearly, therefore, the child needs a suitable strategy for keeping track of the number 
of iterations; one way would be to tally them, typically with fingers. The counting up 
strategy involves a forward count beginning with the smaller number (subtrahend). 
The last number uttered is the minuend. This time, the number of iterations in the 
forward counting sequence is equal to the answer. Finally, Carpenter and Moser’s 
taxonomy of strategies includes matching, which is unusual in that it has no purely 
‘mental’ parallel in the absence of concrete objects. The child puts out two sets of 
objects with the appropriate cardinalities. The sets are then matched one-to-one. 
Counting (or subitising) the unmatched cubes gives the answer. It is relevant to note 
here Carpenter and Moser’s finding with Grade 1 to 3 children that the matching 
strategy is very rarely used. The only exception to this rule was by Grade 1 children 
who had received no formal instruction in addition and subtraction. The majority of 
these children who successfully solved a compare-type problem did so by using a 
matching strategy. By Grade 2, matching had given way to counting up. 
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The National Numeracy Strategy Framework (DfEE, 1999) reflects typical Early 
Years education practice in recommending the introduction of subtraction, first as 
take-away, in Year R (pupil age 4-5), then as comparison in Year 1. One consequence 
of this Early Years initiation is the almost universal use of ‘take away’ as a synonym 
for subtraction (Haylock and Cockburn, 1997, p. 38). Another peculiarly-British 
complication is that the word ‘difference’ has come to be associated in rather a 
special way with the comparison structure for subtraction. It is not easy to be definite 
how and when this came about, but one useful reference is the teacher’s manual for 
the highly-influential Mathematics for Schools (Fletcher, 1971) primary text book 
series. The series was ‘new maths’ in spirit, tempered with typically-British 
pragmatism. In a section entitled Comparison and ‘take away’, Fletcher describes 
comparison in terms of matching the elements of two sets. Some elements of the 
larger set remain unmatched. Fletcher writes: 

The cardinal number of this unmatched subset denotes the difference between the 
cardinal number of Set A and Set B. In determining a difference we compare a set of 
objects by matching its members with another set of objects. (p. 9, emphasis in the 
original) 

It is clear that Fletcher is associating the word ‘difference’ with comparison in order 
to distinguish it from take-away, although the grounds for doing so are not made 
explicit. The same association can be seen in recent UK teaching handbooks, for 
example: 

Story 2 introduces […] the comparison structure. […] When comparing two sets we may 
ask ‘how many more in A?’ or ‘how many fewer in B?’ or ‘what is the difference 
between A and B?’ (Haylock and Cockburn, 1997, p. 39).  

Crucially, as we remarked earlier, the NNS itself refers to the compare structure as 
‘subtraction as difference’. However, at the same time, the term difference is the 
unique name of the outcome of any subtraction operation, on a par with sum, product 
and quotient in relation to the other three arithmetic operations. There is evidence that 
these complexities, and others, present obstacles to the pupils throughout the lesson 
(Rowland, 2006). 

YEAR 8: GRAPHS OF LINEAR FUNCTIONS2 
The teacher, Suzie, had about 7 years’ teaching experience. The lesson begins with 10 
minutes’ whole-class revision of fractions simplification e.g. 24/6, 5/25. Suzie then 
writes the lesson aims on a board:  

Find the gradient of straight lines. 
Use the gradient and the intercept on the y-axis to find the equation of straight lines.  

                                           
2 From the ESRC-funded T-media Project 2005-07, University of Cambridge. Principal Investigator Sara Hennessy 
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Suzie asks what ‘gradient’ means. She develops one response - “how steep” - in 
terms of steep hills. Other pupil ideas include: road, roof, a slide, swing frame, ski 
slope, stairs. 
Suzie then writes on the board: “gradient = up/along”. She rolls the whiteboard to a 
squared section, and draws a line segment between two lattice points (4 along, 8 up). 
Suzie completes the triangle, using endpoints of the line segment, to show the 
horizontal and vertical increments. She says that the gradient is 8/4 = 2. 
Suzie then draws another line segment alongside the first. Its gradient is 3/6. Some 
pupils say “2”. In response, Suzie asks: what is 3/6? One girl asks: is it 1/3? Susie 
says:  It is ½. She asks which line (segment) has bigger gradient? She says that 2 is 
bigger than ½. One pupil refers to the two completed triangles that Suzie has drawn, 
and asks if it’s about area [i.e. does the first line have bigger gradient because the first 
triangle has greater area?]. This phase lasts 15 minutes. 
There is then individual/paired work for 15 minutes. Pupils share laptop computers 
and load the graphing software Autograph. Suzie distributes a worksheet. The sheet 
asks them to draw y=x, y=2x, y=3x and find the gradients (and generalise). Then it 
shows graphs of two lines through the origin and asks for their equations. Finally, it 
asks for a prediction of the graph of 2x+1, with Autograph check. Suzie circulates to 
assist pairs. 
The lesson concludes with a short plenary. Suzie projects y=x (from her laptop) on a 
screen and asks about the gradient. Likewise y=2x, y=3x. In each case it is calculated 
using a segment with one point at the origin. A boy says “the number before x is 
always the gradient”.  
Then Suzie displays the graph of y = 2x+3. She picks the segment between (-1, 1) and 
(0, 3) to calculate the gradient. Suzie writes “y=2x+3” and annotates “gradient” near 
the symbol ‘2’, and “cross the y-axis (intercept)” alongside ‘3’. Finally Suzie displays 
another line on the large screen, and asks “What is its equation?” She finds the 
gradient starting from (0, 1). The intercept is 1. Suzie writes y=3x+1, and the lesson 
concludes. 
Foundation knowledge: gradient 
Some reflections of a mathematical kind on the nature of the ‘gradient’, a concept 
which occupied much of the lesson time, is prompted by the examples that Suzie 
drew on the whiteboard when she introduced the concept quantitatively. Her 
examples were of line segments, whereas gradient is an attribute of (infinite) lines. 
Indeed, the graphing software (Autograph) that they used later draws lines, not line 
segments. Fundamental issues to be understood and considered by the teacher, 
therefore, include: 

• the gradient of a line is found by isolating a segment of the line; 
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• any segment yields the same ratio (this could be tested empirically: 
theoretically, it relates to similar triangles). 

There also exists knowledge of an explicitly pedagogical kind – more PCK than SMK 
– about the teaching and learning of the concept ‘gradient’. This is accessible in part 
by didactical reflections related to the mathematical observations already made: 

• some segments facilitate identifying the increases in abscissa (x-coordinate) 
and ordinate (y-coordinate) better than others; 

• the increase in abscissa should be ‘simple’ (ideally 1) to facilitate calculation 
of the ratio (unless one uses a calculator). 

There were few problems with finding the gradient of y=mx because (0, 0) could be 
taken to be one end of a line segment, and (1, m) the other. However, y = 2x+3 was 
much more problematic. So was y = 3x+1, and it seemed that few pupils followed 
Suzie’s demonstration at the end of the lesson. 
Beyond pure reflection, there is knowledge to be gleaned from empirical research. 
The iconic Concepts in Secondary Mathematics and Science study found “a large gap 
between the relatively simple reading of information from a graph and the 
appreciation of an algebraic relationship” (Kerslake, 1981, p. 135). In particular, the 
notion that proportional linear relationships hold in all segments of a line, and that 
lines are parallel if and only if they have the same gradient, was understood by very 
few pupils aged 13-15. In another study, Bell and Janvier (1981) identified what they 
call “slope-height confusion”, whereby slope as a ratio is not distinguished from the 
linear dimensions of a line. This resonates with the pupil’s question about area, 
although it is not the same. More recently, Hadjidemetriou and Williams (2002) have 
found that teachers tend to underestimate the difficulties experienced by children in 
answering graphical test items, not least because they themselves had the 
misconception the item was designed to elicit.  

DISCUSSION 
It is reasonable to claim that a particularly pithy concept (subtraction; gradient) lies at 
the heart of each of these lessons, and, from my observations, lies at the root of the 
pupils’ difficulty in learning what had been explicitly stated as the objectives of each 
lesson. This remark is not intended as a criticism of the two teachers involved, both 
of whom were committed to developing their teaching, and to the cause of 
mathematics teacher education. The complexity of the concepts would remain 
whoever was teaching them, and for other learners of similar ages. In both cases, 
there exists research evidence to suggest what can be expected of pupils (at the 
relevant ages) who have experienced instruction in these topics. This is useful in 
terms of anticipating the complexity of the material to be taught, and in terms of 
having realistic expectations of what will be learned, both because of and despite 
one’s best efforts.  
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What I find particularly interesting is the analysis of the concepts themselves. Some 
of this kind of analysis is achievable by ‘deep thought’, as it were, but in some cases 
it needs particularly insightful observational research (such as that cited on counting) 
to prise apart, or unpack, processes and skills that inevitably become automated, and 
therefore trivial, to adult users of those competences. The complexity of such skills 
necessarily becomes invisible to the educated citizen, yet it needs to be laid bare if 
they set out to teach them. My proposal here is that much elementary mathematics 
teaching is ‘difficult’, compared with teaching in the secondary grades and beyond, 
because the very concepts being taught, such as subtraction, lie somewhere beneath 
our conscious awareness, and our ability to analyse in pedagogically useful ways. 
Secondary and tertiary mathematics teaching is ‘difficult’ for different reasons, where 
teacher knowledge is concerned. In the case of Suzie’s lesson, for example, the 
teacher needs a good understanding of the defining characteristics of functions (e.g. 
Freudenthal, 1983; Even, 1999), which is ‘advanced’ knowledge in that it comes 
within the scope of undergraduate mathematics study. They also need a thought-out, 
connected understanding of the different ways in which functions can be represented 
symbolically and graphically, and how to navigate both within and between these two 
semiotic systems (Presmeg, 2006). Even (op cit.) found that this understanding could 
not be taken for granted in her prospective secondary teacher participants. 
I liken much of the Foundation knowledge that underpins the teaching of elementary 
mathematics concepts – and this is where I arrive at the claim set out earlier – to the 
place of Foundations of Mathematics in mathematics itself, and in the world of the 
practising, so-called ‘working’, mathematician. Most mathematicians can get on with 
their work without the need to ask “But what is a set, a number, a line, a sentence, a 
theorem, …” and so on. From time to time, particular individuals are motivated to 
ask, and to attempt to answer, such questions, for various reasons: out of curiosity, or 
in order to resolve paradoxes, or to explain why a proof cannot be accomplished. In 
some ways, it is easier to continue building up the edifice of mathematics than to dig 
down beneath it, to establish the foundations. In the same way, engaging with the 
foundations of mathematical ideas that educated citizens take for granted, in order to 
make them accessible to young learners, poses its own distinctive challenges. For 
more advanced mathematical topics, the challenge to teachers lies more in the 
complexity of the concepts, the extent of the prerequisite concepts, and the 
sophistication of the semiotic systems with which they are represented in mainstream 
mathematical practice.  
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RESULTS OF A COMPARATIVE STUDY OF FUTURE TEACHERS 
FROM AUSTRALIA, GERMANY AND HONG KONG 

WITH REGARD TO COMPETENCIES IN ARGUMENTATION 
AND PROOF 

Björn Schwarz, Gabriele Kaiser 
University of Hamburg 

The article describes the conceptions and first results of an enrichment study to the 
international comparative study on the efficacy of teacher education, Mathematics 
Teaching in the 21st Century (MT21). The study focuses on the professional 
knowledge of future teacher students in three countries – Australia, Germany and 
Hong Kong – with regard to the mathematical areas of modelling and argumentation 
and proof. After describing the theoretical framework and the applied 
methodological approach some selected results with regard to argumentation and 
proof are presented.   
Keywords: Education, Mathematical content knowledge, Pedagogical content 
knowledge, Proof. 
Background of the study 
Although teacher education has already been criticised for a long time, only rarely 
systematic evaluation and studies concerning the efficiency of teacher education and 
how future teachers perform during and at the end of their education can be found 
(for an overview on the debate see Blömeke et al., 2008). Even in the field that is 
covered by most of the existing studies – the education of mathematics teachers – 
research deficits have to be stated: the research is often short term, of a non-
cumulative nature, and conducted within the researcher’s own training institution. 
Only recently more empirical studies on mathematics teacher education have been 
developed (cf. Chick et al., 2006, Adler et al., 2005).  
In order to overcome this deficit the IEA (International Association for the 
Evaluation of Educational Achievement) currently carries out an international 
comparative study focusing on the efficiency of teacher education and the 
professional knowledge of future teachers called TEDS-M (Teacher Education and 
Development Study – Learning to Teach Mathematics). This study concentrates on 
future mathematics teachers and is conducted in 20 countries worldwide. We also 
refer to the COACTIV – study, another study on teacher education using similar 
conceptualisations of professional knowledge of mathematics teachers (see among 
others Krauss, Baumert & Blum 2008). Furthermore in order not only to develop a 
theoretical framework and adequate instruments for the TEDS-M study but also to 
offer a first research attempt to fill existing research gaps, a pilot study for TEDS-M 
was conducted called Mathematics Teaching in the 21st Century (MT211 [1]). This 
study also aimed to shed light on the important field of mathematics teacher 
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education from a comparative perspective. For this among others the knowledge and 
beliefs of future lower secondary teachers were investigated (for results see e.g. 
Blömeke, Kaiser, Lehmann, 2008, Schmidt et al., 2008). 
The study described in this paper is a complementary study to MT21 with the aim of 
gaining supplementary results basing on qualitative data as an addition to the 
quantitative data of MT21. This study is a collaborative study between researchers at 
universities in Germany, Hong Kong and Australia, using the theoretical framework 
and theoretical conceptualisation from MT21, but carrying out qualitatively oriented 
detailed in-depth studies on selected topics of the professional knowledge of future 
teachers, namely modelling and argumentation and proof, the latter being the theme 
of this paper. The study is only focussing on future teachers and their first phase of 
teacher education (for details see Schwarz et al., 2008). 

THEORETICAL FRAMEWORK OF THE STUDY 
The initial ideas of MT21 are considerations about the central aspects of teachers’ 
professional competencies and by this the related theoretical framework is also the 
theoretical basis of the supplementary study. Concerning the professional knowledge 
of teachers the study follows the ideas basically defined by Shulman (1986). He 
fundamentally distinguishes two domains, namely general pedagogical knowledge 
and content knowledge. The latter is further divided into three parts: 

• subject matter content knowledge 

• pedagogical content knowledge 

• curricular knowledge 
For the study these areas of content knowledge are further sub-divided. In the area of 
subject matter content knowledge for example with regard to Bromme (1995) 
mathematics as a school subject and mathematics as a scientific discipline are 
differentiated. 
Beside these cognitive components furthermore also an affective and value-orientated 
component is taken into consideration. This component especially accounts for the 
epistemological beliefs, more precisely the beliefs towards mathematics itself and the 
beliefs towards teaching and learning mathematics. Again in accordance with the 
theoretical conceptualisations of MT21 (see Blömeke, Kaiser, Lehmann, 2008) the 
differentiation of different beliefs towards mathematics of Grigutsch, Raatz and 
Törner (1998) is basis of the study. Here four kinds of beliefs are distinguished with 
relation to mathematics: 

• formalism-aspect of mathematics 

• scheme-aspect of mathematics 

• process-aspect of mathematics 
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• application-aspect of mathematics 
Based on these theoretical distinctions concerning professional knowledge of future 
teachers the overall aim of our study is to answer the following questions: 

• What kind of knowledge with regard to the described domains of teachers’ 
professional knowledge do future teachers acquire during their university 
study? 

• Which connections between the described domains of knowledge and the 
beliefs can be reconstructed within these future teachers? 

In this paper from a mathematical content related perspective we concentrate on the 
area of argumentation and proof. Furthermore because of the limited space we only 
focus on the first question and describe some selected results. For a more detailed 
description of results related to the area argumentation and proof see Schwarz et al. 
(2008). For first results related to the second question with regard to the mathematical 
area of modelling see Schwarz, Kaiser, Buchholtz (2008). 
Concerning the area of argumentation and proof we refer to specific European 
traditions, in which various kinds of reasoning and proofs are distinguished, 
especially “pre-formal proofs” and “formal proofs”. These notions were elaborated 
by Blum and Kirsch (1991): pre-formal proof means “a chain of correct, but not 
formally represented conclusions which refer to valid, non-formal premises” (Blum 
& Kirsch, 1991, p. 187). 
Concerning the role of proof in mathematics teaching, Holland (1996) details the plea 
of Blum and Kirsch (1991) for pre-formal proofs besides formal proofs as follows: 
For him pre-formal proofs may be sufficient in mathematics lessons with cognitively 
weaker students, in other classes both kinds of proofs should be conducted. Pre-
formal proofs have many advantages due to their illustrative style. In addition, pre-
formal proofs contribute substantially to a deeper understanding of the discussed 
theorems and they place emphasis on the application-oriented, experimental and 
pictorial aspects of mathematics. However, their disadvantage is their 
incompleteness, their reference to visualisations, which require formal proofs in order 
to convey an appropriate image of mathematics as science to the students. The 
scientific advantage of formal proofs, namely their completeness, is often 
accompanied by a certain complexity, which may cause barriers for the students’ 
understanding and might be time-consuming. However, there is no doubt, that 
treating proofs in mathematics lessons is meaningful with the aim of developing 
general abilities, such as heuristic abilities. The teaching of these two different kinds 
of proofs leads to high demands on teachers and future teachers. Teachers must 
possess mathematical content knowledge at a higher level of school mathematics and 
university level knowledge on mathematics on proof.  This comprises the ability to 
identify different proof structures (pre-formal – formal), the ability to execute proofs 
on different levels and to know alternative specific mathematical proofs. 
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Additionally, teachers should be able to recognise or to establish connections 
between different topic areas. To sum up: Teachers should have adequate knowledge 
of the above-described didactical considerations on proving as well (for details see 
Holland, 1996, pp. 51-58). It can be expected that in addition to being able to 
construct proofs, teachers will need to draw on their mathematical knowledge about 
the different structures of proving such as special cases or experimental ‘proofs’, pre-
formal proofs, and formal proofs and pedagogical content knowledge when planning 
teaching experiences and when judging the adequacy or correctness of their, and their 
students’ proofs in various mathematical content domains. 

METHODICAL APPROACH 
Based on the methodological approach of triangulation questionnaires with open 
questions and in-depth thematically oriented interviews were developed. This offers 
the opportunity to deepen the quantitative results of MT21 by means of this 
qualitative orientated data. The instruments are, as described above, restricted to the 
areas of modelling and argumentation and proof. The questionnaire consists of seven 
items that are domain-overlapping designed – as so-called ‘Bridging Items’. Each of 
the items captures several areas of knowledge and related beliefs on the base of the 
distinctions described above. In detail three items deal with modelling and real world 
examples, three with argumentation and proof and one is about how to handle 
heterogeneity when teaching mathematics. Furthermore, demographic information 
like number of semesters, second subject and attended seminars and teaching 
experiences – including extra-university teaching experiences - are collected. This 
questioning has been conducted with 79 future mathematics teachers on a voluntary 
base within the scope of pro-seminars and advanced seminars for future teachers at a 
German university. In Australia, 46 future teachers from two universities participated 
and in Hong Kong 84 future teachers from one institution.  
Complimentary to this questionnaire an interview guide for a problem-centred guided 
interview was developed, which contains pre-structured and open questions (i.e., 
elaborating questions) on modelling and argumentation and proof. The questions are 
linked to the items in the questionnaire in the sense that the have the same theoretical 
base and cover the same sub-domains of teachers’ professional knowledge. The 
selection of the interviewees follows theoretical considerations and takes the 
achievements in the questionnaire into account. That means interviewees were 
selected according to an interesting answering pattern in the questionnaire or 
extraordinary high or low knowledge in one or more domains. 
The evaluation of the questionnaires as well as of the interviews is carried out by 
means of the qualitative content analysis method by Mayring (2000). More detailed 
we apply a method of analysis that aims at extracting a specific structure from the 
material by referring to predefined criteria (deductive application of categories). 
From there, by means of formulation of definitions, identification of typical passages 
from the responses as so-called anchor examples and development of coding rules, a 
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coding manual has been constructed to be used to analyse and to code the material. 
For this, coding means the assignment of the material according to the evaluation 
categories. More precisely the method of structuring scaling (ibid.) is applied by 
which the material is evaluated by using scales (predominantly ordinal scales). 
Subsequently, quantitative analyses according to frequency or contingency can be 
carried out. 
In the following one exemplary item of the questionnaire is described, which shows, 
how the different facets of professional knowledge – pedagogical content knowledge, 
mathematical knowledge and beliefs - are linked. A similar item is included in the 
interview, so that it is possible to connect the evaluation of the data on a rich data 
base. 

Read the following statement:  
If you double the side length of a square, the length of each diagonal will 
be doubled as well. 
The following pre-formal proof is given: 

 
 
 
 
 
 
 
 
 
 
 

a) Is this argumentation a sufficient proof for you? Please give a short 
explanation. 

b) Please formulate a formal proof for the statement above about diagonals 
and squares. 

c) What proof would you use in your mathematics lessons? Please explain 
your position. 

d) Can a pre-formal proof be sufficient as the only kind of proof in 
mathematics lessons? Please explain your position. 

You use squared tiles of the same size. If you use four tiles to make one 
square, you will get a square with a side length twice the length of the 
squared tiles. 

You can see immediately, that each diagonal has twice the length of the 
ones of the squared tiles because the two diagonals of two tiles are put 
directly together. 
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e) Please name the advantages and disadvantages of a formal and pre-

formal proof. 
f) Can the pre-formal and the formal proof for the statement about the 

length of diagonals in squares be generalised for any rectangle? Please 
give a short explanation. 

g) What do you think about the meaning of proofs for mathematics lessons 
in the secondary school? 

Figure 1: Task from the questionnaire concerning argumentation and proof 

 

SELECTED RESULTS 
Both, part b) and part f) of the task described above lay their focus on the future 
teachers’ mathematical content knowledge. Part b) does especially not require any 
mathematics at a university level but only knowledge about fundamental geometrical 
theorems (e.g. Pythagoras theorem) and abilities concerning elementary algebraic 
transformations and abilities in formulation proofs. The items was coded on a five-
point-scale while both codes, +1 and +2, means a right solution (answers coded with 
+2 in addition have a comprehensible structure) and -2 means serious mistakes like 
circular arguments or just a rephrasing of the pre-formal proof while a formal one is 
required. Examples of future teachers’ responses and a more detailed description of 
the different coding of different answers are not presented here because of the limited 
space. Related descriptions can be found in Schwarz et al. (2008).  
The results are the following:  

Item 4b) Please formulate a formal proof for the statement 
above about diagonals and squares.
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Figure 2: Results of item 4b) 

One can see that for almost all institutions, the majority, in most instances, of future 
teachers in this case study were not able to execute formal proofs, requiring only 
lower secondary mathematical content, in an adequate and mathematically correct 
way. 
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Very similar results can be seen with regard to item f). Here also no university 
mathematics is needed but just an understanding of a proof suitable for lower 
secondary mathematics teaching. Again answers were coded on a five-point-scale 
with +1 and +2 meaning right solutions and -1 and -2 meaning wrong solutions. Then 
the results are the following: 

Item 4f) Can the preformal and the formal proof for the 
statement about the length of diagonals in squares be 

generalised for any rectangle? Please give a short explanation.
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Figure 3: Results of item 4f) 

Again, in most cases, the majority is not able to recognise and satisfactorily 
generalise a given mathematical proof. 
In contrast, in all samples there was evidence of at least average competencies of 
pedagogical content reflection about formal and pre-formal proving in mathematics 
teaching with the exception of the Australian sample with respect to the sufficiency 
of pre-formal proof as the only type of proof in mathematics lessons. The related 
results are presented in a more qualitative way in the following paragraphs. 
Preferences for pre-formal proving are evident, both with respect to mathematical 
content knowledge and pedagogical content knowledge. In contrast to the Hong Kong 
and Australian samples, there was a strong tendency in the German data for pre-
formal proving to be incorporated into the pedagogical content-based discussion 
particularly with respect to problems of using proof with students of different 
abilities. In both the Hong Kong and Australian data, future teachers indicated a 
broad open-mindedness to various didactical conceptions but the pre-formal proof 
was perceived as an atypical part of mathematics teaching, possibly reflecting the use 
of alternate terms and conceptions for argumentation and proving that is not formal 
proof in the teacher education courses in these contexts. In both samples, 
mathematical content considerations tended to be the basis for didactical reflections. 
With regards to affinity towards proving in lower secondary mathematics lessons 
Australian, Hong Kong and German students indicated a high to very high affinity to 
proving. It was assumed a higher affinity to proving would be expressed in more 
distinct pedagogical content reflection; however, the nature of these reflections 
differed with the samples. Future teachers in the German sample assumed dealing 
with proofs helped develop students’ argumentation abilities especially with respect 
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to their own hypotheses rather than their completeness of mathematical theorems. 
The difficulties students might have with proving in the classroom also came to the 
fore. In contrast, the Hong Kong and Australian future teachers rarely mentioned 
difficulties students might have with proving. The responses of future teachers from 
both Hong Kong and Australia reflected a formal image of mathematics being 
reinforced through use of formal proofs in teaching and the practice of proving 
leading to the comprehension of mathematical theorems. 

SUMMARY AND OUTLOOK 
The paper describes first results of an additional study to the international 
comparative study on the efficiency of teacher education MT21. With regard to a 
theoretical framework distinguishing between different areas of teachers’ professional 
competence results concerning future teachers’ knowledge in different areas are 
presented restricted to the mathematical field of argumentation and proof.  
As the presented additional study only focuses on future teachers, which means 
university students, no statements concerning the professional knowledge of 
practicing teachers can be made.   
With regard to the further work to be done one of the next steps of the evaluation will 
be a more detailed distinction between different subgroups of the sample and the 
particular characteristics of their professional competence. For this evaluation the 
sample will be divided twice. On the one hand different school types the future 
teachers are studying for can be differentiated. On the other hand future teachers in 
different phases of their university studies, which means beginners or students at the 
end of their studies, can be distinguished. Besides that the results of the analyses of 
the interviews are to be linked to the results of the questionnaires. First results of 
these analyses can be found in Corleis et al. (2008). Finally the results of the 
additional study are to be related to the results of the main study MT21. 

NOTES 
1. The previous name of this study was PTEDS. 
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KATE’S CONCEPTIONS OF MATHEMATICS TEACHING: 
INFLUENCES IN THE FIRST THREE YEARS 

Fay Turner 
University of Cambridge 

In this paper I report on findings from a four year study of beginning teachers.  The 
findings presented concern the conceptions of mathematics teaching for one of four 
case-study teachers and the influences on these conceptions. I present data from 
observations of lessons, interviews and written accounts that suggest Kate’s 
conceptions of teaching became increasingly more consistent with a ‘content-focused 
with an emphasis on conceptual development’ view of teaching. Data are also 
presented which suggest that ‘reflection’ was the main influence on the development 
of Kate’s conceptions both as an independent factor and in conjunction with the 
factors of ‘experience’ and ‘working with others’. 

INTRODUCTION  
There is evidence that the conception of mathematics teaching held by individual 
teachers will contribute to the effectiveness of their teaching (Thompson, 1992; 
Askew, Brown, Rhodes, Johnson and Wiliam, 1997).  The term conceptions is used 
here in the way suggested by Thompson (1992), as an inclusive term to include 
beliefs as well as other ideas such as mental images, concepts, meanings and 
preferences.  Conceptions of mathematics teaching is clearly an area that needs to be 
addressed in any work which attempts to describe or influence the development of 
beginning teachers in relation to the teaching of mathematics.  Assessing teachers’ 
conceptions and the promotion of such conceptions that are believed to be positively 
influential in children’s learning were seen as integral to my PhD study, an aspect of 
which I report on here.   
Khus and Ball (1986) proposed four models of teachers’ views about mathematics 
teaching, a classroom-focused view, a content-focused with an emphasis on 
performance view, a content-focused with an emphasis on conceptual understanding 
view and a learner-focused view. I used these models as a theoretical framework for 
the analysis of data collected in my study.  Though I have analysed the data in 
relation to all four of Khus and Ball’s models of conceptions of mathematics 
teaching, restrictions of space here only allow discussion in relation to the content-
focused with an emphasis on performance and the content-focused with an emphasis 
on conceptual understanding views. 
The aim of my study was to investigate the way in which beginning teachers’ 
understanding of mathematics content knowledge needed for teaching might be 
developed through reflection using the Knowledge Quartet framework. This 
framework was used as a tool for identification and discussion of the teachers’ 
mathematics content knowledge as evidenced in their teaching. The Knowledge 
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Quartet framework consists of four dimensions, Foundation, Transformation, 
Connection and Contingency. Details of this framework, and an account of how it 
was developed, may be found in the paper presented by Tim Rowland at the CERME 
meeting in Spain (Rowland, Huckstep and Thwaites, 2005).  
Teacher’s beliefs about mathematics and mathematics teaching were considered to be 
a component of mathematics content knowledge and are incorporated in the 
Foundation dimension of the Knowledge Quartet framework. Findings relating to the 
development of the Foundation aspect of one teacher’s mathematical content 
knowledge were presented in a paper at the CERME meeting in Cyprus (Turner, 
2007).  The focus of the 2007 paper was on Amy, and drew on data from the first two 
years of the study.  This paper focuses on the aspect of conceptions about 
mathematics teaching from within the Foundation dimension and presents findings 
relating to Kate over the full four years of the study. 

THE STUDY 
The study began with 12 student teachers from the 2004-5 cohort of primary (5-11 
years) postgraduate pre-service teacher education course at the University of 
Cambridge.  The numbers reduced, as anticipated, to 9 in the second year, then 6 in 
the third year and finally 4 in the fourth and last year of the study. All participants 
were observed teaching during the final placement of their training year, twice during 
the first year, three times during the second year and once in the third year of their 
teaching.  These lessons were all video-taped.  In the training year the video-tapes 
were the basis for stimulated recall discussions using the Knowledge Quartet 
framework to focus on the mathematical content of the lesson.  During the first year 
of teaching, feedback using the Knowledge Quartet framework was given following 
the two observed lessons.  Participants were then sent a DVD with a recording of 
their lesson, and a request to observe the lesson and write their reflections on it.  In 
the second year of their teaching only minimal feedback was given following the 
lesson as I wanted to see how the teachers would independently make use of the 
Knowledge Quartet in their reflections.  They were sent DVDs of their three lessons 
and wrote reflections on each of these, drawing on their previous training in using the 
Knowledge Quartet framework.  Participants also wrote regular reflections on their 
mathematics teaching which they sent to me. Group meetings were held to discuss the 
mathematics teaching and participation in the project of participants. These happened 
at the end of the training year and the first year of teaching, and at the end of each 
term in the second year of teaching.  In their third year of teaching each teacher was 
interviewed individually in the Autumn and Spring terms and a group meeting was 
held in the Spring term.  
Case studies were built from observations of teaching, discussions following 
observed lessons, contributions to group meetings, written reflections and individual 
interviews. Data from transcripts of discussions following observed lessons and 
group interviews as well as from written reflections was all analysed using the 
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qualitative data analysis software NVivo. A grounded theory approach (Glaser and 
Strauss, 1967) was used which led to the emergence of a hierarchical organisation of 
codes into a number of themes.  Analysis of data attributed to codes under the NVivo 
theme ‘beliefs’, and the Knowledge Quartet analysis of observed lessons were used to 
build a description of the participants conceptions of mathematics and mathematics 
teaching over the four years of the study.  Analysis of data attributed to codes under 
the themes of ‘experience’, ‘reflection’ and ‘working with others’ allowed inferences 
to be made about the factors associated with changes to participants’ conceptions.  
Though data from all four case studies have been analysed in relation to changes in 
their conceptions of mathematics teaching, there is only room to report on Kate here. 
Since in this discussion I hope to build a picture of the way in which the participants’ 
conceptions developed over time, it is necessary to refer to times at which different 
data were collected.  To aid clarity, and achieve brevity in this, I will use the date of 
the year and a number only to identify the timescale.  Table 1 is intended to help the 
reader place the data within this timescale.   

Table 1: Notation used to indicate the timescale of data collected in the study  

Notation used Place in career 
2004            Autumn term Trainee teacher 
2005/6(1)   Autumn / Spring term 
2005/6(2)   Spring / Summer term 

First year in teaching post 

2006/7(1)   Autumn term 
2006/7(2)   Spring term 
2006/7(3)   Summer Term 

Second year in teaching post 

2008(1)     Autumn Term 
2008(2)     Spring Term 
2008 (3)    Summer term 

Third year in teaching post 

 

FINDINGS 
Analysis of teaching and of data coded under the heading ‘beliefs’, provided an 
account of Kate’s conceptions of teaching over the first three years of her career. In 
Kate’s lesson observed in 2004, the Knowledge Quartet code ‘reliance on procedures’ 
featured strongly and suggested a view which emphasised performance.  Kate was 
teaching a lesson about doubling single digit numbers and demonstrated recording the 
doubling process by writing an addition in a witch’s cauldron with the answer in a 
bubble above e.g. ‘3 + 3’ in the cauldron and ‘6’ in the bubble.  To record doubling of 
two digit numbers an extra bubble was added for the ‘tens numbers’ e.g. ‘23 + 23’ in 
the cauldron, ‘4’ in the tens bubble and ‘6’ in the units bubble.  When questioned 
about this in the post-lesson reflective interview Kate suggested an amendment,  

If I was going to do the tens and units, I should have asked for the units first ‘cus that’s 
what they know they have to start with, the most significant number which is tens. 
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Kate focused on a procedure reflecting the standard algorithm which suggested an 
emphasis on performance view of teaching. However in this same lesson, there was 
an indication that Kate was concerned to develop conceptual understanding. The 
Knowledge Quartet code ‘making connections between concepts’ was attributed 
when Kate made connections between doubles and near doubles and even and odd 
numbers and used pictorial representation to demonstrate why doubles must be even 
and near doubles odd. 
In the lesson observed in 2005/6(1), Kate introduced the concept of multiplication by 
making the connection with repeated addition. She used a number of different 
representations modelling repeated addition to develop understanding of the concept 
of multiplication. However, when they came to do some problems themselves, the 
children were given specific procedures for calculating and recording. This lesson 
seemed to reflect a mixture of content-focused views of teaching with both an 
emphasis on performance and an emphasis on conceptual development.   
The second lesson observed in 2005/6 did not feature ‘reliance on procedures’ and 
Kate made use of demonstrations to develop the children’s understanding of capacity 
and conservation.  However, at the group interview in 2005/6(2), Kate suggested that 
she thought the children preferred an approach which emphasised procedures.  

They really like doing boring things, they like doing number sentence things, they don’t 
like the other [problem solving] it’s more difficult, but they really like number sentences. 

The three lessons observed in 2006/7 all demonstrated a concern for developing 
conceptual understanding rather than focusing on performance.  In the lesson 
observed in 2006/7(1), there were no instances of ‘reliance on procedures’ and Kate 
used a number of demonstrations to build the children’s understanding of measuring 
using appropriate non-standard and standard units.  In the lesson observed in 
2006/7(2), Kate made use of a number of different representations to develop the 
difference conception of subtraction and also asked the children to explain their own 
strategies for completing the calculations.  In the warm up part of the lesson observed 
in 2006/7(3), Kate set problems involving making the largest and smallest numbers 
on a spiked abacus using specified numbers of beads.  This was designed to develop 
their conceptual understanding of place value.  The main part of this lesson involved 
shading of different fractions on various grids.  The way in which Kate introduced 
this, and the activities set for the children seemed to be aimed at developing a 
conceptual understanding of vulgar fractions.   
The suggestion that Kate’s emphasis was on conceptual understanding in 2006/7, was 
supported by analysis of the NVivo coding of data. Kate had five instances of the 
code ‘conceptual understanding’ attributed to her data from 2006/7.  In her reflective 
account written in 2006/7(3), Kate wrote, 

Following the quite broad objectives of the new strategy, we have been trying to teach 
about data handling in quite a conceptual way and get children to think about the 
advantages and disadvantages of different ways to represent data.   
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Though observations of teaching and analysis of the NVivo data suggested Kate had 
moved towards an emphasis on conceptual understanding view of teaching, there 
were also a number of instances of her data from 2006/7 and 2007/8 which suggested 
she still held an emphasis on performance view.  Two codes considered to reflect an 
emphasis on performance view, which featured strongly in her data, were ‘teaching 
different strategies’ and ‘need for structured work’.  Five instances from reflective 
accounts written in 2006/7 were coded as ‘teaching different strategies’.  

We have been looking at different addition strategies … We had specific teaching 
sessions on some of these areas, then had some activities in which children were 
encouraged to choose a method for themselves. 2006/7(1) 

This instance, and others like it, indicated that Kate felt she needed to give children a 
‘toolbox’ of strategies from which to choose in order to perform calculations.  Later 
in the year she seemed to have moved her position towards one in which she felt it 
was more helpful to focus on just some specific methods.   

The week was structured around teaching a few particular methods, which is a little 
different from the approach we have often taken before when we have given the children 
opportunities to choose their own methods. 2006/7(2) 

Kate’s move towards an approach involving teaching specific methods with which 
children can be successful seemed to reflect an emphasis on performance.  
Data coded as ‘need for structured work’, suggested that Kate seemed more 
concerned that children achieved success in solving problems than that they 
developed a conceptual understanding.  During the interview in 2007/8(2), we 
discussed the teaching of ‘word problems’.  Kate indicated that she focused on 
getting the children to look for specific words in order to decide what sort of 
calculation was involved.  

So, rather than understanding the concept behind the problem, it was … we wanted the 
children to know what they could do, and that’s why I repeated the same lesson again.  
This time we approached it a bit differently and said ‘if you can spot one of these words, 
then you can work out for yourselves what it means and you will be able to do it’.  

During the interview in 2007/8(2) Kate suggested that she recognised her teaching 
focused on achievement or performance rather than on developing conceptual 
understanding through exploration. 

I don’t think that we do much open-ended, and that is perhaps a bit of a weakness in the 
way that I teach at the moment, because quite often, quite often in lessons I tell them 
what I want them to achieve.   

Though Kate sometimes focused on performance in 2007/8, there was evidence from 
the lesson observed in 2007/8(2) that she continued to emphasise conceptual 
understanding.  In this lesson Kate demonstrated the commutativity rule for addition 
before introducing the strategy of putting the bigger number first.  She showed this by 
pinning two sets of differently coloured clothes pegs on a coat hanger to illustrate an 
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addition e.g. 2 + 3, and then turned the coat hanger around to show the addition 3 + 2. 
Kate did not simply tell the children the rule but demonstrated why it was the case.  
Later in the lesson, Kate demonstrated adding ten by moving down one row on a 
hundred grid.  She asked the children why adding 10 to 23 gave the answer 33.  Kate 
tried without success to get a response which showed an understanding of place value 
in relation to the layout of the grid. In the post-lesson reflective interview, Kate stated 
that she was unhappy that pupils had responded in this procedural way, and said that 
she would work on an approach directed at understanding why this procedure works. 
Kate’s data suggest that over the first three years of teaching her conceptions of 
mathematics teaching had encompassed elements of a content-focused view with an 
emphasis on performance and a content-focused view with an emphasis on 
conceptual understanding. All of Kate’s lessons observed over the three years 
indicated that Kate was trying to develop conceptual understanding in her pupils, and 
this was supported by analysis of the NVivo coding of her data.  Kate’s later 
comments suggest that she was consciously trying to focus more on developing 
conceptual understanding. However these comments also suggest that she continued 
to be concerned that children were taught specific strategies, suggesting a view which 
emphasises performance.  
The data discussed above presented a picture of Kate’s conceptions of mathematics 
teaching over the first three years of her career.  An analysis of data under the NVivo 
coding headings, ‘experience’, ‘working with others’ and ‘reflection’, gave some 
insight into the influences on these conceptions.  Three instances of data under the 
heading ‘experience’ suggest that this was an influence on Kate’s conceptions of 
mathematics teaching as content-focused with an emphasis on conceptual 
understanding. In her reflective account 2006/7(1) Kate wrote, 

From last time we covered place value I realised that the majority of my year ones were 
not very clear on this concept.  I wanted to make sure they understood the importance of 
tens and units on how we write our numbers. 

During the interview in 2007/8(1), I asked what Kate thought had influenced the way 
in which her teaching had changed. 

I think having done it before and knowing it works and sometimes I think when I have 
been teaching things, I have thought ‘do I really understand this’, or I have thought, ‘ I 
think I might be giving a misconception here or something’, and then the next time I am 
really careful not to. 

I would argue however that ‘experience’ alone did not influence Kate’s conceptions 
of mathematics teaching. Rather, an examination of the three instances, demonstrate 
that it was Kate’s reflection on her experience that influenced her conceptions of 
mathematics teaching.  Phrases such as ‘I realised’, ‘I have thought’ and 
‘extrapolating in my head’, all suggest active reflection. 
There were several instances of data attributed to codes under the heading ‘working 
with others’ that suggested this too influenced Kate’s conceptions of mathematics 
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teaching. Some such instances seemed to suggest that her colleagues had a view 
which emphasised on performance, while Kate’s view was more one which 
emphasised conceptual understanding.   In her reflective account 2006/7(2), Kate 
wrote,  

Various materials suggest you should use them [empty number lines] in a ‘come and 
show me how you are going to use this in your own way’ kind of approach.  However 
my colleague believes that we should only be teaching counting on along the empty 
numberline because that is what the children will be taught in year three.   

Kate seemed to be in a dilemma because she was concerned with conceptual 
understanding while her colleague seemed to focus on content of the school 
curriculum.  Two instances from the interview in 2007/8(1) suggest that Kate’s 
‘enculturation into a community of practice’ (Lave, 1988) involved exposure to views 
which emphasised performance. In the first of these, Kate’s use of the term ‘we’, 
suggested that an emphasis on performance had resulted from shared planning. 

We are trying to work on getting them to have skills of the physical, and the sort of 
organisational skills of recording their maths and they sort of need a structure to do it in. 

In the second instance Kate was replying to my question about whether she ever 
talked to other people about reflections on her teaching. 

Yes, occasionally.  I think I would say, ‘they found that really difficult, the numbers were 
too high and they didn’t get a chance to work on the process because they were using 
those numbers’, or ‘that was really quick and they could have done another’.  

This suggested that Kate saw her conversations about mathematics teaching with 
colleagues as being focused on the performance of the children rather than their 
conceptual understanding. 
There were a number of instances of data under the heading ‘working with others’ 
that suggested Kate had an emphasis on conceptual understanding view of teaching.  
However, these did not necessarily suggest that Kate’s colleagues had been 
influential in developing this view. In her reflective account 2006/7(1), Kate 
discussed a difference of opinion about a planned investigation. 

The person planning for our team had planned for the children to investigate the question 
‘do all rectangles have four sides’. When this was first suggested it struck me as a rather 
trivial question, but as I continued to think about it I thought it was not a very good 
question at all because it suggested there was something intrinsically ‘rectangular’ about 
the examples they would be spotting which would allow them to recognise them as 
rectangles without taking into account their four-sideness. 

I haven’t discussed this with my colleagues as I didn’t want to be awkward, but I made a 
note to myself to keep my eyes open at planning meetings so I can politely say something 
straight away if I am uncomfortable with the mathematical ideas behind our planning in 
any other cases! 
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Kate focused on the conceptual appropriateness of the task despite the influence of 
her colleague, rather than because of it. During the interview in 2007/8(1), I asked 
Kate whether she ever talked to her colleagues about issues such as the use of 
representations in her teaching. 

Not as often as we should because nobody wants to do the planning again.  Um, I guess I 
would just use the other representation rather than discussing it with anybody.  

This instance suggested that Kate did not automatically take on the ideas of her 
colleagues, but considered their conceptual appropriateness and changed them in her 
own teaching if she thought it necessary.  Kate’s ‘enculturation into her community 
of practice’ seemed to have been mediated by critical reflection.  Kate engaged in the 
process Wenger (1998) referred to as critical alignment in such a way that she 
developed a view of teaching that continued to be strongly content-focused with an 
emphasis on conceptual development, despite this not seeming to be the general view 
of her community of practice. 
The factors of ‘experience’ and ‘working with others,’ seemed to have had some 
influence on Kate’s conceptions of mathematics teaching.  However, both these 
factors also involved the mediation of reflection.  Reflection also emerged as a 
separate heading in the NVivo coding process and Kate had a greater number of 
instances of her data attributed to codes under the heading of ‘reflection’ than to 
‘experience’ and ‘working with others’ taken together.  Codes under the heading 
‘reflection’ which related to conceptions about mathematics teaching included, 
‘changed thinking’, ‘justification of teaching’, ‘questioning own teaching’, 
‘suggested improvements’ and ‘judgements about effectiveness’. 
Some of the instances of Kate’s data coded under the heading ‘reflection’ suggested a 
view of teaching that emphasised performance.  In her reflective account written in 
2006/7(1), she focused on how well the children had performed on the tasks.  
They seemed much more prone to making mistakes [in subtraction than addition] such as 
being one out because of counting the one they started on.  They found taking away using 
number lines really tricky and were quite unreliable at taking away using objects.  

Though such comments focused on the children’s performance of tasks there were 
also suggestions in them that Kate was thinking about why they had difficulties.  
Similarly, some comments made during the interviews in 2007/8, focused on 
children’s performance on tasks but also mentioned understanding.  For example, 

The year ones did a sheet of number sentences … that was a bad choice of sheet because 
it was an ‘empty box’ sheet and we hadn’t been doing any empty boxes … they still got 
it wrong because they didn’t understand what it was asking them … but I understood 
why they did it.  So, it was OKish because they were quite purposefully engaged … 

Though this instance suggested Kate focused on engagement rather than learning, it 
also indicated that she had given some thought to children’s conceptual difficulties.  
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There were few instances of data that suggested Kate focused only on children’s 
performance without in some way considering their conceptual understanding. 
In her reflective accounts Kate made several comments which explicitly 
demonstrated her concern with the conceptual understanding that had, or had not 
been achieved through her teaching.  For example, 

In the first lesson we did several activities which involved putting numbers into order and 
then went on to positioning numbers on a numberline for their independent activity, but I 
think this activity had more to do with place value than ordering numbers as they had to 
work out how many tens marks to count along and then think about the units. 2006/7(2) 

Kate also made a number of comments during the interview in 2007/8(1) which 
suggested she held a view of teaching which emphasised conceptual development. 

The children thought that triangles would have a line of symmetry but the one we tried 
didn’t.  In retrospect I wish that we had discussed that a bit more because it would have 
been interesting to get all the triangles out of the box and compare them.  

Data from the heading ‘reflection’, suggested that Kate’s had a strong view of 
mathematics teaching as content-focused with an emphasis on conceptual 
understanding.  Though, this does not necessarily suggest a causal link between 
reflection and her view, it can be argued that reflection did influence Kate’s 
conceptions.  Kate wrote these reflective accounts because of her involvement in the 
study. The kind of thinking she engaged in was therefore prompted by the 
requirement to reflect on her teaching using the Knowledge Quartet. During the 
interview in 2007/8(1), Kate confirmed that this framework had influenced her 
thinking, 

The first few things I would be thinking of are the organisational things, and then I try to 
think ‘did they learn anything’ and ‘was the learning alright even if the organisation 
wasn’t’ kind of thing.  So, I think it is useful to have some kind of structure to help you 
know what you need to know and what they need to know and how to learn it.  

Later in the interview, Kate reiterated that the structure provided by the Knowledge 
Quartet helped her reflect on whether or not her teaching had been effective in 
promoting understanding. 

I think what I have said and how I have explained things, I am more aware than I would 
be if I didn’t have such a clear idea of what I was looking for. 

Summary and implications 
Analysis of longitudinal data from one case study of a beginning teacher has given 
some insight into the conceptions of mathematics teaching held by that teacher, as 
well as insight into the influences on those conceptions. Though finding about Kate’s 
conceptions and the influences on them are inferential, the use of the Knowledge 
Quartet framework for the analysis of lessons, and the systematic analysis of all data 
from interviews and reflective accounts, gives a strong basis for these inferences. It is 
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reasonable to suggest that Kate has developed a view of mathematics teaching that is 
increasingly content-focused with an emphasis on conceptual understanding and that 
the development of this view has been influenced by reflections on her teaching 
supported by the Knowledge Quartet framework.  ‘Experience’ and ‘working with 
others’, have also been influential in developing Kate’s conceptions of mathematics 
teaching. However, reflection was an important mediator in these two factors.  There 
is evidence, not discussed here, that Kate had also moved towards a learner-focused 
view of mathematics teaching.  The direction of development of Kate’s conceptions is 
one which we might wish to replicate in other beginning teachers. If so, it would 
seem that finding ways of encouraging the sort of reflection on mathematics teaching 
that Kate has undertaken over the first years of her career, is an idea worth pursuing.  
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The purpose of the present study was to determine pre-service teacher-generated 
analogies in teaching function concepts and then to discuss them in terms of the 
content validity – whether analogies used are epistemologically appropriate to 
illustrate the essence and the properties of the functions as well as the structural 
relations between the analogues and the targeted concepts. The videotaped data of 
five pre-service teachers’ were collected from their microteaching during “Practice 
Teaching in Secondary Education” course. Results revealed that pre-service teachers 
did not consider too much on their analogical models. So they generally failed to 
make effective transformations between the analogies and the target concepts. 
Keywords: Function, analogy, pre-service teacher, content validity, teacher training 

INTRODUCTION 
What distinguishes a mathematics teacher from mathematics major is “the capacity of 
a teacher to transform the content knowledge he or she posses into forms that are 
pedagogically powerful and yet adaptive to the variations in ability and background 
presented by the students” (Shulman, 1987, p. 15). In order to move from the 
personal comprehension to preparing comprehension of others, some combination of 
the following processes: preparation, representation, instructional selections, 
adaptation and tailoring to students’ characteristics are proposed (Shulman, 1987). 
For representation of the selected sequence, teacher makes use of appropriate 
analogies, metaphors, examples, demonstrations, explanations, etc.  
Analogies constitute one crucial component of the teachers’ pedagogical content 
knowledge that they need most to transform subject matter into forms that could be 
grasped by the students of different ability and social background. Analogies are 
heuristic tools that enhance imagination and creativity in terms of making causal 
relations between the unknown and the well-known concepts (Gentner, 1998). By 
developing mental models students have the opportunity to access to a wide range of 
conceptual explanations and transformations that facilitate capturing similarities and 
making parallels between the concepts in areas other than mathematics and the 
concepts in different contexts within mathematics itself. Therefore, this article 
focuses on pre-service teacher-generated analogies in teaching function concepts. 
Function concept is central for secondary school curriculum and advanced 
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mathematical topics taught at school and university level. Further, the function 
concept is considered to have a unifying role in mathematics that provides 
meaningful representations of real-life situations (Lloyd & Wilson, 1998). Hence, the 
use of analogies is very common in the teaching of functions. 
Pedagogical content knowledge (PCK) refers to “the blending of content and 
pedagogy into an understanding of how particular topics, problems, or issues are 
organized, represented, and adapted to the diverse interests and abilities of learners, 
and presented for instruction” (Shulman, 1987, p. 8). That is, PCK is a key aspect to 
address in the study of teaching. To use an example in our context, pedagogical 
content knowledge refers not only to knowledge about functions, but also to 
knowledge about the teaching of functions with analogies. To teach functions with 
analogies teachers should transform the subject matter for the purpose of teaching and 
give arguments about it. That is, they should consider the characteristics of the 
function concept, choose or construct well constructed analogies, and consider the 
similarities and differences between the different aspects of the function concepts and 
the analog concepts. Therefore, the study reported here is related to pre-service 
teacher pedagogical content knowledge. Since the process of learning is influenced 
by the teacher, it is therefore important to understand how teachers explain what a 
function is to students, what they emphasize and what they do not; and what ways 
they choose to help students understand.  
The present study contributes to a growing body of research in the field of function 
by examining pre-service teacher generated analogies to determine the analogies and 
the target concepts and then to discuss them in terms of the content validity – whether 
source analogies used are epistemologically appropriate to illustrate the essence and 
the properties of the functions as well as the structural relations between the 
analogues and the targeted concepts. More specifically, we posed two main research 
questions for this study: (1) How do the pre-service teachers manage with the 
analogies they introduce? and (2)  Are these analogies relevant?  
Task analysis of the lessons of the pre-service teachers provides less experienced 
mathematics textbook authors and teachers with guidelines on how to form and use 
analogies effectively in teaching functions. A careful examination of an analogy is a 
prerequisite to using it effectively in instruction. When teachers and authors use an 
analogy, they should anticipate analogy-caused misconceptions and eliminate them 
by forming epistemologically appropriate analogies and by mapping the similarities 
and differences between the different aspects of the function concepts and the 
analogies constructed. The present study directly responds to a need among 
mathematics educators for insight into the nature of analogies in function concepts 
and guidance on how to construct ones that are pedagogically effective.  
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THE STUDY 
Context and Participants 
The study was conducted with all pre-service teachers (PT1, PT2, PT3, PT4 and PT5) 
taking “Practice Teaching in Secondary Education” course that was offered in Master 
of Science without Thesis Program at Middle East Technical University during 2005-
2006 fall semester. One was male and four were female. Three of the participants 
(PT2, PT3, and PT5) had experience in teaching mathematics at an institution where 
additional courses out of school were offered and other two had experience in 
teaching mathematics as a private tutor. Three graduated from mathematics 
department (PT2, PT3, and PT4), and attending to the Master of Science without 
Thesis Program and rest were continuing previous mathematics teacher education 
program to get their bachelor degree. Master of Science without Thesis Program is a 
certificate program to teach mathematics at secondary school level (grades 9-12). All 
these students were the total number of the students in their second term.  
“Practice Teaching in Secondary Education” course involves practice teaching in 
classroom environment for acquiring required skills in becoming an effective 
mathematics teacher. In this course pre-service teachers spend their six class hours in 
real classroom environment at an arranged public secondary school, and two class 
hours at the university. In that two hours period at the university, pre-service teachers 
presented sample lessons one by one to their colleagues and the instructor.  
At the beginning of the course, function topics covered at the 9th grade and triangles 
topics covered at the 10th grade were assigned to each participant to be presented in a 
30 minutes period at the university, to provide an effective flow of lesson and to 
cover all topics relevant to functions and triangles. Each participant prepared three 
lesson plans about assigned topics to be presented at the classroom. Two of those 
presentations were on functions and one on triangles. Additionally, they also did 
teaching two times at the school with presence of the instructor (the first researcher) 
and the classroom teacher. At other times they did teaching at the school when the 
classroom teacher allowed them to do. Teaching at the university and the school 
constituted 30 percent of the course grade. Lesson plans constituted 15 percent of the 
course grade. 
While preparing the lesson plans, they mainly focused on objectives, materials, 
teaching techniques and the development process in the lesson. 
The Design and the Analysis 
The study used a case study approach with naturalistic observation. The data were 
drawn from the observation of five pre-service teachers’ microteaching on functions 
conducted in two hours period at the University Class.  Topics about functions 
involved function concepts, operation on functions, composite functions, and types of 
functions (constant, identity, greatest value, partial, and signum functions). In order 
to provide flexibility, they were not restricted to use any specific method in their 
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presentations. During some presentations, the use of analogy method aroused. The 
use of analogy, however, mostly did not appear in the lesson plans. The courses were 
presented in three different sequences: 1) analogies, definition or rules, and solving 
examples, 2) definition or rules, analogies, solving examples, and 3) definition or 
rules, and solving examples. This indicates that analogies appeared either while 
exemplifying definition or rules or making introductions to the topics. In the Methods 
of Science and Mathematics Teaching courses the history of and some 
misconceptions about functions had been included but not theories and applications 
of analogy. All presentations and discussions were video-taped and transcribed.  
Literature about epistemology of the functions (e.g. Cooney & Wilson, 1993; & Harel 
& Dubinsky, 1992) and the guidelines in the Teaching with Analogies Model 
developed from task analyses (Glynn, Duit, & Thiele, 1995) provided a conceptual 
base for the data analysis. Content analysis (Philips & Hardy, 2002) was conducted to 
discern meaning in the teacher’s written and spoken expressions. Lessons were fully 
transcribed and considered line by line whilst annotated field notes were used as 
supplementary sources. The first phase of data analysis included detecting analogy-
based teaching instances and identifying source analogies and the target concepts. 
The subsequent phases embraced in-depth examinations of spotted cases in accord 
with ‘content validity – whether analogies used are epistemologically appropriate to 
illustrate the essence and the properties of the functions as well as the structural 
relations between the analogues and the targeted concepts. The validity of the 
analysis was achieved by utilizing multiple classifiers to arrive at an agreed upon 
classification of analogies and their target concepts as well as their epistemologically 
appropriateness. 

FINDINGS 
Data indicate the key analogical models used in teaching function, composite 
function and types of function concepts particularly while defining or explaining 
them. The analog and target concept matching was summarized in Table 1. 

Analog (Familiar Situation) Target (Mathematics Concept) 
1. Function machine Function concept, Composite function 
2. Posting a letter  Composite function 
3. Packing-Unpacking a present 
to a friend 

Inverse function 

4. A perforated pail  Identity function 
5. Age Partial functions, Greatest value function 
6. Watering a tree Greatest value function 
7. The shelters in the apartment Greatest value function 
8. Eating a cake Greatest value function 

Table 1: Analog and the target concept relations 

Here three analogies are presented and discussed because of the space restriction. 
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Posting a Letter Analogy 
“Posting a letter” analogy was given by one of the participants [PT5] during the 
composite function lesson provided by [PT2]. This analogy was provided to make 
clear the definition and the explanations.  As seen in the dialog, [PT5], however, did 
not focus on what the inputs and outputs for f and g are. As a result of that, one of the 
participants [PT1] got confused and then asked “But I can write letters to two 
different people?”. This question reveals the importance of developing relationships 
among analogies and target concepts. Thereupon, the instructor posed questions as 
such “What is the domain in each case?”, Is it people or letters?, etc. If we consider 
the “writing a letter” analogy, then the function f: A → B is composed by f (writing) 
to an argument x (people) with an output (letters). This analogy could be given for 
not being a function because the univalence or single-valued requirement, that for 
each element in the domain there be only one element in the range, is not supplied in 
this analogy.   

I think about posting a letter example. Let’s take the action of taking the letter to the post 
office as f function and the letter to be posted as x. Different people’s letters may arrive 
to the same address. For example my siblings’ letters would arrive to my family’s address 
too. There occur two actions here. The first operation is “I take the letter to the post 
office.” And the second operation is “The postman takes the letter to my family.” We 
name the first action as f and the second action as g. The composite of the actions is g o f. 
In the end the arrival of the letter requires the composite of two actions. [PT5] 

“Posting a letter” analogy could be an example for composite function provided that 
the functions f: A → B and g: B → C are composed by first applying f (posting a 
letter to the post office) to an argument x (letters) and then applying g (posting letters 
from the post office to their arrival points) to the result (letters at the post office). 
Thus g o f is the arrival of the letters to their addresses. It must, however, be 
mentioned that every letter written must have been posted as for each x in A, there 
exists some y in B such that x is related to y. Otherwise, a binary relation could not be 
met.  
A Perforated Pail Analogy 
“A Perforated Pail” analogy was constructed to remind identity function. When 
someone put something into the bore pail, it will fall dawn as it is. For all input, the 
output will be the same again. As seen below, [PT2] brought up some examples such 
as putting a pencil or shoe in the bore pail. She mentioned that the pail does not make 
any operation on the material. However, the size of the hole on the pail must be big 
enough for the materials to pass through. If it is not, then this could violate the total 
condition of being function. Furthermore, the hole on the pail should not give any 
damage to the material while passing through since identity function is a function that 
always returns the same things used as its argument. She, however, did not mention 
the breakdown point of this analogy.  
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Think about a bore pail…. We put a pencil in it and then we get a pencil again. Or, we 
put a shoe in it and then we get the same shoe. The pail does not make any operations on 
them. You get what you put. Then what we called that function: The identity function. 
[PT2] 

The identity function of f on A is defined to be that function with domain and range 
A which satisfies f(x) = x for all elements x in A. In the case of “Perforated Pail” 
analogy, while the function f: A→ A is composed by applying f (putting materials to 
the bore pail) to an argument x (materials) with an output f(x) (materials). 
Function Machine Analogy  
[PT2] used “Function Machine” Analogy to remind function concept and to introduce 
Composite function. First, she drew a function machine figure together with the 
explanation as such “You have a raw material named x [began to draw Figure 1] and 
you have a machine that gives output. You put x to this machine and this machine 
gives you the output as f(x)”.  

              

Figure 1: Pictorial analogy for function concept 

To exemplify this further “Mixer” analogy - where banana and milk are input and the 
milkshake is output - was constructed. This, however, is not an appropriate analogy 
for functions of one variable. “Mixer” analogy can be an example of functions of 
several variables. When she was asked to make clear what the domain of the function 
mentioned in the analogy is, she could not make a connection to the function with 
two variables. One possible explanation for this inappropriate analogy is not 
considering the function as mixer(milk, banana) = milkshake. Further, the instructor 
expressed that “washing machine” analogy is appropriate for functions of one 
variable. In this analogy, inputs are dirty clothes, process is cleaning and the outputs 
are clean clothes.  
While introducing the composite function, she first stated that “composite” is a kind 
of operation like addition and subtraction but operation with different rules. Taking 
into account the previous function machine figure, she extended the figure to be a 
pictorial analogy (see Figure 2) for composite function by pointing out that “In the f 
machine x turns out to be f(x) and then we put f(x) in the g machine. So we get 
(gof)(x) composite function”.  

x f machine 

f(x) 
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Figure 2: Pictorial analogy for composite function 

However, the “washing machine” analogy that was given for functions could have 
been extended to composite functions. In the case of “washing machine” analogy the 
functions f: A → B and g: B → C can be composed by first applying f (washing 
process in washing machine) to an argument x (dirty clothes) and then applying g 
(drying process in a dryer) to the result. Thus one obtains a function g o f: A → C 
defined by (g o f)(x) = g(f(x)) for all x.  

CONCLUSION 
The present findings suggest that analogies need to be carefully thought out to be 
effective in order not to cause any confusion. The analogical models constructed by 
the pre-service teachers in the present study were analyzed in terms of whether the 
analogies constructed are epistemologically appropriate to illustrate the essence and 
the properties of the functions as well as the structural relations between the 
analogues and the targeted concepts. While mapping the analogies to the target 
concepts, the important things are the similarities as well as the break down points 
between them. The way the pre-service teachers used analogies could fall short of 
contributing to the students to develop epistemologically correct and conceptually 
rich knowledge of function due to two reasons. First, the source analogues were 
epistemologically inappropriate to illustrate the essence and the properties of the 
functions. Second, the analogies were epistemologically appropriate to illuminate the 
function concept, yet the teacher did not establish the mappings between the two. 
In general they spontaneously followed the three steps: i) selecting an analogy (ii) 
mapping the analogy to the target (iii) evaluating the analogical inferences. Even the 
analogical models help students to visualize the newly learned symbols, concepts, 
and procedures, pre-service teachers need to know and show where the analogy 
breaks down and carefully negotiate the conceptual outcome. PTs should articulate 
the similarities and differences between the analogy and the target concept while they 
are presenting an analogy, and also should be aware of the limitations of the 
constructed analogy. 
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In the sense of these findings, it can be concluded that pre-service teachers’ 
knowledge about the use of analogies were insufficient, and participants of the study 
were weak in transforming knowledge and developing sophisticated ideas in the 
process of teaching functions. In line with that, pre-service teachers did not consider 
too much on their analogical mappings and they were not able to construct the 
adequate relationships between the analogies and the target concepts along with the 
processes of mapping the analogical features onto target concept features. The 
difficulty appeared while developing sophisticated ideas in the process of teaching 
did not occur in giving mathematical definitions, rules, and procedures. For example, 
function was defined correctly as “f is a relation from set A to set B. If each element 
in set A correspond only one element in set B, then this relation is a function.”  
One of the limitations of the present study was that pre-service teachers were 
restricted to present function concept. May be if they were more flexible in the topic 
selection they would choose another mathematics topic in which they are more 
capable, thus they would generate more productive analogical models.  

IMPLICATIONS 
In teacher preparation courses, student teachers should be asked to generate their own 
analogies in different contexts of mathematics. This kind of courses could provide 
them an opportunity to constitute an available repertoire of analogies (Thiele & 
Treagust, 1994) and to create analogy-enhanced teaching materials. In addition, this 
array of experiences could allow them to discuss, model, and justify their 
interpretations of the concepts and to provide different approaches to the teaching of 
the concepts. The analogies discussed here will help pre-service and in-service 
teachers develop a sound relational knowledge of the function concepts as well as 
consider carefully on their analogical mappings to construct epistemologically 
appropriate ones and to map the similarities and differences between the analogies 
and target concepts. Discussing the analogies reported here with pre-service and in-
service teachers could deepen their understanding of function concept as well as 
functions pedagogy to offer perspectives on a sound generation of analogies. 
In the light of the discussions of the teacher generated analogies, mathematics 
textbook authors and teachers can develop productive analogies for various 
mathematical concepts. Carefully crafted analogies can serve as initial mental models 
for the introduction and presentation of newly learned mathematical concepts.  
As a result of this investigation, a further study was planned to describe the multiple 
analogical models used to introduce and teach grade 9 function concepts. We 
examine the pre-service teacher’s reasons for using models, explain each model’s 
development during the lessons, and analyze the understandings they derived from 
the models.  
Teachers should engage their students in a discussion in which the limitations of the 
analogy are identified. 
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TECHNOLOGY AND MATHEMATICS TEACHING PRACTICES: 
ABOUT IN-SERVICE AND PRE-SERVICE TEACHERS  

Maha ABBOUD-BLANCHARD 
DIDIREM, Research team in the didactics of mathematics, University Paris Diderot 

Abstract: This article examines the practices of in-service and pre-service teachers in 
technology based lessons by exploring three dimensions: the students' tasks, the 
students groups' management and the discourse of the teacher. Regularities emerging 
from two case studies about in-service teachers are compared to results of a larger 
study about pre-service teachers. The article shows that what characterize teachers' 
practices in technology environments is not the same in the two populations of 
teachers and thus suggests some propositions for the design of training strategies 
seeking to improve the practices of novice teachers. 
Key-words: technology, teaching practices, ordinary teachers, pre-service teachers 
INTRODUCTION 
For the last decade constraints and difficulties encountered by mathematics teachers 
integrating technologies has been an ongoing issue. Indeed the contrast between the 
technological development and the weakness of the integration of computer 
technologies in classrooms despite the abundance of governmental funding, questions 
necessarily researchers (Artigue, 2000), (Ruthven, 2007). Some researches have 
considered the role of teachers in the classroom use of technology throughout a 
holistic approach examining thus the influence of key factors on their activity 
(Monaghan, 2004); others have investigated teachers' ideas about their own 
experience of successful classroom use of computer-based tools and resources 
(Ruthven & Hennessy, 2002); others have shown discrepancies and variability in the 
ways teachers use technology in their mathematics classrooms (Kendal & Stacey, 
2002). Research about student teachers' practices and their determinants in 
technological environment is nevertheless rather rare. It stresses particularly the 
problems that student teachers have to overcome such as their lack of familiarity and 
confidence with technology or their need to make explicit the connections between 
technological and paper-and-pencil work (O'Reilly, 2006). Furthermore, it stresses 
the growing awareness that technology-based lessons require extra time for planning 
and for teaching.  
In this paper, I want to contribute to the research on issues related to teaching 
practices in technology environments and issues related to teacher education in these 
environments. I will do so by relying on the results of three research projects that I 
have carried out in the last four years. I will firstly present two case studies about 
teachers' practices in technology-based lessons taken from the two first researches. 
Secondly, I will highlight regularities that emerge from these studies. I will finally try 
to cross these findings with results of a third research about pre-service mathematics 
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teachers using computer technologies and conclude by issues about teacher education 
arising from this synthetic view on the three studies.   
CASE-STUDIES 
The two case studies that I am presenting here have been carried out in two 
researches: the first one on the characterization of the practices of 'ordinary' teachers 
using dynamic geometry (Abboud-Blanchard, 2008); the second one on the analysis 
of the activity of volunteer teachers using exercise-bases (Artigue et al., 2006). In 
these two studies the main issue is to characterize teacher's activity in a technology-
based lesson according to three polarities in complete interaction: the tasks proposed 
for students’ learning (cognitive pole), the management of the students' groups 
(pragmatic pole), and the discourse and the interaction with students (relational pole).  
Framework and Method  
These studies use methods and concepts developed within the general framework of 
the two-fold approach which combines both a didactical and an ergonomical 
perspective in analysing the factors that determine the teacher's activity as well as that 
of students prompted by the teacher in class (Robert & Rogalski, 2005). Within this 
framework, analyzing lessons takes into consideration the fact that there are two main 
types of channels used by the teacher in classroom management: the organization of 
tasks prescribed to students (cognitive-epistemological dimension) and the direct 
interactions through verbal communication (mediative-interactive dimension).  
Furthermore, the authors (ibid) differentiate task from activity: task is what is to be 
carried out; activity is what a person develops when realising the task. 
For each of the two case-studies I will first report on the a priori analysis of the 
students' tasks and what they are supposed to undertake in terms of initiative and use 
of knowledge already acquired and actually needed to execute the tasks. Secondly, I 
will present the lesson in progress, that is to say, what really happened in the 
classroom by underlining the teacher's aids and by studying the features of his/her 
discourse. The teacher intervenes often to provide assistance to the students 
sometimes modifying their activities. Robert (2007) defined two types of aids, 
depending on whether they modify the activities scheduled or they add something to 
the students’ action. The first, "procedural help", deals with the prescribed tasks by 
modifying activities with regard to those planned from the presentation of the task. It 
corresponds to indications that the teacher supplies to the students before or during 
their work. The second, "constructive help", adds something between the strict 
activity of the student and the (expected) construction of the knowledge that could 
result from this activity. The analysis of the teacher's discourse provides more 
information about how he/she contributes to model students' activities. This analysis 
has been undertaken by using a methodology constructed by Paries (2004) who 
adapted tools used in psychology, notably the functions of scaffolding defined by 
Bruner (1983) who regarded interaction as the major form of assistance provided by 
adults for cognitive development. Thus, Paries studied the role of discourse in the 
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mediation of cognitive development and defined functions of the mathematics 
teacher's discourse by specifying the manner in which he/she intervenes gradually in 
details in the students' work. Paries distinguishes two groups of functions:  
- The “cognitive functions” linked to the task, to the realisation of the task and to the 
mathematical content. These functions are: introduction of a task or dividing a task 
into sub-tasks, assessment, justification and structuring.   
- The “functions of enrolment” apparently independent from the task, at least in their 
formulation, but can have an impact on its realisation. They allow the teacher to 
maintain communication. These functions are: engagement, mobilization of the 
student's attention and encouragement. 
William's case 
William has volunteered to participate in a government project to use exercise-bases 
with his grade 10 students (first year of the upper secondary level - aged 15/16 years). 
I chose to present here this study because William's case could be considered as 
representative of those of the other teachers engaged in the project.  
He is a regular user of technology in both his personal and professional activities. He 
sees the use of exercises-bases in the classroom as facilitator without neither change 
in the approach of mathematics contents nor change in teaching practices: this 
software is just an additional mean that will be added to (and not replace) usual 
practices. 
Students' tasks 
The observed session is a training one and it took place in the computer room; 
students were assigned by groups of two to a computer. William's discourse was 
recorded; a remote cordless microphone was attached to the teacher. An observer was 
present in the classroom. William has chosen in the exercise-base a module of 
exercises-generator concerning two tasks: (1) To find the reduced equation of a 
straight line. The straight line is drawn on the screen with two of its points A and B in 
an orthonormal cartesian system; students have to find the values of m and p in the 
equation y = mx + p. (2) To solve systems of two linear equations (first degree 
equations with two unknowns)  
In both cases, students must make their calculations on paper and give the two 
numbers solutions to the software that validates them in terms of true / false.  
These two tasks are similar to paper-and-pencil tasks; the only difference is that each 
student can train at his/her own pace. 
The development of the lesson and the teacher's help 
During the lesson William tries to check up the work of every group of students with 
some regularity, and even when he moves at the request of a student, he quickly 
control the work of other students along his path. Despite this, students put a lot more 
time than what William had planned (half an hour per task). This gap between the 
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planned and actual time resolution leads William to ask students to move to the 
second set of exercises, although a few students have still some difficulties with the 
first exercises. 
Among the interactions with students, I note only four collective ones which concern 
particularly the management of the session; the rest are individual (per group to a 
computer) interactions. Some aids are related to the handling of the software: they 
consist primarily to explain how to switch from one exercise to another or to resolve 
a technical problem. They are usually brief, local, and allow the student to continue 
the resolution. The individual help concern mostly mathematical resolution; they are 
of various kinds and are often procedural help: - controlling the resolution and 
calculations; - validating an answer or helping find the error (often at the request of 
students); - structuring the resolution or asking students to do it. 
The frequency and variety of these mathematics aids show that the execution of the 
mathematical tasks seems to require a strong mobilization of the teacher. 
To sum up, I notice that William, who is at ease in a technology environment, 
succeeds in providing students effective aids for handling computers and exercise-
bases software. The class gives the impression of "functioning" in a satisfactory 
manner, all students work and progress. Nevertheless, the teacher is highly mobilized 
on the mathematical level; the majority of students cannot progress in the resolution 
without his help. So, despite an "illusion" of autonomy of students, the presence of 
the teacher seems indispensable. 
The functions of discourse 
I will not detail here the study of the teacher's discourse, because of the restricted 
length of this paper; I will rather give some significant percentages of the functions of 
discourse. I note first a small percentage (9%) of the functions of enrolment. 
Everything indicates that students are "supported" by the technology environment and 
work without needing to be constantly motivated by the teacher. The function of 
structuring occupies 21% of the total, because when helping students, William first 
begins by helping them bring "order" in their calculations. This is also due to the 
desire that students work more quickly because the time doesn't progress as William 
has planned (see above). The function of assessment occupies a high percentage 
(47%) because the software provides validation only in terms of true/false for the 
solution given by the student. The students are therefore responsible for the control of 
calculations but they seek constantly the teacher's help for this assessment. This 
requires the teacher to take over the function of accompanying the resolution and 
control of progress, and interpretation of the results not validated.  
In addition to these results on the functions of discourse, I note that the functions 
succeed in a similar order with each group of students. Indeed when the teacher 
comes to see a group: he assesses or takes a stock of the situation of resolution, 
sometimes he structures it, and then he gives a sub-task to the students to execute 
until he comes back. This phenomenon of repeating the same succession of action in 
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each group with aid substantially similar implies a strong mobilization of the teacher 
which is 'non-economic' in terms of classroom management. 
Anna's case 
Anna is an 'ordinary' teacher not engaged in any innovation or research project. She 
has an episodic use of technological tools with her students that one wouldn't qualify 
as significant use. I present here her case because she corresponds to what we, in the 
research project, consider to be an average teacher representative of ordinary 
teachers. The lesson studied here is about space geometry in a grade 9 class (fourth 
year of middle school - aged 14/15 years). It takes place in the computer room with 
the use of dynamic geometry software; students are assigned by groups of two or 
three to a computer. The lesson observation was videotaped. The camera was at a rear 
corner of the classroom. A remote cordless microphone was attached to the teacher. 
No observer was present in the classroom. The topic is the section of a pyramid by a 
plane parallel to the basis, and Anna uses a ready-to-use session designed by the 
software developers.  
Students' tasks 
The figure downloaded by the students is a given cube ABCDEFGH in which they 
have drawn in a previous session: I, middle of [EF] and J, middle of [AB] and have 
also found the lengths JC and JD. First, the students have to draw the section of the 
pyramid IJCD by a plane passing by M, the middle of [IJ], and parallel to the basis 
JCD, getting thus two points N (middle of [IC]) and Q (middle of [ID]). This 
technological-task (t-task) is entirely guided by a set of manipulation commands and 
students only need to follow the instructions given in the worksheet provided by 
Anna. Secondly, they have to examine, with the software commands, the triangles 
JCD and MNQ. The aim here is that students get to see MNQ as the 1/2 reduction of 
JCD. Once done, tasks that follow are mathematical-tasks (m-tasks): to calculate the 
areas of triangles MNQ and JCD, to calculate the volume of IMNQ and IJCD to 
compare these two volumes. These m-tasks are complex and require a certain number 
of adjustments such as taking initiatives (to construct a height in a triangle in order to 
calculate its area) or operating a change of frames (when comparing the two volumes) 
that consists in introducing the comparison of two numbers in a geometrical frame. 
Therefore, t-tasks are designed to be simple, guided and quickly executed in order to 
get a stronger focus from the students on m-tasks. The latter are more complex and 
require time to be carried out. 
The development of the lesson and the teacher's help 
Globally, I note that students are often in an autonomy-mode and for very long 
moments. When she is present, Anna divides the task into sub-tasks to be 
immediately executed by students, in a bid to allow them to pursue quickly their 
work. The teacher's collective interactions are rare and mostly concern the 
management of the session.  

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1884



 

 

 
The assistance of the teacher consists almost exclusively in procedural help, 
simplifying the students' activities. The division of tasks into simple sub-tasks is 
clear: sometimes Anna nearly dictates the work to do and at times she even takes 
herself the mouse to accomplish some sub-tasks. Often, when the teacher is 
interacting with a group, students only follow her instructions, or even finish a 
sentence that she begins. I might here underline that the teacher stays with every 
group a very short time and thus her assistance allows the students to pursue their 
work on their own. One can wonder if dividing the task is some how a way for Anna 
to be efficient. Still, Anna did not succeed to meet her objective; students were too 
slow in the construction of the section of the pyramid. She had prepared simple t-
tasks in order to help the students to start quickly the mathematical activity. 
Perceiving during the lesson that these tasks took more of time than expected, she 
tried to accelerate their execution by doing the work herself or by coaching students 
step by step in the execution. 
The functions of discourse 
As in William's case I only give here some significant percentages of the functions of 
discourse. I first observe that the functions of enrolment have a low percentage (7%) 
which might be explained by the fact that the mobilization of the students' attention 
and the engagement in tasks is supported by the technology-environment itself. I 
notice also that structuring accounts for an important rate among cognitive functions 
(28%). As stated above, Anna is aware of the slow execution of the tasks and tries, by 
this mean, to accelerate the pace. As for the cognitive function of the introduction of 
sub-tasks, the high percentage (21%) is coherent with the analysis of the m-tasks.  
These tasks are complex, need adjustments, and on top of that, students' work 
progresses slowly. Assessment stands at 35% and corresponds to interactions with 
groups of students and not to collective interactions. Actually, after the start 
(collective phase), the class splits into several 'mini-classes' (groups of two or three 
students per computer) which function separately and to which the teacher talks 
independently from the remainder of the class. Besides, certain functions of the 
discourse apparently succeeded in these 'mini-classes' in this same order: assessment, 
structuring and introduction of a sub-task.  
Regularities emerging from the two case-studies 
Despite of the different contexts and profiles of the two teachers and also the 
different nature of the software used, a number of regularities emerge from the two 
studies, I want to emphasize these in this section. I will do so in order to highlight 
what actually is characteristic of a technology-based lesson led by in-service teachers. 
I will also illustrate continuities between these findings and those of some researches 
mentioned above, to suggest that a number of results may be more widely 
transferable.  
On the cognitive level, in the two cases the exercises chosen by the teachers, in 
technology environment, are similar to the ones that would be proposed in pencil-
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and-paper environment; the resolution of mathematics tasks is identical to what could 
be proposed in non-technology environment. This result is close to what Kendal and 
Stacey (ibid) underline about CAS (Computer Algebra Systems).the mathematical 
knowledge and skills stay globally within the range of those expected in non-
technological environment. Indeed, the teacher has, on the cognitive level, a 
practically similar activity as in a non-technology environment. In the open 
environment of dynamic geometry we see that Anna has chosen a ready-to-use 
sequence where all the questions of the exercise except one, are feasible in a pencil-
and-paper environment. In the environment of exercise-bases, William has also 
chosen training exercises used in pencil-and-paper environment. The content of the 
interventions of the two teachers when it comes to mathematical tasks is therefore 
identical to what they would have said or done in non-technology environments since 
there is no reference to the specificity of technology environment in these 
interventions. This can be traced to some indications provided by Ruthven and 
Hennessy (2002) about teachers who initially view technology through the lens of 
their established practice, and employ it accordingly. This fact certainly favours the 
connection of these sessions with the rest of learning process and helps to explain 
why for these teachers this connection is not perceived as problematic. 
On the pragmatic and relational levels, firstly I note that the work in computer room 
generally entails that students must be in groups of two or three per machine. 
Consequently, there is a 'class split' in several 'mini-classes' working relatively 
independently, and a quasi disappearance of collective phases except the collective 
time management. The teacher is not able, in certain cases, to generalize the supply of 
certain indications given only to some students whereas they could be useful to all the 
others. Artigue et al. (ibid) encountered the same features notably the fact that 
individual interactions substitute for collective interactions and that 
institutionalisation phases are nonexistent because of the different 'trajectories' of 
students. Besides it, for each of the mini-classes, the teacher adapts to what students 
are doing and to their current reasoning, whereas in pencil-and-paper lessons, it is 
more often that the students have to adjust themselves to the teacher's project 
(Abboud-Blanchard & Paries, 2008). This appears to be an important element of the 
management of a technology-based lesson which differentiates it from a non-
technology one. Moreover, the analysis of the interactions showed similarities in the 
successions of the functions of the discourse among the mini-classes. Secondly, as to 
the aid provided to students, I observe that the teacher focuses on local mathematical 
aid without decontextualization. There is a clear majority of cognitive functions of 
the discourse that operate as help, but mainly procedural help. This type of support is 
partly motivated by the teacher's concern about the progress of the students' work, in 
order to have all the tasks prepared for the session completed. This echoes a strong 
trend of teaching practices in the computer room underscored by several researches 
(Monaghan, 2004). Other characteristics seem to be related to specificities of the 
environment and enhance the previous difficulties. Indeed, not all the students handle 
the software with ease, thus the teacher has to provide technical help which is not 
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common in a mathematics course. Thirdly, in individual interventions that 
predominate, the rate of interventions of enrolment is much weaker than what is 
generally observed in non-technology class sessions (Paries, 2004). The functions of 
enrolment are rarely present in the discourse of the teacher; they seem to be taken in 
charge by the software. The teacher has also to 'share' with the computer certain 
functions of enrolment, which disturbs the usual management of the class.   
Thus, the teacher's role in technology based-lessons seems to be essential according 
to the pragmatic and the relational poles. Indeed in the two case studies students' 
tasks were enough guided, one could a priori expect to see the teachers a bit 
observers ( rather than actors) of their students' learning. The analysis shows that this 
is not the case; teachers are very present and very engaged in the students' work.  
ISSUES ABOUT TEACHER EDUCATION 
As member of a research team investigating the uses of technology by pre-service 
teachers, I studied the professional dissertations made by these teachers in which they 
report about technology-based lessons that they prepared and carried out in their 
classes (Abboud-Blanchard & Lagrange, 2006). The data come then only from what 
the teachers themselves reported and not from class observations. 
The main result that I want to highlight in this paper is the focus of these dissertations 
on the preparation of students' mathematical tasks, while the teacher's activity is 
overlooked. Aspects of the teacher's role are very rarely questioned; they are rather 
mentioned as “events” in the body of the reports and in the conclusions. Indeed, the 
learning activities are often document-based, students being assigned tasks based on a 
written document that teachers deliver at the beginning of the session. In such 
classroom documents, tasks are organised as a series of subject-based questions, with 
instructions on how to use the software. Furthermore, in the development of lessons 
reported in the dissertations, it seems that the teacher has a marginal role in the 
technology-based lessons carried out and reported by pre-service teachers. For 
example, at the beginning of a typical lesson, the pre-service teacher provides 
guidance to the students on manipulating the software and makes sure that they 
understand the assignment. Then the students work on their own in the computer 
room and the teacher’s activity is limited to individual help to manipulate the 
software. My hypothesis is that the teacher’s marginal intervention can be explained 
– at least partially - by the prescriptive nature of the tasks. Another reason may be 
that pre-service teachers transfer part of their role to the computer, a kind of ‘joint 
partnership’. 
Comparing results about pre-service and in-service teachers 
My aim in this section isn't to make a detailed comparison of the two first case 
studies and the study of pre-service teachers. A direct comparison wouldn't be 
relevant notably because of the differences of the methodologies used. I'm rather 
presenting here a synthetic approach of the three studies focusing on the results 
relative to the three poles developed above: cognitive, pragmatic and relational.   
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In the studies on the activity of in-service teachers I showed that the cognitive pole 
isn't what seems to be problematic for these teachers in technology-based lessons. 
What differentiate the teacher's activity in these lessons with the same in non-
technology ones are mainly the management of students (pragmatic pole) and the 
interactions with students (relational pole). Thus what makes a technology-based 
lesson 'works' with experienced teachers seems likely more related to the pragmatic 
and relational poles than to the cognitive one. Whereas the study of the practices of 
pre-service teachers shows on the one hand that they focus on the cognitive pole and 
they neglect the two other poles, and on the other hand that they report their non 
satisfaction of how technology-based lessons took place. Moreover, when we ask pre-
service teachers about their experiences of technology-based lessons they most 
frequently reflect on difficulties related to time management of the session and also to 
preparation work to set up the tasks of students. They also underline that the teacher 
is no longer the only holder of knowledge. However such reflections tend to remain 
at a general level and do not seem to provoke pre-service teachers into making 
propositions for a more suitable integration of technologies in mathematics teaching. 
This also reveals that despite of their increasing awareness of the specificity of 
technology environments in preparation work and class work; it does not necessarily 
lead to a wider reflection about real integration of technology in their practices. 
Can we take advantage of this awareness to develop an approach of teacher education 
programs? During discussions within the WG12 of CERME 5 (Carillo et al., 2007) it 
seems that there was a consensus among participants on the fact that awareness is 
necessary for reflection and on promoting reflection as a means of professional 
development. Seeking to improve the practices of novice teachers, this last pattern 
can be used for the design of training strategies such as the analysis of video episodes 
of experienced teachers using technologies with a special focus on the role of the 
teacher and his/her interactions with the students. Such analysis would help pre-
service teachers to bridge between a focus on the preparation of students' 
mathematical tasks and another on their own activity during the lesson in order to 
help them overcome the state of didactic tinkering and go further to a successful 
integration of technologies in mathematics teaching and learning. 
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TEACHERS AND TRIANGLES 
Silvia Alatorre and Mariana Sáiz 

National Pedagogical University, Mexico City 
During a workshop about triangles designed for in- and pre-service basic-school 
teachers, a diagnostic test was applied. The results are analysed in terms of several 
variables: the teachers’ sex, the level at which they work, their occupation (namely, 
in- or pre-service teachers), and their professional experience. An important impact 
of the latter was found in the decrease of incorrect answers obtained. 

FRAMEWORK 
Shulman (1986) characterised the types of knowledge that he considered enabled 
teachers to carry out their practice. He proposed three categories: mathematical 
content knowledge (MCK), curriculum knowledge (CK), and pedagogical content 
knowledge (PCK).  
There have been several discussions about Shulman’s categories. We want to mention 
two in particular. The first one is a discussion both about the exact meaning of MCK. 
Some researchers stress that within MCK there is a difference between the knowledge 
of the formal academical discipline and the scholar subject (see e.g. Bromme, 1994). 
The former is the knowledge that professional mathematicians develop, and the latter 
is the mathematics that teachers must teach.   
The second discussion is about how much MCK is a valid variable in understanding 
teachers’ practices and designing teachers’ education. There has been a variety of 
researches that show that “teachers’ mathematics knowledge is generally problematic 
in terms of what teachers know, and how they hold this knowledge of mathematics 
concepts or processes, including fundamental concepts from the school mathematics 
curriculum. They do not always possess a deep, broad, and thorough understanding of 
the content they are to teach” (da Ponte & Chapman, 2006, p. 484). According to 
some authors, these researches are important because of several reasons. On the one 
hand, they allow to understand how “elementary teachers’ understanding of subject 
matter influences presentation and formulation as well as the instructional 
representations that the teacher uses” (Sánchez & llinares, 1992, quoted by da Ponte 
& Chapman, 2006, p. 434). On the second hand, they have prompted “studies centred 
on describing student teachers' beliefs and knowledge as determining factors in their 
learning processes [... and have also] provided information used to prepare research-
based material for use in teacher education and to develop research-based teacher 
education programmes.” (Llinares and Krainer, 2006, p. 430). On the other extreme, 
some authors question MCK’s importance, because “the academic mathematical 
knowledge may not be 'naturally' a helpful instrument for the teacher in the school 
practice, since some of its values and forms of conceptualizing objects conflict with 
the demands of that practice”. (Moreira & David, 2007, p. 38). They stress that to 
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help students to think mathematically, teachers need to understand student thinking, 
and thus the comprehension about the cognitive processes of the students becomes 
more important than MCK itself 
While we are aware that many variables may qualify the importance of MCK, such as 
teachers’ beliefs and practices, the cognitive processes of students, etc., we sustain 
that teachers should at least have a solid understanding of the contents they must 
teach. This does not always happen in Mexico, and in order to explain why, we must 
make a brief exposition of the Mexican situation about teacher training. Teachers 
receive their training not in universities but in “Escuelas Normales”, which they 
attend after 6+3+3 years of regular schooling. There are “Escuelas Normales” (ENP) 
for student teachers who will become Primary school teachers (i.e, grades 1-6), and 
other “Escuelas Normales” (ENS) for those who will teach at the Secondary level 
(grades 7-9). At the ENP it is taken for granted that during those 12 years of previous 
schooling they have learnt all the mathematics they will ever need to teach, and that 
all they need to know about teaching mathematics is PCK; at the ENS student 
teachers have some courses focused on MCK. (Another situation in Mexico is the fact 
that there is not an assessment or a diagnostic about teachers’ MCK with results 
widely spread). Thus, if teachers enter the ENP with misconceptions or deficiencies, 
these are not solved there, and the dragging of misconceptions and deficiencies 
becomes, through teachers’ practice, a vicious circle. One of the well-known 
consequences of this process is that Mexico is always among the countries that obtain 
the lowest results in international assessments of students’ performance, like PISA 
and TIMSS.  
While other countries do not share the extremely low results in PISA and TIMSS, 
teachers’ misconceptions and deficiencies are not exclusive of ours. For example, 
Hershkowitz & Vinner (1984, quoted in da Ponte & Chapman) investigated the 
processes of concept formation in children, through the comparison of students’ 
learning and elementary teachers' knowledge of the same concepts; they found that 
one of the factors that affects the students’ learning is the teachers' conceptions. 
With respect to MCK, Llinares and Krainer (2006) acknowledge the importance of 
detecting student teachers' misconceptions but propose that it be done within the 
frame of student teacher's learning. They suggest that it is important to study the 
relationship between student teachers' conceptual and procedural knowledge, and for 
this teachers should know about children’s mathematical thinking. One method they 
propose for the study of the mentioned relationship is the use of open-ended 
questions based on vignettes describing hypothetical classroom situations where 
students propose alternative solutions to some mathematical problems. This kind of 
tasks have also been used by Empson & Junk (2004), who suggest that some of the 
teachers’ answers are influenced by a disconnection between teachers’ MCK and 
their understanding of children’s thought, with the consequence that they precipitate 
to correct mistakes without establishing a contact with what the student is thinking.  
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Presently, there is not a unified theoretical perspective on the researches about MCK 
and its relation to teachers’ training and professional development. It has been 
suggested that “future work should include a focus on understanding the knowledge 
the teachers hold in terms of their sense making and in relation to practice [… and 
that there is a] need to pursue the theorization of teachers' mathematical knowledge, 
framing appropriate concepts to describe its features and processes, and to establish 
clear criteria of levels of proficiency of mathematics teachers and instruments to 
assess it.” (da Ponte & Chapman, 2006, p. 467).  
The work we are presenting here fits da Ponte and Chapman (2006) and Llinares and 
Krainer (2006) characterisations, a difference with the last ones being that we 
investigate not only pre-service teachers but in-service teachers as well. Our principal 
goal is to study in- and pre-service teachers' mathematical content knowledge, but not 
in an isolated manner. As other researchers (see for example Prestage and  Perks, 
2001), we are also interested in understanding how teachers obtain, maintain and 
organise their mathematical content knowledge. It is worth mentioning that we are 
aware that mathematical content knowledge should not be separated from the other 
two kinds of knowledge. With this in mind, we designed some workshops that will be 
described below. 

METHODOLOGY 
TAMBA: Workshops on Basic Mathematics for in- and pre-service teachers 
Within a broader project that combines research with professional development, we 
designed a set of workshops called TAMBA (Talleres de Matemáticas Básicas). The 
workshops are offered as modules that can work independently or as a set. Each one 
is centred on one specific mathematical content linked to the elementary school 
curriculum in mathematics. They all have a duration of 2-4 hours, and a common 
structure: they start with a short paper-and-pencil diagnosis, which is immediately 
commented with the participants, followed by an activity designed to raise a 
cognitive conflict, which takes most of the workshop’s time. After it, several issues 
are discussed in the group: the mathematical topics and the pedagogical difficulties, 
including the children’s most frequent misconceptions. The workshops are video 
taped. The design of both the diagnosis and the activity is based on our previous 
knowledge of the population to which each workshop is directed, and on the 
specialised literature.  
Geometry in TAMBA 

One of TAMBA’s workshops is called “coloured triangles”. After the diagnosis, 
which will be described below, the activity is centred on the unicity of the triangle’s 
area whatever the side used as “base” (this topic follows from the item 3 of the 
diagnosis). Depending on the teachers’ cognitive level on the subject, a 
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demonstration is presented, and then the MCK and PCK issues of item 3 are 
discussed in the group. 

The diagnostic evaluation has three items. In Item 1, four sets of three measures are 
given, and the participants are asked to say if a triangle can be built with them and, if 
not, why (two are possible and in the remaining two the triangle inequality is not 
accomplished). In Item 2, three triangles are given with measures for the sides and 
heights, and the participants are asked to say if the measures are possible or not, and 
why (two of the figures are not possible, because some heights are larger than a side 
from the same vertex). In Item 3, a hypothetical conversation between three girls who 
must calculate a triangle’s area is presented, where they all make different mistakes 
and do not agree on the calculation, and the teacher is asked to write what s/he would 
say to the girls.  
The teachers’ answers to the written evaluation were analysed and classified 
according to their correctness and the kind of geometrical criteria used. The results, 
focused from a geometrical point of view, are being presented elsewhere. Here only 
the broad categories are briefly described. Teachers’ ideas were classified as correct 
or incorrect; in the second case, several misconceptions were identified: about the 
triangle inequality, the base and/or height, the Pythagorean theorem, or other 
geometrical misconceptions. Within each of these broad categories, some finer 
subcategories were identified. In addition, the amount of items answered by each of 
the participants was registered, as well as the amount of ideas that s/he expressed 
clearly.  
Implementation 

The described workshop has been given twice. In 2007 it was offered to 36 teachers 
at the Conference of the Mexican Mathematical Society in the city of Monterrey 
(MR), and in 2008 it was offered to 31 teachers in a Teachers’ Centre in Mexico City 
(MC). Table 1 summarises the characteristics of the participants in both workshops: 

 SEX LEVEL OCCUPATION EXPERIENCE 
 

F M N/
A 

Pri-
mar

y 

Secon
dary 

N/
A

In- 
service

Pre- 
service

Othe
r* 

N/
A n Mean ± SD 

in years 
N/
A 

MR 22 9 5 20 9 7 16 7 4 9 22 17.9 ± 10.6 0
MC 29 2 0 20 3 8 5 24 1 1 7 17.7 ± 9.6 7

Total 51 11 5 40 12 15 21 31 5 1
0 29 17.9±10.2 7

* “Other” occupations are pedagogical consultants (PC) and experts in Special-Education Teachers (SET).

Table 1 
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The main difference between both groups is that there were more in-service teachers 
in Monterrey and more pre-service ones in Mexico City. In addition, all of the pre-
service teachers in Monterrey were of the secondary level, whereas in Mexico City 15 
of the pre-service were of the primary level and 2 of the secondary level (7 more did 
not answer that question). Another difference is that in Monterrey the participant 
teachers were highly interested in Mathematics Education, and had applied for and 
obtained funding to participate in the Conference (which was given for teachers with 
high scores in a national assessment), whereas in Mexico City the participants were 
regular attendants to a Teachers Centre located in a low-income zone. 

RESULTS 
For each participant, the percentage of items answered was calculated, as well as the 
percentage of those that had clear arguments. Then the total amount of ideas 
expressed was figured, each idea was classified according to one or several of the 
categories above mentioned, and the quantity thus obtained for each participant in 
each category was expressed as a percentage of the total amount of ideas expressed. 
Finally, for each category averages were calculated taking all of the participants (see 
Table 2) or diverse groups of them. 
 Misconceptions 

 

Items 
answered 

With 
argument 

Correct 
ideas 

Incorrect 
ideas Triangle 

inequality Base Height Pythago-
rean th. Other

All 
participants 80.0% 71.6% 27.8% 62.0% 15.0% 6.5% 8.6% 5.5% 8.1%

Table 2 [1] 

As Table 2 shows, the average participants answered most of the items, and, when 
they did, mostly expressed their ideas with clear arguments. However, only a small 
percentage of these ideas were correct. Among the misconceptions, those about the 
triangle inequality were the most frequent. 

In the following sections, these results will be analysed according to the recorded 
experimental variables: venue, sex, level, occupation, and teaching experience. Each 
time the arithmetic means are reported and analysed, although no statistical 
inferential analysis is carried out, the samples being neither representative nor large 
enough. 
Venue 
The 36 participants of the workshop held in Monterrey (MR) and the 31 of Mexico 
City (MC) differed in all of the variables considered. Table 3 shows the results 
obtained by teachers in both venues.  
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 Misconceptions 

 

Items 
answered 

With 
argument 

Correct 
ideas 

Incorrect 
ideas Triangle 

inequality Base Height Pythago-
rean th. Other

MR 91.9% 77.3% 45.2% 42.2% 9.2% 6.0% 5.8% 8.4% 2.7%

MC 66.2% 64.9% 7.6% 85.1% 21.8% 7.0% 12.0% 2.2% 14.3%

Table 3 

The teachers in MR obtained better results from all points of view: they answered 
more items, and expressed better their reasoning (more answers with argument). They 
had six times as many correct ideas and about half of the incorrect ideas expressed by 
their counterparts in MC; also, MR teachers had fewer responses classified in all but 
one of the different detected misconceptions. The largest differences were in the 
misconceptions about the triangle inequality, where MC teachers more than doubled 
their MR counterparts, and “other” geometrical misconceptions, where MC teachers 
made five times as many mistakes as MR participants. The one exception is the 
incorrect uses of the Pythagorean theorem, where MR teachers had in average 8.4% 
answers as opposed to only 2.2% of MC teachers. All this, as will be shown later, is 
related to the different characteristics of the participants in both venues. 
Gender 
There were also differences among the 62 teachers who reported their sex: In general, 
the 11 male respondents had better results than the 51 female participants did. Table 4 
shows this. 

 Misconceptions 

 

Items 
answered 

With 
argument 

Correct 
ideas 

Incorrect 
ideas Triangle 

inequality Base Height Pythago-
rean th. Other

F 77.6% 66.5% 8.4% 84.1% 21.4% 7.8% 11.8% 2.2% 14.8%

M 86.9% 75.0% 41.7% 46.7% 10.4% 5.0% 5.9% 9.5% 2.5%

Table 4 

The male teachers answered more questions in average than the female, and were 
slightly better in expressing their reasoning. Men had more of the correct ideas and 
fewer incorrect ones, and scored lower in all of the misconceptions, again with the 
exception of misuses of the Pythagorean theorem. This apparent gender effect will be 
commented later on. 
Level 
Only 52 of the 67 participants declared in which level they work or study. Their 
results are shown in Table 5. 
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 Misconceptions 

 

Items 
answered 

With 
argument 

Correct 
ideas 

Incorrect 
ideas Triangle 

inequality Base Height Pythago-
rean th. Other

P 78.1% 74.6% 25.3% 63.8% 20.2% 5.5% 9.4% 6.9% 7.3%

S 86.2% 77.4% 40.1% 52.7% 11.6% 8.1% 5.0% 8.0% 4.6%

Table 5 

Generally speaking, the 12 teachers of the Secondary level had results that were only 
slightly better than those of the 40 of the Primary level: more items answered as an 
average, more responses with argument, more correct ideas, and fewer incorrect ones. 
However, it is noticeable that the distribution of misconceptions found is not 
homogenous: Secondary level teachers have fewer answers with misconceptions 
about the triangle inequality, the height and other errors, but have more answers with 
misconceptions about the triangle’s base and the Pythagorean theorem.  
Occupation 
Of the 67 participants, 57 declared if they were in-service teachers (21), pre-service 
teachers (31), or if they had other occupation (5 were PC or SET). Table 6 shows the 
results for the first two categories. 

 Misconceptions 

 

Items 
answered 

With 
argument 

Correct 
ideas 

Incorrect 
ideas Triangle 

inequality Base Height Pythago-
rean th. Other

In- 86.9% 78.8% 31.5% 58.9% 15.4% 7.2% 10.1% 13.1% 1.5%

Pre- 68.3% 60.9% 17.1% 72.8% 17.9% 5.0% 5.7% 3.1% 12.1%

Table 6 

In-service teachers had better results than the pre-service ones: more items answered, 
more answers with argument, more of the correct ideas, and fewer incorrect ones. 
However, in-service teachers scored higher than pre-service ones in three of the 
identified misconceptions: about the triangle’s base and height, and about the 
Pythagorean theorem.  
Experience 
Of the 36 participants who were in-service teachers, PC, or SET, 22 declared their 
teaching experience.  Their results are shown in Table 7. 
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 Misconceptions 

 

Items 
answered 

With 
argument 

Correct 
ideas 

Incorrect 
ideas Triangle 

inequality Base Height Pythago-
rean th. Other

1-10 yrs 81.9% 80.3% 16.2% 76.2% 18.2% 6.1% 11.7% 22.0% 6.2%

11-20 yrs 98.3% 86.5% 31.3% 60.3% 13.1% 13.1% 18.3% 5.6% 5.2%

>20 yrs 90.9% 78.1% 53.2% 34.1% 9.0% 5.1% 6.5% 0.0% 4.2%

Table 7 

Teachers with more years of experience have a tendency towards better results, and 
teachers with less experience towards worse results, in almost all aspects. However, 
teachers with between 11 and 20 years of 
teaching experience have more answers 
classified as misconceptions on base and 
height than the other two groups.  
Overall, the teaching experience does have a 
marked influence on a decrease in incorrect 
ideas, as the graph of Figure 1 shows (in it the 
value for 0 years is the average for all student 
teachers). The correlation coefficient between 
teaching experience and percentage of 
incorrect ideas is r = –0.51. 
Language and didactical competence 
Another characteristic of the responses to the diagnosis given by the participants is 
the quality of the language used and of the didactical explanations provided in the 
hypothetical situation of Item 3. Although we do not have here the space to show the 
analysis that we carried out, we want to state some of the findings. Many answers are 
based on orders or assessment, which reflect the disconnection described by Empson 
& Junk (2004) between MCK and the understanding of children’s thought. It is also 
evident, as was stressed by Boero et al. (2002), that the natural language can provoke 
difficulties in the acquisition of concepts. Finally, some teachers, particularly of the 
Secondary level, have an attitude that could be expressed as “I know so much that you 
cannot understand me”. 

ANALYSIS AND CONCLUSIONS 
Two considerations must be taken into account. Firstly, we must stress that if a 
teacher does not manifest a misconception, this does not necessarily mean that s/he 
does not have it; it could also be that in his/her expression the misconception just did 
not show. Secondly, although no hard facts can be deduced of the information 
obtained from this study, the results we have shown can be interpreted in terms of 
possible tendencies that could be investigated in a next step of the research.  

Figure 1 
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It would seem that, with respect to MCK relating triangles, male teachers, secondary 
school teachers, in-service teachers and highly experienced teachers obtain better 
results than their counterparts do.  
The gender effect that we found in these results could make sexists happy. However, 
in the group of teachers that participated in the two workshops, 62% of the female 
teachers were pre-service ones, and among the male teachers the percentage was 
20%; thus, the gender effect could be confounded with the variable “occupation”. The 
other groups with better results were to be expected: teachers of the Secondary level 
receive more mathematical training in ENS, and in-service teachers have dealt with 
the teaching (and are thus more in contact with the students’ way of thinking, in 
accordance with the findings of Empson and Junk’s, 2004), and even more so as their 
teaching experience increases.  
As for the differences between the obtained results in the two venues, the better 
results of MR can be related to two factors. The first factor is that, as Table 1 shows, 
in MR there were more Secondary level teachers (25% vs 10%), and more in-service 
teachers (44% vs 16%): two of the three “better” groups (with no differences on the 
fourth variable, the teaching experience). The second factor, which could be of even 
more importance, is the difference in the ways that teachers arrived to the workshops. 
MR teachers were highly interested in mathematics and its teaching, and also had 
good scores in a national assessment, whereas MC teachers did not share this 
characteristics and were regular attendants of a teachers’ centre in a low-income part 
of the city. 
It can be interesting to comment on the cases that stray from the reported tendencies, 
which relate to misconceptions about the triangle’s base and/or height, and about the 
Pythagorean theorem. We carried out an analysis using the fine-categories in addition 
to the broad ones about base and height described and used in this paper, which we 
do not have here the space to present. However, this analysis shows that some of the 
misconceptions can be linked to didactical strategies (where the informal and 
potentially incorrect use of mathematics serves a didactical purpose), and that modern 
teacher training is slowly (and partly!) fighting some misconceptions about base and 
height, through fewer prototypical examples in the textbooks for student teachers. As 
for the misuses of the Pythagorean theorem, there are more answers with this 
classification in two of the three “better” groups (Secondary, in-service). One 
possible interpretation of this is that the groups with a higher level in general also 
have some idea about the existence of the Pythagorean theorem and, approximately, 
what it is about. (It could also be that more recently trained teachers have heard about 
the theorem). However, all of the teachers who pretended to use this result did it in 
one of several incorrect ways; this relates to Hershkowitz (1990) characterisation of 
misconceptions that increase as the students advance throughout their schooling. 
The effect that the teaching experience has in decreasing (but not nullifying!) the 
amount of incorrect answers is something that must be valued in professional 
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development programs.  When the teacher (and particularly the Primary school one) 
starts her/his practice, s/he must deal not only with the students’ difficulties in the 
learning of mathematics, but also with her/his own deficiencies in MCK, which in 
turn have the effect of not only perpetuating but also aggravating their students’ 
misconceptions. The professional practice can help in dealing with both the students’ 
learning difficulties and the teacher difficulties in MCK, but if s/he had more support 
with MCK, the pedagogical difficulties would be easier to handle. Therefore, we 
coincide with Bromme (1994) in that MCK must be understood as the scholar 
subject, and we assert that it is something that must be attended to, diagnosed and 
solved, both in initial training and in professional development. 

NOTE 
1. The 71.6% of ideas with argument is 100% minus the answers without clear argument: 10.1% 
that were potentially correct and 18.3% that were incorrect. The 100% of ideas is formed by correct 
ones, plus those that were potentially correct but without clear argument, plus the incorrect ones, 
including those without argument. The same calculations were carried out for the other tables. 
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The paper describes an ongoing collaborative work between department of 
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research and practice in the development and study of mathematics teacher 
education. The work draws from learning experiences of future teachers through the 
designing and implementing Learning Objects in department of mathematics. The 
focus of research is to address the need for a better understanding of how future 
teachers of secondary school mathematics are shaped by didactic-sensitive activities 
during their undergraduate mathematics education. 
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Introduction 
In their preface to a special issue of Educational Studies in Mathematics, titled 
“Connecting Research, Practice and Theory in the Development and Study of 
Mathematics Education,” Even and Ball (2003) highlighted the need for addressing 
the gap between theory and practice, the divide between mathematics and 
mathematics education, and the divide between mathematicians and mathematics 
educators in the study of mathematics education. As they noted, there are emerging 
efforts to build collaborations and connections focused on the issues of practice in 
order to develop and study mathematics education. It is this sort of sensitivity to 
building connections and collaboration in addressing issues of practice and research 
that underpins our research. The central focus of our research is to address the need 
for a better understanding of how future teachers of secondary school mathematics 
are shaped by didactic-sensitive learning experiences during their undergraduate 
mathematics education (Mgombelo & Buteau, 2008a, 2008b). The research draws 
from learning experiences of future teachers in a non-traditional core undergraduate 
mathematics program called “Mathematics Integrated with Computers and 
Applications” (MICA) (Ben-el-Mechaiekh, Buteau, & Ralph, 2007; Ralph 2001). 
Among other things, MICA, launched at our institution in 2001, integrates computer, 
applications and modeling where students make extensive use of technology in ways 
that support their growth in mathematics (Ralph & Pead, 2006). Previous work 
describing MICA student learning experiences is reported in Muller and Buteau 
(2006); Buteau and Muller (2006); and Muller et al. (in press). Our focus in this paper 
is to describe our ongoing collaborative work aimed at connecting research and 
practice in the development and study of mathematics teacher education. 
The rationale for our research is based on epistemological and practical grounds. 
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Mathematics teacher education is premised on the assumption that one has to be 
educated in mathematics in order to be able to teach it. This assumption highlights the 
well know problem of divide in mathematics teacher education between mathematics 
and teaching. From an epistemological perspective, the question is how mathematics 
and teaching could be integrated in mathematics teacher education. An initial 
characterization of this integration comes from Shulman’s (1986) work on 
pedagogical content knowledge. Recently, Ball and Bass (2002) elaborated on 
pedagogical content knowledge and used the term mathematics knowledge for 
teaching to capture the complex relationship between mathematics content 
knowledge and teaching. This is the epistemological ground for our research.  
In practice, any mathematics teacher education program has to contend with 
questions of how much mathematics and how much method or educational study 
should comprise such programs, and then whether and how these programs should 
integrate or separate out opportunities to learn mathematics and teaching (Adler & 
Davis, 2006). Answers to these questions are reflected in a wide spectrum of 
variations of programs, opportunities, and learning activities for future teachers 
(Mgombelo et al. 2006). In addition, there are also lessons from mathematics teacher 
education research and practice. With regard to secondary school teacher education, 
many teachers still struggle with teaching school mathematics for understanding even 
though their knowledge of mathematics may be adequate (Kinach, 2002). This points 
to mathematics needed for teaching. 
Following Ball and Bass’s (2002) work on mathematics for teaching there has been 
recognition that mathematics teacher education is an important area of study in 
departments of mathematics (Conference Board of Mathematical Sciences [CBMS], 
2001; Davis & Simmt, 2005). For example, the 2001 report from the CBMS on “The 
Mathematical Education of Teachers” has two main recommendations for ways in 
which mathematics departments can attain these goals: 

First, the content and teaching of core mathematics major courses can be 
redesigned to help future teachers make insightful connections between the 
advanced mathematics they are learning and the high school mathematics they 
will be teaching. Second, mathematics departments can support the design, 
development, and offering of a capstone course sequence for teachers in which 
conceptual difficulties, fundamental ideas, and techniques of high school 
mathematics are examined from an advanced standpoint (p.123).  

It is with this sort of understanding that some departments of mathematics have made 
ongoing and emerging attempts to reform their programs to provide meaningful 
experiences for future teachers (Bednarz 2001; CMS 2003; Muller & Buteau 2006; 
Pesonen & Malvera 2000). This points to the need for research to investigate whether 
and how these attempts impact future teachers' learning of mathematics needed for 
teaching (Bednarz 2001). More importantly, as we noted earlier, for this research to 
be meaningful and productive, collaboration among mathematicians and mathematics 
educators is crucial (Even & Ball, 2003; Mgombelo & Buteau, 2006). We are 
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addressing this need for research and collaboration in our research. We, a 
mathematician and a mathematics educator, are interested in collaboratively 
extending our understanding of how future teachers of secondary school mathematics 
are shaped by their experience of designing so-called Learning Objects in the MICA 
program. In the following section we describe the MICA program and what we 
learned from reflections on practice regarding the students’ learning experiences.  
Learning from Practice: The MICA experience 
In 2001, our institution launched its innovative core undergraduate MICA program 
based on guiding principles (a) to encourage student’s creativity and intellectual 
independence, and (b) to develop mathematical concepts hand in hand with 
computers and applications. MICA also strives to strengthen the concurrent 
mathematics teacher education program. It exposes future teachers to a broad range 
of mathematical experiences rather than to a deep concentration in one or two areas. 
Future teachers also make extensive use of different software programs such as 
Maple, Journey Through Calculus (Ralph, 1999), Geometer’s SketchPad, and 
Minitab, all of which nurture the understanding of mathematics.   
In addition to a revision of all the traditional courses under the above-mentioned 
guiding principles, three innovative, core project-based courses, called MICA I - III, 
were introduced in which all students learn to investigate mathematics concepts by 
designing and implementing interactive computer programs, so-called Exploratory 
Objects (Muller et al., in press), from year one. As their final projects in MICA 
courses, students individually (or in groups of two) complete an original interactive 
computer program on a topic of their own choosing. These projects can be (a) 
exploratory (e.g., testing his/her own conjecture; see Structure of the Hailstone 
Sequence Exploratory Object, (MICA Student Projects, n.d.); (b) an application (e.g., 
modeling or simulation; see Running in the Rain Exploratory Object, MICA Student 
Projects); or (c) didactic, i.e., so-called Learning Objects (LO). The latter, generally 
designed by future teachers, are innovative, interactive, highly engaging, and user-
friendly computer environments that teach one or two mathematical concepts at the 
school level. For example, a 9-task adventure with Herculus covering (Grade 4) 
perimeter and area; a journey through MathVille for learning the (Grade 9) exponent 
laws; or a fourfold Pythagorean Theorem plate-form offering (i) a review of right 
angles and triangles, (ii) an exploration of the theorem, (iii) a game to practice, and 
(iv) a five question test with applications, are all projects designed by first-year future 
teachers (see respectively Hercules and Area LO, Exponent Laws LO, and Exploring 
the Pythagorean Theorem LO, MICA Student Projects). 
Overall, observations and reflections on students’ experiences of designing LOs and 
Exploratory Objects indicated that the experiences promoted positive student learning 
experiences. Muller et al. (2008) summarize these experiences: 

We suggest that the students develop the following skills: (a) to express their 
mathematical ideas in an exact way; (b) to self-assess their mathematics; (c) to 
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realize their creativity in mathematics and in communicating their 
understanding of mathematics; and (d) to become independent in mathematical 
thinking. We also suggest that students are exposed to the opportunity (a) to 
concretize personalized original mathematics work, and (b) to identify with 
their future profession. Finally, our observations lead us to suggest that 
students develop a personal relationship with the activity of designing and 
implementing an ELO; indeed, students seem to demonstrate a strong 
engagement and ownership in the activity, and exhibit much pride of their ELO 
(p.4). 

These reflections prompted a pragmatic collaborative project between the Department 
of Mathematics and the Department of Pre-Service Education which involved LOs 
designed by MICA students and teacher candidates enrolled in pre-service education 
elementary mathematics methods course (Grades 4 to 8) (Muller et al., in press). Pre-
service teacher candidates were asked to use LOs to learn or review the involved 
mathematics in the Object and to write their reflections on their experience. Their 
overall experience was positive as they appreciated the LOs and commented on their 
high regard for the first-year MICA student LO designers. Some teacher candidates 
who self-identified as having math anxiety, thought that the LOs provided a safe 
environment for them to re-learn mathematics. 
Reflecting on MICA student learning experiences as well as pre-service teacher 
candidates' experiences of using the LOs, we started to focus on the MICA future 
teachers’ experiences of designing and implementing LOs. It was clear to us 
designing and implementing LOs involves mathematical didactics work. Interesting 
empirical questions started to emerge: In what ways do future teachers experiences of 
designing and implementing LOs promote their learning of mathematics needed for 
teaching? What aspects of designing and implementing LOs prompt such a positive 
experience? How do these future teachers’ learning experiences through designing 
and implementing LOs differ from their learning experiences in other traditional 
activities? These questions led us to focus on the suggested future teachers' 
development of a "personal relationship with the activity of designing and 
implementing [a] Learning Object" (Muller et al. 2008). We postulated that future 
teachers' behaviour, in terms of dedication, pride, ownership, and engagement with 
the activity could be a key to the future teachers' positive experiences and their 
learning of mathematics needed for teaching. This pointed to an in-depth 
investigation to explore the impact of future teachers experiences of designing and 
implementing LOs on their learning (Mgombelo & Buteau, 2008a). 
Researching inside MICA: Learning Mathematics Needed for Teaching through 
the Designing and Implementing of LOs 
The purpose of our research is to explore how future teachers of secondary school 
mathematics are shaped by their didactic-sensitive learning experiences during their 
undergraduate mathematics education. Our research is guided by the following 
questions: (a) Does the experience of designing and implementing LOs promote 
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future teachers’ learning of mathematics needed for teaching? (b) In what ways do 
designing and implementing LOs provoke future teachers’ awareness of their own 
learning of mathematics as well as what does it mean for students to learn 
mathematics? Guided by previously mentioned postulate (that ownership, dedication, 
engagement of the activity, and pride are key for the positive learning experience) we 
are interested in probing deeper into these future teachers’ experiences in order to 
capture the qualitative aspects of their learning of the mathematics needed for 
teaching. The goal in our research is not to measure this impact in terms of how much 
do future teachers know mathematics needed for teaching. Our focus in the research 
is on future teachers’ “knowing.” Given the complexity of this kind of research we 
initially conducted a pilot –small scale study (2006-07). The goal of the pilot study 
was to gather first evidence of future teachers’ experiences as well as to inform the 
design of a large scale study. 
Guided by the above postulate our pilot study was framed by Mason and Spence’s 
(1999) work on "knowing-to act" as a kind of knowing that requires awareness. 
Building on Gattegno’s (1970) work on awareness, Mason (1998) further elaborates 
on the relationship of “knowing-to act” and awareness in mathematics teacher 
education. Mason developed three forms of awareness: “awareness-in-action,” which 
involves a human being’s powers of construal and of acting in the material world; 
“awareness-in-discipline,” which is awareness of awareness-in-action emerging when 
awareness-in-action is brought into explicit awareness and formalized; and finally, 
“awareness in counsel,” which is awareness of awareness-in-discipline involving 
becoming able to let others work on their awareness-in-discipline. To put this into a 
mathematics perspective, awareness-in-action might be exemplified by an act of 
counting numbers (1, 2, 3) without being aware of the underlying notions such as one 
to one correspondence. Awareness-in-discipline emerges when one becomes aware of 
this one to one correspondence in counting. Finally, awareness-in-counsel emerges 
when one is able to support others develop their awareness of counting as well as 
develop their awareness of the notion of one to one correspondence. Mason’s levels 
of awareness served as analytical/interpretive tool for analyzing data 
Data were collected from detailed questionnaires, journals, and focus group 
discussions that involved 4 future teachers enrolled in the MICA program, 4 teacher 
candidates in the Department of Pre-Service, and 1 practicing teacher. In order to 
probe MICA future teachers’ experiences deeply in terms of awareness, questions 
and prompts in the questionnaires and journals were open-ended. The roles of the 
Pre-service teacher candidates and the practicing teacher in the research were to 
facilitate data collection through focus group discussion and not to act as research 
subjects.  
All data from questionnaires, LOs, and transcripts from videos were analysed 
according to the interpretation of themes guided by the postulate that ownership, 
engagement in the activity and pride were key for positive learning experiences and 
by using Mason’s three forms of awareness as outlined in the conceptual framework.. 
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Using Mason’s levels of awareness we identified which levels were engaged as well 
as ways in which they related to experiences of ownership, engagement and pride. 
Our analysis of data further elaborated on three prospective teacher behaviour 
aspects, ownership, engagement, and pride. We briefly elaborate these aspects. 
Ownership 
As noted earlier in this paper, prospective secondary school teachers can perform a 
number of school mathematics tasks without problem. Using Mason’s (1998) forms 
of awareness, we could say these future teachers have awareness-in-action of 
mathematics needed for the tasks. Yet (as noted) if you ask future teachers how they 
would explain a mathematics concept or skill to someone who is learning for the first 
time, most of them would respond by rule-based explanation (e.g., negative times 
negative is positive in case of integers multiplication). These future teachers would be 
attending to content of their awareness-in-action and not their awareness of their 
awareness-in-action. As Mason notes, the behaviours to which awareness-in-action 
play a role can somewhat be trained without explicit allusion to awareness. We found 
a different scenario with the experience of designing and implementing LOs. This 
experience seems to prompt future teachers to take into account their own experience 
of learning the mathematics in order to generate ideas on how to design their LOs in 
ways that will make sense for the user’s learning of mathematics in question. It is this 
future teachers’ attention to their learning in order to bring to awareness their 
awareness-in-action that we refer to as ownership. This is exemplified by the 
following prospective teacher’s response to the questionnaire question on why she 
chose the topic for her LO. 

My MICA I Learning Object [...] dealt with explaining and practicing 
multiplication…. I chose this topic because in Grade four I was very, very 
behind on my multiplication. I could not do the calculations in my head, and I 
was stuck on the first sheet of questions my teacher would give us… Since it is 
something I struggled with and something that I have to overcome to become a 
Math major, I thought it would be a great idea to develop a program that could 
allow students to practice without just doing the same questions over and over. 
I also included different ways of thinking about what multiplication means 
(Mgombelo & Buteau, 2008a) 

It underlines that this prospective teacher attended to her own learning of 
multiplication or own awareness in action of multiplication. The prospective teacher 
in the above response did not want to design a program based on multiplication 
routines and rules but instead wanted to include the different ways of thinking about 
what multiplication means – this involves awareness.  
Engagement 
Awareness-in-discipline arises when we become aware of awareness-in-action. 
According to Mason (1998), the term “discipline” means encountering both facts and 
techniques as well as habits of thought, types of meaningful questions, and methods 
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of resolving those questions. Our analysis of the data indicates that through the 
designing and implementation of LOs, future teachers engage with mathematics in 
terms of both aspects outlined above by Mason. Our analysis further indicated that 
future teachers’ experiences of designing and implementing LOs tend to elicit the 
need to explain and attend to different representations and meanings of mathematics 
concepts, a very important aspect of mathematics for teaching (Ball & Bass, 2002; 
Davis & Simmt, 2005). We distinguish engagement as another aspect of learning 
mathematics needed for teaching. Engagement with mathematics is recognized in the 
way future teachers use games, graphics, and colors in their LOs in order to engage 
students in a meaningful way. These future teachers attended to different 
representations or meanings of mathematics concepts such as grid or area models of 
multiplication as revealed in a response from a prospective teacher questionnaire 
below.  

I learned how to keep instructions short and simple, and how to gear a lesson 
towards your audience. I learned to think about the audience I was trying to 
reach and what would be engaging to them. I added in Bart Simpson and made 
it as bright and colorful as I could. I learned multiple ways of explaining 
multiplication. (Mgombelo & Buteau, 2008a) 

We see from the above response from the prospective teacher questionnaire, that she 
“learned to think about the audience …and what would be engaging to them.” It is 
through this experience that she learned multiple ways of explaining multiplication. It 
is worth to note that this experience involves both future teachers’ own engagement 
with mathematics as well as their audience’s (students’) engagement as revealed in 
the above response.  
Pride 
In order to sustain ownership and engagement in mathematics activities in the way 
we have described here, future teachers have to invest themselves in the activity (in 
terms of energy, emotion, interest, etc.). In addition to investing themselves, they 
need to have a sense of purpose and accomplishment. We have identified this 
investment as pride, the third aspect of future teachers’ learning of mathematics 
needed for teaching. Here is an example from a prospective teacher's response that 
supports our claim. 

You're always thinking about ideas and ways to improve your project while 
you are in class, watching television [...] (Mgombelo & Buteau, 2008a) 

We can see clearly from the above quote how much personal energy, or in other 
words, dedication, this prospective teacher invested in the project. Our small scale 
study addressed the need to know about the impact of designing and implementing 
LOs on the learning of mathematics needed for teaching. It strongly suggests that the 
experience of designing and implementing LOs promotes future teachers’ learning.  
Conclusions: Further Research and Practice Collaborations 
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Our work underscores the importance of collaboration between mathematicians and 
mathematics educators in connecting practice and research in mathematics teacher 
education. From our pilot study further empirical questions emerged: What aspects of 
the designing and implementing LOs prompt such a positive experience? In what 
ways do prospective teachers’ learning provoked by designing and implementing 
LOs differ from other traditional learning tasks? These questions have led to a larger-
scale, collaborative research project (involving some 30 MICA future teachers 
candidates each followed over two years) that will thoroughly investigate the 
students’ "repositioning" in terms of engagement, ownership, and pride, with respect 
to mathematics and mathematics didactics when realizing their MICA final projects 
(the LOs) compared to more traditional mathematics activities. We are also interested 
in exploring the characteristics or features of the learning activity (of designing and 
implementing a LO on a topic of their own choosing) that promote learning. A 
theoretical framework has been thereafter developed to guide this comprehensive 
study (Mgombelo & Buteau, 2008b). It mainly relies on Brousseau’s (1997) work  on 
theory of didactic situations; Mason's (1998) work on knowing-to act as previously 
discussed; and on positioning theory.  
Our work has been extending on the connection between research and practice in 
many different ways. First, a collaborative Learning Object project building on Grade 
5 students’ ideas from a local school (Buteau et al. 2008) has been completed. The 
project involved the principal, 2 teachers, and Grade 5 students from the elementary 
school, as well as a mathematics student, pre-service teacher candidates, and both co-
authors from our institution. The principal commented, 

From day one, our Grade 5 students were extremely motivated and engaged in 
developing this tool that will be used by students from other schools. (Buteau 
et al., 2008, p.28) 

A second connection yielded in the ongoing integration of MICA Learning Object 
use for didactical assignments in the Methods course at our institution. In addition, 
Mgombelo's informal observations about MICA pre-service students with stronger 
dispositions towards learning versus non-MICA pre-service students led her to reflect 
on the design of the course. This naturally leads to asking what is it exactly in the 
MICA education program that seems to promote this disposition - a question that 
points to our long-term research program. Thirdly, the research has been guiding 
Buteau's reflections on her teaching practices of the MICA I course and on the MICA 
activities (e.g., the description of the student development process of designing and 
implementing Exploratory and Learning Objects, (Buteau & Muller 2008), thus 
pointing back to the LO activity attributes that might promote learning mathematics 
for teaching. 
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Professional development programmes for in-service teachers constitute a complex 
task. We intend here to shed some light on the conditions that may entail a 
cognitive transformation in the involved teachers, building on our personal 
experience in these programmes and some case studies.   
Keywords: Professional development, in-service teachers, metaphors, cognitive 
modes.   

INTRODUCTION  
In this paper I report on some didactic phenomena (in the sense of Margolinas, 1998) 
arising in our work in professional development for in-service primary teachers, at 
the University of Chile. These phenomena are related to the cognitive transformations 
that emerge in the being of the involved teachers, as well as researchers, under 
favourable circumstances, depending on “the time, the place and the people” (see 
Mason, 1998). Our work could be described as “theory-guided bricolage” in 
developmental research (Gravemeijer, 1998; Freudenthal, 1991), with the caveat    
that a detailed theory is not put forth first, because it rather grows out of the ongoing 
process. This approach to professional development or enhancement for in-service 
teachers is inspired by my former research on the fundamental role of metaphors and 
cognitive modes in the teaching-learning process (Soto-Andrade 2006, 2007). It 
involves “researching from the inside” (Mason, 1998), and it requires an embodied 
first-person approach (Varela, Thomson & Rosch, 1991), in an enactive perspective 
(Masciotra, Roth & Morel, 2007). 
After recalling the fundamental components of a tentative theoretical framework, I set 
down below my main research hypotheses and proceed to report on some concrete 
examples of activities and germs of didactical situations (Brousseau, 1998), involving 
metaphors and switches in cognitive modes, that we have worked out with teachers.  
Translated quotes of several teachers’ testimonies and reports are also included, as 
case studies. These give preliminary experimental evidence to support our hypotheses 

                                           
1 Supported by PBCT- CONICYT, Project CIE-05 and FONDEF Project D06i1023. 
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and suggest further research along these lines.   
THEORETICAL FRAMEWORK 
Nature and Role of Metaphors      
It has been progressively recognized during the last decade (English, 1997; Lakoff & 
Núñez, 2000; Presmeg, 1997; Sfard 1994, and many others) that metaphors in 
mathematics education are not just rhetorical devices, but powerful cognitive tools 
that help us to build or grasp new concepts, as well as to solve problems in an 
efficient and friendly way (Soto-Andrade, 2006).  We use conceptual metaphors 
(Lakoff & Núñez, 2000), that appear as inference preserving mappings going 
“upwards” from a source domain into a target domain, enabling us to understand the 
latter, usually more abstract and opaque, taking a foothold in the former, more down-
to-earth and transparent in terms of our previous cognitive history. Metaphors are 
“met-befores”, as Tall (2005) says.     
Cognitive modes   
A cognitive mode is defined nowadays as one’s preferred way to think, perceive and 
recall, in short, to cognize. It shows up, for instance, when trying to solve problems.   
Flessas and Lussier (2005) gave a first operational description of what they call the 4 
basic cognitive modes (“styles cognitifs” in French), combining 2 dichotomies: 
verbal – non verbal and sequential – non sequential (or simultaneous), closely related 
to the left – right brain hemisphere dichotomy and to the frontal – occipital 
dichotomy. We so obtain the sequential-verbal, sequential-non verbal, non 
sequential-verbal and non sequential – non verbal cognitive modes. They emphasize 
that effective teaching of a group of students, who may display a high degree of 
cognitive diversity, requires teachers supple enough to tune fluently to the different 
cognitive modes of the students.   
An example: check that you have the same number of fingers in your hands by using 
the 4 basic cognitive modes (see Soto-Andrade, 2007, for more examples). 
In what follows I adhere mainly to the framework laid by Lakoff & Núñez (2000), 
Presmeg (1997) and Sfard (1994, 1998) for metaphors, Flessas & Lussier (2005) for 
cognitive modes, Brousseau (1998) for didactical situations and to the research 
paradigms of Mason (1998), Varela et al., (1991) and Masciotra et al. (2007).   
PROBLEMATICS 
Professional development and enhancement for in-service teachers is a complex 
issue. In Chile, significant funding and human resources have been invested by the 
Ministry of Education, for more than two decades, to address this issue, but results 
have been rather scanty. Our students continue to perform poorly in international 
assessment tests like TIMMS or PISA, and also in national assessment tests like 
SIMCE [1]. Increasing evidence shows that after a typical 2 week intensive summer 
workshop, where they learn some more mathematics and design a couple of teaching 
modules, most teachers revert to their former inadequate teaching practices.            
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Under closer scrutiny, we have observed that most of our in-service primary teachers 
are unfamiliar with metaphors and cognitive modes, or visualization, in their practice. 
They are “frozen” in the verbal - sequential cognitive mode, unaware of this and also 
of the fact that their teaching is shaped by unconscious and misleading metaphors, 
like the acquisition metaphor (Sfard, 1998) or the container-filling or gastronomic 
metaphor (Soto-Andrade, 2006). They have special trouble in creating “unlocking 
metaphors” for the not specially gifted. 
The urgent question is: How to promote a real change in the teaching practices of in- 
service teachers, in the short or mid term? 
RESEARCH HYPOTHESES 
Our main research hypothesis is that metaphors and cognitive modes are key 
ingredients in a meaningful teaching-learning process. Moreover the deepest impact 
on this process is usually attained by metaphors that involve a switch from one 
cognitive mode to another. 
We claim that competences regarding multi-modal cognition and use and creation of 
metaphors and representations are trainable and that measurable progress can be 
achieved in a one semester course. This, in spite of the fact that most of our teachers 
report that their initial training included no use of metaphors and privileged just one 
cognitive mode: the usually dominant verbal-sequential one. 
We hypothesize that explicit work on metaphors and transits between cognitive 
modes will foster teacher’s deep understanding of elementary mathematics. 
Furthermore, it will affect their professional practice in the classroom, in particular 
enabling average students to understand and handle mathematical objects and 
processes that would otherwise be within reach of only a happy few. 
RESEARCH BACKGROUND AND METHODOLOGY 
The background for our experimental research consisted in 5 classes (called 
“generations” in what follows) of in-service primary school teachers, of 30 teachers 
each, enrolled in a professional development programme, implemented by the 
University of Chile, on behalf of the National Ministry of Education, stretching from 
2006 to 2008. This programme aims at “general” primary teachers, who are interested 
in enhancing their mathematical training, and certifies their mathematical proficiency 
after a 15 months period, where they must complete the requirements for 4 modules 
(numbers and data processing, geometry, ICT in education and problem-solving, 450 
hours in all). They must also complete a 75 hour Seminar Project, which includes 
experimenting and theory-driven practice in the classroom.  
Teachers applied for admission to this programme, with the support of their schools, 
and were selected according to their performance in a TIMMS like test, based mainly 
on mathematical contents pertaining to the curriculum of primary school. Selected 
teachers are usually highly motivated; they come to the University after hours, 
typically from 6 PM to 9:15 PM, at least twice a week, plus an intensive 2 week 
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summer workshop. Gender distribution is 90% female, 10% male, on the average. 
Ages range from 25 to 60, even 68 in one case (see below).   
This sort of programme opens up hitherto unknown possibilities for deeper work with 
teachers. In particular, as coordinator for the Numbers Module (160 hrs approx.) and 
advisor to the seminar projects of 6 teachers in each generation on the average, I had 
the opportunity to test several activities and a-didactical situations in work sessions 
with the teachers. This module aims mainly at reviewing the mathematics as well as 
the didactics of numbers, specially elementary integer arithmetic, fractions, ratios, 
decimal and binary description of numbers. Work sessions were interactive, with 
teachers usually working in small groups of four on the average. 
The underlying idea for this module was to open up the opportunity for the teachers 
to have a first hand experience of problematic and challenging situations to be 
tackled, eventually “bare handed”, where important mathematical objects or 
processes could emerge. So their experience would be an antidote to the usual 
cookbook recipe approach.  Methodology consisted in observing the teachers, as they 
carried out various activities, with non intrusive guidance and support, recording their 
reactions, in video in some cases, and asking them to write reports on their work, 
besides communicating it orally to the whole class. After completion of the 
programme, I asked them to write a short report in the first person on their cognitive 
and affective experience, in the spirit of “researching from the inside” (Mason, 1998).  
My viewpoint was that just recording contents taught plus results of post-tests 
administered to teachers provides a rather shallow understanding of their learning 
process. Instead, I tried to foster group work, monitoring the course of their work 
during sessions, by circulating and interacting with the groups, as a means to fathom 
their cognitive profiles and processes. This was complemented with the results of 
tests and challenges. The first-person report mentioned above also provided further 
insights into the process they had undergone. So my approach relies mainly in case 
studies rather than hard statistical evidence, emphasizing qualitative rather than 
quantitative assessment (see below however quotes on SIMCE [1] scores) 
 EXPERIMENTAL ACTIVITIES AND PRELIMINARY RESULTS   
I comment here on some concrete albeit paradigmatic examples of the activities 
carried out, together with excerpts of the teacher’s reactions to them.   
Example 0: Do you have an innate approximate number sense?  
To make them feel the contrast between verbal-sequential and non-verbal non-
sequential cognitive modes, we began with some experiments aiming at activating 
their innate approximate number sense or “numerosity” in the sense of Dehaene 
(1997), Lakoff and Núñez (2000), Pica et al. (2004), Halberda, Mazzoco and 
Feigenson (2008). For instance, they were asked to tell whether there were more 
yellow dots or blue dots in a random array of dots of both colours shown just for 200 
ms (Testing your Approximate Number Sense, 2008). Our fifth generation of teachers 
scored here an impressive average of 95%, much higher than the statistical average 
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success of only 75% (as it was the case in a class of average Master in Science 
students in our Faculty). This suggests that primary school teachers tend to have a 
significantly better approximate number sense than random adults.   
Example 1: How to keep track of your lamas?  
An 8 year old aymara shepherd is in charge of a herd of lamas (more than 40, it 
seems) at some barren place in the highlands in the north of Chile. But he is tired and 
would like to take a nap… How could he check that when he wakes up there are no 
lamas missing? He has no palm device, no paper and pencil, not even small stones, 
or sticks or a knife; just his bare hands. Moreover he does not know how to count 
calling numbers by their name. How could he manage to register the number of 
lamas in sight before going asleep and to recover it when waking up? 
Every generation of teachers engaged in group work, in groups of 4 to 5, to discuss 
how to tackle the problem. As a supporting aid, we simulated the lamas with a bunch 
of coins on the plate of an overhead projector. Usually, after half an hour or so, in one 
or two groups, the idea emerged of using the phalanges of their fingers, thumb 
excluded. The idea spread quickly and finally all groups rediscovered the classical 
method of non-verbal counting by dozens still used in the Middle East and Far East, 
where you touch with your right thumb the 12 phalanges of your right hand, say, one 
by one, and fold one finger in your left hand to register each complete round of 12 
(Ifrah, 2005, p. 74). Most did that from little finger to index, but some did it from 
proximal to distal phalanges (the classical way) and others, the other way around. So 
they learned how to count non-verbally up to 60, using their fingers and they applied 
this successfully to the simulated herd of lamas on the overhead projector. They also 
related this with the ubiquitous emergence of the dozen and 60 in human cultures. 
This example may be looked upon as an implementation of realistic mathematics 
education (Gravemeijer, 2007; Freudenthal, 1991). The underlying hypothesis and 
motivation for this activity is that it is important to practice and get the feeling of 
non-verbal arithmetic before engaging into classical arithmetic. So our idea was to 
prompt the teachers to go back to the non-verbal sequential mode in the context of 
counting. Their reactions to this sort of activity were stronger than expected: 

My (programme) experience was totally significant in the most strict sense of the 
expression. It brought to me important changes in my way to approach lessons, in my 
professional practice and personal interests. But not everything was a “rose garden”… 
After the first lessons I was quite disappointed, because this course didn’t make any sense 
to me. My expectations were to learn “more mathematics”, fill in my gaps and not to 
debate endlessly about why, what for and how. I was even more disappointed with the 
Numbers Module, with metaphors! I didn’t understand anything: I expected to solve hard 
arithmetical problems, to design endless exercise lists to calculate with fractions or 
decimals, to learn more and better algorithms, and it turned out that we were exposed to 
questions I had never asked myself:  How do indigenes in the Amazonas do arithmetic, 
although they have no language for numbers? How can a shepherd boy know how many 
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lamas he has if he doesn’t know how to count? How could you teach counting to a little 
child, in a clever way? There, I had a cognitive break: I asked our teacher for an 
explanation of the aim of his lessons (I am now ashamed about that) and he kindly 
explained to me what he was after… (Evelyn, 32, 8 years of practice, 1st generation). 

Example 2: Who has more marbles?  
John and Mary have a bag of marbles each, all of the same size.  How can they tell 
who has more marbles?  
I invited the teachers, organized in small groups (3 to 4 each), to figure out other 
approaches than the usual sequential-verbal one (counting the marbles in each bag). 
Usually in less than half an hour they found at least one procedure for each cognitive 
mode (Soto-Andrade, 2007). The two pan balance for the non-verbal non-sequential 
mode emerged easily; also the idea of pairing off the marbles, without counting them, 
for the non-verbal sequential mode. Verbal - non sequential approaches took longer 
to appear (weighing simultaneously both bags in digital scales and reading off…).  
Example 3. Registering quantities with dice. 
The indigenes in an Amazonian village want to keep track of the quantities of seeds 
stocked for next year. How could they register quantities up to thousands if they have 
just a handful of dice at hand and they have not invented zero yet?  
After half an hour work on the average, in small groups, the teachers find out, and 
begin even to do arithmetic in dice-system! They report to understand now much 
better the decimal system and try this activity with their pupils, with encouraging  
results. Among others, Gina (49, 25 years of practice, 4th generation) reported:  

This experience was very important to me, because you were able to “un-structure” my 
mind and take away my fear of numbers.  Now I see that this fear came from a dull 
teaching, full of cookbook recipes, that never gave me the opportunity to enjoy 
discovering the way to solve problems all by myself. Numbers was my favourite subject 
in this programme, it allowed me to fly, to play, to err and not to feel silly… 

Example 4: The number sequence, otherwise…  
Is it possible to represent the numerical sequence 0, 1, 2, 3, …. up to 63, let us say, in 
a non verbal and non sequential way?    
Teachers usually get to the point of discovering the given sequence, written in binary 
way, in Shao Yong’s square (below left), and then of encapsulating it in a single 
image. (Soto-Andrade, 2007). In the first generation, 5 out of 30 teachers, after 30 
minutes work in small groups, came up with diagrams equivalent to Shao Yong’s 
Xiantian (“Before Heaven”) or its inverted form (shown below, center, as in 
Marshall, 2006). Notice the underlying binary tree! In the 2nd generation, 6 out of 30 
teachers, rediscovered Xiantian and, most remarkably, one of them, Ofelia (68, 50 
years of practice), draw all by herself a circular version of Xiantian diagram (below 
right). In her own words: 
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The Numbers Module shattered all my schemes. For the first time, my brain, archi-
structured for algorithmic work, began to have a glimpse of a tiny light (showing the 
way) to working metaphorically, to solving a problem in different ways, to looking for 
different paths to reach the same target, not just be satisfied because I got there. I must 
confess that during the first weeks I was not able to fathom where we were heading to!  
When I first met a sequence of I Ching hexagrams, sincerely I was barely able to tell 
what I was looking at! So I never imagined that some weeks later I was going to be able 
to rediscover one the oldest binary trees, Shao-Yong’s circular Xiantian. Later I spent 
hours trying to solve problems using different cognitive modes… 

  

Here the teachers have the possibility of transiting from the usual verbal sequential 
mode (the given sequence) to the non-verbal sequential mode (iconic hexagram 
binary representation) and then to non-verbal non-sequential mode (Xiantian). When 
interviewed, they unanimously reported having understood, in this unexpected way, 
for the first time the binary description of numbers. 
 
Example 4. Brownie’s walk 
Random walks provide a nice way to introduce probabilities. Instead of the well 
known drunkard’s walk, we introduced to teachers with no previous training in 
probability a puppy called Brownie (a baby incarnation of Brownian motion), who 
escapes randomly from her home in the city when she smells the shampoo her master 
intends to give her. The stepwise description of her random walk can be tackled by 
rudimentary means, even by simulation, or with the help of efficient metaphors, like 
the Solomonic metaphor or the pedestrian metaphor (Soto-Andrade, 2006). In the 
first one, Brownie splits into 4 pieces, each going to each cardinal direction, and so 
on… In the second one, a pack of Brownies (a power of 4 preferably) runs away from 
home, dividing themselves equally into four packs at each corner, and so on… The 
latter has the virtue of allowing the teachers to work with natural frequencies, in the 
sense of Hoffrage, Gigerenzer, Krauss & Martignon (2002), avoiding fractions up to 
the last minute. We have here also an integrative problematic situation, involving 
geometry, arithmetic and algebra, besides randomness.   
After engaging in activities of this sort, teachers reported: 
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Cognitive metaphors simply surprised and fascinated me. I had learned with the 
traditional, mechanical system, and in that way I was teaching my students. Now, I 
learned about cognitive modes, how to reach every one of my students, and how, with the 
help of a metaphor, I succeeded in making mathematics closer, friendlier and more 
reachable. I got so convinced that I chose Numbers for my Seminar Project and I 
modified radically my professional practices. I wanted to prove that metaphors and these 
new approaches would give good results, not just for the emotional atmosphere in the 
classroom but also for  “hard” tests.  And indeed, my K-4 2007 class got the first place in 
the country, in the SIMCE assessment test [1], increasing by 25 points the previous score, 
up to 328 points, with no previous training for the test! (Evelyn, 32, 8 years of practice). 

I took advantage of this way of working to carry several activities to my classroom, using 
various metaphors, which made the students enjoy more my lessons, learning more 
easily. I transferred all this to my pupils. And this year 2007, our K-4 classes, taught by 
my colleague Lily (also a student in this programme) and myself increased dramatically 
their SIMCE score [1], from 281 to 304 points (former SIMCE scores for this grade, 
since 2002, were 287 and 282). This happened with no special training for the test, 
contrary to the case of many other schools; the students had just the regular lessons with 
us (Gina, 49, 25 years of practice).      

I had certain expectations: this program would deliver knowledge to me, besides 
methodologies to apply to my pupils. But you broke my schemes. What I expected did 
not happen. What you achieved was to take me out from my “pigeonholing” and to make 
me think further. If we as teachers are rigid and un-imaginative, hardly will we be able to 
have our pupils free their imagination and become enchanted with mathematics. This is 
badly needed, that's why they reject maths so much. I have questioned my way of 
interacting with my pupils and the way of structuring my lessons (Karem, 32, 6 years of 
practice, 4th generation).   

 CONCLUSIONS AND DISCUSSION    
Observation of the teacher’s performance shows that even those who never had this 
sort of experience before were able to activate less usual cognitive modes, to transit 
from one to another and to take advantage of new metaphors to understand better and 
to efficiently solve problematic situations. In particular, after some prompting, a high 
percentage of them were able to switch from their dominant verbal-sequential 
cognitive mode to a non-verbal or non-sequential one. These findings support our 
optimistic hypothesis that cognitive flexibility, i.e. the ability to approach the same 
object through various cognitive modes and transiting from one cognitive mode to 
other, is trainable, even for in-service teachers and that it is facilitated by group work.   
However, their first person reports suggest that we had sub-estimated the magnitude 
of the cognitive shock they experience during the first weeks of our programme. It is 
interesting to note that testimonies of older and younger teachers are surprisingly 
alike in this respect. The same holds for their reactions thereafter and changes in their 
professional practice, as reported above. As a typical example, we recall a 50 year old 
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teacher, Yihecika, from our 3d generation, saying at his final Seminar presentation: “I 
am very moved, because I am an old teacher doing new things!”. At least in the case 
of these primary teachers, this disproves the hypothesis that changes in cognition and 
professional practice are out of reach for older teachers.  
A rather unexpected outcome of the work carried out with our in-service teachers is 
the dramatic improvement of their student performance, in several cases, in 
traditional standardized multiple-choice tests like SIMCE [1]. We may notice that the 
relative improvement was approximately the same for Evelyn and Gina (25 and 23 
points resp.) albeit absolute scores differed noticeably (328 and 304 resp.), as it is on 
the average the case between fully private schools and state supported private schools 
in Chile. Although our programme is intended for teachers in service at state-owned 
or state supported private schools, Evelyn has been teaching at a fully private high 
income school for 2 years because she was fired from her previous teaching job at a 
state supported private school right after completing her professional development 
programme (as it is the case of roughly 10% of our teachers!). On the other hand, 
Gina teaches in a low income state supported private school whose explicit aim in 
mathematics was to reach sometime the threshold of 300 points.   
In conclusion, we have gathered some new positive experimental evidence related to 
this “theory-oriented bricolage”, that appears to entail significant cognitive 
transformations in the being of the teachers (Mason, 1998) and as a consequence, 
changes in their classroom practice and performance of their students, even measured 
in traditional ways. 
1. SIMCE is a national assessment test, applied to K-4 every year and to K-8 every two years. It is 
much closer in spirit to TIMMS than to PISA. SIMCE national average score in mathematics for K-
4 stagnates at 246 in 2006 and 248 in 2007. Standard deviation is about 50 points. In mathematics 
only 26% of the students attained the advanced level, whose threshold is 286 points.  
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WHAT DO STUDENT TEACHERS ATTEND TO? 

Naďa Stehlíková 
Charles University in Prague, Faculty of Education 

The ability to notice key features of teaching is seen as part of student teachers’ 
pedagogical content knowledge. The study shows what student teachers focus on 
when they have no experience of guided observation of lessons either in reality or on 
video and when they are not directed by the educator. Some preliminary findings 
from a wider study are presented which are in line with other existing research: 
namely, that the student teachers neglect the subtleties of the introduction of the 
mathematical content. 
Keywords: pedagogical content knowledge, ability to notice, student teachers, videos 
THEORETICAL FRAMEWORK 
The notion of pedagogical content knowledge (or PCK) was first introduced by 
Shulman. The teacher needs understanding of the material he/she is teaching, but 
he/she also needs the “knowledge of the most useful forms of representation of those 
ideas, the most powerful analogies, illustrations, examples, explanations, and 
demonstrations – in a word, the ways of representing and formulating the subject that 
make it comprehensible to others” (Shulman, 1986). He/she needs to be aware of 
topics with which pupils might have difficulties and of their common misconceptions 
and misunderstandings. Bromme (2008) claims that PCK can also be seen in the ways 
the teacher “takes into account pupils’ utterances and their previous knowledge”. An 
(2004) stresses four aspects of the effective teacher’s activity in the classroom which 
are part of PCK: building on students’ mathematical ideas, addressing and correcting 
students’ misconceptions, engaging students in mathematics learning and promoting 
and supporting students’ thinking mathematically.  
Thus, in my opinion, part of PCK is the ability to notice. In order for the teacher to 
take into account the pupil’s utterance and build on his/her understanding, he/she has 
to notice the importance of this utterance in the first place, put it into the appropriate 
context, interpret it and only afterwards use it. According to Sherin and van Es 
(2005), noticing involves a) identifying what is important in a teaching situation, b) 
making connections between specific classroom interactions and the broader concepts 
and principles of teaching and learning that they represent, c) using what teachers 
know about their specific teaching context to reason about a given situation. This 
study is mainly concerned with the first aspect of noticing. 
The (student) teachers’ ability to notice is important for the development of what 
Mason and Spence (1999) call knowing-to: “Knowing-to is active knowledge which 
is present in the moment when it is required.” They distinguish this kind of 
knowledge from knowing-that, knowing-how, and knowing-why. Knowing-to 
triggers the other types of knowing and thus its absence blocks “teachers from 
responding creatively in the moment” (ibid). While Mason and Spence mostly 
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concentrate on the way knowing-to develops in pupils (e.g., while solving problems), 
they also touch on educating teachers to be able to know-to: “We propose that 
knowing-to act in the moment depends on the structure of attention in the moment, 
depends on what one is aware of. Educating this awareness is most effectively done 
by labelling experiences in which powers have been exhibited, and developing a rich 
network of connections and triggers so that actions ‘come to mind’”. (ibid)  
In the same spirit, Ainley and Luntley (2006) propose the term attention-dependent 
knowledge for the knowledge that enables teachers to respond effectively to what 
happens during the lesson. It can only be revealed in the classroom. The analysis of 
videos can help us to label such events when this kind of knowledge is at play.  
To sum up, the ability to notice seems to be an important component of the (student) 
teacher’s PCK. This ability can be developed, among others, by analysing 
videorecordings of the teaching of others and our own (e.g., Sherin & van ES, 2005; 
Star & Strickland, 2008; Muñoz-Catalán, Carrillo & Climent, 2007; Hošpesová, 
Tichá & Macháčková, 2007). Most of the studies confirm that (student) teachers must 
learn what to notice. Santagata, Zannoni and Stigler (2007) found out that “more 
hours of observations per se [...] do not affect the quality of preservice teachers’ 
analyses” and on the other hand, Star and Strickland (2008) claim that the ability to 
learn from observations of teaching “(either live or on video) is critically dependent 
on what is actually noticed (attended to)”.  
The study presented here is a part of a wider study aimed at exploring how student 
teachers' ability to reflect on their own teaching and the teaching of others can be 
developed and what the characteristics of this development are. Here, I will restrict 
the questions to:  

What do the student teachers focus on in a pedagogical situation, on their own, that is, 
without any expert drawing their attention to important moments? 

How deep are their observations? 

How do their evaluations of the same moment differ? 

METHODOLOGY 
The participants of the study are student teachers, future mathematics teachers of 
pupils aged 11 till 19. They are in their 4th or 5th year of study. In particular, the 
students whose work is dealt with below were in year 4 and had one term of the 
Mathematics Education (or ME) course previously (partially not taught by me). From 
now on, “students” will be used for student teachers and “pupils” for pupils taught in 
the observed lesson.  
In order to answer the research questions, we need to put students in a situation in 
which they will be confronted with a mathematics lesson but in which an educator’s 
influence is minimal. The first, obvious, type of data are received from individual 
students who are asked to write unstructured reflections about a video recording of 
the whole mathematics lesson. They watch it at home. However, a discussion 
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between students can perhaps lead to a richer analysis. Thus, the second type of data 
is gathered from pairs of students who are asked to analyse a lesson on video. They 
do it at school, in an empty office, without the educator’s presence, and they are 
being video recorded. In order to find out their immediate reactions, they are asked to 
stop the video whenever they feel that something deserves commenting on and to say 
the comment aloud to each other.  
The collected data are organised in two ways: a) According to the lesson observed: 
the same videos of teaching have been used repeatedly so that reactions from 
different students are received. b) According to the type of origin, i.e., individuals’ 
reflections, pairs’ discussions, my teaching (videorecordings of the ME course in 
which video analyses are sometimes used), teaching practice (students' descriptions 
of didactical moments which they consider to be important when they observe 
lessons; their very choice and evaluation of these moments can be of importance).  
The data collection still proceeds. In this article, I will restrict myself to the data 
connected to one particular lesson (see below) which was analysed by 3 pairs of 
students and 4 individual students. Their list follows (pseudonyms are used). In 
parentheses, the students’ study results are given, received as a weighted average of 
their marks from mathematical courses during their first 3 years of study at the 
Faculty (1 is the best mark): A – 1, B – (1, 2), C – higher than 2. 

Pairs (video recordings, transcripts, written reflections): John (B) and James (C), Molly 
(A) and Mark (B), Lota (A) and Meg (A)  

Individuals (written reflections): Zina (B), Jack (B), Lance (C), Paul (B). 

The students were told that they would be given a recording of an Australian 
mathematics lesson from Grade 8 from TIMSS Video Study 1999 and that the topic 
was the division of a quantity in a given ratio. The lesson in question was used on 
purpose – I believed that there was a lot to be noticed and, on the other hand, to be 
missed. Moreover, I supposed that the students would feel more interested in a 
foreign lesson. 
The students were also given the teacher’s preparation and self-reflection (written by 
her after viewing the video recording of her own lesson) and pupils’ worksheets. 
They watched the video in English with the Czech subtitles. Pairs of students could 
write a reflection if they wanted (to complement their discussion while viewing the 
video), while the individuals were obliged to write a reflection. It was an unstructured 
reflection. They were told that they could write whatever they wanted or felt 
important. 
In the data analysis, I had in mind six key moments which, in my opinion, were 
important from the point of view of the mathematical content and its presentation in 
the lesson. Their short description together with my perception from the lesson in 
question follows. 
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1. Manipulation. The division of a quantity in a given ratio is introduced using the 
model of cubes and boxes. This should help pupils to build an image of the whole 
process. 
Comment: The pupils first work with cubes and create ratios such as 1 : 2, 5 : 8, etc. 
Then they work with empty boxes. When solving problems, they are asked to first 
model the situation and only then to calculate. 
2. Block versus box. While blocks are counted as separate individuals, the empty 
boxes stand for a certain unknown number (or amount). Each must contain the same 
number (or amount). The letters a, b in the ratio a : b stand not only for a certain 
number of things but also for groups of (or boxes full of) things. 
Comment: The pupils are asked to imagine that there is a certain number of things (or 
a certain amount of money) in each box and to solve problems such as divide 210 
dollars in the ratio of 2 : 5. The teacher often refers to the boxes and asks, e.g., how 
many things are in one box (when looking for a unit quantity). The pupils are asked 
to actually move boxes on their desk to the left or right according to the ratio. 
3. Relationship between the ratio and quantity. In order for the division of a 
quantity in a given ratio to have integer answers, the whole quantity must be divisible 
by a unit quantity. 
Comment: The teacher wants the pupils to think of their own story problems with 
ratios but she realises that there might be a problem if they do not see the relationship 
in question. She probably thinks that a non-integer answer would add to the cognitive 
burden and unnecessarily lead the pupils away from the idea of ratios. She, therefore, 
asks them whether they see this relationship. The pupils seem not to know what to do 
so the teacher points to the already solved ratios and to the numbers which she 
deliberately chose. When one girl says that the quantity must be “easily divisible”, 
the teacher picks her idea up and explains the relationship. The question remains 
whether this important idea could have been found by the pupils themselves when 
trying to think up (and solve) their own story problems. 
4. Simplifying ratios. We know from the teacher’s reflection that the pupils should 
know about simplifying ratios from the previous lesson.  
Comment: In the classwork, the need to simplify ratios does not arise. When the 
pupils work on posing problems, the teacher moves around and check them. A pupil 
has a ratio of 4 : 6 and the teacher says that “it would be better as 2 : 3, because we 
like simple ratios”. After a minute, she can see another pupil with a ratio of 6 : 3 and 
this time, she does not mention this possibility. There is no comment on simplifying 
ratios later during the classwork. 
5. Two methods. The unitary method is based on finding the unit and then 
multiplying it by the numbers in the ratio. The fraction method enables us to calculate 
each share by multiplying the quantity by a fraction, i.e., given a : b, quantity q, then 
the first share is a / (a + b) times q, etc. 
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Comment: The teacher demonstrates the fraction method on 3 examples written on 
the board and previously solved by the unitary method. In my opinion, it is rather 
quick and the pupils do not have any opportunity to actually try it. No wonder that, 
when asked to vote which method they prefer, they vote for the unitary method 
(which they used throughout the lesson). 
6. Pupils’ problem posing (or PP). When asked to pose their own problems, pupils 
are encouraged to think about the matter more deeply and the teacher can assess to 
what extent they understand it and where the problems lie. It is usually motivating for 
them. In my opinion, it is advisable to ask pupils to solve the problems, too, as it 
makes them focus on the mathematical part as well as the context. 
Comment: The teacher asks the pupils to think of their own question with a ratio and 
then talks about making a “story”. This might have contributed to most pupils 
producing a story without a question.  
The problem posing activity enabled the pupils to grasp the difference between the 
two types of task: to look for a ratio, and to divide a quantity in a given ratio. The 
pupils apparently mixed the two types together and the teacher became aware of this 
fact only on the basis of this activity (based on her reflection). 
The above six key moments were the springboard from which I started the data 
analysis. All the data were uploaded to the software Atlas.ti as separate documents. 
The documents were coded first using the six items (their names were used as the 
code names)  and then open coded in the sense of Strauss and Corbin (1998), 
analysing a whole sentence or a paragraph rather than line-by-line because, especially 
in the pair experiment, one idea was spread in students’ several utterances.  
During the coding process, five more codes emerged as important for some students. 
Thus, I tracked them in all the reflections.  
7. Involvement of pupils. It shows to what extent the pupils are actively involved in 
the construction of new knowledge (as far as we can say that from the video 
recording only!) and other mathematical work in the lesson. It involves two free 
codes: Pupils’ activity and Pupils’ understanding. 
Comment: It is difficult to generalize, but at many stages of the lesson I have the 
impression that the pupils are not given enough time to think the questions over and 
find the solutions themselves, but rather that they are given the solutions by the 
teacher immediately. They are almost never encouraged to explain their thinking or 
strategies, but rather the teacher offers the explanation and corrects their mistakes.  
8. Elaboration – consequences. It involves the elaboration of the observed teaching 
practice in terms of its possible consequence for the pupils’ understanding or for the 
flow of the lesson. (See below for examples.) 
9. Elaboration – their teaching. It concerns the elaboration of the observed teaching 
practice in terms of its possible connections with the students’ future teaching 
practice.  
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10. Alternatives. It means suggesting an alternative action to what actually 
happened. 
11. General perception. It means a general perception of the lesson based on the 
codes Chaotic versus calm, Teacher’s personality, Teaching method, Appraisal / 
Criticism of the teaching practice, Classroom environment, Empathy for the teacher. 
PRELIMINARY RESULTS 
The results will be first presented in the form of two tables and then discussed.  
Explanation: “+” – the student mentioned the item (it will sometimes be briefly given 
in what way), “x” – it did not appear. T stands for the teacher, Ps for pupils. In item 7, 
| means a reference to pupils’ potential understanding. In item 10, | means a reference 
to the mathematics of the lesson, * to the organisation of the lesson. 
Pairs  John + James Molly + Mark Lota + Meg 

1. Manipul. + no elaboration + “good idea” + good for Ps, they “see it” 

2. Block/box + consider them the same x + see the difference 

3. Ratio vs. 
quantity 

x x + T should simply say it as a 
rule 

4. Simplify x x x 

5. Two 
methods 

x + very quick, voting 
nonsense 

+ not 2 methods but a 
different notation, T 
should’ve stressed the 
common properties; voting 
nonsense 

6. Pupils’PP + consider it nonsense + good, story vs. task + good 

7. Involv. of 
pupils 

Ps’ unders. 

+ T shows the methods, 
explains where there is a 
mistake                    | 

+ pupils are only 
passively involved 

| 

x 

 

||||| 

8. Conseq. x + PP – T can see how 
Ps understand  

x 

9. Teaching  x + “I tried  to imagine 
myself in T’s shoes.” 

+ “What to do with quick 
pupils?” 

10. Altern.  **** **|*|* |||||****|*||| 

11. General 
perception  

chaotic,  no system, T 
lacks organis. skills, no 
bird’s view eye, doesn’t 
care what Ps do, doesn’t 
understand what Ps say 

T is calm, does not 
get angry, no 
emotions, Ps 
comfortable with the 
work 

T changes activities 

Individuals  Zina Jack Lance Paul 

1. Manipul. x + good for Ps, but 
not enough time 

+ good for x 
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for solution understanding 

2. Block 
versus box 

x x + can see the 
difference 

x 

3. Ratio vs. 
quantity 

+ it is the key question + thinks that Ps 
found it 

+ Ps should have 
found it in PP 

x 

4. Simplify x x x x 

5. Two m. x x x + good 

6. Pupils’ 
PP 

+ good + good + good + good, but 
above Ps’ 
abilities 

7. Involv. of 
pupils 

Ps’ under. 

+ Ps discover the 
knowledge for 
themselves 

+ not enough time 
for own discovery 
of knowledge 

+ Ps not involved 
enough                   

                         | 

 

 

                         | 

8. Conseq. + PP – good for 
cooperation, 
application of math. in 
reality, motivating 

+ PP – good for 
Ps’ understanding 

x + PP – breaks 
stereotype of 
problem solving 

9. Teaching  x x x + “I have tried 
PP with pupils.” 

10. Altern.  * x |*** x 

11. General 
perception  

T leads Ps from 
concrete to abstract 
knowledge, towards 
relationships, waits till 
Ps find knowledge 
themselves 

a calm lesson, 
probably too calm 

too noisy, more 
discipline is 
needed 

x 

If the item is missing from the students’ reflections, we can presume that they did not 
notice it or did not attribute any importance to it. 
DISCUSSION OF RESULTS 
Discussion of individual items 
Manipulation was seen as important for the mathematical content of the lesson 4 
times out of 7, however, only Lance and one pair could see the difference represented 
by blocks and boxes. Despite the teacher’s frequent reference to it, John and James 
consider them the same and from their discussion we can infer that they are lost in the 
mathematical part of the activity. This aspect, which I see as important for the 
development of pupils’ knowledge of ratio, was not mentioned at all 4 times out of 7. 
The question about the relationship between the quantity and ratio was noticed 4 
times out of 7 but another mathematical item about simplifying ratios was not 
addressed at all. The “two method” item was only mentioned 3 times and in 2 of 
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them, the vote was rejected as nonsense on the grounds that the pupils did not have 
time to actually try it. 
Pupils’ problem posing was commented on by all students and mostly judged 
positively. John and James have another view but they do not give any reason for it. 
The students made interpretative comments, too. In most cases they commented upon 
the problem posing activity and its advantages. The reason why they actually thought 
about this type of activity deeper might be that it was novel for them. In Czech 
schools, problem posing by pupils is quite rare. Only 3 times, the students elaborated 
a little on what they saw from the point of view of their (future) role as teachers. 
In many cases, the students suggested alternative actions for both the organisational 
and mathematical aspects of the lesson, often after a critical remark about what 
actually happened in the lesson.  
Comparison of reflections 
Two pairs stand out in the quality of reflection. At the one end of the spectrum, John 
and James made a lot of critical remarks but only suggested alternatives to the 
organisational aspects of the lesson. They probably did not give much thought to the 
mathematical part (except for frequent comments at the beginning of the lesson that 
“it makes no sense what the teacher does”) and did not think about the types of tasks 
the teacher used. Their dialogue is mainly descriptive without any elaboration of what 
the event might mean. They are extremely critical about the lesson and, of the 10 
students are the only ones to make critical comments on the personality of the teacher 
and her skills. 
At the other end, Meg and Lota also did not understand at first where the teacher was 
heading with modelling but after much effort and discussion, they grasped it. They 
comment on nearly all mathematical items. They make the most references to pupils’ 
possible understanding and suggest the most alternatives, most of which are for the 
mathematics of the lesson. Their level of reflection is deeper than the boys’ one. I 
believe that, among others, their content knowledge might have influenced this 
difference. While Meg and Lota have A’s, John has B and James has C. Their 
insufficient knowledge of mathematics and thus inability to see where the teacher was 
leading the pupils might have influenced their appraisal of the lesson.   
Finally, quite surprisingly for me, there are opposing views concerning the same 
items. While Jack believes that the pupils discovered the relationship between the 
ratio and quantity themselves, Lance suggests otherwise as he points out that the 
pupils should be allowed to discover it when posing problems.  
The involvement of pupils in the development of knowledge is also differently 
judged. While Molly and Mark, and Lance (and indirectly also John and James) think 
that the pupils were rather passive and the teacher did the explanation, Zina believes 
that the pupils were actively involved and Lance suggests that the teacher wants them 
to be more involved but that allows them little time. 
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The general impression from the lesson differs widely. John and James, quite 
understandably considering the above, see the lesson as chaotic, with no system, and 
have little empathy for the teacher. Molly and Mark as well as Jack consider the 
lesson calm and the pupils comfortable with the work. For Lance, there is little 
discipline and too much noise in the lesson.   
It might have been illuminating to let the students discuss their opposing views to see 
on what grounds they put their claims. As it is, we have little information as to the 
reasons for the discrepancies. 
Star and Strickland (2008) also studied preservice teachers’ uninfluenced responses 
to a lesson on video, thus it seems appropriate to compare their results with mine. 
They let the students watch the video and take notes and then asked them questions 
concerning 5 aspects of the lesson which they should answer based on their memory 
and notes. (They did not look, however, into how the students interpreted the events.) 
The five aspects were: Classroom environment, Classroom management, 
Communication, Tasks (refer to the activities pupils do in the class; it includes my 
code Pupils’ problem posing), Mathematical content (it includes my codes 
Manipulation, Block versus box, Relationship between the ratio and quantity, 
Simplifying ratios, Two methods). The first three dimensions are not among my 
codes as the students did not mention them. My remaining codes concern 
interpretation and, as such, cannot be put into the five categories. 
Star and Strickland (ibid) found that without any training, the investigated student 
teachers were good observers of Classroom management, quite attentive to the 
category of Tasks and did least well on Classroom environment (in my study, the 
students hardly mentioned it, too) and Mathematical content. The authors say that 
“preservice teachers largely did not notice subtleties in the ways that the teacher 
helped students think about content” and “the mathematics of the lesson and the 
students’ understandings of that mathematics were not noticed [...], either in the 
initial or in the second viewing of the video” (p. 118). This is echoed in the 
preliminary findings of my study where the mathematics of the lesson was rarely 
attended to. 
FUTURE WORK 
In order to answer my research questions, more analysis is needed. While doing the 
open coding, the elements of the following stage of analysis, that is axial coding, 
gradually emerged and some categories began to be assembled. Clearly, some codes 
are connected with the mathematics in the presented lesson only (e.g., Two methods) 
while others are more general (e.g., Alternatives). Some codes are closely tied (e.g., 
Alternatives and Elaboration – their teaching). In my further work, the various types 
of data for different lessons will be coded. It is assumed that during this process some 
categories will emerge which would help me to concentrate on some of them not in 
one type of data or in the data tied to one particular lesson, but more generally. It may 
also be valuable to compare reflections received from individuals and those from 
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pairs. Does a discussion between students influence the depth of their considerations? 
This will also be the focus of my future work. 
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THE MATHEMATICAL PREPARATION OF TEACHERS:  
A FOCUS ON TASKS 

Gabriel J. Stylianides     Andreas J. Stylianides 
       University of Pittsburgh, U.S.A.                    University of Cambridge, U.K. 
In this article we elaborate a conceptualization of mathematics for teaching as a form 
of applied mathematics (building on Bass’s idea of characterizing mathematics 
education as a form of applied mathematics) and we examine implications of this 
conceptualization for the mathematical preparation of teachers.  Specifically, we 
discuss issues of design and implementation of a special kind of mathematics tasks 
whose use in teacher education is intended to promote mathematics for teaching.   
The notion of Mathematics for Teaching (MfT) (Ball & Bass, 2000) describes the 
mathematical content that is important for teachers to know and be able to use in 
order to manage successfully the mathematical issues that arise in their practice.  
According to Ball and Bass (2000), this specialized kind of mathematical knowledge, 
referred to as Mathematical Knowledge for Teaching (MKfT), is important for solving 
the barrage of “mathematical problems of teaching” that teachers face as they teach 
mathematics: offering mathematically accurate explanations that are understandable 
to students of particular ages, validating student assertions, etc. 
In this article, we focus on the following research question: What kind of learning 
opportunities might mathematics teacher education programs design to effectively 
support the development of prospective teachers’ MKfT?  To address this question, 
we elaborate a conceptualization of MfT as a form of applied mathematics and probe 
the implications of this conceptualization for the mathematical preparation of 
teachers, with particular attention to the nature of mathematics tasks that might be 
important for use in mathematics (content) courses for prospective teachers. To 
exemplify the constructs we discuss in the article, we use data from a research-based 
mathematics course for prospective elementary teachers in the United States.   
CONCEPTUALIZING MATHEMATICS FOR TEACHING AS A  
FORM OF APPLIED MATHEMATICS 
In thinking about the problem of teachers’ mathematical preparation, we found useful 
Bass’s (2005) suggestion of viewing mathematics education as a form of applied 
mathematics: “[Mathematics education] is a domain of professional work that makes 
fundamental use of highly specialized kinds of mathematical knowledge, and in that 
sense it can […] be usefully viewed as a kind of applied mathematics” (p. 418).  
Given that mathematics education makes use of specialized knowledge from several 
other fields in addition to mathematics (psychology, sociology, linguistics, etc.), we 
propose that the characterization “form of applied mathematics” be used to refer 
specifically to the mathematical component of mathematics education, notably MfT.  
The conceptualization of MfT as a form of applied mathematics calls attention to the 
domain of application of MfT (i.e., the work of mathematics teaching) and the 
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specialized nature of “mathematical problems of teaching” (Ball & Bass, 2000).  In 
particular, the conceptualization has two important and interrelated implications for 
the mathematical preparation of teachers, which are aligned with existing research 
and theoretical accounts in the area of MKfT.   
First, the conceptualization implies that the mathematical preparation of teachers 
should take seriously the idea that “there is a specificity to the mathematics that 
teachers need to know and know how to use” (Adler & Davis, 2006, p. 271).  This 
idea relates to broader epistemological issues about the situativity of knowledge (e.g., 
Perressini et al., 2004) and to research findings that different workplaces require 
specialized mathematical knowledge by their practitioners (e.g., Hoyles et al., 2001).   
Second, the conceptualization implies that the mathematical preparation of teachers 
should aim to “create opportunities for learning subject matter that would enable 
teachers not only to know, but to learn to use what they know in the varied contexts 
of practice” (Ball & Bass, 2000, p. 99).  In other words, it underscores the importance 
of the development of a “pedagogically functional mathematical knowledge” (ibid, p. 
95), which can support teachers to solve successfully mathematical problems that 
arise in their work.  The characterization of MKfT as “pedagogically functional” 
helps clarify further the meaning we assign to the term “applied mathematics” in the 
proposed conceptualization of MfT.  Specifically, our use of this term refers to 
mathematics that is (or can be) useful for and usable in mathematics teaching (the 
domain of application), and thus, important for teachers to know and be able to use 
when they teach mathematics (i.e., when they function in the domain of application). 
Acceptance of the conceptualization of MfT as a form of applied mathematics 
necessitates that mathematics courses in teacher education design opportunities for 
prospective teachers to learn and use mathematics from the perspective of a teacher 
of mathematics.  How might these opportunities be designed in teacher education?   
Given the central role that mathematics tasks can play in individuals’ learning 
experience in classrooms, we considered fruitful to begin to address the question 
above (which is a reformulation of our research question) by conceptualizing a 
special kind of mathematics tasks that we call Pedagogy-Related mathematics tasks 
(P-R mathematics tasks). These tasks are intended to embody essential elements of 
MfT as a form of applied mathematics and support mathematical activity that can 
enhance the development of prospective teachers’ MKfT. 
“PEDAGOGY-RELATED MATHEMATICS TASKS”: A VEHICLE TO 
PROMOTING MATHEMATICAL KNOWLEDGE FOR TEACHING 
Feature 1: A primary mathematical object 
Like all other kinds of mathematics tasks, P-R mathematics tasks have a primary 
mathematical object.  This is intended to be the main focus of prospective teachers’ 
attention and to engage them in activity that is primarily mathematical (as opposed to 
pedagogical).  The mathematical object of a P-R mathematics task can take different 
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forms such as validation of a conjecture or description of the mathematical 
relationship between two methods for obtaining the same mathematical result.  
Feature 2: A focus on important aspects of MKfT 
Like most other kinds of mathematics tasks used in mathematics courses for 
prospective teachers, the mathematical object of a P-R mathematics task relates to 
one or more mathematical ideas that have been suggested by theory or research on 
MKfT as being important for teachers to know (see, e.g., Stylianides & Ball, 2008).  
In our work with prospective teachers we pay special attention to such ideas that are 
also fundamental (Ma, 1999) and hard-to-learn for both students and teachers. 
Feature 3: A secondary but substantial pedagogical object  
and a corresponding pedagogical space 
The defining feature of P-R mathematics tasks is that they have a secondary 
pedagogical object.  This object is substantial (i.e., it is an integral part of the task 
and important for its solution) and situates the mathematical object of the task in a 
particular pedagogical space that relates to school mathematics and, ideally, derives 
from actual classroom records.  The pedagogical object and the corresponding 
pedagogical space of a P-R mathematics task help engage prospective teachers in 
mathematical activity from the perspective of a teacher of mathematics.   
Consider for example a P-R mathematics task whose mathematical object is the 
development of a proof for a conjecture.  The pedagogical object of this task could be 
a teacher’s need that the proof be appropriate for the students in his/her class.  The 
corresponding pedagogical space could be a description (scenario) of what the solvers 
of the P-R mathematics task might assume the students in the class to know in 
relation to mathematical content that is relevant to the task.  Thus the solution of the 
task cannot be sought in a purely mathematical space, but rather in a space that 
intertwines content and pedagogy.  As a result, the task can generate mathematical 
activity that is attuned to particular mathematical demands of mathematics teaching.  
Next we discuss four points related to feature 3 of P-R mathematics tasks.  First, the 
pedagogical object/space of a P-R mathematics task, and especially its connection to 
(actual) classroom records, can embody the ideas of “situativity of knowledge” and 
“pedagogical functionality” that we discussed earlier in relation to MfT as a form of 
applied mathematics.  Specifically, the pedagogical object can support development 
of mathematical knowledge that is applicable in a particular context (pedagogical 
space) within the broader work of mathematics teaching.  
Second, the pedagogical space of a P-R mathematics task determines to great extent 
what counts as an acceptable/appropriate solution to the task, because it provides a 
set of conditions with which a possible solution to the task needs to comply.  This is 
important, because, almost always in teaching, a purely mathematical approach to a 
“mathematical problem of teaching” does not address adequately the different aspects 
of the pedagogical space in which the problem is embedded.   
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Third, given the complexities of any pedagogical situation, it is often impractical (if 
not impossible) to specify all the parameters of the situation that can be relevant to 
the mathematical object of a P-R mathematics task.  This lack of specificity can be 
useful for teacher educators who implement P-R mathematics tasks with their 
prospective teachers: teacher educators can use the endemic ambiguity surrounding 
the pedagogical space in order to vary some of its conditions and create opportunities 
for prospective teachers to engage in related mathematical activities within the 
particular pedagogical space.  The variation of conditions of the pedagogical space 
(and the mathematical activities that can result from this variation) can offer 
prospective teachers practice with grappling with the barrage of mathematical issues 
that arise (often unexpectedly) in almost every instance of a teacher’s practice.  
Fourth, the pedagogical object/space of a P-R mathematics task have the potential to 
motivate prospective teachers’ engagement in the task by helping them see and 
appreciate why the mathematical ideas in the task are or might be important for their 
future work as teachers of mathematics.  According to Harel (1998), “[s]tudents are 
most likely to learn when they see a need for what we intend to teach them, where by 
‘need’ is meant intellectual need, as opposed to social or economic need” (p. 501; the 
original was in italics).  In the case of prospective teachers, a “need” for learning 
mathematics may be defined in terms of developing mathematical knowledge that is 
useful for and usable in the work of teaching.  By helping prospective teachers see a 
need for, and thus develop an interest in, the material that teacher educators engage 
them with, teacher educators increase the likelihood that prospective teachers will 
learn this material.  This is particularly useful in relation to material that prospective 
teachers tend to have difficulty to see as relevant to their future teaching practices.   
EXEMPLIFYING THE USE OF P-R MATHEMATICS TASKS IN A 
MATHEMATICS COURSE FOR PROSPECTIVE TEACHERS 
General description of the course 
The course was the context of a design experiment (see, e.g., Cobb et al., 2003) that 
we conducted over a period of four years and that aimed to develop practical and 
theoretical knowledge about ways to promote prospective teachers’ MKfT.  It was a 
three-credit undergraduate-level mathematics course for prospective elementary 
teachers, prerequisite for admission to the masters-level elementary teaching 
certification program at a large state university in the United States.  It was the only 
mathematics content course in the admission requirements for the program,1 and so it 
was designed to cover a wide range of mathematical topics.  The students in the 
course pursued undergraduate majors in different fields and tended to have weak 
mathematical backgrounds.  Also, given that the students were not yet in the teaching 
certification program, they had limited or no background in pedagogy. 

                                                 
1 The students who are admitted to the teaching certification program take also a 

mathematics pedagogy course, but the focus of this course is on teaching methods. 
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The most relevant aspect to this article of the approach we took in the course to 
promote MKfT is the design and implementation of task sequences that included both 
P-R mathematics tasks and typical mathematics tasks, which embody only features 1 
and 2 of P-R mathematics tasks.  A common task sequence in the course began with a 
typical mathematics task that engaged prospective teachers in mathematical activity 
from an adult’s point of view.  The P-R mathematics task that followed described 
some pedagogical factors that prospective teachers needed to consider in their 
mathematical activity.  To satisfy feature 3 of P-R mathematics tasks about situating 
prospective teachers’ mathematical activity in a pedagogical space, we used a range 
of actual classroom records such as video records or written descriptions (as in 
scholarly publications) of classroom episodes, excerpts from student interviews or 
textbooks, etc.  Less frequently and when actual classroom records were unavailable, 
we used (similar to Biza et al., 2007) fictional but plausible classroom records.  
An example of a task sequence and its implementation in the course 
We illustrate the use of P-R mathematics tasks in the course with a task sequence that 
included a typical and a P-R mathematics task.  To develop this and other task 
sequences in the course we followed a series of five research cycles of 
implementation, analysis, and refinement over the years of our design experiment.  In 
this article we use data from the last research cycle that involved enactment of the 
course in two sections; these sections were attended by a total of 39 prospective 
teachers and were taught by the first author.  Specifically, the data come from one of 
the two sections and include video and audio records of relevant classroom episodes, 
and fieldnotes that focused on prospective teachers’ small group work.  
The focal task sequence aimed to promote prospective teachers’ knowledge about a 
possible relation between the area and perimeter of rectangles, with special attention 
to the ideas of generalization and proof by counterexample, which are considered 
important for elementary mathematics teaching (see feature 2 of P-R mathematics 
tasks in relation to Stylianides and Ball, 2008).  The task sequence is an adaptation of 
an interview task used by Ma (1999) and developed originally by Ball (1988). 

Imagine that one of your students comes to class very excited.  She tells you that she has 
figured out a theory that you never told the class.  She explains that she has discovered 
that as the perimeter of a rectangle increases, the area also increases.  She shows you this 
picture to prove what she is doing: 

 
 
 
 
 
 
 
 
 
  

1.    Evaluate mathematically the student statement? (underlined) 

4 cm 

4 cm 

8 cm

4 cm 

Perimeter = 16 cm 
Area = 16 cm2 

Perimeter = 24 cm 
Area = 32 cm2 
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2.    How would you respond to this student? 

Although question 1 refers to a student statement, it is essentially a typical 
mathematics task because the prompt asks prospective teachers to evaluate 
mathematically the statement, without asking (or expecting) them to take account of 
the fact that the statement was produced by a student.  Question 2, on the other hand, 
is a P-R mathematics task because it introduces a student consideration that 
prospective teachers need to consider in their mathematical activity.  The 
mathematical object of this P-R mathematics task is to evaluate mathematically the 
underlined statement, which is essentially what the prospective teachers were asked 
to do in question 1 (a teacher would need to know about the correctness of the 
statement before deciding how to respond to the student who produced it).  The 
pedagogical object of the task is the teacher’s need to respond to the student who 
produced the statement.  The pedagogical space is the (fictional) scenario in the task 
with a student announcing enthusiastically to the teacher a mathematical “discovery,” 
which was supported by a single example in the domain of the corresponding 
statement.  Although an appropriate response to question 1 could say that the 
statement is false and provide a counterexample to it, an appropriate response to 
question 2 would need to include more than that.  Specifically, from a pedagogical 
standpoint, it would be useful and important for the student’s learning if the teacher 
did not just prove her statement false, but also helped her understand why the 
statement is false and the mathematical conditions under which the statement is true.  
The prospective teachers in the course worked on the two questions first individually, 
then in small groups, and later in the whole class.  The whole class discussion started 
with the teacher educator asking different small groups to report their work on the 
task, beginning with question 1 (all prospective teacher names are pseudonyms).  
Andria: We said that it [the student statement] was mathematically sound because as 

you increase the size of the figure, the area is going to increase as well. 
Tiffany:  We thought the same, because as the sides are getting bigger… [inaudible] 
Stylianides: Does anybody disagree?  [no group expressed a disagreement] 
Evans: I agree. [Evans was in a different small group than both Andria and Tiffany] 
Stylianides: And how would you respond to the student? 
Melissa: I think it’s true but they haven’t proved it for all numbers so it’s not really a 

proof. 
Andria:  I think that you don’t have to try every number [she means every possible case 

in the domain of the statement] to be able to prove it because if the student can 
explain why it works like we just did, like if you increase the length then the 
area increases. [pause] 

Stylianides: Yeah, so it’s impossible to check all possible cases [of different rectangles]. 
Meredith: I’d say that it’s an interesting idea, and I’d see if they can explain why it 

works. 

As the excerpt shows, all small groups believed that the student statement was true, 
but at the same time they realized that the evidence the student provided for her claim 
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was not a proof (see, e.g., Melissa’s comment).  As a result, the prospective teachers 
started to think how they could prove the statement and what they could respond to 
the student.  For example, Andria observed that it would be impossible to check 
every possible case.  Also, both Andria and Meredith pointed out that the student 
needed to explain why (i.e., prove that) the area of a rectangle increases as its 
perimeter increases.  Yet, the teacher educator knew that the statement was false, and 
so he probed the prospective teachers to check more cases and see whether they could 
find an example where the student statement failed.  All small groups found quickly 
at least one counterexample to the statement and concluded that it was actually false.2 
The prospective teachers did not expect this intuitively “obvious” statement to be 
false, so they became motivated to work further on question 2.  The teacher educator 
gave them more time to think about this question in their small groups.  The excerpt 
below is from the whole class discussion that followed the small group work.  
Natasha:  We said that the way that they [the students] are doing it, where they’re just 

increasing the length of one side, it’s always going to work for them but if 
they try examples where they change the length on both sides that’s the only 
way it’s going to prove that it doesn’t work all the time.  So you should try 
examples by changing both sides. 

Stylianides:  What do you think about Natasha’s response?  Does it make sense?  [the class 
nodded in agreement]  So what else?  What else do you think about this? 

Evans:  You can kind of ask them to restructure the proof so that it would work. 
Stylianides: What do you mean by “restructure the proof”? 
Evans: Like once they figure out that it doesn’t work for all cases they could say it’s 

still like… if they saw it and if they revise it like the wording or just add a 
statement in there that if they can come up with a mathematically correct 
statement… 

Stylianides: Anything else? [no response from the class] 
I think [that] both ideas [mentioned earlier] are really important.  So when you 
have something [a statement] that doesn’t work, then it’s clear that this student 
would be interested to know more.  For example, why it doesn’t work or 
under what conditions does it work because, obviously, some of the examples 
that the student checked worked. […] 

Natasha and Evans proposed two related issues that the elementary teacher in the task 
scenario could address when responding to the student: why the statement is false and 
the conditions under which the statement would be true.  Based on our planning for 
the implementation of the task, the teacher educator would raise these issues anyway, 
because, as we explained earlier, a teacher response to the student that would consist 
only of a counterexample to the statement would be mathematically sufficient but 
pedagogically inconsiderate.  The fact that the two issues were raised by prospective 

                                                 
2 The prospective teachers had opportunities earlier in the course to discuss the idea that one 

counterexample suffices to show that a general statement is false. 
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teachers instead of the teacher educator is noteworthy, because Natasha and Evans 
had no teaching experience and also the issues they raised were requiring further 
mathematical work for themselves and the teacher education class.  Take for example 
Evans’s contribution, which raised essentially the following new mathematical 
question: Under what conditions would the statement be true?  It is hard to explain 
what provoked Natasha and Evans’s contributions, but we hypothesize that the 
pedagogical object/space of the P-R mathematics task played an important role in 
this.  Specifically, we hypothesize that the need to respond to a false but plausible 
student statement made the prospective teachers think hard about related 
mathematical issues and how to “unpack” them in pedagogically meaningful ways 
(Ball & Bass, 2000; see also Adler & Davis, 2006). 
Following the summary of the two issues as in the previous excerpt, the teacher 
educator engaged the prospective teachers in an examination of the conditions under 
which the student statement would be true.  A more detailed discussion of the 
prospective teachers’ work on the task sequence is beyond the scope of this article.   
To conclude, our discussion in this section exemplified the idea that the application 
of mathematical knowledge in contextualized teaching situations can be different 
than its application in similar but purely mathematical contexts.  Although the 
mathematical objects of the typical and P-R mathematics tasks in the sequence were 
the same (namely, the mathematical evaluation of a statement about a possible 
relation between the area and perimeter of rectangles), the pedagogical space in 
which the P-R mathematics task was embedded changed what could count as an 
appropriate solution to it, thereby generating mathematical activity in a combined 
mathematical and pedagogical space.    
CONCLUDING REMARKS 
Although the primary object of P-R mathematics tasks is mathematical, their design, 
implementation, and solution require some knowledge of pedagogy.  This 
requirement derives primarily from the pedagogical objects of P-R mathematics 
tasks, which, although secondary to the tasks, determine to great extent what counts 
as acceptable/appropriate solutions to the tasks and influence the mathematical 
activity (to be) generated by the primary objects of the tasks.  For example, the design 
of the P-R mathematics task that we discussed earlier used knowledge about a 
common student misconception regarding the relation between the area and perimeter 
of rectangles.  Furthermore, successful implementation and solution of this task 
required appreciation of the pedagogical idea that a mere counterexample might be a 
limited teacher response to a flawed but plausible student statement.  
The pedagogical demands implicated by the design, implementation, and solution of 
P-R mathematics tasks make it reasonable to say that instructors of mathematics 
courses for prospective teachers need to have, in addition to good knowledge of 
mathematics, knowledge of some important pedagogical ideas.  This requirement 
might be hard to fulfill in contexts such as the North American where mathematics 
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courses for prospective teachers are typically offered by mathematics departments 
and are taught by (research) mathematicians.  However, if such knowledge is agreed 
to be essential for teaching MfT to prospective teachers, then the field of mathematics 
teacher education needs to find ways to support the work of instructors of 
mathematics courses for prospective teachers.  One way might be to offer instructors 
access to what we may call educative teacher education curriculum materials.  This 
is the teacher education equivalent of the notion of educative curriculum materials, 
i.e., curriculum materials that aim to promote teacher learning in addition to student 
learning at the school level (see, e.g., Davis & Krajcik, 2005).     
The pedagogical aspects of P-R mathematics tasks raise also the following question: 
Would it make sense to promote MKfT in mathematics courses designed specifically 
for prospective teachers, or would it make more sense to promote it in combined 
mathematics/pedagogy courses, which, by definition, pay attention to both 
pedagogical and mathematical issues?  The idea of promoting MKfT in combined 
mathematics/pedagogy courses may be attractive to some given the potential of P-R 
mathematics tasks to intertwine mathematics and pedagogy.  Yet a possible decision 
to eliminate mathematics courses designed specifically for teachers in favor of 
combined mathematics/pedagogy courses might create different kinds of problems.  
In their examination of different types of tasks in formal assessments used across a 
range of mathematics teacher education courses in South Africa, Adler and Davis 
(2006) reported the concern that in combined mathematics/pedagogy courses the 
mathematical and pedagogical objects lose their clarity and that evaluation in these 
courses tends to condense meaning toward pedagogy.   
The conceptualization of MfT as a form of applied mathematics that we elaborated in 
this article highlights the idea that, irrespectively of whether MfT is promoted in 
specialized mathematics courses or combined mathematics/pedagogy courses, 
prospective teachers’ learning of MfT should not happen in isolation from pedagogy.  
P-R mathematics tasks can facilitate the integration of mathematics and pedagogy in 
prospective teachers’ learning: although these tasks make mathematics the focus of 
prospective teachers’ activity, they situate this activity in a substantial pedagogical 
space that shapes and influences the activity.  Future research may explore ways in 
which to facilitate the integration of mathematics and pedagogy from the opposite 
direction, i.e., by making pedagogy the focus of prospective teachers’ activity and 
having mathematics play a secondary but substantial role in this activity.  Towards 
this end, one can reverse the relative importance of mathematical and pedagogical 
objects in P-R mathematics tasks to coin the twin notion of Mathematics-Related 
pedagogy tasks.  Specifically, these tasks can be defined to have a primary 
pedagogical object (with a corresponding pedagogical space) and a secondary but 
substantial mathematical object, and can be used to generate activity that is 
predominantly pedagogical (as opposed to mathematical in P-R mathematics tasks).   
AUTHOR NOTE 
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PROBLEM POSING AND DEVELOPMENT OF PEDAGOGICAL 
CONTENT KNOWLEDGE IN PRE-SERVICE TEACHER 

TRAINING 
Marie Tichá, Alena Hošpesová  

Institute of Mathematics of the Academy of Sciences of the Czech Republic,  
University of South Bohemia České Budějovice  

The paper focuses on problem posing as the possible method leading to development 
of pedagogical content knowledge of mathematics education in pre-service training 
of primary school teachers. In the background there is our belief that this knowledge 
is of utter importance for quality of the education process. Using samples of (a) 
problems posed by teacher students, (b) students’ assessment of the problems posed, 
(c) students’ opinions on the significance of “problem posing” in teacher training, 
we will demonstrate how we employed problem posing in pre-service teacher 
training. We start from the belief (proved in our previous work) that an analysis of 
the posed problems is a good diagnostic tool; it gives the opportunity to discover the 
level of understanding as well as the causes of misconceptions and errors. 

Keywords: mathematics education, teacher training, content knowledge, problem 
posing 

INTRODUCTORY REMARKS: MATHEMATISATION OF THE SOCIETY 
AND MATHEMATICAL LITERACY 
On many different occasions we come across the signs of an increasing importance of 
mathematics in contemporary life, the opinion that the society is being 
“mathematised”. We must understand mathematics if we are to be able to understand 
the world that surrounds us. That is why the need of mathematical literacy is more 
and more emphasized. These trends also impact the focus of the research in the field 
of didactics of mathematics (e.g. the central topic of PME 30 conference in 2006 was 
“Mathematics in the centre”).  
We understand mathematical literacy as functional. It begins with the ability to 
understand a mathematical text, the ability to recall mathematical terms, procedures 
and theory, to master the necessary mathematical apparatus and with the ability to 
apply it, to solve problems. However, in our view to be mathematically literate also 
means to “understand mathematics”, to perceive it as an abstract discipline. 
Development of mathematical literacy triggers perfection of the ability to reason, of 
critical thinking, it teaches how to apply mathematics efficiently. To be functionally 
mathematically literate means to see the mathematics that surrounds us; to see the 
questions and problems arising both from real and mathematical situations. In order 
to educate mathematically literate pupils we need professionally competent teachers. 
In our previous work we have been focusing on the potential of a qualified 
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pedagogical reflection and we have showed that it is one of the possible ways of 
development of professional competence of primary school teachers (Tichá, 
Hošpesová, 2006). In this paper we show that problem posing represents another 
possible way. We also show the potential of problem posing in diagnosis of the 
teacher-students’ subject didactic knowledge. 

THEORETICAL FRAMEWORK 
Professional competence and content knowledge  
The calls for development of mathematical literacy make demands on professional 
competences of the teacher. In our previous research, especially the need for a good 
level of subject didactic competence appeared very strongly, i.e. the knowledge of 
mathematical content and its didactic elaboration as well as its realization in school 
practice (Tichá, Hošpesová, 2006). It corresponds with the following generally 
accepted Shulman’s idea: if teaching should become a profession, it is necessary to 
aim at creating a knowledge base for teaching which encapsulates, in particular, 
subject-matter content knowledge, pedagogical content knowledge, and curriculum 
knowledge (Shulman, 1986). It is the knowledge of mathematical content that most 
authors place in prominent positions on their lists of items of knowledge required 
from teachers (e.g. Bromme, 1994; Harel, Kien, 2004). The need of solid niveau of 
subject didactic competence is extremely demanding for primary school teachers. 
Especially if we realize that the content of mathematical education at primary school 
level is a system of propaedeutic to many fields (arithmetic, algebra, geometry, …, 
functions, statistics, …). Yet these teachers are not specialists in the subject – on the 
contrary, they must master many more subjects than mathematics.  
What is often emphasized is the need to create an “amalgam” of the components of 
the teacher’s education. “The two basic elements of teacher knowledge are 
mathematics and pedagogical knowledge. When these two elements are separated and 
remain at a general level, mathematics teaching does not share the characteristics of 
... a good teaching. The blending of mathematics and pedagogy is necessary for 
developing mathematics knowledge for teaching.” (Potari et al., 2007, p. 1962). In 
other words “... mathematical experiences and pedagogical experiences cannot be two 
distinct forms of knowledge in teacher education.” (Potari et al., 2007, p. 1963). 
Problem posing as a way to refinement of competences 
Opinions on the employment of problem posing 
Our existing experience indicates that one of the beneficial ways of improving subject 
didactic competences of pre-service teachers of mathematics is development of the 
ability to pose problems (and the related activities). Already Freudenthal and Polya 
emphasize the significance of activities aiming at problem posing as a part of 
mathematics training. The same need is referred to by many others (Silver, Cai, 1996; 
English, 1997; Pittalis et al., 2004 etc.). Apart from “problem solving” (in the sense 
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of “learning mathematics on the basis and through problem solving”) they emphasize 
the need and significance of development of the ability to pose problems. There is an 
agreement among many authors that “problem formulating should be viewed not only 
as a goal of instruction but also as a means of instruction. The experience of 
discovering and creating one’s own mathematics problems ought to be a part of every 
student’s mathematics education” (Kilpatrick, 1987, p. 123). 
Teacher educators show and stress links between problem posing and problem 
solving, and problem posing and mathematical literacy (competence). That is why 
stress is on the inclusion of activities in which students generate their own problems 
in mathematics education. At the same time most literature points out that the 
treatment of issues regarding problem posing has by no means been satisfactory so 
far. For example, Christou et al. (2005) bring forward the fact that “little is known 
about the nature of the underlying thinking processes that constitute problem posing 
and schemes through which students’ mathematical problem posing can be analysed 
and assessed” (p. 150). And Crespo (2003, p. 267) adds “... while a lot of attention 
has been focused on teacher candidate’s own ability to solve mathematical problems, 
little attention has been paid to their ability to construct and pose mathematical 
problems to their pupils.”  
Problem posing in the frame of grasping of situations 
We started to pursue the issue of problem posing while studying the process of 
grasping situations (Koman & Tichá, 1998). What we understand by grasping 
situations is the search for questions and problems growing from a mathematical or 
“non-mathematical” situation, i.e. also problem posing. We define problem posing 
similarly to a number of other teacher educators as (a) creation of new problems or 
(b) re-formulation of a given problem, e.g. by “loosening the parameters of the 
problem” (by modifying the input conditions), by generalization, on the basis of the 
question “What if (not)?”, etc. The problem may be worded or re-worded either 
before its solution or during the solving process or after it. We perceive the process of 
problem solving as a dialogue of the solver with the problem, we ask: How to begin? 
How to continue at the point reached? The solver reacts to the “behaviour, response 
of the problem”, chooses a particular strategy, creates an easier problem, changes the 
conditions of the assignment to be able to continue.  
Our experience from work with teacher students (and also with 10-15 year old 
students) confirms that their effort to pose problems guides them to deeper 
understanding of mathematical concepts and development of their mathematical and 
general literacy. Problem posing enriches both the teaching and the learning. 

TEACHER STUDENTS AND PROBLEM POSING (INVESTIGATION) 
The focus of the investigation: goals and questions 
In our ongoing research we look for the ways leading to development and refinement 
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of professional competences of both teacher students and in-service teachers. We try 
to show if and to what extent “problem posing” and “the level of subject didactical 
competence” and also “mathematical knowledge” influence each other, i.e. in 
presently research we look for answers to the following questions: How rich 
knowledge base (general as well as specific, mathematical) is needed for proficiency 
in problem posing? How does systematic application of problem posing contribute to 
development of subject didactical competence / mathematical knowledge? 
The topic of the investigation: translation between representations of fractions 
We believe that problem posing can be regarded as a translation between 
representations e.g. as posing problems that correspond to a given calculation (Silver, 
1994). The incentive to this focus was investigations that confirm the great 
significance of utilization of various modes of representation for the development and 
deepening of the level of understanding. Many authors (see e.g. Janvier, 1987; Tichá, 
2003) stress that the level of understanding is related to the continuous enrichment of 
a set of representations and emphasize the development of the student’s capability of 
translation between various modes of representation.  
One of the key topics of mathematical education in primary school is the foundation 
of the base for understanding the relations between a part and the whole. In the 
process of division of the whole into equal parts, the preconception of the concept of 
fraction is formed. The concept of fraction is one of the most difficult concepts in 
mathematics education at primary school level. The subject mater is difficult not only 
for pupils and teacher students but often also for in-service teachers who face 
problems regarding both the mathematical content and its didactic treatment. That is 
why we paid so much attention to this topic in teacher training. The core of our work 
lay in the construction of the concept of fractions and in posing problems with 
fractions. We focused on formation of preconceptions and intuitive perception of 
fractions, on problem solving and the potential of problem posing.  
The procedure and findings of the investigation 
The stress in the course of didactics of mathematics for primary school teacher 
students was continuously on problem posing, thus on the development of the 
students’ proficiency in problem posing (the seminar was attended by 24 teacher 
students). One of the components of the work in the course was realization of an 
investigation whose aim was to show the students that problem posing can also be 
employed as a diagnostic tool, thus which on the basis of the problems posed it is 
possible to investigate the level of understanding as well as the obstacles in 
understanding and misconceptions.  
The investigation was carried out in several steps: posing problems corresponding to 
a given calculation; individual reflection on the posed problems; joint reflection on a 
chosen set of the posed problems; evaluation of the activity “problem posing”. 
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Posing problems corresponding to a given calculation 
The students were assigned the task: Pose and record such three word-problems to 
whose solution it is sufficient to calculate 1/4 • 2/3.  
The problems were posed during work within one of the last seminars. What is 
satisfactory is the immediate finding that problem posing competence can be 
developed in appropriate conditions; teacher students who attended the course in 
which stress was put on the development of proficiency in problem posing were able 
to pose several problems. On the contrary students who came in contact with problem 
posing more or less haphazardly were not able to pose any problems if asked to do so. 
Some of the latter even did not understand what the point of the activity was and 
refused to pose any problems – in their opinion they should only solve such problems 
that were assigned to them and had been formulated by somebody else. The same can 
be observed in mathematics education at schools. 
Reflection on the posed problems 
A database of the posed problems was formed (without giving the author’s name); 
each of the participants had access to the database. The participants of the course 
assessed the suitability and correctness of the posed problems that they had chosen 
themselves.  
Then the lecturer selected a triplet of problems posed by one student. This triplet was 
then assessed and analyzed by all participants (the lecturer found this triplet of 
problems very interesting and asked their author for permission to use them in the 
subsequent work). The following step was joint reflection; joint assessment of 
individual problems, comparison and justification of opinions.  
The following triplet of problems was chosen 
1. There was 2/3 of the cake on the table. David ate 1/4 of the 2/3 of the cake. How 

much cake was left? 
2. There was 2/3 kg of oranges on the table. Veronika ate 1/4 kg. How many oranges 

remained (kg)? 
3. The glass was full to 2/3. Gabriel drank 1/4. What part of the glass remained full? 
In advance, the lecturer went through the problems with their author. It was only in 
this dialogue that the student began to consider correctness of the posed problems. (It 
is interesting that all students began to ponder over correctness of the posed problems 
only after being asked to do so. However, to our gratification the students generally 
found and corrected their mistakes themselves.) Let us quote an extract from the 
dialogue between the student (S) and the lecturer (L). 

S:  Here (she points at problems 2 and 3) I don’t count a part of something, I 
reduce, take away. ... Actually I don’t know what I meant by it. 

L:   What could you have meant? 
S:  Something like this (she sketches an illustration – a circle) – I divide in into 
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quarters and take away one. But, somebody could understand it that he 
drank a quarter of the glass. Well, I posed only one correctly. ... I should 
have checked. 

L:   How would you have checked? 
S:   Well, it seems I should have calculated it somehow. Or have somebody else 

to calculate it. Somebody who is better at it. 

Samples of student assessment of the triplet of the posed problems 
The third problem can be, according to some students, accepted on the condition 
that its wording is modified / supplemented; the given wording is regarded by many 
as confusing. However, the students only stated that it was confusing, they did not 
specify why or where. 
The first problem was evaluated by a majority of the students positively. But the 
arguments of some of the evaluators reveal misconceptions: If we have 2/3 of a cake, 
we can eat ¼, but the denominators do not equate. If he ate 1/3 out of the 2/3, then 
they would. It would be possible in real life but it is not correct mathematically. 
This statement was illustrated by a picture (Fig. 1) and by the word problem: There 
are 1/4 of all pupils present in class A today and 2/3 of all pupils present in class B. 
If we multiply the number of pupils from both classes present today, what will the 
result be? 
Another student wrote and claimed: The problem is correct. David ate 1/4 out of 2/3 
of a cake ...  = 1/4 • 2/3 = 1/6 of the cake.  
However, the student supplemented his statement with a picture (Fig. 2) that testifies 
his wrong interpretation of the whole (1/4 and 2/3 out of the same whole).  

 
Fig. 1 Fig. 2 

When assessing the second problem, the students stated that this problem did not 
meet the condition from the assignment. However, their justification reveals that the 
conceptions of the evaluators themselves are also incorrect. Several illustrating 
examples of such evaluation follow. 
- Problem 2 is incorrect. There was 2/3 kg of oranges = 2/3 out of one (out of 3/3). 

Veronika ate 1/4 kg – but out of what? Out of 2/3? of 1/3? 
- Number two is incorrect. From the total 2/3 kg of oranges, she ate 1/4 kg. She ate 

1/4 but it does not say out of what. 
- The second word problem isn’t correct; it’s not a suitable problem. I am not 
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interested in the number of oranges but their weight. This wording would require 
that the oranges should be cut to pieces.  

What does the students’ production show?  
The subsequent joint reflection on the posed problems was of utmost benefit both to 
the participants and the lecturers. It enabled the students to become aware of their 
own weaknesses and it pointed to the teacher educators what they should focus on. 
Some of the findings follow. 
The individual assessment and especially the following joint reflection show that 
many students do not have any idea of “what is in the background” of a particular 
simple calculation that they perform mechanically. They are not able to place it into a 
specific real life context. They did not pose problems in accord with the given 
calculation (what become transparent here are obstacles as far as multiplicative 
structure is concerned). A considerable proportion of the students posed additive 
problems corresponding with the calculation 1/4 + 2/3. 
What comes to surface is the students’ difficulty as far as interpretation of fractions is 
concerned. The offered formulations show that when assessing the second problem 
they for example do not realize that they understand and interpret the fraction 
alternately as an operator and as quantity “she ate 1/4 kg” vs. “She ate 1/4 but it does 
not say out of what.”). 
If the students were asked to pose more than one problem, we could observe 
stereotypical nature of these problems. Students often set their problems either only 
into discreet space (sets consisting of isolated elements) or only into continuous 
space. We could also observe a monotony of the motives: marbles and cakes (those 
are the models most often used in our textbooks). 
What do the students think of problem posing?  
The students were also asked to express their opinion on these, for them often 
unusual, activities. Let us present here several statements from individual reflections 
which illustrate how the students perceive “problem posing”. 
- I have problems with word problems. To pose a word problem on my own ,…, was 

extremely difficult. The difficulty is not in posing a problem, but in being able to 
solve it myself. It was toil and moil for me. 

- What I personally found most difficult was to ask the question correctly, when I 
posed the third one, I could think of no further questions and that’s why I only 
managed to pose the most banal ones. 

- As soon as I came to understand the assignment of this task, I was immediately full 
of various ideas ... I was delighted because I love discovery … that there were no 
limits. 

- My first reaction was that of fear. However, I started from what first came to my 
mind – a simple problem and then I began to toy with it. It was very pleasant to look 
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for and discover various combinations... 

In the discussion the students indicated that it was easy to formulate a great number 
of problems of the same type but it was difficult to formulate a sequence of problems 
(cascade) of a growing difficulty or a problem for whose solution it was necessary to 
connect various pieces of knowledge or problems in which the role of the fraction 
alternates (i.e. various sub-constructs of fractions, …, Behr et al., 1983).  

CONCLUDING REMARKS ON THE BENEFIT OF PROBLEM POSING AND 
ON THE PERFORMED INVESTIGATION 
Our experience from work with teacher students (and also from our long-term 
cooperation with in-service teachers) proves that poor level of pre-service 
mathematical training is pervasive and the flaws are difficult to overcome 
(Hošpesová & Tichá, 2005; Hošpesová et al., 2007). Problem posing is in our opinion 
one of the beneficial possibilities.  
The detection of a change in the “nature, climate” of work in the seminar 
It seems to us that problem posing contributed to a change in approach to work in the 
seminar – the students gradually overcame their fears or anxiety and many of them 
gained self-confidence.  
The character of the problems posed by the participants also changed. Before their 
participation in the seminar they posed simple, “textbook-like” problems, 
predominantly drill. The wording of the problems was often erroneous and the 
problems were uninteresting and demotivating from mathematical point of view. 
Many of the problems had no solution, despite the author’s intention.  
After the course finished, a great variety of assignments of the problems could be 
observed (including charts, graphs etc.). There were also problems enabling different 
ways of solution and problems demanding explanation, reasoning, argumentation, 
allowing different answers with respect to the solver’s interests. 
It turned out that it is not enough to demand from the students to pose a problem if 
one is to detect the quality of their understanding. It is crucial that it should be 
possible to assess the posed problems individually and/or collectively. This certifies 
the need to carry out joint reflection. If the authors are given the chance to assess the 
problems of each other, their insight into the situation deepens and the ability to 
handle reality, i.e. to “see mathematics in the world surrounding us” develops. 
The benefit for students 
The analysis of the posed problems makes the participants map the level of their own 
notions and concepts, understanding, various interpretations and makes them realize 
possible misconceptions and erroneous reasoning. It is an impulse for work on 
themselves (reeducation). 
It was confirmed that the result of inclusion of problem posing into the curricula is 
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better approach to problem solving. It stimulates the use of various representations, 
construction of knowledge nets, development of creative thinking, improvement of 
attitude to mathematics and increase in self-confidence.  
The benefit for teacher educators and researchers 
From the point of view of teacher trainers and researchers problem posing provides 
an opportunity to get an insight into natural differentiation of students’ understanding 
of mathematical concepts and processes and to find obstacles in understanding and 
misunderstandings that already exist. 
Our belief that problem posing supplemented with reflection is the path to 
development and enhancement of subject didactical competence, i.e. of pedagogical 
content knowledge was confirmed.  
Open questions  
There still exist many questions which ask for deeper investigations, e. g. How can be 
the benefit that problem posing brings to its authors and the shift in their 
(pedagogical) content knowledge detected and measured? Which teacher’s and/or 
student’s competences are developed? What conditions are essential for introduction 
of problem posing? What help and guidance can be offered when incorporating 
problem posing? 
NOTE 
This research was partially supported by the grant projects: GACR 406/08/0710; AS CR, 
Institutional Research Plan AV0Z 10190503; 142453-LLP-1-2008-1-PL-COMENIUS–CMP. 
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SUSTAINABILITY OF PROFESSIONAL DEVELOPMENT 
Stefan Zehetmeier 

University of Klagenfurt, Austria 
This contribution addresses the issue of sustainable impact of professional 
development projects. It claims for widening the scope from evaluations of short-term 
effects to analyses of long-term impact. For that, the contribution discusses various 
types of effects and possible levels of impact. In particular, an overview concerning 
factors promoting the impact of professional development projects is provided. A 
case study that analysed the impact of an Austrian professional development project 
three years after its termination is introduced. The paper closes with further research 
questions that emerged from this study. 
Key-words: professional development, sustainable impact, promoting factors, case 
study 
INTRODUCTION 
The quality of teaching and learning represents a recurring key issue of research. In 
particular, teachers are considered to be playing a central role when addressing this 
topic: „Teachers are necessarily at the center of reform, for they must carry out the 
demands of high standards in the classroom” (Garet, Porter, Desimone, Birman, & 
Yoon, 2001, p. 916). Various types of professional development projects are offered 
to support and qualify these teachers. The expected effects of such projects by both 
the facilitators and the participants are not only related to the professional 
development of individual teachers to improve teacher quality, but also to the 
enhancement of the quality of whole schools, regions and nations. The desideratum of 
all such projects providing teachers support and qualification is to enhance the 
learning of students. As Kerka (2003) states, “Funders, providers, and practitioners 
tend to agree that the ultimate goal of professional development is improved 
outcomes for learners” (p. 1). This strategy, to achieve change at the level of students 
(improved outcomes) by fostering change at the teachers’ level (professional 
development), is based on the assumption of a causal relationship between students’ 
and teachers’ classroom performance: “High quality professional development will 
produce superior teaching in classrooms, which will, in turn, translate into higher 
levels of student achievement” (Supovits, 2001, p. 81). Similarly, Hattie (2003) 
states, “It is what teachers know, do, and care about which is very powerful in this 
learning equation” (p. 2). Ingvarson, Meiers, and Beavis (2005) sum up: 
“Professional development for teachers is now recognised as a vital component of 
policies to enhance the quality of teaching and learning in our schools. Consequently, 
there is increased interest in research that identifies features of effective professional 
learning” (p. 2). 
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TYPES OF EFFECTS  
The expected outcomes of professional development projects are not only focused on 
short-term effects that occur during or at the end of the project, but also on long-term 
effects that emerge (even some years) after the project’s termination (Peter, 1996). 
Effects that are both short-term and long-term can be considered to be sustainable. So 
sustainability can be defined as the lasting continuation of achieved benefits and 
effects of a project or initiative beyond its termination (DEZA, 2005). As Fullan 
(2006) points out, short-term effects are “necessary to build trust with the public or 
shareholders for longer-term investments” (p. 120). Besides these short-term effects 
also long-term effects need to be considered; otherwise the result could be to “win the 
battle, [but] lose the war” (ibid.). Hargreaves and Fink (2003) state, “Sustainable 
improvement requires investment in building long term capacity for improvement, 
such as the development of teachers’ skills, which will stay with them forever, long 
after the project money has gone” (p. 3). Moreover, analysis of sustainable impact 
should not be limited to effects that were planned at the beginning of the project; it is 
also important to examine the unintended effects and unanticipated consequences that 
were not known at the beginning of the project (Rogers, 2003; Stockmann, 1992).  

SUSTAINABLE IMPACT 
Evaluations and impact analyses of professional development projects are formative 
or summative in nature; in most cases they are conducted during or at the end of a 
project and exclusively provide results regarding short-term effects. These findings 
are highly relevant for critical reflection of the terminated project and necessary for 
the conception of similar projects in the future. But apart from and beyond that, an 
analysis of sustainable effects is crucial: “Too many resources are invested in 
professional development to ignore its impact over time” (Loucks-Horsley, Stiles, & 
Hewson, 1996, p. 5). This kind of sustainability analysis is often missing because of a 
lack of material, financial and personal resources. “Reformers and reform advocates, 
policymakers and funders often pay little attention to the problem and requirements 
of sustaining a reform, when they move their attention to new implementation sites or 
end active involvement with the project” (McLaughlin & Mitra, 2001, p. 303). 
Despite its central importance, research on this issue is generally lacking (Rogers, 
2003) and “Few studies have actually examined the sustainability of reforms over 
long periods of time” (Datnow, 2006, p. 133). Hargreaves (2002) summarises the 
situation as follows: “As a result, many writers and reformers have begun to worry 
and write about not just how to effect snapshots of change at any particular point, but 
how to sustain them, keep them going, make them last. The sustainability of 
educational change has, in this sense, become one of the key priorities in the field” (p. 
120).  
Zehetmeier (2008) summarises the literature concerning the sustainability of change 
and provides a case study of four teachers from one school, analyzing the impact of a 
professional development project three years after its termination. For that, he 
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develops a theoretical model which allows analysing both the various characteristics 
of the project, the different levels of impact, and the factors promoting or hindering 
the sustainability of impact (see also Zehetmeier, in prep.). 

LEVELS OF IMPACT 
When analyzing possible effects of professional development, the question of 
possible levels of impact arises. Which levels of impact are possible and/or most 
important? How can impact be classified? Recent literature provides some answers to 
these questions; the following levels of impact are identified (Lipowsky, 2004): 
Teachers’ knowledge: This level can be defined in different ways, for example, 
referring to content knowledge, pedagogical knowledge, and pedagogical content 
knowledge (Shulman, 1987), or attention-based knowledge (Ainley & Luntley, 
2005), or knowledge about learning and teaching processes, assessment, evaluation 
methods, and classroom management (Ingvarson et al., 2005).  
Teachers’ beliefs: This level includes a variety of different aspects of beliefs about 
mathematics as a subject and its teaching and learning (Leder, Pehkonen, & Törner, 
2002), as well as the perceived professional growth, the satisfaction of the 
participating teachers (Lipowsky, 2004), perceived teacher efficacy (Ingvarson et al., 
2005) and the teachers’ opinions and values (Bromme, 1997).  
Teachers’ practice: At this level, the focus is on classroom activities and structures, 
teaching and learning strategies, methods or contents (Ingvarson et al., 2005). 
Students’ outcomes: Many papers highlight that students’ outcomes are related to the 
central task of professional development programmes: namely to the improved 
learning and knowledge of the students (Kerka, 2003; Mundry, 2005; Weiss & Klein, 
2006). 
Zehetmeier (2008) points out that the complexity of possible impact is not fully 
covered by this taxonomy. For example, results of an impact analysis in the context 
of the Austrian IMST project (Krainer, 2005, 2007) show that the project made 
impact also on students’ beliefs or other – non participating – teachers’ practice. In 
particular, the findings of this analysis demonstrate that the taxonomy of levels of 
impact (see above) needs to be extended (Zehetmeier, 2008): The categories 
knowledge, beliefs, and practice are suitable to cover the impact in the teachers’ 
level. But also on the levels of pupils, colleagues, principals, and parents all three 
categories (knowledge, beliefs, and practice) are respectively necessary to gather 
possible levels of impact. Moreover, in addition to these in-school levels, also 
beyond-school levels need to be considered when analyzing the impact of 
professional development projects: e.g., other schools, media, policy, or scholarship. 
These results lead to a grid of possible levels of impact (Zehetmeier, 2008, p. 197): 
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FOSTERING FACTORS 
What are the factors that promote and foster the impact of professional development 
projects? Literature and research findings concerning this question point to a variety 
of different factors. To give an overview, in the following section Borko’s (2004) 
four elements of professional development projects are used to organize and classify 
these factors: participating teachers, participating facilitators, the programme itself, 
and the context that embeds the former three elements.  
Within the element of participating teachers the following factors are fostering the 
impact of professional development programmes: If the teachers are involved in the 
conception and implementation of the programme, they can develop an affective 
relationship towards the programme by developing ownership of the proposed change 
(Clarke, 1991; Peter, 1996). They can be empowered to influence their own 
development process (Harvey & Green, 2000). Teachers should be prepared and 
supported to serve in leadership roles (Loucks-Horsley et al., 1996). An “inquiry 
stance”, taken by the participating teachers, also fosters the sustainability of impact 
(Farmer, Gerretson, & Lassak, 2003, p. 343): If teachers understand their role as 
learners in their own teaching process, they can reflect and improve their practice. 
Cochran-Smith and Lytle (1999) also use this notion for describing teachers’ attitude 
towards the relationship of theory and practice: “Teachers and student teachers who 
take an inquiry stance work within inquiry communities to generate local knowledge, 
envision and theorise their practice, and interpret and interrogate the theory and 
research of others” (p. 289). Altrichter and Krainer (1996) recommend a reorientation 
of professional development programmes from “teachers to be taught” towards 
“teachers as researchers” (p. 41) and refer to Posch and Altrichter (1992) who state: 
„The most important part of teacher professional development takes place on site: by 
reflection and development of the own instructional practice and by school 
development” (p. 166).  
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Similar to the teachers, also the participating facilitators of the professional 
development programme should take a “stance of inquiry” (Ball, 1995, p. 29) towards 
their activities. They should reflect on their practice and evaluate its impact (Farmer 
et al., 2003). The facilitators’ knowledge, understanding, and their image of effective 
learning and teaching also foster the initiative’s impact (Loucks-Horsley et al., 1996). 
The development of mutual trust between the facilitators and the participating 
teachers represents a further fostering factor (Zehetmeier, 2008). 
The programme itself should fit into the context in which the teachers operate, and 
provide direct links to teachers’ curriculum (Mundry, 2005). It should focus on 
content knowledge and use content-specific material (Garet et al., 2001; Ingvarson et 
al., 2005; Maldonado, 2002), and should provide teachers with opportunities to 
develop both content and pedagogical content knowledge and skills (Loucks-Horsley 
et al., 1996; Mundry, 2005). Moreover, an effective professional development 
programme includes opportunities for active and inquiry-based learning (Garet et al., 
2001; Ingvarson et al., 2005; Maldonado, 2002), authentic and readily adaptable 
student-centered mathematics learning activities, and an open, learner-centered 
implementation component (Farmer et al., 2003). Further factors fostering the 
effectiveness and sustainability of the programme are: prolonged duration of the 
activity (Garet et al., 2001; Maldonado, 2002), ongoing and follow-up support 
opportunities (Ingvarson et al., 2005; Maldonado, 2002; Mundry, 2005), and 
continuous evaluation, assessment, and feedback (Ingvarson et al., 2005; Loucks-
Horsley et al., 1996; Maldonado, 2002). 
Lerman and Zehetmeier (2008) highlight that community building and networking 
represent further factors fostering sustainability. This claim is supported by several 
authors and studies, even if the categories used to describe these activities are 
sometimes different: Clarke (1991), Peter (1996), and Mundry (2005) point to 
cooperation and joint practice of teachers, Loucks-Horsley et al. (1996) and 
Maldonado (2002) highlight the importance of learning communities, Wenger (1998) 
and McLaughlin and Mitra (2001) identify supportive communities of practice, 
Arbaugh (2003) refers to study groups, and Ingvarson et al. (2005) stress professional 
communities as factors contributing to the sustainability of effects. In particular, 
providing rich opportunities for collaborative reflection and discussion (e.g., of 
teachers’ practice, students’ work, or other artefacts) presents a core feature of 
effective change processes (Clarke, 1991; Farmer et al., 2003; Hospesova & Ticha, 
2006; Ingvarson et al., 2005; Park-Rogers et al., 2007; Zehetmeier, 2008).  
The dissemination of innovations or innovative teaching projects is another factor 
that fosters the sustainability of professional development programmes (Zehetmeier, 
2008). E.g., teachers participating in the Austrian IMST project (Krainer, 2005, 2007) 
write down and publish reflective papers or project reports. As Schuster (2008) 
shows, teachers’ writings have a positive impact on their reflection skills and 
knowledge base. The dissemination of good practice projects and ideas requires a 
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structural framework that allows teachers to publish or actively present their projects 
and results. E.g., the Austrian IMST project created a web-based wiki where some 
hundreds of project reports written by Austrian teachers can be easily accessed. 
Moreover, an annual nation-wide conference is set up, where teachers can share their 
projects, ideas, and results. A professional development programme aiming at 
sustainable impact should provide these possibilities for dissemination even after the 
programme is terminated. Otherwise the possibility of dissemination along with the 
involved advantages for teachers’ professional growth is likely to fade away 
(Zehetmeier, 2008).  
Rogers (2003) highlights that the diffusion of an innovation depends on different 
characteristics: Relative advantage, compatibility, complexity, trialability, and 
observability. Fullan (2001) describes similar characteristics (need, clarity, 
complexity, quality and practicality) that influence the acceptance and impact of 
innovations. Relative Advantage includes the perceived advantage of the innovation 
(which is not necessarily the same as the objective one). An innovation with greater 
relative advantage will be adopted more rapidly. Compatibility and need denote the 
degree to which the innovation is perceived by the adopters as consistent with their 
needs, values and experiences. Complexity and clarity include the teachers’ 
perception of how difficult the innovation is to be understood or used. Thus, more 
complex innovations are adopted rather slowly, compared to less complicated ones. 
Trialability denotes the possibility of participating teachers to experiment and test the 
innovation (at least on a limited basis). Innovations that can be tested in small steps 
represent less uncertainty and will be adopted as a whole more rapidly. Quality and 
practicality make an impact on the change process. High quality innovations that are 
easily applicable in practice are more rapidly accepted. Observability points to the 
claim that innovations which are visible to other persons (e.g., parents or principals) 
and organisations are more likely to be rapidly accepted and adopted. 
The context which embeds teachers, facilitators, and the programme itself, is of 
particular importance regarding the sustainability of innovations and change 
processes (e.g., McNamara, Jaworski, Rowland, Hodgen, & Prestage, 2002; 
Noddings, 1992; Owston, 2007). Teachers need administrative support and resources 
(McLaughlin & Mitra, 2001). School-based support can be provided by students and 
colleagues (Ingvarson et al., 2005; Owston, 2007), and in particular by the principal 
(Clarke, 1991; Fullan, 2006). To foster sustainability not only at the individual 
(teacher’s) level but also at the organisational (school’s) level, Fullan (2006) 
proposes a new type of leadership that “needs to go beyond the successes of 
increasing student achievement and move toward leading organizations to 
sustainability” (p. 113). In particular, these “system thinkers in action” should “widen 
their sphere of engagement by interacting with other schools” (p. 113) and should 
engage in “capacity-building through networks” (p. 115). Support from outside the 
school (e.g., by national or district policies) is also an important factor fostering the 
programme’s impact (McLaughlin & Mitra, 2001; Owston, 2007). 
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The following figure sums up and illustrates these factors that promote and foster the 
impact of professional development projects: 

 

FUTURE RESEARCH 
Impact analysis that combines and compares various cases and bigger samples could 
help answering the following questions (see also Zehetmeier, 2008): 

• Do different professional development projects make different sustainable 
impact? Are there any patterns of impact? 

• Does a professional development project show different sustainable impact on 
different participating teachers? Are there any patterns?  

• Are there any hierarchical structures within the different levels of impact? 
Does one level require another one to occur? 

• Are there any factors that promote certain levels of impact in a particular way? 

• Are there any “universal” factors fostering sustainable impact?  

Upcoming impact analyses dealing with these and similar questions appear to be 
necessary and promising; from the perspective of both scholarship and practice.    
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This paper analyses the evolution of Maria, a mathematics teacher involved in a long 
term collaborative project together with a researcher and two other teachers. The 
study aimed to understand teaching practices and to develop richer classroom 
communication processes. It follows a qualitative-interpretative approach, with data 
gathered through recording of meetings and interviews. We discuss to what extent 
this project became relevant for the professional practice of Maria. The results 
indicate the potential of collaboration to understand communication phenomena in 
the classroom, putting practices under scrutiny and developing richer communication 
interaction patterns between teacher and students. 
Key-words: Mathematics communication; collaboration; professional development. 

INTRODUCTION 
The possibilities of collaboration between teachers and researchers as a research 
strategy are receiving increasing attention. Collaboration is an opportunity to 
combine joint work with individual input, taking advantage of the potential of 
different individuals building a common experience (Hargreaves, 1994). In this 
paper, we take collaboration as an experience shared by a set of people who identify a 
common interest and establish and implement a working agreement, providing 
mutual support and challenging each other. This perspective defined a collaborative 
project involving a researcher (the first author of this paper) and three mathematics 
middle school teachers, whose purpose was to understand classroom communication, 
putting practices under scrutiny and developing richer communication processes.  
Our research question enquires what are the influences, if any, of a collaborative 
project on the conceptions and practices of a teacher regarding classroom 
communication. It links concerns emerging in recent research on collaborative work, 
(Boavida & Ponte, 2002; Jaworski; 1986) and classroom communication (Alro & 
Skovsmose, 2004; Lampert & Cobb, 2003; Sherin, 2002). Here we restrict the scope 
of analysis to Maria, one of the teachers. In particular, we discuss to what extent the 
project became relevant to her professional practice. First, we discuss the meaning of 
collaboration in educational research and how communication was understood within 
the project group. Then, we present the methodology and analyse the “case” of Maria. 
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Finally, we end with a discussion concerning issues that arise in collaboration as a 
research strategy in mathematics education. 

BACKGROUND 
Collaboration. Collaboration plays an increasing role in educational research. In a 
collaborative project, participants may take advantage of working together 
(Kapuscinski, 1997), but often tensions emerge along such a process. They arise, for 
example, from the different attitudes teachers and researchers maintain towards 
practice, planning, motivations or use of knowledge (Kapuscinski, 1997; Olson, 
1997). There are, of course, a variety of collaborative structures, and corresponding 
different degrees of individual commitment – as indicated, for example, by Clift and 
Say (1988), Day (1999), Goulet and Aubichon (1997), and Wagner (1997). A number 
of aspects, however, are recognised as consensual as characteristic of any true 
collaboration. One of them is that the relationships between the participants should 
not be hierarchical. Mutual support requires some sort of egalitarian base (Boavida & 
Ponte, 2002). There are, of course, different roles, a difference which, moreover, 
should be made clear in the group, but all roles must have similar relevance. Another 
element concerns diversity, understood as an added value to collaboration, which 
should be assumed as such by the group (John-Steiner, Weber & Minnis, 1998).  
In a collaborative context, participants do not waste time to promote what they 
believe to be their own image (Fullan & Hargreaves, 1991). Disagreements are 
frequent and welcome, given that discussions are centred in values, purposes and 
practices. A considerable effort is required to build a collaborative culture, which 
always supposes an effective personal development. In particular, it requires making 
explicit some common objectives inside the group. Each participant must be aware of 
her/his own role in the way he/she relates to the others and cares about such a 
relationship (Drake & Basaraba, 1997). Teachers’ involvement in a project depends 
on how they perceive its relevance, namely to practice, as well as on the way 
decisions are made inside the group (Bonals, 1996). Essential to the success of a 
collaborative project is also the ability to carry on reflection exercises together (Day, 
1999). To develop such an ability to think critically with others requires some degree 
of maturation in dealing with doubt and incertitude (Fernandes & Vieira, 2006). 
The benefits of collaboration are well documented in the literature. Fullan and 
Hargreaves (1991) and Maeers and Robison (1997), for example, mention how it 
helps teachers to feel less isolated and impotent. It is also a factor for change in 
educational practices, namely when the collaborative experience is made public 
(Olson, 1997). Active involvement in a collaboration and sharing of concerns and 
experiences promotes personal and professional development (Lafleur & MacFadden, 
2001) as it leads to increased self-knowledge. Collaboration increases the self 
confidence of every participant (Maeers & Robison, 1997). 
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Collaborating along a reasonable period of time is not an easy task. Collaborations 
are fragile, by definition, requiring balances that often are difficult to set up and 
maintain (Fullan & Hargreaves, 1991; Olson, 1997). Therefore, planning and 
flexibility, dialog and negotiation, are essential to any collaborative project. Finally, 
managing expectations, emotions, personal differences, becomes fundamental 
whenever a collaboration is to be maintained.  
Communication in the mathematics classroom. Several authors underline the 
importance of communication processes in the mathematics classroom (Bishop & 
Goffree, 1986; Ponte & Santos, 1998; Yackel & Cobb, 1998). Communication is a 
social process along which participants interact, sharing information and mutually 
constraining their activity and evolution. It concerns not only an heterogeneous set of 
interactive processes evolving in a classroom but also their contexts, underlying 
denotations and expressive resources. Such a perspective includes two issues clearly 
identified in the literature (Ponte, Boavida, Graça & Abrantes, 1997) in the study of 
communication in the mathematics classroom: (i) continuous interaction between the 
actors in a classroom, and (ii) negotiation of meanings understood as the processes 
such actors set to share their own ways of making sense of mathematical concepts 
and procedures, and their evolution and relation to the formal curriculum contents.  
Mathematical learning requires a stepwise construction of a reference framework 
through which students construct their own personal account of mathematics in a 
dynamic tension between old and newly acquired knowledge. This is achieved along 
the countless interaction processes taking place in the classroom. Of especial import 
are the interactions between students and teacher, which simultaneously constrain and 
are constrained by the kind of lesson. For example, in a learning context in which the 
teacher stresses exposition and solving exercises, he/she tends to control the whole 
process. In other contexts he/she may assume instead the role of a coordinator. The 
nature of the questions posed by the teacher is particularly relevant, leading to the 
development of communication and reasoning skills (Barrody, 1993).  
It is widely recognised the fundamental role that the teacher plays either in enabling 
or limiting the communicative processes within the classroom (Barrody, 1993; 
Lappan & Schram, 1989; Pimm, 1987). Such a role makes itself explicit from the 
outset, for example, when selecting challenging tasks or encouraging students to 
express and argue their own views (Lampert & Cobb, 2003; Ponte & Santos, 1998), 
or else when resorting to tasks and educational materials that put the focus of the 
lessons on mathematical ideas, conjectures or intuitions, instead of calculations and 
procedures. The teacher is also responsible for creating an atmosphere of self-esteem 
and mutual respect, so that students feel comfortable to participate, as well as for 
structuring the classroom discourse.  
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METHODOLOGY 
This paper reports a study, qualitative and interpretative, based on a case-study de-
sign (Yin, 1989). This is part of a broader research project involving three case stud-
ies developed within the context of a long term collaborative project on communica-
tion in the mathematics classroom (Martinho, 2007). The project involved a re-
searcher, the first author of this paper, and three mathematics teachers, Maria being 
one of them. This group was initiated by the first author who invited a teacher with 
whom she had already collaborated, who later invited two other teachers to join. 
Along a year and a half, the project involved regular meetings devoted to a variety of 
tasks, namely, analysis of documents, lesson planning and review, free debates on 
communication issues, and project planning and evaluation. Each teacher selected a 
number of lessons to be observed and recorded by the researcher, and finally these 
lessons were discussed in group meetings. Data gathering for this research study was 
based on two semi-structured interviews and on the recordings of group meetings and 
the researcher’s field notes. The aim of the interviews was to get a deep understand-
ing of the way the teacher reasoned about her own communication practices. The fo-
cus was on creating a friendly environment to allow a natural flow of conversation 
about the topics of interest. The recordings of group meetings and the researcher’s 
field notes provided complementary data about the teacher activity, concerns and re-
flections at each moment. Data collection and analysis were carried simultaneously 
during collaborative work, mutually influencing each other. The research adopted the 
interactive model of analysis (Huberman & Miles, 1994). 
The project started in 2004, with regular working meetings taking place every 
fortnight (in a total of 25 meetings), along the whole academic year of 2004/05. From 
September 2005 onwards, meeting periodicity changed to a weekly basis. Even today, 
after the formal closing of the original project, the group still meets every week, 
including now two more teachers. All of them, except the researcher, work in the 
same middle school.  

RESULTS AND DISCUSSION 
Maria. Maria is 52 years old and counts 31 years as a teacher. She is married and has 
two children, already grown up. She assumes her work with professionalism and 
commitment. For 6 years she served as a school principal and is quite active in a trade 
union. She has an accurate sense of public service and citizenship. In general, Maria 
is resolute, determined, and always exigent with herself. She concluded a bachelor 
degree in chemical engineering in 1974. Becoming a teacher was not her first 
professional option; only later, she completed another degree on teaching biology and 
geology. At present, she teaches mathematics and natural sciences. This background 
may explain her main concern as a mathematics teacher: to provide evidence of the 
usefulness of this subject. 
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Maria feels some difficulties in several mathematical topics (she often says that she is 
not a mathematician) and this clearly influences her teaching practice. She has a deep 
respect for mathematics as a wonderful world that, however, she is not able to master 
easily. Mathematics, in her view, is a network of abstractions, concepts and methods, 
tightly connected. Therefore, she fears that her way of teaching, emphasizing a 
detached view of each concept or sub-area, may not contribute to make mathematics 
an interesting and motivating subject for her students. Therefore, she seeks possible 
links among the topics she teaches, but recognizes her difficulties in improving her 
practice just by herself. In the group meetings she eagerly took notes of any 
observation seeming profitable regarding mathematical connections. To some extent, 
this feeling of inability in giving a unified view of mathematics was challenged (and 
altered) during the collaborative work.  
Maria within the collaborative project. From the outset, Maria played an active role 
in the project, assuming the group as a personal learning experience. Among the 
topics addressed she mentions the joint discussion of lessons and their previous 
planning. In such a context, she said, “it becomes easier to try new experiences” 
(M15, January 05)1. Moreover, in several occasions she values the importance of 
group discussions: “The interest of this sort of work, even if not to learn a lot of new 
things, is to put us thinking and to raise new questions” (M23, June 05).  
We describe several influences of the project on Maria’s communication conceptions 
and practices. First, she acknowledges how fundamental it is to recognise one’s own 
communication failures so that effective change becomes possible. She values the 
group discussion of past lessons as a step in building such awareness: “I guess what 
matters to identify communication problems in the classroom is to be able to identify 
failures. Often, the daily routine is so pressing that we are unable even to recognise 
them” (M25, July 05). She also points out that it is too easy to blame students when a 
lesson fails, instead of recognising communication problems. For Maria, the role of 
discussions in small groups became increasingly clear: “Only when we meet in a 
small group, like this, and begin to ask what’s going wrong, one becomes aware of 
difficulties in communicating with our students” (M25, July 05). 
Second, Maria also emphasizes that our joint work helped in breaking the daily 
routine of isolated teachers which tends to obfuscate the real problems. Among these 
problems she underlines how difficult it is to respect students in their heterogeneity: 

We talk to the average student, forgetting those with extra difficulties or kids with 
different ways of making progress. We still plan lessons in a sort of canonical format that 
is the format we have rationalised from our previous experience as students ourselves. In 
the absence of sharing experiences and mutual questioning, we still go on the same way. 
(M25, July 05) 

                                           
1 (M15, January 05) stands for the transcript of the 15th group meeting, hold on January 2005. 
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Third, Maria focused in some particular elements of her practice. For example, she 
was challenged to address the issue of students working in groups in mathematics 
classes. She had already some experience of group work in natural sciences classes, 
but wondered how this could be done in mathematics. Along the project she tried a 
number of experiences with group work, allowing students to work by themselves 
and discussing results afterwards. The project was most helpful in modifying her 
initial conviction that this requires much more time than conventional lectures to 
cover about the same contents. She used to say:  

Sure, these steps [group work] help students to build deeper mathematical insight. My 
doubt is: and time? (…) How much time can one devote to discovery, building insight, 
mastering mathematical reasoning? My dilemma is: build mathematics or follow 
[successfully] the national curriculum. (M18, March 05) 

Later she comments on an experience carried out on a statistics unit: “It took five 
lessons; normally I need less than that for this topic” (M22, May 05). But she 
acknowledges the fact that this activity was a training experience for herself. Training 
for developing more careful lesson plans and a few routines enabling her to “waste 
less time”, or, as she notes, “to use the available time with increased quality” (M24, 
July 05). 
Finally, we observed her effort to take into account in her own practice the main 
concerns shared in the project group. For example, she indicates that she does a 
serious effort to reduce the number of interventions she has in the classroom: “A 
number of things inside my own mind are already working. For example, reminding 
me: let’s see what they think, what they say” (M22, May 05). She became more 
attentive to what her students say. Similarly, she sought her students to listen more 
carefully to each other. She points out episodes illustrating her greater willingness to 
give more time for students answering and reasoning in class: “before [the project]”, 
she commented, “I used to guide their answers, suggesting a possible way of handling 
the question straight away” (M21, May 05). Note that she recognized that such an 
attitude “was made possible because of the discussions within the group” (M21, May 
05). Moreover, she said “my concerning with negotiation of meaning increased as a 
consequence of our work. Now I require students to give proper and detailed 
explanations and raise themselves new questions” (M22, May 05).  
The project was lived by Maria as an opportunity to think about the impact of 
communication issues in the classroom and their relevance as a source of common 
difficulties in teaching. This is further illustrated by her comment in the last meeting 
of the academic year 2004/05: “A fundamental issue is to be aware that several daily 
difficulties in our professional life are related to communication” (M25, July 05). 
And, later, she wrote concerning the work developed:  

(…) Discussing together what classroom communication effectively means, studying a 
few theoretical papers as well as experience reports, our own availability to share our 
classes with others, to reflect in a critical way about our own practices, all this made the 
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project sessions a true opportunity of professional development. Several connections 
were built at different levels (pedagogical, scientific, didactical), giving to this group a 
real sense of what needs to be changed and how. (June 06) 

An indicator of the relevance this collaborative project had for the three teachers 
involved was the decision they took to extend it behind the initial closing data: The 
group still goes on at the moment of writing. Quite recently Maria wrote in an email 
concerning group planning for 2008-09: “I am completely available for this project. 
Actually, it is an irreplaceable space for sharing, knowledge building, and friendship” 
(September 08). 
Maria always supported the project with enthusiasm and a pro-active attitude: sharing 
plans, discussing suggestions, inviting others to assist to her lectures. She never 
neglected the possibility to discuss a lesson, sharing her own thoughts and taking care 
to make explicit the strategies used and her motivations underlying them. The project 
influenced her practice with respect to the sort of discourse and interactions with 
students, but mainly, as she stresses, in what concerns her ability to bring variety to 
her lessons and relationships with students. Maria understood this project as a 
personal challenge, not always easy to follow. But she was always willing to share: “I 
have to wait so much, until Friday, to tell you…” And this led another teacher in the 
group to comment: “This group is our therapy” (May 06). 

CONCLUSION 
The purpose of this study is to illustrate how a collaborative project can influence its 
participants and have an impact on their practices. Maria was chosen as the focus of 
this paper since she was the teacher who was most influenced by the project. 
Probably that happened because she took such a decision from the outset: To be open 
to the group influence and look into it in a positive, pro-active way. We shall now 
extend the discussion to the group level. 
The focus of this research was communication in the mathematics class, a broad 
theme that may include a variety of issues and experiences. As it developed, however, 
it became clear to the researcher that a collaborative research entails the need for 
never avoiding or ignoring the questions raised by the participants or the issues that 
they think are most relevant, even if this implies taking less obvious “routes”. 
Allowing others to come into their own classroom as well as sharing and discussing 
their experiences had a deep significance to all the teachers involved in this project. 
Maria was no exception. But this did not evolve without concern, and the feeling that 
something that used to be “private” was now made available to others. A number of 
fragments of a discourse seeking auto-justification provide evidence that 
collaboration is a process that extends itself in time. As underlined by several authors 
(e.g., Fullan & Hargreaves, 1991), mutual support in the group is essential to get 
through, or at least to control, our own difficulties and vulnerabilities. Just as it 
happened with Maria, the project helped all the others to increase self-confidence, 
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reducing the feeling of impotence and solitude. This role, which is central in a 
collaborative project (Maeers & Robison, 1997), was recognised by all the 
participants, with different degrees.  
A collaborative project is a social construction. As such, it entails the need for all 
participants to share their different ways to approach a situation or experience (John-
Steiner, Weber and Minnis, 1998). The relative heterogeneity of participants made 
mutual influence possible and played an important role in the perception that the 
group has of its own development.  
For the researcher, this was a rich experience, namely as an opportunity to approach 
very closely school reality and the way it is experienced by teachers. Nothing is given 
once and for all, and so sometimes she felt tired, unable, almost lost. But progress 
was made because in the group we have always felt that, in spite of difficulties, we 
needed to go on because it was exactly from our disagreements that we evolved as a 
group. 
This research study shows that, even with a highly motivated group, changing is 
always slow. The steps to undertake cannot be too large. Often, the researcher felt 
that her attempt to propose a number of experiences and activities was fruitless: What 
is really necessary is that every teacher in a collaborative group takes the group 
objectives as his/her own. 
Along the project, Maria assumed herself the role of researching her own practice and 
provided evidence of how that entailed changes in her professional practice. This 
seems to be consistent with related research (e.g., Fernandes & Vieira, 2006) which 
shows that collaborative work fosters an attitude of serious enquiry about the 
teacher’s own practice. As a consequence, Maria considers herself now more able to 
challenge her students, to develop their autonomy and to explore their mutual 
interactions in the classroom. She feels them more active and responsible towards 
their own learning. She is confident about her stance, but keeps saying that to make 
changes effective one needs a reflexive attitude and time to mature. 
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REFLECTION ON PRACTICE: CONTENT AND DEPTH 
 

Cristina Martins, Escola Superior de Educação de Bragança 
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ABSTRACT 
This text is based upon an ongoing investigation with the main goal of studying the 
professional development of primary school teachers, specifically the ability to 
reflect, within a continuous training program.  
This study follows a methodological approach of a qualitative type, comprising case 
study, with recourse to interviews, participant observation and documental analysis. 
A first analysis of the written reflection of one of the participants, included in the 
reflection portfolio, points, in terms of content, towards less spreading of the themes 
approached, the ones considered the most significant being subsequently extracted 
and correlated. A greater depth in the reflection is also noted, with the teacher 
having concern to justify her statements, present a critical analysis of her role and 
rethink her practice.  
 
Key-words: Professional development, mathematics’ teacher, teacher training, 
reflection, practice  

INTRODUCTION 
Reflection is one of the activities most frequently considered to contribute to the 
professional development of teachers, since it may be presented as a means to 
improve classroom practices. 
The Program for Continuous Training in Mathematics for Primary School Teachers, 
launched by the Board of Education and the Board for Science Technology and 
Higher Education, has been under development in Portugal since the academic year 
of 2005/2006. This program aims at an improvement in the teaching and learning of 
Mathematics as well as developing a more positive attitude towards this branch of 
knowledge. It involves conducting group training sessions, classroom supervision 
sessions and one final plenary meeting for a final appraisal of the program. 
Participant evaluation is undertaken through the elaboration of a portfolio, over the 
duration of the program. Contents of this program include the nature of the tasks, 
namely problem solving, and the use of physical resources, in which manipulative 
materials are included.  
This paper is based in an ongoing investigation, whose goal is to study the 
professional development of primary school teachers through participation in the 
program. Specifically, we aim here to answer the following question: (i) In what way 
does the teacher’s ability to reflect evolve throughout the training program?   

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1971



 

 

 
THEORETICAL FRAMEWORK 
“The professional development of teachers, both inside and outside the classroom, is 
the result of their reflection and participation in training opportunities which improve 
and increase their development and progress.” (National Council of Teachers of 
Mathematics, 1994, p. 175). Reflection is an activity which may contribute towards 
the teacher’s professional development. The term reflection is, however, polysemic. 
To Dewey (1933), in the field of education, the “active, persistent, and careful 
consideration of any belief or supposed form of knowledge in the light of the grounds 
that support it, and the further conclusions to which it tends, constitutes reflexive 
thought” (p.7), appearing as an activity thoughtfully and directly connected to 
practice. Zeichner (1993), although stressing that terms such as reflexive practitioner 
and reflexive teaching have become slogans for teaching reform and teacher training, 
attributes a strong personal angle to reflection, considering that there are no recipes to 
teach the teacher how to reflect. Schön (1983) also contributes in clarifying this 
concept, considering three kinds of reflection: in action; on action and upon reflection 
in action.  
Addressing teacher training programs, Lee (2005) finds differences in the content and 
depth of the reflection undertaken by future teachers. Specifically he identifies the 
following as factors related to the depth of the reflection: personal context, 
professional experiences encountered and ways of communicating.  
To Day (2001), just conceiving the existence of reflection as a means of learning does 
not demonstrate the depth, reach and goals of the process, as “good teachers are 
technically competent and reflect upon matters pertaining to the goals, the process, 
the content and results” (p. 72).  
One of the contexts which may be supportive in producing reflection is the one 
involving portfolios. Written reflection is one of its basic components, particularly if 
one is examining documented teaching, and is focused on what the teacher and the 
student have learned (Santos, 2005; Wolf, 1996). Reflection is, thus, “the critical 
heart of the record” [contained in the portfolio] (Lyons, 2002). 
Summing up, this study considers that reflection helps to looking backwards and 
rethinking one’s own practices (Muñoz-Catalán et al., 2007; Oliveira & Serrazina, 
2002), although it is possible to find idiosyncratic differences in the process of 
reflection (Hospesova et al., 2007). Moreover, reflection as analytical thought is 
above all associated with unsolved problems (Dewey, 1933), or rethinking meanings 
previously associated with educational situations. 

INVESTIGATION METHODOLOGY 
This work takes place in a natural environment, in which the researcher is also the 
leader of a working group made up of nine teachers. We have chosen to adopt a 
qualitative methodological approach (Bogdan & Biklen, 1994), undertaking three 
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case studies (Gall, Borg & Gall, 1996), with the help, in data gathering, of semi-
structured interviews, participant observation and documental analysis. 
Initial, intermediate and final interviews have as a main goal the gathering of data 
pertaining to the participant teachers, on the basis of the issues under consideration. 
Interviews, after each class has taken place, are related to points emerging from the 
experimental classroom activity. Group training sessions and classroom supervision 
sessions were observed. Interviews and observations undertaken were fully audio 
taped and transcribed. Documental analysis focused on the records included in the 
portfolios (planning, material used, student production and reflections), in the field 
notes about supervision sessions and in the reflections about group training sessions  
In her portfolio, Sara, one of the participants, has included three reflections on tasks 
tried out in the classroom during the course of the program, although she was only 
compelled to include two. In this paper we present the analysis of the first reflection, 
which took place in December 2006, and of the third, in April 2007.  
To address the presentation of written reflections to be included in the portfolio, 
guidelines, followed in the training program, were provided, consisting of the 
following points: 1. Activity goals; 2. Activity description; 3. Reflection on the 
activity, including four aspects: (i) activity planning; (ii) evaluation of what the 
students might have learned with the activity; (iii) importance of the activity for the 
teacher; and (iv) the teacher´s future perspectives regarding Mathematics. 
Analysis of information gathered started after completion of the training program and 
consisted of organizing and interpreting data, considering the problem under 
investigation, theoretical framework and the empirical work which had taken place. 
Specifically, fields of analysis considered were content and depth (Lee, 2005). 
Regarding content, we have defined as categories for analysis the ones included in the 
guidelines. Regarding depth, we have considered: (i) Confrontation with one’s own 
practice (identification and description of what one considers important or 
problematic); (ii) Interpretation (why does one perform the way one does?); (iii) 
Putting into perspective (confrontation of action with what one thinks and feels about 
it) and (iv) Reconstruction (what ought to be kept? What can be different? what can 
be changed, why?)  

TEACHER SARA’S WRITTEN REFLECTION 
Sara is around forty, and has twenty to twenty five years of professional experience. 
She has a Primary School Teacher’s degree and the Scientific and Pedagogical 
Training Complement for Primary School Teachers, which bestows a license level 
degree.  
Sara tells us she has always liked mathematics. Although she considers herself as 
having enough knowledge to teach she has invested time in keeping herself up to date 
through attendance at training sessions and programs. 
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Regarding the sort of tasks she planned and put into practice in the field of 
Mathematics, before attending the program, Sara said she sometimes uses problem 
solving. She states that she is aware of not using a lot of materials in the tasks she 
puts forward, relating this idea to the need to keep up with the program: 

I am, I am aware I don’t use much. I think we are rather limited concerning time because 
we are always concerned with keeping up with the program and then we may get one day 
behind, which we may need later. [initial interview]  

Specifically, regarding reflection upon practice, before attending the program Sara 
explains she did not reflect much and that she had never made a written reflection: 

Also, it is not that one completely overlooks it. But, when returning home, one puts 
school somewhat aside because we must also support our family a bit (:…) Perhaps, after 
several activities, I sit down and reflect a bit to myself. Not on paper, but to myself 
[initial interview]  

The first reflection she presents in her portfolio is based on the students solving the 
following problem: Francisco raises chickens and rabbits. He has in all 16 heads and 
48 legs. How many chickens and how many rabbits does Francisco own? The third 
one relates to constructing and identifying geometrical figures using the Tangram. 
Sara has respected the guidelines in both reflections. Specifically, in point 3 – 
Reflection on the activity – of the written reflection that she produced, and related to 
the item – activity planning – she begins by making reference to what she considers 
essential to someone who solves a problem and stresses the difficulties to the one 
proposing it (speech 1). She presents, succinctly, the goals of the task she has put 
forward (speech 2): 

1. Interest in the problem and its ownership by the one who solves it are essential. The 
hardest step for the one presenting it, might be to choose the problem or even to make it 
up.  

2. When presenting the problem to the students I wished them to explore the context, 
gather data and find differences [Sara’s portfolio 1st reflection]  

The third reflection begins with her expectations in relation to the fulfillment of the 
task, regarding her previous knowledge of the class.: 

As I was aware that the tangram had already been used in the classroom, I was led to 
think that free activities and the relationships between the pieces had already been 
explored. So, I started the class aware it would be a noisy class, but that it would be easy 
to reach the projected goals within the time allotted. [Sara’s portfolio 3rd reflection]  

She mentions some flaws regarding planning, especially regarding the sequence of 
the proposed activities: 

In the course of the class I noticed that planning had some flaws, namely regarding the 
order of activities. I came to the conclusion that I should have started the class with a 
deeper exploration of the tangram. 

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1974



 

 

 
Activity 2 should have taken place more towards the end of the class, because they were 
very worried about drawing, which caused it to last for a long time and some of them 
only managed it with help. [Sara’s portfolio 3rd reflection] 

Concerning the item – evaluation of what the students might have learned with the 
activity – in the first reflection she identifies what she considers to be the main 
concern of students during the activity and explains her reaction regarding that 
concern (speech 1) She also mentions the students’ reactions regarding difficulties 
felt in the beginning of the task; she tries to account for them and explains her way of 
reacting in face of the situation (speech 2): 

1. During the course of the class I noticed a huge concern of the students to place the data 
and perform an operation. I read the problem once more and showed them that the results 
were not dependent on adding or subtracting these figures. 

2. I noticed they were having trouble with starting the task on paper. They asked a lot of 
questions such as “I did not understand this here”, I guess to call for the teacher’s 
attention, to see if they could get a little help. At first, the idea was not to interfere or help 
the students but due to the number of requests I finally decided to lend a little hand 
[Sara’s portfolio 1st reflection] 

As a matter of fact, at the beginning of the task, just after Sara had handed over the 
problem’s instructions, some comments were heard: “I know the operation!”, “It’s 
too much!”, and “I already know the problem!” While she read the problem aloud 
some students interrupted with questions: “What are heads?”, “What are chickens?” 
Sara explained: “16 heads means 16 animals”. And she asked: “How many legs does 
a chicken have? And a rabbit?” After the reading she informed them: “Each one of 
you does it as you want” The students tried to solve the problem individually, always 
requesting the assistance of the teacher and even of the researcher. 
She noticed that that although the students remained restless and constantly requested 
the teacher’s assistance they started designing their strategies. Sara moved about the 
room in order to see the work the students were performing. After some time Sara 
asked some students to explain their ways of solving the problem on the blackboard. 
One of the students made the following sketch: 
 
 
He began by making 16 circles and made a dividing slash in the middle and counted 
the “number of chicken” and the “number of rabbits” making a jot over each circle 
and simultaneously explained his reasoning.  
Another student made drawings. She started by drawing a child and two sets of eight 
animals some with two feet others with four. In the end she explained her reasoning 
to the colleagues. Another student drew an animal with four legs, another with two, 
and so forth, up to a total of 16 animals. 
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Only the students who had come up with the correct answer were asked to come up to 
the blackboard. 
In the course of her reflection, besides identifying the solving procedure used by most 
students, she comments on it and stresses a strategy used by just one student: 

I realized that many students started by dividing the number 16 in two groups and then 
added the legs. I think that choosing this method is related to the 8 multiplication table, 
which we had studied recently and was on the board. 

I was sorry Cláudio couldn’t go up on the blackboard to show the method he had used to 
solve the problem. He did not come up with 8 rabbits and 8 chickens because he got lost 
in counting but his representation was different and interesting. [Sara’s portfolio 1st 
reflection]  

Sara also mentions time management, specifically lack of time to communicate the 
different solving procedures used. “I think I gave too much time to individual 
solving, which did not allow the children to go up on the blackboard to explain their 
reasoning and to check for the existence of diverging results”. 
She mentions that “not many of the students managed to come up with valid 
reasoning to get to the result one wished for” and she points out, justifying this, that 
the students felt some difficulties in problem solving, although there was some 
development in competencies (speech 1). She also indicates the main learning 
outcomes the students achieved (speech 2): 

1. I noticed the students felt some difficulties in solving these sorts of problems, perhaps 
because they were not used to them, even so, there was a development of competencies 
which led to the building up of personal strategies. Problem solving placed the students 
in an active learning attitude, both by giving them the possibility of constructing notions 
as an answer to the questions raised, and by urging them to use the acquisitions made and 
to test their efficacy.  

2. They have learned to show curiosity and the taste for exploring and solving simple 
problems; 

To solve situations and daily problems using representations and schemes; 

They have learned to make simulations of real life events [Sara’s portfolio 1st reflection]   

In the third task, Sara began by giving some information about the origin and use of 
tangrams. The students listened attentively. Many of them said they had already 
worked with that material. After distributing the tangrams among the students, these 
at once started building free figures. Sara passed around a work sheet with the 
instructions for the task. Some students remained interested in figure building. Sara 
asked a student to read the introductory text about tangram and she read the first 
questions in the work sheet. “1.Which is the tangram’s original shape? 2. In how 
many parts is it divided? and 3. Which geometrical shape does each component 
represent?” The students recorded their answers in their work sheets. Next, Sara 
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asked the students to perform the second task indicated in the sheet: “using all the 
elements, build and record the figures built: a) a square; b) a rectangle and c) a right 
triangle”.  
Several students mention not understanding what they are supposed to do. Others say: 
“I can’t make it” and ask the teacher’s help. Others advance on their own and solve 
the problem. Some students also show difficulties in recording the results and 
concentrate on this point, failing to advance in building the various figures requested. 
Many appear seriously worried about not being able to perform the task and some 
give up. Several students find it difficult to know what a right triangle is.  
In her reflection, and regarding this point, she correctly evaluates the mathematical 
output of students, indicating learning outcomes achieved: 

They rememorized geometrical figures and defined them regarding the number of sides; 

They learned that one of the seven elements of the tangram is called a parallelogram; 

They were able to find out that you can build squares out of the several elements of the 
tangram; 

They have learned that you can build a lot of figures with the tangram. 

There were also learning acquisitions in other areas such as Portuguese Language, 
because besides having to communicate they also had to read and write. And they also 
learned some trivia, for instance, that the Chinese tangram is not the only one [Sara’s 
portfolio 3rd reflection] 

She identifies, justifying this, two particular cases of students which surprised her 
when performing the task: 

Two students surprised me, one for the better, one for the worse. Hélia surprised me for 
the worse because she has shown she is a participating student who likes to commit 
herself to solving the activities and in this particular class she needed a lot of help to 
solve the activities I put forward; 

Pedro surprised me for the better because he showed himself to be more committed in 
solving the activities, did not interrupt the class as often, and managed to solve what was 
asked of him [Sara’s portfolio 3rd reflection]   

Regarding the item – importance of the activity had for the teacher – in her first 
reflection Sara only presents a brief remark: 

For me, as a teacher, it was an important class, as it allowed me to see that children felt a 
lot of difficulties in translating real and everyday language into Mathematical, symbolic 
language [Sara’s portfolio 1st reflection]  

In her third reflection, she explains in a detailed way how important the activity 
had been for her, connecting it to the learning outcomes achieved by the students: 

One of the factors which either contributed to or made some students’ learning difficult 
was the fact that it was an individual task, as it became complex for me to provide 
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answers to all requests as quickly as possible, which was what they wanted. Even so, this 
activity was very important for me, as I think I left the students motivated to work with 
the tangram, a material with which many mathematical themes or contents can be 
associated [Sara’s portfolio 3rd reflection]  

As a matter of fact, Sara was widely called on by students, either to help them build 
shapes or to draw them. She tried to answer all requests, by giving them some clues 
but, mostly, by reminding them that they had to try to build the shapes themselves. It 
was apparent that Sara experienced some difficulty in providing assistance to all the 
students, as, on one hand, the class was made up of over twenty students and, on the 
other, as she repeatedly mentioned during the activity, she wanted the students 
themselves to find out the answer.  
Regarding the item – the teacher’s future perspectives regarding Mathematics –, in 
her first reflection Sara presents future valuation of problem solving: 

I think that in this class one must pay more attention to problem solving because it will 
help them to develop reasoning and prepare them for a future where they can more easily 
develop personal problem solving strategies and to, step by step, assume a critical attitude 
in face of the results [Sara’s portfolio 1st reflection]  

In the third reflection, she presents future classroom work perspectives, showing a 
definite interest on resorting to the use of manipulative materials: 

Although it is a large and noisy class I would have no qualms about proposing a similar 
activity. I think it would be very useful for these children to work more with 
manipulative materials as they allow mathematical abilities to develop and to broaden 
knowledge in every area. They also allow imagination, reasoning and communicative 
skills to develop. [Sara’s portfolio 3rd reflection]  

Throughout the academic year, Sara has tried out problem solving more often, for 
instance using problems originating from the National Examinations. 
Regarding this matter, in her final interview Sara stated there had been some changes 
in her teaching practice compared to the program’s beginning and pointed out some 
aspects she had started placing more value on: 

There have been several changes from the beginning of the program because I started 
giving more value to verbal interactions and the nature of the tasks put forward, to value 
learning more and to value reflection much more [final interview]  

Also, regarding the use of manipulative materials, after attending the training 
program she greatly stressed their use, namely with regard to awareness of their 
capabilities: 

I learned I can use known material such as the tangram and the geoboard, to teach 
concepts with I never formerly associated with them (…) We came into contact with new 
materials and with how to work with already known ones such as the tangram and the 
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geoboard but which were underused, which we had in the classroom but which we did 
not use as they could be used [final interview]  

FINAL CONSIDERATIONS 
Regarding the written reflections presented, although she always based herself upon 
the guidelines, Sara does not reason in both of them in the same way, either with 
regard to content or to depth. 
With regard to content, there are some distinguishing aspects which naturally arise 
from each task’s specificity, for instance: expectations regarding the noise to be 
naturally experienced while performing a task involving manipulative materials. 
However, in the first reflection, the diversity of themes approached within each 
category is very large. For instances, in item – evaluation of what the students might 
have learned – Sara highlights the students’ main concern within the development of 
the task, identifying her own reaction and ways of handling the situation as well as 
the students’ reactions. She also identifies solving procedures used by the students, 
difficulties felt and main learning outcomes of the students.  
In her third reflection, there is a more restricted range of subjects approached. 
However, in general, she covers the main items of the guidelines and, essentially, 
focuses on her role in what she identifies as having developed below or against 
expectations. She specifies the aspects approached, directing them in a sustained way 
towards her students and towards more specific mathematical acquisitions. She tries 
to explain her statements in length. 
Concerning the depth in her first reflection, there are contents which are only briefly 
touched upon (for instance, communication of the problem solving procedures), there 
are others in which she presents some justification for certain events (for instance, 
students’ difficulties concerning problem solving). Thus, the first reflection is marked 
by confrontation with her own practice, some interpretation and very little putting 
into perspective, thus focusing on a retrospective dimension. In her third reflection, it 
seems possible to state that Sara has by now absorbed that which was fundamental to 
obtain from the activity undertaken, showing some distance from the specific items 
mentioned in the guidelines. She establishes connections among different items and 
always tries to account for her statements. She reflects upon the described points, 
showing her role in the development of the task and rethinking her future practice. 
She thus shows herself as having reached the level of appropriation and some 
approximation to the level of reconstruction, situating herself, in consequence, in a 
prospective dimension.  
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DEVELOPING MATHEMATICS TEACHERS’ EDUCATION 
THROUGH PERSONAL REFLECTION AND COLLABORATIVE 

INQUIRY: WHICH KINDS OF TASKS? 
Angela Pesci 

Department of Mathematics, University of Pavia 
Abstract. After the reprise of a model of intervention for the training of mathematics 
teachers (both initial and in-service) developed after experiences carried out in a 
cooperative modality (Pesci, 2007a), several tasks are presented for encouraging the 
development of disciplinary, didactic, and relational competences of the teachers. 
The theoretical framework related to these tasks puts in evidence the reasons of their 
choice: the importance, for teachers, of collaboration in sharing personal 
experiences, difficulties, and resource, the importance of autobiographical reflection, 
of reflection on one’s own classroom practices, and of epistemological reflection on 
the disciplinary contents. The connection to the debate about tasks which is 
developing considerably in relation to the education of teachers (Javorski, 2007) is 
underlined. 
Key-words: mathematics, teachers, cooperation, collaboration, tasks. 

INTRODUCTION 
This paper has two goals, that of developing and specifying the model of intervention 
on teachers delineated in the contribution at Cerme5 (Pesci, 2007a) and that of 
explicitly connecting the model to some crucial ideas for the education of 
mathematics teachers which the literature is highlighting with growing intensity. How 
do I intend to reach the two goals? By supplying examples of tasks for teachers 
which, on the basis of the mathematical contents proposed, on the didactic modalities 
adopted and on the requested personal reflections, make evident their theoretical 
motivations and their connection to the debate delineated by Jaworski (2007) and 
synthesized by Watson and Mason, in the same special issue of JMTE. More 
specifically, this paper foresees a brief look back at the model of intervention on 
mathematics teachers already outlined (Pesci, 2007a) and the description of some 
tasks for teachers which have the goal of promoting personal reflection on their own 
relationship with mathematics and the encouraging of epistemological reflection on 
specific mathematical contents. Then there are the synthesis of the theoretical 
background for the choice of such tasks, with reference to related literature, and some 
suggestions for future research. 

A MODEL OF INTERVENTION ON MATHEMATICS TEACHERS 
The main issues of the model described in Pesci (2007a) are summarized shortly in 
this section, with the aim to make evident the frame in which the following tasks 
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should be placed. The model was developed in the framework of situated cognition 
and distributed cognition:  

The frame of reference is that of social constructivism, which emphasises discussion, 
negotiation of meanings, collaboration, and development of positive personal 
relationships (Ernest, 1995, Bauersfeld, 1995) and the concept of cognition is that 
formulated both as “situated cognition” (Nunez, 1999) with relevance to the context, and 
as “distributed cognition” (Crawford, 1997) with relevance to interrelationship and to 
sharing. (Pesci, 2007a, p. 1946). 

The model was based also on cooperative modality, which gives special importance 
to relational and social aspects: in their different interpretations, all cooperative 
models share their explicit attention to both disciplinary dimension and social one. 
The goals to be reached along the educational process are not placed only at the 
disciplinary level but also at personal and social ones, with a special attention to the 
quality of the relationships established amongst people (Johnson, Johnson & 
Holubec, 1994, Cohen, 1984). At the base of the model (interpreted both for students 
and for teachers), there was, therefore, the idea of a co-construction of knowledge, a 
social construction, with the principles that for several decades, even with different 
accents, pervade the most diffuse teaching-learning models. At the centre of the 
learning process, managed by an expert, there are the learners and the inter-
relationships (between learners and with the expert) with the consequent emphasis on 
the role of language and on the phases of discussion, argumentation, confutation, 
comparison, and sharing. What is suggested by teaching-learning cooperative models 
is also coherent to what is underlined  by neuroscience (Damasio, 1999) and by 
epistemology (Polanyi, 1958): in each process of building or revisiting knowledge it 
is necessary, as a matter of fact, to keep track of the close connection between 
emotion, sentiment and cognition. This is valid not only for the students, in class, but 
also for the teachers, in their training meetings.  In each training intervention, 
therefore, there was a special attention to the affective-relational aspects. 

With reference to relational and social aspects, I consider essential that a meaningful 
intervention on mathematics teachers (a) could give time and space to their reality as 
teachers in that precise moment of their professional history through the autobiographical 
discourse; (b) could constitute a direct experience of what is proposed, with wide 
possibility of dialogue with the other participants; (c) could be, in each case, attentive to 
the modalities of communication. (Pesci, 2007a, p. 1952) 

The main goal, in planning meetings for teachers, was to promote their personal 
reflection, taking account of disciplinary, didactic and relational aspects: 

The basic idea is that of creating, in each encounter, occasions for personal reflection and 
for dialogic inquiry, with the same spirit stressed in the project Learning Communities in 
Mathematics (Jaworski, 2004), where the main objective is that both researchers and 
practitioners are engaged in action and reflection for mutual growing. (Pesci, 2007a, p. 
1952).  
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The following tasks for mathematics teachers are examples of how it could be 
possible to foster their reflection and inquiry on the three different and essential 
aspects of their competence: disciplinary, didactic and relational. 

EXAMPLES OF TASKS FOR MATHEMATICS TEACHERS 
Autobiographical reflection. Every time that it is possible, in particular when the 
training meeting foresees more than one session, I organize the initial phase with the 
teachers starting with their personal relationship with mathematics, both with 
reference to their own history as student and to their own history as teacher.  
In the first case, I propose answering several written questions, which have to do with 
their recollection of a pleasant episode (and respectively an unpleasant one) during a 
mathematics lesson, referring to all of their pre-university scholastic life. Sometimes I 
turn to the request for an opportune metaphor, such as “to do mathematics was like 
entering a jungle, or a challenging game, or a long marathon,  etc.”, described in 
Pesci (2006).  
In the second case, the activity of reflection on one’s own “history” as a mathematics 
teacher can come about through a choice of metaphor or with the request to complete 
a questionnaire of this kind: 

From my “history” as a teacher 
  An episode to remember 
  An episode to forget 
  A moment of change 
  A wish that came true 
  A wish that didn’t come true 

In both cases, the task, by its nature, is individual, but I usually invite the participants 
to share within their own group (of 4-5 people), if they want, the interpretation of the 
task or some experiences, both before writing and at the conclusion of the writing. 
The only recommendation is that, in each case, there is a period of silence, during 
which each person can collect his own thoughts and write calmly. To this aim, it is 
essential that, right from the beginning, each commits to observing the others 
attentively, being aware of when it is opportune to intervene with their own 
contribution or give space to the intervention of another person or remain silent.  
The personal reflections which are asked for are of various natures and, obviously, 
depend a lot on the characteristics of the group itself. For example, in a group of 
teachers who have been in-service for several years, but were not yet confirmed, it 
came out that more than a third of the participants (there were about 60) highlighted, 
as a ‘wish not yet come true’ that of didactic continuity. It is clear that the same kind 
of wish does not appear anymore with teachers in regular service for years. It is not 
important, in this context, to list the different kinds of responses collected. Instead, it 
seems interesting to observe, at least, these two facts:   
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- the tasks of an autobiographical nature, followed by the sharing of personal 
experiences, have as a consequence to immediately orientate teachers’ attention 
toward the other members of the group, reducing the attention which, at the 
beginning of the activity, everyone has toward the presenter of the training, and 
encouraging the perception of the others’ resources, at the level of disciplinary 
competence and interpersonal qualities. When the activities are carried out together, it 
is, without a doubt, the most productive starting point; 
- to put into play the one’s own memories and one’s own history is unusual but  
manages to capture the participants in an absorbing way: the result is a sort of 
requalification of the way of being present at the training event. Often I perceive in 
the teachers, also during the following activities, a less superficial, more meaningful, 
and more profound, involvement, as if the autobiographical connotation were able to 
give greater strength and authenticity to the actions that they share.         
Reflection on one’s own classroom practice. Amongst the tasks proposed to the 
teachers to encourage their reflection on their own classroom practice, I’ll quickly 
cite two examples connected to two different kinds of experiences. During a cycle of 
seminars on how to confront the difficulties in mathematics, in the secondary school, 
it came out that all the participants (about 20) had already adopted specific strategies 
to help students overcome difficulties in mathematics. Therefore, I held it to be 
opportune to dedicate an entire meeting to the specific reflection on such strategies, 
inviting each one to respond to some questions, amongst which were the following: 

You have already adopted specific strategies to help your pupils overcome 
difficulties in mathematics: choose, in the case of several strategies, the one 
which you hold to have been the most effective and describe how you realized it 
in class, according to the following chart: 
a) Strategy used 
b) With what frequency?  
c) With pupils of which classes?  
d) Briefly describe how you develop such strategy in class 
e) For which mathematical contents did you turn to such strategy?  
f) Which are, in your opinion, the strong points of such a strategy?  
g) Which are, in your opinion, the weak points of such a strategy?  

Naturally, it was only the beginning of a longer path, certainly not exhausted in one 
meeting. Still, I noted that the participants were not used to reflecting on the 
methodology of their own practices, but they were almost exclusively worried about 
the mathematical content to develop in class. For example, it came out that whoever 
had tried to make the young people work in groups, had not structured the activity in 
any way, not foreseeing specific roles for the pupils and not planning sufficient time 
and adequate space for the activity. Even the mathematical questions were chosen 
without specific motivations. Analogously, whoever had proposed a learning 
experience of peer tutoring, had not programmed any form of collection of the work 
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carried out, neither for the pupil in the role of the teacher, nor for the one in the role 
of the pupil. Not having a clear idea that a key element for success, in these cases, is 
precisely the awareness of the importance of setting, they did not share with the 
pupils the methodology of the activity to be carried out and they did not put the right 
emphasis on it. The results, in fact, were not satisfactory.   
In another case, following experiences conducted in classes with the cooperative 
learning modality, after a rather long period (more than a year), I had foreseen with 
the teachers specific instances of reflection on the perceived effects (positive or 
negative at the disciplinary or relational level) on the pupils and on themselves. 
Several questions and several results, which are not necessary to take up here, are 
described in detail in Pesci (2007a). Here, I would like to put in evidence some 
general observations, also in relation to what I noted during the seminars on the 
difficulty of learning cited before.   
The modality that I put into effect with the teachers is usually that of sharing and 
discussion in small groups (4-5 people) before the general discussion and debate. I 
noted that this encourages, in a decisive way, the participation of everyone. Each one, 
in the small group, feels more welcome, safer, and freer therefore to express their 
own difficulties, their own fears, their own experiences and desires. Realizing that a 
fear (for example, that of not being up to maintaining control of the class) or a 
difficulty (for example, that of managing the time in class well) is common to others, 
gives greater strength to each one in the search for and sharing of the best strategies 
for confronting them. The requested reflections on the practices of the teachers go on 
to involve their acting in class and out of class and the sharing with colleagues shapes 
itself as an important occasion of comparison and growth. The relational competences 
of the teachers, specifically the ability to communicate with their colleagues, to share 
resources, and to confront together the obstacles has, without a doubt, a central role in 
the building of a team of prepared, reflective and able to change teachers (Dozza, 
2006). In other words, it seems necessary to give time and space to such activity of 
personal reflection. 
Reflection on specific mathematical contents. I will describe briefly two different 
situations as examples of the tasks proposed to the mathematics teachers for 
reflection on their teaching discipline. The first is more appropriate for a single 
intervention, which can be completed in one meeting and the second is more 
appropriate for starting a longer activity, which can be developed in successive 
meetings. Both tasks have the characteristic of a simple enough presentation, which 
makes the teachers curious and therefore easily involves them, but continuing on they 
become more complex. These tasks are therefore right to be confronted in 
collaboration, in the direction of the discovery of their didactic values and of the 
variety of the mathematical themes from which to choose possible developments. 
Besides, both the tasks could be proposed to the students, the first example starting 
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from the upper classes of the primary school and the second starting from the 
secondary school.          
The first problem is placed in ZxZ (the “pointed” plane) and proposes a search for 
isosceles triangles with the oblique side assigned AB, limited to those with all three 
vertices in points of ZxZ. The investigation, apparently very simple, proves to be 
quite demanding, both for the geometric questions and the arithmetic questions 
involved. Besides, it can be developed with questions of isoperimetry, of 
equiextension, and of congruence between the triangles found, going on to weave 
together, in a single context, the use of arithmetic and geometric competences and of 
argumentative and demonstrative procedures. It is evident, therefore, that also the 
discussion about the didactic value of the problem turns out to be quite full and 
interesting. 
The second problematic context looks at Euler’s formula and its validity; to be 
explored in several models proposed concretely or drawn on the blackboard. It is well 
known that in simpler cases, for example for regular polyhedra or for convex 
polyhedra, it is easy to count faces, corners, and vertices and immediately to verify 
the validity of the well known numerical relationship  V – S + F = 2 . In more 
complex situations, instead, one encounters some difficulties. It is necessary to 
clarify, on the one hand, which are the figures in the space that can be considered 
“polyhedra”, and on the other hand, which are the elements in the space that can be 
considered “faces” or “vertices” or “corners”. The two questions are obviously 
connected and it is well known how much they are not banal, as is highlighted by the 
historic reconstruction of the attempts to demonstrate Euler’s formula described in 
Lakatos’ book (1976).   When this activity is proposed to the teachers, it usually turns 
out to be evident how it is right for encouraging collaboration and the sharing of 
resources. It has to do, in fact, with an investigation that is not taken for granted, with 
an obligatory end, but rather open to further reflections, of a theoretical type or also 
an epistemological one (Pesci, 2007b). 

THEORETICAL FRAMEWORK FOR THE CHOICE OF TASKS 
In this section there are the basic ideas which constitute the theoretical framework for 
the choice of the kinds of tasks described.  
a) On the cooperative methodology to put into effect with the teachers, I have already 
described the theoretical references in the second section of this presentation. Here, I 
would add some reflections which could clarify better the features of the model 
proposed. It is important to remember that, in general, when one speaks of the shared 
principles of the models of social construction of knowledge, one has not yet arrived 
at outlining a standard didactical procedure, because for this it is necessary to choose 
the fundamental values which one intends to promote. As  Ernest (1995) observes, 
standard didactical procedure is defined in each case on the basis of the values which 
one intends to promote. To define better the model of intervention experimented with 
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mathematics teachers, I would like to stress that the fundamental value that I chose to 
promote is the collaboration amongst all the participants (teachers and didacticians) 
at the educational moment. The goal is that of more easily arriving together at a 
higher result than that which each one could reach alone, whatever the proposed task 
could be. The term collaboration, here, could be interpreted as a synonymous of 
cooperation in reference to the fact of sharing the urgency to develop, in a symmetric 
way, both the cognitive-disciplinary and the affective-relational competences of the 
subjects. But here the term collaboration has a more general meaning: a positive 
inter-relationship amongst the people involved, not necessarily connected to a 
specific modality of acting in groups. The collaboration amongst the participants 
(teachers and didacticians) has the following goals: to encourage the sharing of 
personal experiences, of resources, of difficulties, and to encourage reflection on the 
mathematical contents, on their epistemological meaning, on their classroom practice, 
and on their own professional history. In short, the collaboration with peers, 
interpreted at the level of teachers, seems the most efficient road for covering the role 
of teacher, which lies within the competence in projecting the educational path and 
the reflection-evaluation of the processes activated. 
I would like to add one last characteristic of this model. The interaction between 
equals, in a climate of positive collaboration, implies a particular setting, that is the 
organization of time, space, and modes of interaction which allow the progressive 
evolution of the disciplinary and relational competences. All that is a privileged 
environment also for the well-being and for the mental health of the participants 
(Dozza, 2006). Trust in oneself, generosity in the welcoming and helping of the 
others and the recognition of oneself in the others, contribute to affirming and 
enriching one’s own identity in the community to which one belongs, supporting the 
development of personal potentialities.              
b) Autobiographical reflection, by means of the use of metaphors or narrations of 
meaningful episodes from one’s life, turns out to be a preferred tool for accessing the 
deepest parts of self, allowing that decentralization which is necessary to be able to 
tell about oneself (Barker, 1987; Darrault-Harris & Klein, 1993). The narration of self 
was rediscovered in the last 10-15 years as an educational modality which is 
important for both students and teachers (the first direct references to the 
autobiographical practice in adults’ education can be found in French studies, i.e. 
Pineau, 1983, the Italian studies have been developed mostly starting with Demetrio, 
1996).  Amongst the objectives that can be pursued, there is fundamentally the 
reflection on one’s own experience, in particular, on its attributive implications and 
on the causal links to the events of one’s history. This allows the recognition that the 
narration of oneself is not a simple report of events, but rather a reinterpretation of 
them, in the light of the present. Telling about self means giving meaning, coherence, 
and continuity to one’s various experiences and also encourages the definition or the 
reformulation of one’s identity. Autobiographical reflection, elaborated for oneself, 
but also communicated to and shared with others, encourages a positive development 
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of interpersonal communication, the recognition and re-evaluation of personal facts 
and characteristics, the ability to listen to oneself and understand oneself, and a 
consequent openness to listening to and welcoming of others. So, it seems that 
autobiographical activity emerges as a fundamental tool in the work with teachers, a 
work which has at its centre the teachers in their totality, personal and professional at 
the same time.   
c) The tasks of the disciplinary type proposed in the preceding section are, on the 
basis of the experiences carried out, particularly appropriate for developing 
epistemological reflection on mathematics in an inquiry style (Javorski, 2004), in a 
climate of investigation of mathematics which could be transferred to the class. With 
reference to this I would like to link to a question proposed by Watson and Mason 
(2007, p. 213).  

We question whether tasks need to be structured in ways which require ‘inquiry’ or 
whether instead ‘inquiry’ is the mindset with which teachers, and ultimately their 
students, need to approach all tasks. 

I would say that both things are necessary. A task must be interesting enough to 
stimulate involvement and action. It must be open enough, that is, appropriate to 
being developable in several ways and therefore with personalized in-depth study.  In 
other words, the task has to be generative of several different possibilities of 
development (as Borasi well described in the 21 examples showed in detail in her 
book, 1996). Besides, the structuring of the environment in which the task is 
proposed must be adequate, in the sense that it must foresee times, materials, and 
attitudes which can fully support the investigative activity. In other words, the milieu 
(Brousseau, 1997), in which a task and the following activity take place, has to be 
suitable for the intended work. It is still evident that also the attitudes of the 
participants in the investigation must be appropriate, that is, ready to participate in the 
activity, allowing themselves to be involved in the problem and putting into play their 
own time and their own resources. The two aspects (the characteristics of the task and 
the attitude of the one who confronts it) turn out to be, in my opinion, strongly 
intertwined and they influence each other in turn. A task which does not have the 
characteristics cited cannot give rise to inquiry and on the other hand an appropriate 
task, proposed in an unprepared milieu for the inquiry, will not be developed and 
unlikely will not become object of research.  
d) The last observation that I would like to propose is relative to the general sense of 
a training experience proposed to the teachers, with the modalities and by means of 
the tasks described. As shown also by the analysis conducted by Watson and Mason 
(2007, p. 208):   

Tasks are often designed so that teachers can experience for themselves at their own level 
something of what their learners might experience and hence become more sensitive to 
their learners. The fundamental issue in working with teachers is to resonate with their 
experience so that they can imagine themselves ‘doing something’ in their own situation, 
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through having particularised a general strategy for themselves ... their professional 
choices of actions are the manifestation of what they have learned or are learning. 

It is precisely in this direction that I develop each intervention on the teachers. I am 
convinced that a training meeting can be effective in the measure in which it can be 
set up, for the participants, as metaphor of experiences of living in class; a metaphor 
therefore understood not as verbal construction, but as life experience (Pesci, 2003, 
2005, 2006, Fabbri & Munari, 2000).   
CONCLUSION 
The model of intervention on teachers and the tasks here described put an explicit 
accent on the necessity to intertwine disciplinary, methodological and relational 
aspects for teachers’ professional preparation, without leaving out a special care for 
structuring an adequate setting for the intervention itself. A theoretical frame for this 
complexity can not be simple and, of course, it could be different from that here 
described. It could be the occasion for further investigation and analyses, for instance 
in the direction: a) to formulate different models which could describe the same 
complex “scenario” of  mathematics teachers’ professional education; b) to elaborate 
specific and adequate instruments of analysis of teachers’ interaction, at the different 
levels of competences involved by the model proposed. A final observation refers to 
the importance the model puts on the necessity to take account of teachers’ personal 
biographies (their personal stories, their preferences, their expectations). I believe this 
is a feature not yet explored in depth for teacher education (see for instance the 
review about the common assumptions related to mathematical tasks in teacher 
education in Watson & Mason, 2007). Such orientation could be of interest for 
research, with possible fruitful resonance from perspectives of teachers’ educators.  
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THE LEARNING OF MATHEMATICS TEACHERS WORKING IN 
A PEER GROUP 

 
Martha Witterholt and Martin Goedhart  
University of Groningen, the Netherlands 

 
The research described in this paper is part of a study in which we will follow 
mathematics teachers during a certain period and describe the development of their 
practical knowledge. Teachers’ practical knowledge is their knowledge and beliefs 
that underlie their actions. In this study we are focused on what teachers know and 
believe about learning and teaching statistical investigation skills. Concept maps and 
semi-structured interviews are used to represent and archive teachers' practical 
knowledge. In addition, a system of four categories is developed which, in our view, 
is appropriate for exploring mathematics teachers’ practical knowledge. The results 
show that although changes in practical knowledge occur within a year, not all 
changes are due to working together in a peer group. 
 
INTRODUCTION  
Because of educational changes teachers should be able to learn permanently, 
individually as well as together with fellow teachers. This study reports on the 
learning of mathematics teachers from the same school, collaborating in a peer group 
for a longer period. The area of interest is the development of teachers’ practical 
knowledge by collaborating in a peer group in order to achieve an educational design 
in statistics for students in lower secondary school. By creating an environment in 
which teachers can learn and develop, they have an opportunity to revise their 
practical knowledge by using each others expertise. The researcher guides the 
meetings, but the teachers are making the final decisions in order to create ownership. 
This kind of professional development is new to the teachers involved. During the 
peer group meetings, teachers are developing a research task for students which also 
will be implemented and evaluated. The research task is aimed at students doing 
statistical investigations about a theme of their own choice. Implementing research 
tasks is one of the goals of mathematics education in The Netherlands.  
 
THEORETICAL BACKGROUND 
Learning of experienced teachers in a peer group  
A considerable amount of current research on teaching and teacher education focuses 
on teacher collaboration. Teacher collaboration is presumed to be a powerful learning 
environment for teachers' professional development (Meirink, Meijer & Verloop, 
2007). However, empirical research about how teachers actually learn in 
collaborative settings is lacking. Learning in collaborative settings stimulates teachers 
to use the expertise of colleagues for improving their own teaching practice, and 
therefore adjust, enlarge or change their practical knowledge (Borko, Mayfield, 
Marion, Flexer & Cumbo, 1997). Borko et al. (1997) mention: “We believe that 
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teachers would learn best by actively constructing new assessment ideas and practices 
based, in part, on their existing knowledge and beliefs, and sharing ownership of the 
workshop content and processes”. Furthermore, learning in a peer group is more 
intense when people with different ideas and opinions cooperate (Putnam & Borko, 
2000). Verloop, Van Driel & Meijer (2001, p.453) mention that exploring teachers’ 
practical knowledge can be relevant in consideration of educational changes. In 
certain educational innovations teachers were only the executors instead of also the 
developers (see Van den Akker, 2003). To commit ownership in this study, teachers 
are developers and implementers of an educational design for learning and teaching 
statistics for students of the 7th grade of secondary school. Teachers afterwards 
evaluate the implementation of the design. Because they work together we expect an 
increased teacher learning, leading to more in-depth practical knowledge.  
 
Development of practical knowledge  
The research presented in this paper is focused on the development of teachers’ 
educational goals and practical knowledge of mathematics teachers when they 
collaborate in a peer group. The term knowledge as well as the term beliefs may 
frequently be found in studies about teachers’ cognitions. The concepts that these 
terms refer to are often not easily distinguishable. On the other hand, to explore and 
analyse the learning of teachers, the term practical knowledge is frequently found in 
studies about teachers’cognitions (Kagan, 1990; Pajares, 1992) In most studies, only 
one term is used to refer to both knowledge and beliefs. Kagan (1990) states that: 
“Readers should note that I often use beliefs and knowledge interchangeably (…)”. 
Pajares (1992) also pretends that knowledge and beliefs are not distinguishable. He 
states that teachers’ beliefs are personal values, attitudes or ideologies and knowledge 
is a teacher’s more factual proposition, sometimes formal and sometimes practical. 
Meijer (1999, p.22) puts forward that: “Taken together, teachers’ knowledge and 
beliefs are a huge body of personal theories, values, fractional propositions, and so 
forth, that is to be found in teachers’ minds, and that teachers can, sometimes more 
easily than other times, call up and make explicit”. In this study, following Pajares 
(1992) and also Meijer (1999), teachers’ beliefs and teachers’ knowledge are viewed 
as inseparable. This will be referred to as teachers’ practical knowledge. 
 
In this study we developed and used a system of four categories which, in our view, 
are the most appropriate for exploring mathematics teachers’ practical knowledge. 
Statements of teachers will be classified into the named categories. These categories 
are derived from the categories used by Meijer (1999, p.61) and Van Driel, Verloop 
& De Vos (1998). The categories will be described and explained below. 
 
1. Educational philosophy 
The category ‘Educational philosophy’ includes the vision of teachers on education in 
general, what motivates him or her to teach. Teacher’s educational philosophy can 
deviate from, for example, his actions in the classroom and does not need to 
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correspond with reality. This category is an extension of the categories used by 
Meijer (1999). Meijer used the category ‘Student knowledge’, this are thoughts about 
students in general, which is part of the category ‘Educational philosophy’ in this 
study. Teachers’ educational philosophy is of great importance on his actions and 
thoughts. 
Teachers’ former experiences in the classroom have a strong hold on their 
educational philosophy, just like experiences with professional development and 
consultation between fellow teachers (see Meijer, 1999). Ernest (1989) mentions that 
the mathematics teacher's mental contents or schemes includes the vision on 
mathematical knowledge, beliefs concerning mathematics and its teaching and 
learning. Ernest states that educational changes only can take place when teacher’s 
deep-rooted beliefs about mathematics and about the learning and teaching of 
mathematics will change. We expect to find particularly deep-rooted beliefs in this 
category, and therefore we expect the fewest changes in practical knowledge. 
 
2. Learning and teaching statistics 
This category includes teachers’ practical knowledge of  school mathematics, in 
particular of statistics. Within the scope of pedagogical content knowledge (PCK) 
also specific perception of statistics, learning difficulties and learning strategies of 
students within the domain of statistics are gathered in this category. Knowledge of 
teaching statistics is therefore also part of this category. This category is a 
combination of the categories ‘Subject matter knowledge’, ‘Curriculum knowledge’ 
and ‘Knowledge of student learning and understanding’ in the research project of 
Meijer (1999). 
Next to practical knowledge, teachers need understanding of the subject matter 
content to teach a subject (Sowder, 2007). Shulman (1986, p.25) mentioned: “Where 
the teacher cognition program has clearly fallen short is in the elucidation of teachers’ 
cognitive understanding of the subject matter content (..)”. He thereby introduced the 
term pedagogical content knowledge (PCK). Verloop et al. (2001, p.449) indicated 
that PCK can be considered as a specific form of teachers’ knowledge due to the 
focus on students and on subject matter. The category ‘Learning and teaching 
statistics’ is strongly related to teachers’ working together in a peer group on the 
educational design and its implementation in the classroom. The teachers in this study 
are not used to working in a peer group. We therefore expect important changes in 
this category.  
 
3. Student activities 
This category describes teachers’ practical knowledge about students in the first class 
of secondary school and students in general, their activities during the lessons of this 
course and their learning activities. A direct relation with the subject matter 
(statistics) is not necessary. This category is an extension of the category ‘Knowledge 
of purposes' used by Meijer (1999). 
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Together with the category ‘Learning and teaching statistics’, this category is 
expected to be strongly influenced by teachers’ collaboration in a peer group. We 
expect a connection between the objectives of the design formulated by the teachers, 
how important teachers think research tasks are in math classes and the student 
activities during the course.  
 
4. Teacher activities 
On the one hand this category describes teachers’ practical knowledge of the use of 
materials during the math classes and the practical knowledge of statistical research 
assignments. On the other hand this category contains teachers’ practical knowledge 
of designing, implementing and evaluating lessons in statistics and teachers’ role 
during the implementation. This category is a combination of the categories 
‘Curriculum knowledge’ and ‘Knowledge of instructional techniques’ by Meijer 
(1999).  
 
Research questions  
The main question presented in this paper is: How does the practical knowledge of 
mathematics teachers develop as a consequence of designing, implementing and 
evaluating an educational design (altogether this is called the intervention) for 
learning statistical investigation skills by working in a peer group? 
The main question can be determined by answering three basic subquestions: 

1. What is the practical knowledge of the participating teachers prior to and after 
the intervention? 

2. What are the changes in practical knowledge of the participating teachers 
during the intervention? 

3. Which are possible causes of changes in practical knowledge? 
 
METHODOLOGY 
In this study four mathematics teachers of the same school are collaborating in a peer 
group. During the seven peer group meetings they are developing an educational 
design in statistics for students in lower secondary school. After the implementation 
of the design, the last peer group meeting serves to evaluate the design in order to 
improve the content.   
In the study presented in this paper, we use two of the three instruments Meijer 
(1999) used, completed with three other instruments. The instruments below were 
used in this study and are at the same time provided with an explanation: 

1. A questionnaire about teacher background variables 
Just like Meijer, Verloop & Beijaard (1999) we use a list with questions about 
the teacher’s background. There are patterns that indicate that it is of crucial 
importance how a teacher deals with his or her experience, training, and 
consultation with colleagues. 

WORKING GROUP 10

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 1994



 

2. Two concept maps by each teacher referring to the teaching and learning of 
investigative skills: one concept map was drawn before the intervention (this is 
called CM[0]). The other concept map was drawn afterwards (CM[1]). 
Explanations by the teachers about their concept maps, directly after the 
drawing of the concept maps. The explanations of the teachers are all recorded 
on tape and are used as an additional source of information to the concept map. 

3. Semi-structured interviews.  Like the concept maps we had  two interviews: 
one before (Int[0]) and one after the intervention (Int[1]). 

 The interviews were hold immediately after the explanation of the  concept 
map, in one session.  
4. Registrations and evaluations of all seven peer group meetings. All peer group 

meetings are recorded on a voice recorder and evaluated through written 
evaluation forms filled in by each teacher. 

5. Observations of the lessons taught within the project. All the nine lessons of all 
the teachers were observed and recorded on videotape. 

 
The first source of information gives an idea of teacher’s experiences with teaching 
investigative skills during the past years. This will be used for an explanation of the 
teacher's development. The next two sources of information will be used to determine 
changes in practical knowledge of teachers. The fourth source of information serves 
to find causes for the observed changes or to indicate professional development. The 
fifth source of information serves as a validation-check and is meant to see if teachers 
‘teach as they preach’. 
 
The combining and analyzing of data from the different sources of information was a 
procedure with six phases (Morine-Dershimer, 1993; Meirink et al., 2007). In this 
paper not all the phases will be described, only phase four, where we look at the 
similarities and the changes in practical knowledge by first comparing CM[0] with 
CM[1] and Int[0] with Int[1] and after that divide teachers’ statements and answers 
over the named categories. To describe possible changes in practical knowledge and 
to find out what causes these changes, we use two interesting cases. The first case is a 
less experienced teacher, Ann, and the second case is an experienced teacher, Bart. 
The names of the teachers mentioned here are fictitious. 
 
RESULTS  
Case Ann 
Teacher background variables 
Female, 48 years old, ten years of experience in adult education and three years of 
experience in grades 7-10 of secondary school. Little experience with implementation 
of research tasks. 
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Changes in practical knowledge 
Below, in table 1, a list of differences in pre- en post-concept maps and in pre- en 
post-interviews from Ann is presented. The differences are divided over categories 
and the instrument concerned is also specified in table 1. There is also a list of 
similarities, but this list will not be given here. We will focus on the differences, 
because the differences are more interesting. 
  
Table 1: Differences in pre- en post-concept maps and in pre- en post-interviews from Ann in 
categories 

Category Differences 
Educational 
philosophy 

1. These students are too young to state a hypothesis (from CM[1]). 
2. “How did I learn it myself?” (from CM[0]). 

Learning and 
teaching statistics 

1. The introduction assignment was not applicable, there was no 
relationship between variables (from Int[1])  
2. Nowadays you need a computer for presenting and processing data. 
(from CM[0]) 
3. Statistical concepts should come up for discussion during the 
introduction (from Int[1]). 
4. Evaluating the process with students is important (from CM[1]). 
5. Implementation of statistical research requires a systematic routine 
(from CM[0]). 

Student activities 1. Some children could not work together at all (from CM[1]). 
2. Students can ask each other critical questions about their posters 
(from CM[1]). 

Teacher activities 1. The role of the teacher is to guide the students (from CM[0]) 
 
Looking at the differences in table 1 it is obvious that the differences in the category 
‘Learning and teaching statistics’ are dominantly present. This is partly a 
consequence of the used methods. The focus question of the concept maps is 
‘Learning and teaching statistics’ and the interviews are also focused on the learning 
and teaching of statistics. Furthermore, the differences are mainly caused by Ann's 
basic assumption. Before the implementation of the educational design, in CM[0], 
she noticed “to be blank”. Afterwards, in CM[1], she changed her basic assumption 
and noticed that the implementation of the design was the most important. Ann’s 
teaching experiences in the past play an important role, enforced by experiences 
during the implementation of the educational design. However, Ann’s research 
experiences do not play an important role anymore, though this was often a success 
(see CM[0]). During the evaluative peer group meeting it becomes clear that Ann still 
is enthusiastic about the educational design, although she proposed a few revisions 
like more interest in students working together and adjust the introduction 
assignments. Ann composed the student groups herself. She mentioned that she 
would do that again, because she is convinced that students have learned a lot by this 
way of working. Observations of lessons show that Ann is a good coach. She 
encourages her students to reflect on choices made and she is able to revise her goals 
if necessary. Repeatedly, she succeeds in creating a good atmosphere, in which 
students are able to work undisturbed. 
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Case Bart 
Teacher background variables 
Male, 47 years old, eighteen years of experience in teaching in secondary schools. In 
the past, he implemented two small research tasks, of which one was a statistical task. 
 
Changes in practical knowledge  
Table 2 below shows a list of differences in pre- en post-concept maps and in pre- en 
post-interviews with Bart. 
 
Table 2: Differences in pre- en post-concept maps and in pre- en post-interviews from Bart in 
categories 

Categories Differences 
Educational 
philosophy 

1. “Students understanding of the subject matter is very important. I 
didn’t mention that because I haven’t the impression that they really 
understood what they were doing” (from CM[1]).  
2. “In any case, in my view students must have learned enough. There 
has to be a sufficient amount of data, the result has to be satisfactory 
and the teamwork should be good”(from Int[1]).  
3. The factor time is important: “How labour-intensive is it?” (from 
Int[1]). 

Learning and 
teaching statistics 

1. Strenghten that which is in the newspaper and on tv. Bart mentions: 
“That did go wrong. I couldn’t make that clear either” (from CM[1]). 
2. In CM[1] Bart is focused on students: “You now know what it was. 
You do not know that in advance. I automatically focus on the students. 
That is correct. intended or unintended” (from CM[1]). 
3. Statistics in the observation period is not really hard: “We use the 
chapter Statistics to catch up in time” (from CM[0]). 

Student activities  
Teacher activities 1. “I found the teaching part rather awkward. In fact, I had no time left 

because of the method we used. Perhaps therefore I skipped it 
unintended” (from CM[1]). 

 
Looking at the differences in table 2 it is obvious that the amount of differences in the 
category ‘Educational Philosophy’ and the category ‘Learning and teaching statistics’ 
are the same. It is remarkable that there are no differences in the category ‘Student 
activities’, while Bart is focused on the students during the construction of CM[1]. 
During the construction of CM[0] he also focuses on the teacher by adding the term 
‘teaching'. 
The differences are mainly caused by the experiences of Bart preliminary to the 
implementation of the educational design. Bart is skeptic about students working in a 
team, because he experienced teamwork as unsatisfying. He thinks the lessons are 
more chaotic and that he looses control. However, lesson observations give another 
impression. Bart’s lessons are well prepared with clear explanations and a great deal 
of structure. From the explanation of CM[1] and during the evaluative peer group 
meeting, it appeared that Bart doubts whether students learnt the statistical concepts 
sufficiently and if it would be better to use a more didactic teaching method. At least, 
that will save him a lot of time. It is remarkable that, although Bart does not believe 
in teamwork, he once again would choose for students working in teams. Next time, 
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he will choose smaller groups (two students) and let students compose the groups 
themselves.  
 
CONCLUSIONS 
To get an accurate insight into teachers’ practical knowledge and its changes, the 
construction of concept maps combined with the semi-structured interviews give 
important information. The classification used here gives a structural description of 
the practical knowledge of Ann and Bart. It turns out that this knowledge of both Ann 
and Bart is deep-rooted; it is derived from former experiences and confirmed by 
implementing the educational design (see Ernest, 1989). The category ‘Learning and 
teaching statistics’ embodies the most similarities in practical knowledge, but also the 
most differences. The practical knowledge in the category ‘Learning and teaching 
statistics’ depends highly on the experiences perceived during the intervention. 
Besides, the changes in this category are probably due to the experimental design.  
Even though he had a less positive experience before the implementation of the 
design, Bart's ideas about teamwork do not change. He maintains his opinion that 
direct instruction is more effective than teamwork. On the other hand, Ann could 
adjust the goals easily during the lessons. She was more flexible and she showed 
more persistence during the selected trajectory (see Pajares, 1997). Both Ann and 
Bart, however, were willing to make concessions during the peer group meetings. 
They experienced the interest of combining each other’s ideas and constructing an 
educational design to which everybody could commit.  
In a follow-up study it would be interesting to look at the different roles teachers play 
in peer group meetings. Ann, for example, appeared to be a leader, highly committed 
and motivated. Bart appeared to be a follower, trusting the ideas of Ann (Shamir, 
1991). We also need to look more closely at the categories involved in this study. It is 
difficult to categorise teachers’ statements. Furthermore we may need to use sub-
categories or rename existing categories. 
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USE OF FOCUS GROUP INTERVIEWS IN MATHEMATICS 
EDUCATIONAL RESEARCH 

Bodil Kleve 
Oslo University College 

In my doctoral work I studied three mathematics teachers in lower secondary school 
in Norway and how they interpreted a curriculum reform, L97 (Hagness & Veiteberg, 
1999). This study included methods as focus group interviews and individual 
interviews with teachers, teachers’ self estimations and classroom observations 
(Kleve, 2007). In this paper I discuss how I used focus group interviews both for the 
purpose of obtaining information from teachers about their mathematics teaching, 
about their beliefs about teaching and learning mathematics and also for the purpose 
of validating the whole research and its findings. 
Keywords: Mathematics, Ethnography, Beliefs, Focus groups, Curriculum reform 
RESEARCH METHODS FITTING INTO AN ETHNOGRAPHIC APPROACH 
If one wants to find out something, one “goes out and has a look” (Pring, 2000, p. 
33). In my research I wanted to find out how teachers interpreted the curriculum and 
how they implemented it in their classrooms. I therefore decided to enter the 
mathematics classrooms to investigate teachers’ practice, and to have focus group 
interviews with the teachers to find out what they said about L97, their own teaching 
practice and about mathematics teaching and learning.  
I conducted an empirical study using research methods fitting largely into an 
ethnographic style of inquiry. The study was a case study of mathematics teachers’ 
interpretation of the curriculum reform L97, both in terms of what they said about it 
and in terms of their classroom practice. Focus of the study was how teachers’ 
practices were related to their beliefs about teaching and learning mathematics. 
I chose methods of data gathering in line with methods suggested in the literature to 
carry out research with an ethnographic approach (Bryman, 2001; Eisenhart, 1988; 
Walford, 2001; Wellington, 2000). I used focus group interviews, individual 
interviews with the teachers, classroom observations, estimation form and teachers’ 
own writings about ideal teaching. All these research methods provided me with data 
to analyse with regard to teachers’ teaching practice and their beliefs about teaching 
and learning mathematics. Use of focus group interviews which this paper is about, 
was thus one of several research methods I used in addressing teachers’ beliefs.  
I used focus groups both for the purpose of selecting teachers for my study and as a 
research method. I contacted the school leader of a community outside Oslo. The 
teachers who participated in the first meeting were selected by her. None of these 
teachers became part of my further study. The next two focus groups were conducted 
with teachers from three different schools in another community. They were selected 
by their headmasters whom I had contacted. Four of these teachers became part of the 
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whole study and participated in the fourth focus group meeting which took place after 
the classroom observations. The process by which the teachers for my study were 
selected is beyond the scope of this paper. However, it is outlined in Kleve (2007). 
Focus groups contain elements of two research methods: it is a group interview and 
the interview is focused. The members of a focus group are invited because they are 
known to have experience from a particular situation which in this case was teaching 
mathematics. A focused interview is to ask open questions about a specific situation 
(Bryman, 2001). 
According to Krueger (1994) focus group interviews are useful in obtaining 
information which is difficult or impossible to obtain by using other methods. Using 
focus groups generally means that the researcher can intervene into the conversation 
and pose questions to probe what somebody just has said. According to Bryman 
(2001) the use of focus groups has not only a potential advantage when a jointly 
constructed meaning between the members of the group is of particular interest. 
Participants’ perspectives are revealed in different ways in focus groups than in 
individual interviews, for example through discussion and participants’ questions and 
arguments. However, Bryman pointed out possible problems of group effects in a 
focus group situation that must not be ignored. I experienced such group effects and I 
realise the importance of treating group interaction as an issue when analysing data 
from the focus groups. 
TEACHERS’ BELIEFS ABOUT MATHEMATICS TEACHING  
In my study I use the term belief, and I look upon teachers’ beliefs about teaching and 
learning mathematics and about L97 as cognitive constructions highly influenced by 
socio-cultural factors such as teacher’s own experience and the school context, and 
also influenced by the teacher’s knowledge in mathematics and about mathematics 
teaching. The insight I can get in my research into teachers’ beliefs is through what 
the teachers say and write and through my interpretations of what I have observed in 
their classrooms. I do not look upon beliefs as something that can be directly 
observed. Through the use of different theoretical lenses, my conceptions about 
teachers’ beliefs have to be inferred from what they say about what they are doing in 
the classroom; what they say they think about their practice; what they say they think 
is good mathematics teaching and what they say about L97.  
It has been important for me both to study teachers’ beliefs about teaching and 
learning mathematics and also what I observed them doing in their classrooms. 
Thompson (1992) wrote that in order to understand teachers’ teaching practices from 
the teachers’ own perspective, understanding teachers’ beliefs with which they 
understand their own work is important. I do not see a teacher’s beliefs and his/her 
practice as a cause-effect issue, but rather as a reflexive process. A teacher’s beliefs 
are influenced by his/her practice and the interactions in the classroom are again 
influenced by the teacher’s beliefs. A teacher’s practice can both act as a 
reinforcement of his/her beliefs but also as an incitement for change. 
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One component of the teacher’s interpretation of the curriculum is what s/he did in 
the classroom, the enacted curriculum (which is also influenced by incidents in the 
classroom, students’ interactions, behaviour, and so on). The other component is what 
the teacher said in focus groups and in conversations, what s/he wrote and his/her 
responses to an estimation form. It was the relation between these two components I 
studied. It is the latter I term teachers’ beliefs. 
ANALYSING DATA FROM FOCUS GROUPS 
A challenge in using focus groups was to what extent I was able to interpret the 
meanings lying behind and looking through the words the participants were saying 
and from that make inference about the teachers’ interpretation of the curriculum. In 
analysing the data from my focus groups it was important for me to be aware of the 
different levels of information the data give. On one level teachers speak from their 
inner thoughts and meanings, struggling to express what are really inside their heads, 
they speak from their individual constructions they have perceived viable in their 
own practice. On another level they speak from what they know as a teacher and 
what they say is deeply embedded in social practices of being a teacher, and thus 
socio-culturally rooted. A third level can be rhetoric: The teacher knew who I was, 
and could try either to express what s/he was thinking I wanted to hear or since s/he 
knew what the curriculum said, s/he could express that or s/he could challenge that. 
In such cases the teachers would respond to me and who I am rather than to who they 
are. When analysing what teachers said in focus groups it is important to be aware 
that the teachers’ views were revealed in different ways than in individual 
conversations. What they said could be a way of positioning themselves rather than 
trying to express their inner thoughts. Information revealed that way illuminates other 
aspects of teachers’ beliefs than aspects illuminated through use of other research 
methods. Krueger & Casey (2000) encourage use of questions leading persons to 
speak from experience rather than wishes for or what might be done in the future. 
That increases the reliability since it focuses on particular experience from the past. 
What the teachers said in focus groups conducted before classroom observations was 
not influenced by my presence in their classrooms and individual interviews. In that 
respect data from these focus groups provided me with information about teachers’ 
beliefs and practice which went beyond what was obtained through the other research 
methods. On the other hand, data from the focus group meetings were also valuable 
for the purpose of triangulation and supporting the other sources of data from the 
teachers’ utterances (individual interviews, self-estimation, writings and 
questionnaire). I audio recorded and transcribed the discussions that took place in 
these groups. Below I present some findings from these meetings which highlighted 
issues from perspectives of L97.  
FOCUS GROUPS AND TEACHERS’ BELIEFS 
I will now present an analysis of the third focus group (FG3), which was conducted 
before I started the classroom observations.  
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The teachers participating in this focus group were the four teachers in my study: 
Alfred, Bent, Cecilie and David. In addition Petter, Kari and Tom, one of my former 
students, participated. For this focus group I had prepared the following questions for 
discussion: 

• What in your opinion is important competence for mathematics teachers? 
• In what way do you relate your work to L97? 
• Has L97 inspired you to try out new activities in your mathematics teaching? 
• What is the greatest challenge in your work as a mathematics teacher?  

o What have you succeeded with? 
o What do you think you have not yet accomplished? 

I started with the first question explicitly, and aspects of other questions were 
addressed as part of the discussion. However, there was no time to discuss the last 
two parts of the fourth question. What the teachers felt they had succeeded with and 
what they found they had not accomplished, were issues explicitly discussed in the 
fourth focus group meeting later in my study. An analysis of this focus group 
interview (FG 4) is presented in the final part of this paper. 
Focus groups from a socio-cultural perspective 
How does what participants say reflect meanings of the group or society more 
widely? How does what they say reflect aspects (including criticism) of the political 
and cultural society, of dominant groups influencing the official educational 
discourse (Lerman, 2000), of their own school situation as a teacher or the one they 
had as a student themselves? Or how does what they say reflect aspects of the 
curriculum? 
To illustrate this I will provide an example from FG3 which shows use of rhetoric. 
David knew who I was; he knew I was a teacher educator; he knew I had carried out 
courses for teachers in relation with the curriculum reform. Therefore, I conjecture 
David thought I wanted to hear nice things about the curriculum. Based on his 
understanding of what L97 said, he challenged it. This could have been because he 
wanted to position himself within the group, but it could also have been because he 
really meant that L97 is not a good curriculum for the mathematics subject. Yet 
another way to interpret what he said and why can be that he did not really know 
what the curriculum was saying, and he wanted to react reluctantly to it from the very 
beginning. In the quotation below, Petter (P) indicated he was sceptical to L97. David 
(D) then said (sarcastically?): “there are some nice pictures in it”. That illustrated 
how teachers argued for or against a new curriculum, how they interpreted it. The 
language (also what was not said) was a mediating tool in the exchanges of meanings. 
Petter was the most experienced teacher in the group and had a special role here. He 
indicated something to which David responded and it illustrates how what they said 
was deeply embedded in the socio-cultural setting in the group and their experience. 
(I is me) 
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I: L97, how well do you know it? P, you seem dying to say something… 

P:  Yes, I feel I am getting hot-headed when you mention L97. 

D: There are some nice pictures in it (sarcastic?) 

I:  Now we have talked very much about how L97 is weighting the 
mathematical topics. But what about the working methods it initiates? Do 
you have any opinions about that? 

D:  Read the newspaper, many interesting writings about it there.  

[There had been written many critical articles in the newspaper about L97 recent days] 

I: But what do you mean? 

D:  I am critical to the correct pedagogical view we are served from above. I am 
not sure if it is right. 

I:  Can you say some more about it? 

D: I believe that maybe pupils learn most if they have a teacher, who knows 
their things, is enthusiastic, finds teaching being fun, who is a good 
motivator, and good in making the pupils function together. I really believe 
that the learning outcome becomes better then than if the students have 
lessons outdoor, working schedules and so on. I dare being that old 
fashioned, I think so. 

P:  One must be allowed to disagree with L97? Or? 

D:  Disagree, and say it over and over again, everywhere you are 

I:  I want to know what your disagreement is about. What is the pedagogical 
view coming from above? 

D: I think it implies knowledge’s loss of flavour. Projects where pupils find 
something on the internet print it out and read it with a few replacements of 
words in front of the whole class.  

I: Is that what L97 says? 

D:  No, but that is what happens.  

My experience with Petter and David, and to a certain degree also Alfred (he was not 
so outspoken as the other two) in this focus group was that they were supporting each 
other with regard to a kind of ignorance towards L97. They had been teaching 
mathematics for many years, and they expressed their frustration of how the “old” 
kind of mathematics, especially algebra, was not in the curriculum any more to the 
extent they wished. Their mutual support in these views expressed in the focus group 
can be looked upon as communication of a rhetorical kind. 
Next I will provide an example of how what teachers said in the focus groups 
reflected aspects of their experience as a teacher. Reflecting on the utterance from 
Bent below, he talked from a socio-culturally related everyday experience. Bent 
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offered us something about the way he operated in the classroom. He spoke from his 
experience as a teacher, and what he had learned from this experience. From the 
quotation below it may be hard to understand what he meant, which demonstrates his 
struggle to express his experience. He said that teaching from the board could start 
off from a simple level. However, very soon what was presented from the board 
became too difficult for some students whereas others wanted to proceed even 
further. This illustrates the challenge of having students with different abilities in the 
same class. He said: 

I think a typical course, when you shall start with a new topic, is to teach from the board 
in the beginning and to start with something simple and then build it up to a certain level, 
and to work on tasks parallel to that. At a certain level you just have to stop the lecturing 
and separate. Some disappear far up and some remain on that level if they have at all 
reached the level they should. After that it is almost impossible to deal with teaching. 

Below I will discuss how Bent went beyond his experience and offered us some of 
his reflections on his teaching.  
Aspects of teachers’ confidence 
When studying the transcripts, which I had imported into NVivo, I noticed how the 
teachers expressed differing degrees of confidence throughout the discussion. Bent 
suggested the ability to motivate the students, and the importance of having 
mathematical knowledge to get an overview of the subject oneself, as competencies 
for a mathematics teacher. He used the expression “I am trying to …” when relating 
these competencies to his own practice: “I am trying to relate to practical issues, 
trying to make a relation to real life in a way, however I don’t always manage”. He 
was “trying to” make the students see the relevance in what they worked with; he was 
“trying to” convey the mathematics’ intrinsic value, especially when it was not so 
easy to relate the mathematics to students’ everyday life. He also said that he was 
trying to be enthusiastic. His use of words when speaking from his classroom practice 
revealed that he was not sure if he succeeded in doing what he thought was 
important, but he was trying. Continuing the quotation from Bent above, he went 
beyond his everyday experience in saying something about the issues that arose for 
him when he operated in certain ways, and his thoughts about it. Bent also revealed 
some of the “weaknesses” he perceived in himself as a teacher. He had tried out 
something but through what he said he demonstrated awareness that this might not 
have been the right thing. 

Then you have to walk around giving tasks. Last year I optimistically tried MUST tasks, 
OUGHT tasks and MAY tasks, that they should try to stretch themselves, but I didn’t 
succeed in making it work. It turned out to be that they did what they had to (MUST) 
(agreement in the focus group), and some just tried OUGHT. But if they had homework 
in other subjects, they chose the less challenging way. So then it was easier to do as P 
says, give many tasks and rather reduce for those who need it. It is easier to put pressure 
on those who need challenges.  
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By saying this Bent also demonstrated that he had reflected on his own practice as a 
teacher. Being able to put his weaknesses as a teacher on the spot like this and 
sharing it with me and the other teachers in the group, I do not interpret as lack of self 
confidence but rather as reflecting a teacher who had faith in himself and had self 
confidence enough to be able to see his own teaching from more than one point of 
view. He had been able to step aside to consider his own teaching.  
Bent also offered us his reflections on different levels of students’ learning of 
mathematics, in which the other teachers consented, but without any further 
discussion. Bent said: “I have a feeling that they learn on different levels”. He said 
that on one level they learn to solve a problem theoretically and perhaps manage to 
solve a similar problem in a same kind of context: “you have learned it in one setting 
on one level”. He said: 

The next level is being able to carry out what you have learned theoretically for example 
about symmetries, and applying that when searching for and finding symmetrical patterns 
in a carpet: Going out looking in math-morning [which was the project work he talked 
about], having to apply it, then you learn and experience on a higher level. 

He called this an “application competence”. On yet another level you learn by 
expressing a problem orally. He said: “Formulating a problem for others is yet one 
level of learning”. 
When Tom said he felt that he did not know how to make students understand, 
especially those with “two”1 in mathematics, David responded:  

I believe you’ll have to live with that as a teacher. It is classical. You can work with some 
students throughout three years and they do not see /understand /remember the difference 
between 2x+2x and xx 22 ⋅ . Even if you stand on your head and invent all possible 
variations you can think about there will still be some I believe [who will never manage], 
regardless of how clever you are as a teacher.  

By saying this David demonstrated confidence as an experienced teacher. He spoke 
from his own experience as a teacher, an experience he knew that Tom did not have. 
This utterance also reflects a view that not all mathematics is for everybody, and that 
you cannot put the responsibility for this (the “two-students” not understanding or 
remembering) on the teacher. Through his long experience as a teacher, David had 
learned to accept this and he was now telling that to Tom who was a younger and less 
experienced teacher. 
Cecilie also demonstrated self-confidence when telling about how she was handling 
the issue that students with different abilities in mathematics were placed in the same 
class. She had mixed two classes and grouped them according to interest in 
mathematics. She expressed her disagreement with Tom who had said that clever 

                                           
1 He referred to getting the grade (mark) 2 in mathematics which is the lowest passing grade. 6 is the best grade.  
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students will always manage, and she recommended the other teachers to group the 
students according to abilities (“interests”) the way she was doing. 
The above discussion about aspects of teachers’ confidence demonstrates how such 
information can be obtained through the use of focus groups. The way in which 
teachers expressed their confidence in own teaching practices highlighted issues of 
their teaching practices and informed my investigation of how they responded to a 
curriculum reform.  
Mathematical focus 
To highlight issues of my study of teachers’ mathematics teaching, it was useful to 
study what aspects of mathematics they talked about in the focus group. One 
significant aspect throughout the conversation in the focus group was that algebra 
was the mathematical focus teachers mentioned most frequently when expressing 
their meanings and exemplifying from their teaching. David referred to algebra 
several times and was very concerned about algebra having been toned down in the 
new curriculum and said that he put more weight on algebra, equations and functions 
than L97 suggests. He also said that he would keep doing it because some students 
would need it for further studies. David said he was not so eager to force all work 
within mathematics into an everyday context: “I am more concerned that 
mathematics is a ‘logical and playing subject’. When the students have done a huge 
algebra task and say ‘YES I have managed’, that makes me happy”. 
Bent also referred to algebra when expressing the importance of the mathematics’ 
intrinsic value. He expressed the value in itself of having the knowledge to solve an 
algebraic task or equation. Furthermore, Bent talked about having carried out a 
project work in mathematics which had been very successful. L97 encourages 
interdisciplinary project work and also project work within each subject. It was one 
of the latter in mathematics Bent referred to.  
Cecilie mentioned algebra together with mathematics history as exciting topics to 
work with in her teaching of mathematics.  
With regard to my study, what the teachers said in this focus group and how they said 
it gave me information about how the teachers responded to L97 in terms of what 
they were saying about it and what they were saying about their own classroom 
practice. The focus groups highlighted key issues and gave me a starting point for 
working with each of the teachers, Alfred, Bent, Cecilie and David, who became part 
of my further study.  
FOCUS GROUPS FOR THE PURPOSE OF VALIDATING THE RESEARCH 
The last focus group I had with the teachers who had been part of my study took 
place towards the end of my work with them. I have chosen to comment briefly on 
my findings from Focus group 4 for the purpose of cross case-analysis and also to 
illuminate and validate my findings from the rest of my study with the teachers. 
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I had asked the teachers to prepare two issues to share with the group; first, one issue 
they felt they had succeeded in carrying out as a mathematics teacher and one issue 
they felt they not yet had accomplished. They found the task difficult. However, after 
a few minutes discussing and reflecting on the difficulty of the task, Cecilie 
volunteered to start with hers. She felt she had succeeded in challenging and 
motivating the clever students, which is in accordance with what she had expressed in 
our conversations. The task she felt she had not yet accomplished was enabling the 
students to copy out their written work in mathematics clearly. Bent responded by 
expressing that more important for the students than the written presentation of 
mathematics is for them to understand when to multiply and when to divide in 
working it out. This emphasises Bent’s focus on students’ conceptual understanding 
which I also found through my work with him in the classroom and in our 
conversations. 
Bent chose to present issues from two of the lessons I had been observing with regard 
to what he felt he had succeeded in and what he not yet had accomplished. His 
presentation of the issues revealed that he had been reflecting on these lessons. About 
the fraction lesson he said that he felt he had succeeded to a certain extent. However, 
he could have done more with it. With regard to the use of concrete materials, he 
expressed a disappointment that the effect had not been as intended. It had however 
been better in the other 9th grade class he was teaching. He thus expressed a feeling of 
having succeeded with the use of concrete materials in that class (in which I did not 
observe). This suggests that the complexity of the classroom and the classroom 
discourse often influence the outcome of an activity, and thus the enacted curriculum 
which is jointly constructed by the teacher and the students and the materials used.  
Presenting what he felt he had been successful with, David said: “I have managed to 
make them cleverer in doing percentage calculations”. This emphasises how he 
looked upon himself as conveying mathematics to the students and that students’ 
learning is dependent on the teacher’s ability to explain. When he was asked by the 
others in the group how he had done it he said: “It is just to explain as well as 
possible”. This emphasises further how he looked upon explaining as the most 
“efficient” teaching strategy, which also characterised his teaching. However, he also 
offered an elaboration of how he had done it which revealed that he as a teacher was 
consciously systematic when presenting mathematics for his students. He said: 

I have been very systematic with percentage types 1, 2, 3, 4, 5. Therefore, when one of 
the types turns up, I refer to the type. Number 1 is like “3 students absent how many 
percent?” Then it is in connections with changes, then having to calculate backwards, and 
then comparing two numbers.  

David’s systematic way of preparing the mathematics to be taught was a feature in 
his teaching.  
With regard to what he had not yet accomplished, David focused on kinds of errors 
students made, especially how they used the equal sign wrongly, and he also 
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supported Cecilie in her suggestion: how to enable students to copy out mathematics 
in a lucid written way which clearly showed how they had solved the task.  
What was said in this last focus group emphasises my findings from the analysis of 
the individual teachers: Cecilie felt she was successful in her work with the clever 
students, but had difficulties enabling students to present written mathematics with a 
clear overview; Bent reflected upon both success and not-yet-accomplished aspects 
of the issues presented; and David felt success in explaining and had not yet found 
out how students could avoid making errors. For detailed portraits of the three 
teachers see Kleve (2007).  
This last meeting provided me also with information beyond what I had observed in 
the classroom, and what I had talked with the teachers about in the conversations. 
Bent offered his reflections around his work with fractions and use of concrete 
materials. Cecilie shared her difficulties with enabling students copying out their 
written work clearly, in which David supported her. By challenging David about 
what he had done to make students become good in percentage calculations we were 
initiated into a systematic way of preparing his teaching. This demonstrates that the 
use of focus groups provide researchers with information beyond what can be 
obtained otherwise. 
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We consider that the processes of interaction in a collaborative context of 
professional development have a significant influence on the degree of involvement 
of one of the participating teachers, and modulate the influence the context exerts on 
her professional development. We present an instrument for the analysis of 
interactions, which was developed in the course of this research and which aims to 
capture the dialogical nature of the discourse through three defining features 
distributed across six columns: the unit of information (utterance); the co-
participants (the teacher and Interactant); and the contexts providing the sense of 
each contribution (Episodes, Action and Nature of the action). We also include a 
column for Content to complete the analysis with the epistemological input of each 
contribution to the discourse. 
Keywords: analysis of interactions, collaborative context, professional development, 
dialogical approach, mathematics education. 
INTRODUCTION 
This paper is part of a longitudinal study researching the professional development, 
in terms of mathematics teaching, of new entrant into primary teaching participating 
in a collaborative research project (PIC) (Muñoz-Catalán et al., 2007). 
The collaboration is composed of two experienced primary teachers, three 
researcher-trainers, and Julia, the subject of the study (from her first year of teaching 
onwards). The group meets once a fortnight for three hours, during which tasks are 
carried out with the aim of deepening understanding of our own classroom practice, 
as well as the learning and the teaching of mathematics from a problem solving 
perspective. Until now, this project had remained the background to our studies, 
constituting a privileged source for data gathering (Climent & Carrillo, 2002). In the 
case of Julia, however, given the relevance that this project has proved to have for 
understanding her professional development, the analysis of Julia’s interactions 
within the group has emerged as a key element for understanding not just the what, 
but also the how of said development. We believe that in and through the interaction, 
Julia goes about constructing her interpretation of the suggestions, critiques and 
knowledge brought into play, an interpretation which moulds the formative potential 
of the PIC. 
So as to analyse Julia’s interactions in the group, we have devised an instrument 
which is presented in this paper, and which we refer to as IMDEP (the Spanish 
acronym for Instrument for the analysis of Teacher’s Interaction in a context of 
Professional Development). It has been devised during the research process 
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following our methodological perspective of allowing the data to speak (Strauss & 
Corbin, 1998), and consonant with our dialogic perspective of the discourse (Linell, 
2005). 
 

A DIALOGIC APPROACH TO THE ANALYSIS OF THE DISCOURSE 

We consider that knowing implies an interaction with the object of knowledge, 
through which the subject interprets and reconstructs the meanings in play in the 
process. Following G. H. Mead and J. Dewey (in Corbin & Strauss, 2008), 
knowledge is created through action and interaction, for which reason we attribute a 
relational nature to it. According to this perspective, we can identify cognition with 
communication in that the interaction is an essential requirement for each to develop. 
While communication necessarily requires an interpersonal exchange, cognition can 
occur in solitary activities such as reading, in which the interaction is with the text. 
Communication and cognition, then, are two aspects of the same phenomenon, and 
are dialogically interlinked (Linell, 2005). 
Our interest in Julia’s construction of meaning activities within the group led us to 
approach the analysis of interactions with a dialogic conception of discourse (Linell 
& Marková, 1993, Linell, 1998, 2005). We recognise that people’s responses to 
others’ actions depend on the meaning they attribute to them. From this perspective, 
human dialogue is more than the sum of individual discourse acts; it is a sequence of 
activities with the aim of establishing mutual understanding on the topics under 
discussion. In this sense it is a question of shared activities, coordinated amongst all 
the members and mutually interdependent (Linell & Marková, 1993; Marková & 
Linell, 1996). The semiotic mediation acquires a key place in the communication, 
which “may be understood as some kind of abstract third party in the dialogue” 
(Linell, 2005, p. 10).  
The relation between discourse and its context is one of interdependence: a particular 
discourse derives a large part of its sense from the specific context, but at the same 
time “these contexts would not be what they are in the absence of the (particular) 
discourse that takes place within them” (Linell, 2005, p. 7). This interdependence is 
established at two levels: on one hand, the specific time and place in which the 
interaction takes place (situation); on the other, the sociocultural praxis governing the 
specific situation. This is what Linell (2005) refers to as the double dialogicality of 
discourse.  
Following the dialogical approach (Linell, 2005), the principle features we can 
attribute to conversation are interaction, context and the joint construction of 
meaning, semiotically mediated.  
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THE INSTRUMENT FOR ANALYSING INTERACTIONS: IMDEP 
We can understand professional development as defined by an increased awareness 
of the factors bearing upon educational phenomena and contributing to a better 
understanding of one’s own practice (Krainer, 1999). Practice becomes a source for 
development when the teacher becomes actively involved in the process of 
questioning their own practice (Jaworski, 1998), and develops a critical, reflexive 
attitude. In this conceptualisation, reflection becomes medium and referent of the 
development (Climent, 2005; Llinares & Krainer, 2006).  
Analysing Julia’s interactions in the PIC allows us to focus on her construction of 
meaning within the frame of shared construction. Our focus, then, is not on the result 
of this social construction, but rather the individual processes of construction within 
the said social construction. We concur with recent studies, such as Llinares & 
Krainer (2006) point out, in considering contextual and organisational elements as 
key to accounting for teachers’ learning. 
This analysis leads to a better understanding of how reflections deriving from the 
group influence individual understanding and performance. The features of Julia’s 
contributions to the discourse provide clues to the meanings which she attributes to 
the joint understanding under negotiation at each stage of the conversation. 

Development, structure and features 

This instrument emerged during the research process in close relation with the data 
(Strauss & Corbin, 1998). Our focal point was Julia, and hence our analysis of 
interactions centred on her contributions to the discourse. In the same way that 
dialogical properties can be attributed to a single contribution to the discourse, 
without considering previous and subsequent contributions (Linell & Marková, 
1993), so can they equally be applied to the set of contributions by a single member, 
namely Julia.  
Audio recordings are made of all the PIC sessions and fully transcribed, recording the 
contributions of all members. The transcription does not include gestures, but 
provides a verbatim record of all spoken language, along with all information 
concerning the discourse relevant to our understanding. The presence of the 
researcher in the PIC sessions ensures a better interpretation of each contribution, 
given that the dialogue is constructed in and through the processes of interaction and 
in relation of interdependence with the contexts. 
With respect to analysing Julia’s contributions to the discourse, we were interested in 
recording to whom they were directed, in what moment of the session, the form in 
which the action was expresses, its nature and the content it conveyed. These 
concerns became questions which guided the close inspection of the data, and which 
resulted in the instrument below: 
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Utterance Episodes Julia Action Interactant Nature of the action Content
       

Instrument for analysing Julia’s interactions in the discourse in a training context 
The instrument aims to capture the dialogical nature of the discourse, and covers the 
three key elements felt to be intrinsic to all the interaction: the unit of information 
(the column labelled Utterance), the co-participants (Julia and Interactant), and the 
context which provides the meaning of each contribution (Episodes, Action, Nature of 
the action). An additional column, Content, was added in the interests of linking the 
sociological aspect of each intervention to its epistemological contribution to the 
dialogue. 
We consider the contribution as the basic unit of interaction, equivalent to the turn 
with respect to dialogue (Linell, 1998). A numerical code was assigned to each of 
Julia’s contributions, indicating the order in which each appeared in the discourse. 
This code is the content of the Utterance column. 
The columns Julia and Interactant refer to the co-participants in the communicative 
exchange under analysis at any particular moment. Each contribution must be 
understood in its sequential environment (Linell & Marková, 1993) as it is dependent 
on previous and subsequent contributions. As a result, we understand the participant 
at in each turn to be both emitter of their own contribution and receiver of the 
previous contributions of others (including those not specifically directed at them). 
Nevertheless, when we broke the group interactions down into contributions during 
the analytical process, we identified two types of operational interlocutors for each of 
them: the person originating the contribution, that is Julia in all cases so far as this 
study is concerned, and the addressee of the contribution, whom we designate with 
the generic label interactant (whether the group as a whole or some member(s) of it). 
The transcript for each session was also analysed from the point of view of content, 
with units of information being identified. The code for these units corresponding to 
each contribution comprises the column Julia. Whilst it might be observed that this 
column could be substituted for that of utterance, given that it is essentially a new 
way of codifying the same contribution, each column nevertheless fulfils different 
analytical aims: the utterance column focuses on each contribution from a discursive 
perspective; the Julia column locates Julia’s contributions with a view to analysing 
their content and so serves as a bridge between analysis of the interactions and 
analysis of the content (both at different moments of analysis, but subsequently 
integrated into a joint interpretation). 
We now turn our attention to the third item we have highlighted as key to the 
processes of interaction – the context (as reflected in the columns Episodes, Action 
and Nature of the action in the instrument). 
We are aware of the variety of factors which influence and interact with each other at 
each moment of the interaction. Strauss & Corbin (1994) represent this influence as a 
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conditional matrix, formed by concentric circles corresponding to distinct aspects of 
the world: “In the outer rings stand those conditional features most distant to 
action/interaction; while the inner rings pertain to those conditional features bearing 
most closely upon an action/interaction sequence” (p. 275). Out of all the circles we 
are interested in those that are most germane to each session and at each moment of 
the interaction. This leads us, on one hand, to structure each session into Episodes, 
and on the other, to consider the sequential environment, that is, the simultaneous 
dependence of each utterance on the adjacent contributions (Action and Nature of the 
action). The activity frame (represented in Episodes) and the sequential environment 
together comprise the double contextuality of each contribution (Linell & Marková, 
1993; Linell, 1998). 
We define Episode as any segment the session can be divided into which coincides 
with a change in activity or in the aim of the work being undertaken. In the case of an 
episode being particularly long, or involving various self-contained discussions, we 
then divide it into sub-episodes, consistent with Schoenfeld’s (2000) procedure for 
video analysis. 
The Action column refers to the kind of response Julia makes to previous utterance, 
emphasising the responsive nature of each contribution. Given that the actions are 
defined by their contextual relations, we conceive the action as an inter-action (Linell 
& Marková, 1993). Four different actions emerged during the course of analysis:  

Respond The act of reciprocating appropriately to what has been asked, including 
those questions expressed in an indirect way.  

Ask The act of questioning another in order to ascertain their opinion or 
knowledge of some topic; indirect questions are also included. 

Answer The act of replying to statements directed specifically to her. 
React The act of providing a response to a statement which is not specifically 

directed at her. This category includes both responses which contribute to 
the overall communicative goal in hand and those which are autonomous.

Table1. Principle actions deriving from the analysis 
Although we consider that all contributions imply an active interpretation on the part 
of the emitter, this latter can adopt a role which is receptive with respect to others’ 
turns, that is a responsive role (when responding or answering), or one which 
impulses or promotes new turns, that is an initiatory role (when asking and reacting). 
Hence, these inter-actions provide an indication of the degree of initiative and the 
role adopted by Julia in the unfolding of the discourse.  
The column Nature of the action seeks to capture the communicative function of each 
contribution to the discourse. Although we recognise the multifunctionality of these 
(Linell & Marková, 1993), we have generally chosen the one (or ones) which we 
consider best capture Julia’s role in the discourse dynamics at each specific point. 
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Unlike the Action column, here we realise an interpretative rewriting of each 
contribution, headed by the verb which better describes its function in the discourse. 
A list of the verbs which emerged during the course of the analysis was compiled, 
from the definitions of which we then selected the usage applicable to Julia’s 
contributions (see appendix). 
Below is an extract from the table for analysing interactions, corresponding to a PIC 
session in which a video of Julia’s practice is analysed. 

Example of the use of the IMDEP instrument 
Given that it is an instrument for analysing interactions in a context of professional 
development, an analysis of the discursive dynamics of the interactions is insufficient 
without the addition of the epistemological contribution of each turn to the discourse. 
For this reason we have included the content column, in which we briefly outline 
what each contribution deals with, like a signpost for later interpretation. 

THE INFLUENCE OF THE PIC IN PROFESSIONAL DEVELOPMENT 
THROUGH THE ANALYSIS OF INTERACTIONS 

The PIC, as a collaborative environment structured according to the principles of 
professional development rather than training (Ponte, 1998), exerts its influence 
through the joint pursuit of professional activities through means of debate and 
reflection. In this context, Julia was not required to assimilate the knowledge and 
information transmitted by others, but rather to participate in the collective 

Int. Episodes Julia Action Interactant Nature of the action Content  

62 

S8. 78  Answers Researcher-
trainer (R) 1 

Agrees that the activity was 
difficult and that the pupils 
were tired and did not yet 
have the left/right distinction 
fully assimilated. 

Difficulties 
that she 
associates 
with the 
activity 

63 
S8. 79 Responds R2 Points out the objectives of 

the worksheet 
Objectives 
of the 
worksheet 

64 

S8. 80 Reacts R1 Points out that besides 
taking the objectives from 
the book, as other teacher 
affirms, she also adds her 
own. 

Objectives 
of the 
worksheet 

65 S8. 81 Asks R1 Understands what he is 
asking about. 

 

66 

Continuing 
the analysis 
of G7, 
begun in 
the 
previous 
session 

S8. 81 Responds R1/Inés 
(experienced 
teacher) 

Evades direct answer. 
Explains other occasions in 
previous years when she had 
tackled the topic. 
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construction of meanings which takes place in the interaction – a construction which 
is assimilated by Julia via a new personal interpretation. 
Julia’s processes of assigning meaning are mediated by various factors and are 
produced in and through the interaction. Some of these factors are inherent in Julia 
herself, others are characteristic of the PIC and its members, but all of them operate 
concomitantly with others which arise in and are determined by the interaction. It is 
in the interaction that the role of Julia within the group is defined, along with the 
degree of confidence she establishes with each member, the image she has of them 
and they of her, and so on, aspects which influence how Julia accepts the reflections, 
opinions, suggestions and critical analyses about her practice. In short, we consider 
that the processes of interaction determine the extent to which Julia is involved in the 
group and hence, mediate the role which the PIC has in her reflection and 
professional development. 
Our instrument of analysis provides us with information on: 
-At what points in the session Julia tends to contribute and the degree of involvement 
towards her professional development within the group. 
-Whether she tends to act on her own initiative or in response to others’ turns 
explicitly directed to her; that is, the way in which her role develops during the 
course of the interaction (initiatory or responsive). 
-Whose critical comments she receives best and whose she seems not to accept; 
likewise, towards whom she shows a greater interest in knowing their thoughts or 
opinions. What features characterise the contributions of these members such that 
these reactions happen. 
-After or before whom she usually contributes and why. 
-Depending on the episode or activity to be done, what functions predominate in 
Julia’s contributions; in addition, the relation between the function of her actions and 
the people to whom they are directed. 
-The relation between the actions and the nature of the contributions and the episodes 
framing them. For example, whether there is a difference in Julia’s contributions 
when a video of herself, or of the other teacher, is analysed.  
-The relation between the characteristics of her contributions and the content under 
discussion at any moment. What kind of content would she seem to give more 
importance to according to the predominating function or action. 
It can be seen from this perspective that the analysis of interactions allows us access 
to the meanings which Julia constructs and which she attributes to the various 
contributions at each point in the conversation, providing us with clues as to how the 
PIC shapes her professional development. Consequently, we feel that the interactions 
are the means through which Julia develops in the group and in turn the point of 
reference by which we as researchers gain access to how the PIC exerts its influence.   
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CONCLUSION 

This paper presents the instrument for the analysis of Teacher’s Interaction in a 
context of Professional Development, which has been developed in the course of the 
research we are conducting. The IMDEP shows itself to be a useful tool for accessing 
and understanding the meaning that Julia constructs at each point of the interaction, 
with a view to gathering clues to the role that the PIC plays in her professional 
development. We have explained the theoretical grounding of the instrument, both 
from the perspective of our epistemological position and from our dialogical 
conception of discourse (Linell, 1998, 2005).  
The IMDEP represents a contribution in three senses: first, our interest does not lie 
with the communication between students working on groups or between the teacher 
and students as is usually the case in the research literature (Bjuland, 2004; Cobb et 
al., 1997), but rather it lies in the interactions between educational professionals in a 
context of professional development. Secondly, the adoption of dialogical approach 
to the analysis of interaction tends to involve an interest in the joint construction of 
knowledge taking place in the group, in place of the attribution of meaning of one 
member participating in the group, as is our case. Finally, we aim to establish a 
relation between the interactions arising at each point of the communicative flow of 
the PIC and the extent of its influence on professional development, which allows us 
to gain insights into how social contexts operate upon it. 
We intend to continue deepening in the analysis of interactions in contexts of 
professional development and making improvements to our instrument. In future 
papers we hope to illustrate and discuss examples of how the IMDEP is helping us to 
understand how the PIC is having an influence in Julia’s professional development. 
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APPENDIX: NATURE OF THE ACTION (ORGANIZED BY ACTIONS)1 
     
 RESPOND  ASK  
 Accept Confirm Inform  Know: Hear or obtain information about something  
 Clarify Disagree Show openness  Understand: comprehend  
 Analyse Explain Propose  Question Request confirmation Propose  
 Offer idea Express doubt Reaffirm   
 Agree (Re)formulate Reject  

Provoke  
 

 Joke Indicate Recognise    
 Express lack of knowledge    
 Deny     
    
 

Evade response: Avoid an awkward question or one to which 
the addressee lacks a reply (assigned together with Offer idea, 
Agree, Explain and Reaffirm)  

   

     
REACT AND ANSWER 

Accept Express doubt  
Clarify Express surprise 
Analyse Reformulate: Reduce a proposition to clear and simple terms. 
Offer idea Point out: Briefly give information or an opinion. 
Agree: State truth or appropriacy of previous affirmation or proposition. Inform 
Joke: Express own idea humorously, point out nonsensical aspect of some 
previous utterance, or respond ironically to an utterance. 

Show openness: Display a favourable attitude towards carrying out 
a proposed or an assigned action. 

Comment on 
Confirm  

Request confirmation: Request further proof of veracity of an idea 
or the acceptance of a suggestion, idea or proposal. 

Correct Propose 
Question: Challenge the basis of an affirmation, suggesting the reasons 
and foundations.  

Reaffirm: Ratify what has been said. Explain one’s own response, 
arguing in favour of a position which appears not to be accepted or 
shared by the others. 

Disagree Reject 
Explain Recognise 
 

                                                 
1 Only the verbs with a particular nuance in the context of this paper, or which can have several meanings, are defined here. 
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ADAPTING THE KNOWLEDGE QUARTET IN THE CYPRIOT 
MATHEMATICS CLASSROOM  

Marilena Petrou 
University of Cambridge and The Open University, UK  

This paper builds on the work carried out by colleagues on using an empirically-
based conceptual framework, the Knowledge Quartet, as a tool for the analysis of 
mathematics lessons taught by preservice teachers in the UK. This framework 
categorises situations from classrooms where mathematical knowledge surfaces in 
teaching, and was used with the aim of understanding what relationship can be 
observed between Cypriot preservice teachers’ mathematical knowledge and their 
teaching. In particular, in this paper I suggest that the framework needs to be 
supplemented in order to incorporate the interpretation of mathematics textbooks by 
teachers. I illustrate this by giving examples from lessons taught by participants in 
my study. 
Key-words: Teacher Knowledge, Knowledge-Quartet, Textbook 

INTRODUCTION  
The object of the study discussed is based on the classic distinction by Shulman 
(1986) between two aspects of teachers’ mathematical content knowledge, Subject 
Matter Knowledge (SMK) and Pedagogical Content Knowledge (PCK). PCK 
includes the representations, examples and applications that teachers use in order to 
make the subject matter comprehensible to students. SMK consists of substantive and 
syntactic knowledge (Schwab, 1978). Substantive knowledge focuses on the 
organisation of key facts, theories, and concepts and syntactic knowledge on the 
processes by which theories and models are generated and established as valid.  
From a variety of perspectives, research in the field of preservice teachers’ 
knowledge focuses on their SMK and PCK. Some researchers have investigated 
preservice teachers’ understanding of different topics in mathematics (Ball, 1990; 
Philippou and Christou, 1994; Rowland, Martyn, Barber and Heal, 2001) and others 
have focused on investigating the relationship between SMK and PCK and teaching 
(Rowland, Huckstep and Thwaites, 2004; Hill, Rowan and Ball, 2005) and have 
suggested that content knowledge might affect the process of teaching. These studies 
have shown that preservice teachers’ substantive knowledge of mathematics was 
significantly better than their syntactic knowledge, and this was reflected in their 
teaching.  
In Cyprus, concern among policy makers about students’ achievement in mathematics 
has grown recently, and many attempts have been made to improve the instructional 
practices in public primary schools. Attempts of improving mathematics teaching in 
Cyprus have focused on learners and the curriculum, rather than focusing on teachers. 
Research on teacher knowledge has been neglected in the Cypriot literature. The few 
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studies in this field (e.g. Philippou and Christou, 1994) focused on investigating 
aspects of Cypriot preservice teachers’ substantive and syntactic knowledge of 
mathematics and have shown that the participants were poorly prepared to examine 
different mathematical concepts and procedures conceptually. However, if we want to 
understand better what goes into teaching mathematics effectively, the challenge is to 
identify the ways in which preservice teachers’ knowledge of mathematics, or lack of 
it, is evident in their teaching. No one type of knowledge functions in isolation in 
teaching and thus, research in the field of teacher knowledge should focus on 
understanding the relationship between the different kinds of their knowledge. The 
identification of this relationship will help teacher educators to assess teacher 
preparation programmes, and to improve them where necessary. The study reported 
in this paper was carried out in the context of my ongoing doctoral study which is 
centred on understanding the relationship between Cypriot preservice teachers’ SMK 
and PCK to teaching. In particular, the focus of this paper is on reporting results 
related to one of my research questions. I discuss whether the original 
conceptualisation of the Knowledge Quartet was relevant and adequate in the analysis 
of teaching in the Cypriot primary mathematics classroom.  

THE STUDY  
My approach to investigating the relationship between Cypriot preservice teachers’ 
mathematical knowledge and teaching involved a mixed-methods approach. My 
study entailed four data collection methods. First, a questionnaire was designed to 
examine Cypriot preservice teachers’ SMK of mathematics. 104, final year university 
students, following a teacher preparation programme, completed the questionnaire. It 
aimed to collect information about the participants’ beliefs about mathematics and its 
teaching, and their substantive and syntactic knowledge of it. As a part of the 
questionnaire the participants were asked to respond to ten mathematics items that 
assessed their SMK. The aim of the interview questions was firstly to clarify the 
questionnaire data and second to gather some information about the interviewees’ 
PCK of mathematics. The interview questions proposed two hypothetical scenarios 
that were relevant to teaching mathematics, representing real classroom situations 
which a teacher might encounter while teaching mathematics. The interview tasks 
provided information about what teachers know and believe about mathematics, and 
also about the knowledge and skills that they draw on in making teaching decisions.  
While these interview tasks represented real situations in the mathematics classroom, 
their context remained hypothetical, and did not provide information on what teachers 
actually do in the classroom and how their knowledge of mathematics influences their 
teaching decisions in classroom where they interact with their students. This kind of 
information was provided by observing participants teaching mathematics in the 
classroom. Five of the interviewees were chosen to be observed while teaching 
mathematics. In Cyprus a large part of the teacher preparation programme (a four 
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year university course) is spent in teaching in schools under the guidance of a school 
based mentor.  
For the observations I used a framework that emerged from observing several lessons 
that were taught by preservice teachers in England (Rowland et al, 2004). This 
framework is called the Knowledge Quartet and is a tool that can be used in order to 
describe the ways in which SMK and PCK are revealed through teaching. As a part of 
my study I also evaluated the adaptability of the framework in the Cypriot classroom.   
Finally, the data from the questionnaire, interview and observations were compared 
with data from the analysis of mathematics textbooks in Cyprus. Textbook analysis 
provided information on what policy makers consider desirable knowledge for 
teachers. However, what is considered desirable knowledge for teachers is often 
different from the knowledge that teachers use in and reveal through practice. A 
comparison of these two kinds of knowledge is considered to be helpful in modifying 
and improving teacher preparation programmes.  
The combination of four methods and their integration during the interpretation phase 
provided strong inferences and produced a more complete understanding of the 
relationship between participants’ content knowledge and their teaching. In the 
remainder of this paper I will focus on just one aspect of the study described here, 
and discuss issues related to the adaptability of the framework in the context of the 
Cypriot classroom.  

THE KNOWLEDGE QUARTET 
At the CERME meeting in Spain, Tim Rowland presented a paper (Rowland, 
Huckstep and Thwaites, 2005) about the Knowledge Quartet and suggested that this 
can be used as a tool for classifying ways that preservice teachers’ knowledge comes 
into play in the classroom. At the following CERME meeting in Cyprus Fay Turner 
(Turner, 2007) also presented a paper about the Knowledge Quartet and explained 
how she is currently using the framework as a tool for professional development with 
a group of early career teachers.    
The Knowledge Quartet consists of four dimensions, namely, Foundation, 
Transformation, Connection and Contingency. Foundation consists of trainees’ 
knowledge, beliefs and understanding of mathematics. Transformation concerns 
knowledge-in-action as demonstrated in the act of teaching itself and it includes the 
kind of representation and examples used by teachers, as well as, teachers’ 
explanations and questions asked to students. Connection includes the links made 
between different lessons, between different mathematical ideas and between the 
different parts of a lesson. It also includes the sequencing of activities for instruction, 
and an awareness of possible students’ difficulties and obstacles with different 
mathematical topics and tasks. Finally, Contingency concerns teachers’ readiness to 
respond to students’ questions, to respond appropriately to students’ wrong answers 
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and to deviate for their lesson plan. In other words it concerns teachers’ readiness to 
react to situations that are almost impossible to plan for.  
Below, I argue that when adapting the framework in the Cypriot mathematics 
classroom, this needs to be supplemented by consideration of the use and 
interpretation of mathematics textbooks. I give three examples from lessons taught by 
participants in my study to illustrate this. 

ADAPTING THE KNOWLEDGE QUARTET IN THE CONTEXT OF THE 
CYPRIOT CLASSROOM    
When adapting the Knowledge Quartet it was not assumed that the knowledge used 
by Cypriot and English teachers is the same. Therefore, as part of my study I 
evaluated the adaptability and the validity of the Knowledge Quartet. In this section I 
describe the appropriateness of the Knowledge Quartet in the context of the Cypriot 
classroom, and explain that the framework needs to be expanded by adding a new 
code in the Transformation dimension.  
For the most part, I found that the Knowledge Quartet could be used successfully to 
analyse mathematics lessons in the Cypriot mathematics classroom, in understanding 
how participants’ SMK and PCK were related to their teaching. In particular, the 
issues raised for attention in lessons observed in the UK were also observed in the 
Cypriot mathematics classroom.    
In my analysis of the lessons, I identified all the situations that I thought were 
significant with respect to participants’ mathematical knowledge. The Knowledge 
Quartet proved to be comprehensive in describing most of the teaching episodes that 
were considered important for the purpose of my study. With  reference to the 
‘Foundation’, ‘Connection’ and the ‘Contingency’ dimensions, the codes proposed in 
the original study could be used to describe all the situations I thought were 
significant in understanding the relationship between participants’ content knowledge 
and their teaching. For example, participants’ ability  to  anticipate students’ 
difficulties and obstacles, to hear and respond appropriately to students’ thinking, to 
choose appropriate examples and representations, and to make connections between 
different mathematics concepts, were significant issues in understanding the ways in 
which their content knowledge came to play out in their teaching. In addition, issues 
related to participants’ awareness of students’ conceptions and misconceptions about 
a mathematical topic, their decisions about sequencing activities and exercises, or 
interrupting a classroom discussion to obtain clarification, or their decision to use a 
student’s opinion to make a mathematical remark, were significant in identifying the 
relationship between participants’ knowledge and teaching.  
It was also clear from the data that Foundational knowledge underpinned the other 
three dimensions. In general, the application of teachers’ knowledge in the classroom 
always rested on their Foundational knowledge, which was acquired in the academy 
in preparation for their role in the classroom.  
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On the whole the Knowledge Quartet was found to be a valid tool for analysing the 
lessons observed in the Cypriot classroom. However, an additional issue that proved 
to be significant in the analysis of my lessons was the use of mathematics textbooks, 
in particular how activities in the textbooks were adapted. Here, textbooks refer both 
to students’ book and the teachers’ guide. In the original study a code ‘adherence to 
textbooks’ was classified in the Foundation dimension of the framework. This code 
was used to describe episodes where teachers accepted textbook as authority for what 
and how to teach. However, the ways in which teachers adapted textbook activities 
are not addressed in any of the existing publications about the use of the Knowledge 
Quartet as a tool for observing mathematics lessons in the UK. This is not surprising, 
since the use of textbooks is not a common practice in the English primary school 
mathematics classroom. In contrast, the textbook is central and always present in the 
mathematics classroom in Cyprus.  
All the participants in my study considered the textbook as the main resource both for 
their planning and teaching. However, they all combined it with other resources, and 
included their own developed activities. The participants adapted the textbooks in 
very different ways. For example, there were cases where participants modified the 
textbook material in ways that made the lesson more meaningful and interesting for 
their students. However, in some instances participants were not sure how to adapt 
the textbook activities appropriately, modifying them in ways that altered their focus. 
This suggested that the ways in which preservice teachers used the textbooks was 
important in understanding how their knowledge came into play in their teaching. 
The above led me to conclude that when adapting the Knowledge Quartet for 
observing lessons in Cyprus, and indeed in many other countries, there is a need to 
take careful account of these differences. Thus, issues related to the adaptation, 
modification, and interpretation of the textbook material are important in analysing a 
mathematics lesson in Cyprus. Having presented the appropriateness of the 
dimensions of the Knowledge Quartet in the context of the Cypriot classroom, I 
provide some examples from the lessons observed to demonstrate how the 
participants in my study used the textbook activities.  

ADAPTING THE TEXTBOOKS: SOME EXAMPLES FROM THREE 
PARTICIPANTS 
The lessons observed took place during the students’ placements in school. These 
lessons were analysed using the four dimensions of the Knowledge Quartet. In this 
section, I give some examples related to how three participants (Rita, Elsa and 
Christiana) used the mathematics textbooks. Christiana chose to do additional courses 
in mathematics in her undergraduate teacher education course, and was classified in 
the group with a ‘high’ SMK score (this was assessed in the questionnaire, see page 
2). Elsa was classified in the group with ‘low’ SMK score and Rita in the group with 
‘medium’ SMK score. Neither of them chose to do additional courses in mathematics 
during their training. In general, the results showed the positive influence of strong 
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SMK in the effective use of textbooks. Christiana elaborated upon the textbook in 
ways that made her lesson more meaningful and interesting for students. She was able 
to drawn on her own understanding and use appropriately textbook activities and 
extends them to promote students’ conceptual understanding. In contrast, Rita and 
Elsa seemed to have problems in understanding the textbook suggestions due to their 
lack of SMK. In many instances they could not understand the mathematics targeted 
by textbook activities, and so could not make much of them. Therefore, it becomes 
clear that in order to use textbook activities appropriately, teachers need to 
understand their content.   
Not understanding the mathematics targeted by the textbook  
Rita’s lesson on multiplication by four offers an example of how she interpreted one 
of the activities in the textbook in ways that altered its focus. Figure 1 illustrates this 
activity.  

Figure 1 Textbook Activity (2nd Grade, Students’ Book, Part B, p.87) 

In addition, in the teachers’ guide it was clearly stated that:   
intentionally some information is not given […] students should think of all the possible 
answers to the questions asked, taking into consideration that each table can seat 1,2,3 or 
4   customers (Grade B, Teachers’ Guide, p. 103)   

Rita seemed not to take into consideration what was suggested in the teachers’ guide. 
She used a rather ‘traditional’ approach in solving the problem. She read the problem 
to her students, and did not leave them much time to think, before leading them 
towards the answers. More importantly, when dealing with question two of the 
problem she seemed to take for granted that exactly four customers were sitting at 
each table and said: 

Mr Michalis has recently opened a new restaurant. He has50 square tables in the restaurant. Each table can seat 4 
customers. On Sunday night 36 customers went for dinner. By 23:00 half of them had left. One hour later all the 
other customers left and the restaurant closed. 

1. How many tables does the restaurant have? 

2. How many tables remained empty on Sunday night? 

3. How many customers were in the restaurant just after 23:00? 

4. Show on the clock the time that the restaurant closed. 

5. On Monday ten friends went to the restaurant for lunch. Mr. Michalis needed to put tables together so that ten 
friends could sit next to each other. How many tables were needed? 
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36 customers were in the restaurant. There were four people at a table. Thus, 36 divided 
by 4 will give us the number of tables that were full. 

Rita’s approach to solving the problem focused on procedures, required a single 
answer, and focused on relatively few skills. However, the focus of the problem was 
meant to provide students with the opportunity to explore a number of possible 
solutions. Rita showed a desire to develop conceptual understanding in several 
instances in her lessons, however, it seems that in this case her beliefs about good 
mathematics teaching could not be implemented because she did not understand the 
problem solving intention. I can infer from my post-observation discussion with Rita 
that she changed the focus on the activity due to her lack of understanding. In this 
discussion I asked Rita if she could think of an alternative way of solving the problem 
and she was adamant that she could not. Her answer suggested that she might not 
have read the teachers’ guide. However, the aims that were proposed in her lesson 
plan were exactly the same as those proposed in the teachers’ guide, so it seems that 
she did read the guide, but that her reading was superficial, and for some reason she 
missed some of the information provided. It could be argued that she followed the 
teachers’ guide rather mechanically, moving through activities without understanding 
their focus. In this case her problems in understanding the teaching suggestions in the 
guide might stem from insufficient understanding of the problem. 
Another example, of not understanding the suggestions in the textbook occurred in 
Elsa’s lesson on the parts of a circle. In this lesson Elsa tried to define the different 
parts of a circle. Table 1 shows the definitions that she proposed alongside the 
definitions that were suggested by the teachers’ guide. 
The definitions that Elsa gave to her students were mathematically incorrect. Even 
though she used the activities proposed in the textbooks she did not use the suggested 
definitions. It seemed that her understanding of the different parts of a circle is 
limited.  Below I provide an extract from our post-observation discussion to support 
my argument:  

Elsa: Generally, I think that everything went well. However, my impression is 
that students were confused about the chords. 

MP: What do you think confused them? 

Elsa: Uh, I think that the definition of a chord is confusing itself. To be honest, I 
am confused myself. On the one hand, according to the definition provided 
in the textbook, a chord does not pass through the centre. On the other 
hand, the teachers’ guide mentions that the diameter is the biggest chord. I 
think this is very confusing. 

The extract above indicates that Elsa’s understanding of the parts of a circle was 
limited. She seemed not to be aware of the correct definitions of different parts of a 
circle, and, due to her limited understanding, was unable to follow the suggestions 
included in the textbook. It was likely that Elsa chose not to use the definitions as 
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suggested in the textbook because she believed that these were too difficult for her 
students. In trying to make these easier for her students, she made it more difficult. 

* This is the exact translation for Elsa’s definition from Greek, which in effect means the boundary of a circle    

Table 1: Defining the parts of a circle    

In general, in mathematics definitions should be inclusive. However, Elsa’s definition 
of the chord was exclusive. Her statement ‘does not pass through the centre’ excludes 
the diameter which indeed is a chord.  In contrast the definition of the chord in the 
teachers’ guide was inclusive. In addition, it was clearly stated that the diameter is the 
biggest chord. Therefore, it can be argued that her problem in understanding the 
definition proposed in the textbook stemmed from her limited understanding of the 
topic. This was indicated by her tendency to refer to the ‘beginning’ and the ‘end’ of 
a circle, meaning points on the circumference. 
 
 
Elaboration upon the textbook: making activities more meaningful and 
interesting for students. 
An example of developing the textbook material is offered by Christiana’s activity 
illustrated in Figure 2. The version of the activity as proposed in the students’ book is 
also presented. Both activities have been translated from Greek. It is clear that in her 
modified version of the textbook activity Christiana put emphasis on developing 
students’ conceptual understanding. I consider Christiana’s version to be an 

 Elsa’s definitions  Definitions suggested by 
teacher’s guide  

Diameter Is a straight line that  starts 
from the beginning* of the 
circle  and reaches the end of 
the circle passing through its 
centre 

Each chord that passes though the 
centre of the circle. A straight line 
passing through the centre of a 
circle and connecting two points 
on the circumference  

Radius  It is a line that starts from the 
centre and reaches the end of 
the circle 

A straight line segment 
connecting the centre of the circle 
with a point on the circumference 

Chord Is a line that starts from the 
beginning of the circle and 
reaches the end but does not 
pass through the centre  

A straight line segment  
connecting two point on the 
circumference 

Circumference The ‘round -round’ * of a 
circle 

Not included 
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improvement because she elaborated on the textbook activity in a way that made it 
more meaningful to her students, by helping them to explore division and 
multiplication as reverses operations. 

 
Figure 2: Elaborating textbook activities 

CONCLUSION  
In general the Knowledge Quartet was comprehensive in the classification of 
teaching situations in which participants’ mathematical knowledge surfaces in 
teaching.  Issues related to the interpretation of textbooks were not addressed by the 
framework, however were important in analysing mathematics lessons in a Cypriot 
classroom. This suggests that when adapting the Knowledge Quartet for observing 
lessons in Cyprus, and indeed in many other countries, there is a need to take careful 
account of possible differences between the context in which the framework was 
originally developed, and the context in which this is applied.  

 
The students in Philippos’ class visited a factory producing jam. The jam was bottled and then packed into large boxes. 
Each box could hold 50 bottles. On that day the production was 9250 jars of jam. How many boxes were needed for 
packing the jars? The table below shows the production of jam for each day of the week. Fill in the information 
in the table provided 

Days Jars for each 
day 

Jars in each 
box 

Number of 
boxes 

Monday 24 500 50  

Tuesday 18 900 50  

Wednesday 11 750 50  

Thursday 21 600 50  

Friday 12 600 50  

Textbook activity (4th grade, Students’ book, Part C, page 33) 
Christiana modified the activity and asked her students to fill in the information in the table presented below  

First filling Second filling  Days Jars for 
each day 

Number of jars 
in each box 

Number of 
boxes 

Number of 
jars in each 

box 

Number of 
boxes 

Monday 24 500 50  100  

Tuesday 18 900 50  100  

Wednesday 11 750 50  100  

Thursday 21 600 50  100  

Friday 12 600 50  100  

Then the students were asked to write down their observations relating to the numbers of boxes needed for the 
first filling and the second filling

A FACTORY PRODUCING JAM 
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PROFESSIONAL KNOWLEDGE IN AN IMPROVISATION 
EPISODE: THE IMPORTANCE OF A COGNITIVE MODEL 

C. Miguel Ribeiro1, Rute Monteiro1, José Carrillo2 

1University of Algarve (Portugal), 2University of Huelva (Spain) 
 
One approach towards improving teacher performance is that of classroom practice. 
In this paper, taking a cognitive perspective, we present a system for modelling 
teacher performance. We demonstrate the process of construction of this model with 
reference to a brief lesson episode involving teacher improvisation, which took place 
in the first cycle (the first four years) of primary school in Portugal. Included in the 
model are the cognitions made evident by the teacher as well as the relations between 
them. 
Keywords: Improvisations, cognitions, modeling the mathematics teaching, practice, 
primary school 
The teaching process can be analysed from various theoretical perspectives and focus 
on very different aspects, amongst them the teacher and their performance. With 
respect to classroom practice, the teacher’s decisions are influenced not only by the 
particular context, but also, and we believe fundamentally, by his or her cognitions. 
With the aim of understanding what happens in the classroom from the point of view 
of the teacher, in terms of both their actions and their cognitions, we decided to focus 
on performance, in particular the relations between the teacher’s actions, cognitions 
and the type of communication used. The teaching-learning process is far too 
complex to permit a single, all-encompassing analysis, however, and hence we 
recognise the need for developing a model which allows it to be simplified for a more 
fruitful analysis. The model we developed to fulfil this aim was based on Monteiro 
(2006), Monteiro, Carrillo & Aguaded (2008), Schoenfeld (1998a, 2000) and 
Schoenfeld, Ministrell & Zee (2000). We denominate it a ‘cognitive model’,  because 
it focuses only on certain of the elements comprising the system it models, in this 
particular case, the cognitions of the teacher with respect to their classroom practice. 
With this model we try to study some dimensions of professional knowledge and 
some relations amongst them. We hope this paper helps consider the common 
analysis of lessons by focussing on a limited number of variables as beneficial for 
researchers, trainers and teachers working in collaboration. 
In the next sections we are discussing the cognitions and the kinds of communication. 
For the purpose of this paper, teacher’s action should be identified with his/her 
performance in the classroom when dealing with their students’ knowledge building. 
The cognitions  
Following Artz & Thomas-Armour (2002), we understand by cognitions all those 
cognitive constructions – beliefs, knowledge and goals – which each individual 
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carries with them, the study and analysis of which, along with the relations among 
them, offers valuable contributions for both research and classroom practice, which 
can be understood as the ultimate aim of research.  
As teachers we can have goals over the short, medium and long term. For Schoenfeld 
(1998b), goals can be simply something which one aims to attain, and can be explicit 
or latent, and can likewise be pre-determined or emerge during the teaching activity 
(Aguirre & Speer, 2000). We believe that such emergent goals especially occur in 
unplanned situations, particularly those which the teacher have not anticipated. We 
concur with Saxe (1991) that each individual – and specifically here a teacher - has 
the capacity to construct, adapt, model and remodel such goals in accordance with his 
or her own personal and professional development. 
As was noted in respect of goals, so too does research into beliefs offer great 
potential for both theory and practice. The more we can learn about the influence of 
teachers’ beliefs on their teaching, the deeper our understanding (Aguirre & Speer, 
2000). In this study the instrument used to undertake the analysis of teachers’ beliefs 
was that of Climent (2002). Climent presents a set of indicators of primary school 
teachers’ beliefs (i.e., first six years in Spain) with respect to beliefs on methodology, 
mathematics, learning, and the roles of pupil and teacher. 
Concerning our focus on professional knowledge, of particular relevance is the work, 
still in progress, of Ball, Thames & Phelps (submitted) which adapts Shulman’s 
(1986) formulation for the components of professional knowledge. Further, some 
incorporations, namely certain descriptors from Park & Oliver (2008), are also 
included. 
Ball and colleagues (Ball, 2003; Ball, et al., submitted), following Shulman’s (1986) 
classification, introduce the notion of mathematical knowledge for teaching. They 
divide content knowledge and pedagogical content knowledge each into three 
categories. Content knowledge, they consider to be formed by horizon knowledge 
(HK), common content knowledge (CCK) – i.e., typical ‘schoolboy’ mathematics – 
and specialised content knowledge (SCK). Pedagogical content knowledge (in 
Shulman ‘curricular knowledge’), they likewise divide into three types, each a variant 
of content knowledge: teaching (KCT), student (KCS), and the curriculum (KC). 
Hence, they maintain that teachers should have a specific professional knowledge, so 
that in addition to a knowledge of ‘how to do’ – that is, common mathematical 
knowledge (CCK) – they should also have a knowledge of ‘how to teach to do’. 
Thus, for example, beyond knowing how to calculate the difference between two 
numbers (CCK), it is necessary for the teacher to possess an understanding which 
allows him or her to perceive and identify not only the students’ mistakes but also the 
source of these mistakes, which becomes much more complex (SCK). Likewise, they 
should also be familiar with alternative procedures for dealing with content, so that 
they can easily meet the needs of their pupils. Equally, a knowledge of how the 
various mathematical topics relate to one other and the way in which the learning of a 
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particular topic develops as one moves up the school (HK) is essential for the 
effective teacher. 
As an integral part of methodological and curricular content knowledge identified by 
Shulman (1986), Ball, et al. (submitted) consider that teachers should possess a 
composite knowledge of teaching and specific content (KCT).This corresponds to the 
type of knowledge to which the teacher resorts in situations that are related to the 
organisation of different ways the students explore mathematical contents, such as: 
determining the sequencing of tasks, choosing examples, and selecting the most 
appropriate representations for each situation. Park & Oliver (2008) also include the 
specific strategies for teaching the content in question. 
Regarding knowledge of content and students (KCS), Ball et al (submitted) relate this 
to the need for the teacher to anticipate what the students think, their difficulties and 
motivations as well as listening to and interpreting their comments. Park & Oliver 
(2008) include here the knowledge of the possible wrong conceptions, motivations 
and interests of the students, as well as their needs. 
Kinds of communication 
The way in which the teacher communicates with others (their students in this case) 
provides a great deal of information about him or herself and how they regard the 
whole process of teaching – including body language, level of anxiety, etc. The type 
of communication the teacher employs is in direct relation with the cognitions they 
hold, in that the way the teacher chooses to communicate reflects the way they view 
the teaching process. With different forms of communication, so the actions are 
distinct and quite possibly the underlying teaching views themselves. 
We adopt the classification of Brendefur & Frykholm (2000), with some adaptations 
introduced by Carrillo, Climent, Gorgorió, Rojas & Prat (2008). Brendefur & 
Frykholm (2000) propose four types of mathematical communication: unidirectional, 
contributive, reflexive and instructive. 
Unidirectional communication is associated with a form of teaching in which the 
teacher takes the principal role, requiring the student to do no more than faithfully 
repeat what he or she has heard. With respect to contributive communication, the 
student is afforded some participation in the classroom discourse, although the 
interactions which take place are by and large of a corrective nature and do not go 
very deeply into the content. The key feature of reflexive communication is that the 
interactions between the teacher and students act as triggers for subsequent 
investigative work. We agree with Carrillo et al. (2008), that development of 
students’ mathematical comprehension is best achieved through such inquiry-based 
activities. Instructive communication, is similar to reflexive communication, but aims 
also to shed light on the matter in hand, bringing about an integration of students’ 
ideas – progress and/or difficulties – made explicit or intuited by the teacher or by the 
students themselves. 
The context and modelling process  
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The remainder of this paper is dedicated to presenting and discussing the modelling 
of an episode in which the teacher reviews content through dialogue. This occurs in a 
4th year class given by a teacher of 18 years experience. The episode is taken from a 
wider research project on professional development studying the relationships 
between teachers’ beliefs, knowledge, goals and actions. It combines a case study 
with an interpretative methodology whereby there is minimal intervention on the part 
of the researcher. Data collection – audio and video recordings of the teacher – was 
conducted in situ. Brief informational talks were also used before and after each 
lesson to gather lesson previews – lesson image – and to clarify some inferences. The 
video recordings provided a record of the teacher-students interactions, and enabled 
lessons to be viewed and analysed, as many times as required.1 That wider research 
project involves a collaborative work between the researcher (first author of this 
paper) and two primary teachers. The collaborative work started after the first phase 
of data collection. It was focused in the teacher’s practices mainly by discussing 
some situations they consider to evidence good practices and others they want to 
improve their teaching. 
The first stage of the modelling process involved the transcription of the audio 
recordings, followed by the video (Illustration 1). Transcription also included an 
initial division of the lessons into episodes, defined by triggering and terminating 
events and associated with specific goals. Subsequently, when all the lessons 
pertaining to the same phase (of three in total) had gone through this procedure, there 
began the process of identifying the indicators of beliefs (Climent 2002), content, 
specific goals, type of episode, type of communication, means of working, resources 
used, and the teacher knowledge required for implementing the episode (Ball, et al., 
submitted; Park & Oliver, 2008). Also determined at this point, was whether or not 
the episode formed part of the lesson image (cf. Table 1). 
The action sequences identified correspond to routines, scripts or action guides, and 
improvisations (Monteiro, 2006; Monteiro et al., 2008; Schank & Abelson, 1977; 
Schoenfeld, 2000; Schoenfeld et al., 2000; Sherin, Sherin & Madanes, 2000). A 
routine is any kind of action independent of context, executed routinely; scripts, or 
action guides, are specialisations of routines, but conceptually dependent. 
Improvisations correspond to all those actions undertaken by the teacher in response 
to an unexpectedly arising event. 
In this study the definition of improvisation has a wider sense than that of the 
researchers mentioned above2, and distinguishes two types that can arise in class. The 
distinction concerns the relation pertaining (or not) between the events/actions and 
the contents. Thus, either the action is related to the content under consideration at 
that moment (or which has been, or is to be, dealt with), or the action has no relation 

                                                 
1 The recordings also allowed the teacher to prepare reports and to reflect more fruitfully on the various interactions 
between the participants through repeated viewings. 
2 They only consider situations in which the actions are unconnected to the contents. We consider that improvisations 
correspond to the set of teacher’s actions in response to all unexpected events.  
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with the teaching contents, focusing only on administrative questions, student 
conflicts or general management issues. We call the first type (concerned with the 
teaching activity) ‘content improvisations’, and those of the second (concerned with 
classroom management) ‘management improvisations’. 
It should be noted that content improvisations constitute episodes which do not form 
a part of the lesson image and which necessarily have emergent goals. Because such 
episodes have not received prior consideration, the teacher’s cognitions come very 
much more to the fore since their response is so much more intuitive. Content 
improvisations are consequently one of the points in which cognitions are most in 
evidence. 
A teaching episode and its analysis 
In this section we present a transcript of an episode from the first of a series of four 
lessons aimed at introducing the concept of ‘a thousandth’. Given that the transcript 
illustrates a goal in emergence, the episode cannot be considered to form part of the 
lesson image. The extract shows the teacher taking the opportunity presented by a 
student doubt to revise, via a whole-class dialogue, the difference between squares 
and rectangles through reference to the lengths of the sides. 
246 S This isn’t a rectangle, it’s a square . . . 
247 T  Is this shape a rectangle or not?  
248 S No! 
249 T So, why isn’t it a square, Tiago Luís? 
250 S Because the sides aren’t the same length. 
251  I thought it was a square, Miss. 
252  (Inaudible) 
253 T Paulo quiet. 
254  What features does it have it have to be a square? 
255 S It has to have the sides the same length. 
256 T The sides all the same. 
257 Ss (Inaudible, everybody speaking at the same time) 
258 T (Puts hand up) 
259  Quiet, quiet, put your hands up. 
260  (T points to one of the sides of the square)  
261  Paulo, if this side is twenty-five squares long, and this side is … how many? 
262 Ss Forty! 
263 T Forty … so, is it a square?  
264 S No! 
265 T  Why not, Paulo? 
266 S Because the sides aren’t the same length. 
267 T Exactly. 
268 S To be a square it has to be twenty-five by twenty-five. 
Illustration 1 – Transcript of an excerpt from the first, of a series of four, classes aimed at 
introducing the concept of ‘a thousandth’, corresponding to an improvised content revision 
dialogue (T: teacher; S(s): student(s)) 

This excerpt corresponds to the ninth episode in the first lesson of the first phase of 
work [I.1.9]. The triggering and terminating events coincide with the start end of the 
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transcript. The teacher’s emerging goal is to revise the difference between squares 
and rectangles in terms of the lengths of their sides. The communication type she 
employs is contributive, with the students working in a large group (the whole class). 
 The coding within the square brackets indicates that the lesson takes place during the 
first phase (pre-collaborative work) and corresponds to the ninth episode of the first 
lesson [I.1.9]. The left-hand box provides information on the specific category to 
which each indicator of beliefs belongs (in brackets) in addition to the goal and 
knowledge which have been identified, the triggering and terminating events, the type 
of episode and whether or not it forms part of the lesson image. The right-hand boxes 
record the sub-episodes ([I.1.9.1], [I.1.9.2]) along with their specific goals and the 
kind of dialogue involved. 

                                                 
3 Line numbering of transcript.  
4 This episode reveals beliefs concerning methodology (TR3, TR5), the role of the teacher (TT26/29, TT30) and 
learning (TR16/TT16, TT14), where TR denotes Traditional Tendency and TT Technological Tendency. 

[I.1.9.1] T holds a 
dialogue with the group, 
and  contributively 
revises  the difference 
between the relative 
lengths of the sides of 
squares and rectangles 
(246-260)   
 
Interactive dialogues 
(246-260) 
Specific goal:  Revise the 
difference between the 
relative lengths of the 
sides of squares and 
rectangles. 
 

[I.1.9] Dialogical revision of content - difference between squares and 
rectangles - in a contributive way, with the whole class (246-268)3 
Forms part of the lesson image? No.  
Triggering event: T asks whether shape is a rectangle or not. 
Indicators of beliefs4: 
TT30 (Teacher’s role) – The teacher is the one who validates ideas 
raised in class, questioning students, whose replies lead to self-
correction (in reality veiled correction, stage-managed by the teacher). 
TR16/TT16 (Learning) – The student interacts with the material and 
the teacher, the latter being the mediator between material and student. 
The interaction produced between teacher and student is unequal, with 
the flow teacher-student being stronger than the contrary.  
Goal: Revise difference between squares and rectangles (length of 
sides). 
Knowledge: 
CCK (Common Content Knowledge) – Knowing the difference 
between squares and rectangles (in terms of the length of the sides).  
SCK (Specialized Content Knowledge) – The teacher gives evidence 
of an incorrect use of the classification of polygons (using a  
disjunctive classification implying that the set of squares is separate 
from that of rectangles) 
KCT (Knowledge of Content and Teaching) – The teacher considers 
contributive dialogue appropriate for the revision of the difference 
between the length of the sides of squares and rectangles. 
KCS (Knowledge of Content and Students) – The teacher considers 
that the students show difficulties in considering squares as specific 
cases of rectangles (246-250), (254-256)  
(GAP: the teacher does not perceive this difficulty of considering 
squares as rectangles as she uses disjunctive classifications and an 
incomplete definition of squares focused exclusively on the properties 
of the sides (forgetting the rhombus), which could generate erroneous 
conceptions (256).) 
Type of episode: Content improvisation. 
Terminating event: T considers that the students’ doubt has been 
clarified. 

 

[I.1.9.2] T holds a 
dialogue with the group, 
and  contributively 
clarifies that, by virtue of 
its sides not all being the 
same length, the shape 
cannot be a square (261-
268) 
 
Interactive dialogues 
(261-268) 
Specific goal: Clarify 
that a rectangle is 
different from a square as 
one has sides of all the 
same length and the other 
does not. 
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Table 1 – Modellisation of an episode corresponding to the ninth episode in the first of four 
lessons introducing the concept of a thousandth 

This episode did not form part of the teacher’s lesson image as it arose from a student 
comment. In the course of enacting the episode the teacher employs two actions 
which, from the analysis we have carried out until now, form the basis of all the 
revision episodes, independently of the resource(s) used, the form of work and the 
type of communication. It should be noted that, for this type of episode, these actions 
do not have to occur in the same order as in this specific case and that these are the 
only two kinds of actions the teacher does when she wants to implement this specific 
type of episode in this particular manner. 
Relations between cognitions 
The evidence for the teacher’s cognitions is obtained from their actions, the kind of 
communication which occurs, the form of work of the students and the resources 
used. The table below illustrates the relations observed between the actions and 
cognitions in respect of the specific goal in this case. Some of the teacher’s 
knowledge (to the right of the table) are relevant to the whole episode while others 
are specific to particular actions. 

Indicators of 
beliefs/contributive 

language 

Actions Knowledge/contributive communication 

TT30 (Teacher’s role) –  
The teacher is the one who 
validates ideas raised in 
class, questioning 
students, whose replies 
lead to self-correction (in 
reality veiled correction, 
stage-managed by the 
teacher). 

T holds a dialogue 
with the group, and 
contributively 
revises the 
difference between 
the relative lengths 
of the sides of 
squares and 
rectangles (246-
260). 

KCS (Knowledge of 
Content and Students)  
The teacher considers 
that the students would 
have difficulties in 
considering squares as 
specific cases of 
rectangles (246-250), 
(254-256). 

TR16/TT16 (Learning) –  
The student interacts with 
the material and the 
teacher, the latter being 
the mediator between 
material and student. The 
interaction produced 
between teacher and 
student is unequal, with 
the flow teacher-student 
being stronger than the 
contrary. 

T holds a dialogue 
with the group, and 
contributively 
clarifies that, by 
virtue of its sides 
not all being the 
same length, the 
shape cannot be a 
square (261-268). 

SCK (Specialized 
Content Knowledge) –  
The teacher gives 
evidence of an incorrect 
use of the classification 
of polygons (using a 
disjunctive classification 
implying that the set of 
squares is separate from 
that of rectangles). 

CCK (Common 
Content 
Knowledge) –  
Knowing the 
difference between 
squares and 
rectangles (in terms 
of the length of the 
sides). 
KCT (Knowledge 
of Content and 
Teaching) – The 
teacher considers 
contributive 
dialogue 
appropriate for the 
revision of the 
difference between 
the length of the 
sides of squares and 
rectangles. 

Table 2 – Relations between actions and cognitions with respect to the revision of the 
difference between squares and rectangles, in terms of the lengths of their sides, via a 
contibutibutive whole class dialogue. 
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The actions of revising and clarifying the content are underpinned by beliefs related 
to the role of the teacher (TT30) and to the learning process (TT16). The cognitions 
identified show that the teacher regards herself as the only person with the 
capacity/ability to validate the information mobilised in class. In viewing her role in 
this way, she conditions the interactions between other elements of the process of 
learning, thus preventing a balance being reached among them and making it 
impossible to achieve a triangle of learning, as advocated by Pinto & Santos (2006). 
These actions/beliefs are linked to each other in such a way that together they form 
the basis of all revision episodes. 
The knowledge identified, as well as the gaps in knowledge, are specific to the 
situation and the context, and so cannot be generalised, not even for this teacher. 
Possibilities for initial and in-service teacher training 
This type of analysis may also be of use in initial teacher training as the starting point 
for an approximation between theory and practice. It would mean that researchers and 
teachers “speak the same language”, using the same codifications; in doing so, a great 
degree of collaboration is needed. 
This type of analysis (by student teachers in their teaching practice), although based 
on the experience of others, may lead to an awareness of their own cognitions, of the 
way they relate and influence one another. This awareness would help the 
development of a critical, as opposed to submissive, attitude during their teaching 
practice; merely observing the mentors does not necessarily lead to learning (Brophy, 
2004). It is important, then, that the time spent in schools by trainee teachers as 
observers or assistants should be given careful consideration and attention. 
In the sphere of in-service training, this type of analysis can be effected by the 
teacher him or herself, who, in watching recordings of their lessons, will be able to 
reflect upon their own practice (Schön, 1983, 1987). This reflection, accompanied by 
discussion and critical exchanges with colleagues and researchers, can be considered 
a first step towards sustained professional development (Climent & Carrillo, 2003; 
Jaworski, 2006) aimed at improving professional competence through qualified 
professional reflection (Hospesová, Tichá & Machácková, 2007). 
We selected content improvisations as the focus of our analysis because, when they 
occur, the teacher “is working without a safety-net”. They are unforeseen situations 
not subject to advanced planning, and consequently all the teacher’s cognitions come 
into play in their purest form, faithfully reflecting their mode of acting and their 
position with respect to the process and intervening elements. It will be in these 
situations that, in the initial stages of training programmes as in professional 
development, significant information can be obtained which can contribute to the 
development process, enriching discussion and leading to a self-awareness of one’s 
professional attitude. These situations can permit access to what Tomás Ferreira 
(2005) terms ‘teaching modes’, underlining the relationships between their dominant 
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classroom interaction, teacher’s key beliefs and in this case, also their professional 
knowledge. 
This analysis and understanding are very important now that there exists in Portugal a 
Programme of In-service Training in Mathematics for teachers of the 1st and 2nd 
cycles of Basic Education with a supervision component (Serrazina et al., 2005). One 
of the ways of achieving some of the goals of this programme – deepening teachers’ 
mathematical, pedagogical and curricular knowledge and encouraging a positive 
attitude in teachers towards mathematics and the capabilities of the students – could 
involve the analysis and discussion of teachers’ classes, through the use of this 
cognitive perspective and of the model. 
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INTRODUCTION 
APPLICATIONS AND MODELLING 

Morten Blomhøj, Roskilde University 
The red thread in the programme for working group 11, Applications and Modelling, 
was to identify and discuss different theoretical perspectives found in research on the 
teaching and learning of mathematical modelling. Particular emphasis was placed on 
the relation between research and development of practices of teaching. The 
presentation: A survey of theoretical perspectives in research on teaching and 
learning of mathematical modelling were given by Morten Blomhøj and Gabriele 
Kaiser to set the scene for the working group. And the work was ended with a closing 
panel discussion with Javier García, Gabriele Kaiser, and Hugh Burkhardt as 
panellists and Susana Carreira as moderator. In addition Hugh Burkhardt gave a 
historical perspective on the field by his presentation: The challenge of integrating 
modelling in mathematics teaching practices – a historical view by. 
The presentation and discussion of the papers was structured according to five 
themes: (1) Teachers’ professional development for teaching and assessing 
mathematical modelling, (2) The role of ICT in teaching and learning mathematical 
modelling, (3) Researching the teaching and learning of mathematical modelling 
within the Anthropological Theory of Didactics (ATD), (4) Researching the teaching 
and learning of mathematical modelling within the framework of Realistic 
Mathematics Education (RME), (5) Researching the teaching and learning of 
mathematical modelling under the Models and Modelling Perspective (MMP). Each 
theme was introduced shortly and rounded off with a general discussion. The 
proceedings is organised in accordance with the thematic structure of the programme 
and include the19 papers presented and discussed at the conference.  
 
Theme 1 was introduced by Katja Maass and Geoff Wake and included six papers. 
 
In the first paper, Rita Borromeo Ferri and Werner Blum present and discuss their 
experiences with modelling seminars as a way of integrating the teaching and 
learning of modelling in mathematics teacher education. As a basis for their design of 
the modelling seminars the authors have identified four main competencies related to 
the teaching of mathematical modelling: (1) Theoretical competency, (2) Task related 
competency, (3) Teaching competency, (4) Diagnostic competency. It is argued that 
mathematics teacher education should support the development of such competencies 
and include experiences with modelling activities in school practices. 
Katja Maaß and Johannes Gurlitt write about the problem of how to evaluate teachers 
professional development in the teaching of mathematical modelling. Based on the 
authors experience from the international LEMA project the paper discusses the 
challenges related to the design and application of an evaluation questionnaire for 
teachers participating in a professional development project.  
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The paper by Barbara Schmidt is also related to the LEMA project. She analyses - 
also by means of questionnaires - the motives and obstacles experienced by the 
teachers for including realistic modelling activities in their teaching. According to the 
regulations of mathematics teaching it should include realistic modelling activities. 
However, different institutional and educational factors seem to form obstacles for 
this ambition. The findings suggest that it is possible to identify types of teachers that 
experience motives and obstacles for realistic modelling differently. 
The paper by Jeroen Spandaw and Bert Zwaneveld reports on the development of a 
text book for secondary mathematics teacher education. One of its objectives is to 
further the coming teacher professional development for teaching mathematical 
modelling. The paper discusses issues such as the teachers’ dispositions for 
modelling, educational goals for teaching modelling, design aspects, testing in 
modelling, the role of domain knowledge, and computer modelling. The paper also 
reflects on the relationship between mathematics, teaching of mathematics and 
modelling, and on the role of modelling in the Dutch mathematics curriculum. 
The next paper is concerned with formative assessment in relation to mathematical 
modelling activities. Using a Cultural Historical Activity Theory perspective, Geoff 
Wake argues that modelling activities and related pedagogies and in particular the 
quest for formative assessment in relation to learners modelling processes have the 
potential to bring about a significant change in classroom activity for learners and 
teachers; and that such changes might support the learning of mathematics for more 
students and better prepare them to apply mathematics. This paper is also related to 
the LEMA project. 
In the last paper of theme 1 Jonas Bergman Ärlebäck reports on a study on teachers’ 
beliefs and affects about mathematical modelling. Five different domains of beliefs 
are identified as important for if and how teachers will include mathematical 
modelling in their teaching: (1) the nature of mathematics, (2) real world (reality), (3) 
problem solving, (4) school mathematics, (5) applying, and applications of, 
mathematics. Two teachers’ beliefs are analysed according to these five domains. 
 
Theme 2 was introduced by Morten Blomhøj and included four papers each 
presenting concrete cases of ICT supported modelling activities. 
 
Maria Lucia Lo Cicero and Filippo Spagnolo in their paper report from an 
experimental project with three upper secondary classes that have been working with 
motion sensors and computers to produce graphs for different motion phenomena. 
From pre- and post-tests and analyses of the classroom interactions it is argued that 
students developed modelling competencies and that the modelling activities can 
enhance the students’ mathematical and physical understanding of important concepts 
such as Cartesian graph, function, derivative, velocity and acceleration. 
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In the second paper Christina Roeckerath presents and analyses a simulation 
software package that can support the students’ modelling and analyses of different 
types of biological interactions between species such as predator-prey, competition or 
parasitism. It is argued that such modelling activities can provide the students with an 
insight into the interdisciplinary relationship between mathematical modelling and 
theoretical population biology, and support their learning of biology. 
Mária Lalinská and Janka Majherová discuss in their paper different aspects of 
visualization in relation to projectile motions modelled by secondary students using a 
spreadsheet and a graph drawing software. The motion of fireworks is used as a 
situational context to set the scene for the modelling activities and it is argued that 
ICT-supported modelling activities allow the students’ to experience and understand 
better the mathematical and physical elements involved in the phenomena. 
In the last paper of theme 2, Hans-Stefan Siller and Gilbert Greefrath present and 
analyse in detail modelling cycles in which technology is integrated by means of 
handheld or computer based software. The potentials in different types of software 
(CAS, DGS and SP) for supporting the students learning of modelling and 
mathematics are discussed and illustrated with the example of modelling “dangerous 
road intersections”.     
 
Theme 3 was introduced by Berta Barquero and Javier García and included five 
papers. 
 
The first paper by Berta Barquero, Marianna Bosch and Josep Gascón introduces the 
metaphor of ecology and the notion of levels of didactic determination from ATD, 
and show theoretical constructs can be used to better understand the institutional 
constraints that hinder the large scale implementation of mathematical modelling 
activities. The theoretical ideas are exemplified through an analysis of 
“applicationism” - a notion used by authors to capture the set of beliefs that guides 
applications of mathematics in traditional mathematics teaching. 
In the paper by Richard Cabassut it is argued that mathematical modelling activities 
can be analysed as a double didactical transposition within the framework of ATD. 
Real world problems and related techniques undergo a transposition when used in 
mathematics teaching similar to the transposition that mathematical concepts, 
techniques and theories undergo. This transposition process is analysed with respect 
to the modelling cycle, and examples of mathematisation tasks from the LEMA 
project are used to illustrate the elements in the transposition process. 
García and Ruiz-Higueras in their paper illustrate how the ATD can be used as a 
theoretical framework for designing mathematical modelling activities for teaching. 
A design - also from the LEMA project - for 4-5 years children is presented and 
analysed to illustrate the theory based design process. The experiences from the 
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implementation of this design show how even very young pupils can be involved in 
rich and meaningful mathematical modelling activities. 
The paper by Vázquez reports about the ATD based design of modelling activities for 
engineering students. The processes of transposition of the praxeologies involved in a 
particular modelling task – the modelling of a motor – are analysed, and it is argued 
that in order to understand the technologies linked to the students techniques, it is 
necessary to take in account the different disciplines involved. 
Serrano, Bosch and Gascón in their paper analyse from a ATD perspective the 
mathematisation process in the modelling cycling process. A modelling task for 
university students on forecasting the sale of a given product from an empirical time 
serie is used as an example. The experinces show that a modelling activity initiated 
with a real-situation can lead to mathematising that affects both the system and the 
model and that challenge the students’ modelling competency and their learning  of 
important mathematics.  
 
Theme 4 was introduced by Mette Andresen and included two papers and a poster by 
Simon Zell and Astrid Beckmann.  
 
In the first paper Mette Andresen presents a long-term research and developmental 
project concerning mathematical modelling in a multidisciplinary context in upper 
secondary teaching. A course of lessons based on the Vioxx case is used to illustrate 
the different levels of reflection in the students’ modelling work in this context. 
The paper by Roxana Grigoras deals with the modelling of real world phenomena 
where no numerical data are given. In the case studied, lower secondary students’ are 
trying to make sense out of a picture of the surface of the planet Mars. In this very 
open modelling activity the students use a number of fundamental mathematical 
ideas. The activity is analysed using RME as a theoretical framework.  
 
Theme 5 was introduced by Nicos Mousoulides and included only one paper. Here 
N. Mousoulides, M. Chrysostomou, M. Pittalis and C. Christou present and discuss a 
case where a class of 11-years students worked with the fresh water shortage problem 
in Cyprus. It is a real life problem, the students’ used relevant technology (Google 
Earth and spreadsheet) and they were in fact able to compare, judge and reflect on the 
different models developed. The activity was design and analysed within the 
framework of MMP. 
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MATHEMATICAL MODELLING IN TEACHER EDUCATION – 
EXPERIENCES FROM A MODELLING SEMINAR 

Rita Borromeo Ferri and Werner Blum 
University of Hamburg and University of Kassel, Germany 

Mathematical Modelling has recently become a compulsory part of the mathematics 
curriculum in Germany. Hence future teachers must have a strong background about 
different aspects of modelling and also about appropriate methods how modelling 
can be taught. That means that the content and the methodology of university courses 
on modelling have to include all these aspects. In our paper, we will report on 
university seminars on modelling for students in their fourth year of study. Among 
other things, the students had to write a “learning diary” over the whole semester. 
The results give interesting insights in students’ learning processes of modelling, 
their progress and their problems during the semester and their considerations about 
teaching modelling. 
 
INTRODUCTION 
Although mathematical modelling is now a compulsory part of the mathematics 
curriculum in Germany and one of the main competencies within the national 
Educational Standards, it is not at all guaranteed that pupils will be taught by teachers 
who have a sound knowledge of modelling. One reason for this is the fact that 
modelling has normally not been taught in teacher training courses at University, 
because modelling is not contained explicitly in the curriculum for future math 
teachers in Germany. However, there is no doubt (see, e.g., Krauss et al. 2008) that 
teachers have to be experts in modelling themselves in order to be able to teach 
students effectively and that their thinking has to be shaped towards creating rich 
classroom environments that enable students to be actively involved in modelling 
(Chapman 2007). 
In the last few years, a lot of empirical studies have dealt with the question of how 
modelling can be taught in school (see, e.g., Maaß 2007 or Blum & Leiß 2007) or 
how students at University can be sensitized for modelling through complex 
modelling tasks (see Lingefjaerd & Holmquist 2007, Blomhoj & Kjeldsen 2007 or 
Schwarz & Kaiser 2007). The results of these studies opened new ways of thinking 
about modelling and the way it can be integrated in school mathematics in a 
profitable way. However, the question of how these aspects can be integrated in 
teacher education still remains open. Two of the main questions are: 

1. How can future teachers be prepared in university courses for teaching 
modelling at school, which contents and which methods are appropriate? 
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2. How do students’ processes of learning and understanding develop during such 

courses, what are their main difficulties and problems, and how can progress 
be observed? 

In this paper, we will report on such a modelling seminar which has been taught at 
the University of Hamburg by the first author and with similar features at the 
University of Kassel by the second author, and with which we have tried to tackle 
these two questions. Our guiding principle for the conception of this seminar was: If 
we want our students to teach modelling in an appropriate way (with a 
correspondence between content and method, cognitive activation of pupils, 
reflection on learning and integration of summative assessment) we as lecturers have 
to conceive our own teaching in exactly the same way (correspondence between 
content and method, cognitive activation, reflection, summative assessment). 
 
CONCEPTION, GOALS, CONTENT AND STRUCTURE OF THE SEMINAR 
The main basis for our data collection was a modelling seminar for students in their 
fourth year of study at the University of Hamburg. In this course altogether 25 future 
teachers from all school levels were participating, including teachers for students 
with special needs. (The authors’ experiences from other modelling seminars showed 
that this kind of mixture builds a good basis for discussions and is important for 
arguing that modelling is suitable for all kinds of school levels and types.) The course 
took place once a week for 90 minutes over one semester that means 14 lessons 
altogether. According to the meaning of a “university seminar”, the students were 
expected to be actively involved in all activities and to cover a major part of the 
course by their own presentations. In the following we will describe more precisely 
the conception of this seminar and the way the students were observed over the 
semester. Mathematical Modelling as a subject in teacher education may, of course, 
be structured in many different ways because it is a vast field and contains a lot of 
important aspects (see Blum et al. 2007). In our considerations for planning and 
structuring a modelling seminar in a new way, the content and the methods should fit 
to each other. This is also a challenge for the lecturer. Concerning content, we regard 
the following competencies concerning modelling as particularly important: 

(1)  Theoretical competency (knowledge about modelling cycles, about 
goals/perspectives for modelling and about types of modelling tasks) 

(2)  Task related competency (ability to solve, analyse and create modelling tasks) 
(3)  Teaching competency (ability to plan and perform modelling lessons and 

knowledge of appropriate interventions during pupils’ modelling processes) 
(4)  Diagnostic competency (ability to identify phases in pupils’ modelling 

processes and to diagnose pupils’ difficulties during such processes) 
We did not include an “Assessment competency” (that is the ability to construct and 
mark tests appropriate for modelling). This competency is, of course, very important 
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for in-service teachers but can, in our view, not be expected from students who have 
not enough experience in assessment. 
These four competencies were the basis for the structure of the seminar. The seminar 
was subdivided in the following five parts, also in order to have an appropriate 
balance between more theoretical and more practical phases: 
Part 1 (Theory): Theoretical background about modelling (3 lessons) 
Part 2 (Practice): Solving and creating modelling problems (3 lessons) 
Part 3 (Theory and Practice): (1) Students analyse transcripts of pupils’ work on 
modelling problems; (2) What are modelling competencies;* (3) Types of teacher 
interventions while modelling; (4) Methods how to teach modelling in school (4 
lessons) 
Part 4 (Presentations): Groups of students present their own modelling tasks and how 
pupils in school solved these tasks. (3 lessons) 
Part 5: Last lesson – reflection of the whole work over the semester 
*At the end of this part there was an intermediate evaluation of the seminar on the 
basis of a questionnaire.  
One important goal of the seminar was that students do not only solve or construct 
modelling tasks but also learn methods how they can teach modelling. For us as 
lecturers it seemed important not to merely say which methods could be useful, but to 
integrate them directly into the work in the seminar. We decided to use teaching 
strategies from the field of “Cooperative Learning” (see e.g. Johnson & Johnson 
1999, Kagan 1990), also because the first author had good experiences using this 
while teaching modelling at school. We think that Modelling as the content and 
Cooperative Learning as a teaching strategy fit together very well also at university 
seminars. Research has shown (see Johnson & Johnson 1995) that cooperative 
learning techniques promote pupils’ learning and academic achievement, increase 
pupils’ retention, enhance pupils’ satisfaction with their learning experience, help 
pupils develop skills in oral communication, develop pupils' social skills, and 
promote pupils’ self-esteem. Several studies on modelling made clear that modelling 
is better done as a group activity (Ikeda, Stephens & Matsuzaki 2007), also because 
this supports discussions about mathematics or extra-mathematical aspects, trains 
argumentations and gives the chance to profit from group synergy. That is why in the 
first lesson of the seminar the students had to build so-called “basis-groups” of five 
people who were supposed to work together over the whole semester; altogether there 
were six such groups. However, working in groups is only under certain conditions 
more productive than competitive and individualistic efforts. Those conditions are 
(Kagan 1990): Positive Interdependence, Face-to-Face-Interaction, Individual-
&Group-Accountability, Interpersonal-&Small-Group Skills and Group Processing. 
So we had to take care that all group activities fulfil these conditions. We combined 
these activities with the content-parts of the seminar: 
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Part 1: Students had to know about different directions in the discussion on 
modelling and different modelling cycles (see e.g. Kaiser, Sriraman & Blomhoj 2006 
and Borromeo Ferri 2006 as literature which was given to the students). They learned 
this content with the activity “Jigsaw”: Each group member is assigned some 
particular material to learn and later on to teach to his group members (in this case 
each student had one direction of modelling as his particular topic, e.g. realistic 
modelling, and in the second round one version of the modelling cycle). Students 
with the same topic worked together in “expert-groups”, so the basis-groups were 
divided. After working in these expert-groups, the original basis groups reformed and 
students taught each other. So at the end of this part the students had learned this 
content mostly on their own. It was, of course, important for the students that they 
also could ask all kinds of questions, especially in the last lesson of this part, and that 
we reflected both the theory and the activity Jigsaw. 
Part 2 started with the question “What is a good modelling task?” For that we used 
the activity “Think-pair-share”. This involves a three step cooperative structure. 
During the first step, individuals thought silently about a question posed by the 
instructor. Individuals paired up during the second step and exchanged their thoughts. 
In the third step, the pairs shared their responses with the entire group. After that the 
basis-groups solved the modelling task “Filling Up” (“Tanken”, see Blum/Leiß 
2007). For a better understanding we showed the students a possible solution process 
by means of the seven-step modelling cycle that we ourselves use in our work (Blum 
& Leiß 2007, Borromeo Ferri 2007), in order to help them to understand which part 
of their solution can be regarded as a real model or a mathematical model and so on. 
The six groups had then time for sharing ideas for their own modelling tasks which 
they had to construct and to test in school. For that “creating part” we used the 
method “RoundRobin Brainstorming”: One person of each group was appointed to be 
the recorder. A question or an idea was posed with many answers, and students were 
given time to think about the answers. After the "think time," members of the team 
shared responses. The recorder wrote down the various answers of the group 
members. The person next to the recorder started and one person after the other in the 
group gave an answer until time was called. At the end of this part, the groups had 
finished creating their modelling tasks and in addition they had learned how they 
could do a subject-matter analysis of the problem. Similar to the first part, we 
discussed questions and reflected the used methods for potential uses in school. 
Part 3 contained a lot of interesting aspects of modelling. So we started each aspect 
with a short theoretical input and the students then had an activity on their own. 
Concerning aspect (1), the basis-groups worked on the transcripts of pupils’ solution 
processes to the modelling task “Lighthouse”, and we had a discussion afterwards 
especially about the distinction of the phases while modelling. Before we started with 
our input for aspect (2), we used the method “silent writing conversation”. Every 
group got a big sheet of paper. In the middle of the paper they were to write 
“modelling competencies”. The students had to do a brainstorming about what 
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modelling competencies could be, however without saying a word. So they had to 
comment the products of the other group members also in a written way. After that 
we gave information on modelling competencies and had then a discussion in the 
plenum, mainly about how teachers can support modelling competencies and how 
they can assess these in school. Like before, we started aspect (3) with an activity, 
this time “Inside-Outside-Circle” before we gave a theoretical input about the 
meaning of “intervention” and “self-regulated learning”. The activity “Inside-Outside 
Circle” follows the principle that all students are integrated in the learning process. 
So the students form an inner and an outer circle. Those in the inner circle look 
outside, those in the outer circle look inside. Then the whole group was asked: “What 
do you think a teacher has to know when teaching modelling so as to be able to 
intervene appropriately in case of students’ difficulties?” The students stood opposite 
to each other and discussed this question in pairs. After five minutes, the outside 
circle moved on and students in new pairs exchanged their thoughts. The same was 
done with the second question, thus addressing aspect (4): “What do you think are 
good or bad methods for teaching modelling?” We closed this lesson with a 
discussion and a reflection about the five activities of cooperative learning we had so 
far during the seminar and how they fit to the contents of the seminar. Simultaneously 
this was meant to be a meta-reflection on different levels: 1. the students had to think 
about each method and about teaching them in school in connection with modelling; 
2. we as lecturers had to reflect whether the chosen activities were useful to teach the 
contents of the seminar. 
In part 4, all groups presented their modelling tasks and their experiences they had, in 
the meantime, gathered in school with these. Because of the participation of future 
teachers for all school levels, also the presented experiences were from primary to 
upper secondary school. The final part 5 rounded off the seminar with a summary of 
all aspects. 
Taking into account the rather elaborate conception of the seminar, we liked to know 
if the students felt sufficiently well-equipped to teach modelling at school. 
Furthermore we were interested in students’ individual learning and understanding 
processes and how these develop during such a course as well as in their main 
problems and difficulties. 
 
METHODS OF ANALYSING LEARNING PROCESSES 
Reflection was a major issue for the students in the seminar, because thinking over 
one’s own actions generally deepens the understanding a lot. To get insight into the 
thinking and learning processes, the students had to write a “learning diary” (see e.g. 
Gallin & Ruf 1990). One important goal of a learning diary is to write down one’s 
individual learning story. It also helps stabilising the competencies related with the 
contents. For the goals of our explorative study, the “learning diary” was the adequate 
instrument to stimulate reflections on students’ own learning processes over a long 
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time. Interviews could have been an alternative, but not with a whole seminar. The 
organization of a learning diary looks mostly as follows: write down the date, the 
topic of the lesson and the activity; write down why you had to do the activity; look 
back and think about where you are in the learning process. The students in the 
seminar had to do this in a similar way concerning their learning of the topic of 
modelling. In the last five minutes of each lesson, the students had time for writing 
their reflections into their learning diary. At the end of the semester, all diaries were 
collected in order to analyse them with respect to understandings and problems 
referring to a) the different parts on the content, b) the methods used, c) the way how 
the seminar was taught, and d) the students’ own reflections on teaching and learning 
modelling in school. So we coded (Strauss/Corbin 1990) and categorized statements 
of the students according to these four aspects to get an overview and to find patterns. 
In addition, we analysed each diary with regard to hints concerning the learning 
process of the individuals.  
RESULTS 
Most of the students knew from their first semester course a little bit about modelling 
and what it means, but that was only a small part of the lecture. So 18 from 21 
students wrote in their reflections after the first lesson that they had not known that 
modelling is such a big field.  
“In this lesson I got a first insight in the theme “modelling”. There it became apparent for 
me that this theme is very wide and does not only exist of the modelling cycle I know from 
my first semester course.” (Katrin, 2nd of April 2008) 

Not unexpectedly, dealing with part 1 was not easy for the students. To distinguish 
between different directions and then again between different modelling cycles was a 
high demand for them, what the reflections clearly show. But the method Jigsaw was 
a helpful strategy for the students to help each other and to become more clarity about 
the content. Anyhow the students felt that this strong theoretical part was helpful to 
get appropriate background knowledge. 
 “Sometimes it was not easy to understand one direction of modelling in the expert-groups, 
because of the shortness of the text. But this method [Jigsaw] is perfect! Everyone of the 
group has to explain something and so we discussed till I understood it better.” (Swetlana, 
9th of April 2008) 

A progress in the learning process of the students could be reconstructed in Part 2. 
All students reflected that they understood the seven-step modelling cycle finally 
through the modelling task “Tanken” which we presented to them in a detailed 
manner after they solved this problem. Furthermore they felt that now the background 
from part 1 will help them to create an own modelling task, so for them theory and 
practice linked together here. 
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“It was good, that we went through the modelling cycle with an exemplary task. Thereby 
one became aware how complex a modelling task can be [...]. Now it will be easier for us to 
create our own modelling task.” (Sarah, 16th of April 2008) 

“Slowly I understand the modelling cycle better. Working with the “Tanken”-Task helped 
me to distinguish several steps of the modelling cycle.” (Alexander, 16th of April 2008) 

When analyzing the reflections on part 2 it became very clear that creating modelling 
tasks is as important for learning and understanding modelling as solving modelling 
problems. The students had to think over the school level in which they wanted to test 
the problem, how complex the task should be, how much time the pupils would 
probably need, and so on. Helpful for them was the method used in this context. 
“It was good that we were to create our own modelling task in our basis-group. However we 
recognized that this will be a difficult undertaking. But the method RoundRobin was exactly 
adequate to get helpful suggestions from other basis-groups.” (Anna, 23rd of April 2008) 

Thus the three lessons of part 2 were once again a linking between theory and 
practice for the students, and a progress in their process of understanding could be 
reconstructed especially concerning the modelling cycle. Furthermore they had to 
deal with the question of authenticity and complexity while creating their own 
modelling task. The students were confronted with a lot of aspects of modelling in 
part 3 as described above. We have no space to go more into detail here, but we try to 
summarize the important points. Analyzing transcripts of pupils’ modelling processes 
in aspect (1) was helpful for the students to distinguish several modelling phases. 
“The transcripts of the pupils helped me in some part to distinguish several modelling 
steps.” (Heidy, 7th of May 2008) 

Modelling competencies and beliefs were interesting for the students. Most of them 
liked the question of how modelling competencies could be supported. They 
commented that one lesson was not enough for this content and that they would like 
to know more about this topic. 
“The silent-writing-conversation was very fruitful at the beginning concerning the meaning 
of modelling competencies. Of high interest for me was the question of how modelling 
competencies can be supported. This is especially for a teacher an important question.” (Jan, 
21st of May 2008) 

Starting aspect (3) with the method Inside-Outside-Circle was for all students a good 
start for the topic of teacher interventions. Most of the students started to reflect more 
about themselves as a teacher personality and also liked to have more time for this 
topic. 
“After the discussion in the Inside-Outside-Circle I think that a teacher must be well 
prepared when he has a modelling problem for his lesson, because he has to analyse and to 
diagnose his pupils quickly to help them.” (Carolin 21th of May 2008) 
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“Today I learned a lot about different kinds of teacher interventions, firstly theoretically and 
then practically through group work with a case study of a teacher. But I take much more 
out of this lesson today: The case study showed me how invasive a teacher can intervene, so 
that this intervention is restricted only to the content. But I will look to myself how I 
intervene to correct my interventions.” (Andreas 21th of May 2008) 

The reflection of the methods (aspect 4) was very constructive, because the students 
learned the methods on their own through the seminar. So they were able to decide 
about advantages and disadvantages. All of the students agreed also that these 
methods can be integrated while teaching modelling, but they have to be practiced. 
“It is good that we are learning not only modelling as a subject in this seminar, but also the 
methods how we can teach this at school!” (Katja 28th of May 2008) 

Testing the modelling task at school and then presenting the results in part 4 was 
particularly important for the learning processes of the students. Whereas the 
processes of understanding of the students concerning modelling partly stumbled in 
part 3 because of the diversity of the aspects, part 4 stood for their progressives. The 
reflections indicated that they learned and understood more about what modelling 
means on a theoretical level and also how to teach it. 
“Today my group and I had our presentation. I think it was good! […] Overall the testing 
was helpful for me as a teacher, because I could see where pupils had problems while 
modelling. Also to get the self-awareness to walk between the small level of intervention 
and reservation was important for me. Furthermore it showed me that the task should be 
phrased precisely and to allow enough extra time.” (Benjamin 4th of June 2008) 

“Testing the modelling task in grade five was important and helpful for my understanding of 
modelling and the practical transformation in school. […] It was good to have a chance 
testing modelling problems at school.” (Birgit 18th of June 2008) 

Summary of the results 

We summarize our results concerning the two questions at the beginning. First we 
asked how teachers can be prepared in university courses for teaching modelling at 
school, which contents and which methods are appropriate. On the basis of our 
experiences, we are sure that in general a balance between theory and practice must 
be given. Both should be connected by means of an appropriate teaching strategy, 
which must be reflected in the seminar. Of course, the contents of such a seminar 
may vary, but according to our experiences, the following contents are well suited for 
such a seminar (see the competencies referred to at the beginning): (1) Knowledge 
about modelling cycles, goals/perspectives and types of tasks; (2) Solving, creating 
and analysing modelling tasks; (3) Planning and practising modelling lessons; (4) 
Diagnosing actual modelling processes of pupils. 
Second we asked how do students’ processes of learning and understanding develop 
during such courses, what are the main problems and how can progress be observed. 
We decided that students had to write a learning diary to help us to answer that 
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question, also in combination with the evaluation of the seminar. These were the 
main problems of the students: to understand several directions of modelling and the 
distinctions between modelling cycles in the literature; to distinguish phases of the 
modelling cycle in general and also analysing transcripts of pupils’ modelling 
processes; subject-matter analyses of modelling problems; and finally dealing with 
the question of authenticity while creating a problem. Progress of the students 
concerning these difficulties could be reconstructed mostly when, pragmatically 
speaking, they linked theory with practice. Reflecting these developments during the 
seminar helped the students, undoubtedly, on their way to become competent teachers 
of mathematics. 
In conclusion, we would like to emphasize once again the necessity that university 
students who are to become mathematics teachers must have vast opportunities to 
deal with mathematical modelling both on a theoretical and on a practical level, 
including experiences with modelling at school. This will not only contribute to 
preparing them to be competent teachers for mathematical modelling but will also 
contribute to further develop their understanding of mathematical subject matter and 
of mathematics as a discipline (Lingefjaerd 2007). 
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DESIGNING A TEACHER QUESTIONNAIRE TO EVALUATE 
PROFESSIONAL DEVELOPMENT IN MODELLING 

Katja Maaß & Johannes Gurlitt 
University of Education Freiburg, University of Göttingen 

LEMA is an international project to design a professional development course for 
modelling. In order to measure the effects of the course, an evaluation questionnaire 
was developed and pilot tested. Based on theoretical background about modelling, 
this paper outlines the challenges of the design process, presents reliability and vali-
dation data, and exemplifies each scale with a few sample items.  
Keywords: Modelling, professional development, international approach, design of 
an evaluation questionnaire, empirical study 
INTRODUCTION  
Researchers, practitioners and policy makers in mathematics education agree that 
educationist aim should be to enable students to apply mathematics to their everyday 
lives (PISA, OECD, 2002) and contribute to the development of active citizenship. 
However, modelling is still rare in day-to-day teaching around Europe. LEMA 
(Learning and Education in and through Modelling and Applications) is a trans-
national European Project1 that tackles the problem at teacher level by developing a 
common course of professional development in mathematical modelling. The aim of 
this paper is to provide an approach to the evaluation of professional modelling de-
velopment in different national contexts and settings that is theory-based and driven 
by analysis of needs.  
Teachers’ knowledge and beliefs about the nature of the subject, their views on how 
to educate the subject and their self-efficacy beliefs about teaching the specific sub-
ject influence how they design or select tasks, plan, implement and evaluate their les-
sons (e.g. Brickhouse, 1990). Thus, to successfully implement mathematical model-
ling in their actual classroom practice, teachers need to (amongst others) (1) know the 
key concepts of mathematical modelling, (2) change their beliefs about the nature of 
mathematics education (if not appropriate for modelling), and (3) increase their 
awareness of their own competency to implement mathematical modelling in their 
actual classroom practice (self-efficacy).  
THEORETICAL BACKGROUND 
Mathematical modelling means applying mathematics to realistic, open problems. 
There are many descriptions of modelling processes (Blum & Niss, 1991; Kaiser-

                                                 
1 Partners of LEMA: Katja Maass (Coordinator) & Barbara Schmidt, University of Education Freiburg, Geoff Wake, 
University of Manchester, Fco. Javier Garcia Garcia, University of Jaen, Nicholas Mousoulides, University of Cyprus, 
Ödon Vancso & Gabriella Ambrus, University of Budapest, Anke Wagner, University of Education Ludwigsburg, 
Richard Cabassut, IUFM Strasbourg. The project is founded by the  EU.  
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Messmer, 1986). They vary according to the described modelling cycle, the relevance 
given to the context and the justifications seen for modelling in mathematics lessons 
(Kaiser & Shiraman, 2006). In this study, we follow the description of the modelling 
process in PISA (Prenzel et al., 2004), albeit restricting it to context-related problems.  
Modelling competency is the ability to carry out modelling processes independently. 
It comprises the competencies to carry out the single steps of the modelling process 
as well as competencies in reasoning mathematically and metacognitive modelling 
competencies (Maaß, 2006). Similar distinctions have already been made by Kaiser 
and Blum (1997) and indirectly by Money and Stephens (1993), Haines and Izard 
(1995) und Ikeda and Stephens (1998) in setting up assessment grids.   
Modelling lessons: A trans-national project, which aims at developing a common, 
research-based professional development intervention for Europe, faces the challenge 
presented by partners having different theoretical backgrounds related to the teaching 
of modelling situated in their different national contexts. Thus, we sought to identify 
where common ground and indeed differences might be used to enrich such a project.  
For example, the English partner adopts a socio-cultural approach – drawing particu-
larly on ideas of the development of learner identity and using Cultural-Historical 
Activity Theory (CHAT) (Engestrom & Cole, 1997). Research of the Spanish team, 
on the other hand, relied upon the Anthropological Theory of Didactics (Chevallard, 
1999). Finally, the German partner’s position is located in the international discussion 
on modelling and focuses on authentic tasks showing the usefulness of mathematics.  
Drawing upon all of these approaches, a theory-based design emerged as follows: 
The German partner provided descriptions of the modelling cycle and focused on au-
thenticity, both aspects being used to design tasks and support didactical development 
in the classroom. With relation to the Spanish partner, authenticity can also be seen in 
the search for questions that are crucial for students as social individuals. The English 
partner’s perspective that engaging with mathematics can be considered a social ac-
tivity provides teachers and researchers with a range of new learning and pedagogical 
models.  
In short, the theoretical approach – related to the teaching of modelling – used in this 
study is a synthesis of a variety of theoretical backgrounds. This allows for and en-
sures that combined expertise guided this trans-national project. 
Professional development of teachers: When considering teachers’ competencies in 
teaching, we follow Krauss et al. (2004) and Shulmann (1986) by distinguishing pro-
fessional knowledge (content knowledge, pedagogical content knowledge, pedagogi-
cal knowledge), beliefs, motivational orientation and competencies in reflexion and 
self-efficacy.  
Empirical studies of teachers’ professional development (e. g. Tirosh & Gerber, 
2003; Wilson & Cooney, 2002) show that professional development interventions 
lead to changes if the courses are long-term, with embedded phases of teaching and 
reflexion, and if further factors which might have an impact on teachers’ possibilities 
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to teach modelling (such as the framework, the head of the school, parents, teacher’s 
own beliefs) are taken into account. 
Teachers’ beliefs about the nature of mathematics and its education are believed to 
have a major impact on if and how a teacher employs innovation in everyday teach-
ing. According to Pehkonen and Törner (1996), beliefs must be understood here as 
being composed of a relatively lasting subjective knowledge of certain objects as well 
as the attitudes linked to that knowledge. Beliefs can be conscious or unconscious, 
whereas the latter are often distinguished by an affective character.  
Kaiser (2006) showed that innovations required by the curriculum are interpreted by 
the teacher in such a way that they fit into his or her existing belief system. 
Grigutsch, Raatz & Törner (1998) classified beliefs about mathematics into various 
aspects: the aspect of scheme (fixed set of rules); the aspect of process (problems are 
solved); the aspect of formalism (logical, deductive science); and the aspect of appli-
cation (important for life and society).  
Teachers’ self-efficacy beliefs in this context can be described as teachers’ beliefs in 
their capabilities to organize and execute mathematical modelling activities in their 
planning and classroom practice (see Bandura, 1997, Bandura, 2006). Self-efficacy is 
a future-oriented belief about the level of competence a person expects he or she will 
experience in a given situation. Self-efficacy beliefs influence thought patterns and 
emotions that enable actions and effort for reaching goals and persist in the face of 
adversity. “The self-assurance with which people approach and manage difficult tasks 
determines whether they make good or poor use of their capabilities. Insidious self-
doubts can easily overrule the best of skills’’ (Bandura, 1997, p. 35).  
Considering pedagogical content knowledge about modeling as an external measure 
of learning success, both beliefs about the nature of mathematics and the education of 
mathematics and self-efficacy beliefs touch the individual’s own perception and mo-
tivational aspects potentially relevant for application in the actual classroom setting. 
DEVELOPMENT OF THE COURSE  
Analysis of needs: In order to design a suitable professional development course for 
teachers, we first conducted a needs analysis to assess teachers’ mathematical beliefs, 
their use of tasks, and their attitude towards given modelling tasks. Altogether, N =  
563 teachers from the partner nations participated in the needs analysis. The meas-
urement instrument included items about beliefs, which were rated on a 4-point rating 
scale ranging from 1 (strongly disagree) to 4 (strongly agree). Additionally, items re-
lated to the tasks teachers use (e.g. tasks practising basic skills vs. problem solving 
tasks) and three concrete modelling tasks were given to the teachers (all related to the 
same context, but differing in their task openness). Teachers were asked how likely 
they were to use each task and to justify their response. 
Results revealed that teachers gave high rating scores for belief items in the process 
dimension (e.g. mathematics allows you to solve problems: M = 3.49) and the appli-
cation dimension (e.g. mathematics is useful in everyday life: M = 3.5). Conversely, 
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they gave relatively lower scores for the formalism and scheme dimension (e.g. 
mathematics is a fixed body of knowledge: M = 2.44). However, when asked which 
tasks they would most likely use in their lessons, the majority selected “tasks that 
practised basic skills” (M = 3.48) as opposed, for example, to “problems with other 
than one solution” (M = 2.38). Accordingly, when asked if they would use any of the 
given modelling tasks, the closed tasks proved to be very popular, while the more 
open versions drew less enthusiasm. Commonly cited detractors for the open tasks 
were perceived difficulty and class time constraints. 
In terms of designing an evaluation questionnaire, the analysis of needs also made 
clear that the more related the questions are to day-to-day teaching (e.g. related to 
concrete tasks), the more objections become evident.   
The course of professional development: Based upon the findings of the needs 
analysis, the following considerations were given particular attention: First, we ad-
dressed the teachers’ concerns and difficulties in using modelling tasks by providing 
further information about the benefits inherent to each modelling task. We also ad-
dressed different ways to assess and support students in their development of model-
ling competencies.  
Based on the needs analysis and the synthesis of various theoretical backgrounds, we 
developed the professional development course into five key aspects (modules):  
(1) Modelling: To implement modelling in lessons, teachers need background infor-
mation about this concept (sub-modules: What is modelling? Why use it?) (Blum & 
Niss, 1991).  
(2) Tasks: When it comes to planning lessons, teachers need to learn how to select 
appropriate tasks for their students and anticipate the modelling outcomes. An em-
phasis was placed on authentic tasks (sub-modules: Exploring, Design, Classification 
and Variation) (see e.g. Maaß, 2007, Burkhardt, 1989, Galbraith & Stillman, 2001, 
Kaiser-Meßmer, 1986) 
(3) Lessons: Research has shown that group work, discussion and working independ-
ently all support the development of modelling competencies (sub-modules: Meth-
ods, Using ICT, Supporting the Development of Modelling Competencies, Exercising 
Mathematical Content Through Modelling), (see e.g. Tanner & Jones, 1995, Maaß, 
2007, Ikeda & Stephens, 2001)  
(4) Assessment: If modelling is implemented in lessons, it also has to be evaluated. 
Assessment should be used not only for grading but also for supporting learning 
through feedback (Williams & Black, 1998) (sub-modules: Formative Assessment, 
Summative Assessment, Feedback). 
(5) Reflexion: As outlined above, reflexion about implementation in lessons and deal-
ing with challenges is crucial for the success of professional development courses 
(sub-modules: Implementation, Challenges). 
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Piloting: This course was piloted and evaluated in all 6 partnership countries. Piloting 
took place in 2008 and comprised 5 days. Implementation, however, was quite differ-
ent. For example, in France the training was given as a one-block course in January 
2008, addressing teachers teaching students aged 6-8 years. In Spain, the course con-
tained two blocks in April and May. Finally, in Germany the course consisted of 5 
separate days from January to November and addressed primary and secondary 
teachers at the same time. 
The main question was how such a course, which was piloted under different condi-
tions and in different national contexts, could be evaluated. We did not consider stu-
dents for evaluation because this seemed to be almost impossible given the huge vari-
ety of students concerned (age 6 to 16) and the given national contexts. Focusing on 
teachers, we used questionnaires and interviews and exemplary videos. Question-
naires and interviews give insight into teachers’ point of view and so provide infor-
mation about teachers’ intentions and thus about necessary preconditions of the 
change of day-to-day teaching. Here, we will focus on the teachers’ questionnaire. 
DESIGN OF THE QUESTIONNAIRE 
Instrument Development and Field Testing: The questionnaire was prepared to as-
sess all teachers taking part in the course (6 countries, 10-40 teachers per country). 
To measure possible knowledge gains and belief changes we implemented a pre-post-
control-group design. The development and testing of the instrument took place in 5 
steps.  
Step 1: Establishing rationales guiding the design: First, items should mirror the 
theoretical background and key-aspects of the modules of the professional develop-
ment. Thus, the questionnaire sought information about the pedagogical content 
knowledge, beliefs, and self-efficacy about mathematical modelling as well as beliefs 
about mathematics and its education. Items covered these categories and all five 
modules. Second, considering the target group and their understandable preference 
for a short questionnaire, our aim was to find a balance between a reasonable length 
and what would still provide a reliable assessment. Third, careful guidelines were de-
veloped to improve compliance in filling out the questionnaire and the quality of the 
implementation of the questionnaire (i.e. we provided information regarding the ne-
cessity of an evaluation for further improvement and emphasized that it was the 
course and not the teachers that was being evaluated) .  
Step 2: Procedure and materials preparation: Considering the first rationale of Step 
1, the scale construction was based on established scales wherever possible. The scale 
of belief items about the nature of mathematics and its education was based on 
Grigutsch, Raatz and Törner (1998). Items were related to four aspects of beliefs (see 
above). Learners rated their beliefs on a 5-point scale, ranging from strongly disagree 
to strongly agree.  
Based on Bandura’s method for measuring self-efficacy beliefs (Bandura, 2006), we 
designed a self-efficacy scale assessing efficacy beliefs related to modelling on a 
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100-point scale, ranging in 10-unit intervals from 0% ("cannot do at all"), to 100% 
("highly certain can do").  
For the assessment of the pedagogical content knowledge, we decided to use ques-
tions in an open format, the main consideration here being sensitivity for measuring 
knowledge provided in the course. Teachers were supposed to show their active 
knowledge, as this is probably the knowledge which they use in teaching. The open 
questions used for this knowledge assessment were rated by two independent, trained 
raters considering the amount and quality of arguments based on an expert solution.  
Step 3: First Item Refinement – A Small Tryout: First, we conducted a small pilot 
study. The tryout instrument was administered to a group of 7 teachers and 3 teacher 
trainers. In addition to filling out the questionnaire, participants were asked to com-
ment on the items they found misleading or difficult to understand. Consequently, 
items that were mentioned as being misleading were adapted. Items where the an-
swers of teachers showed a lack of focus were reformulated. Considering the target 
group, the initial questionnaire was too long (time needed > 60 min). Thus, we ana-
lyzed the questionnaire for time-efficiency and possibilities to omit certain items. For 
example, the first questionnaire contained an open item referring to beliefs about the 
different areas where mathematics can be useful. As this was not directly linked to 
the content of the course, we omitted this item due to time vs. diagnostic value con-
siderations. The first question “What is modelling?” was moved to the end, because 
some teachers were unable to answer it and therefore became discouraged right from 
the beginning. 
Step 4: Second Item Refinement – Expert Questioning: To improve the content valid-
ity of the items, the questionnaire was submitted to 10 modelling experts, each with 
more than 5 years’ teacher education. They were asked to evaluate whether the item 
statements would adequately deliver information about the proposed modelling cur-
riculum.  
As a result, certain questions were reworded, for example the rather general “What is 
modelling?” became “Name as many characteristics about modelling tasks as possi-
ble”. In addition, it was moved back to its original location at the beginning of the 
questionnaire, so that examples of modelling tasks given in other parts of the ques-
tionnaire would not influence one’s response to this question. To address possible 
feelings of discouragement among participants, we decided to provide the following 
introduction: Whether or not you have already heard of or know anything about 
mathematical modelling and modelling tasks, it does not matter here. We simply want 
to know the starting point for the teacher training course. This introduction also 
served the purpose of informing participants that they were not going to be tested. 
Another useful lesson gained from the modelling experts was to clarify the intention 
of the items related to beliefs by focusing on the beliefs about mathematics education 
and to omit items related to beliefs about mathematics itself. Again, the questionnaire 
was shortened. For example, the original questionnaire included three suitability rat-
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ings of different tasks, that took almost 20 minutes to answer but only comprised 
three single Likert-type scales accompanied by short comments. 
Step 5: Testing and Item Selection: After conducting the above-mentioned revisions, 
we conducted a pilot study with prospective teachers, including 24 experts in model-
ling and 23 novices in modelling, to simulate pre- and post-testing. This testing tar-
geted the following research questions:  

1. How reliable is the pedagogical content knowledge-scale, the beliefs about 
modelling scale and the self-efficacy scale? 

2. How good is the interrater-agreement between two independent raters scoring 
the open format knowledge questions? 

3. Is the developed scale able to differentiate between novices (without experi-
ence in modelling and experts (in modelling)? 

The first two questions about psychometric properties of the scales can be answered 
as follows. The reliability of the aggregated pedagogical content knowledge score 
was good (Cronbach's α = .83). Forty percent of the open format questions were co-
rated by a second rater (for 18 of the 47 participants), and the interrater agreement, 
shown by the intraclass correlation coefficient (ICC) was good (ICC2,2 = .91). Thus, 
only one rater coded the rest of the protocols. The reliability of the aggregated beliefs 
about modelling scale was good (Cronbach's α = .87). The reliability of the aggre-
gated self-efficacy belief score was high (Cronbach's α = .96).  
To answer the third question of whether the scales were able to differentiate between 
novices and experts we used a one-factorial ANOVA to analyze the data. An alpha 
level of .05 was used for all statistical tests. As an effect size measure, we used partial 
η², qualifying values <.06 as small effects, values in the range between .06 and .13 as 
medium effects, and values >.13 as large effects (see Cohen, 1988). Results of the 
analysis of variance showed that the experts had significantly higher knowledge 
scores about modelling than the novices, F(1.41) = 23.22, p < .001, η² = .36 (large 
effect). The analysis also showed that the experts had significantly higher scores re-
lated to beliefs than the novices, F(1.34) = 13.97, p < .001, η² = .29 (large effect). 
Last, the analysis revealed that the experts had significantly higher self-efficacy be-
liefs about modelling than the novices, F(1,35) = 6.68, p < .014, η² = .16 (large ef-
fect).  
These findings provide evidence that lead to the conclusion that also from a quantita-
tive point of view, the developed questionnaire shows good reliability and construct 
validity. We also surveyed 8 practicing teachers with the questionnaire and found that 
descriptively they scored close to the novices concerning modelling skills.  
In order to address concerns about further shortening the questionnaire, items that did 
not seem absolutely necessary for measuring the pedagogical content knowledge, be-
liefs about mathematical modelling or self-efficacy were screened for discriminatory 
power and difficulty. In other words, if the items were too general or too easy, they 
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would not be able to measure improvement. The final questionnaire contained the 
following sections: biography, beliefs about mathematics lessons, pedagogical con-
tent knowledge and beliefs related to modelling, and self-efficacy. The following ex-
amples provide a closer look at some of these sections: 
Beliefs: We used items based on Grigutsch, Raatz and Törner (1998) but with a focus 
on school mathematics, for example – each of them with a 5-point Likert scale. 
 School mathematics in my lessons  

from my point of view as a teacher 

Strongl
y 
dis-
sagree 

   Strongl
y agree 

5.1.1 School mathematics is a collection of procedures and rules which 
determine precisely how a task is solved. 

     

5.1.2 School mathematics is very important for students later in life.      
5.1.3 Central aspects of school mathematics are flawless formalism and 

formal logic. 
     

Pedagogical content knowledge: Within this section we addressed the following as-
pects: modelling, reasons for and against modelling, tasks, methods and assessment. 
All items were related to a corresponding modelling task because, as the needs analy-
sis clearly showed, being as concrete as possible was paramount to getting valid re-
sults. Most of the questions had an open format. For example: 
Imagine you are teaching children whom you regard the right age for this task. The following 5 questions are all 
related to the task below and all connected with each other. 
It is the start of the summer holidays and there are many traffic jams. Chris has been stuck in a 20-km traffic jam for 6 
hours. It is hot and she is longing for a drink. How long will the Red Cross need to provide everyone with water? 
 

Imagine you are teaching children whom you regard 
the right age for this task. 

not  
very likely  

       very likely 

6.1 Please x one to show how likely you are to use this type 
of task     

 

6.2 Give as many reasons as possible (pros and/or cons) and mark them as such (+/-). 
To evaluate the concept of assessment, a student’s solution was given to the teachers 
and they were asked to provide written feedback. Further, teachers were asked also 
about methods they would use in a specific situation, all in relation to the task given. 
 (7) Self-efficacy: The scale was based on Bandura (2006) and included the following 
sample items that had to be rated on a 100-point scale, ranging in 10-unit intervals 
from 0% ("cannot do at all"), to 100% ("highly certain can do"): 
I feel able to teach mathematical content using a modelling approach. 
I feel able to develop detailed criteria (related to the modelling process) for assessing and grading students’ 
solutions to modelling tasks. 
FINAL NOTES 
This paper exemplified the development process of designing a questionnaire evalu-
ating the success of a professional development course on mathematical modelling. 
The greatest challenge was accommodating the participants’ preference for a short 
questionnaire and evaluating the multifaceted aspects of the course as accurately as 
possible.  
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The results of the evaluation will be finalized in September 2009. The final evalua-
tion questionnaire is available on request from the first author. 
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MODELING IN THE CLASSROOM – MOTIVES AND 
OBSTACLES FROM THE TEACHER’S PERSPECTIVE 

Barbara Schmidt 
University of Education Freiburg 

Modelling is not only written into educational standards throughout Germany; 
other European countries also stipulate the integration of reality-based, 
problem-solving tasks into mathematics at school. In reality, however, things 
look quite different: in many places maths lessons are still dominated by 
exercises in simple calculation. So why? What is stopping teachers from 
introducing modelling? What would motivate them? In order to explore this 
issue in depth, a supplementary empirical study was conducted as part of the EU 
Project LEMA1. This paper intends to introduce the project, the development of 
the questionnaire and the survey design. Finally, first results will be presented. 
 

THE LEMA PROJECT TEACHER TRAINING PROGRAMME 
Within the framework of LEMA (Learning and Education in and through 
Modelling and Applications), a concept for a further training course for teachers 
on the theme of modelling and reality-based teaching was developed, piloted 
and evaluated. The aim was for teachers to become familiar with contemporary 
didactic and methodical concepts. They should acquire a basic knowledge of 
mathematical modelling and reality-based tasks in the school context, and after 
the training, they should be aware of why modelling should be learnt in maths 
lessons and how their pupils can learn it. In other words, they should know 
which subject matter, teaching forms and methods are most suitable for 
supporting pupils in their learning, at which point in the lesson modelling can be 
introduced and how a basic knowledge can be secured. In addition, practical 
concepts for putting together and evaluating and grading tasks for class tests 
should be acquired. A further aim was to be able to analyse, modify and describe 
the learning potential inherent in modelling tasks, and to be able to develop tasks 
which take into consideration the heterogeneity of school classes2.  
The course content was designed for about five days of further training. The 
modular structure of the course allows for a choice of content and is flexible in 
terms of the length of the training. Furthermore, it is conceived in such a way 
that teachers from all types of schools and of all academic abilities can take part. 
In Germany, two parallel training courses were to take place on five days spread 
out over the year (Jan. 08 – Nov. 08). There should be about two months 

                                                 
1 LEMA = Learning and Education in and through Modelling and Applications. Coordinator: 
Katja Maaß Pädagogische Hochschule Freiburg. Participant countries: DE, EN, FR, ES, HU, 
CY 
2 www.lema-project.org 
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between each day of training so that the teachers participating in the course have 
the opportunity to integrate the contents of the training into their lessons. 
BASIC THEORY  
Mathematical modelling generally refers to using mathematics to solve realistic 
and open problems. At the same time, the exact definition varies depending on 
the aims, which model of the modelling process is being used and the nature of 
the context assigned to a modelling task (Kaiser-Messmer 1986, Kaiser & 
Shiraman 2006). 
Obstacles to the integration of modelling 
In day-to-day school life, modelling still plays a much smaller role than one 
would wish (Burkhard 2006, Maaß 2004). It appears that at the moment teachers 
see more obstacles to using modelling than advantages. Blum (1996) has divided 
these obstacles into four categories: organisational, pupil-related, teacher-related 
and material-related.  
Organisational obstacles: With this Blum (1996) is referring mainly to the short 
amount of time – 45-minutes – teachers have for class. 
Pupil-related obstacles: Modelling makes the lesson too difficult and less 
predictable for pupils (Blum/Niss 1991, Blum 1996). Pupils can have difficulties 
carrying out individual steps or even the whole modelling process (Maaß 2004). 
Standard calculating tasks are more popular with some pupils because they are 
easier to understand and to solve the problem one simply has to apply a certain 
formula. This makes it easier for pupils to get good grades in mathematics 
(Blum/Niss 1991). 
Teacher-related obstacles: There appears to be a variety of obstacles for the 
teachers. The literature on this issue refers repeatedly to the time aspect. 
Teachers need more time to update tasks, to adapt them to the needs of the 
respective class, and to prepare them in detail (Blum/Niss 1991).  In addition, 
there are obstacles in relation to the actual lessons: teaching becomes more 
demanding and more difficult to predict (Blum 1996). Furthermore, a teacher 
requires other skills and competencies in order to be able to deal with a changed 
approach to teaching. The latest literature also refers to teachers’ beliefs about – 
or attitudes to – mathematics teaching as being an obstacle to innovation in the 
classroom (Pehkonen 1999, Törner 2002). Blum (1996) emphasises the fact that 
teachers do not view modelling as mathematics. Moreover, some teachers do not 
consider themselves competent enough to carry out modelling tasks when the 
context is taken from a subject area they did not study (Blum/Niss 1991, Blum 
1996). In addition, a significant aspect of the perceived obstacles is the question 
of how to assess performance, as teachers feel overwhelmed by the increasing 
complexity of this process (Blum 1996).  
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Material-related obstacles: Teachers often simply do not know enough 
modelling examples which they feel would be suitable for their lessons, or they 
select excessively detailed materials. (Blum/Niss 1991, Blum 1996). 
Motivations for integrating modelling 
Though there are several arguments against modelling, one can counter these 
arguments with numerous good reasons why modelling should be integrated into 
mathematics lessons, despite the existence of the obstacles as described above. 
A comprehensive representation of these reasons can be found in Blum (1996, 
p.21 ff.), Galbraith (1995, p.22) and Kaiser (1995 p.69).  
The offer-and-use model Figure 1 shows an attempt to integrate influences on 
the quality of teaching into a more comprehensive model of the effectiveness of 
a lesson. 

 

TEACHER 
 

Social, 
technical and 

vocational 
skills 

 
Expectations 

and objectives 
 

Commitment 
 

Patience 
 

EDUCATION 
(offer) 

 
Lesson quality 

 
 

Classroom 
management 

efficiency 
 

Lesson 
quantity 

 
 

Quality of 
teaching 
materials 

 

ACHIEVEMEN
T POTENTIAL 

 
 
 

Precognition, 
intelligence, 
learning and 
achievement, 

motivation, self-
confidence 

LEARNING 
ACTIVITIES 

(use) 
 
 

Real study time 
in class 

 
 

Extracurricular 
study activities 

EFFECT 
(output) 

 
Technical skills 

 
Interdisciplinary 

skills 
 

Pedagogical 
effect 

 

PERSONAL BACKGROUND 
Structural criteria (culture, 

language,…) educational and social 

CONTEXT 
Kind of school, class atmosphere, local context, composition of class, didactical 

context

Figure 1: Offer-and-use model; Source: Helmke (2006) 

As well as characteristics of the lesson, the model also includes characteristics 
of the teacher’s personality, the classroom context, the individual personal 
background requirements and the achievement potential and learning activities 
of the pupils. This model represents a theoretical basis for the obstacles and 
motives for modelling. At the same time, the model should serve as a basis for 
systematically organising the reasons for motives and obstacles so as to indicate 
in which areas of the model the relevant motives and obstacles are to be found. 
For example, the interviews produced a first indication that the motives belong 
to the pupil domain and the obstacles with the teachers.  
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RESEARCH QUESTIONS 
The previous section set out some arguments against modelling. However, these 
are based almost exclusively on experience and have not been subjected to 
empirical analysis. 
This suggests the need of some kind of instrument with which to measure or 
assess empirically the arguments against modelling. In order to ensure the 
resulting point of view is not one-sided, this instrument should also analyse the 
arguments for modelling. This has the additional advantage that not only the 
deficiencies are revealed, but that solutions are also presented and made 
available. Therefore, the central questions for the survey are: 
(1) What are the obstacles and motives? (2) Which obstacles and motives appear 
meaningful in terms of their being put into practice? (3) Which changes in the 
obstacles and motives can be identified during training? (4) Can in the process 
certain types of teachers be identified? (5) Is there a rubric for the offer-and-use 
model which seems to be especially relevant? 
How these questions might be answered is presented in the following. 
METHODOLOGY 
Survey for the study: To find out which aspects teachers view as obstacles and 
motives for modelling, quantitative and qualitative methods were applied. 
Amongst other things, a questionnaire was designed with the aim of ascertaining 
the obstacles and motives (see next section).  
 

 

 

 

 

 

 

Questionnaire Questionnaire Questionnaire Questionnaire 
Pre-test Process-related test Post-test Follow-up test 

T 1 T 2 T 3 T 4 T 5
December 2008 March 2009 January 2008 

Interviews Interviews Interviews Interviews 

Figure 2: Study schedule  

In addition, guided interviews were to be conducted. The advantage of using 
questionnaires is that a very large number of subjects can be used and that the 
questionnaire can be highly standardised (Oswald 1997). Only then can the 
desired generalisation of data be achieved. Significance tests can be applied to 
test hypotheses and develop a general statement (Bortz & Döring 2006). 
However, questionnaires are also limited in that data acquisition is not based on 
a process but mainly only focus on specific points. A further disadvantage lies in 
the reduction of the information: due to the pre-defined answer format of the 
questionnaire, the possibilities available to the survey subjects when providing 
their comments are limited.  
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Therefore, ideal is the additional use of interviews (Flick 1995). This allows the 
subjects the opportunity to express their answers in a more open form (v. Eye 
1994). Using a set of interview guidelines, the interviewees are granted as much 
space to provide their own descriptions as possible. Where something is not 
clear, this type of interview affords the researcher the chance to ask again, to 
rephrase the question of to explore in more depth spontaneously and 
associatively things the interviewee might say (Hopf 1995). A central element to 
research questions is also that in addition to ascertaining obstacles and motives, 
the interviewer can enquire as to the background behind the arguments.  
Study design: The questionnaire was to be implemented at four points in time: 
pre-test, post-test and follow-up test, as well as a process-related test in the 
middle of the further training). Four different survey dates were chosen so as to 
be able later to discover a possible development curve or teacher types. At the 
same time, additional individual interviews should be conducted with six 
teachers chosen randomly. So far, the results of the pre-test and process-related 
test questionnaires are now available for this study. The first and second 
interviews of the selected subject group are also available. More data will be 
generated by the end of the year. 
Random sample: The random sample includes teachers from two further training 
courses with a total of 52 participants and a corresponding control group of 47 
subjects. The allocation to experimental or control group was random.   
The random selection of the teachers for the interviews was based on the results 
of the pre-tests. This meant that three teachers were selected who saw many 
obstacles to modelling and three who instead saw many motives for modelling. 
Finally, table 1 is intended to show which assessment tools were chosen, their 
basic structure, their usage during the study period and a brief description of the 
respective random sample. 
QUESTIONNAIRE DEVELOPMENT 
To lay the foundations for the study, a questionnaire was developed whose 
purpose it was to throw light on the obstacles and motives for the teacher 
regarding modelling in mathematics lessons.  
To be able to guarantee this, a three-stage design was developed. 
Questionnaire development: The first items were developed from the subjective 
theories of researchers (deductive item construction). For this, the obstacles 
described above were restated as items. Furthermore, items were also formulated 
from the identified motives. To guarantee the authenticity of the items, the 
“natural” polarity of the obstacles and motives were retained in the items. The 
result was a preliminary questionnaire which included a total of 65 items. The 
answer format corresponded to a 5-level Likert scale (Rost 1996), which ranged 
from “applies completely” to “does not apply at all”. As the items named on the 
questionnaire were not expected to prove complete, additional open questions 
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were integrated which allowed the subjects to add any obstacles and motives for 
modelling which were not mentioned. With the help of these open items, 
together with the evaluation and optimisation of the closed items, the aim was to 
create a second and third test version of the questionnaire. This was necessary in 
order to be able to change the phrasing of items with ceiling effects, thereby 
minimizing the effect. At the same time, it was important to check the changed 
items once again in another test version in order to ensure that all ceiling effects 
were eliminated. If for the third test version no changes can be made to an item, 
it is removed from the questionnaire. Another reason why the three test versions 
are necessary is that the open question format generates new items which also 
have to be checked in a test version for ceiling effects. 
The questionnaire was tested on 240 mathematics teachers in three runs. In the 
end, the questionnaire included 120 items. 
Item polarity: The effects of item polarity are a source of controversy in the 
literature (Bühner 2006, p. 66f). On the one hand, some people are of the 
opinion that negatively expressed items confuse (e.g. “I am not often sad”). On 
the other hand, the tendency to say yes should be counteracted. Questionnaires 
with positive and negative items influence both factors and validity. Other 
studies have proven, however, that item polarity has only a limited effect on 
studies (ibid. p.66f). Due to these contradictory points of view regarding item 
polarity, in this study the natural polarity of the items was retained. This means 
that a high level of validity for the questionnaire is assumed, as the items in their 
natural polarity are less ambiguous and clearer. Thus the questionnaire includes 
both positively and negatively formulated statements about the research topic. 
Forming categories: The aim was to organise the 120 items into categories. At 
the same time, the categories should be formed from the items (inductive 
categorisation). The first indications for categories were provided by Blum’s 
classification (1996) as illustrated above. In addition, the items were repeatedly 
analysed together as a whole, so as to check for more possible category 
indicators. In so doing, a great deal of flexibility and openness was extremely 
important. Through this dynamic process new categories of content were 
constantly being discovered and others rejected. In addition, a categories 
validation was carried out by an expert rating, whose task it was to check if the 
categories were consistent in terms of content. 
In the end, the items generated 23 categories. In conclusion, the categories were 
assigned the aspects of the offer-and-use model (fig.1) so as to give them a 
theoretical base (deductive approach). These are described in the following. 
FIRST RESULTS 
In developing the questionnaire, the areas in which teachers see obstacles and 
motives for modelling were indicated. As the data collection is still incomplete, 
a final evaluation can not yet be given. Instead, it is more important that the 
categories be seen as a first indicator of to which areas the various obstacles and 
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motives can be assigned. Thus the intention of the following is to outline the 
categories and to assign them to areas in the offer-and-use model. In addition, 
the established categories should be supported by quotes from the interviews.   
The teacher personality area includes all categories which have to do with the 
personality of the teacher. Categories could be identified which confirm the 
obstacles found in the literature and described above. For example, there are 
obstacles in terms of the context of a modelling task. Some teachers appear to be 
held back by the unfamiliar contexts in modelling [“…how on earth am I 
supposed to know that? I didn’t study biology! I’m certainly not going to add a 
task to that.”]. Another obstacle appears to be the amount of preparation time 
needed [“I recently had a really good idea for a modelling task. I spent three 
hours working on it until I was satisfied with it. I simply can’t do that for every 
lesson. After all, I have 6 teaching hours to prepare for every day.”]. The belief 
of some teachers that modelling makes the lesson too difficult for the pupils 
could also be confirmed [“The pupils had no idea what they were supposed to 
calculate. This isn’t surprising when so much information is missing!”]. 
However, it is worth noting that these same aspects represent not only obstacles 
but also motives. For example, some teachers appear to regard an unfamiliar 
context as a challenge [“What’s really exciting is what I learn myself in the 
process!”], and others see in modelling an opportunity to gain time in terms of 
the preparation [“I just cut out a newspaper article, think of a suitable question 
to go with it and I’m finished.”], apparently holding the opinion that modelling 
requires less time to prepare. For this area new aspects could also be discovered 
which have so far not been mentioned in the literature. According to some 
teachers, modelling appears to require an increased level of flexibility [“I do try 
to think about which ideas the pupils could come up with, but it’s not possible to 
predefine all the directions they could go in. Sometimes they ask questions I 
don’t know the answers to myself, and suddenly the lesson takes a quite 
different direction to the one planned.”] The role of the teacher, which changes 
when using modelling tasks, was regarded by these teachers as a positive role 
[“The pupils only really call on me when they’re lost. Otherwise I can just take a 
back seat and observe them; the atmosphere is very relaxed.”]. 
In the area lesson quality two categories from the literature could be confirmed: 
some teachers criticize the fact that there is insufficient availability of 
materials.[“At the moment we are looking at functions, and for this I took the 
task with the bridge. And then another one … and another. But I can’t always do 
bridge tasks; it’s too boring for the pupils. But there aren’t any other tasks for 
functions.”]. In addition, one’s ability to plan the lesson is negatively affected as 
it is more difficult to predict the way in which the lesson is going to go with 
modelling. Moreover, three new categories could be assigned to this area: first, 
teachers appear to regard modelling as being very complex [“The tasks are just 
too complex for the pupils; they feel really overwhelmed.”]; second, as well as 
the time factor being a problem in terms of the preparation for the lesson, time 
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was also cited as an issue for the actual lesson, as some teachers feel that 
modelling tasks are very time-consuming [“I haven’t done any modelling 
recently because quite simply there isn’t the time. When I decide to use 
modelling tasks, I need more than an hour. Perhaps two, or even better, three.  
But I don’t have the time.”]; third, concerning methods, both positive and 
negative aspects could be named, with some teachers holding the view that 
modelling tasks offer a huge variety of methods [“I can apply absolutely loads 
of methods; and besides, the pupils are then much more motivated.”], whereas 
others held exactly the opposite view, claiming that modelling tasks are in terms 
of methodology extremely difficult to design [“I have no idea which methods I 
should use for these tasks.”]. 
In the area individual personal background, the category ‘pupil motivation’ 
could be corroborated. Here, too, as corroborated by the literature, there appear 
to be two forms of this aspect. Several teachers hold the opinion that pupils are 
more motivated when doing modelling tasks [“The pupils find the practical 
work in modelling tasks really interesting. Then they’re fully motivated and 
have much more fun.”], while others claim that standard, traditional calculating 
exercises are more popular [“The pupils come to me and ask when we can do 
normal tasks again.”]. Three further categories could be established: some 
teachers believe that when doing modelling tasks pupils are more creative in 
their thinking and calculating [“The pupils have really good ideas that even I 
wouldn’t have come up with.”]; some teachers are convinced that modelling 
tasks lead to greater independence in the pupils [“The pupils work much more 
independently.”], which they view as being a highly positive aspect; and there is 
the question of the difference in abilities within one class. Here, again, opinions 
go in two opposite directions. A section of the teachers hold the view that 
modelling should not be applied in a class where there is too big a difference 
between the various abilities [“The weaker pupils freeze up even more and the 
stronger pupils are bored because there isn’t much calculating to do.”], while the 
others would appear to disagree with this view, arguing that it is exactly then 
that modelling should be used [“The weaker pupils tend to get lost less and are 
also more motivated. The stronger pupils can try out new ideas, taking more and 
more parameters to make the calculations more complex.”]. 
The area context stands for the basic conditions. The influence of colleagues and 
parents plays a significant role. And here, too, it appears to go in two different 
directions, which can also be found in the literature. Concerning the cooperation 
with colleagues and/or parents, the experience of teachers seems to be either 
good [“I asked the parents at parents’ evening to work out one of the modelling 
tasks, and after that they thought it was really good!”] or bad [“The parents? 
They don’t support it at all! They want me to set tasks like the ones they had at 
school.” Or: “My colleagues are all quite old and they’re not going to change 
things in their classes now. If I start talking about modelling tasks, they just 
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smile at me patronisingly. So there is no cooperation at all.”], both sides 
obviously having a very different effect on the use of modelling.  
The area effects describes effects which can be attained from the long-term use 
of modelling. Here, all of the motives named in the literature and described 
above could be confirmed. Teachers appear to be aware of the positive effects 
modelling seems to have. It was also corroborated that teachers consider the 
measuring of performance as regards modelling somewhat problematic, as it 
would seem to be more complex [“I found it really difficult to assess the results. 
One of the pupils perhaps only guessed but got the right result; the other carried 
out a really complicated calculation but made a mistake. How can I assess that 
fairly?”]. A new category is the efficiency of the lesson. Some teachers see a 
more efficient lesson through modelling [“It is quite simply more efficient, 
because every pupil can contribute to these tasks. The pupils are all constantly 
occupied when they are modelling. And besides, they can remember the content 
of the lesson much better when they are actively involved, for example when 
they have had to measure the playground.”], while others claim to see quite the 
opposite. [“I can’t really afford to do modelling in my lessons, as it means 
giving up so much of the exercises.”] 
This list shows that as well as the reasons for and against modelling named in 
the literature, further relevant aspects are to be found. It is interesting that the 
very same aspects that are viewed positively by some teachers are viewed 
negatively by others.  
PERSPECTIVE 
By the end of the year, the data collection from the questionnaires and 
interviews will be completed. This should provide more information on the 
obstacles and motives, also highlighting any changes that occur to said obstacles 
and motives in the course of the further training. The question is whether in the 
process it will be possible to identify certain types of teachers. 
REFERENCES  

Blum, W. (1996): Anwendungsbezüge im Mathematikunterricht – Trends 
und Perspektiven. – In: Schriftenreihe Didaktik der Mathematik, Band 23, 
Trends und Perspektiven, p. 15-38 
Blum, W., Niss M. (1991) Applied mathematical problem solving, 
modelling, Applications, and links to other subjects – State, Trends and 
issues in mathematics instruction In: Educational studies in Mathematics 
22, Kluwer Academic Publishers, Netherlands. p. 37-68 
Bortz, J., Döring, N. (2006) Forschungsmethoden und Evaluation für 
Human- and Sozailwissenschaftler. 4. überarb. Aufl. - Heidelberg: 
Springer Medizin Verl. 
Burkhart, H. (2006): modelling in Mathematics Classrooms: reflections 
on past developments and the future. –In: ZDM 38 (2) p. 178-195 

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2074



Flick, U. (1995): Triangulation. In U. Flick, E. v. Kardorff, H. Keupp, 
L.V. Rosenstiel & St. Wolff (Hrsg.). Handbuch Qualitative 
Sozialforschung. Grundlagen, Konzepte, Methoden und Anwendungen 
(432-434). 2. Aufl., Weinheim: Psychologie Verlags Union 
Galbraith, P. (1995): modeling, Teaching, Reflecting – What I have 
learned. – In: Sloyer, Cliff, Blum, Werner, Huntley, Ian (Eds.): Advances 
and perspectives in the teaching of mathematical modelling and 
applications, Water Street Mathematics, Box 16, Yorklyn, p. 21-45 
Helmke, A. (2007): Unterrichtsqualität: erfassen, bewerten, verbessern. 5. 
Aufl. Seelze: Krallmeyer  
Kaiser-Meßmer, G. (1986). Anwendungen im Mathematikunterricht, 2 
Bände. Bad Salzdetfurth: Franzbecker.  
Kaiser, G. (1995): Realitätsbezüge im Mathematikunterricht – Ein 
Überblick über die aktuelle und historische Diskussion. – In: Graumann, 
Günter, Jahnke Thomas, Kaiser, Gabriele, Meyer, Jörg: Materialien für 
einen realitätsbezogenen Unterricht. Verlag Franzbecker, Bad 
Salzdetfurth ü. Hildesheim, p. 66-84 
Kaiser, G., Shriraman, B. (2006). A global survey of international 
perspectives on modelling in mathematics education. ZDM 38 (3). 
Maaß, K. (2004): Mathematisches modelieren im Unterricht: Ergebnisse 
einer empirsichen Studie. Hildesheim: Franzbecker 
Oswald, H. (1997): Was heißt qualitativ forschen? Eine Einführung in 
Zugänge und Verfahren. In B. Friebertshäuser & A. Prengel (Hrsg.) 
Handbuch Qualitative Forschungsmethoden in der 
Erziehungswissenschaft (71-87). Weinheim: Juventa. 
Pehkonen, E. (1999): Beliefs as Obstacles for Implementing an 
Educational Change in Problem Solving. – In: Pehkonen, E,. Törner, G. 
(Eds.): Mathematical Beliefs and their Impact on Teaching and Learning 
of Mathematics, Proceedings of the Workshop in Oberwolfach, Gerhard-
Mercator-University, Duisburg, p. 109-117 
Rost, J. (1996): Lehrbuch Testtheorie, Testkonstruktion. Huber, Bern  
Törner, G. (2002). Mathematical beliefs – A search for a common ground: 
Some theoretical considerations on structuring beliefs, some research 
questions, and some phenomenological observations. In G. Leder, E. 
Pehkonen, & G. Törner (Hrsg.), Mathematical beliefs: A hidden variable 
in mathematics education? (p. 73 – 94). Dordrecht: Kluwer.  
v. Eye, A. (1994): Zum Verhältnis zwischen qualitativen and 
quantitativen Methoden in der empirisch-pädagogischen Forschung. In R. 
Olechowski & B. Rollett (Hrsg.), Theorie und Praxis. Aspekte empirisch-
pädagogischer Forschung – qualitative und quantitative Methoden (24-45) 

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2075



MODELLING IN MATHEMATICS’ TEACHERS’ PROFESSIONAL 
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One of the chapters of the new Dutch handbook of didactics of mathematics, which is 
currently being written by a team of didacticians, concerns mathematical modelling. 
This handbook aims at (further) professional development of mathematics teachers in 
upper secondary education. In this paper we report about the issues we included: 
dispositions about modelling, goals, designing aspects, testing, the role of domain 
knowledge, and computer modelling. We also reflect on the relationship between 
mathematics, teaching of mathematics and modelling, and on the role of modelling in 
the Dutch mathematics curriculum. 

INTRODUCTION 
In this paper we describe how the subject of mathematical modelling is treated in the 
new Dutch handbook of didactics of mathematics, which is to appear within the next 
few years. The intended audience of the handbook consists of students in teachers’ 
colleges as well as mathematics’ teachers in upper secondary education who want to 
learn about teaching modelling as part of their professional development. We try to 
bridge the gap between educational research and teaching practice by bringing 
together results, scattered about the literature, thus making them accessible to (future) 
teachers. We highlight those topics which our post graduate courses for teachers have 
shown to be most urgent for their practical needs. 
Many maths teachers are not familiar with modelling or do not want to spend time on 
modelling in math’ class. Therefore we first address the question what modelling is 
(not) about and why it should be included in the mathematics curriculum. Next, we 
cover briefly some essential issues concerning the teaching of modelling. 
We focus on the non-mathematical aspects of mathematical modelling, since the 
didactics of the necessary mathematics is dealt with in other chapters of the 
handbook. Furthermore, experience with professional development courses for 
teachers shows that these non-mathematical aspects of modelling deserve very careful 
consideration as they are often ignored. 
We restrict ourselves to the question of how to apply known mathematics to non-
mathematical problems. In particular, we do not discuss modelling as a tool to learn 
mathematics. 

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2076



MODELLING, MATHEMATICS AND TEACHING OF MATHEMATICS 
Goal of modelling 
As mentioned above, we restrict ourselves to the application of mathematics using 
mathematical models to non-mathematical problems. Looking through the eyes of a 
scientist, it is our goal to understand the relations between the variables of our 
context. Mathematics is an important tool to achieve this goal. Scientists use 
mathematical models to experiment with variables and possible relations between 
them and answer specific questions, such as: Which percentage of Rhine water ends 
up in the ecologically important and sensitive Waddenzee? Of course, everyday life 
can also be a source of interesting problems, for example: Does it pay out to drive 
across the border to fill up the car? Students tend to that think models are copies of 
reality (Sins, 2006). It is important that they learn that models are made to answer 
specific questions and that the same context can lead to completely different models, 
depending on the question. A steal ball can be modelled as a point mass or a sphere or 
a conductor or a lattice or a free electron gas, depending on the question to be 
answered.  
Modelling cycle 
We describe the modelling process by a simple version of the modelling cycle. We 
start with a problem, which is to be solved using tools from mathematics. In the first 
stage the problem is described in terms of relevant non-mathematical concepts. 
During this stage one typically has to make some choices about (simplifying) 
assumptions. The result of this stage is a conceptual model. This conceptual model is 
then translated into a mathematical model, which can be analyzed mathematically. 
The actual translation of the conceptual model and the original question into 
mathematics may also be subject to certain choices. Next, the mathematical solution 
is translated back into the context and language of the original problem. We call this 
interpretation. Finally, one validates the solution. If necessary, one starts the 
modelling cycle all over again, adapting one or more of the steps.  
Role of mathematics in modelling 
The role of mathematics in modelling can vary considerably. It can be elementary or 
advanced. Sometimes computers are needed to aid mathematical analysis. The 
mathematics may involve calculus, algebra, geometry, combinatorics or some other 
field. The modelling problem can be well-defined with clear-cut data, a specific 
question, a standard mathematical model and ditto solution. In such problems 
mathematics and context science merge into a very potent mixture. The interplay 
between mathematics and context is then especially fruitful with techniques like 
dimensional analysis, where mathematical algebra is applied to physical units. The 
famous theoretical physicist Wigner was quite right when he spoke about “the 
unreasonable effectiveness of mathematics”! Conversely, a physical concept like 
velocity can be helpful to learn a mathematical concept like the derivative. 
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There may be several possible models and it is not always clear a priori which one 
serves our purpose best. If one doesn’t have a complete theory describing the relevant 
phenomena, one usually fills the gaps by posing simple (e.g. linear) relations. For 
such models validation is a main point of concern. Most models are not built up from 
scratch anyway, but emerge as refinements and combinations of existing models.  
Applications of mathematics in maths education 
Mathematics started as an applied science, dealing with practical problems in trading, 
measurement, navigation, etcetera. The separation of theoretical mathematics from 
the empirical sciences is a relatively recent phenomenon, brought about by the 
development of non-euclidean geometry around 1800. In the middle of the nineteenth 
century mathematical education followed this trend and its focus shifted from 
applications to logical reasoning. Since then, the emphasis has swung back and forth 
between pure and applied mathematics (Niss, Blum & Galbraith, 2007). 
Mathematics’ education should pay attention to both sides of mathematics. However, 
many students consider mathematics as a theoretical, abstract subject, which hasn’t 
much to do with reality (Greer, Verschaffel & Mukhopadhyay 2007). They have a 
blind spot for applied mathematics and the role of mathematics in the sciences or 
daily life. If students never learn how to apply mathematics, then their mathematical 
knowledge is indeed useless. Furthermore, it is counterproductive if common sense, 
intuition and reality are not used to aid mathematical understanding.  
Modelling and the Dutch mathematics teaching programs 
Non-mathematical contexts have played an important role in parts of Dutch 
mathematics education since 1985. Since 1998 all mathematics programs for 
secondary education involve modelling. The experiment which preceded the 
introduction of the new program indicated that assessment of open modelling tasks 
was a major problem and was avoided by many teachers. The modelling tasks in the 
national exams, too, paid little attention to conceptualization, interpretation and 
validation (De Lange, 1995). To counteract this deficit, the Freudenthal Institute in 
Utrecht started organizing modelling competitions for schools where these aspects do 
play an essential role.  
All these efforts have partially paid off: PISA shows that Dutch students perform well 
on modelling related tasks. On the other hand, Wijers & Hoogland (1995) and De 
Haan & Wijers (2000) mention in their evaluation reports of the above mentioned 
modelling competitions that many students’ papers lack in mathematical substance. 
Students tend to neglect relevant concepts and work by trial and error. Sins (2006) 
also laments the lack of conceptual thinking and understanding of the purpose of 
modelling. Future maths education should address these weaknesses more effectively. 
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PROFESSIONAL DEVELOPMENT 
Ongoing professional development is obligatory by Dutch law since 2006. Since 
many maths teachers in upper secondary education have only scant knowledge of 
applications of mathematics, post graduate courses for teachers should fill this gap.  
We use Schoenfeld’s description of complex tasks like modeling (Schoenfeld, 2008, 
based on his work on problem solving 1985 and 1992). The essence of this 
framework is as follows. Anyone who takes up a complex task like mathematical 
modelling starts with certain knowledge (not only mathematical knowledge like facts, 
algorithms, skills, heuristics, but also domain knowledge), aims and attitudes 
(opinions, prejudices, preferences). Parts of these are activated, one makes decisions 
(consciously or not, depending on one’s familiarity with the problem), one adjusts 
aims and designs a plan. During the execution of the plan one monitors the progress 
on several levels, going back and forth between the stages of the modelling cycle. 
Metacognition thus plays an important role in modelling.  
We address the issues of aims and attitudes in the sections Goals, Authenticity, 
Dispositions and Epistemological understanding. Knowledge aspects are dealt with 
in the sections Domain knowledge, Authenticity, and Computer modeling. We 
conclude with a discussion of decisions and monitoring in Monitoring and 
Assessment. 
Goals of teaching modelling 
Modelling isn’t easy. It takes a lot of time and is difficult to assess (Galbraith, 2007a) 
and (Vos, 2007). So why should we take up modelling in mathematics education? 
First, students have to learn how to apply mathematics, to prepare them for their 
further education and their jobs, as well as for everyday life. (It might improve their 
understanding of mathematics as well.) Modelling can help to achieve this (Niss, 
Blum & Galbraith, 2007). Second, modelling shows that mathematics is useful to 
scientists as well as practical problems solvers. Third, modelling is useful for students 
to make their picture of mathematics more complete: it is not a set of ancient, 
irrelevant algorithms, but an interesting, important, creative, still developing part of 
science, society and culture (Blum & Niss, 1991). Finally, modelling may help to 
counteract naïve conceptions like the illusion of linearity (De Bock, Verschaffel & 
Janssens, 1999; Greer & Verschaffel, 2007).  
Authenticity 
According to Galbraith (2007b): “Goals and authenticity are in practice inseparable, 
as the degree to which a task or problem meets the purposes for which it is designed 
is a measure of its validity from that perspective.” Palm (2007) also emphasizes the 
importance of authenticity. He describes an experiment where two different tasks are 
distributed randomly among 160 Swedish school children. Mathematically, the tasks 
are identical: to determine how many busses are needed if 360 students have to be 
transported and each bus can hold 48 students. One version consisted of just this 
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question, the other was much wordier, paying attention to other aspects of the school 
trip as well. The second, more authentic version was solved correctly by 95% of the 
students, whereas the first version was solved correctly by only 75% of the students! 
Greer & Verschaffel (2007) and Bonotto (2007) also describe how lack of 
authenticity can hamper students to use common sense in maths class. Authenticity is 
also beneficial for motivating students. Lingefjärd (2006) found that students are 
interested in problems concerning health, sports, environment and climate. Van Rens 
(2005) showed that mimicking scientific research practice in the class room, 
including writing papers and peer review, enhances motivation and improves the 
quality of the students’ work. 
Dispositions about modelling 
Abstraction and generalization belong to the core business of mathematicians. Model 
building, on the other hand, depends critically on the characteristics of the context 
and the specific research question. This tension (Bonotto, 2007) between mathematics 
and modelling makes many maths teachers and students feel uncomfortable (Kaiser & 
Maass, 2007). In their opinion there is no place for modelling in the mathematics 
curriculum, which should be devoted to “proper” mathematics. We know, however, 
that even students with solid mathematical knowledge are not necessarily able to use 
this knowledge outside mathematics (Niss, Blum & Galbraith, 2007). In the minds of 
many students and teachers there is no connection between the subjects taught during 
maths class and the topics taught next door by the physics or economics teacher. We 
are not just talking about superficial problems like different notations, conventions or 
terminology, but also about deeply rooted opinions about mathematics and reality. 
Greer, Verschaffel & Mukhopadhyay (2007) argue that students are trained to expect 
that problems in maths class are always solvable, that solutions are unique and that 
reality can be ignored. Students even think that using non-mathematical knowledge is 
forbidden (Bonotto, 2007). As Schwarzkopf (2007, 209-210) put it: 

The students do not follow the logic of problem solving, but they follow the logic of 
classroom culture. 

This obviously impedes successful modelling in teaching of mathematics.  
Understanding what modelling is about is strongly related to dispositions about 
modelling (Sins, 2006). He distinguishes between three levels. At the lowest level a 
model is considered a copy of reality. Students at the intermediate level understand 
that models are simplified representations of reality constructed with a specific goal. 
Different goals may lead to different models. At the highest level attention shifts 
towards theory building: Models are constructed to develop and test ideas. Sins 
experiments show that a higher level of epistemological understanding leads to better 
models. Students at the highest level use their domain knowledge to analyze the 
relevant variables and the relations between them. Most students, however, are at the 
middle level. They try to reproduce measurement data by varying the parameters one 
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by one. They ignore domain knowledge, reason superficially and consequently 
produce poor models. 
Epistemological understanding 
Sins (2006) investigated the influence of epistemological understanding of modelling 
on the quality of models made by students. He advizes to make the goals of a 
modelling task explicit: what do we want to understand or which problem do we 
want to solve? He proposes that the teacher presents reasonable models to his 
students who have to analyze and improve them. This way students learn about the 
tentative nature of models: They are not perfect copies of reality, since they often 
depend on choices, approximations and incomplete information. Furthermore, this 
adjusting of existing models and iteration of the modelling cycle gives a fairer picture 
of the modelling process as performed by experts, who of course have lots of 
standard models at their disposal and rarely start from scratch.  
It is not sufficient to just talk about modelling with students. Indeed, students who 
model themselves perform significantly better on modelling skills such as using 
various data, recognizing the limits of applicability of a model and adjusting models 
(Legé, 2007). However, even if students have a sound epistemological understanding 
of modelling, in very open modelling tasks they still do not always understand what 
is given, what is asked and how to attack the problem.  
Domain knowledge 
Modelling typically concerns extra-mathematical contexts. As a consequence, the 
maths teacher may find himself in an awkward position, since he cannot be an expert 
in all possible modelling domains, such as the natural sciences, computer science, 
economics, arts, sports or other specific (not necessarily scientific) contexts.  
The same holds for students. We know, however, that lack of domain knowledge 
leads to poor models (Sins, 2006). So it is essential to choose a modelling context 
where students’ lack of domain knowledge is not an issue. Furthermore, the teacher 
has to encourage the students to actually use their domain knowledge. Finally, the 
teacher has to be familiar with the modelling problem himself. In particular, he has to 
be aware that a problem can lead to several different models. 
Computer modelling 
Computers can be useful to in modelling, especially when the mathematics gets 
complicated. Using a graphic modelling tool it is easy to modify a model, run 
simulations and display the results graphically. The representation of a model in such 
a tool reminds one of a concept map in the sense that it indicates the relevant 
variables and the relations between them.  
In Löhner (2005), who summarized claims and results from the literature on 
computer modelling, we find that computer simulations make validation and adaption 
of models very natural. It facilitates exploring the limits of validity of a model. 
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Unfortunately, it also facilitates the superficial ad hoc modifications and data fitting 
behaviour Sins (2006) warns against. Löhner (2005) finds that students who work 
with computer models over a longer period of time tend to start working in a top 
down fashion and develop a more mature, qualitative attitude towards modelling, 
although one shouldn’t expect too much in this direction. Simulation results may lead 
students to new research questions. Computer modelling is challenging and 
motivating for students, as long as the models are not too complicated and the 
software is easy to use. It also helps to turn abstract, theoretical models into 
something more concrete, which makes it easier to discuss these models. Finally, 
experimenting using computer modelling helps students to understand and remember 
the phenomena and associated theory.  
Monitoring 
Monitoring the modelling process of a group of students can be very difficult. 
Different students make different and often implicit assumptions and simplifications, 
have different goals and use different data and notations. This makes monitoring the 
modelling process of a group of students very difficult if not virtually impossible 
(Doerr, 2007). It is thus very important to force students to make all of the above 
explicit. The teacher can make life easier by inserting go-or-no-go-moments at certain 
points of the modelling cycle. However, even if everything is written down neatly, it 
can still be difficult for teachers and students to compare different modelling results. 
Are the differences due to different conceptualization or to mathematical errors? This 
problem can be moderated by discussing and comparing the various conceptual 
models with the whole group. Monitoring becomes much simpler if consensus is 
reached about the data, the goal and notations. This also facilitates understanding and 
comparing the different results, which in turn improves motivation and understanding 
(Van Rens, 2005; Bonotto, 2007).  
If modelling is new to students it is advisable to have them record their modelling 
process in a pre-structured log. In this log they have to describe all data, assumptions, 
etcetera. The log can also be very useful for assessment. 
Assessment of modelling 
One of the main obstacles when teaching modelling is evaluation. The goals of 
modelling can not be assessed as objectively as is customary in education of 
mathematics (De Lange, 1987). Maths teachers who take the non-mathematical 
aspects of modelling seriously have to come to terms with this lack of objectivity. To 
reduce the subjectivity one can use a team of assessors (Antonius, 2007; Vos 2002; 
Vos 2007) and weighted lists of evaluation criteria. One can search for rubrics on the 
internet and adapt them to the assessment at hand. One can use the modelling cycle to 
generate evaluation criteria: conceptualization (analysis of the original problem, data, 
relevant concepts, data, variables, relations, simplifications, modelling goal), 
mathematization, mathematical analysis (completeness, correctness), interpretation, 
validation, conclusions, adaptions. Other criteria which are mentioned by experienced 
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assessors of modelling are general impression, readability, representation and 
originality. A common pitfall is to overestimate appearance, so it remains necessary 
to study and evaluate thoroughly the technical contents of students’ work (De Haan & 
Wijers, 2000). 
De Lange (1987) argued that traditional written tests are not suited very well to test 
higher skills like modelling. He mentions several alternatives, which may be more 
appropriate, like group work, home work, essays or oral examinations. Vos (2007) 
argues, however, that alternative tests like observation, interviews and portfolio’s are 
often too time consuming and too subjective. She investigated experimentally how 
teamwork can indeed reduce subjectivity. Furthermore, she shows how alternative, 
laboratory like tests using manipulative materials can lead to valid assessment of 
modelling skills. These results are confirmed by Antonius (2007), who adds, 
however, that this kind of assessment levels out the differences between strong and 
weak students. 
Above we emphasized the importance for teachers of taming excessive divergence for 
monitoring the modelling process. Similarly, assessment is facilitated by posing 
authentic “convergent” modelling tasks (Niss, 2001): 

Mathematical modelling involves the posing of genuine, non-rhetorical questions to 
which clear and specific answers are to be sought. 

CONCLUSIONS 
To prepare teachers for mathematical modelling teachers’ colleges have to take into 
account (apart from the necessary mathematics and their didactics) the lessons 
learned from literature about the role and goals of modelling in science and 
mathematics education, the modelling cycle, dispositions, authenticity, 
epistemological understanding, domain knowledge, computer modelling, monitoring 
and assessment. Unfortunately, empirical research on modelling education is mostly 
restricted to short term teaching experiments. To design effective modelling 
education it is necessary to gain more experience and to systematically carry out 
longitudinal research into the effects of teaching modelling. 
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MODELLING AND FORMATIVE ASSESSMENT PEDAGOGIES 
MEDIATING CHANGE IN ACTIONS OF TEACHERS AND 

LEARNERS IN MATHEMATICS CLASSROOMS 
Geoff Wake 

University of Manchester, UK 
This paper explores how modelling and associated tasks and pedagogies can bring 
about a refocusing of the nature of assessment which it is argued, when viewed 
through the lens of Cultural Historical Activity Theory, appears to currently 
adversely mediate the object of activity in many school mathematics classrooms. An 
international professional development programme in mathematical modelling has 
been designed with formative assessment as a key theme.  Drawing on data resulting 
from classroom activity developed from this programme I argue that modelling 
undertaken with a formative assessment approach can bring about a significant 
change in classroom activity for learners and teachers that might better prepare 
students to apply mathematics.  

INTRODUCTION 
A Cultural Historical Activity Theory (CHAT) analysis of classroom activity 
suggests that in almost all classrooms, at least in England, the collective activity of 
teacher and students is mediated to a large extent by “rules” of assessment and 
“performativity” which ultimately focus on learners’ qualifications.  Whilst this is not 
necessarily clearly discernible on any particular day in any particular classroom, 
recent research (Williams et al, 2008) points to an all pervasive culture of 
“performativity”.  Systemic measurements of performance and accountability are 
seen to drive the curriculum in our classrooms to the extent that this can be detected 
in classroom discourse with teachers making regular reference to the demands of 
assessment and examiners.  In terms of CHAT, assessment and performance 
measures are part of, and lead, the “rules” that mediate the activity of the classroom 
activity system with its object of learning mathematics. These rules have culturally 
and historically evolved affecting, for example, the texts and pedagogic instruments 
used by teachers and learners.  They also help mould and define the expectations of 
what lessons in mathematics should be, in the sense of Brousseau’s didactical 
contract (1997). 
The current culture is, therefore, such that a teacher’s enactment of the curriculum 
does not necessarily match his or her espoused beliefs about the nature of the subject 
they teach, and consequently how it should be taught and learnt (see for example 
Tobin and McRobbie (1997)).  Boaler (1997) documents case studies that illustrate 
how, in England, this has led to a narrowing of professional practice and risk taking, 
leading to a normative cultural script (Wierzbicka, 1999) where many lessons 
comprise of an initial period of transmission by the teacher of key mathematical ideas 
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or rules and procedures followed by a period where students practise these.  This is 
not only detrimental to learning where shallow or surface learning dominates at the 
expense of deep learning and understanding (see for example, Entwistle (1981)), but 
can also be responsible for a narrowing of participation.  As Brown et al (2008) 
report this can lead to situations, when students are asked about their likely future 
participation in mathematics beyond the compulsory curriculum (to age 16 in the UK) 
to responses such as 

“I hate mathematics and I would rather die.” 

This paper explores, how, taking a mathematical modelling approach to classroom 
practice that incorporates formative assessment introduces a range of new mediating 
instruments allowing teachers and learners to refocus their classroom actions.  The 
work reported here resulted from classroom experiences that emanated from the work 
of a professional development programme as part of an EU funded Comenius project, 
Learning and Education in and through Modelling and Applications (LEMA).  
Central to the approach advocated by this programme is the focusing of classroom 
activity on modelling with teachers and learners becoming fully involved with 
formative assessment practices.  An overview of the framework that guided the 
development of the programme in this respect is outlined in the next section before 
some resulting classroom experiences are described and analysed in terms of CHAT. 

ASSESSMENT FOR LEARNING 
Following a thorough review of research relating to assessment, Black and William 
(1998a) claimed that focussing on formative assessment, i.e. assessment with the 
purpose of informing teacher and learner about learner progression, raises student 
attainment.  Thus the assessment for learning movement, as it became, conceptualised 
assessment as crucially providing feedback at all stages of day-to-day classroom 
activity and promoted this in favour of summative assessment, or assessment of 
learning, where the focus is on measuring outcomes, often being used to give grades.  
In follow-up studies that involved teachers and their pupils working with researchers 
Black and Wiliam (1998b) clarified the key areas that need to be considered if 
classroom assessment practices are to be effective in improving learning.  These are 
identified in the diagram of Figure 1 and outlined below. 
This emphasises an overarching pedagogic philosophy in which  teachers and 
students strive together to ensure that, as a community, they will use their monitoring, 
at every stage, of the mathematical modelling taking place in their classroom to 
inform them of how to improve students’ learning.  Fundamental to this is the 
clarifying of learning objectives so that all know what it is they are trying to achieve.   
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Figure 1.  Schema illustrating key aspects of formative assessment 

In terms of mathematical modelling this requires that students understand the overall 
nature and aim of modelling and the key sub-competencies they need to acquire.  In 
supporting assessment for learning four key underpinning aspects of classroom 
activity were identified by Black and Wiliam:  
(i) Questioning.  Classroom discussion between teacher and students and between 
students is crucial in the learning of mathematics (see for example, Ryan and 
Williams, 2007) and fundamental to this are the questions that teachers pose.  In 
summarising research in this area Tobin (1987) points to findings that suggest that the 
time between a teacher asking a question and intervening, perhaps to re-phrase the 
question, (often referred to as “wait-time”), is in many classrooms very short, and if 
lengthened leads to more effective learning.  However, he points out that it is the 
quality of the question that is crucial in opening up opportunities for thinking and 
consequently learning. 
(ii) Feedback.  How teachers best give feedback to students to scaffold their 
learning (in the sense of Vygotsky) is always an issue of concern but this is possibly 
even more problematic when developing new pedagogic practices such as those 
associated with mathematical modelling.  The research in this area that informed the 
development of good practice in formative assessment is clear in suggesting that the 
best feedback focuses on the task, is given immediately and is given orally rather than 
in writing.  An important study by Butler (1988) reached the conclusion that as soon 
as teachers give a grade for a piece of work their comments about how to improve are 
ignored and that feedback that comprises of comments about how to improve instead 
of grades is more effective in raising student attainment.   
(iii) Formative use of summative assessment.  Much work has been done in 
developing ways in which such summative assessment of mathematical modelling 
can be carried out: see for example many of the bi-annual proceedings of the ICTMA.  
Whilst this has had little impact on summative assessment that leads to qualification 
at a national level, the frameworks and structures that have been developed may well 
provide suitable structures to inform formative assessment in classrooms. 
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(iv) Peer & self assessment.  Of course, learning is most effective when the learners 
themselves have a clear understanding of what it is they are trying to achieve, can 
measure their progress against clear objectives and know how to proceed to achieve 
their aims.  Hence, the important focus on clarity of learning objectives. Peer 
assessment, where students assess each others’ work, provides a valuable direct 
source of feedback for students, often using a language and given in a manner they 
readily understand, and also allows them to start to reflect on their own work and 
learning. 
In addition to these important pedagogic practices one further key area that needs to 
be considered is the design of the tasks that are used. Here, where assessment is being 
refocused and considered as being an integral part of daily classroom activity, the 
tasks students are asked to engage with are therefore absolutely critical.  If, for 
example, the teacher wants students to focus on their ability to interpret from 
mathematical model to reality, the tasks used need to be designed to allow a range of 
possible and appropriate interpretations to be made by the students being taught.  On 
other occasions other particular modelling sub-competencies or meta-cognitive 
awareness of the modelling process as a whole may need to be the focus of attention 
of classroom activity, requiring tasks to be designed accordingly. 

A MODELLING CLASSROOM 
Here I describe some detail of a lesson that was designed to involve students in 
mathematical modelling incorporating formative assessment approaches.  Due to 
restrictions of space I focus on just two aspects of the lesson particularly related to 
formative assessment practices: namely teacher questioning and peer assessment.  
The lesson was one of a sequence taught by both the teacher of the class and 
researcher following the teacher’s partial attendance at the LEMA professional 
development programme in England, which the researcher had led following his work 
as part of the development team.  The lessons were developed using materials and 
approaches advocated by the programme, and in the particular lesson outlined here 
the intention was to involve students in peer assessment as a prelude to future self 
assessment. The students were aged 13-14 and in an upper mathematics set in a 
comprehensive school catering for students of all abilities (aged 11-18), in a town in 
the north west of England.  The teacher started the lesson by introducing its 
objectives (Figure 2a).  The emphasis of the first objective was on the development of 
good communication skills about mathematical modelling rather than on the 
mathematics itself; additionally the remaining objective of the lesson was for students 
to focus on their assessment of their own modelling activity and that of their peers.  
Following this the teacher reminded the class of the sub-competencies of 
mathematical modelling to which they had previously been introduced, and which 
had been clarified using the schema of Figure 2b.  This is based on that used as the 
theoretical basis of the PISA study (OECD, 2003); here it has been adapted to 
highlight processes that are used in developing a solution to a modelling task as the 
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“modeller” moves from one key stage to the next.  The teacher highlighted these 
suggesting that the students might wish to think about them when making a poster of 
their “solution”.   

  

Figure 2a. Lesson objectives.  Figure 2b. Schema outlining modelling cycle 

Finally in this introduction to the lesson the teacher set the task:   
In a school playground there are two trees: one is small and one is large.  There is also a 
straight wall. 

A group of pupils organise a race: each pupil starts at the small tree; then has to touch the 
large tree; followed by the wall; before finally running back to the small tree. 

Where is the best place for a pupil to touch the wall? 

The pupils started to tackle the problem, working in groups of four or five: as the 
lesson was shorter than usual, the pupils had only about half an hour to complete their 
work and poster.  The teacher circulated the room as the groups worked.  Here I 
illustrate the teacher’s interactions with one group.  He approached their cluster of 
tables and discussed where they had got to. 

Teacher:  OK, what’s your group doing? 

Pupil 1: Going for the middle point of the wall (gesturing to a diagram of the situation) 

Teacher: And you think that’s the solution? 

Pupil 1: Yeah 

Teacher: How could you convince somebody that’s the solution? 

Pupil 1: I don’t know. 

Pupil 2: Does it have to be in a triangle [referring to the path taken by someone in the 
race] 

Teacher: [reflecting the question to other members of the group] Does it have to be in a 
triangle? 

Pupil 3: Yeah, because there are three points…. 

Pupil 2:  Yes, that’s the only way you can do it. 
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Teacher: Well, I suppose somebody could run 

Pupil 2: If the wall was there, then they could just go like that [pointing to a sketch 
diagram] 

Teacher: [indicating to the rest of the group Pupil 3’s sketch with a section of wall lying 
along a straight line joining the two trees] oh right, so if the wall was there….  so the first 
thing you are doing is making some assumptions.  So you have to say what your 
assumptions are: you’ve assumed everything is in a straight line [indicating this on Pupils 
3’s diagram] and you’ve assumed that it’s like that [indicating the triangle path on Pupil 
1’s diagram]. What is it you actually want to…. 

Pupil 1:  Find out where the wall is. 

Teacher: Right, so at first you have to decide what the situation looks like….. 

The teacher continued circulating the room encouraging groups as they worked on the 
problem and towards the end of the period completing their posters which explained 
what they had done to arrive at their solution.  Following this the teacher focused the 
whole group on the second objective of the lesson: “To think about assessing our own 
and each others’ work”.  This was “operationalised” by adopting the pedagogic 
practice of asking each group to consider the poster of another using pink sticky notes 
to identify up to 3 positive features of the poster being considered and 3 or fewer 
features where there could be improvements using yellow sticky notes (see Figure 3 
below).  As these early attempts demonstrate much of the feedback focused on issues 
relating to communication (“Not enough diagrams”) and aesthetics (“Cool trees! 
[referring to drawings] and “Colourful”).  In many ways this was a disappointing 
outcome, but this was the first time the class had been asked to take part in such 
formative assessment processes, and in a lesson a week later students gave slightly 
more attention to issues of mathematical content but there still remained room for 
there to be more of a focus on the processes involved.  
 
 
 
 
 

Figure 3.  Peer feedback on modelling task. 

DISCUSSION 
In the brief extracts with which I illustrate a modelling lesson here we observe 
activity that is very different from the normative script of lessons that I describe 
earlier and which a recent nationwide inspection report corroborates as being the 
norm (Ofsted, 2008).  Consider, for example, the interaction of the teacher with the 
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group of students, where the teacher prompts discussion and problem solving rather 
than “transmitting” rules and procedures.  I now consider how Cultural Historical 
Activity Theory might enlighten our thinking about the nature of such lessons and 
highlight potential areas of conflict for teachers who attempt to follow such 
approaches. 
CHAT builds on the fundamental thinking of Vygotsky, who suggested that the 
action of a subject is mediated by ‘instruments’ which may include artefacts and 
tools, or in the case of communicative action, as is often the case in classrooms, by 
cultural tools, concepts and language genres (see for example, Engestrom, 1995).  
This is indicated by the top triangle in the schema of Figure 4.   
 Instruments

Subject Object 

Rules Division of labour Community

 
 
 
 
 
 

Figure 4.  Schema of activity system  

Leont’ev extends thinking to take account of the communal nature of activity: the 
schema of Figure 4 thus indicates the additional nodes of mediation in a culturally-
mediated and historically-evolved Activity System.  These indicate the importance of 
the ways in which the division of labour and associated norms/expectations/rules 
mediate the subject’s activity in relation to the community. 
I suggest that in the modelling classroom which attempts to involve formative 
assessment practices there is a shift in the attention of both teacher and students to 
view assessment in terms of informing learning and this in turn considerably alters 
the dynamics of the learning community.  Highly visible in bringing about this 
refocusing are the pedagogic tools that the teacher employs.  Crucial in this regard is 
the use of a rich modelling task, but equally important are (i) the sharing of learning 
objectives that in this case (at an early stage of the students’ development as 
mathematical modellers) focus on the object of the activity (the learning of 
mathematics), (ii) the teacher’s decision to involve groups of students in working on 
this, (iii) their need to develop a poster communicating their solution together with 
their way of working and (iv) the peer assessment activity which clearly refers back 
to the shared learning objectives. 
Greater insight might be gained into the nature of the classroom activity by exploring 
further Leontev’s (1978) theoretical development of Vygotsky’s thinking in which he 
explores the nature of a subject’s action in relation to the communal activity and the 
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manner of the operation that achieves this.  He suggests three parallel hierarchies 
shown schematically in Figure 5. 
ACTIVITY  --  ACTION  --  OPERATION 
COMMUNITY --  SUBJECT  --  INSTRUMENTS 
MOTIVATION --  GOAL  --  METHODS 

Figure 5.  Schema illustrating the nature of the action of a subject in relation to 
communal activity. 

Thus in terms of classroom mathematical activity we need to understand how things 
are “normally” for the subject and how the modelling classroom differs from this.  In 
both classrooms the activity has as its object the learning of mathematics: normally 
this is motivated for the community, as I suggest earlier, by the pressure to perform 
well in summative assessment and with institutional measures of performance having 
a major influence in defining goals related to achieving high grades in national 
assessments.  This has led over time to a use of a restricted range of instruments: in 
particular, reflecting the highly structured nature of the summative assessment 
(Wake, 2008) the texts used involve students in practice exercises that in the main 
involve students in the recall and use of instrumental understanding (Skemp, 1978).  
Equally pedagogic practices are in general restricted with “the teacher doing most of 
the talking, emphasising rules and procedures rather than concepts or links with other 
parts of mathematics” (Ofsted, 2008 p. 20), and with teacher talk constituting “a 
substantial proportion of pupils’ time for learning mathematics” (ibid. p. 20).  Thus, 
the actions of teacher and student might to a large extent be considered as active and 
passive respectively. 
In the modelling classroom, however, the introduction of new instruments (tasks and 
pedagogic practices) brings about a change of motivation and goals.  On these 
occasions the motivation for teacher and learners, as encapsulated in the learning 
objectives of the lesson illustrated here, has been, perhaps only temporarily as I shall 
discuss below, re-focused on the students’ learning.  This alters the nature of the 
actions of both teacher and learners: both are now active with learners struggling to 
solve a task and make reflective judgements about their ability to do so using new 
rules of assessment that focus on process as opposed to outcomes.  At this early stage 
of this class of students working on modelling the operation, the method by which 
the action is instrumentally accomplished, requires careful attention by both teacher 
and students.  The introduction of new instruments for use by both teachers and 
learners destabilises their usual ways of operating, introducing new challenges for all. 
Thus the development provides a ‘break-down’ in the usual routine of the classroom 
activity which now becomes the focus of attention and hence conscious action.  
Previously we (Williams and Wake, 2007) and others (eg Hoyles et al, 2001)  have 
recognised this in workplace activity.  Here in classrooms, I propose, this as a useful 
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way of deliberately provoking a means of mediating changes in the actions of 
teachers and learners. 
Finally, a word of warning!  The developments in classroom activity arising from the 
LEMA programme, such as described here, are in many ways encouraging, 
demonstrating the potential to enrich the learning experience of students of 
mathematics. The claim by Black and Wiliam that a focus on formative assessment 
practices will ultimately lead to increased attainment in summative assessment is 
helpful to teachers working in a system where measurement of performance is so 
pervasive.  However, bringing about the necessary changes in teacher and student 
actions involves teachers, either individually or as a collective, in considerable risk 
taking: when all around are following the “safe” option there is a great deal of 
pressure to conform to the “norm”.  Additionally, as Hodgen (2007) points out the 
simple messages often associated with “assessment for learning” are not necessarily 
sufficient in allowing teachers to make the shift.  Perhaps programmes of professional 
development such as that developed by LEMA will help in this regard. However, it 
seems unlikely that teachers will be able to sustain developments in such a way 
unless summative assessment is realigned to support this.  Elsewhere, (Wake et al, 
2004) our research has shown that attention needs to be paid to each mediating node 
of an activity system if curriculum development of this sort is to be effective: in 
paying such attention there needs to be alignment of purpose and an awareness of 
how each part of the system interacts with each other. 
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TOWARDS UNDERSTANDING TEACHERS’ BELIEFS AND 
AFFECTS ABOUT MATHEMATICAL MODELLING 

Jonas Bergman Ärlebäck 
Linköpings universitet, Sweden 

Work in progress on a framework aiming at capturing teachers’ beliefs about 
mathematical models and modelling is presented. It is suggested that the belief 
structure of mathematical models and modelling as perceived by teachers fruitfully 
might be explored as partly constituted of the teachers’ beliefs about the real world, 
the nature of mathematics, school mathematics, and applying and applications of 
mathematics. Some aspects of the suggested framework are explored using two case 
study interviews. It is found that the two teachers do not have any well formed beliefs 
about mathematical models and modelling, and that the interpreted beliefs structure 
of the teachers contain inconsistencies which are made explicit within the framework. 
The empiric findings also suggest some modifications of the framework.  

INTRODUCTION 
Since the mid 1960s gradually more emphasis has been put on mathematical 
modelling in the written curricula documents governing the content in Swedish upper 
secondary mathematics courses (Ärlebäck, in preparation). In the latest formulation 
from 2000, using and working with mathematical models and modelling is put 
forward as one of the four important aspects of the subject that, together with 
problem solving, communication and the history of mathematical ideas, should 
permeate all teaching (Skolverket, 2000). Indeed, it is stressed that “[a]n important 
part of solving problems is designing and using mathematical models” and that one of 
the goals to aim for is to “develop their [the students’] ability to design, fine-tune and 
use mathematical models, as well as critically assess the conditions, opportunities and 
limitations of different models” (Skolverket, 2000). However, as noted by Lingefjärd 
(2006), “it seems that the more mathematical modeling is pointed out as an important 
competence to obtain for each student in the Swedish school system, the vaguer the 
label becomes” (p. 96). The question naturally arises what mathematical models and 
modelling are and mean for the different actors in the Swedish educational system. 
Ärlebäck (in preparation) concluded that the governing curricula documents, the 
intended curriculum (Robitaille et al., 1993), do not give a very precise description of 
the what a mathematical model or mathematical modelling is, but rather describe the 
concepts in an implicit manner as exemplified above. Therefore, focus is turned to 
teachers who interpret and realize the intended curriculum, and thereby have a big 
impact on which mathematical content and what view of mathematics students in 
classrooms are exposed to. One way to try to understand part of the process of what 
ends up in the classroom, the (potentially) implemented curriculum (ibid.), is 
provided by studying teachers’ beliefs.  
The question of how teachers’ knowledge, beliefs and affects towards the learning 
and teaching of mathematics influence and relate to their practice is a highly active 
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field of research (Philipp, 2007). Thompson, acknowledging the dialectic nature 
between beliefs and practice, argues that “[t]here is support in the literature for the 
claim that beliefs influence classroom practice; teachers’ beliefs appear to act as 
filters through which teachers interpret and ascribe meanings to their experience as 
they interact with children and the subject matter” (Thompson, 1992, p. 138-139). 
Indeed, the six authors of the chapters on teachers’ beliefs in the book edited by 
Leder, Pehkonen and Törner (Leder, Pehkonen, & Törner, 2002) all infer a strong 
link between teachers’ belief and their practice, working from a premise that could be 
expressed by “to understand teaching from teachers’ perspectives we have to 
understand the beliefs with which they define their work” (Nespor, cited in 
Thompson, 1992, p.129). In particular in connection with mathematical modelling, 
while discussing four different categories of mathematical beliefs, Kaiser (2006) 
concluded that depending on the mathematical beliefs held by a teacher, it is more or 
less likely that they build up obstacles for introducing applications and modelling in 
their mathematics teaching. Furthermore, Kaiser and Maaß (2007) looking at “what 
are the mathematical beliefs of teachers towards applications and modelling tasks?” 
(p. 104), found that for the group they studied, applications and modelling did not 
play a significant role in their beliefs about mathematics and mathematics teaching. 
The investigated teachers rather created/modified and adapted application-oriented 
beliefs in line with their existing mathematical beliefs.  
In a research project aiming to design, implement and evaluate sequences of lessons 
exposing students to mathematical modelling in line with the present governing 
curricula carried out in collaboration with two upper secondary teachers, initial 
individual interviews was held with the participating teachers. The purpose being first 
to provide information about the teachers’ background and their views and beliefs on 
the nature of mathematics, about their teaching, views on problem solving and 
mathematical modelling, as well as their opinion for the reasons and aims for 
mathematical education. Secondly, the interviews also intended to end up in a 
common understanding and agreement of key concepts among the researcher and the 
two teachers, laying the foundation for the collaboration project. The aim of this 
paper is partly theoretical in that we seek to develop a framework trying to capture 
and conceptualize beliefs about mathematical models and modelling and relate these 
to other types of beliefs studied in the literature. Nevertheless, it also aims to provide 
background about the two teachers participating in the research mentioned above and 
hence to feed in to the bigger analysis of that project. 

BELIEFS, BELIEF STRUCTURES AND BELIEF SYSTEMS  
Reviews on research on different aspects of beliefs in connection to mathematics 
knowing, teaching and learning often conclude that there is a great degree of 
variation of the involved concepts and their meaning used by different scholars 
(Leder et al., 2002; Pajares, 1992; Philipp, 2007; Thompson, 1992).  The motive with 
the following small theoretical exposé is to establish the vocabulary used in the paper 
and to relate some of different concepts used in the literature.  
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As a point for theoretical departure we start from the work, and use the vocabulary, of 
Goldin (2002), who defines beliefs as one out of four “subdomains of affective 
representation[s]” (p. 61), distinguishing between emotions, attitudes, beliefs, and 
values, ethics and morals. More specifically, beliefs are “multiply-encoded 
cognitive/affective configurations, usually including (but not limited to) prepositional 
encoding, to which the holder attributes some kind of truth value” (p. 64, emphasis in 
original). For an individual, a collection of mutually reinforcing or supporting non-
contradictory beliefs taken together with the individual’s justifications for this 
constitutes a belief structure. Törner (2002) argues that beliefs generally are about 
something and introduces the notion of this something as a belief object, to which a 
set of beliefs, the content set is associated, which can be seen as the analogue of 
Goldins’ beliefs structures. Other scholars often refer to similar constructs as belief 
systems or cluster of beliefs, but in Goldins’ framework, a belief system is an 
“elaborated or extensive belief structure that is socially or culturally shared” (Goldin, 
2002, p. 64). This terminology makes it easy to talk about and distinguish between 
beliefs held by an individual contra shared beliefs within a community, as well as the 
dialectic and tension between these types of beliefs.  
Many authors deepen their discussion on beliefs drawing on Rokeach (1968) or 
Green (1971), or a combination of the two, introducing different dimensions of 
beliefs. Rokeach talks about a dimension of centrality for the individual, where a 
central belief is a belief which is non-contradicting within a persons’ belief structure, 
whereas beliefs with some disagreeing features are less central for the individual. 
Green on the other hand introduces the construct of psychological centrality and uses 
peripheral and central to describe beliefs that the individual holds more or less 
strongly. Both Rokeach and Green argue that the more central a belief is, the harder it 
is to change it. Green also talks about quasi-logicalness, which captures the fact that 
some beliefs only are in consensus within a belief structure provided that a non-
standard and personal logical explanation is provided. In connection to quasi-
logicalness Green also proposed to differentiate primary beliefs from derivative 
believes. Returning to Goldins’ framework of beliefs, part of the dimensions above 
are captured by the notion of weakly- or strongly-held beliefs. The two factors 
determining to what strength a belief is held are importance for the individual of the 
belief being true and the degree of certainty the truth-value of the belief is attributed.  

MATHEMATICAL MODELLING 
The literature on the aims, use and results of different approaches to incorporate and 
use mathematical modelling in the teaching of mathematics has steadily been 
growing since the beginning of the 1980s. The theoretical perspectives invoked 
display a great variety (Kaiser & Sriraman, 2006) as does the research methods used 
to explore this vast field of research; see for examples the recent 14th ICMI study 
(Blum, Galbraith, Henn, & Niss, 2007) and the published proceedings from ICTMA 
12 (Haines, Galbraith, Blum, & Khan, 2007).  

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2098



Mathematical modelling is often perceived as a multistep or cyclic problem solving 
process using mathematics to deal with real world phenomena. The student or 
modeller is supposed to use his mathematical modelling skills or modelling 
competencies (Maaß, 2006) to work through the steps, stages, phases or activities of 
the process. In this paper mathematical modelling refers to the complex and cyclic-in-
nature problem solving process described for instance by Blum, Galbraith & Niss 
(2007), here illustrated in figure 1.  

 

Figure 1. The modelling cycle from Borromeo Ferri (2006, p. 87) 

It should be noted that this is only a schematic, idealised and simplified picture of the 
modelling process. For instance, in an authentic modelling situation the modeller 
normally jumps between the different stages/activities in a more non-cyclic, but 
rather unsystematic, manner (Ärlebäck & Bergsten, 2007).  

A SUGGESTED BELIEF STRUCTURE OF SOME ASPECTS OF 
MATEMATICAL MODELLING 
In setting out to investigate teachers’ beliefs about mathematical models and 
modelling it is important to be explicit and specific about what object the beliefs 
should be about. Using the terminology of Törner (2002), the belief object under 
study in this paper is defined to be mathematical models and modelling as perceived 
by upper secondary mathematics teachers. For clarification we stress that the focus at 
this stage in the research process is not on the teachers’ beliefs of the teaching and 
learning of mathematical models and modelling.  
The literature review suggests the importance and influence on teachers’ practice of 
their beliefs about mathematics and its teaching and learning. Hence, the validity of 
the framework suggested here steams both from analyzing the view taken on 
mathematical modelling in this paper and from research on mathematical beliefs of 
various sorts. A teachers’ belief structure of mathematical models and modelling is 
suggested to be constituted of the beliefs of the following (sub-)belief objects: 
Beliefs about the nature of mathematics. This is without question the most general 
of the constituting sub-belief objects, assumed to serve as a primary and central belief 
in the belief structure of modelling. The perspective taken on the nature of 
mathematics might radically change the interpretation and meaningfulness of fig. 1. 
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Beliefs about the real world (reality). In our view, it is important that the problems 
used in connection with modelling to the greatest extent possible be from real 
problem situations in the real world. Different views, both philosophical and 
pragmatic, potentially influence the way one might think about mathematical 
modelling and models. In addition, how reality is perceived, especially in contrast to 
the nature of mathematics, can make a difference when it comes to the interpretation 
and validation of ones’ modelling work. In fig. 1, beliefs about the real world might 
especially influence the phases 1, 2, 5, 6 and 7.  
Beliefs about problem solving. In principle, depending on perspective, modelling is 
about problem solving or problem solving is about modelling (see Lesh & 
Zawojewski, 2007 for an overview). Regardless of which view adopted, the meaning 
of and role played by problem solving as a mathematical activity, seen as part of 
one’s practise of one’s mathematical knowledge and skill/competence might have 
important implications for how mathematical modelling and models are perceived. In 
connection to fig. 1, (mathematical) problem solving beliefs are important for the 
phases 3, 4 and 5.  
Beliefs about school mathematics. Thompson (1992) concluded that the consistency 
between teachers’ beliefs about the nature of mathematics and beliefs about the 
subject mathematics taught at schools are of varying magnitudes. Therefore, school 
mathematics beliefs are incorporated in the bigger belief structure to capture the 
potential influences they might have on other beliefs of the teachers.  
Beliefs about applying, and applications of, mathematics. The application of 
mathematics is sometime synonymous with different views taken on modelling, and 
hence it is important to include beliefs about applying and applications of 
mathematics in the belief structure of mathematical models and modelling. 
Depending on point of view, beliefs about applications of mathematics are significant 
for phases 3 and/or 5 in fig. 1.  
The five categories of beliefs above are suggested to constitute a way of describing 
the belief structure of mathematical models and modelling. This framework is 
initially based on the indicated links to the modelling cycle and will need empirical 
investigations to be further developed and validated. 
This framework does not set up isolated beliefs but, by the discussion above, these 
beliefs are rather overlapping belief structures in themselves. Hence, an indication of 
the validity of the framework would be that the substructures display inner 
coherence, that is, display an inner quasi-logical structure. However, it is possible 
that taken all together as constituting the belief structure of mathematical models and 
modelling, incoherencies appear and then the question is which beliefs are more 
central, primary, and in line with official guidelines.  

SOME EMPIRICAL FINDINGS 
Although the empirical data used here was not collected primarily with the testing of 
the above framework in mind, due to its focus on teachers’ views on mathematical 
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modelling, we see it as relevant for discussing the viability and usefulness of the 
framework. As a result, it may also point out directions for how to develop it further.  
Method 
The interviews with the two teachers (here called Lisa and Sven) in the projects 
briefly described in the introduction were partly structured around five mathematical 
problems to serve as a basis for the discussion and reflection. Three of these were 
standard text problems from a widely used textbook in Sweden, one the so called 
Fermi Problem studied in (Ärlebäck & Bergsten, 2007), and one was The Volleyball 
Problem, a so called modelling-eliciting activity, described in (Lesh & Doerr, 2003). 
The interviews were recorded, transcribed and analysed using what may be called a 
contextual sensitive categorization scheme based on the five sub-beliefs object in 
mind. Due to the nature of the data, beliefs about the real world and applications and 
applying mathematics surfaced only sporadically and can therefore not be fully 
accounted for here. To economize with respect to writing space, the accounts of the 
teachers’ beliefs are here given mostly in narrative form. 
Lisa 
Lisa, 36 years old, has been an upper secondary teacher in mathematics and physics 
for 13 years and is now working in her second school going on her 5th year. She 
teaches on a 70% basis and the other 30% she spend on administration, marketing 
and teacher education networking. She became a mathematics teacher because it 
seemed to make a lot of fun and as far back she can remember she always enjoyed 
doing and thinking about mathematics.  
Beliefs about the nature of mathematics: Lisa talks about mathematics as a tool and 
something that develops and strengthens ones’ thinking (logic). She connects 
mathematics to structuring and organizing, and a number of times talks about 
geometrical pattern, forms and shapes in nature and mathematics as an art form.  
Beliefs about the real world: Lisa’s comments in the interview seem to imply that the 
most prominent consequences of working on real problems are that the numbers 
occurring in the calculation are messy and that the calculations should be preformed 
and answered using better accuracy (more decimals). 
Beliefs about problem solving: For Lisa problem solving is about solving puzzles 
and she associates feelings of satisfaction and happiness with the success of solving a 
hard problem. Problem solving is for Lisa something that preferably takes place in a 
technological environment with free access to every source of information possible. 
She also stresses the importance for the problem context to be familiar to the 
students. 
Beliefs about school mathematics: Lisa repeatedly states the importance for school 
mathematics to be experienced as an entity, a well defined course, but also comments 
on the written governing curricula documents as theoretically formulated and hard to 
understand both for students and teachers. Lisa regretfully confess that some areas of 
mathematics (such as ordinary differential equations) only are taught as a set of 
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procedures and recipes although the areas really have a great potential for making the 
subject more interesting and intriguing. 
Lisa’s direct talk about mathematical modelling: When asked about mathematical 
models and modelling, Lisa first seems to have a clear conception of what this means; 
without any time for consideration she says: “Well, it might be a whole lot of things… 
a mathematical model… it might be that you describe a course of events or situation, 
or really just to make an assumption is a mathematical model, although a very simple 
one”. Then she retreats and only considers a made connection/relation to constitute 
the model, not an equation or an algebraic representation of the relationship, but 
changes her opinion on this and clarifies that a mathematical model does not have to 
be expressed in mathematical terms. Rather, it should be the need of the situation that 
decides which degree of mathematization to use. The goal however, she continues, 
should always be a formulation of the model using mathematical symbols and ways 
of writing. Lisa also draws parallels between modelling and generalizing, and gives 
numerous of examples of what she considers to be different types of models when 
discussing the problems. She considers all five problems except The Volleyball 
Problem to be about, and include different aspects of, modelling. 
Sven  
Sven, 58 years old, has been teaching mathematics and physics (and computer 
science and chemistry) at the upper secondary level for 33 years and has been 
working at four different schools and last changed workplace in 1981. He teaches on 
a 60% basis and plans/manages the school schedules the rest of his working hours. It 
was mere coincidence that Sven became a teacher, following his personal fascination 
of mathematics, which led to physics and later also to teacher education. 
Beliefs about the nature of mathematics: Sven describes mathematics as a pure, 
exact and axiomatic science, enabling to part right from wrong. It is about logic, the 
relations between different quantities, and it has a central aesthetic component. He 
emphasises that “knowledge of the tools open up for the realization of the beauty”. 
Beliefs about problem solving: Sven talks about mathematical problem solving as an 
exercise for the intellect, as something decoupled form other subjects and contexts. 
When discussing the problems he carefully places them in a syllabus context; where, 
when, and how the topics touches in the problems are treated within the course. 
Beliefs about school mathematics: When talking about school mathematics Sven 
expresses the importance to learn to think logically and to prepare for learning in 
other subjects as well for higher education. He thinks the aesthetic side of 
mathematics is something only a few students can appreciate and hence it plays only 
a minor role in the classroom. 
Beliefs about applying, and applications of, mathematics: For Sven, application of 
mathematics is “a tool used in other sciences; physics, chemistry and economics”.  
Sven’s direct talk about mathematical modelling: When asked to describe 
mathematical models and modelling Sven answers, “Yes, well… no, I don’t know…” 
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turning to the five problems and try to use them helping him to form and formulate 
his perception of mathematical models and modelling. To begin with Sven talks 
about a model as something to use solving problem, a tool, but elaborates his thinking 
further: “I think it [a mathematical model] is something you create… in a more or 
less obvious manner…and there can be more than one model to use to solve a given 
problem.” Sven then describes different ways of working with a model; creating, 
using, and exploring it. He also strongly connects making assumptions and 
modelling, and considers all five problems used in the interviews as related to 
modelling. Sven also mentions that it is important for the students to learn to use and 
apply mathematics. 
Discussion and conclusion 
Although Lisa initially seemed to have a clear conception of mathematical models 
and modelling, it became clear throughout the interview that this was not the case. 
She rather, like Sven, had to make up and formulate her views as the interview went 
on. One explanation why neither of them had a clear conception of modelling might 
be the vague formulations found in the curriculum documents that provide no support 
and only circumstantial guidance. However, since they volunteered to participate in a 
research project about mathematical modelling, one could suspect that they had been 
doing some thinking about the project, and thus had some firm ideas about the central 
concepts. If they had, this was nothing that surfaced during the interviews. However, 
when talking about mathematical modelling, directly or indirectly during the 
interviews, the different categories of beliefs in the framework are touched on, as 
described above. 
No flaws in the quasi-logic holding together the different sub-beliefs structure where 
detected in neither teacher’s sub-beliefs structures. Sven for instance expressed the 
school mathematical belief that it is important for the students to learn to use and 
apply mathematics, and professed a similar belief about the application of 
mathematics. Lisa, when discussing The Volleyball Problem, on the other hand, 
strongly rejected it as a modelling problem since “it is more about comparing 
advantages and disadvantages, structuring and organizing [than modelling]”. This 
is in conflict with her beliefs about the nature of mathematics and a direct 
contradiction to what she said previously in the interview. One possible way to 
interpret this is that Lisa strongly held conflicting primary beliefs about the nature of 
mathematics on one hand, and mathematical modelling on the other.  
Although the data was not initially collected for the testing of the suggested 
framework, the analysis indicates that it may be useful for exploiting beliefs about 
mathematical models and modelling, other professed beliefs, and relations between 
them. However, a thing to consider is to follow up the point made by Thompson 
(1992, p. 130-131), who lists a number of studies in mathematics education 
indicating the important impact teachers’ beliefs about mathematics on the one hand, 
and about teaching of mathematics on the other, have on their practice. Including the 
teachers’ beliefs on the learning and teaching of mathematics in general, and 
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mathematical models and modelling in particular, seems to be the next logical step. A 
perhaps as urgent dimension to add to the framework is to include more actively 
affective considerations, which Goldins’ (2002) framework make possible. 
If indeed beliefs can be seen as filters influencing the teachers’ practice, it is 
important to try to get a better understanding of beliefs about mathematical models 
and modelling if we want teachers to integrate it more in their mathematics teaching. 
Kaiser (2006) concluded that “beliefs concerning mathematics must be regarded as 
essential reasons for the low realisation of application and modelling in mathematics 
teaching” (p. 399), and we believe, like (Törner, 2002, p. 80), that higher 
consciousness about one’s beliefs lead to a higher degree of integration of the beliefs 
in ones’ practice. A question that we feel needs priority is how beliefs are formed. 
REFERENCES 
Ärlebäck, J. B. (in preparation). Mathematical modelling in the Swedish curriculum 

documents governing the upper secondary mathematics education between the 
years 1965-2000. [in Swedish]  

Ärlebäck, J. B. & Bergsten, C. (2007). On the use of realistic Fermi problems in 
introducing mathematical modelling in upper secondary mathematics. To Appear 
in the Proceedings of ICTMA13.  

Blum, W., Galbraith, P. L., Henn, H. & Niss, M. (Eds.). (2007). Modelling and 
applications in mathematics education. the 14th ICMI study. New York: Springer.  

Blum, W., Galbraith, P. L. & Niss, M. (2007). Introduction. In W. Blum, P. L. 
Galbraith, H. Henn & M. Niss (Eds.), Modelling and applications in mathematics 
education. the 14th ICMI study (pp. 3-32). New York: Springer.  

Borromeo Ferri, R. (2006). Theoretical and empirical differentiations of phases in the 
modelling process. ZDM, 38(2), 86-95.  

Goldin, G. A. (2002). Affect, meta-affect, and mathematical belief structures. In G. 
C. Leder, E. Pehkonen & G. Törner (Eds.). Beliefs: A hidden variable in 
mathematics education? (pp. 59-72). Dordrecht; London: Kluwer Academic.  

Green, T. F. (1971). The activities of teaching. Tokyo: McGraw-Hill Koagusha.  
Haines, C., Galbraith, P., Blum, W., & Khan, S. (Eds.). (2007). Mathematical 

modelling (ICTMA 12): Education, engineering and economics: Proceedings from 
the twelfth international conference on the teaching of mathematical modelling 
and applications. Chichester: Horwood.  

Kaiser, G. (2006). The mathematical beliefs of teachers about applications and 
modelling – results of an empirical study. Proceedings 30Th Conference of the 
International Group for the Psychology of Mathematics Education, Prague: PME 
3, 393-400.  

Kaiser, G. & Maaß, K. (2007). Modelling in lower secondary mathematics 
classrooms - problems and opportunities. In W. Blum, P. L. Galbraith, H. Henn & 
M. Niss (Eds.), Modelling and applications in mathematics education. the 14th 
ICMI study. (pp. 99-108). New York: Springer.  

Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on 
modelling in mathematics education. ZDM, 38(3), 302-310.  

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2104



   

Leder, G. C., Pehkonen, E., & Törner, G. (Eds.). (2002). Beliefs: A hidden variable in 
mathematics education? Dordrecht ; London: Kluwer Academic.  

Lesh, R., & Doerr, H. M. (Eds.). (2003). Beyond constructivism: Models and 
modeling perspectives on mathematics problem solving, learning, and teaching. 
Lawrence Erlbaum Associates.  

Lesh, R. & Zawojewski, J. (2007). Problem solving and modeling. In F. K. Lester 
(Ed.), Second handbook of research on mathematics teaching and learning: A 
project of the national council of teachers of mathematics, vol. 2 (pp. 763-804). 
Charlotte, NC: Information Age Pub.  

Lingefjärd, T. (2006). Faces of mathematical modeling. ZDM, 38(2), 96-112.  
Maaß, K. (2006). What are modelling competencies? ZDM, 38(2), 113-142.  
Pajares, M. F. (1992). Teachers' beliefs and educational research: Cleaning up a 

messy construct. Review of Educational Research, 62(3), 307-332.  
Philipp, R. A. (2007). Mathematics teachers' beliefs and affect. In F. K. Lester (Ed.), 

Second handbook of research on mathematics teaching and learning, vol. 1. (pp. 
257-318) Charlotte, NC: Information Age Pub.  

Robitaille, D. F., Schmidt, W. H., Raizan, S. A., McKnight, C. C., Britton, C. D. & 
Nicol, C. (Eds.). (1993). Curriculum frameworks for mathematics and science (vol. 
TIMSS monograph no. 1). Vancouver: Pacific Educational Press.  

Rokeach, M. (1968). Beliefs, attitudes and values: A theory of organization and 
change. San Francisco: Jossey-Bass.  

Skolverket. Upper secondary school, syllabuses, mathematics. Retrieved 09/15, 
2008, from http://www.skolverket.se/sb/d/190  

Thompson, A. G. (1992). Teachers' beliefs and conceptions: A synthesis of the 
research. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching 
and learning (pp. 127-146). New York: Macmillan.  

Törner, G. (2002). Mathematical beliefs - a search for a common ground: Some 
theoretical considerations on structuring beliefs, some research questions, and 
some phenomenological observations. In G. C. Leder, E. Pehkonen & G. Törner 
(Eds.), Beliefs: A hidden variable in mathematics education? (pp. 73-94). 
Dordrecht: Kluwer Academic Press.  

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2105

http://www.skolverket.se/sb/d/190


THE USE OF MOTION SENSOR CAN LEAD THE STUDENTS TO 
UNDERSTANDING THE CARTESIAN GRAPH 

Maria Lucia Lo Cicero  Filippo Spagnolo 
Department of Mathematics, University of Palermo, Italy 

G.R.I.M. (Gruppo di Ricerca sull’Insegnamento delle Matematiche) 
Dipartimento di Matematica ed Applicazioni dell’Università di Palermo, Via Archirafi, 34 -90123 Palermo 

  locicero@math.unipa.it           spagnolo@math.unipa.it 

 

Abstract. This paper shows the experimental results of a didactical lesson conducted 
in three classes of Upper Secondary School using motion sensor. It is an example of 
modelling practice, in which the students are involved in mathematics 
representations of real phenomena. Our research corroborates works about the use 
of MBL-tools, according to which the use of motion sensor allows the students to 
reading, understanding and interpreting kinematics graphs. Besides our analysis 
shows that the students acquire these competence respect to graphs of other type too. 
These results emerge from the implicative statistical analysis of the pre-test and the 
post-test and from the qualitative analysis of the lessons. 
Key words: teaching, learning, Cartesian graph, motion sensor, modelling 

INTRODUCTION 
This research work consists of the analysis of a didactical situation conducted in three 
classes of Upper Secondary School. The didactical activities were developed using a 
motion sensor to visualize, to understand and to interpret space-time and velocity-
time graphs, representing moving bodies. Motion sensor is one of MBL-tools 
(Microcomputer Based Laboratory). In the late 1980’s, these tools were produced by 
the project ‘‘Tools for Scientific Thinking’’ in the Center for Science and 
Mathematics Teaching at Tufts University. The central objective was to help students 
in order to recognize the connections between the physical world and the abstract 
principles presented in the classroom (Krusberg 2007). Motion sensor is used in 
Physics laboratory to study rectilinear motion of bodies moving in front of it.  
Our research proves that not only the students improved reading, understanding and 
interpreting motion graphs but they also improved these graphing practices (Roth 
2004 p.2) in other types of Cartesian graphs. We believe that this is an interesting 
result because learning mathematics means that a person acquires aspects of an 
intellectual practice, rather that just acquiring any information and skills (Roth 2004 
p.7). These interdisciplinary activities give the opportunity to optimize available time 
in classroom and to increases the student’s motivation. 
We chose this argument of research because graphing practices are part of the 
mathematics curricula of all school levels. Moreover, they can become prerequisites 
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for other mathematical subjects. For instance, Cartesian graph is one register of 
semiotic representation of a function. Besides, graphing practices are central to 
scientific communication and to the scientific enterprise more broadly (Roth 2004 
p.2). Moreover graphing practices have many applications in everyday life as the 
comprehension of an economy graph printed on a newspaper, the understanding of a 
temperature graph hanged on a hospital bed, etc. 

RESEARCH QUESTIONS 
Research hypothesis: Motion sensor is a learning tool to reading, understanding and 
interpreting kinematics graphs. 
Research questions: 

1) Using motion sensor to reading, understanding and interpreting kinematics 
graphs, do students learn to reading, understanding and interpreting other 
types of Cartesian graphs and, in particular, function graphs representing a 
statistical phenomenon? 

2) How can modelling activities aid for the understanding of Cartesian graphs? 
THEORETICAL FRAMEWORK 
MBL tools collect physical data and allow visualizing them in tables and Cartesian 
graphs in real time (Thornton & Sokoloff, 1990). So MBL tools can facilitate the 
comprehension of abstract representations of physics phenomena and can give long 
lived conceptual understanding (Bernhard, 2001). Besides collected data can be 
manipulated, analyzed and fitted, studying the characteristics of the phenomena and 
testing the relationships between the variables. The efficiency of motion sensor 
compared to traditional methods for helping students to learn basic kinematics 
concepts has been proved by several researches, as Thornton & Sokoloff (1990), 
Redish et all. (1997), Liljedahl (2002), Arzarello & Robutti (2004). Our research 
wants moreover to show that when the students are involved in activities with sensor 
motion they become able in graphing practices, not only in kinematics field. 
The idea of using motion sensor to improve graphing practices finds strong 
theoretical support in the cognitive theories of the Embodiment of the mind, for which 
«the detailed nature of our bodies, of our brains, and of our daily functioning in the 
world structures human concepts and reasoning» (Lakoff & Núñez, 2005, p.27). So 
it’s fundamental in this kind of activity as the students can visualize and analyze in 
real time the graphs of bodies. Beside according to Metaphorical Thought «for the 
most part, human being conceptualize abstract concepts in concrete terms, utilising 
ideas and models of reasoning founded on a sensor-motor system» (Lakoff & Núñez, 
2005, p.27). Particularly «the functions on the Cartesian plane are often 
conceptualized in terms of motion on a route» (Lakoff & Núñez, 2005, p.70) and 
motion sensor induces this type of conceptualization as the students see the graph 
constructed under their own eyes as motion of a point that leaves a wake. It can be 
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explained through a historical-epistemological analysis of the concept of function, 
which finds its origins in the ambit of kinematics and geometry. 
This analysis shows that the representations of the function are: verbal, Cartesian, 
analytical and tabular (for numerical values). So the laboratory activity with sensor 
motion could be utilized as kinematics approach to the concept of function (Arzarello 
& Robutti 2004) because it allows studying all the representations of a kinematics 
function and to pass from one kind of representation to another. A representation 
cannot describe fully a mathematical construct and each representation has different 
advantages, using multiple representations for the same mathematical situation is at 
the core of mathematical understanding (Duval 2002). The representations of the 
function developed in different historical periods. Before tables of functions appeared 
(2000 B.C.), then geometrical representation (middle of the 14th C.) and later 
analytical form (17th C.) (Youschkevitch, 1976). Using motion sensor the 
chronological introduction of the representations of the function is respected (Piaget 
& Garcia, 1985). Besides it involves the students in a historical process that 
conducted to the function concept: modelling process. In fact it allows analyzing the 
motion of a body as a point in moving along a straight line respect to the reference 
point, studying all its mathematical representations (Gilbert, 1998). 
In this activity the modelling is a transversal objective, reached by the study of other 
matters of the mathematics curriculum (Lingefjärd, 2006). Modelling practise can be 
a way to increase thinkers, who can use their mathematics for their own and for 
society's purposes (Burkhardt, 2006). To conclude we want to point out that motion 
sensor is an artefact. As referring to mathematical meanings it may be seen as «tool 
of semiotic mediation» (Bartolini Bussi & Mariotti 2008). The role of the teacher 
becomes fundamental in the use of this tool to reach the graphing practices. 
Some didactical considerations 
To clarify the connection between the graphing practices in motion graphs and in any 
Cartesian graphs, we made the following comparison between competences: 

C MATHEMATICS PHYSICS 
C1 Reading the coordinates of a point of the 

graph 
Reading the values of a kinematics variable in 
relation to the values of the temporal variable 

C2 Reading the extremes and the size of intervals Reading space and time of departure and arrival, 
the covered space and the spent time  

C3 Distinguishing among increase, decrease and 
constancy of a function 

Distinguishing between motion of approach, 
motion of separation and still bodies 

C4 Individuating absolute maximums and 
minimums of a function  

Individuating absolute maximum and minimum 
distance with respect to the position reference 
system 

C5 Individuating relative maximums and 
minimums of a function  

Individuating relative maximum and minimum 
distance with respect to the position reference 
system 

C6 Confronting the different degrees of rapidity 
of increase or decrease of tracts of a curve 

Confronting the velocity of differing tracts of 
motion  

C7 Forming hypothesis and conjecture Forming inferences on experimental data 
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EXPERIMENTAL WORK AND RESEARCH METHOD 
The experimental work consisted of two laboratorial lessons1 of two hours each one. 
It was leaded in three Italian classes2 of Upper Secondary School (43 students). It is a 
homogeneous sample because before the experimental work they possessed the same 
competences in graphing practices and necessary prerequisites for this activity:  
 Knowing the real number field and representing them on a straight line  
 Representing points on the Cartesian plane  
 Knowing motion concept and kinematics variables 

The research methodology adopted is Theory of Didactic Situations by Brousseau 
(Brousseau, 1997). The laboratorial lesson was preceded and followed by the 
administration of a test, with the aim of evaluating the a priori and a posteriori 
students’ behaviours. We made the qualitative analysis of the didactical activities 
analyzing the teaching/learning process through the analysis of the involved semiotic 
register. It refers to APC space and Semiotic Bundles by Arzarello (Arzarello & 
Robutti 2008). We made also a quantitative analysis of tests through Statistical 
Implicative Analysis by Gras (Gras et all, 2008). Cause of limited space, in this paper 
we show only the main results of our analysis. 
Statistical Implicative Analysis 
It is a non-parametric statistic, so it uses small samples and it is appropriate for this 
kind of research. We use the method of implication that establish the implication 
intensity between variables and the method of similarities, that classifies variables 
and groups them according to hierarchical levels (similarities) (Gras et all, 2008). 
Data were analyzed by using C.H.I.C.3 software that visualizes implication graphs 
and similarity tree, working on Excel tables. We studied the implication of the 
students’ behaviours variables by tables like this: 

 Behaviour 
1 

… Behaviour 
n 

Student 1    
…    
Student m    

The values of this table are 0 or 1, depending if a student doesn’t follow or follows 
the behaviour that corresponds in the table respectively. We analyzed the similarity of 
the students' variables using the supplementary variables method (Spagnolo 2005), 
(Fazio & Spagnolo, 2008). Here we use the supplementary variables as models of 

                                           
1 Lessons was conducted by the teacher-researcher M. L. Lo Cicero in her curricular classes. 
2  1. December 2007, 4th class of Classical Liceo (17 years), (Liceo Classico “Scaduto”, Bagheria (PA), Italy) 
    2. April 2008, 2nd class of Commercial Technical Institute (15 years), (“Jacopo del Duca”, Cefalù (PA), Italy) 
    3. May 2008, 4th class of Classical Liceo (17 years), (Liceo Classico “Scaduto”, Bagheria (PA), Italy 
3 Classification Hiérarchique Implicative et Cohésitive. Information regarding the software can be found at the 
following site of the A.R.D.M. (Association de Recherche en Didactique des Mathématiques): 
http://www.ardm.asso.fr/CHIC.html 
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student’s behaviour, so the outcomes of our research depend from the similarities of 
the students respect to the correct models of students’ behaviour. The correct models 
of students’ behaviour are selected by combination of the correct behaviours. To 
obtain the similarity trees we used tables like this, with binary values: 
 Student 

1 
… Student 

m 
model of student’s 
behaviour 1 

… model of student’s 
behaviour p 

Behaviour 1       
NOT behaviour 1       
…       
Behaviour n       
NOT behaviour n       

Phases of the didactical activity  
The phases of the didactical activity were the following ones: 
1. Prediction, reading and comprehension of the graphs of rectilinear student’s 

motion of three types: 
a. Leaving motion from the sensor 
b. Approach motion to the sensor 
c. Still body with respect to the sensor 

2. Prediction, reading and comprehension of various rectilinear student’s motion, 
with leaving and approach with respect to the sensor. 

3. Study of rectilinear uniform motions of a train on tracks. 
During phase 1 the students made a reflection on the variables studied by the sensor. 
They observed and calculated space and time of departure and arrival, the length of 
space and the time spent. Not all the students immediately realized the relation 
between abscises and ordinates. After the study of the leaving motion the students 
correctly predicted the other types of graphs. In phase 2 the topics of the previous 
phase were consolidated for every piece of curve of leaving, approach or stilling. 
Also the maximum and minimum distance reached with respect to sensor was read. 
The students noted that the slope of every piece of curve depended on the 
corresponding velocity of the student. Then the students were asked to make a 
relationship between spatial intervals and temporal intervals about pieces of a curve 
and to make comparisons. Besides the students calculated the mean velocities and 
compared them and the observations about the slopes of the pieces of the curve with 
the graphs velocity-time. In the phase 3 they studied the analytical representation of a 
uniform rectilinear motion by the fit of the data. The students noted that this is a 
particular type of straight line equation. 
After the laboratory activity, the students were involved in a metacognitive reflection 
about the development of the lesson. The students reconstructed the phases of the 
modelling process and reached the devolution of these processes (Brousseau, 1997). 
They realized that physics phenomena, belonging to everyday life, could be 
representable by mathematical representation. In particular, uniform rectilinear 
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motion can be represented by algebraic equation, commonly studied in scholastic 
mathematics. So this modeling process was an occasion to realize that mathematics is 
a tool to read the existence of mathematics in our everyday life (Lingefjärd, 2006), 
(Kaiser & Schwarz, 2006). During the didactical activity it was noted that motion 
sensor induces curiosity and desire of learning in students. They were encouraged to 
experiment several typologies of motion to compare the graphics produced with their 
own predictions. It was noted that the process of prediction is important to acquire the 
skill of forming hypothesis on the base of experimental data. 
 Test 
A test was administered before and after the laboratorial lesson. The students worked 
individually, they were not allowed consulting books or notes. They had sixty 
minutes to accomplish the task. The test contained items concerning reading and 
understanding of space-time graphs representing motion of bodies, contextualized in 
real life. So the students had to interpret models of kinematics phenomena. The 
students’ improvements in kinematics graphical practises were remarkable, so they 
corroborated our research hypothesis. Besides the test contained the following 
exercise (Sara’s test) concerning reading of not kinematics graph: 

Sara’s dad decided to reward his daughter every 
time she got a good grade at school by giving 
her five euro, which she could decide to spend 
or save as she pleased; but this would be her 
only source of income. The adjacent graph 
shows the money Sara possessed on each day of 
a week. Observe it and answer the following 
questions: 
a. How many euros did Sara posses on the 4th 
day? (C1COORD) 
b. On which day/days did Sara surely get a 
good grade? (C5R-MAX)  
c. Knowing that on the second day Sara didn’t 
get a good grade, how much money did she 
spend that day? (C2INT) 
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d. Could she have gotten a good grade on the 6th day? (Justify your answer.) (C7HP) 
e. On which day/days did Sara possess the most money? (C4A-MAX) 

 

A priori analysis of students’ behaviours of Sara’s test 
As it is indicated by Theory of Didactic Situations, we made an a priori analysis of 
students’ behaviour in working out the test:  
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Q4

.
A. 

 
BEHAVIOURS 

9 e of the ordinate in correspondence with abscissa A1: Correct reading of the valu
a. on of 26 A2: Sum of the euro that Sara possessed in the first four days. Interpretati

the graph like earned money.  
1,3,5 ect identification of the days corresponding to the relative maxima B1: Corr
5 B2: Confusion between the concept of relative maximums and of absolute 

maxima 
1,3,4,5 hich correspond to the relative maxima, also, B3: Writing, besides of the days w

of the 4th day, in which the euro remained constant 
3,4,5 B4: Writing of the highest values  
3 B5: Writing of the day corresponding to the major growth 
1,3,4,5,6,7 m  B6: Writing of all the days except the absolute minimu

b. 

 3,5 B7: Writing of the highest relative maxima  
2 C1: Correct identification of the width of the interval 

c. 3 C2: Confusion between the concept of interval and of value of the coordinate. 
Wrongly interpretation of the graph like spent money 

Yes, … nswer to the question d, justifying with the affirmation “she D1: Affirmative a
could have spent the earned money”: forming correct hypotheses on the base of 
experimental data 

No, … stifying with the affirmations “she D2: Negative answer to the question d, ju
spent 4 euro” or “her budget would have become 13 euro”: not forming correct 
hypotheses on the base of experimental data 

d. 

Yes, … tion 
hypotheses on the base of 

erpretation of the graph like earned money 

D3: Affirmative answer to the question d, justifying with the affirma
“because she earned 8 euro”: not forming correct 
experimental data and wrongly int

5 E1: Correct identification of the absolute maximum  e. 
3,4,5 E2: Writing of the highest values 

EXPERIMENTAL RESULTS AND CONCLUSIONS 
We classified rs of the students in table software we 
obtained the fol cative graphs of the student’

PRE-TEST POST-TEST 

the behaviou
lowing impli

s. Using Chic 
s behaviours: 

                                           
4 Q=Questions. A= Students’ Answers 
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In the implicative graph of the pre-test there is a strong implication of A2 towards 
B2: all the students that follow the behaviour A2 follow the behaviour B2 too. They 
represent two mistakes in reading of graph (reading of coordinates and relative 
maxima respectively). The implication A1E1 inverts the expected implication 
between the reading of the coordinates and of the absolute maximum. It is due to the 
wrong interpretation of the graph like earned money in the answer a. D2 implicates 
C1 because the behaviour D2 includes the competence of reading of the width of 

2D2, if the students don’t read correctly the absolute maximum then 

maximum. 
We analysed the similarity of the variables student respect to the variables models of 
students’ behaviour. Below we report the graphs obtained by C.H.I.C.: 

 
 

PRE-TEST 

intervals. The implication C2D3 points out a wrong interpretation of the graph like 
spent money and earned money respectively. So the same students gave two wrong 
opposite interpretations of the graph. Since D1B1, the students that form correct 
hypotheses on the base of experimental data are able to read relative maxima.  

In the graph of the post test the implication D1B1 is stronger than in the pre-test. 
Given that E
they don’t form correct hypotheses on the base of experimental data. Finally, since 
D3E1, the students that don’t form correct hypotheses on the base of experimental 
data and interpret the graph like earned money are however able to read absolute 
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POST-TEST 

 
In these graph we can observe the improvements of the competences of each students. 
The general improvements for each nce

RD AX AX

 compete  are: 
 COO R-M INT HP A-M
N° correct answers, pre-test 34 11 37 8 41 
N° correct answers, post- 43 27 42 9 31 
test 

Below we report a table extrapolated by the similarity trees. It shows the numbers of 
th students that ed 5  or 2 o etences in  and poe  possess or 4 or 3 r 1 comp  the pre st-test. 

 5 comp. 4 comp. 3 comp.  2 comp. 1 comp 
N° stud, 
pre-test 

2 (group  
3) 

8 (groups 
1,4) 

24 (groups  
2,5,6,8,9) 

8 (groups 
7,12) 

1 (group 
10) 

N° stud, 
post-test 3) 1,13) 2) 12,15) 10) 

8 (group 13 (groups 16 (groups 14, 5 (groups  1 (group 

In particular, in the similarity trees we note that the group n. 3, representing the 
students that possessed all the competences, is increased by 6 students in the post-
test. The group n. 1, representing the students that possessed all the competences 

ing hypotheses, is increased by 6 students in the post-test. except the form
Conclusions 
The experimental results show that a laboratory activity with the use of motion sensor 
develops the competences of the students in reading, understanding and predicting of 
kinematics graph. This tool allows studying the steps of the modelling process of the 
phenomena rectilinear motion and to make metacognition reflection of their own 
learning. Modelling activities aid for the understanding of Cartesian graphs because 
they are the bridge between the real phenomena and the mathematical 
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ch shows improvements of the students in reading of the 
correspondence between abscises and ordinates, of maxima and width of intervals of 

n. 

• Youschkevitch, A.P., (1976). The Concept of Function up to the Middle of the 19th Century. 
Archive for History of Exact Sciences. 16, 37-85. 

representations. According to the theory of Embodiment the students construct their 
knowledge observing the real phenomena and connecting it with its graphical and 
tabular representations. Our mind conceptualizes a function as a point that is moving 
on the plane and the use of motion sensor induces this kind of conceptualization. So, 
using motion sensor, the students acquire competences in reading, understanding and 
predicting Cartesians graphs not representing only a kinematics phenomena. In 
particular, our resear

a statistical functio
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INTERACING POPULATIONS IN A RESTRICTED HABITAT– 
MODELLING, SIMULATION AND MATHEMATICAL ANALYSIS 

IN CLASS 
Christina Roeckerath 

Lehrstuhl A für Mathematik, RWTH Aachen 
This presentation will introduce an authentic modelling process for two interacting 
species which is well accessible to high school students. Based on an analysis of 
ecological systems, a simple conceptual model leads to simulation software tools and 
the derivation of a mathematical model. A wide range of systems, e.g. predator-prey, 
competition or parasitism can be investigated. The approach also allows independent 
modelling activities and in silico experimentation by students.  As the presented 
modelling process builds on authentic research by Johannson and Sumpter (2003) it 
allows to give students an insight into current research of Theoretical Biology.  
 
MODELLING 
The importance of modelling in the teaching of mathematics is universally accepted. 
But often work with models in education consists only in the usage of formulas or the 
fitting of parameters. There is not much suitable teaching material about reality-based 
mathematical models. Some groundbreaking efforts were made by Sonar and Grahs 
(2001, 2002). Gotzen (2003) created well comprehensible, reality-based one-species-
models for school use in his doctoral thesis. The two-species models presented in this 
paper are based on his work.    
We will use the following modelling process: 

1. Definition of the purpose of the model. 
2. Analysis of the real situation. 
3. Establish a conceptual model, from simplified description of the real situation. 
4. Simulation software and mathematical model equations on the basis of the 

conceptual model. 
5. Predictions and validation using the simulations and/or the mathematical 

models. 
Except for some slight modifications these are the five modelling steps presented by 
Gotzen, Liebscher and Walcher (2008). See also earlier work of Schupp (1988). 
Results gained during the modelling process have to be compared to reality and the 
intention of modelling and thus must eventually be corrected. Hence the modelling 
process is rather a modelling-cycle as Blum and Leiß (2007) presented. Nevertheless 
the main idea of modelling will be comprehensible for students following the five 
steps. 
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We will introduce population models which are very suitable for educational use 
because of their relevance, authenticity and traceability for students.  

 The models are relevant as they are built on current research of Theoretical 
Biology (Johannson & Sumpter, 2003).  

 As the modelling process is based on capturing the most relevant features of a 
population development, observed on an ecological level, it ensures a strong 
biological foundation. This kind of modelling is called “bottom up” modelling. 
A detailed description of the advantages of “bottom-up” models and a 
separation from classical “top-down” models is given by Sumpter & 
Broomhead (2001).    

 They are suitable for educational use because the whole modelling process is 
comprehensible with means of school education. Furthermore the models 
provide explanations of the observed phenomena and allow predictions.  

The models are applicable in mathematical and biological classes in secondary school 
as well as in education at university (e.g. classes of Biomathematics). 
The software and a workbook, which gives all necessary instructions and allows self-
contained work of students, are allocated for free use in the internet (Roeckerath,  
2008). 

PURPOSE OF THE MODEL 
We want to derive a bottom-up model of two interacting species which is capable to 
give information about their development over time. The model shall capture the 
main important ecological patterns and phenomena affecting the development of the 
species. Thus we are looking for a model, which gives the size of each population at 
every generation.  

THE ECOLOGICAL SYSTEM 
The basis of the modelling process must be an analysis of the ecological system in 
order to capture the main important structures concerning the development of both 
populations. 
We look at two interacting species which share a restricted habitat. The populations 
have non-overlapping generations. This ecological phenomenon is common for 
insects and annual plants and means that at every time there is only one generation 
alive. Thus parents and children never live together. Parents distribute their offspring 
randomly over the entire habitat. The offspring is during the first development state 
(nearly) not able to move (eggs, larvae, seeds). 
Individuals interact with individuals of their own as well as with individuals of the 
other species. These phenomena are called intra- respectively interspecific 
interactions and affect the individuals’ ability of reproduction. 
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We want to include several kinds of intra- and interspecific interactions appearing in 
ecology. In the following we want to capture them in formulating interaction laws.  
Intraspecific Interactions 
Intraspecific interactions appear mostly as competition for resources like food, 
territory or sunlight. The availability of such resources is mainly responsible for the 
ability of an individual to reproduce itself. We want to distinguish two kinds of 
intraspecific competition: exploitation and interference competition, which Nicholson 
describes as “scramble” and “contest” (1954). 
Exploitation competition can appear when individuals share a restricted quantity of 
resources. In this case a high density causes a lack of resources which prevents 
individuals from reproducing. Ecological examples of this phenomenon are weakness 
because of hunger or lacks of breeding or germination areas.  We capture the main 
idea in the interspecific law 

INTRA 1.  If there is a sufficiently high population density no individual will 
be able to reproduce.  

In the case of interference competition individuals deal directly with each other. 
There is one dominant individual, which is able to gain enough resources and to 
reproduce, even if there is a high population density. Ecological examples are 
cainism, where cubs kill each other until only the strongest cub is still alive, or 
allelopathy, where plants spread poison into the ground in order to prevent other 
plants from growing. A simplified description of these phenomena gives the 
reproduction law 

INTRA 2. There is a dominant individual which is able to reproduce even if 
there is a high density.  

More detailed biological background concerning intraspecific interactions and 
concrete biological examples can be found in the article of Gotzen, Walcher, 
Liebscher (2006).  
Interspecific Interactions 
Interactions between individuals of different species can have a positive, negative or 
no influence on their development. There are many ecological examples showing 
these kinds of influences.   For example an individual of a predator-population needs 
prey. Thus an interaction with individuals of the prey species will cause positive 
effect on the predator’s reproduction. A suitable reproduction law for positive 
influence is 

INTER +. If an individual interacts with at least one individual of the other 
species, then it will be able to reproduce. 

On the other hand interspecific interactions can also cause negative influence. A prey 
animal is only able to survive and reproduce if it will not be killed by a predator.  
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Also in the case of competition for resources between different species interspecific 
interactions have a negative influence on the reproduction. A simplified summary is 
the reproduction law 

INTER -. If an individual does not interact with any individual of the other 
species, then it will be able to reproduce. 

In eco-systems there can be populations which share a habitat and interact but one 
species is not affected by the other. For example huge plants which take daylight 
from small plants. There is an interaction, but the huge plants are not affected by the 
small plants. This is captured in the reproduction law 

INTER 0. Individuals reproduce independently from the other species. 
Using the specified interaction laws we will be able to describe a wide range of two 
interacting species. A concrete example is the following ecological system. 

Example: Amensalism 
There are two populations of plants which use the same resources. The first species 
shows the following dominant behaviour. It affects the second species negatively 
without any influence for it self. Thus it not affected by the second species. This 
ecological phenomenon is called amensalism. Within the species 1 obtains 
exploitation competition and within the species 2 interference competition. Using the 
interaction laws we can determine that species one follows INTRA 1 and INTER 0 
and the species 2 follows the reproduction laws INTRA 2 and INTER-. 

 

FROM THE ECOLOGICAL SYSTEM TO THE CONCEPTUAL MODEL 
After the ecological observations, we will now capture the main important structures 
affecting the populations’ development in a conceptual model.  A conceptual model 
is a (partly very strong) simplified description of the reality. The challenge is to 
distinguish the relevant and the irrelevant factors. The conceptual model is often only 
a caricature of the real system but it is clearly arranged and practicable. 
The habitat is displayed on a field with a fixed number of sites. Each site represents 
an area of the habitat. As shown in figure 1(a) and 1(b) for each area the containing 
individuals are displayed by a dot in the corresponding site. To distinguish the 
different species the dots are differently coloured.  
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(a) (b) (c) 

Figure 1: Conceptual model  

Individuals displayed at the same site are close to each other und thus interact. Due to 
the non-overlapping generations the development of the real system can be described 
with discrete time-steps and it is only affected by the number of reproductions. A site 
provides enough resources for at most one reproduction per species. As parents 
deposit their offspring randomly somewhere in the habitat, for every new generation 
the concerning number of dots will be randomly distributed over the field.  
 
Interaction laws  
The sites provide a basis to comprise the concept of “high density” for the 
intraspecific, and the concept of “presence” for the interspecific interaction laws in 
the conceptual model.  
We assume that we have a high density at a site, if it contains more then one 
individual. Using this understanding of density we can integrate the introduced 
interaction laws in our model.  

INTRA 1. At a site there will be a reproduction for a species, if it contains 
exactly one individual of the same species.  
INTRA 2. At a site there will be a reproduction for a species, if it contains at 
least one individual of the same species. 

The concept of “presence” can easily be realized in the conceptual model. The other 
species is present, if there is at least one of its individuals. Thus we get the following 
interaction laws for the conceptual model. 

INTER +. At a site there will be a reproduction for a species, if it contains at 
least one individual of the other species.  
INTER -. At a site there will be a reproduction for a species, if it contains no 
individual of the same species. 
INTER 0. At a site there will be a reproduction for a species, if it contains any 
number of individuals of the other species. 

Now the means to determine if there is a reproduction for a species at a site are 
available: If a species follows the interaction laws INTRA and INTER then there is a 
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reproduction for this species at a site if and only if INTRA and INTER are both 
fulfilled at the site.  
In order to get a species’ population size of the next generation the reproduction laws 
must be applied at each site. Multiplying the resulting number of reproductions with 
the mean number of offspring per reproduction we get the population size of the next 
generation. The generation cycle repeats by spreading this number randomly over the 
field. On the basis of this conceptual model, software was created which simulates the 
development of the species. 

Example: Amensalism 
Species 1 follows INTRA 1 and INTER 0 

Species 1 will reproduce at a site, if and only if it contains exactly one individual of 
species 1 and an arbitrary number of individuals of species 2.  
 

Species 2 follows INTRA 2 and INTER- 
Species 2 will reproduce at a site if and only if the site contains at least one 
individual of species 2 and no individual of species 1.  
 
Figure 1(c) shows the evaluation of the field concerning the reproduction laws of 
species 1 and 2. A light blue respectively a pink mark of a box represents a 
reproduction of the blue respectively the red species.  
 

FROM THE CONCEPTUAL MODEL TO THE STOCHASTIC MODEL 
The simulation tools provide excellent observation and exploration possibilities to 
students. Furthermore it should be mentioned that in silico investigations using 
simulations are very common in modern biological research.   

(a) (b) 

Figure 3: (a) The basic tool; (b) The development tool 
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Figure 3(a) depicts the graphical surface of the basic tool, which implements the 
simulation of the described generation-cycle. For each species students can enter the 
start sizes of the population, the mean number of offspring per reproduction and the 
intra- and interspecific interaction laws. Starting the first simulation the entered 
number of individuals will be spread randomly over the field. The program evaluates 
for each site and each species if there is a reproduction according to the selected 
interaction laws. Thus, the program computes the population sizes for the simulation 
of the next generation.   
The development tool, pictured in figure 3(b), was created to get a better insight of 
the species’ development. The tool simulates the development over a longer period of 
time and displays the resulting population sizes of each generation in a coordinate 
system. This offers a clear depiction of the long term development for both species.  

Example: Amensalism 
In figure 3(b) a simulation of the amensalism system (species 1: INTRA 1 + INTER 
0, species 2: INTRA 2 + INTER-) is shown. In this case the two species are able to 
live in coexistence. Changing the parameters, students can determine values for the 
initial populations and the mean numbers of offspring per reproduction which cause 
an extinction of one species or which allows coexistence. Thus students are able to 
explore the biological role and of the parameters.  
 

FROM THE CONCEPTUAL MODEL TO THE DETERMINISTIC MODEL 
Using the conceptual model students are able to derivate a mathematical description 
of the systems. We define the number of individuals at a time t  as  and . 
Due to non overlapping generations, the change of population size from generation  
to generation  exclusively depends on reproduction. The function of reproduction 

 respectively  indicates for species 1 respectively for species 2 how 
many individuals are able to reproduce, when  individuals of species 1 and  
individuals of species 2 are randomly spread over the field. We define the number of 
mean offspring for each reproduction, as  for species 1 and  for species 2. Thus 
we get the following mathematical description of the population sizes.  

)(1 tS )(2 tS
t

2S

1t
),( 211 SSR ),( 212 SSR

1S

1r 2r

))(),(()1( 21111 tStSRrtS   
))(),(()1( 21222 tStSRrtS   

To derive the whole mathematical description we need the reproduction functions. 
With the reproduction tool students can derivate reproduction functions via 
regression.  
The reproduction tool, shown in figure 5(a), allows  simulations of the functions 

, ,  and , which determine the number of )(R 1S1, 2
S )(R 1S2, 2

S )(R 2S1, 1
S )(R 2S2, 1

S
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reproductions of one species depending on a fixed number of individuals of one 
species and a variable number of individuals of the other species.  

(a) (b) 

(c) (d) 

Figure 5: The reproduction tool: (a) Simulation of  ()(R 1S2, 2
S )(~

1SR simulation values); 

(b) 64)(~:)(R~ 1
)2(

1
(1) SRS  ; (c) can be approximated by a linear 

function; (d) 
))(~log(:)(~

1
(1)

1
)2( SRSR 

01.0)(~:)(~
11
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1
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The tool provides the possibility to modify the simulated values in order to determine 
the reproduction functions. In the following  of the amensalism system with 

 will be derived. 
),(R 212 SS

100  N 

Example: Amensalism 

Simulating  with the reproduction tool we get the graph  shown in 
figure 5(a).  seems to be a proper approach to approximate . 
With the software the simulation values can be linearized in order to check if a 
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certain function is suitable to approximate them. Figure 5(b) shows the resulting 
graph after dividing the simulation values by , which is approximately 64 . 
In the next step the logarithm will be applied to 

)(R~ 1
(1) S M

( )R~ 1S

K

(1) . As it is shown in Figure 
5(c) the resulting graph  can be approximated by a linear function. This 
verifies that the approach is suitable. The constant 

)(~
1

)2( SR
0.01  can be obtained by 

dividing )(~
1

R S2,

)2( SR

2S

 by , as it is shown in Figure 5(d).  1S

)1 
In order to figure out how  depends on , it has to be checked how the remaining 
constants in  depend on . Determining  for different 
values of , shows that  depends on , while 
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 is the reproduction function of species 2. With the 
derivation of the reproduction function of species 1 we can determine the following 
model equations for the amensalism system: 
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Detailed descriptions and instructions for many different systems can be found in the 
workbook (Roeckerath, 2008). 

PREDICTIONS 
A good model offers predictions for the real system. Many systems develop over time 
from different states into a relatively stable final state, the climax state, like 
coexistence of both species or extinction of one or both of them. They can also 
develop cyclic or even chaotic behaviour. As mentioned above for the amensalism 
system, students can use the development tool to explore which values of , ,  
and  yield to different kinds of systems’ behaviours. Doing these kinds of 
predictions students are able to explore the ecological meaning of parameters.  

1r 2r )0(1S
)0(2S

As the derived models are dynamical systems in form of difference equations, next to 
the development tool students from a higher educational level can gain predictions 
with analytical or numerical investigations. A stable fixed point for example gives 
information about population developments which reach a climax state.     

CLASSROOM USE 
The models and tools offer various options for classroom use. They were tested 
successfully in a mathematics workshop for 12th grades students and a 13th grade 
biology class. During the workshop students worked independently with a workbook 
(Roeckerath, 2008).  Most of them were able to derive the model equations for the 
modelled systems using the workbook. In the biology class the models were used to 
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introduce population dynamics and to do some in silico experimentation. A 
derivation of the model equations was not part of the lessons.  
The introduced models give a realistic insight into scientific research and real 
mathematical applications. Authentic modelling processes are always complex. The 
introduced models cannot be discovered by students autonomously. But they convey 
the basic processes of “real” modelling.  A reasonable use of the introduced models 
in education requires that the teacher tries to find a proper balance between leading 
students in certain situations and encourage them to explore and experiment 
independently.  
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Abstract  
 
This paper deals with several proposals for the modelling of physical phenomenon of 
projectile motion (angled-launched projectile) in the Earth gravitational field. The 
problem, which we solve in this article named “Fireworks”, is situated in the 
discipline intersection of mathematics, physics and informatics at the secondary 
schools. We compare the utilisation of the graphic calculator, the mathematical 
software WinPlot and spreadsheets in the solving process of this problem. It offers a 
large space for the unconventional approaches of teaching, for the use of information 
technologies and for the creation of interdisciplinary relations. The paper lays 
emphasis on the innovative process in mathematics teaching in Slovakia that incites 
stimulating discussions in this field new modern methods, ICT and e-learning.  
 
Key words: modelling, quadratic function, graphic calculator, spreadsheets, teaching.  
 
1 INTRODUCTION  
 

Some Mathematics becomes more important because technology requires it. 
Some Mathematics becomes less important because technology replaces it. 

Some Mathematics becomes possible because technology allows it. 
                                                          Bert K. Waits [1] 

 
There are many arguments for and against the use of Information and 
Communication Technology (ICT) in mathematics teaching. This paper sets out some 
aspects of visualization, which is favourable to the exploration in mathematics 
learning.  
The most considerable didactic aspects of the utilization of ICT in mathematics 
teaching are [3]:  
 Aspect of  visualization that relieves the conception of thinking process and 

keeps the learning process shorter, 
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 Aspect of process simulation that enables to create an adequate model on the 
basis of diverse input values (parameters) as well as to understand their 
hierarchy,  

 Aspect of interaction between an IC technology and a user that represents 
one of the most important attributes of multimedia.  

  
In the following text, we would like to focus primarily on the aspect of visualization 
(demonstration) in mathematics teaching. Problematic of the demonstration in 
mathematical research and also in mathematics teaching is considered to be one of 
the most important in the development of mathematical thinking. In relation to that, 
the literature remarks the notion of visual thinking.  It is well known that the 
development of human cognition in the certain field relies on the groups of specific 
separate models of a future notion or knowledge [10]. 
Mental operations with the images can be complemented by real experimental 
manipulations and they lead to the concrete practice manipulation. In the frame of 
visual thinking, we can assert not only the algorithms, but also heuristics. 
Visualization represents one of the fundamental strategies in the field of creativity, 
discovering, inventions and abilities for problems solving. The importance of 
visualization is affirmed by the fact that the biggest part of brain cortex is aimed at 
vision and visual analysis. 
Today there is no one to argue about the importance and significance of the 
development of visual thinking for the school mathematics.  In spite of this, the visual 
methods of problems solving are moved at periphery and they are rare in school 
mathematics teaching. This reflexion is also underlined by the statement of 
contemporary mathematician and known popularizator of mathematics, Ian Stewart: 
„Images transfer much more information than the words can transfer. Many years, 
we tried to unteach our students to use the images, because „they are not exact“. It is 
the sad misunderstanding. Yes, the images are not exact, but they help to think and 
we could not despise this aid. “[3] 
The main objective of the innovative process in the mathematics teaching in our 
country is to show the pupils that the mathematics education is not purposeless. The 
mathematics is the science, which has various important applications in real life that 
are inevitable for the development of other scientific and technical disciplines. The 
process planted into the long term horizon must respect the pupils´ mental abilities 
oriented at the discovering and the cognition of mathematical notion, the 
development of pupil’s creativity, critical thinking and team-work, but also the need 
of scientific discussion in the class. The international comparative studies TIMSS and 
PISA show the actual deficiency of these pupils´ abilities in Slovak school system 
[5]. That is the reason why in this paper we would like to offer one physical problem 
together with the possibilities of its solutions including the utilisation of mathematical 
knowledge and convenient ICT that is accessible to schools. First section outlines the 
central problem of this article named „Fireworks“. The next sections detail the ideas 
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of the central problem solution with the help of the mathematical software WinPlot, 
the graphic calculator TI 83+, and MS Excel (spreadsheets). 
2 PROBLEM „FIREWORKS“  
This part of article was inspired by the mathematics teaching at secondary schools in 
USA, especially by the implementation of IMP (Interactive Mathematics Program). 
The aim of this program is to teach the mathematics differently and to prepare a pupil 
in the constructive way to encounter the world where he lives. The objective is not to 
let the pupil receive the knowledge in the inactive way, but above all to let him 
experiment, search, ask, look for the answers, create and test his own hypothesis, 
consider, work in teams, share and communicate his ideas and inventions. 
The principal topic of the following sections is a quadratic function, whose concept is 
presented from the several points of view (functional, algebraic and geometric). We 
consider the choice of the „Fireworks“ problem as very suitable, because it includes 
not only the mathematical problem, but also the physical problem, which the pupils 
are able to solve effectively by the aid of ICT [4].      
 
Problem definition 
High school football team has just won the championship. To celebrate this triumph, 
the young football players want to put on a fireworks display. They will use rockets 
launched from the top of a tower near the school. The height of the tower is 50 metres 
off the ground. The automatic mechanism will launch the rockets with the initial 
velocity 28 metres per second. 
The team members want the fireworks from each rocket to explode when the rocket 
is at the top of its trajectory. They need to know how long it will take for the rocket to 
reach the top, so they could set the timing mechanism. Also, they need to know the 
best place for spectators to stay (they need to know how high the rocket will go). 
The rockets will be oriented to an empty field and shot at an angle of 65 degrees 
above the horizontal. The team members also want to know how far from the base of 
tower will the rockets land, so that they can fence off the area.          
 
Theoretical background (several formulations) 
The problem includes the physical phenomenon of projectile motion named angled-
launched projectile [6]. This motion consists of a uniform rectilinear movement in the 
direction of axes x with velocity v1 and a vertical displacement with initial velocity 
v2. Vector of initial velocity v0 and direction of projectile motion contain the angle  
which is named elevation angle. The horizontal distance of the projectile range 
depends on this angle (the distance is biggest when  = 45°). The range distance 
depends also on the initial velocity v0.   
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Figure 1 Scheme of angled-launched projectile 

 v1 = cos (α).v0 
 v2 = sin (α).v0 – g.t 
 x = v1.t 
 y = v2.t – ½.g.t2 

 
David is member of the football team. He is also high school student and he is good 
in mathematics and physics. He would like to help his team to solve the „Fireworks“ 
problem. He says that there is a function h(t) that gives the relation between the 
rocket’s height off the ground and the time t elapsed since launch.  This relation can 
be represented by the equation (in metres and seconds): h(t) = 50 + 28.sin 65º t – 5t2,  
h(t)  50 + 25 t – 5t2. 

 

 
Figure 2 Sketch of the problem situation 

We can probably see where the numbers 50, 28, 65 come from. The coefficient -5 in 
the quadratic component -5t2 coheres with the force of gravity done by the relation: G 
= 

2
1 gt2.  

hmax 

t[s] 

h (t) 

 
V1 

V0 
hmax 

V2 

d x
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David also says that it is possible to find a relation desc
The rocket travels with this function: d(t)= 28 t .cos 65º. 
Again, t is the time (in seconds) since the rocket was launc
(in metres).  
Tasks: 

1. To draw a sketch of the situation. 
2. To find answers to the partial questions of the footb
A) What time does the rocket need to reach the top o

r

h

a
f

point where does the function h(t) reach its maximum)? 
distance of the rocket from the tower) does the rocket reach 

aximum height? 
 the base of the tower does the rocket land?   

3 
MA
CA
Sof
Fireworks“ problem. The pupil can change the parameters of the tower height, the 

(t)] express the coordinates of the projectile (fireworks rocket) 

H – Height of tower 
V – Initial velocity 
A – Elevation angle 
 
 
 
 

 

igure 3 Trajectory of the rocket’s motion made in WinPlot 

ibing horizontal distance. 

ed and d(t) is the distance 

ll team players:  
 its trajectory (to find the 

B) Where (horizontal 
its m
C) How far (horizontal distance) from

 

PROBLEM SOLUTION BY THE AID OF THE SPECIAL 
EMATICAL SOFTWARE WINPLOT ANTH D THE GRAPHIC 

LCULATOR   
tware WinPlot enables to create an interactive programme, which describes our 

„
initial velocity and the elevation angle. He can observe how these parameters 
influence the trajectory of the rocket motion. The image underneath represents the 
trajectory of the rocket since its launch from top of the tower until its landing.  The 
ordered pair [d(t), h

moving in the frame of 
its trajectory in terms of 
the time t.  
 
Variable parameters: 
 

F
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Solving of the „Fireworks“problem by the aid of graphic calculator (TI 83+) 
 25 To solve the problem, we can chart the graph of the quadratic function h(t) = 50 +

t – 5t2, which represents functional dependence of the launched rocket height h on the 
time t, with the help of graphic calculator. The task is solved graphically [2].  
 

 order to graph the quadratic function, firstly we have to insert its formula to the In
function editor Y= (a).  We must also adapt the window editor to see the whole graph 
of the quadratic function (b). Than we can let the calculator draw the graph of the 
function (c).   
 

(a)  (b)  (c) 
 

e can answer the question 2A) “What time does the rocket need to reach the  of 

 the task 2B) we have to find the place m the 

time of rocket landing on the 
 

W  top
its trajectory?” by finding the top, the highest point of the graph of quadratic function 
(it means to find a point where the function reaches its maximum).  The calculator 
function 2nd [CALC] 4: maximum, enables us to count the maximum of the 
quadratic function h(t) with the corresponding value of t, so we get e.g. the maximum 
height  hmax = 81,25 m and the time when the rocket reaches this height t = 2,5 s. 
 
  

. 

 
 
 
 
 
In (horizontal distance of the rocket fro
tower), where the rocket reaches its maximum height. We can calculate this position 
simply by putting the obtained value t = 2,5 s into the equation d(t)= 28* t*cos 65º, 
so we receive: d(t) = 28*2,5*cos 65º. Therefore, the place where the rocket reaches 
the maximum height off the ground level is approximately 29,6 metres far from the 
tower.   
The following calculation will answer the last question 2C): where should we look 
for the area (place, point) of the rocket’s landing. 

 

At first, we enumerate the 
ground (it is one convenient positive root of the equation
h(t)=0, or the intersection of the quadratic function graph 
with the x coordinate axe). 
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By this calculation, we obtain the time t = 6,53 s of rocket landing. Finally, we are 
able to take the time t = 6,53 s and insert it into the function pattern d(t)= 
28*t*cos65º. We acquire the distance of the rocket landing, d = 77,28 m far from the 
base of tower. 
The graphs we have demonstrated by the aid of graphic calculator can offer the image 

 PROBLEM SOLVING WITH THE HELP OF SPREADSHEETS 
ol to model 

s allow us to use one of their important features – an ability 

r individual parameters, we put values of α (an angle), v0 (initial 

e students, we can experiment with the model by changing the angle 

 use David’s equations d(t) = 28*t*cos 65° and h(t) 

and a lot of information about the rocket movement. However, they do not simulate 
the trajectory of this movement. For this purpose, it is better to use the interactive 
program made in WinPlot.   
 

4
During teaching, it is suggested to utilize a spreadsheet processor as a to
various possibilities that could occur and to analyze data. The spreadsheet processor 
and graphical processing of data can be used during education as tools to model and 
simulate the dynamic processes. These tools are known to the students as quite 
standard. By the application of spreadsheet programs’ features, we can gain 
quantitative modeling tools, which are suitable for the use during elementary and 
high school education.  
The spreadsheet program
to put calculations’ results into the graphs [8]. An adequate example could be a 
modeling of mathematic functions x2, sin(x), cos(x) or modeling of the angled-
launched projectile.  
Using the formulas fo
velocity) and constant g (gravitational acceleration) into the cells with absolute 
addresses. Then we generate a table of calculations for the sequence of values of time 
parameter t. With the help of functions, we find the values of the maximal height and 
distance of fall. 
Together with th
of throw or initial speed and then observe how it affects a trajectory. The results are 
visually displayed on the graph. 
For the “Fireworks” problem, we
= 50+25*t-5*t2. We create a table of time values together with functions h(t) and d(t). 
Based on values we graphically represent relation of the time t to the height function 
h and distance function d. The students can use the graph to approximate the maximal 
values of height and fall together with the corresponding time moment. These values 
can be determined also by utilization of the spreadsheet calculator’s function for the 
maximum.   
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t [s] h(t) d(t) 
50,00 0,00 0 

0,3 57,05 3,55 
0,6 63,20 7,10 
0,9 68,45 10,65 
1,2 72,80 14,20 
1,5 76,25 17,75 
1,8 78,80 21,30 
2,1 80,45 24,85 
2,4 81,20 28,40 
2,5 81,25 29,58 
2,7 81,05 31,95 
3 80,00 35,50 

3,3 78,05 39,05 
3,6 75,20 42,60 
3,9 71,45 46,15 
4,2 66,80 49,70 
4,5 61,25 53,25 
4,8 54,80 56,80 
5,1 47,45 60,35 
5,4 39,20 63,90 
5,7 30,05 67,45 
6 20,00 71,00 

6,3 9,05 74,55 
6,5 1,25 76,92 
6,6 -2,80 78,10 

Table 1 Values of variables 

Fireworks

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7

t [s]

h(
t) 

[m
]

h(t)
d(t)

   
Figure  4 Graphs of functions in the MS Excel program 
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A representation of the calculations’ results by the column of numbers together with 
the graph allows students to get a deeper insight into the observed phenomenon. The 
advantages, which result from this kind of spreadsheet programs’ utilization in 
education, are the following ones: 

- complicated, repeating calculations are cut down to minimum  
 - more models of “what happens, if” type can be checked out  
 - models can be tested by the greater amount of data  
 - it’s possible to graphically represent the examined relations  
  

5 CONCLUSION 
Creation and application of the models for the purpose of real world’s phenomena 
demonstration is the subject of teaching process. These models take a significant part 
in application of didactic principles of science, demonstration and activity [9]. 
Scientific knowledge is related not only to the content of teaching process, but also it 
represents the method of its acquirement. Modeling and simulation of the systems, as 
a scientific method, helps students to gain new information by examining the various 
systems, based on their models [7].  
The graphic calculator, software WinPlot and the spreadsheet processor could be the 
appropriate tools for the creation of visual and graphically high implemented 
animation models. A very important function of the models is an enhancement of 
visual demonstration. A purpose of this demonstration is to create the conclusive 
ideas for the student. At the age of 12 years, when students acquire an ability to 
accomplish the formal operations and to think abstractedly, it is desirable to arouse 
their visual feeling of abstract representations and descriptions of real processes and 
devices. Various symbolic models, such as diagrams or graphs, can also be used 
during the mathematics teaching. 
A model used for the didactic purposes helps us to demonstrate and discover all the 
significant features of examined phenomenon. It is appropriate for students not only 
to get prepared models of the reality, but also to create some themselves. Thus they 
have to reproduce a structure of the model and to reveal all of its features. 
Consequently they can improve it or work it over. As a result, the students can learn 
in a more creative way. This approach creates an area for the use of educational 
software and tools, which gives us an opportunity to teach the students a given topic 
with the help of ICT. 
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MATHEMATICAL MODELLING IN CLASS  
REGARDING TO TECHNOLOGY 

Hans-Stefan SILLER, Gilbert GREEFRATH 
University of Salzburg (Austria), University of Cologne (Germany) 

Based on the well known modelling cycle we develop a concept of modelling in 
mathematics education using technology. We discuss the specifics of modelling with 
computers and handhelds and show some technical possibilities of software tools for 
mathematics classes. Exemplary we show different modelling cycles using technology 
based on the three major types of software tools for mathematics. 
INTRODUCTION – MODELLING WITHOUT HELP OF TECHNOLOGY 

The concept of modelling can be found as a basic concept in some areas of natural 
sciences, especially mathematics. Therefore it is not remarkable that this basic con-
cept can be found in several curricula all over the world. In mathematics the concept 
of modelling and the application of real-life-problems in education has been dis-
cussed intensively over the last years – see for example Kaiser & Sriraman (2006, p. 
304), Siller (2006). It is possible that students of all ages are able to recognize the 
importance of mathematics through such problems because real-life problems... 

 ... help students to understand and to cope with situations in their everyday life 
and in the environment, 

 ... help students to achieve the necessary qualifications, like translating from 
reality to mathematics, 

 ... help students to get a clear and straight picture of mathematics so that they 
are able to recognize that this subject is necessary for living, 

 ... motivate students to think about mathematics and computer-science in a pro-
found way so that they can recall important concepts even if they were taught a 
long time ago. 

 ... allow the teaching of 
mathematics with a his-
torical background. 

If we look at the concept of 
modelling (figure 1) designed by 
Blum & Leiß (2007) in mathe-
matics education we will be able 
to find three important points:  

 Design & Development: 
Comparable to “Finding the 
real model” and to the step 

Figure 1: Modelling cycle of Blum & Leiß
(2007) 
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of “Translation” – Real situation to real model by including the situation 
model. 

 Description: Comparable to “Finding the mathematical model”. 

 Evaluation: Comparable to “Finding (Calculating) mathematical results” and to 
the step of validating. 

In curricula the usage of technology and the aspect of modelling very often is de-
manded. For example you can read in the Austrian curriculum (2004):  
“An application-oriented context points out the usability of mathematics in different 
areas of life and motivates new knowledge and skills. [...]  
The minimal realization is the acquiring of the issue of application-oriented contexts 
in selected mathematical topics; the maximal realization is the constant addressing of 
application-oriented problems, the discussion and reflection of the modelling cycle 
regarding its advantages or constraints. […] Technologies close to mathematics like 
Computer algebra systems, Dynamic Geometry-Software or Spreadsheets are indis-
pensable in a modern mathematical education. Appropriate and reasonable usage of 
programs ensures a thorough planned progress. The minimal realization can be done 
through knowing such technologies and occasional applications. In a maximal reali-
zation the meaningful application of such technology is a regular and integral part of 
education.” 
So each of us has to ask where the usage of technology can be best implemented. The 
integration of technology in the modelling cycle can be helpful by leading to an  
intensive application of technology in education. We have thought about a way that 
the use of technology could be implemented in the modelling cycle. Our result can be 
seen in figure 2. The “technology world” is describing the “world” where problems 
are solved through the help of technology. This could be a concept of modelling in 
mathematics as well as in an interdisciplinary context with computer-science-
education. 

 
Figure 2: Extended modelling cycle – regarding technology when modelling 
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The three different worlds shown in figure 2 are idealized; they influence each other. 
For example the development of a mathematical model depends on the mathematical 
knowledge on the one hand, on the other it is affected by the possibilities given in the 
technology world. Using technology broadens the possibilities to solve certain 
mathematical models, which would not be used and solved if technology would not 
be available. At this point we want to mention, that successful modelling demands 
mathematical knowledge and skills in certain software tools. 
Based on this graphical illustration we have to discuss the use of technology in terms 
of modelling in a more detailed way. 
MODELLING WITH THE HELP OF TECHNOLOGY 
Through the usage of computers in education it is easier to discuss problems which 
can be taken out of the life-world of students. Through such discussions the motiva-
tion for mathematical education can be effected because students recognize that 
mathematics is very important in everyday life. If it is possible to motivate students in 
this way it will be easy to discuss and to teach the necessary basic or advanced 
mathematical contents such as finding a function or calculating the local extreme val-
ues of a function. 
Unfortunately a lot of teachers and educators prefer not to work with real-life prob-
lems. The reasons for this are manifold, e.g. teachers do not want to use CAS or other 
technology in class or the preparation for such topics is very costly in terms of time. 
There are however, lots of reasons to combine modelling and technology. Fuchs & 
Blum (2008) quote the aims of Möhringer (2006) which can be reached through 
(complex) modelling with technology: 

 Pedagogical aims:   
With the help of modelling cycles it is possible to connect skills in problem-
solving and argumentation. Students are able to learn application competencies 
in elementary or complex situations. 

 Psychological aims:   
With the help of modelling the comprehension and the memory of mathemati-
cal contents is supported. 

 Cultural aims:   
Modelling supports a balanced picture of mathematics as science and its im-
pact in culture and society (Maaß, 2005a, 2005b). 

 Pragmatically aims:   
Modelling problem helps to understand, cope and evaluate known situations. 

As we can see the use of technology can help to simplify difficult procedures in mod-
elling. In some points the use of technology is even indispensable: 

 Computationally-intensive or deterministic activities, 

 Working, structuring or evaluating of large data-sets, 
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 Visualizing processes and results, 

 Experimental working. 
With technology in education it is possible not only to teach traditional contents using 
different methods but it is also very easy to find new contents for education. The fo-
cus of education should be on discussion with open, process-oriented examples which 
are characterized by the following points.  
Open process-oriented problems are examples which … 

 … are real applications, e.g. betting in sports (Siller & Maaß, 2008), not vested 
word problems for mathematical calculations. 

 … are examples which develop out of situations, that are strongly analyzed and 
discussed. 

 … can have irrelevant information, that must be eliminated, or information 
which must be found, so that students are able to discuss it. 

 … are not able to be solved at first sight. The solution method differs from 
problem to problem. 

 … need not only competency in mathematics. Other competencies are also 
necessary for a successful treatment. 

 … motivates students to participate. 

 … provokes and opens new questions for further as well as alternative solu-
tions. 

The teacher is achieving a new role in his profession. He is becoming a kind of tutor, 
who advises and channels students. The students are able to detect the essential things 
on their own. Therefore we want to quote Dörfler & Blum (1989, p. 184): “With the 
help of computers (note: also CAS-calculators) which are used as mathematical addi-
tives it is possible to reach a release of routine calculation and mechanical drawings, 
which can be in particular a big advantage for the increasing orientation of appliance. 
Because of the fact, that it is possible to calculate all common methods taught in 
school with a computer, mathematics education meets a new challenge and (scien-
tific) mathematics educators have to answer new questions.” 
ENABLING TECHNOLOGY  
The use of technology in mathematical education always depends on the enabling 
technology. For mathematical education there are many different hard- and software 
tools. The three major types which have emerged in this area are - see for example 
Barzel et al. (2005, p. 36):  

 Computer algebra system (CAS): With the help of such a tool it is possible to 
work symbolically, algebraically and algorithmically. 
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 Dynamic Geometry Software (DGS): With the help of such software it is pos-
sible to create geometrical constructions interactively and work with digital 
work sheets. 

 Spreadsheet Program (SP): With its help it is possible to organize and/or struc-
ture data for easier handling, calculating in tables and common analysis. 

New developments in the area of technology try to combine these three aspects, al-
though it is difficult to combine all three points and form unique software for each 
characteristic.  
For example the CASIO Classpad, respectively the associated software package 
Classpad Manager, offers a real interactivity of geometry and algebra. 
The simultaneous application of CAS and DGS of the Classpad is, in our opinion, 
also a useful application. With the help of CAS it is possible to calculate for example 
non-linear equations symbolically and at the same time the geometrical aspects can 
be shown through dynamical geometry.  
For these purposes equations have to be transformed from the CAS-part to the ge-
ometry part. But this method is – until now – not as effective as it should be. After 
such a transformation the equations cannot be changed interactively. But this problem 
is not really important, because such examples can be handled easily with other tools, 
e.g. Geogebra. In Geogebra it is not possible to use a real CAS-part, but the interac-
tivity can be done easily. And a new feature, which is currently available in a Beta-
version, is the implementation of a spreadsheet-tool. With its help it is possible to 
combine interactivity with numerical solutions, calculated in a spreadsheet. To sum 
up there are several tools combining two or three of the major types CAS, DGS and 
SP.  
Example 
The following example which could be discussed with students can be found in eve-
ryone’s life-world: 
Dangerous intersection: 
Two cars with different velocities are driving on two different streets towards an in-
tersection where those streets meet. One car is going 60 kilometres per hour; the other 
has a velocity of 50 km per hour. Try to think about the situation at the intersection – 
is it possible that an accident can happen? It is given that both cars are running with 
the constant velocities towards the intersection. 
The example can be discussed now under the aspect of different didactical principles: 

 Haptical discussion: Students model the given situation, for example with 
some toy cars, and try to find a solution. This could be a starting point for 
cross-disciplinary teaching with physics (without computers). 

 Graphical discussion: Students have to draw a chart or diagram of the given 
situation, and/or modify a given chart (with paper and pencil or DGS). 
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 Symbolical discussion: Students have to describe the situation for both cars 
with the help of a function or functional dependency (with paper and pencil or 
CAS). 

 Numerical discussion: Students compute lots of data to solve the problem (with 
a scientific calculator or SP). 

It is not that important which method students’ first use to solve this problem. An im-
portant point is that students are working based on experience and the methods used 
are kept sustainable. But it is important for the students to see the different ap-
proaches for this problem. In our course we used the following problem: 
A picture which describes the given situation visually can be found in figure 5. 

 
Figure 3: Graphical visualization of the problem 

This problem – here in an adequate norm - can be solved in completely different 
ways. If we use the help of dynamical geometry software, we can move a point for 
the second car by moving the point for the first car automatically in the right scale 
and see what happens at the intersection. If we have a closer look at our concept 
“Modelling with the help of technology” and try to translate the steps which are nec-
essary for solving the problem into our model, it could appear as presented in the fol-
lowing figure (figure 6): 

 

Figure 4: Extended modelling cycle for the problem “Dangerous Intersection” 
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Alternatively the solution can be calculated with the help of a CAS.  

 
Note: For easier readability we have decided to present the solutions in the CAS in 
decimal notation. 
Figure 7 shows the same mathematical model, but a different computer model in the 
technology world. A CAS works algebraically so we cannot use a geometrical con-
struction to work on the mathematical model. Therefore we decided to use derivation 
and distance to solve the problem.  

 
Figure 5: Extended modelling cycle with a different part in the technology world 

The solution can also be calculated with the help of a spreadsheet. We will just 
document this possibility without discussing it. There will of course be a third model 
in the technology world. 

t x1 y1 x2 y2 dx dy d 
        

5,6 4,6 3,2 4,3 3,3 0,3 -0,1 0,2608 
5,61 4,6 3,2 4,3 3,3 0,3 0,0 0,2595 
5,62 4,6 3,2 4,3 3,3 0,3 0,0 0,2585 
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5,63 4,6 3,2 4,4 3,3 0,3 0,0 0,2578 
5,64 4,6 3,2 4,4 3,3 0,3 0,0 0,2574 
5,65 4,6 3,2 4,4 3,3 0,3 0,0 0,2573 
5,66 4,6 3,2 4,4 3,2 0,3 0,0 0,2575 
5,67 4,6 3,3 4,4 3,2 0,3 0,0 0,2581 
5,68 4,7 3,3 4,4 3,2 0,3 0,0 0,2589 
5,69 4,7 3,3 4,4 3,2 0,3 0,0 0,2600 
5,7 4,7 3,3 4,4 3,2 0,3 0,0 0,2614 

Table 1: Worksheet in SP for the example “dangerous intersection” 

These three possible solutions (by DGS, CAS, SP) are prototypes for student solu-
tions which represent different mathematical concepts and models. In all three mod-
els the assumptions concerning the position of both streets, represented by straight 
lines, are equal. 
The model designed with the help of dynamical geometry software uses only the im-
plicit representation of parameterised straight lines. The main mathematical concept 
is studying the distance of two (moved) points in the plane. Designing the model as it 
is shown, presumes the understanding in analytical geometry and connections be-
tween the two moving points. The ratio of the velocities of both cars, idealized as 
points, influences the movement of one point depending to the other. The dynamical 
visualization allows pupils to experiment with the model (e.g. changing the position 
of both cars). Thereby possibilities for further developing the model are given (e.g. 
including the length of the cars). 
The models designed by CAS and SP are using parameterised straight lines as alge-
braic expressions. The distance of both points can be calculated with the help of Py-
thagoras' theorem. In the CAS model the minimum is calculated with the help of dif-
ferential calculus, whereas in the SP model the minimum has to be found numeri-
cally. One possibility of the CAS model is adding other variables (e.g. different ve-
locities for the cars, changing the starting point of one car) for experimenting or de-
veloping the model further. Here more possibilities are imaginable. All of them are 
very ambitious. 
TEACHER EDUCATION 
The use of technology in mathematical education does not only depend on technol-
ogy but also on the knowledge and beliefs of the teacher concerning the different 
types and usages of technology.  
The work with computers in teacher training sets the stage for use in schools. At the 
beginning and at the end of the course “Computer for Mathematics in School” stu-
dents who attended were asked about their opinion on the use of computers in class 
for education. 10 students were present in both interviews comparably. Every ques-
tion (shown in the diagram of figure 9) had four possible answers: yes, rather yes, 
rather no, no. In certain cases the beliefs using computers in class changed after at-
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tending this course. The topics of the course are the use of CAS, DGS and SP for 
mathematics in school.  
The interviews show a possible change of beliefs while working on topics with com-
puters in class. Some of the positive results concerning computer use can be seen in 
figure 9, whereas a small bar is closer to the answer “Yes” a bigger bar closer to 
“No”. 
The students are asked to say what changes occur using computers in mathematics 
classes.  

 
Figure 9: Results of the interview about changes by using computers  

This first results show, that it would be interesting to have a closer look at the differ-
ent strategies of students while modelling with a digital tool. For this research it is 
necessary to find more examples like “dangerous intersection” with relevance to real 
life and with different approaches.  
Even in teacher education it would be a possible way to discuss examples like “dan-
gerous intersection” by focussing on different computer models. To help the students 
to reflect upon the role of mathematical software in mathematical modelling proc-
esses criteria should be developed and applied (e.g. mathematical content, level of 
difficulty, possibilities of further developing). 
Recapitulatory the use of computers in mathematical education can support and cre-
ate understanding, in order to improve motivation. The role of technology in the 
modelling cycle has to be pointed out and examples in education have to be adapted 
and even created. To implement these points more research in this field needs to be 
done.  
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Considering the general problem of integrating mathematical modelling into current 
educational systems, the paper focuses on the study of the institutional constraints 
that hinder the implementation of modelling activities. The study of these restrictions 
and the way new teaching proposals can overcome them appear as an unavoidable 
step for the large-scale dissemination of mathematical modelling activities at all 
school levels. Within the framework of the Anthropological Theory of the Didactic, it 
is proposed the use of a hierarchy of levels of didactical determination as a frame to 
set and analyse from the more specific constraints, related to the usual way of 
organising mathematical contents, till the more generic ones, linked to the ‘dominant 
epistemology’ concerning the role of mathematics in experimental sciences.  
Key words: ATD, mathematical modelling, constraints, conditions, applicationism. 

1. THE PROBLEM OF INTEGRATING MATHEMATICAL MODELLING 
INTO CURRENT EDUCATIONAL SYSTEMS 
Nowadays, there seems to be no doubt about the possibility of introducing students to 
a mathematical activity orientated towards the study of applied and modelling 
problems. This agreement is shared by many researchers in the field of mathematical 
modelling and applications, and supported by the new curricular orientations that 
have recently been introduced in our educational systems, thus trying to focus 
mathematical teaching more on the study of ‘real life situations’ than on systems of 
well-organised mathematical contents. Several investigations from different 
theoretical perspectives have shown that mathematical modelling activities can exist 
at school under suitable conditions, at all levels and related to almost all curricular 
contents. 
Beside all the progress of establishing modelling as a normalized activity in some 
controlled processes of teaching and learning mathematics, the problem of the large-
scale dissemination of these processes has recently been addressed as both an urgent 
and intricate task. Some authors have started pointing out the existence of strong 
limitations hindering the inclusion and permanent survival of mathematical modelling 
practices in the classroom. For instance, Blum et al. (2002, p. 150) depicts the 
situation as follows:  

While applications and modelling also play a more important role in most countries’ 
classrooms than in the past, there still exists a substantial gap between the ideals of 
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educational debate and innovative curricula on the one hand, and everyday teaching 
practice on the other hand.  

Kaiser (2006, p. 393) seems to go in the same direction when she states:  
Since the last decades the didactic discussion has reached the consensus that applications 
and modelling must be given more meaning in mathematics teaching. […] However, 
international comparative studies on mathematics teaching carried out during the last 
years, especially in the PISA Study, have demonstrated that worldwide young people 
have significant problems with applications and modelling tasks.  

Related to this state of things, Burkhardt (2008) emphasizes the existence of two 
realities: on the one hand, the good progress and encouraging results in research 
about teaching modelling and applications; on the other hand, the difficulties of its 
large-scale diffusion in the classroom. He states quite brutally (op. cit., p. 2091):  

[W]e know how to teach modelling, have shown how to develop the support necessary to 
enable typical teachers to handle it, and it is happening in many classrooms around the 
world. The bad news? ‘Many’ is compared with one; the proportion of classrooms where 
modelling happens is close to zero.  

To describe the difficulties encountered in the diffusion of modelling, many 
researchers use expressions such as ‘counter-arguments’ (Blum, 1991), ‘obstacles’ 
(Kaiser, 2006), ‘dilemmas’ (Blomhoj & Kjeldsen, 2006) or ‘barriers’ (Burkhardt, 
2006), pointing out a new direction of research which moves from the problem of the 
design, implementation and analysis of modelling practices to the study of the 
conditions that affect the existence, permanence and evolution of these practices. In a 
research on teachers’ beliefs about mathematical modelling, Kaiser (2006) defines 
different teachers’ profiles to explain how some beliefs can become important 
‘obstacles’ for the implementation of applied and modelling practices in teaching, 
because the nature of contextual and applied problems does not seem to be 
compatible with those beliefs. (p. 399). In the same direction, Blomhoj & Kjeldsen 
(2006, pp. 175-176) point out the existence of different ‘dilemmas’ that should be 
faced before widely incorporating the teaching of modelling. These dilemmas refer 
to: the understanding of mathematical modelling competency from a holistic point of 
view; considering mathematical modelling as an educational goal in its own right and 
the dilemma of teaching directed autonomy. 
At a more general level, Burkhardt (2006, pp. 190-193) outlines and discusses the 
existence of ‘barriers’ that obstruct a large-scale implementation of modelling, such 
as the systemic inertia, the unwelcome complication of the ‘real world’ in many 
mathematics classrooms, the limited professional developments of teachers, the role 
and nature of research, and the development in education. To overcome these barriers 
and many others still unknown, he refers to some ‘levers’ (such as changes in 
curriculum descriptions supported by well-engineered materials to support 
assessment, teaching and professional development, etc.) that may show some 
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promise progress in this field. Michelsen (2006) points out an even more general 
barrier when he questions the common separate vision of scientific disciplines, and 
states that traditional borders between disciplines suppose a clear constraint for the 
development of applied activities (op. cit., p. 269):  

The challenge is to replace the current monodisciplinary approach, where knowledge is 
presented as a series of static facts disassociated from time with an interdisciplinary 
approach, where mathematics, science, biology, chemistry and physics are woven 
continuous together. 

This situation can be summarized in the formulation of the following didactic 
problem, which has to be located at the core of all research aiming to integrate 
mathematical modelling in teaching and learning practices: 

What kind of limitations and constraints exist in our current educational systems 
that prevent mathematical modelling from being widely incorporate in daily 
classrooms’ activities? What kind of conditions could help a large-scale integration 
of mathematical modelling at school? 

Within the framework of the Anthropological Theory of the Didactic (ATD), most of 
the research related to mathematical modelling and teaching practices1 (Artaud 2007, 
Bolea et al. 2004, Barquero et al. 2008, Barbé et al. 2005) takes into account the 
problem of the ‘ecology’ of didactic organisations, that is, the study of the conditions 
needed to implement teaching and learning activities and the constraints that hinder 
their normal evolution in a given educational institution. The origin of this ecological 
problematic, which was first applied to mathematical objects and practices before 
being enlarged to a wider institutional perspective, can be located in the study of the 
process of didactic transposition and its related phenomena (Chevallard 1985, see 
also Bosch & Gascón 2006). 
In our research project on the study of a global modelling process at university level 
centred on the study of a population dynamics (Barquero et al., 2008), we have 
observed the existence of different kinds of transpositive constraints that hinder the 
normal evolution of modelling practices in the classroom. We will develop this point 
further in the next section, preceding it by a short presentation of the ‘levels of 
didactic determination’, a key notion introduced by Chevallard (2002) that we will 
use as a frame to analyse the different kinds of conditions and constraints that affect 
teaching and learning processes.  

2. CONSTRAINTS ON THE TEACHING OF MODELLING ACTIVITIES 
2.1. Levels of didactic determination 

                                           
1 Several works within the framework of the ATD as Chevallard (1992), Chevallard, Bosch & Gascón (1997) have analyzed and 
described mathematical modelling activities from this approach. From ATD, it is assumed that doing mathematics consists 
essentially in the activity of producing, transforming, interpreting and arranging mathematical models. 
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Mathematics teaching and learning processes can exist because a lot of conditions 
make them possible: the existence of a social educational project, the choice of a set 
of contents to be taught, a school organisation with grades, syllabi, teachers and 
students grouped in classrooms, teaching materials, teachers’ training programmes, 
etc. These conditions are also factors that, while allowing some things to happen, are 
also impeding others to take place. In the research and design of new teaching 
proposals, taking into account these conditions and constraints seems necessary if we 
do not want to have a set of ‘ideal’ didactic organisations unable to ‘survive’ under 
normal conditions, being, as Chevallard (2002, p. 42) put it, only a ‘world on paper’. 
To study the ‘ecology’ of mathematical practices that exist (or could exist) in a 
teaching institution and the possible ways of constructing them (the didactic 
organisations), this author introduced a hierarchy of ‘levels of didactic determination’ 
that consists in the following sequence (Ibid.): 

Civilization  Society  School  Pedagogy  Discipline  Domain  Sector  Theme  Subject 

This hierarchy goes from the most generic level –Civilization– to the most concrete 
one – the subject or questions that are to be studied by a group of persons. We refer 
to the lower levels that go from the discipline to the subject as the mathematical 
levels if the considered discipline is mathematics. They refer to the fact that, when a 
teaching project has been decided on, the contents or the aim of this project should be 
located in a discipline (or different ones) and, within this discipline, it should be 
related to the different domains, sectors and themes that structured it in the 
considered educational institution. For instance, in Spain, a first year course of 
mathematics for science students at university level is usually structured into three 
domains: calculus, linear algebra and differential equations. Frequently, the domains 
are in turn divided into ‘sectors’, which contain different ‘themes’, to which every 
subject or question to study belongs. At secondary school level, the domains are 
different and can change over time, with each curricular reform: the classical division 
into ‘arithmetic, algebra, geometry’ first changed to ‘numbers and measure, 
functions, geometry, statistics’, and has now turned into ‘change and relations, space 
and form, statistics, measure, number’. We consider these low levels (as) the 
‘specific’ ones. They are a useful tool to analyse the constraints coming from the 
didactic transposition process and the concrete way this process organises teaching 
contents at school: from the division into disciplines and blocks of contents, until 
(till) the low-level concatenation of subjects.  

The upper levels of determination refer to the more general constraints coming from 
the way Society, through School, organises the study of disciplines (pedagogical 
level). They concern the status and functions traditionally assigned to educational 
contents and the general way teaching and learning study activities are organised at 
school. In effect, there are a lot of common conditions for all disciplines that 
concretely affect what the teacher and students can do in the classroom. For instance, 
the amount of hours and sessions assigned to the teaching of a concrete discipline, 
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the possibilities for disciplines to interact more or less easily, the way students are 
grouped (by age, by level, by gender, etc.), the organisation of the school space, etc. 
All those conditions and constraints belong to the school level, while the pedagogical 
level refers to those only affecting the teaching and learning of ‘disciplines’. The way 
disciplines are grouped, valued, linked, diffused belongs to this level: the choice of 
an interdisciplinary way of studying questions or the way of presenting disciplines as 
independent. Very close to the previous levels, the society and civilization levels 
concern the way our society and civilization understand the rationale, functions, 
aims, etc. of school instruction.  
The next two sections briefly introduce some of the institutional constraints 
encountered during an empirical investigation concerning to a local implementation 
of what it is called Study and Research Course (SRC) on population dynamics (see 
Barquero et al. 2008). As it is explained in this work, SRC are proposed as new 
didactical devices to teach mathematical modelling with a double purpose: to make 
students aware of the rationale of the mathematical contents they have to learn and to 
connect these contents through the study of open modelling questions. In more detail, 
our proposal for the teaching of modelling at university level (Barquero 2006 & Ibid.) 
consists in the implementation of a ‘mathematical modelling workshop’ that was run 
in parallel with the ‘usual lectures’ (dedicated to present the main contents of the 
course and exemplify them through carrying out some exercises on the blackboard). 
The workshop focused on the study of a population dynamics starting with the 
question of how to predict the evolution of the population given its size in some 
previous periods of time. To provide answers to this initial question and to the 
sequence of questions that followed it, the construction of different mathematical 
models was required. When studying the links between the questions and the answers 
provided by the models, new questions appeared that forced to broaden the previous 
models to more comprehensive, rich and complex ones, which made them continue 
with the process. At the end, this sequence of modelling activities covered most of the 
contents of a first-year course of mathematics for natural science students at 
university level.    
Even though this local implementation was able to overcome some of these 
institutional constraints by setting up a set of suitable local conditions for the 
workshop2, the large-scale implementation of such teaching proposals required the 
study of the real scope of these constraints in order to be able to introduce the 
appropriate changes at the appropriate level of didactic determination.  

                                           
2 For instance, the teacher of the workshop was a researcher in mathematics education and the teacher responsible of the course (the 
“lecturer”) was a mathematician who does his research in mathematical modelling and was participating in the educational research 
project. On the other hand, the implementation was developed in an annual course where a group of only 25 students were attending 
it. Moreover, its program was enough flexible to change of order the introduction of most of the mathematical tools that were 
required by the development of the workshop. 
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2.2. ‘Specific’ constraints at the lower levels of determination 

If we consider the ‘low levels’ of determination (see figure 1) that are specific of the 
teaching and learning of mathematics, three main interconnected constraints have 
been made clear by the workshop experiment(ed). The first constraint is located at 
the thematic level and has been studied in other didactic investigations under the 
name of ‘thematic confinement’ (Chevallard 2002, Barbé et al. 2005). It (comes) 
stems from the fact that the prevailing culture in educational institutions tends to 
confine the teacher’s responsibilities at the strict level of the theme, without giving 
him/her the legitimacy to re-organise mathematical contents in a way different from 
the one imposed by tradition. In other words, teachers can (and have to) decide how 
to structure and sequence the themes, what subjects, problems and activities to 
include in each theme, how much time to spend on each one, etc. but they are rarely 
asked to decide on the choice of the themes or on the concrete division of 
mathematics into given domains and sectors. As has been shown by García et al. 
(2006), the problem of the disconnection of mathematical contents and the many 
efforts to solve it through modelling activities is related to this phenomenon of 
‘thematic confinement’. 

Discipline 

Domain 

Sector 

Theme 

Subject 

Figure 1 

The second constraint is related to the concrete organisation of 
mathematical contents into domains and sectors. As we just said, the 
modelling activities of the workshop led the students to consider most 
of the contents of the mathematics course (calculus in one and several 
variables, basic linear algebra). However, during the workshop these 
contents appeared in a very different organisation from the one in the 
syllabus. If the lectures followed the classical ‘logic of mathematical 
concepts’, the workshop was more guided by the ‘logic of the extra-
mathematical questions or types of models’ that progressively appeared. 
To be more specific, the whole modelling process was divided into 
three main ‘stages’ that correspond to the main lines of investigation 
followed during the workshop: the discrete evolution of populations 
with separate generations (discrete one-dimensional models: recurrent 
sequences); the discrete evolution of populations with mixed 

generations (discrete multi-dimensional models: transition matrices) and the 
continuous evolution of populations (differential equations). This forced the teachers 
to continuously work in a sort of ‘double curriculum’ project and it seems obvious 
that, in the long run, much more effort was needed to preserve the new organisation.  

Finally, if we move to the discipline level, the running of the workshop showed the 
necessity of strongly modifying the traditional didactic contract that currently exists 
at universities. To carry out a modelling activity, it is necessary to break with the 
rigidity of the structure “theory lessons – problem lessons – exams” and to give the 
students some mathematical responsibilities that are usually assigned exclusively to 
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the teacher: addressing new questions, creating hypotheses, searching and discussing 
different ways of looking for an answer, comparing experimental data and reality, 
choosing the relevant mathematical tools, criticizing the scope of the models 
constructed, writing and defending reports with partial or final answers, etc. Thus, 
the teacher had to assume a new role of acting like the director of the study process 
instead of lecturing the students, which highlighted that the teaching culture at 
university level does not offer a variety of teaching strategies for this purpose.  

2.3. ‘General’ constraints at the upper levels of determination 
When we move to the most generic levels (see figure 2), the pedagogical constraints 
appeared when it was necessary to find a suitable timetable for the workshop, with 
long sessions of two or three hours instead of the usual classes of 50 minutes, as well 
as some computers available in the class. Organising the students’ work in teams, 
including the assessment of the teams’ work and its inclusion in the individual 
evaluation of the course also appeared as difficult obstacles to overcome.  

Civilization 

Society 

School 

Pedagogy 

Discipline 

Figure 2 

Considering the society and school levels, by now, we have only 
studied those related to the ‘dominant epistemology’, that is, the way 
our society, the university as an institution and, more concretely, the 
community of university teachers (and students) have to understand 
what mathematics is and what its relation is to natural science. Our first 
hypothesis is that the widespread understanding of mathematics and its 
relation to natural sciences is what we can call “applicationism”. It may 
be depicted in the following way: a strict separation between 
mathematics and other disciplines (in particular natural sciences such 
as biology and geology) is established; when mathematical tools are 
built, they are ‘applied’ to solve problematic questions from other 
disciplines, but this application does not cause any relevant change 
neither for mathematics nor for the rest of disciplines where the 
questions to study appeared. For example, in the majority of the 

Spanish university courses we have examined, the study of population dynamics is a 
subject located in the sector of differential equations under the label of ‘application’, 
as if some dynamics laws could exist without any mathematical tool to describe it 
and, in the same way, as if differential equations could independently exist without 
any extra-mathematical problem to solve. One of the main characteristics of this 
dominant epistemology at university level is that it extraordinarily restricts the notion 
of mathematical modelling. Under its influence, modelling activity is understood and 
identified as a mere ‘application’ of previously constructed mathematical knowledge 
or, in the extreme, as a simple ‘exemplification’ of mathematical tools in some extra-
mathematical contexts artificially built in advance to fit these tools.  To be more 
concrete, the main characteristics of ‘applicationism’ can be described using the 
following indicators: 
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I1: Mathematics is independent of other disciplines (‘epistemological purification’): 
mathematical tools are seen as independent of extra-mathematical systems and they 
are applied in the same way independently of the nature of the considered system.3     

I2: Basic mathematical tools are common to all scientists: all students can follow the 
same introductory course in mathematics, without considering any kind of specificity 
depending on their speciality. 

I3: The organisation of mathematics contents follows the logic of the models instead of 
being built up from considering modelling problems that arise in the different 
disciplines. All happens as if there were a unique way of organising mathematical 
contents and different ways of applying them. 

I4: Applications always come after the basic mathematical training: the result is then a 
proliferation of isolated questions that have their origin in the different systems. The 
first thing is to learn how to manipulate the mathematical concepts and later learn 
about their use. The models are built from concepts, properties and theorems of each 
theme independently of any extra-mathematical system.  

I5: Extra-mathematical systems could be taught without any reference to mathematical 
models, that is, there exists the belief that natural science can be taught without any 
mathematics.4  

To empirically contrast to what degree ‘applicationism’ prevails in university 
institutions (see Barquero et al. in press), we used these indicators to analyse teaching 
materials (syllabi, textbooks’ prefaces and curricular documents) and to design an 
interview and a questionnaire addressed to geology and biology teachers and students 
of a science faculty in Catalonia. The study was developed during the years 2007 and 
2008. The analysis of about 30 syllabi of mathematics for natural science courses of 
10 different Spanish universities mainly confirmed I2, I3 and I4. Some of the prefaces 
of the most recommended books for these courses helped to corroborate I1 and I5. A 
good example is the case of Salas & Hille (1995) (our translation):  

In this edition, you will find some easier applications to physics and, as extra chapters, 
some more difficult applications […]. Despite the incorporation of more applications, this 
book is still a mathematics book, not a science book or an engineering book. It is about 
calculus and its main basic ideas are limits, derivatives and integrals. The rest is 
secondary; the rest could be left out.  

The interview with a sample of 8 geology and biology teachers and researchers and 
the answers of 30 other teachers to the questionnaire showed the following results: 
Related to I1 and to I3, up to 97% agreed that “Mathematics is introduced 
independently of geological or biological systems that could be modelled using 
                                           
3 This indicator is more general than the other ones as it refers to a characteristic of mathematics as a discipline and not to the way it 
is taught. 
4 This is an extreme indicator of the independence between mathematics and natural sciences (especially in the case of biology and 
geology) that is surprisingly widely shared to the point that, in most cases, people state that scientific systems could be studied 
without any mathematical tool. 
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mathematics” and that “the teaching of mathematics is more structured according to 
mathematical notions than to natural science problems”. Related to I4, up to 80% 
disagree that “mathematics is introduced only after its necessity has been shown and 
as a tool for the study of science problems”. Finally, the most worrying fact (related 
to I5) is that almost 40% agree that in natural sciences degrees, mathematics could 
only be used to analyse the quantitative aspects of science phenomena. 

3. CONCLUSIONS 
Using this “ecological” metaphor, we can say that for modelling to be able to 
normally ‘live’ in a teaching institution, it is necessary to study the conditions that 
facilitate and the constraints that hinder the type of mathematical activities that can be 
carried out in this institution. In this sense, the Anthropological Theory of the 
Didactic appears (as) a prioritary line of investigation to study these institutional 
constraints that affect the teaching and learning of mathematical modelling in current 
educational systems. From the ATD, the study of this “ecology” needs to take into 
account the different levels of didactic determination, not only to reach the variety of 
constraints acting on the classroom activities, but also to know better at what level – 
that is, in what intermediate institutions (from the ‘mathematical lesson’ to the 
‘Western civilization’ in our case) it is necessary to act in order to improve the 
conditions that make the large-scale development of this activity possible.  
In order to carry out this study, it appears necessary to provide a general model of 
mathematical activity that integrates mathematical modelling into the other 
dimensions of mathematical practices. Researchers in mathematics education have to 
emancipate from the dominant epistemologies that are implicitly imposed by 
educational institutions to which we belong. With this purpose, it is important to set 
out an alternative epistemological model, that is, an operative definition of what 
mathematics is and what the main characteristics are of the different mathematical 
activities that exist in our social institutions. As well as, the integration of a 
description of mathematical modelling within a general epistemological model of 
mathematics that takes into account the institutional environment of this activity. 
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THE DOUBLE TRANSPOSITION IN MATHEMATISATION AT 
PRIMARY SCHOOL 

Richard Cabassut  richard.cabassut@alsace.iufm.fr  
DIDIREM University of Paris 7, IUFM University of Strasbourg 

This paper proposes a theoretical framework to analyse the articulation between real 
world and mathematical world in mathematisation at primary school. This paper is 
not a report of studies presenting a methodology and results. First we describe this 
theoretical framework based on Chevallard's anthropological theory of the didactic 
and on the mathematisation cycle proposed by PISA. Then we illustrate this 
articulation between real world and mathematic world by using the theoretical 
framework on some examples, from class or from teachers training, issued from the 
European project LEMA. In this illustration the teaching of mathematisation is the 
double transposition of the real world knowledge and of the mathematical one. We 
conclude by questioning the mathematisation through the double transposition 
problematic. 
THE DOUBLE TRANSPOSITION 
Real world and mathematical world 
We will differentiate the real word and the mathematical world. “If a task refers only 
to mathematical objects, symbols or structures, and makes no reference to matters 
outside the mathematical world, the context of the task is considered as intra-
mathematical” (PISA 2006, p.81). A possible construction of this world is axiomatic, 
on a deductive way. Of course the genesis of parts of the mathematical world is in the 
real world as shown by history. The plausible reasoning could be a reasoning used as 
heuristic to find a proof or a mathematical solution, but is not a mathematical 
reasoning to define or to construct a mathematical object, or to prove on a 
mathematical way. Jaffe and Quinn (1993, p.10) have proposed to set a new branch 
of mathematics where plausible reasoning will be used: “Within a paper, standard 
nomenclature should prevail: in theoretical material, a word like “conjecture” should 
replace “theorem”; a word like “predict” should replace “show” or “construct”; and 
expressions such as “motivation” or “supporting argument” should replace “proof”. 
Ideally the title and abstract should contain a word like “theoretical”, “speculative”, 
or “conjectural” ”. After a debate in Bulletin of the American Mathematical Society 
this idea was rejected.  On the contrary, in the real world the plausible reasoning 
could be used to define or to construct objects and to validate solutions of a problem. 
We “focuse on real-world problems, moving beyond the kinds of situations and 
problems typically encountered in school classrooms. In real- world settings, citizens 
regularly face situations when shopping, travelling, cooking, dealing with their 
personal finances, judging political issues, etc., in which the use of quantitative or 
spatial reasoning or other mathematical competencies would help clarify, formulate 
or solve a problem” (PISA 2006, p.72). 

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2156

mailto:richard.cabassut@alsace.iufm.fr


The double transposition 
Using the terminology of Chevallard’s anthropological theory of didactics, we 
consider that the real world is an institution producing the knowledge of real world. 
In this institution, real world problems have to be solved, using techniques, 
justifications and validations from the real world. Some of these validations can use 
argumentations that are not allowed in a mathematical demonstration: pragmatic 
argument (it is validated because the action is successful), argument of plausibility 
(as above-mentioned), argument from authority (majority of people, expert ...). The 
mathematical world is another institution producing a mathematical knowledge 
(called the scholarly mathematical knowledge). In this institution, mathematical 
problems have to be solved, using techniques, justification and validations from 
mathematical world. The mathematisation can be considered as an object to be taught 
in France (Cabassut 2009), in Germany but not in Spain (Garcia et al. 2007). The 
process of didactic transposition “acts on the necessary changes a body of knowledge 
and its uses have to receive in order to be able to be learnt at school” (Bosch et al. 
2005, p.4). Here we consider the knowledge of the real world institution and of the 
scholarly mathematical institution. The mathematisation teaching is the place of a 
double didactic transposition, one from real world into the classroom and the other 
one from the mathematical world into the classroom. 
MATHEMATISATION CYCLE   
Before illustrating this double transposition in mathematisation process, we will 
present a framework to analyse it. We adopt the mathematisation cycle used in 
LEMA1 project. This cycle is inspired by the study Pisa (2006), itself inspired by the 
works of Blum, Schupp, Niss and Neubrand. As illustrated in the joined figure, we 
consider five processes in which different competencies are developed:  

- setting up the model, what includes “identifying the relevant mathematics with 
respect to a problem situated in reality, representing the problem in a different 
way, including organising it according to mathematical concepts and making 
appropriate assumptions, understanding the relationships between the language 
of the problem and the symbolic and formal language needed to understand it 
mathematically, finding regularities, relations and patterns,  recognising 
aspects that are isomorphic with known problems,  translating the problem into 
mathematics i.e. to a mathematical model” (PISA 2006, p.96), 

- working accurately within the mathematic world,  which includes “using and 
switching between different representations, using symbolic, formal and 
technical language and operations, refining and adjusting mathematical 
models, combining and integrating models,  argumentation, generalisation” 
(PISA 2006, p.96),  

- interpreting, validating and reflecting, which includes interpretation of 
mathematical results in a real solution in the real world, “understanding the 
extent and limits of mathematical concepts, reflecting on mathematical 
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arguments and explaining and justifying results […], critiquing the model and 
its limits” (PISA 2006, p.96), 

- reporting the work: this process is more a transversal process which includes 
“expressing oneself, in a variety of ways, on matters with a mathematical 
content, in oral as well as in written form, and understanding others’ written or 
oral statements about such matters” (PISA 2006, p.97).  

 

Figure 1: Mathematisation cycle used in LEMA 

We illustrate now the double transposition in modelling in the different steps of the 
modelling cycle. These examples are extracted from the European project LEMA1.  
This project proposes a teacher training course on mathematisation. The information 
from these examples is from French pupils' observations made when implemented in 
class. There are also observations done with French primary school teachers or with 
trainers for primary school teachers. 
In these examples we mainly point knowledge and techniques of real world involved 
in the modelling process. We don't emphasize on knowledge and techniques of 
mathematical world that are generally well taken in consideration in the related 
literature. 

SETTING UP THE MODEL  
Non-mathematical model 
The following task was proposed to a French class CP (1st grade: 6-7 years): The 
class will read a story in a pre-primary school class. How to organize this reading?  
In a first-time the pupils must build a mathematical model of the real problem. A 
possible model is, knowing pupils’ number in the class and the number of pages in 
the book, how to share among pupils the number of pages of the book with the same 
number of pages per pupil. This model was already practised in class and was 
suggested by pupils during the discussion. However, in the discussion that takes place 
in the classroom, some pupils propose a “volunteer” sharing model where pupils read 
if they are volunteers (for example because they like reading): the distribution of the 
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pages is done until there are no more. This model is not a mathematical model: the 
problem is solved on a pragmatic way. It is one reason why we have chosen the word 
“mathematisation” in place of “modelling”. With mathematisation, we clearly 
indicate that the chosen model has to be a mathematical one. For example (Maass 
2006, p.115) suggests considering a real model before considering a mathematical 
model. The teaching of modelling has to distinguish mathematical models and 
non mathematical ones. 
Non-mathematical arguments to choose a model 
After discussion, guided by the teacher, it was decided to choose the model of 
equitable sharing of numbers of pages to read. The main reason of the choice is that 
this model is more equitable than the other: each pupil gets the same number of pages 
to read. The choice of this mathematical model is based on a non-mathematical 
argument (conception of equity: is it more equitable to force to read a pupil who 
doesn’t like reading than to choose volunteers?). It was not proposed other models, 
like the equitable sharing of the number of words to read that would have shown the 
relativity of the concept of equity: is it more equitable to share a number of pages or a 
number of words? In this phase of choice of some models, arguments of choice could 
be mathematical or not: taking into account preferences (those who like to read), 
taking in account equity. 
It may happen that the choice of a model is made because of a lack of knowledge of 
models used in real life, what we illustrate with the following example given in 
teachers training (Adjiage, Cabassut 2008).                       
 

Figure 2 Berliner task2 

Anne is on holiday in the 
Black Forest. It is a special 
offer for a type of pastry 
called "Berliner" as you 
can see from the picture. 
The baker offers the cake € 
0.80 each. If you were the 
baker, would you have 
proposed the same price 
on the poster? 

 
 

 
 
 
 
 
 
 
 

In this situation it is surprising that it is cheaper to buy a single Berliner and three 
times a bag of 3 Berliners, rather than to buy a bag of 10 Berliners. It is frequent in 
real life that buying in large quantities is not always cheaper than in small quantities. 
It is therefore certain that the models of proportionality or decrease in the price with 
the increase in the quantity purchased are not valid to explain the Berliner prices. 
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Maybe other models based on the laws of marketing and psychology, justify a price 
as 1.99€ below the psychological threshold of 2€ or 6.99 € below the psychological 
threshold of 7€. The trainer didn’t know about the models used in marketing or 
psychology and have chosen the known proportionality model by lack of knowledge 
of other models. It looks us important to provide to teachers and trainers tasks 
resources where models used in the real life are described and discussions on the 
choice of these models are offered in order that the choice of models are done by 
conscious arguments more than by lack of choice. The teaching of modelling has to 
distinguish mathematical arguments and non mathematical ones to choose a 
model. 
Choice of the data and hypotheses based on non-mathematical arguments 
To complete the construction of the model requires data specifying the number of 
pupils who read and the number of pages to read. All pupils agree on the number of 
pupils who read by choosing the number of pupils in the class at the present time. It 
may be noted that this number could change with the day of the reading in the pre-
primary school class. But no pupil has considered this problem. Different 
assumptions about the number of pages to read are made: a group counts all pages 
(even those where there is nothing to read), others exclude the front page with the 
title of book, the ones with the single word "end", or having only illustrations. The 
justification of these different choices is not based on mathematical arguments. The 
teaching of modelling has to distinguish mathematical arguments and non 
mathematical ones to choose data and hypotheses. 
Model to build and model to reproduce 
In the process “setting up the model”, it has to be differentiated the case where the 
model is already known by the pupil and the case where the model is new and has to 
be built by the pupil. In the previous example the pupils have already met equitable 
sharing problems that they have often solved by using the distribution technique 
(every pupil receives one after the other an object from the set of objects to distribute 
so long there is a rest of objects). We have observed that in this example, some pupils 
have proposed quickly the equitable sharing model.  Let us propose an example 
where the model is new. 

Figure 2 Giant task3 

The task was proposed to a group of French
CM1 (grade 5: 10-11 years old).  
What is the approximate size of silhouette,
which can see only a foot?  This photo2 was 
taken in an amusement park.  
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Here pupils have not met the model of proportionality and from this point of view 
this may be a problem to discover this model.               
If the students have a model, they must choose from the stock of available models 
which accords better with reality. What characteristics of the models must students 
identify? (And in this case in the study of models which characteristics are putting 
forward?) What elements of reality must students identify? (And in this case what 
studies of the reality must be developed by the students?). A part of the heuristic 
strategies to set up the model comes from the mathematical world (the stock of 
available models). Of course the real world situation brings also heuristic strategies. 
If the students have not an available model, they should build it and make 
assumptions. What assumptions do they do? How to train pupils to do the "right" 
assumptions? Here the main part of heuristic strategies seems to come from the real 
world situation. Of course pupils can use analogies with mathematical available 
models to set up a model for a real world problem, even if these models are not the 
right ones for this problem. We see that there are articulations between strategies 
issued from the real world knowledge and strategies issued from mathematical 
knowledge of available models. Nevertheless some of the strategies are not specific 
to mathematisation problems and are more generally developed in problem solving at 
primary school with or without real world context (Ministère 2005, 7-17). 
The teaching of modelling has to organize the transposition of the knowledge of 
the mathematical models to reproduce. Here the traditional process of didactic 
transposition can be used as suggested in (Artaud 2006 p.374): “the first encounter, 
the exploratory moment, the technical moment, the technological-theoretical moment, 
the institutionalisation moment, and the evaluation moment”. For the model to build, 
if this model is a future model to reproduce, we are in the first encounter or the 
exploratory moment of the previous case. If not, we have to specify what knowledge 
of the real world and of the mathematical world has to be transposed to build a 
model. 

WORKING ACCURATELY 
Working accurately takes place in the mathematical world and produces 
mathematical solutions of the mathematical problem. So we could think that there is 
no articulation between real world and mathematical world during this process. Let us 
come back to the previous example of reading task. Once the equitable sharing model 
and its assumptions (number of pupils and number of pages) identified, each group of 
pupils works accurately to solve the problem. Different techniques of distributions 
are proposed (one by one, two by two ...). Different representations of the situation 
are worked. Some pupils use cubes representing the distribution to distribute 
effectively the cubes. Other ones use drawings to represent the set of pupils and the 
set of the pages and to draw a connection between the two sets. These two techniques 
show relations with real world: action in the pragmatic technique and visualisation in 
the drawing technique. How the mathematical solution is validated? Is it true 
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because the action has a success (pragmatic validation) or because I see the solution 
on the representation (visual validation)? More generally we have shown in (Cabassut 
2005) how proofs in the mathematical world articulate mathematical arguments 
and extra-mathematical ones, especially by using pragmatic, visual, or inductive 
techniques.  

INTERPRETING 
In the reading task, a mathematical solution has to be interpreted as a real world 
problem solution. The solutions represented by cubes or the drawings have to be re-
interpreted in the real situation. This interpretation is fairly simple because the 
situation looks less abstract than in higher grades. More the mathematical model is 
abstract more the re-interpretation could present difficulties. (PISA 2006, p.97) points 
some competencies involved in the interpreting process: “decoding and encoding, 
translating, interpreting and distinguishing between different forms of representation 
of mathematical objects and situations; the interrelationships between the various 
representations; and choosing and switching between different forms of 
representation, according to situation and purpose […] decoding and interpreting 
symbolic and formal language, and understanding its relationship to natural language; 
translating from natural language to symbolic/formal language; handling statements 
and expressions containing symbols and formulae; and using variables, solving 
equations and undertaking calculations”. The use of semiotic representations, and 
specially the natural language, illustrates the articulation between real world 
and mathematical world. 

VALIDATING AND REFLECTING 
Experimental control 
In the case of the reading task, different solutions of the real problem are proposed 
related to the fact that different assumptions are made to take in account the rest of 
pages insufficient to distribute one page at every pupils. The common data are 49 
pages to share between 17 pupils. In one group, fifteen students each receive three 
pages and two students each receive two pages. In another group, they add two more 
pages, the title front page and the last page with the words “the end”, and they 
distribute three pages to every pupil. Both solutions were validated in the class. In 
both cases it is possible to control the validity of the solution by playing the 
distribution in the class and by checking the results of the play.  
No possible experimental control 
For the giant task, it is not possible to check the giant’s height. There is no complete 
photo shoving the complete giant and it is not possible to visit the amusement park 
situated abroad. The validation is made on a consensus criterion. As nobody opposes 
a critic and no contradiction is discovered, the solution is considered as valid. This 
way to valid is not specific to mathematisation. Lakatos (1976) has shown the same 
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phenomenon in the mathematical proofs. The validation will be partially based on 
non-contradiction. But the fact that nobody has discovered a contradiction doesn’t 
mean there is no contradiction, as shown in the history of mathematical proofs. For 
giant task which is not a familiar situation, the validity is based on the lack of 
contradictions, which is not a mathematical deductive criterion but a plausibility 
criterion.   
Assumptions and validity of the model 
In the case of the giant task, a group of pupils has produced the following data. On 
the photo the pupils measure 1 cm for a man’s foot and 7 cm for his height, what 
gives a ratio of 7 between both measures. The groups of pupils made the additional 
assumptions: in the reality an adult’s foot is about 30cm and a adult’s height is about 
180 cm, what gives a ratio of 6 between both measures. With these data it is difficult 
to use a proportionality model to solve the problem. Here the difficulty is that, as the 
problem is opened, the pupils have to make additional assumptions to solve it. And it 
can occur that these additional assumptions are not compatible with a wished model.  
In the same task, we can observe solutions proposed by two different groups. In the 
first solution, pupils measure 9cm for the giant’s foot and 1 cm for the man’s foot. It 
means that on the photo the giant’s foot is 9 times bigger than the man’s foot. They 
assume that in the reality the ratio is kept. They additionally assume that in the reality 
the man’s foot is about 30cm. Therefore in reality the giant's foot o is 9 times greater 
what gives 9x30cm= 270 cm. But on the photo, the man’s foot measure 1cm and his 
height 7 cm, which means that the man is 7 times taller than his foot, on the photo 
and by extension in the reality. They additionally assume that the giant has the same 
ration on the photo and in the reality. They conclude that the giant’s height is 7x270 
cm = 1890 cm.   
In the second solution, the man’s foot measures 1cm and the giant’s foot 9 cm; 
therefore the foot of the giant is 9 times greater than the foot of man. It is assumed 
that there is the same ratio between the heights. As a man is about 180 cm, the giant’s 
height is about 9 times taller than a man’s height.  They conclude that the giant’s 
height is 9x180cm = 1620 cm. Both solutions are validated even if they lead to 
different results because of different assumptions.                                                                           
It is clear that this validation is similar to that of a conditional statement in the 
mathematical world: under this condition the conclusion is true, provided that the 
used reasoning is valid and that the applied theorems are true. In the real world, the 
role of theorems is played by assumptions like “the ratio on a photo is the same than 
the corresponding one in the reality” or “the ratio between size of the foot and height 
is approximately constant”. Often such assumptions are valid in approximation or in 
very accurate conditions. They need a social knowledge of the real world. The 
teachers have to take in account if pupils have this social knowledge. 
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We have seen in the above examples that the validating and interpreting step can 
involve arguments and techniques of mathematical world (like hypothetical-
deductive reasoning) and of extra-mathematical world (like experimental control). 

AUTHOR’S POSITION AND IMPLICATION FOR RESEARCH 
In the previous examples, we have illustrated in the whole mathematisation cycle that 
mathematical knowledge and techniques and extra-mathematical ones have to be 
transposed and interfere. Blum (2002) observes: “In spite of a variety of existing 
materials, textbooks, etc., and of many arguments for the inclusion of modelling in 
mathematics education, why is it that the actual role of applications and mathematical 
modelling in everyday teaching practice is still rather marginal, for all levels of education? 
How can this trend be reversed to ensure that applications and mathematical modelling is 
integrated and preserved at all levels of mathematics education?” 

We have observed that a lot of resources don’t take in account the double 
transposition problematic. We propose that teachers training and didactical research 
give more attention to the double transposition problematic in the mathematisation 
and try to answer the following questions. In a mathematisation task, what knowledge 
of real world and of mathematical world has to be transposed?  What techniques, 
justifications and validations from both worlds have to be used? How different 
knowledge, techniques, justifications and validations are articulated and interfere 
between the two worlds? What effects on teachers’practice, on pupils’ learning and 
on class didactical contract have these articulations and interferences?  

NOTES 
1. This  project is co-funded by the European Union under Comenius-2.1-Action, from 10/2006 to 09/2009. The site of 
the project LEMA Learning and education in and through modelling is described on the site www.lema-project.org. 
The partners of the project: Katja Maaß & Barbara Schmidt, University of Education Freiburg, Richard Cabassut, 
IUFM, Strasbourg, Fco. Javier Garcia & Luisa Ruiz, University of Jaen, Nicholas Mousoulides, University of Cyprus,  
Anke Wagner, University of Education, Ludwigsburg, Geoff Wake, The University of Manchester, Ödön Vancso & 
Gabriella Ambrus, Eötvös Lorand University, Budapest.  

2. Photos published with Katja Maass and Cornelsen’s kind authorisation : from  Maaß, Katja (2007): Mathematisches 

Modellieren - Aufgaben für die Sekundarstufe I. Berlin: Cornelsen Scriptor (copyright). 

3. Photo published with Rüdiger Vernay ’s kind authorisation and acknowledgment to the Problem Pictures website 
www.problempictures.co.uk. 
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EXPLORING THE USE OF THEORETICAL FRAMEWORKS FOR 
MODELLING-ORIENTED INSTRUCTIONAL DESIGN 

García, F.J. and Ruiz-Higueras, L.  
University of Jaén  

Designing modelling processes adapted to school restriction and able to produce a 
wide, rich and meaningful mathematical activity is far from been unproblematic. That 
situation seems to be even more problematic if the focus is on Early-Childhood 
Education. In this paper we explore the possibilities that existing theoretical 
frameworks can bring us. First, some theoretical consideration about modelling, the 
lack of sense of school mathematics and the use of theories for instructional design 
are outlined. Second, the design of a study process under the control of the 
Anthropological Theory of Didactics is described. Finally, the real implementation of 
this study process with 4-5 years old pupils is reported, showing how very young 
pupils can be involved in a wide, rich and meaningful mathematical activity. 
INTRODUCTION 
Modelling is occupying a central position in the current educational debate, from 
policymakers and curriculum developers to researchers and teachers. Focusing on 
research, important efforts in many directions can be observed: students’ modelling 
competence, instructional design, modelling pedagogy, teacher training and support, 
students’ and teachers’ beliefs, among others. 
On the other hand, research in mathematics education is developing more and more 
sophisticated theoretical frameworks which aim to understand the complex relations 
existing in every teaching and learning process. In a simplified way, every theoretical 
framework can be considered as a model of some teaching and learning reality. 
Structuring and simplifying processes are therefore necessary: every theory focuses 
on some objects and relations whilst other objects and relations are pushed into the 
background. 
There is an ample consensus about conceptualizing modelling as a cyclic process 
where a dialectic between an extra-mathematical world and a mathematical one is 
established, as described by Blum, Niss and Galbraith (2007). Many different 
versions of the well-known modelling cycle have been developed, depending on 
researchers’ interests and backgrounds. Conceived as different models of the 
modelling processes, each version tries to capture some features of these processes 
and/or the modelling-based teaching and learning processes. 
However, it seems that there is a gap between research in modelling and applications, 
on the one hand, and research in mathematics education, on the other hand. That 
leads us to explore how existing theoretical frameworks not explicitly developed 
from a modelling perspective could be used to enhance research in the so-called 
modelling and applications domain. Particularly, we will focus on modelling-oriented 
instructional design through the Anthropological Theory of Didactics. Moreover, in 
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this paper we will focus on early-childhood education levels, which are normally 
neglected in the existing research in modelling and applications. 
MODELLING-ORIENTED INSTRUCTIONAL DESIGN 
The process of designing modelling-oriented teaching sequences optimized to be 
used at school is far from being unproblematic. In our work with in-service teachers 
in a European training course in modelling and applications (LEMA project) one of 
their main concern was how to design interesting and authentic tasks, adapted to their 
school constraints and students’ level and useful to develop the intended 
mathematical curriculum [1]. Although some teachers can show a great creativity to 
find real situations and problems and they feel able to adapt them for educational 
purposes, most of the teachers feel that it is a big, difficult and time-consuming work. 
Normally, anecdotic and isolated tasks are developed which address to some 
mathematical topics but these tasks fail in their intention of giving rise to a rich and 
wide modelling-based mathematical activity. 
In the core of this situation a problem of didactic transposition (Chevallard, 1991) can 
be identified. Normally, real situations do not come themselves with interesting and 
crucial problems able to develop the desired wide and rich activity. We agree with 
Lehrer and Schauble (2007, p. 153) in that “models cannot simply be imported into 
classrooms. Instead, pedagogy must be designed so that students can come to 
understand natural systems by inventing and revising models of these systems”. 
Our approach in this paper is that of applications and modelling for the learning of 
mathematics, as Blum, Niss and Galbrait (2007) state and, particularly, the use of a 
modelling approach to help students to provide meaning and interpretation to 
mathematical entities and activities (also called educational modelling by Kaiser et 
al., 2007). That agrees with the current Spanish curriculum which reacts again the 
traditional lack of sense of school mathematics and asks for a meaningful 
mathematical activity where mathematical topics from different mathematical 
domains are connected and integrated. 
ATD AS A FRAMEWORK FOR INSTRUCTIONAL DESIGN 
In the last years, a group of Spanish and French researchers have been exploring and 
developing the Anthropological Theory of Didactics (ATD from now on) as a 
reference framework for instructional design. The notion of Study and Research 
Course (Chevallard, 2006) as well as the basic assumptions of mathematics as a 
human activity linked this effort with modelling and gave rise to a new research 
agenda. 
In brief, mathematics is conceived in the ATD as a human and social construction. 
Over centuries, mathematics praxeologies have been developed, refined, optimized, 
rejected, combined, etc. as new problems arose in many different domains: from daily 
life to natural and social sciences and, obviously, from intra-mathematical problems. 
In our modern societies, School has the responsibility of the diffusion of a part of this 
cultural heritage to young people so that they will be able to live and act as 
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responsible and democratic citizens. A common and traditional way of doing that is 
showing to the students already finished mathematic praxeologies, as artefacts they 
can visit and they should preserve. Chevallard (2006) call this the monumentalistic 
approach which directly relates with the lack of sense of mathematics at school. 
Opposite to that approach and looking for students’ sense-making, Chevallard (2006) 
advocates for a renewed school epistemology where interesting and crucial problems 
and questions are in the core giving rise to a meaningful mathematical activity.  
The ATD has developed the notion of Study and Research Course (SRC) as a model 
to analyse and design school teaching and learning practices. What are the main 
characteristics of a SRC? In short: (a) a SRC should start from a generative and 
crucial question Q0 [2]; (b) the community of study has to take the study of Q0 
seriously (Q0, and the situations where Q0 is inserted, is not the excuse teacher uses to 
introduce some mathematics); (c) the study of Q0 will give rise to answers (that is, 
praxeologies) but also to new questions Qi, making the study process an open process 
and, to some extent, undetermined in advance; (d) as far as Q0 or some Qi can be 
extra-mathematical, not only “pure” mathematical answers and questions are 
expected through the study process but also mixed mathematical praxeologies 
(Artaud, 2007);  (e) a SRC gives rise to a collaborative and shared study process, 
looking for good answers and for good questions (sometimes new answers are 
developed, sometimes already existing answers are found, depending on the media 
available in the community of study). Finally, it is expected that the community of 
study develops their own personal answer A. 
As far as Q0 and some Qi emerging from it are of extra-mathematical nature, the 
subsequent SRC can be considered as a wide modelling process. Indeed, as we 
reported elsewhere (García, Bosch, Gascón and Ruiz-Higueras, 2006), modelling can 
be reconceptualised as the progressive construction of a set of praxeologies of 
increasing complexity. The SRC is therefore a didactic device useful to develop and 
design wide, rich and meaningful modelling processes with educational purposes. 
As far as mathematics will emerge through the process as needed answers for taken 
as seriously problems instead of an already existing construction, living elsewhere 
and brought to school ignoring the why, the lack of sense of school mathematics will 
be avoided. Therefore, the SRC is a didactic device useful to make modelling a 
reality at school fighting against the monumentalistic disease.  
DESIGNING A STUDY AND RESEARCH COURSE FOR EARLY-
CHILHOOD EDUCATION: COLLECTING SILKWORMS 
Institutional, pedagogical, curricular and epistemological background 
In Spain, the early-childhood education is a non-compulsory educational level for 3 
to 6 years old children (3 grades) although almost every child in this age attends to 
the school. It is not conceived as a kindergarten but as an educational level ruled by a 
national curriculum. Three are the main domains in this level: self-knowledge and 
personal autonomy, knowledge of the environment and languages: communication 
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and representation. Among the general aims of this level, three of them are of special 
relevance for our work: (b) to observe and explore children’s familiar, natural and 
social environment, (f) to develop communicative skills in different languages and 
forms of expression and (g) initiation into logical-mathematical skills (MEC, 2007) 
School activity has to be organized in a holistic and integrated way. Children’s reality 
and near environment should be the starting point for every teaching and learning 
situation. Therefore, modelling could be present on every teaching and learning 
situation although it is not explicitly described in the national curriculum.  
During this stage, pupils are supposed to develop quantification skills and the 
cardinal sense of numbers (measure of a discrete set) as well as languages and forms 
of expression to communicate about quantities. Pupils will develop numbers’ cardinal 
sense through their activity in many situations where the measure of one or several 
discrete sets is necessary. Numbers (both the meaning and the signs) will emerge as 
models to deal with this quantification [3]. Validation and interpretation processes as 
well as communicative needs are crucial to make pupils’ knowledge evolve from 
self-invented representation of quantities to numerals and numbers. 
As Ruiz-Higueras (2005) describes, following basic works in Didactics of 
Mathematics developed by Brousseau and cols. in the University of Bordeaux, the 
question that should guide early-childhood reconstruction of numbers should be: why 
do we need numbers and their representation? Three would be, at least, the functions 
of numbers in this level: to measure a discrete set (from the set to the number), to 
produce a set (from the number to the set) and to order a set (to assign and locate the 
position of an element in an ordered set). Centred in the first and second function, 
school situations where numbers emerge as models to express the measure of a set, to 
verify the conservation of a set, to manage a set, to remember the quantity, to 
reproduce or produce a set of an already known quantity and to compare two or more 
sets has to be designed and implemented.  
If the design process of teaching and learning situations takes care about the reality 
and authenticity of the situations considered, then modelling is an optimal 
pedagogical approach for teachers to develop teaching and learning situations 
concerning numbers and their representation in early-childhood education. 
Design of the Study and Research Course 
The Study and Research Course (SRC from now on) reported here has its origins in a 
real school situation lived by a teacher [4]. She was working with her 4 years old 
students about butterflies and she thought about introducing silkworms and the 
transformation process into butterflies (metamorphosis). It was spring and pupils are 
used to collect silkworms and to feed them with white mulberry leaves. So, it was 
easy to bring a box with silkworms into the classroom and observe its evolution.  The 
teacher, in order to deal with de holistic and integrated principle, decided to make 
some mathematical work with this situation. She is used to work with a-didactic 
situations (in Brousseau’s sense) and their students are used to face problems, to 
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develop different solutions and representations, compare them, formulate messages in 
mathematical codes (including self-invented codes), validate the solutions against the 
milieu, discuss about the problem and the different solutions, etc. Students are 
developing their knowledge of cardinal numbers during this school year and they 
have been working in many situations where they have to produce a number that 
measure a discrete set, to build a collection equal to a given number, to compare 
different collections, to express orally or in a written form how many elements are 
needed to complete or to reproduce a given collection (both with the collection in 
front of them and with the collection hidden). However, they do not always use the 
number as the best way to answer how many questions and, depending on the student, 
they can count up to 20 (or more) but many of this numbers are meaningless. 
At the beginning, only an anecdotic an isolated activity (if we’ve got N silkworms, 
how many leaves do we need to feed them?) seemed to appear. But, as soon as we 
start working with the teacher and taking the situation seriously, a rich variety of 
praxeologies emerged. 
Compared with other situations used by the teacher, two are the main characteristic of 
this one. On the one hand, it is a real and authentic situation (silkworms are in the 
classroom and have to be fed). On the other hand, it is a dynamic system: silkworms 
will turn into cocoons and, finally, moths (butterfly for pupils) will emerge and die. 
That means that there are, at least, three different collections to be controlled over the 
time. In terms of dynamical systems, each state of the system can be described with 
the vector (t, n(t), c(t), m(t)) where t is time, n is the number of silkworms, c is the 
number of cocoons and m is the number of moths. A conservative law rules the 
system: for every t, n(t)+c(t)+m(t)=N, where N is the original number of silkworms. 
Working in this kind of systems is quite challenging for 4-5 years old pupils. 
Techniques to deal with time have to be developed and ways of organizing data are 
needed in order to record changes. That means that during the study process at 
school, not only praxeologies around cardinal numbers will emerge but also 
praxeologies concerning time measurement and data handling. Along the whole study 
process, silkworms will not only be the excuse teacher uses to introduce some 
mathematical work, but the centre of the process. Interpretation and validation will be 
dense during the study process. 
IMPLEMENTING THE SILKWORM SRC AT SCHOOL 
We will report in this section about the real implementation of the silkworm SRC in 
two different classrooms (4 and 5 years old students). Data have been taken from a 
self-report written by the teacher as she was developing the SRC and she was 
managing the study process at school. The study process took place in spring 2008. 
There is no space here to explain the study process in detail (both students’ work and 
teachers’ decisions). So, we will try to focus on the main issues of this process. 
The study process started when the teacher was talking about butterflies in classroom 
and decided to link that topic with worms and metamorphosis process. She thought 
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that bringing some silkworms into the classroom (figure 1) could be very motivating 
for their students. No mathematical work was planned in advance but she quickly 
noticed that a rich mathematical activity could be developed from this situation. 

The first problem arose earlier: silkworms have to be 
fed, how silkworms’ feeding should be organised? 
Some restrictions into the system had to be 
introduced:  first, a leave for each silkworm each day; 
second, new leaves are needed each day and third, 
taking the leaves from the mulberry tree it is not 
possible (it is dangerous!) but the gardener will do it 
for us if we ask him. That gave rise to a 
quantification activity (praxeology around numbers 

as cardinals): the first and second restrictions were introduced in order to give rise to 
techniques dealing with cardinals and the comparison among different collections. 
These are really problematic situations for 4 and 5 years old students and numbers 
and numerals will emerge as the best models to deal with them (although some 
intermediate models, for instance, iconic representations, are also used). Although 
many pupils can recite the number names in sequence and they know numerals up to 
9 or even more, many of them are not able to use them in context to measure a 
collection, to produce a new collection or to compare two or more given collections. 
For instance, the following dialog was recorded by the teacher: 

Fig. 1. Silkworms at school. 

Student: Teacher, we’ve got twenty-five silkworms minus two. 

Teacher: Why? Can you explain it? 

Student: Yes, there are twenty-five pupils in the class and, each day, two of us don’t have 
a silkworm. 

Teacher: Then, how many silkworms are there? 

Student: Twenty-three. 

Teacher: How do you know that? 

Student: I don’t know. 

The silkworm activity offers a rich real situation to develop quantification skills. 
Moreover, as they have to write a message to the gardener with the leaves needed 
each day, communicative skills will be also developed. 
Time is not a relevant variable for pupils yet, although the teacher asks pupils to write 
the date on the ordering-sheet. In the 5 years old classroom, students are quite 
engaged in silkworms care. The class was divided into groups which have to take 
care of the silkworms each day. A list of things to be done and a diary was made 
(figure 2): 1st, counting the silkworms; 2nd, cleaning the house; 3rd, bringing as many 
leaves as silkworms; 4th, filling in the diary; 5th, writing down the numbers; 6th, 
writing a letter to the teacher (asking for new leaves). The teacher introduces also a 
table where pupils record the date, the name of the caring group, the number of 
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silkworms and the number of leaves. 
Days were going by until the day 
cocoons appeared. That caused the 
first evolution of the mathematical 
activity (and, obviously, pupils’ 
happiness). On the one hand, 
pupils decided to put the 
silkworms apart in other box 
because cocoons could be 
damaged when they had to clean 
the box and fed the silkworms. 
That caused the division of 
original collection in more than 
one collection and additive 
ded. On the other hand, time arose 

as an important issue: they needed to control time in order to measure how many time 
will pass until the moth emerges from its cocoon. The static system has changed into 
a dynamical system. Pupils’ quickly asked for time control: 

Student 1: When will butterflies emerge

strategies to control the whole collection were nee

? 

 more days. 

ent points at a day in the calendar). 

 the butterfly emerges 

knows that time control can be 

athematical point of view, the 

nd diary 

Student 2: Well, tomorrow. 

Student 1: No, they will take

Student 2: Yes? How many? 

Student 1: Now, here (the stud

Student 2: Well, we can count the days (in the calendar) and when
we will know how many days are. 

Teacher 
excessively demanding for 4-5 years old 
students. She needs to introduce some tools in 
classroom in order to let students control 
quantity and time together. A table (figure 3) 
is introduced by the teacher (date, group 
name, number of silkworms, number of new 
cocoons, number of leaves and total amount 
of cocoons). It will emerge as a tabular model 
of system’s variation and records its 
evolution.  
From a m

original praxeology about quantity is evolving and widening including time 
measurement and strategies to handle with data (obviously, adapted to 4-5 years old 
students). From now on, students activity can be characterized as a dialectic between 

Fig 2. Things to be done a

Fig. 3. Table to control system’s 
evolution (1) 
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the system divided into different sub-collections (different boxes with silkworms and 
cocoons) and the tabular model (where system evolution is been recorded). 
The day the first moth emerged provoked the necessity of calculating the time passed 

they can’t be counted. 

e days from my birthday? 

e pupils 

Teacher: Now it is the same. Let’s see, Antonio as responsible of the day, tell us how 

Student:  It h

Th ve rise to different 

As they knew that moths will die very soon, the teacher 

ied, the system was over and the 

ter 

eating leaves, cocoons and
collections. 

since the cocoon appeared. Again, this is a problematic task for 4-5 years old pupils. 
At this level it is usual to introduce some techniques to measure time working over 
calendars. Pupils are used to work with them and they can get some control on time 
passed or needed just counting on the calendar. 

Student: It’s been three days. 

Student: No, I said ten days. 

Student: Days have gone and 

Teacher: Yes, we can. Let’s see, how can we know th

Student: Well, we look for it in the calendar. We say one, two, three,… (som
went to the calendar in the wall and counted, pointing with the finger, since 
teacher’s birthday). 

many days. First, you have to look for the day the cocoon appeared. 

as to be one of the first cocoons because it is in the brown box. 

Teacher: Ok. Antonio, look for the day in the calendar and count… 

e result was twelve days. The next days the same activity ga
results. That was interpreted as there were not a fixed number of days for the moth to 
emerge but a range. Pupils’ interest decayed us they knew the days but they were 
interested in moths’ care. 

decided to repeat again the time-quantification activity 
with the collections: cocoons, new moths, death moths and 
moths alive (figure 4). 
When all the moths d
activity around them finished.  However, the class had lots 
of information about the system and its evolution. The 
models constructed during the study process recorded this 
evolution. An interpretation activity was introduced by the 
teacher in order to make these tabular models useful to 
recover information about a system that had passed by. 
The teacher proposed the pupils to make a pos
representing the collection in different stages: silkworms 
 silkworms and cocoons and moths (figure 5).  

Students had to interpret data on the table and produce the corresponding 

Fig. 4. Table to control 
system’s evolution (2) 

From a modelling point of view, the fact that the system will never be back again in 
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the classroom makes this interpretation activity completely crucial to summarize 
what happened and to talk about the system to somebody else. From an educational 
point of view, this is one of the most important moment of the study process: models 
can, to some extent, relieve the system and produce information about it even if the 
system will never be back again. The learning of time-quantity relations is one of the 
main aims at pre-school. During this final activity, students need to control time and 
quantity at the same time and the interpretation of the model is the key for that 
control. 
 

Fig. 5. Reconstructing the system from the model 

CONCLUSIONS
 processes adapted to school restrictions, able to produce a wide, 

logical Theory of 

 national and autonomic curriculums are not modelling-oriented. Although many teachers and textbooks 
are interested in applications and modelling, their main concern is to develop the mathematical topics listed in the 
curriculum. 

  
Designing modelling
rich and meaningful mathematical activity is far from been unproblematic. In this 
paper we argue for the necessity of sophisticated theoretical frameworks for 
modelling-oriented instructional design. Moreover, for very young students, there is a 
lack of research concerning modelling-based teaching and learning. 
We have described a process of study designed under the Anthropo
Didactics and carried out by 4-5 years old pupils. First of all, the example shows how 
the theoretical framework allows us to control the design process and its real 
implementation. Secondly, the study process reported here shows how very young 
pupils can be involved in a wide, rich and meaningful modelling activity where 
different praxeologies of increasing complexity emerge as the system is evolving 
over time. Pupils use, learn and widen their mathematical knowledge as they want to 
take care of the silkworm collection and to know more about silkworms’ 
transformation: quantification skills, additive and subtractive strategies, time-quantity 
relations and data handling procedures are brought into play. Finally, once the system 
has disappeared, models previously developed emerge as tools to reconstruct the 
system in every stage and to recover time and quantity information. Very young 
pupils are engaged in a modelling activity, producing and using models, a long time 
before they are able to really understand what modelling is and the role modelling 
plays in daily-life, society and science. 
NOTES 
1 In Spain, the
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2 When a question can be considered as “generative” and “crucial”? It depends mainly on the institution where the study
process will take place, the educational system and, finally, the society. School level and curricular constrains, the wa
the educational

 
y 

 system is organized and the main aims of school within society need to be considered. 

 Jaén, Spain), 
 effort and enthusiasm which made the experimentation possible.  

 Blum, P. Galbraith, H-W. Henn and M. Niss (Eds.), Modelling and 

 and M. 

s Aires: Aique. 

 of the IV Conference of the European Society for 

 the connection of school mathematics. ZDM – The 

nalties. In D. Pitta 

y of modelling. In W. Blum, P. Galbraith, H-W. Henn and M. Niss 

ínimas del segundo ciclo de Educación infantil.  Boletín Oficial del 
th

 de las Matemáticas para Educación Infantil (pp. 

3 Number’s ordinal sense will not be considered in this paper. 
4 We will like to thank to the teacher, Mrs. Blanca Aguilar (from “El Olivo” school in Torredonjimeno,
her
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STUDY OF A PRACTICAL ACTIVITY: ENGINEERING 
PROJECTS AND THEIR TRAINING CONTEXT 

Avenilde Romo Vázquez 

Université Paris 7  –  Denis Diderot 

This paper deals with the question about place that should be given to 
mathematics in engineering training. In particular, we analyze a practical 
activity: engineering projects. This activity intends to reproduce the working 
context in industrial engineering. Our research is developed in the frame of the 
Anthropological Theory of didactics (Chevallard 1999). We use the Expanded 
Model of Technology (Castela, 2008) to analyze the engineering project. In this 
paper, we present the analysis of a task of modelling developed in the projects 
context 
 

Background  

What place should be given to mathematics in the training of engineers? Which 
contents should be approached in this training? How should it be articulated 
with other domains of the training? 

These question have already been asked and treated in different institutions and 
different times. For example, Belhoste et al. (1994) who studied the formation 
given by the French Ecole Polytechnique between 1794-1994, have shown that 
different models of training have arisen during XIX century: Monge’s model, 
Laplace’s model and Le Verrier’s model. These questions which underlie the 
establishment of training’s models and the changes of model, from Monge to 
Laplace then to Le Verrier, are the fundamental questions of relation between 
science and application, relation between science and technology.  
Nowadays, these questions are modified by the technological development, 
technology taking an increasing place in the engineers’ work: 

Before the advent of computers, the working life of an engineer (especially in the early 
part of his or her career) would be dominated by actually doing structural calculations 
using pen-and-paper, and a large part of the civil engineering degree was therefore 
dedicated to giving students an understanding and fluency in a variety of calculational 
techniques. For the majority of engineers today, all such calculations will be done in 
practice using computer software. (Kent, 2005) 

In other words, the development of powerful software changes the mathematical 
needs because this software encapsulates some of the usually taught 
mathematics. Mathematics may even appear to be useless to some engineers. 

During last years, various researches concerning the nature and the role of the 
mathematical knowledge in the workplace have been realized (Noss et al., 2000; 
Kent & Noss, 2002; Magajna & Monagan, 2003; Kent et al. 2004). These works 
point out the existence of gaps between the educational programs and the real 
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world in which the engineers work. For example, the institutional speech asserts 
that undergraduate engineers need a solid mathematical education, but the 
researches show that for graduate engineers mathematics is of little use in their 
professional work.  

Once you’ve left university you don’t use the maths you learnt there, ‘squared’ or 
‘cubed’ is the most complex thing you do. For the vast majority of the engineers in 
this firm, an awful lot of the mathematics they were taught, I won’t say learnt, 
doesn’t surface again. (Kent and Noss, 2002) 

In our research we intend to contribute to the analysis of the observed gaps and 
to investigate the role that educational practices and technology play in these 
gaps. We especially study how one innovative practice in a French engineering 
Institute intends to articulate theoretical and practical knowledge. 

Theoretical Framework: The Anthropological Theory of Didactics ATD 
(Chevallard, 1999) 

The general epistemological model provided by the ATD proposes a description 
of mathematical knowledge in terms of mathematical praxeology  [T/τ/θ/Θ]  

The praxeology has four components: the first type of tasks T or problems T, the 
technique is a way to solve the problems, the technology is a theoretical 
discourse to describe, explain and justify the techniques and the theory is also a 
theoretical discourse to describe, explain and justify the technologies. The 
praxeology has two blocks: 

Practical block or “know-how” (the praxis) [T,τ] integrating types of problems 
and techniques used to solve them 

Theoretical block or “knowledge” (the logos) [θ,Θ] integrating both the 
technological and the theoretical discourse used to describe, explain and justify 
the practical block. (Bosch, Chevallard & Gascón, 2002) 

As part of ATD, study is seen as construction or reconstruction of the elements 
of a mathematical praxeology, with the aim to fulfil a problematic task. To 
represent finely these processes of construction or reconstruction, ATD offers a 
model of the study of mathematical praxeology. This model so-called: Moments 
of the study distinguishes six moments or phases. In this paper we only consider 
the moment of institutionalization: this moment has the object to specify what is 
"exactly" the worked out mathematical praxeology. It appears de facto that there 
are not kept in general in the technology "purified" the elements which are not 
justified or produced by a theory of empirical knowledge they are rather related 
to the concrete conditions than the usage of techniques.  

Castela (2008) proposes that in the technology of praxeology there are two 
components: theoretical θth and practical θp.  
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“…the technology of technique is the knowledge orientated to the production of an 
efficient practice, which has functions to justify and legitimize the technique but 
also to equip and to make easier the implementation with it. Beside possible 
elements of knowledge borrowed from certain appropriate theories (we shall speak 
following "the theoretical component" of technology, noted θth) this knowledge 
appears in technology which, according to research domains, is qualified as 
operative, pragmatic, practical. Collective work was forged in experience; this 
practical component plays technology (noted afterwards θ

p) express and capitalize 
the science of the community of the practitioners confronted in the same material 
and institutional conditions with the tasks of type T, it favours the diffusion within 
the group.” (Castela, 2008, p.143) 

 

There are six functions associated with the practical component of praxéologie 
θ

p: 

1.  To describe the technique. The verbal description of the series of steps that 
make up a technique is an important step in the process of institutionalization. 

2.  To motivate the technique and the different gestures which compose it. 

 To explain why, in which aims. It describes the aims expected by the 
technique and analyzes the effects, consequences, different gestures and the 
difficulties that its absence could provoke.  

3. To promote the technique’s utilization. It considers that knowledge allows 
users to use the technique with effectiveness but also with a certain comfort. 

4.  To validate the technique: it works, it does what is said. It is main goal is to 
guarantee the technique, when this is used completely it produces a valid 
solution and the elements were it belongs achieve the expected aims. 

5. To explain why does technique work? Is about being interested in the causes 
of effectiveness. Contrary to the second function, the objective is to detail the 
mechanisms that make that the technique and its components have the desired 
effect. 

6. To evaluate the limits, conditions of effectiveness of the technique. The 
function of validation is positioned on the side of the truth and justified by a 
theory. In a practical context this function will consider the efficacy.  

 

The institutionalization within different institutions  

There are different institutions which maintain a report with a given praxeology. 
We shall differentiate the institutions with a function of production P(K) of 
knowledge. And the user UI institutions of this praxeology, in sense where 
subjects of UI have to accomplish tasks of type T. The aim of P(K) institutions 
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is to produce and validate the different components of praxeology. But, we 
asserts that to a praxeology used in a user Institution; this is a part of technology 
isn’t justify for a theory. The technological knowledge validated by an 
institution P(K) do not exhaust technology, which includes in general a 
component θp for which it is also necessary to examine social modes of 
validation. The question is therefore to reflect upon construction practises as 
part of UI, tested through the multiplicity of effective achievements and 
institutionalization (understood as stabilization rather than explicit recognition 
by a given institution) of know-how and knowledge. 

The Expanded Model of Praxeology (Castela, 2008) can be simplified in the 
following way: 

UI

KP
T

p

th

←
←







 Θ )(,
,,
θ
θτ  

 

Arrows represent social practices of validation in work in the one or other one of 
the institutions P(K) and IU carrying respectively on the block [θth, Θ] and on θp. 

Dynamics of mathematical praxeologies 

In our work, we focused on mathematical praxeology present in the engineering 
projects. To account for the way followed by a praxeology from mathematical 
origin which has to reach the project, we consider different institutions: 

Production Institutions  

• P(M) Production institution of mathematics 

• P(ID) Production of intermediate disciplines 

Institutions inside at Vocational Istitute at the University (IUP) (1) 

• T(M) Training of mathematics 

• T(ID) Training of intermediary disciplines 

• Ep Engineering projects  

The mathematical praxeologies from production institutions progress to the 
projects in different ways: 

1. P(M)→T(M)→Ep  
The first one is from production mathematics to training mathematics until 
the projects. 
 
2. P(M)→T(M)→T(ID) →Ep 
The second one is from production mathematics to training mathematics 
through training intermediary disciplines and projects. 
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3. P(M)→T(ID)→T(ID)→Ep 
The last one is still production mathematics to intermediary disciplines 
through training intermediary disciplines until projects.  
 

In our context a vocational training, we shall consider also the profession 
(professional institution pI). The praxeologies presents in the latter institution 
are also transposed. These have a specific component θp, to promote the use in 
the professional contexts. We shall take into account the influence from 
profession to training of mathematics T(M), training of intermediary disciplines 
T(ID) and Engineering projects Ep. The following schema exhibits the links 
between the previous components: 

 
 
 
 
 
 
 
 
 
 
 

 

 

Context and methodology of research 

In order to realize our study, we have chosen the Vocational Institute at 
University of Evry (IUP). This Institute uses an educational model of practical 
education closely related to the industrial world: the university training is 
combined with training in firm; professional practice takes place during twenty 
weeks (minimum) over the three years of training. But, the mathematical 
training is solid, it remains classical at university 

The question is: How is the IUP model, which is characterized by a strong 
nearness with professional middle, inserted in a mathematical training which 
seems to be designed by this classical model? To answer to this question, our 
study is focused on an innovative practice, the so-called Projects. These projects 
intend to connect the official universe of educational disciplines and the 
professional world of engineers. 

The aim of this study is devoted to identify the mathematical praxeology present 
in the realization of projects and linked with technological tools (TEN). 

  P(M) 
 

  P(ID)  
                                                   pI 
 
      
       T(M)          T(ID)            
 
   
                     
                        
     Project 
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Therefore, we use this study of praxeology to question the institutional 
mathematical living in intermediate disciplines or lessons of mathematics.  

The projects  

The projects are realized by a group of three or four students, very independent, 
respecting a didactical organization which tries to reflect the real organization in 
workplaces. 

The engineering projects are carried out by teams of students in their fourth 
year of engineering school, over five weeks. The subject of every project is open; 
there is no previous requirement established by client. The final production and 
the route towards it have to be built together in the same process. Therefore 
students have to organize and plan their work, to look for solutions; this 
generally supposes that they adapt or develop their knowledge.  
 
The projects are realized in two phases. After the first one the students write an 
intermediary report; in this report they describe the pre-project which is in 
general justified by a study of the subject. They present the technological 
solution they have chosen among those they have found during their exploratory 
work. In the second phase the pre-project must lead to a concrete product. 
In this kind of projects, the manager is a college teacher, who plays the role of a 
client who requests a product from a student’s group. All the terms and 
conditions of the project are described in the schedule of conditions (cahier des 
charges) which is negotiated between the client (teacher) and the distributor 
(students). The students are supposed to work on their own to come up to the 
client’s request. The project is assessed from on a double point of view, 
combining workplace and engineering school requirements. The client must be 
convinced that the technological solution is the best. But this evaluation is also 
academic; the students present their work to a jury composed of college teachers. 
The jury evaluates the use of tools in relation whit knowledge taught in the 
engineering college. Moreover the students are often asked to justify some of 
their claims. 

Projets Observation methodology  

We have realized two observations of the projects. To realize the observation of 
projects, we used Dumping methodology. In the first phase of project (two 
weeks) we carried out questionnaires and semi-structured interviews with the 
students and the clients – tutors. After this phase, we collected institutional data, 
specifications (document), intermediary reports and documents used for the 
development of projects. This allowed us to get familiar with projects. 

For the second phase we chose only three projects, our aim to be able to realize 
a deeper and precise observation. To select these projects, we based on the 
intermediate reports following two criteria: 1) the presence of explicit 
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mathematical knowledge and 2) the project domain such as aeronautics, 
mechanics, electronics, etc. 

In the third week of the project, we met with the students’ teams (three teams for 
three projects) for an interview about the intermediary report; the aim of this 
interview was to understand the project and to investigate on the role of the 
identified mathematical contents. We asked the students to do a brief exposition 
of their project. The aim of this exposition was to identify the role that they 
were giving to the mathematical content expressed in their intermediary 
report.From this, we identified the work division inside the team, and we 
realized that only one student has the responsibility to develop the mathematical 
activity. After these meetings, interviews were realized with each student 
individually. 

Praxeological analysis of projects  

We carried out a praxeological analysis of the projects. In this paper, we present 
the analysis of one task accomplished in one of the projects: the Development of 
a conveyor belt for the aerodynamic study of a light ultra vehicle. The aim of 
this project was to build a conveyor belt to reproduce the velocity floor. For this, 
it was necessary to model functioning of the motor and simulates it in Matlab 
(software).  

Task: Modelling of motor  

The task is to build a model of the motor trough the block diagram. This 
diagram will allow us to simulate this motor in the Matlab software.  

Technique: The modelling of the motor pass by two steps. 

1) Mathematical model. The differential equations modelling the electrics and 
mechanics functioning.  

Electrics functioning 
dt

tdi
LtRitetu

)(
)()()( ++=  

Mechanics functioning )(
)(

)()( tf
dt

td
JtCtC rm ωω +=−  

The electrics and mechanics functioning are linked by two equations. Every 
single equation contains a flow and couple constant k: )()( tkte ω=  and 

)()( tkitCm =  
 
Next, we apply the Laplace transform to every equation: 

 
LpR

pEpU
pI

+
−= )()(

)(  (1) 
fJp

pCpC
p rm

+
−

=Ω
)()(

)(  (2) 

 )()( pKpE Ω=   (3) )()( pCKpI m=  (4) 

2) Construction of block diagrams 

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2182



 

These equations allow us to construct the following block diagrams. Every one 
element of the equation is represented in the block diagram.  
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                                                 )()( pCKpI m=  
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Student techniques:  

The student describes the technique utilized to accomplish this task. 

“For example if we take this equation (showing
dt

di
LtRitetu +=− )()()( ) […] and if 

we apply Laplace transform we shall have )()()()( pLpIpRIpEpU +=− , if we make 
this (factorize )( pI ) we shall have this )()())(( pEpULpRpI −=+ , this means that 

LpR
pI

pEpU +=−
)(

)()( and if we make the inverse we shall have 

LpRpEpU

pI

+
=

−
= 1

)()(

)( […] this equation is modelled by this part” (oral explanation) 

 

 

 

 

 

 

Technology: 

In the description of technique, the student shows the aim of task is to express 
the “transfer function” of the system. The Laplace transform is for the student a 
tool which allows to treat an electrical equation as a transfer function. At the 

K 

Written traces accompanying oral explanation  

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2183



 

same time, Laplace transform allows to pass from temporary domain (algebraic) 
to a non temporary domain (differential equation). 

“[…] we have ( ) ( ) ( )pLpIRpIpEpU ++= )(  and if we transform ( )ppI , we apply the 
inverse Laplace transform, then we obtain the derivative of a temporary function” 
(Oral explanation) 

We see here that motivation appears (function 2 θ
p) by the utilization of the 

Laplace transform. The student focuses in the derivate term )( pLpI , showing 
interest in using the Laplace transform to pass from differential equation 
(temporary domain) to transfer function (algebraic domain) or the block 
diagrams. 

From the mathematical point of view, there is a notion justifying the block 
diagram: the transfer function. This notion considers that the physics systems 
are described by the differential equation:  

 

ua
dt

du
a

dt

ud
ayb

dt

dy
b

dt

yd
b

dt

yd
b

m

m

mn

n

nn

n

n 01011

1

1 +++=+++ −

−

− KK  

 

“If we apply Laplace transform to the differential equation and assume the initial 
conditions to be null, then the rational fraction which links the output Y(p) to the 
input U(p) is the transfer function of the system. 
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K
” (Automatics course: Introduction à 

l’Automatique des systèmes linéaires, pp.7 -8)     

This notion is part of the Automatics course (intermediary discipline).  

 

Conclusion 

The task modelling of the motor is the reproduction the existent model. The 
students are not created a new model. They adapted a type models a specific 
situation. This adaptation need mobilize the technological elements. These 
elements are from different institutions: teaching institution of intermediary 
disciplines T(ID), teaching mathematics T(M) and practical institution pI. We 
see the processes of transposition of the praxeologies, which pass from one 
institution to other institution and are transposed. The functions of the practical 
component θp, allows us to analyze the praxeologies used in the projects. To 
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understand the technologies linked to the students techniques, it is necessary to 
take in account the intermediary disciplines. These disciplines are intermediary 
between mathematics teaching and mathematics used in practise.  
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FITTING MODELS TO DATA: THE MATHEMATISING STEP  
IN THE MODELLING PROCESS 
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This paper presents a mathematical modelling activity experienced with students of 
first year university level centred on a problem of forecasting sales using one-
variable functions. It then focuses on the back and forth movements between the 
initial system – a time-series of the term sales of a firm – and the different models 
proposed to make the forecasting. The analysis of these movements, that are at the 
core of the ‘mathematising step’ of the modelling cycle, shows how the initial 
empirical system is being enlarged and progressively enriched with new variables 
and mathematical objects. Thus the development of a modelling activity initiated with 
a real-situation may soon lead to a process where the mathematising affects both the 
system and the model. 

1. THE MATHEMATISING STEP IN THE MODELLING PROCESS 

mathematical 
model 

mathematical 
results 

real
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real
model

situation 
model 

real
situation

rest of 
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1
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5 Interpreting 
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Figure 1 

In current didactic contracts, the validity of the mathematical knowledge students 
have to learn usually has its last guarantee in an external source of the activity: the 
teacher. It is the teacher who, as a last resort, decides if a result is correct or wrong, if 
the used tool or technique was the best possible choice, etc. Because of this dominant 
epistemology underlying current didactic contracts of our teaching institutions, 
research in mathematics education puts forward an ‘experimental epistemology’ more 
in accordance with the Galilean’s spirit of modern science. According to this 
epistemology, scientific knowledge (and mathematics in particular) is building up in 
permanent contrast with ‘empirical facts’ that, added to the principles of theoretical 
coherence, represent the main elements of proof. The reproduction of this 
‘experimental epistemology’ in mathematics underlies the Theory of Didactic 
Situations (Brousseau, 1997), especially through the notion of adidactic situation and 
the principle of knowledge construction in contrast with a milieu. The recent 
developments of the Anthropological Theory of the Didactic (Chevallard 2004 and 
2006) have introduced the notion of ‘media and milieu dialectics’ as an analysis tool 
of the necessary interaction 
between a milieu, i.e. any 
system devoid of any didactic 
intention, and the media (in 
the sense of ‘mass media’) as 
any source of information or 
pre-existent knowledge. The 
aim of this paper is to 
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consider how these notions can help analyse a concrete step of the modelling process 
as it is considered in many research works in the ‘modelling and applications’ domain 
using the modelling cycle (Blum & Leiβ 2006), namely the ‘mathematising’ step (see 
figure 1).  
This paper considers a special modelling activity that has been experimented with 
first-year students of a mathematics course for economy and business at university 
level. The real situation that is modelled is a problem of forecasting sales given the 
historical data or previous term sales. The concrete ‘mathematising’ of this situation 
consists in choosing an appropriate mathematical model (a one-variable function) 
fitting the empirical given data. The possibility of choosing different models and the 
need for a criterion to select one starts a process of contrast between the models and 
the empirical system acting as a ‘milieu’. The next section presents the conditions of 
the teaching experience and outlines the work of the students when approaching the 
sales forecast problem. The analysis of the experience in terms of the ‘media and 
milieu dialectics’ is detailed in the third section, before concluding about the 
importance of considering the ‘mathematisation’ of a mathematical system – that is, 
‘intra-mathematical modelling’ – as a step of the modelling process analogue to those 
included in the modelling cycle.  

2. A MODELLING WORKSHOP ON ‘FORECASTING SALES’ 
2.1. Conditions of the experience 
The didactical experimentation we present here corresponds to a first course of 
mathematics in Economics Studies during the academic year 2006/07. It is important 
to underline that the teaching conditions of this course do not correspond to a 
traditional one. First, the university we refer to is a private university that organizes 
teaching in not very large groups (between 30 and 60 students) where every student 
has a personal laptop computer. Second, the course has been designed by a researcher 
in mathematics education and the experimentation was carried out by four teachers, 
three of whom are also researchers in didactics. 
The course was designed drawing special attention to modelling activities. Its main 
goal, as it explicitly appears in the syllabus, is ‘to get students learn to elaborate and 
use mathematical models for the description, analysis and resolution of problematic 
situations that can be found in business, economy, finance or daily life. […] Students 
should be able to analyze problematic situation in terms of dependence between 
variables, pointing out the relevant information needed to construct a mathematical 
model of this situation. And they should know how to use the mathematical model 
proposed and how to synthesize the results obtained with these models in order to 
generate new knowledge and new questions about problematic situations considered.’ 
The programme is divided into three blocks that correspond to the three term periods 
of an academic year: linear algebra, calculus in one variable, and calculus in several 
variables/optimization. The course is structured in two weekly sessions of two hours: 
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the first one is a lecture (teachers’ explanations and problem resolutions on the 
blackboard) and the second one is used to carry out a ‘mathematical modelling 
workshop’, centred on the study of a problematic question connected to the field of 
economy or business. The work here presented corresponds to the workshop 
experimented during the second term, within the domain of ‘one variable calculus’, 
which lasted 5 sessions. 
The work at the workshop was organised in the following way: The students work in 
groups of 3 or 4 and have to write and present a weekly report about the partial 
results obtained at each session. At the end of the term, an individual final report has 
to be presented at the moment of the evaluation (a written exam which includes two 
different problems and a question related to the workshop). This exam represents 
50% of the qualification; the written reports 40%, and the remaining 10% 
corresponds to the individual resolution of problems during some of the lectures.  
2.2. The question of ‘forecasting sales’: analysis of its generative power 
The initial question of the workshop was formulated as follows: 

A firm registers the term sales of its 7 main products during 3 years. They ask us the following questions:  
 What amount of sales can be forecasted for the next terms? Can we get a formula to estimate the 
forecasts? Which are its limitations and guarantees? How to explain them? 
 What products sales are increasing more than 10% a term? Less than 12% a term? 

The data were ‘prepared’ by the teachers so that they correspond to seven elementary 
functions of different types (quadratic, cubic, rational, exponential) with an error term 
added.1 The values of each function were slightly changed with the aim of distorting 
them, but without losing the general “tendency” of the original function.  
The workshop’s aim was to give students a problem close to a real situation where 
functions appear as a suitable model. Both the use of Excel in the first term of the 
course and the students’ familiarity with elementary functions (it was the theme of 
the sessions just preceding the workshop) allowed them to initially detect a tendency 
in the sales (for example from a graphic representation of the data) and look for a 
function that fitted this tendency. The firm question proposed also included the idea 
of percent variation, which we expected would make the study of function variations 
appear during the workshop. Given that the workshop was run in parallel with the 
lectures on function derivatives, it was also expected that, at any time, the study of 
the sales’ variation could be connected with them.  

                                           
1 The concrete functions were: 0,5(x – 6)3 + 2000; 2,5(x + 5)2 + 100; 5500/(x + 4); 1300·085x; 1500 – 1200/(x + 1); 
2,5(x + 5)2 + 100; 1300·085x). The second experimentation in 2007/08 was carried out with ‘real’ data taken from some 
macroeconomic magnitudes of different countries: population, oil production, traffic crashes, unemployment rate, etc. 
The main difference between the two workshops appears in the study of the variations, because the real data have 
stronger fluctuations and do not always present a clear tendency.  
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The election of a sales forecast situation was mainly motivated by the fact that it 
enables to clearly distinguish between the economic system (sales) and the models 
used (functions). Moreover, working with different products needs to consider 
different models, raising the problem of the fitting between the model and the 
modelled system. In other words, the aim of the workshop was to make students use 
functions as a model of a simple economic system and quickly raise the question of 
the election of the model and its validation. 
2.3. General organisation of the modelling workshop 
We here report the four workshops experienced, corresponding to four classes of a 
(the) first-year course of mathematics for economics and business led by four 
different teachers working in team. Each group has a teacher, the same one for the 
lectures and the workshop sessions. All classes were prepared by the team and all 
sessions were discussed personally or by mail before and after being carried out. Each 
teacher, at the end of each workshop session, wrote a report in which he/she 
explained the development of the session, and sent it by mail to the other teachers. 
Before the workshop started, the students had four lectures dedicated to introducing 
the elementary families of functions, from straight lines to exponential functions. The 
students learned how to use the general expression of every family of functions and 
to associate them with different graphics. In other words, the students were taught 
how to assign an algebraic expression to the graphic of a function, among a set of 
given families. They saw how to deduce the graphic of y = af(x – b) + c, from the 
‘basic function’ y = f(x) and, reciprocally, how to deduce the expression of any 
function y = af(x - b) + c given its graphic and knowing the original ‘basic function’ y 
= f(x). The lectures given in parallel with the workshop introduced the notion of 
absolute and relative variation of a function between two points, the notion of the 
derivative’s function, the notion of straight line tangent, etc. within the general 
problem of the study of variations. The functions considered were always related to 
economical situations, such as the incomes depending on the sales, the cost 
depending on the production, the demand depending on the price, etc. 
2.4. Description of the workshop sessions 
We are now presenting a brief summary of the workshop sessions based on the 
teachers’ reports, the students’ weekly summaries of the workshop and the students’ 
individual summaries at the end of the term. 
Session 1: Considering the initial question and first exploration of data  
The first session is dedicated to present the generative question and the data. Each 
group is assigned two products from the list. During some time, the students can 
explore the question and propose a first forecast for the next three-month period. 
Most of the groups decided to introduce the data in an Excel sheet so as to represent 
them graphically. Most groups were able to associate the graphic representation with 
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some of the families of functions previously studied. Some of the graphs obtained 
were: 
      

 

 
 
Depending on the product considered, different types of functions can be associated 
with the graphic. The case of product 1 is different because the form of the data 
clearly suggests a cubic function. In this case, the students easily found an analytic 
expression y = a(x – b)3 + c fitting the data, first detecting the inflexion point (b;c) 
and then testing different values for parameter a. At the end of the session, the 
teacher asked some of the groups to present their procedure used and results to the 
whole group. A structure for the Excel sheet was agreed upon and the teams were 
asked to bring in a possible model with its corresponding forecasts for the next 
session. 
Session 2: Finding different models and comparing them 
Each group presented the analytic expression obtained for the products assigned. As 
each product was assigned to different groups, different possible models appeared for 
the same set of data. Hence the problem of deciding which forecast was “better” 
quickly appeared. As it was impossible to decide on at first sight, the teacher 
introduced a possible criterion to ‘measure how different each model was from the 
data’. It consists in computing the difference (in absolute value) between the values 
of the function and the data of the product. A new column was added to the Excel 
sheet (with) which, at the end, mentioned the arithmetic average of the differences. It 
was called the ‘average error’. 
Then the session work consisted in finding, for each product and within a given 
family of functions, the model that gives the minimum average error. The first 
procedure was to modify the parameters of each function to find the best model by 
trial and error. In the middle of the session, the teacher introduced the Excel tool 
‘SOLVER’ that gives the parameter combination that minimizes the average error, 
when initial values are close to the solution. The Solver function allows finding the 
best approximation to data when models are considered within the same family of 
functions, but it is not an effective tool to decide between two models belonging to 
different families (a parabola and an exponential function, for instance). Besides 
given two sales forecasts done with functions of a different type, the fact that one of 
them gave a lower average error than the other, did not always seem a good criterion 
to determine that it was a better forecast (it is not always so clear graphically, for 
example). The session concluded by asking the students to bring in ‘the best model’ 
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for each product and the corresponding forecast. In a sense, the first question of the 
initial problem was almost answered. 
Session 3: Study of the average term variations 
The session started by sharing the expressions provided by each group. The problem 
of finding a criterion to select the best model was raised in the case of different 
models for the same product with a similar average error. At this moment, in one of 
the four groups, the teacher took advantage of the work done by a team that initially, 
during the first session, used the term variation of the sales. They found out the rate 
of the previous terms’ variation and then took an average to do the forecast. This idea 
was introduced to the rest of the teams and also to the other class groups.  
Therefore, besides the data of term sales and its possible models, appear a new set of 
data, the term variations of the sales, which can be modelled in turn. The students 
were thus asked to proceed with this new data in the same way they did before: doing 
the graphic representation, deciding which family of functions seems to correspond to 
the visual tendency, finding the concrete function that gives the lower average error. 

In the case of product 1 (cubic function), the new data appeared as having a quadratic 
tendency. In the case of products given by a quadratic function, the term variations 
seemed to correspond to a straight line, in the case of a rational or an exponential 
function, to another rational or exponential function respectively.  
Sessions 4 & 5: Comparing the model of the variations to the variation of the model 
When the different groups presented their models for the sales forecast and for the 
sales variation forecast, the teacher asked for a possible relation between the two 
models corresponding to the same product. In the case of the products with only one 
‘good model’ (such as product 1 with a ‘cubic tendency’) the conclusion was quite 
complicated. With those products accepting more than one model, the variation study 
led to a better conclusion: the graphic that best fitted the term variations of sales was 
similar to the graphic of the derivative of the function that best modelled the product. 
For example, if we consider product 2, we find: 

 

 

 

 
The graphic representation shows a tendency that can be modelled by a linear, a 
quadratic or an exponential function. The corresponding average errors are: 
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The study of the average error rules the linear model out, but does not provide a good 
criterion to exclude the exponential function or the parabola. If we consider the term 
variation of sales and model the new data, we obtain the following: 

 

 

 

 

 

 

 

 

 

Looking at the two corresponding term variation models, it clearly appears that the 
linear model has a lower average error than the exponential one. To summarize, we 
have found two models that fit the initial data in a similar way. Their analytic 
expressions, using the Excel tool ‘Solver’, are:  

OPTION 1:   y = 326,96 (1,09)x + 732,96  average error: 7,16 

OPTION 2:   y = 2,46 (x + 5,18)2 + 995,01  average error: 3,63 

The lower error corresponds to the parabola, but both are similar (comparing to other 
considered possible models). When considering the term average of the sales, the 
model that fits better is: y = 5x + 25. Finally, if we take the first model expression y = 
2,46 (x + 5,18)2 + 995,01 and derivate it, we get an expression very similar to the 
model found:         y’ = 2,46·2·(x + 5,18) = 5,2x + 26,936  ≈  5x + 25 

Therefore, we have a new criterion to decide between two models: studying both the 
tendency of the sales and of their term variation, and choosing as ‘best model’ the 
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function that has a derivative that fits the model of the term variation. At this 
moment, further work on the mathematical model can follow, looking at the 
derivative as a model of the term variation f(x) = f(x) – f(x – 1). The use of a 
symbolic calculator was an important tool for this final step of the modelling process, 
which was left to the students as a complementary theoretical analysis of the whole 
work done in the workshop. After these five sessions, students were able to use all the 
information to present a forecast for the sales and report a complete answer to the 
initial question. 

3. THE ‘MATHEMATISING STEP’: CONTRASTING MODELS TO DATA 
3.1. First part of the workshop: the problem of choosing the best model 
The process of mathematising or assigning an appropriate mathematical model to a 
given system can be done in a simple way by directly choosing a previously available 
model given by an external source (a ‘media’). However, the productivity of the 
model, that is, the fact that it produces new knowledge about the system, requires a 
certain ‘fit’ or ‘adaptation’ to the system. This process is rarely done once and for all. 
It requires a forth and back movement between the model and the system, in a sort of 
questions-answers or trial-error dynamics. We will now see the details of this process 
in the concrete modelling process of the workshop presented below. 

In the first part of workshop, the aim is to look for a function that accurately 
reproduces the sales dynamic. The first decision to take is to fix the family function 
that seems to reproduce the observed dynamic in the data. The students’ first gesture 
was to represent the data in a calculus sheet and determine a priori which type of 
function would be chosen2. In terms of the ‘media and milieu dialectics’, we can 
consider that the Excel graphic works as a milieu: when representing the chosen 
function, it allows to visually contrast the ‘proximity’ between the model and the 
data.  

The problem about how to construct a criterion to determine the best fit is the crucial 
question that drives the study process. Except in one or two cases, the only visual 
comparison between different sales models becomes an early limited milieu. The 
necessity of establishing a ‘measure of the fit’ comes up, and enriches the initial 
milieu given by the numeric data series and its graphic representation. The option 
chosen –a new message (media) given by teacher– is to calculate the average of the 
differences (in absolute value) between the data and the values of the considered 
function. The incorporation of the Solver function –that works as a black box for the 
students– provides another milieu that makes the search of the function that 
minimizes the error more dynamic. However, this new enriched milieu can also show 
its limitations when the errors between different ‘competitive’ models are similar. 
                                           
2 The fact that students work with a small group of a pre-established family of functions does not have to be considered 
as a didactic limitation. It reproduces the usual situation of the genuine modelling work. 
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3.2. Second part: the model of the variations and the variations of the model 

In the case of having different models with similar errors, the milieu made up of 
numeric values and the graphics of both sales and models is newly enriched by the 
introduction of a new variable: the sales variation. A new modelling process starts, 
similar to the previous one. The derivative function, as an approximation of the 
variation, soon becomes a new element of the milieu brought by the teacher acting as 
a media. It will contribute as a new criterion of validation: if a model fits the sales, 
the derivative of the model should be a good fit of the sales variation. For example, if 
sales seem to follow a parabolic growth, it is expected that the sales variation will 
follow a straight line growth. In this case, the milieu is all the work done during the 
first part of the workshop, that is, the construction of different models to each data 
series.  

The teacher is who introduces the relation between the term variations and the 
derivative of the pre-established model (media). Besides, as students had a symbolic 
calculator that allowed them to easily calculate the algebraic expression of the 
average value f(x + 1) – f (x) of any function, it was also possible to compare the 
derivative value of the model with this average value and confirm the approximation. 
It is important to underline that the increase of the ‘milieu’s complexity’ made the 
development of this second part of the workshop more difficult, the ‘system’ that was 
to be modelled being less known and ‘unstable’ for the students. However, the work 
done represents an exemplary case of the functionality of the derivative as a simple 
way to calculate the average variation of a function between two points. 

4. CONCLUSIONS 
Using the modelling cycle proposed by Blum & Leiβ (2006), the whole process can 
be described in the following way. The problem of forecasting sales given a time-
series of data constitutes the initial extra-mathematical situation, that we will call the 
‘system’ (as opposed to the ‘model’). At this stage, the system considered was a ‘real 
one’ (extra-mathematical). The first step of the modelling process consists in 
representing the data graphically to make a first hypothesis about the tendency of the 
time series. This first graphical model helps to decide on the type of functional model 
that best fits the data, giving rise to a mathematising process aimed to decide on the 
parameters of the chosen concrete function by a trial and error procedure using Excel, 
going forth and back from the model to the system. A new question arises when 
different types of functions are used to fit the data and one has to decide which model 
is best. The search for a criterion needs to consider a new ‘real system’ formed by the 
data and the possible models, with the problematic question of how to determine the 
‘best fit’, that is, how to mathematically model the ‘fitness’ of a model. This new 
system is in turn mathematised by the average error of the fit. Again, the 
insufficiencies of this new model lead to the consideration of a new enriched 
‘system’: the one formed by the original data and the term variation of the sales. A 

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2194



  
possible criterion is set up by considering the double modelling of the sales and the 
term variation of the sales. Finally, considering the derivative as a model of the term 
variation constitutes the last mathematisation step that leads to a final conclusion for 
the forecast problem. 
It is important to note that, in this entire process, the successive ‘systems’ that are 
modelled are more and more mathematised, and that the successive ‘models’ 
constructed progressively integrate the previous systems, creating new problems and, 
thus, generating the need to go on with the modelling process. We have interpreted 
these successive mathematising processes using the ‘milieu and media dialectics’ 
introduced by Chevallard (2004), which has helped us provide a detailed analysis of 
the mathematising step of the modelling process, showing how being a ‘system’ to be 
modelled or a ‘model’ of the system is more related to the function assigned to a 
given object during the modelling process than to its very ‘nature’ (it being 
mathematical or extra-mathematical). The example here described shows how the 
development of a modelling activity, even if initiated with an extra-mathematical 
situation, leads to consider, not only a sequence of new models, but also new and 
enriched systems more and more mathematised. Hence, extra-mathematical and intra-
mathematical modellings appear as strongly intertwined. 
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WHAT ROLES CAN MODELLING PLAY IN 
MULTIDISCIPLINARY TEACHING  

Cand. Scient. Ph.D. Mette Andresen 
Nat. Knowledge Centre for Math. Ed. (NAVIMAT), University College Copenhagen 
This paper presents a research- and development project about mathematics in 
multidisciplinary teaching, running as a pilot in 2008-2009 and planned to run in full 
scale in 2009-2010. Its aim is to inquire how learning potentials in mathematics are 
realised in a number of cases of good practice and, besides, to prepare materials for 
such teaching. The issue of this paper is to report on potentials and drawbacks 
experienced so far in the project and to discuss how to avoid the major drawbacks. 
The discussion takes as its starting point one example of modelling from the project, 
which invites critical discussions in the classroom about the use of mathematical 
models in statistics.   
NEW CHALLENGES TO THE SCHOOL SUBJECT MATHEMATICS 
As one consequence of a reform in 2006 of upper secondary school in Denmark, 
there is a need for examples of good teaching throwing light on and demonstrating 
what works for the learning of mathematics in multidisciplinary contexts. 
Furthermore, the reform’s introduction of multi disciplinarity draws attention to the 
role of mathematics in different types of collaborations: It is not uncommon that 
multidisciplinary projects involve cultural, historical or philosophical aspects which 
are important but not at the heart of mathematics taught in schools. To balance this 
tendency, there is a need for advice and ideas about how to empower the learning of 
what one might call ‘core mathematics’ within a multidisciplinary teaching context.  
THE DASG – NAVIMAT COLLABORATION PROJECT 
This paper presents a research- and development project, which is running as a pilot 
(15 teachers in 4 schools) in 2008-2009 and planned to run in full scale (about 20 
classes) in 2009-2010. The project deals with mathematics in multidisciplinary 
teaching projects. Its aim is to inquire how learning potentials in mathematics are 
realised in a number of cases of good practice and, besides, to prepare materials for 
such teaching. 
The project is conducted in collaboration between Danish Science Gymnasiums 
(DASG)1 and Nat. Knowledge Centre for Math. Ed. (NAVIMAT)2. DASG is a 
network3, incorporating about 36 Danish Upper Secondary Schools (out of 2004). 
Membership implies an obligation for the school to spend resources, in the form of 
teachers’ working hours, on participation in at least one of the 5 – 8 sub-projects, 
which are formulated and announced every year. The sub-projects run for two or 
three years and each one involves about 25 teachers. The collaboration between 
DASG and NAVIMAT encompasses a two-stage project. During the first year, three 
different types of teaching materials will be produced and tried out in a pilot; each of 
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these materials represents the interplay between mathematics and one of the three 
participating faculties Human Sciences, Social Sciences and Natural Sciences. During 
the next stage, the following year, trials and evaluations of revised teaching materials 
from the pilot will be offered to the DASG schools as sub-projects. The revised 
versions of these materials hopefully will be published by NAVIMAT to provide 
inspiration for teachers at the conclusion of the trials. Teams of two to four teachers, 
a researcher in mathematics education and a professional specialist prepare the 
materials. The teams autonomously plan and make arrangements for their work 
during the first year of the project. DASG organises joint seminars for all the teams 
during this stage, for the exchange of ideas and experiences so far.   
The professional specialist’s are picked out depending of the mathematics teachers’ 
choice of subject. The professional specialist’s role in the team is to provide 
inspiration and expertise with regard to the content of the teaching materials. The 
mathematics education researcher provides inspiration and expertise with regard to 
the design of the materials and observes and evaluates the teaching experiment. The 
researcher is responsible for development and formulation of guidelines for good 
practice in multidisciplinary teaching. The team’s teachers design and produce the 
teaching materials and carry out the teaching sequences. The teachers participate in 
the evaluation and discuss the results with the researchers.    
THE POTENTIAL OF MULTI DISCIPLINARITY  
Some of the potentials of multidisciplinary mathematics teaching were discussed in 
(Andresen and Lindenskov 2008).  We see potentials achieving a number of different 
goals.   

i) Students’ motivation and interest. Multi-disciplinary projects can stimulate the 
students’ interest and engagement in mathematics because the usefulness of the 
mathematics taught, and its links with the students’ own, experienced world are in 
constant request in Danish school. Multi-disciplinary projects set the stage for the 
teaching of useful applications of mathematics in authentic, daily life settings. Hence, 
such projects can serve to meet the students’ requests and to improve their desired 
understanding of connections between subjects and the world outside school. This is 
in accordance with Michelsen, Glargaard and Dejgaard (2005 p 33) who point to an 
alternative approach that stresses the importance of modelling activities in an inter-
disciplinary context between the two school subjects physics and mathematics. 
Similarly, R. Filo and M. Yarkoni (2005) reported on a project, which integrated 
geometry and art, aiming at inter-disciplinary learning of parallel concepts. Filo and 
Yarkoni’s assumption in this case was that an enriched concept formation was 
supplied by an advanced status of both subjects in the students’ minds. 

ii) Transfer. The authors report on their observations of the classroom that indicated  
o Students’ awareness of the possibilities to transfer concepts and results 

between subjects 
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o Students’ consciousness about benefits, traps and misunderstandings caused 
by such transfer 

o Students’ reflections upon the relations between the project’s subjects   
The observations were interpreted in accordance with an interactionist’s perspective 
like Heinrich Bauersfeld presents it in (Bauersfeld 1994 p 137-139). Hence, we 
looked for indications of a classroom culture where, for example, arguments from 
one subject (mathematics) were used and accepted in discussions within another 
subject (chemistry or physics) or used to convince other members of the group in 
discussions of problem-solving strategies etc. Besides, we evaluated signs of the 
students’ formation of conceptions. The students seemed to build relations between 
the subjects in parallel with their formation of concepts and new skills belonging to 
the single subject. 

iii)   Implementation. Multi-disciplinarity can be seen as a means to revise the role of 
school mathematics and, thereby, to embed students’ mathematical competence into a 
broad and reflected view of math and science. Compared to cross (or inter)-
disciplinarity or to trans-disciplinarity, multi-disciplinarity has better odds for 
successful implementation because it resonates with the following four main elements 
of Fullan and Hargreaves’s (1992 p 5) framework for understanding teacher 
development; 1) the teachers’ purpose, 2) the teachers as a person, 3) the real world 
context for the teacher’s work and 4) the culture of teaching 
Hence, we argue (Andresen and Lindenskov 2008) that multidisciplinary teaching has 
important potentials for improving students’ motivation and interest and for an 
enhanced transfer between subjects. We expect multidisciplinarity to be successfully 
implemented, and we expect it to serve as a means in the future to support the 
embedding of the students’ competencies into broad and reflected view on 
mathematics.  
MODELLING FOR CONCEPT FORMATION 
In addition to this, the didactical potentials of a multi-disciplinary project rest on the 
role of mathematical modelling and reflections for concept formation. Mathematical 
models in multidisciplinary projects play a double role: on the one hand, the model 
can serve as the link between subjects and daily life, authentic problems etc., dealt 
with above. On the other hand, modelling plays an important role for concept 
formation. The role of modelling for concept formation in learning mathematics is 
described in the domain-specific instruction theory for realistic mathematics 
education, RME. (Gravemeijer and Stephan 2002 p 147ff). From this point of view, 
all mathematical activity concerns modelling, and it gives little meaning to try to 
discern theoretically between to learn, to apply or to develop new mathematics. Strict 
borderlines between the three are not to be drawn. In general, the use of the term 
‘modelling’, therefore, has to be specified, since it depends on the context.  (In this 
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paper, though, we still use the terms in the ‘common way’ sense unless stated 
otherwise.) 
POTENTIAL DRAWBACKS AND HOW TO AVOID THEM 
Teaching multi-disciplinary projects in accordance with the Danish 2006 reform, 
hence, is a promising prospect. We also see some potential drawbacks. In some 
aspects, the impact of multi-disciplinarity on the students’ view on mathematics is 
comparable to the impact of use of computers. The 2006-reform also imposed the 
introduction of compulsory use of computer algebra systems (CAS) in mathematics. 
Obviously, CAS has the potential for a huge extension and development of the 
teaching of models and technical modelling in the sense of comparing a number of 
models and fitting them with a set of data (Andresen 2007a p5). It also has potentials 
to support students’ model recognition and capability to understand and criticize 
authentic use of ready-made models in different contexts.   
Results from our previous research, however, show that in general, the use of CAS 
tends to change focus of attention to the technical and practical aspects of upper 
secondary school mathematics. In general, teaching with a computer is centred upon 
solving tasks, whereas the reading of proofs and theoretical treatments in general are 
carried out without use of computer (Andresen 2006 p 28).  
There is a potential danger that the same trend might direct the multi-disciplinary 
teaching into a skills based view of mathematics by the students, at the expense of 
giving the students a more profound insight into mathematical activities, theory and 
knowledge. To avoid this, I suggest that the students’ more technical and practical 
view on models and modelling, should be balanced by explicit reflections upon the 
use of models and upon the modelling process, that is, upon horizontal and vertical 
mathematizing. 
MODELLING AND MATHEMATICAL REFLECTIONS 
Reflection is the driving force for the process of mathematical modelling in the sense 
of progressive mathematizing (Gravemeijer and Stephan 2002 p 147 ff). Hence, 
Andresen and Froelund (2008) discuss how to make the students’ philosophical 
reflections explicit, as a tool for mathematical reasoning and, thereby, to 
strengthening the students’ consciousness of the art of reflection and of the 
relationship between reflection and learning.  In line with the idea that awareness and 
consciousness about one’s own learning support learning outcome, Andresen and 
Froelund suggest the explication of mathematical reflections as a tool for learning. 
The use of philosophical reflections as a tool for mathematical reasoning was recently 
discussed (Prediger 2007). Prediger’s discussion was based on the stratification 
(Neubrand, 2000) of reflective practice in mathematics into four levels:  

1. Questions at the level of the mathematician concern isolated, mathematical 
details. The questions are meant to deepen the students’ understanding of the 
rise from a situational to a referential model which means that a preliminary or 
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emergent model is to be constructed. At this level objects still are marked by 
the context and, for example, referred to as ‘people’, ‘number of heart attacks’ 
etc.   

2. Questions at the level of the deliberately working mathematician concern 
conscious use of mathematical objects and processes. The questions set focus 
of attention on generalisation of entities and their relations and, thereby, on the 
construction of a model for the case based on the model of the contextualised 
problem. The same type of questions could start discussion after the rise from 
referential level to general level; in the actual case by introduction of several 
distributions etc. The later discussion could lead to the next level of questions: 

3. Questions at the level of the philosopher of mathematics concern mathematical 
methods and applications. Rise from general to formal level tends to happen 
over time, sometimes in a somehow subtle way. In the actual case discussions 
about the range of applicability and validity of hypothesis-test methods etc. 
serves to support the rise and make it more explicit to the students. 

4. Questions at the level of the epistemologist concern the characteristics of 
mathematics compared to and delineated from other sciences. These questions 
relate to activities at the formal level which may be widened by further 
reflections. In the actual case, the multidisciplinary setting itself may lead to 
questions and discussions of the intended type.  

Andresen and Froelund (2008) argue for the teaching of mathematics based on the  
use of a reflection guide containing thought-provoking questions at these four levels.  
A short analysis of the modelling process is prerequisite for the design of a reflection 
guide. The aim of this analysis is to identify potential levels of mathematical activity, 
referring to Gravemeijer’s model which includes four levels: situational, referential, 
general and formal. (Gravemeijer, K. & Stephan, M. (2002). p 159) 
Teaching in a multi-disciplinary setting like in the example, provides a design that 
particularly favours explication of mathematical reflections. The didactical potential 
of such multi-disciplinary teaching, though, depends on its design: the design has to 
ensure that the project’s modelling processes are visible to the students as well as 
providing the opportunity to make students’ mathematical reflections explicit during 
classroom discussion etc.  
ONE EXAMPLE OF THE PILOT’S TOPICS: THE VIOXX CASE 
The materials presented in the following example takes the Vioxx case, described 
below, as its starting point and concentrate on probability theory and statistics in 
mathematics. Preparation of the materials is still ongoing (autumn 2008), based on 
experiences and notes from a pre-pilot teaching experiment carried out in 2007-2008. 
In the pre-pilot, all the project’s lessons were spent in mathematics, although the 
envisioned partner subject was the school subject social science. Philosophical ethics 
or chemistry might also have been appropriate. The teacher with his teaching 
experiences referred to below are from this pre-pilot. 
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The VIOXX case 
Vioxx was a pain-reducing drug produced by Merck, and the case was about the 
statistical estimation of its long-term effects. In such cases it is impossible to carry 
out large-scale trials to determine the serious or long-term effects of drugs such as 
Vioxx. Therefore, when the drug is approved, such trials may be substituted by 
statistical inquiry of the population of users. For such inquiries, though, statistical 
models suitable for large-scale trials have to be modified and in particular, the criteria 
for the acceptance or rejection of hypotheses must be changed. Hence, the Vioxx case 
served as a context for the students in mathematics to study probability value (p-
value), statistical significance and confidence intervals.  
Vioxx, which was withdrawn from the U.S. market in 2004, is part of the class of 
drugs known as nonsteroidal anti-inflammatory drugs (NSAIDs). Vioxx was used to 
reduce pain, inflammation and stiffness caused by osteoarthritis; to manage acute 
pain in adults; to treat migraines and to treat menstrual pain. Merck, the manufacturer 
of Vioxx, announced a voluntary withdrawal of the drug from the U. S. and 
worldwide market, due to safety concerns of an increased risk of cardiovascular 
events (including heart attack and stroke) in patients taking Vioxx.  
According to the U. S. Food and Drug Administration (FDA)’s website5, FDA 
originally approved Vioxx in May 1999.  The original safety database included 
approximately 5000 patients on Vioxx and did not show an increased risk of heart 
attack or stroke.  A second study was primarily designed to look at the side effects of 
Vioxx such as stomach ulcers and bleeding and was submitted to the FDA in June 
2000.  The second study showed that patients taking Vioxx had fewer stomach ulcers 
and bleeding than patients taking naproxen, another NSAID, however, the study also 
showed a greater number of heart attacks in patients taking Vioxx. This second study 
was discussed at a February 2001 Arthritis Advisory Committee and the new safety 
information from this study were added to the labelling for Vioxx in April 2002. 
Merck then began to conduct longer-term trials to obtain more data on the risk of 
heart attack and stroke with long term users of Vioxx. 
Merck’s decision to withdraw Vioxx from the market was based on new data from 
this, later, trial in which Vioxx was compared to placebo (sugar-pill).  The purpose of 
the trial was to see if Vioxx 25 mg was effective in preventing the recurrence of colon 
polyps.  This trial was stopped early because there was an increased risk for serious 
cardiovascular events, such as heart attacks and strokes, first observed after 18 
months of continuous treatment with Vioxx compared with placebo. 
The Vioxx case attracted public attention since a large number of people had been 
taking Vioxx and amongst them, some had heart attacks. Heart attack victims and 
surviving relatives had taken legal action and were, in a number of cases, rewarded. 
For example, John McDarby, 77, and his wife were rewarded a $4.5 million dollar 
verdict and $9 million in punitive damages from a New Jersey jury in one of the first 
Vioxx trial cases against Merck6. The controversial question for judgement about 
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Merck’s responsibility was to determine, whether data were sufficient to validate any 
hypothesis about correlation between Vioxx and the heart attacks.  
Role and content of mathematics lessons 
From the viewpoint of mathematics, Binomial distribution, Poisson distribution and 
Normal distribution were sufficiently strong tools to deal with these issues. Data from 
the original and from the later trials are available on Merck’s website and then, the 
determination rests on decisions about level of significance and the confidence 
intervals. More profound model discussions may concern standards for comparison, 
compatibility and transfer of results etc. 
 In the pre-pilot, the teacher designed a sequence of about twenty lessons. This 
teacher had economy as his minor, so he agreed to spend some time and efforts on the 
inclusion of societal economics aspects in his teaching. The design was based on 
preceding discussions at a two-day seminar on authentic mathematics in upper 
secondary school and, subsequently, in a team with another mathematics teacher; a 
bio statistician and a researcher in mathematics education. This small group gathered 
twice during the semester where the experiment took place, for inspiration, exchange 
of ideas and evaluation. 
The students had no prior experiences with probability or statistics. Consequently, the 
major part of the time was spent on the introduction and training of basic terms and 
relations within these branches. This introduction and training was based on the 
textbook with additional tasks collected from the web. In addition, the team prepared 
a spreadsheet for the students to experiment with distribution, confidence intervals 
and correlation coefficients. 
In parallel, the students learned about the Vioxx case. Different aspects of the case 
were discussed in the class; in particular, the weighting between ethical and 
economical aspects and the role of mathematising in such cases were examined and 
debated. This part of the teaching might have taken place in the lessons on social 
science as well.  
The challenge for the teacher was to combine the following three elements:  

i) The mathematical content: introduction and basic training of terms and 
relations in probability and statistics. The content was taught in line with 
common practice in this class, based on the same textbook. 

ii) The role of mathematics in the Vioxx case. In the Vioxx case the process of 
mathematising, obviously, was an issue of debate because of its implications 
for clients, the Merck Company etc. Thus, the case did not serve as a bare 
illustration of a ‘neutral application’ of mathematics. On the contrary, the 
case intended to draw attention to the modelling process itself. 

iii) A look from outside at the societal role of mathematics. Development, test 
and application of medical treatments are based on the use of bio statistics 
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and play an important role for healthcare at individual and societal levels. 
Though, it implies ethical and economical perspectives. Besides, public 
discussion of these issues may be seen as one element of democracy.  

RESULTS AND OUTCOMES OF THE PRE - PILOT 
The design of revised teaching materials and plans in the pilot will be based on the 
following summary of resulting outcomes related to the bullets i) – iii) above: 
Mathematical Content: During the teaching experiment, the students showed large 
interest in the subject and in the Vioxx case. According to the teacher, the students 
were so eager to understand and to feel comfortable with the mathematical terms and 
relations and as a consequence, the class had to spend more time than expected on the 
technical-mathematical part of the course. For example, they spent six lessons just on 
working with level of significance. The teacher noted that this part of the sequence 
worked very well for the students. 
Mathematical Modelling:  The teacher indicated that the discussions stayed at the 
level of ready-made models. No attempts were made to modify the binomial 
distribution or to critically sort out the website’s data. Modelling as such appeared 
not to be self-explanatory; on the contrary, every step had to be pointed out explicitly 
if the students were expected to be aware of it. For example, it was complicated for 
the students to make mathematical decisions, such as stating the level of significance. 
The teaching experiment, evidently, intended to demonstrate exactly that point to the 
students; so the stage was set to go deeper into the – complex - questions. The class 
spent time on changing the levels of significance and studied the consequences and 
effects. But they did not have time to follow these studies up.   
Societal Role of mathematics: The teacher had the impression that the envisioned 
‘look from outside’ on mathematics and its role could give input to very interesting 
and fruitful lessons on societal economy, law and on issues about democracy, public 
opinion and politics. It could be great, according to the teacher, to arrange a replay of 
one of the big hearings as a game with students arguing for and against. To complete 
this, teachers from both subjects should collaborate. The instructional materials for 
such a replay could be found on the various web sites but it should, preferably, be 
prepared in the – enlarged – team, including a teacher of social sciences.   
GUIDELINES FOR THE PILOT 
The big challenge for the pilot project will be to make the three elements, listed above 
as a coherent and convincing whole. In the pre- pilot part i), the mathematics content, 
was marked by its status at the introduction. In the pilot the sequence, consequently, 
will start only after the students’ introduction to basic probability and statistics. They 
will then be able to concentrate on the role of mathematics and to work deliberately 
with the involved models and modelling. Connections, then, should be established 
more easily between the mathematical activities and the other elements of the Vioxx 
case. Such connections will be established, based on the teacher’s guiding questions 
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and sub tasks, focusing on specific aspects of the distribution, the level of 
significance or the parameters influencing the basic probabilities etc. combined with 
special points of interest from a social science point of view.   
To sum up, the teacher recommended that part i) precede the proper multidisciplinary 
part which should then combine parts ii) and iii). The complete project should build 
up to a student role play of one of the big hearings, with arguments and a final verdict 
in the form of a verdict. 
Further, preparation of a reflection guide should be included in the design of the pilot. 
The reflection guide should contain thought- provoking questions, which aim to 
stimulate the students’ mathematical reflections and put them in focus of attention. 
The guide should be tailored to fit with the teaching materials, not vice versa. 
Preparation of one example of a guide is outlined in the following – a more detailed 
example may be found in (Andresen 2008). 
 
CONCLUSION 
In this actual case, the reflection guide’s questions to the students can give rise to 
reflections upon the modelling process as a whole, as well as reflections upon the 
single parameters and how they are related, what they stand for etc. (level one and 
two) and, besides, to reflections upon smaller parts of the modelling process picked 
out to be studied separately. So, the scene is successfully set for reflections at all four 
levels in Prediger/Neubrand’s model. Hence, it may be concluded that even if the 
teacher chooses a design where the technical mathematical part of the sequence 
precedes the other parts, and even if the VIOXX case in itself attracts the students’ 
attention, it is still possible to choose a design that 1) makes the mathematical 
content, the role of mathematics in the Vioxx case and the societal role of 
mathematics as a coherent and convincing whole and 2) gives the students a profound 
insight into mathematical activities, theory and knowledge.  
REFERENCES 
Andresen, M. (2006). Taking advantage of computer use for increased flexibility of 

mathematical conceptions. Danish University of Education. 
Andresen, M. (2007a). Modelling with the Software 'Derive' to Support a 

Constructivist Approach to Teaching. 15 pages. I: International Electronic Journal 
of Mathematics Education, 2(1). ISSN: 1306-3030 http://www.iejme.com 

Andresen, M. (2008). Teaching to reinforce the bonds between modelling and 
reflecting. Accepted for Topic Study Group 21: Mathematical applications and 
modelling in the teaching and learning of mathematics. To appear in proceedings 
from ICME11, 6.-13. July 2008 Monterray, Mexico,  

Andresen, M. and Froelund, S. (2008). Philosophical reflections made explicit as a 
tool for mathematical reasoning.  11 pages. In: Proceedings of 5th International 

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2204

http://www.iejme.com/


 

 

 

 

Colloquium on the Didactics of Mathematics, University of Crete, 17 - 19 April 
2008, Crete. 

Andresen, M., Lindenskov, L. (2008) New roles for mathematics in multi-
disciplinary, upper secondary school projects.(accepted) In: ZDM - The 
International Journal on Mathematics Education vol.41,no.1 

Bauersfeld, H. (1994). Theoretical perspectives on interaction in the mathematics 
classroom. In Biehler, R., Scholz, R. W., Strässer, R. and Winkelman, B. (Eds.). 
Didactics of Mathematics as a scientific discipline. Kluwer Academic Publishers, 
Dordrecht. Pp 133-146. 

Filo, R., Yarkoni, M. (2005). A.Geomart"* – Geometry Reflected Through Art. In: 
Beckmann, A., Michelsen, C., Sriraman, B. (Eds.). Proceedings of The First 
International Symposium of Mathematics and its Connections to the Arts and 
Sciences. 19th – 21st May 2005, Schwäbisch Gmünd, Germany. Berlin: Euro 
Verlag Franzbecker.  

Fullan, M., Hargreaves, A. (1992) (Eds.). Teacher Development and Educational 
change. RoutledgeFalmer, London. 

Gravemeijer, K., Lehrer, R., van Oers, B. and Verschaffel, L. (2002) (eds.) 
Symbolizing, modelling and tool use in mathematics education. Kluwer Academic 
Publishers, Dordrecht. 

Gravemeijer, K. and Stephan, M. (2002) Emergent models as an instructional design 
heuristic. In Gravemeijer et al. pp145-169 

Michelsen, C., Glargaard, N. and Dejgaard, J. (2005) Interdisciplinary competences – 
Integrating mathematics and subjects of natural sciences. In M. Anaya and C. 
Michelsen (Eds.), Relations between mathematics and other subjects of science or 
art – Proceedings of Topic Study Group 21 at ICME-10, 10th International 
Congress on Mathematics Education, Copenhagen, Denmark, 2004  (Pp 32-37). 

Neubrand, Michael (2000). Reflecting as a Didaktik Construction, in: Westbury, 
Hopmann & Riquarts Teaching as a Reflective Practice. The German Didaktik 
Tradition, New Jersey. 

Prediger, S. (2007). Philosophical reflections in mathematics classrooms. In: 
François, K. and van Bendegem, J.- P. pp 43-58 

                                           
1 http://www.emu.dk/gym/tvaers/sciencegym/english.html (loc. 22 May 2008) 
2 www.navimat.dk (in Danish, loc. 22 May 2008) 
3 The Lundbeck Foundation in 2006 provided a five year sponsorship for the DASG networks activities3 and each 
gymnasium in DASG has applied for its membership on a voluntary basis. 
4 155 general and 42 technical upper secondary schools (gymnasiums) 
5 http://www.fda.gov/cder/drug/infopage/vioxx/vioxxQA.htm (loc. June 2008) 
6 http://www.weitzlux.com/vioxx/trial_402790.html (loc. June 2008) 

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2205

http://www.mathematik.ph-gmuend.de/macas/#_ftn1
http://www.emu.dk/gym/tvaers/sciencegym/english.html
http://www.navimat.dk/
http://www.fda.gov/cder/drug/infopage/vioxx/vioxxQA.htm
http://www.weitzlux.com/vioxx/trial_402790.html


MODELLING IN ENVIRONMENTS WITHOUT NUMBERS –  
A CASE STUDY 
Roxana Grigoraş  

University of Bremen, Germany 
 

In order to study how students are mathematising in modelling situations, students' 
work on problems having no obvious mathematical character is investigated. The 
task design aims at preventing students from concentrating on calculations, but 
challenges them to get involved in social interactions, where they argue and defend 
their ideas. The students' approaches to these mathematisation tasks are analysed; in 
particular it is discussed to what extent the students work mathematically. The 
concept of fundamental mathematical ideas is used in order to structure the way 
mathematics occurs in the students' works. 
Keywords: modelling, mathematising, fundamental ideas, approximation, measuring 

INTRODUCTION 
In mathematics education, word problems are regarded as that type of mathematical 
exercises where information is provided in narrative, descriptive form, rather than in 
terms of numbers, variables, and so on. In extension, modelling problems are word 
problem solving activities, which involve not only handling data or calculating, but 
also observing patterns, testing conjectures and estimations of results (Schoenfeld, 
1992). Tightly connected with modelling is the process of mathematising, i.e. the 
structuring of reality by mathematical means (Freudenthal, 1991). The aim of this 
case study is to understand and identify how mathematising emerges while students 
work on certain tasks of non-obvious mathematical nature. 

THEORETICAL FRAMEWORK  
Mathematising and modelling 
Modelling can be viewed as linking the two sides of mathematics, namely its 
grounding in aspects of reality - and the development of abstract formal structures 
(Greer, 1997). In the modelling cycle described by Maaß (2006) (originating from 
Blum) reality and mathematics are regarded as distinct environments, and the process 
of modelling includes a number of phases between and within these 'worlds'. The 
'step' in which the real-world model is translated into mathematics, leading to a 
mathematical model of the original situation is regarded as mathematising (Kaiser, 
2006).  
As working definition, mathematising is denoted here as the activity or process of 
representing and structuring real world artefacts and/or situations by mathematical 

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2206



means. The overall aim is to enable a logical, traceable and rational treatment of the 
given artefacts and situations with the help of mathematical knowledge and tools. 
Modelling asks for certain cognitive demands, being determined by competencies 
like designing and applying problem solving strategies, arguing or representing, but it 
involves also communication skills, as well as real life knowledge (Blum and 
Borromeo-Ferri, 2007, Kaiser, 2006). Unlike the majority of problem situations, 

modeling activities are inherently social experiences, where students work in small teams 
to develop a product that is explicitly shareable. Numerous questions, issues, conflicts 
resolutions, and revisions arise as students develop, assess, and prepare to communicate 
their products. (English and Doerr, 2004, p. 3) 

At the same time, mathematising is part of the modelling process and it is surely not 
possible to define neatly a border between mathematics and reality. They are 
interfering and depend on the contextual situation.  

The role of context is very important in mathematical modeling, since modeling requires 
a context in which to 'frame' the problem and 'develop' the mathematics. (Mousoulides, 
Sriraman and Christou 2007, p. 29) 

According to Freudenthal, mathematising is the human activity consisting in 
organising matters from reality or mathematical matters, and “there is no mathematics 
without mathematising”. Later on, Treffers (1987) treated, in an educational context, 
the idea of two ways of mathematising, which led to a reformulation by Freudenthal 
in terms of 'horizontal' and 'vertical' mathematisation. In the horizontal 
mathematisation, mathematical tools are promoted and used to structure and solve a 
real-life problem, whereas vertical mathematisation supposes reorganisations and 
operations executed by students within mathematics. Adopting Freudenthal's (1991) 
formulation, mathematising horizontally means to go from the real world to the world 
of symbols, while mathematising vertically means to move within the symbols' 
world. 
Maria van den Heuvel-Panhuizen studied the didactical use of models, which in 
Realistic Mathematics Education (RME) are 

seen as representations of problem situations, which necessarily reflect essential aspects 
of mathematical concepts and structures that are relevant for the problem situation, but 
that can have various manifestations. (Maria van den Heuvel-Panhuizen, 2003, p. 13) 

Modelling always involves mathematising, which is regarded as the activity of 
observing, structuring and interpreting the world by means of mathematical models. 
Since the promotion of critical thinking by students represents one of the main 
pedagogical aims, “reflexive discussions amongst the students within the modelling 
process are seen as an indispensable part of the modelling process” (Kaiser and 
Sriraman, 2006).  
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Fundamental mathematical ideas 
Often, it is no question what “mathematisation” is. If students work in a modelling 
framework, it cannot be expected that they develop a mathematical idea themselves if 
they are novices. Since they do not have formed a clear picture of mathematics, it is 
likely to see elements of different mathematical cultures in their modelling 
framework: mathematics in every day life or social practice, mathematics as a toolbox 
for applications, mathematics in school, and mathematics as a science. 
Fundamental ideas in mathematics may serve as a framework in this setting because 
they connect different mathematical cultures (Schweiger, 2006). Fundamental ideas 
recur in four dimensions: the historical development of mathematics (time 
dimension), in different areas of mathematics (horizontal dimension), at different 
levels (vertical dimension), in everyday activities (human dimension). Schweiger lists 
a synopsis of fundamental mathematical ideas from different sources: algorithm, 
characterisation, combining, designing, exhaustion/approximation, explaining, 
function, geometrisation, infinity, invariance, linearisation, locating, measuring, 
modelling, number/counting, optimality, playing, probability, shaping. Since 
modelling is discussed in detail and consists of the worked out tasks, it will not be 
considered in the sequel. 
The main aim of this investigation is to see to what extent these fundamental ideas 
can be recognised in the answers to the rather open-ended Mars task (see next 
section). The overall pedagogical aim is to design such tasks that students are led to 
the consideration of fundamental mathematical ideas in a natural way. 

EMPIRICAL SETTING 
The task of non-obvious mathematical character that students have been given to 
work out is as follows:  
“Imagine you are a scientist at NASA and you have a picture of the planet Mars. This 
picture shows different spots which indicate craters. These craters were obviously 
generated by impacts of several meteorites. It is possible that such an impact 

generates more craters. 
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Fig. 1: Picture of the planet Mars depicting a crater 

 

1. Write to a colleague a half-page report about the spots in Figure 1. 
2. Describe, respectively label the spots. 
3. Find out how the position of each spot could be described. 
4. How would you specify the relationships between spots? 
5. Could you order the spots by means of mathematical criteria? How?” 

The task was given to 13-14 - aged students - in group-work in the classroom 
environment. Teams of three students were video-taped while working. The present 
study focuses only on one working group. No intervention from the teacher's side 
took place, unless students wanted to clarify the formulation of the task.  
Data analysis 

In the following excerpt, one can see a typical mathematical debate (see Figure 3).  
32 J  So, which points are farthest away from each other?... K13 and K2... 
33 A  K10 and K11... come, we measure them! 
34 J  K13 and K2 are farther away from each other... 
35 A  We take the middle point of the crater. 
36 F  This is 8... 
37 A  7.5... 
38 J  They are both 8. 
39 F   Where from, do you mean? 
40 A  We start from the middle point. 
41 F  Yes, I mean... which one do you mean? 
42 A  K10 and K11. 
43 J  K2 and K13 are a bit more... 
44 F  Yes, 0.6cm 

The students formulated themselves a small task, generated by the idea of finding 
'extreme' points. This yielded the need to measure (line 33, as verifying action), 
which was not really unproblematic, since the 'spots' are of irregular form. J raised 
then the idea of comparing, which brought student A to the decision of taking the 
middle point. That means implicitly that the spots were seen as circles (or even 
ellipse, though they most probably did not meet it so far as subject in school). The 
idea of considering the middle point was proposed (line 35), but apparently no 
attitude was taken by the other two team-colleagues. Nevertheless, the idea was 
somehow tacitly adopted and they measured (lines 36, 37, 38) distances between 
points, which involves the assumption that the middle point was taken. In line 40, 
student A reminded of the middle point, but again no certain remark in this sense was 
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made by his colleagues. However, the idea was carried out, and after some 
approximation trials (lines 36, 37), they obtained a very small result, namely that K2 
and K13 were the searched points; thus, their initial claim was checked. 
Another mathematical idea arose when mentioning 'coordinate system' in line 69. 

67 J  This is a brilliant idea! 
68 A  What? 
69 J  This with the coordinate system... It came from me... 
70 A  It came from me!!! 
71 J  So, if all the points have now to be mapped there... We can write, yes, 

Z-point, G-point... and then somehow one-two maps... or so 
72 A  Do we now want to mark all the points? 
73 F&J No! 
74 J  We do just an example. K11 is simple.. 
75 F  No, also K10... K10 is also simple... that is 1... ehh... 8... 1-8 

The students became quite enthusiastic about the idea. They appreciated it as being 
'brilliant' and two of the students were almost simultaneously claiming it. They saw 
this as a mathematical criterion for describing the position of the spots, but the idea 
offered them an expanded perspective and view, which six minutes later (see next 
excerpt) brought A (who had the idea, in fact) to the vision of a virtual map. 
Further on students wanted to perform measurements, but it was not really clear for 
them how, probably because the exact corresponding geometrical figure associated to 
the 'spots' was not explicitly debated and agreed on.  

93 A  ... Measure the dimension... 
94 J  The dimension... 
95 F  The dimension... 
96 A  We cannot measure that, a crater goes also up... doesn't it? ... and also 

down... 
97 J  We cannot do that, because we have no photo. 
98 F  You now want to position this somehow like this (placing the set 

square perpendicularly on a crater) and measure the dimension?... 
Now tell me shortly how should we get this? 

99 A  ... in order to build a virtual map!... Measure the volume and building 
a virtual map. 

 

WORKING GROUP 11

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2210



Fig. 2: Student's transfer from 2-D to 3-D 

In fact, A had something indefinite in mind, following from the idea of coordinate 
system, an idea to construct a virtual map, which would have also allowed 
calculations for the volume of the crater. His colleagues showed themselves quite 
sceptical with respect to the idea, they faced a lack of understanding of A's mental 
representation, then the idea vanished, and A did not bring further arguments for 
sustaining it. The basis of A's idea of coordinate system seemed to be the experience 
he probably had with the geographical atlas or the moving of chess pieces, which is 
expressed in the form of horizontal coordinate and its corresponding vertical one.  It 
might also be that A's idea of virtual map is inspired by computer games. Student A 
realised a mental transfer from 2-D to 3-D, unfortunately without a further 
development. 
Findings on used mathematical ideas 

As main fundamental ideas, approximation, geometrisation, locating, measuring, 
number/counting, and optimality were observed several times. The students 
approximated the craters with a circle. They did not state it explicitly, but this 
assumption was carried out during their work. The middle point was only roughly 
marked. Geometric shapes were developed, which helped students to describe the 
situation. These were not named explicitly, but the concepts of distance, area and 
volume were used by students. A coordinate system was used to locate the craters. 
Some groups described the location of the craters absolutely, some relative to a 
coordinate system or somehow relative to other craters in a fancy way. Measuring 
appeared several times and was discussed intensively. The idea was adopted for 
measuring distances between the craters, as well as the size of the craters. One of the 
very first actions of the groups was to count/order the craters. In the “relations” (see 
task), optimality occurs, e.g. as the closest/furthest distances between craters. 

Some students chose to label the spots in a rather mathematical way, as seen in Figure 
3. They also had the idea to give the name 'N250i' to a probe, as being the instrument 
used to observe the given task phenomena, i.e. the generation of the craters. 

Fig. 3: Students' mathematical ideas for describing positions of craters 
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The task was formulated in such a way that it was not clear to the students what the 
actual aim of the task was. In fact, one might investigate the given data with different 
goals in mind. For example, one might want to have an estimate of the number of 
meteorites creating the craters (on falling apart), which leads to a clustering problem, 
or one might just want to have a precise map of the craters, yielding a position 
measuring mainly. It seems that the students interpreted the task as having this latter 
aim. Basically, there is no 'ideal' solution. The students had to come up with their 
own interpretation of the goal. The quality of their answers could be judged by the 
'depth' of their analysis. The task allows an analysis on different levels of 
sophistication.  

The theoretical framework of Freudenthal, in particular horizontal mathematisation, 
could be recognised in students' answers, as is apparent from the coordinates they 
introduced. However, vertical mathematisation, relating these coordinates, for 
example in a clustering procedure, did not take place. This is probably due to the fact 
that no specific goal was mentioned, and therefore students were not guided to 
mathematise in a vertical direction. Their considerations stayed on the level of 
description. 

As characteristic of the modelling processes, the frequent moving between 
environments, see also (Grigoraş and Halverscheid, 2008), seemed to happen not 
randomly, but generated by certain 'needs' (e.g. additional data demands). During the 
discussions towards finding a solution for the problem in a systematic way, students 
posed questions and set themselves small tasks.  

Besides the initial idea of naming the spots, which might not necessarily be a 
mathematical act, but rather seen as usual labelling (see Figure 3), some students 
proposed a coordinate system as idea of describing the position of the 'spots', which is 
a mathematising action. Further on, they started to calculate positions of several 
'spots', but finally they decided to give just examples, e.g. 'spot' K10 having 1 as 
horizontal coordinate and 8 as vertical one (see second excerpt of the previous 
section). The measuring idea was also found in their talks, and students debated on it 
for some time, while trying to find out which spots are in extremal position. These 
acts count as at least two mathematisation achievements.   

In this case, but also in several previous surveys carried out on tasks without 
numbers, it was seen that many fundamental ideas occurred as mathematisation acts. 
However, not all of these ideas lead to intensive mathematical modelling activities. 
As for the task discussed here, deeper mathematical activities were started concerning 
measuring and optimality. The students proceeded by taking the set square or ruler 
and measured the distance between the 'spots', whereas for the other mentioned 
fundamental ideas no mathematical activities were performed. Students also handled 
the approximation of spots by circles in a mathematical manner, and measured 
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distances between them by taking the middle points of the 'spots'. Ideas like radius, 
circumference, volume (even unclear whether applicable in this case) completed the 
mathematical 'picture' of what students built up around the 'spots'.  
A finer look at the last excerpt 
The situation may seem at a first sight somehow simplistic, such as students using 
mathematics when working out tasks without numbers. But it is interesting to  
examine the subtle aspects and reasons behind the usage of mathematics. This is done 
here with respect to the question whether and how the need of mathematising occurs. 
It should be remarked that simplification in various forms (schema, drawings, etc.) is 
a characteristic of modelling itself. For students in their age, modelling rests on the 
principle of representing a situation type in a simplified, general manner which 
allows extended applications.  
While tackling the task of finding mathematical criteria, the students approached 
ideas one by one like finding distances (they coped well with planning and measuring 
distances between extremal 'spots'), coordinate system, then finally the volume, then 
they stopped doing further things, since their 'tools' for calculating things were not 
sufficient. Mathematical concepts used by students - distance, area (implicit, through 
the coordinate system and middle point of a plane figure), and volume originated 
from a need of simplification of the initially given problem. Therefore the 
approximation of spots by circles was done, though never explicitly stated.  
The idea of finding distances between extremal 'spots' was conducted through 
measuring, since students found something they could do. Somewhat further, they 
came to the idea of coordinate system, by which they were quite absorbed and dealt 
successfully with in the 2-D situation. Then the dimension was mentioned, but the 
students faced up to some problems with the data, that seemed not to suffice (line 97 
in the transcript). Once they met this data demand, students were confronted with an 
unclear situation of the model, since they did not know which mathematical object 
would fit to that stage, where a virtual map was proposed. At that point, their debate 
stopped, hence no simplification was achieved. Therefore the 3-D situation failed, 
because of a lack of tools and/or data. 

DISCUSSION  

It is intriguing in this case to study how fundamental mathematical ideas occurred 
through mathematising. There were fundamental ideas leading to the model (biggest, 
smallest, extreme, measure). But how did students build a modelling idea? It seems 
they looked in mathematics for 'tools' which would allow them to work out a model.  

When discussing the real situation, students emitted sometimes mathematical ideas, 
e.g. the idea of measuring, which means that a transfer to mathematics took place. 
There then were two possibilities: either they remained within mathematics and 
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performed further on, or they turned back to the real situation. Such frequent forth-
back transitions are analysed in (Borromeo-Ferri, 2007). The decision (often 
unconsciously taken) whether to stay or not within mathematics seemed to be 
influenced and caused by a number of factors, as described in the following. We refer 
to the real situation as being data situation, as the existing task formulation students 
have at their disposal. When being situated in mathematics, there could be tools, 
knowledge, experience, motivation, among others, all of these determining whether 
students stayed and worked with and within mathematics, or they turned again to data 
and tried to handle them and searched for next steps. If one or more of these items 
were missing and students were facing a dilemma in performing further on with and 
within mathematics, then they came back to the data. 

The analysis of the present study showed that while acquiring a real modelling 
experience, students produced many fundamental mathematical ideas, but when 
confronted with a lack of tools, knowledge, or even experience, their activities 
stopped at the level of ideas' supply.  

As for a future analysis, a first hypothesis is that a modelling task developes through 
fundamental ideas. A second hypothesis is that mathematics is reached by means of 
assumptions, which students proposed and agreed on while taking decisions during 
solving a modelling problem. It would be interesting to examine how mathematising 
differs according to the mathematical nature of the task formulation. 
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MODELLING ACTIVITIES WHILE DOING EXPERIMENTS TO 
DISCOVER THE CONCEPT OF VARIABLE 

Simon Zell and Astrid Beckmann 
University of Education Schwaebisch Gmuend 

Physical experiments have a great potential in math lessons. Students discover the 
aspects of the concept of variable and while doing that run through the whole 
modelling cycle. In this paper we show how physical experiments can contribute to 
the modelling activities and the concept of variable and how scientific issues 
influence the students’ conceptions based on interviews with them. 

MODELLING AND PHYSICAL EXPERIMENTS 
In the PISA framework the authors emphasize the functional use of mathematics. 
Students should discover problems, formulate them and should then be able to solve 
and interpret them. While doing that different mathematical contents and 
competencies are activated. One of these competencies is modelling, which has a 
central place within the framework: 

This involves structuring the field or situation to be modelled; translating reality into 
mathematical structures; interpreting mathematical models in terms of reality; working 
with a mathematical model; validating the model; reflecting, analysing and offering a 
critique of a model and its results; communicating about the model and its results 
(including the limitations of such results); and monitoring and controlling the modelling 
process. 

Mathematics is a tool often used in real world and in Science. The role of 
mathematics is predominantly brought through the building, employment and 
assessment of mathematical models (Michelsen, 2006). 
How can physical experiments contribute to modelling activities in math lessons? If 
you look at the different steps mentioned above, physical experiments have a great 
potential. The experiments are derived from a phenomenon of everyday life and 
represent an idealized setting, considering certain factors only.  Students doing 
physical experiments work with concrete terms. These terms are in a functional 
relationship with each other. If you want to describe them in a quantitative way you 
have to translate that relationship into mathematical structures. All kind of 
representations (graph, tables, etc.) can be applied. Students have to communicate 
about the phenomenon and the correspondent formula. A modelled formula can be 
checked directly through the measuring values and by new measurements. Because of 
measurement errors the formula is never correct. So it is natural to talk about the 
correctness and the limitations of the model and its results. If one slightly changes the 
setting of the experiment, the formula might change. Hence there is a strong emphasis 
on the validation process which often plays a minor role in the modelling process. 
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THE CONCEPT OF VARIABLE – ASPECTS 
Malle (1986) differentiates three different aspects of variables: 

 Variable as an object (Gegenstandsaspekt) 
A variable stands for an unknown item or an unknown object. 

 Placeholder aspect (Einsetzaspekt) 
A variable means a placeholder, which you can substitute through a number. 

 Calculational aspect (Kalkülaspekt) 
A variable stands for a meaningless symbol, with which you can apply certain 
rules. 

He differentiates variable as an object into single number aspect and interval aspect. 
Single number aspect means an arbitrary but fixed number within a given domain. 
Variables which match to the interval aspect represent the whole domain. Within that 
interval aspect it can be differentiated between simultaneous aspect (representation at 
the same time) or changing aspect (representation in succession). 
On the other hand variable as an object can be classified by a dynamic and a static 
component. Dynamic component means a changing number and static component 
means a specific unknown, i.e. it might change in another context. 
If you compare the decomposition of the concept of variable according to Trigueros 
et. al (1996) into generalized number (representing a general entity, which can 
assume any value), specific constant (representing a constant value, which might 
change in another situation) and variable in a functional relationship, generalized 
number can be attributed to variable as an object, which can be represented at the 
same time or in succession. Specific constant is equivalent to the static component. 
To conceptualize variables in a functional relationship, knowledge of dynamic and 
static components is needed.  
Malle demands among other things that in the beginning emphasis should be put to 
variable as an object and to the conception and interpretation of formulas. 

THE CONCEPT OF VARIABLE AND PHYSICAL EXPERIMENTS 
Michelsen (2006) proposes that by expanding the domain, mathematical concepts can 
be developed in a more practical and coherent structure, since 

the student’s conceptions of a mathematical concept is determined by the set of specific 
domains in which that concept has been introduced for the student. 

If students do physical experiments they can identify variables with concrete terms. 
That’s why these variables can be classified to the aspect variable as an object. 
Students’ major problem seeing variables as symbols to be manipulated (Schoenfeld 
& Arcavi, 1988) can therefore be diminished. Both dynamic and static components 
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are touched since the values of the measurands change with each new measurement 
and the (anti-)proportional constant is constant in the same context. The possible 
values of the measurands determine the domain of the corresponding variable. The 
(anti-)proportional constants mostly are representatives of a discrete set.  
By experimenting, students can discover the aspects of the concept of variable before 
they are properly defined in class. This is in accordance to Freudenthal’s philosophy 
that context problems and real life problems are used to constitute and apply 
mathematical concepts. The aspects don’t have to be touched in the abstract level at 
once. If they are touched on a descriptive level that can be enough. One example is 
the functional relationship of two measurands. While doing the experiment, students 
actively discover that change of one measurand causes a change of the other 
measurand. Especially, weaker students have problems to interpret this into a 
formula. But if you present a formula and give further explanations after the 
experiments the formula will not seem that abstract anymore because they can 
identify the formula with their experiences made while doing the experiment. 

PHYSICAL EXPERIMENTS IN MATHEMATICS LESSON 
In the above sections a few advantages and commonalities have been shown. But 
there are also subject specific characteristics, which have to be taken into 
consideration. In physics math is mostly seen as a tool for describing phenomena in a 
quantitative way. On the other hand mathematicians don’t care how data was gained 
in detail; their only interest is the correctness of that data. Algebra is a correct theory. 
Experiments are never exact, because measurement errors always occur, even if they 
are very small. If you want to find relationships those measurement errors have to be 
kept in mind. School physics shows that all the time; school math only in a few fields. 
Therefore students have to be prepared to handle measurement errors. 
If one wants to use experiments for mathematical concepts, emphasis should be given 
to the common and mathematical aspects. That means 

 Experiments should have an easy setting 
Mathematics’ interest is data and not how to get data. Therefore the experiment 
should be done with few materials and measured quickly allowing students to 
concentrate more on the math. 

 Intervals of measurement errors should be small 
To find the relationship between the measurands quickly, there should be (if 
possible) no chances for systematic measurement errors and small intervals for 
random ones. 

 The physical terms should be familiar to the students 
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This doesn’t mean that physical terms not covered in physics class are 
forbidden. It is legitimate to use terms which are familiar in every-day life, like 
pressure, volume, temperature and so on. 

 The interval of the measurands should be suitable 
Especially in experiments which contain an antiproportional relationship 
intervals should be chosen where the constant product stands out. Otherwise 
students may see (with consideration of measurement errors) a proportional 
relationship. 

Physical experiments can be used within interdisciplinary lessons. This can be in 
separate classes, i.e. each class covers subject specific aspects; or for a short period in 
a common class in which all aspects are covered. On overview of different forms of 
cooperation can be found in Beckmann (2003, p. 9ff). 

CONCEPTUALISATION IN SCHOOL 
The use of experiments to introduce the concept of variable has been tested on 90 
students of 7th grade in three different schools. They were required to do three out of 
five physical experiments. After the experiments, the concepts of variable and term 
were introduced formally. This was done to see if physical experiments can be 
applied in class and which experiments are appropriate. To get a deeper insight of the 
concept of variable and of reflection and validation of their modelled formula, 
another examination was done in spring 2008. 18 Students of 6th grade attending a 
German Gymnasium were required to do one experiment out of three working in 
groups of two. These 18 students knew the placeholder aspect, i.e. variables can be 
substituted by numbers, and that variables stand for a number which is unknown and 
changes continuously. Theoretical knowledge of the concept of variable concerning 
the object aspect hasn’t taught yet. While doing the experiments, they were observed 
by students of the University of Education Schwaebisch Gmuend. After the 
experiments the 6th graders were interviewed by the students. The main research 
questions covered the aspects of the concept of variable touched by the experiment 
and of how convinced the students were of the formula found. The second question is 
to determine students’ abilities to reflect and validate their results. Problem oriented 
interviews were chosen, so students could talk freely and were only slightly guided 
by the interviewers through open questions. The interviews were transcribed. 
Emotional factors like emphasizing words etc. were not considered during the process 
of transcription. Students’ answers were categorized in the different aspects of 
variable and how they reflected the validity of their modelled formula. 
The following experiments were done by the students: 

 Buoyancy 
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The students measure the force of different masses in air and in water and 
conceptualize a formula which describes a proportional relationship between 
the forces in air and in water. 

 Thermal expansion of a liquid 
The students measure the heights of an uncalibrated thermometer at different 
temperatures. Then they conceptualize a formula which describes a 
proportional relationship between difference of heights and difference of 
temperatures. 

 Law of Boyle-Mariotte 
The students measure the pressure as well as position or volume of a piston. 
Then they conceptualize a formula which describes an antiproportional 
relationship between pressure respective to position or volume. 

The design of the instructional sheets allows students to work by themselves. 
Assistance is only given, if students are at a loss and if tasks are essential for the 
following tasks. In that case hints were given and written down for consideration of 
students’ results. No solution of tasks was given to the students.  
The instructional sheets start with an impulse from real life. It shall motivate the 
students towards the experiment and shall put the experiment in a real setting. 
Through measuring different measurands students shall qualitatively experience the 
functional relationship of the two measurands. After measuring at least six different 
values, students are asked to describe the relationship first in their own words and 
then through a formula. This formula shall then be used to calculate measurands. 
These values shall be checked by looking at the values they measured before. This is 
to reflect their formula found. After that there follow questions concerning the 
domain of the variables and their properties. To touch the specific constant and 
change of formula in different contexts they were asked how the formula changes if 
one alters the setting of the experiment followed by a question for a more general 
formula. In the three classes students had to write a protocol containing the most 
important aspects. The 6th graders didn’t have to write a protocol since they were 
interviewed after the experiment.  

RESULTS 
Concept of variable 
Variable as an object according to Malle is touched. Students can identify the 
measurands with their chosen variables. A few examples: 

Buoyancy experiment: 

I2: Can you tell how you recognize (the experiment in your formula)? 

S6: yes, you see the statement for air and for water. And yes the result, yes… 
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Here the group chose word variables. If they didn’t choose words they chose the units 
of the measurands. 

Boyle-Mariotte experiment 

I1: what are those cm? What do they stand for? 

S1: mmh here at that strip for example 6cm 

I1: mmhmm 

S1: so for the respective number 

I1: and the x? 

S1: for the respective pressure 

Here the student chose the units of the physical terms as the name of his variables. 
Since he didn’t know the unit of pressure, he chose x.  
The functional relationship between the two variables has been recognized by the 
students both statically and dynamically.  

Buoyancy experiment 

S4: Then we agreed that if you divide air by water, the result is always the 
same. It doesn’t matter, if there are 1, 2,3,4,5 cylinders. The result is always 
1.2. 

Boyle-Mariotte experiment 

I1: What have you found out? 

S1: yes, that device. If you turn further that thing moves forward and the further 
it moves the measuring number gets smaller and the pressure gets higher. 

Thermal expansion experiment 

S17: We had to find formulas. These were height times x is difference of 
temperature and difference of temperature divided by x is then height and 
difference of temperature divided by height is then x. 

[…] 

I8: and what changes in general in your formula? 

S17: temperature and the head of liquid there, both get higher the more water 
you add. 

Modelling process 
Students went through the first part of the modelling cycle by examining the 
phenomenon and structuring it in a formula. That has been done on different levels. 
Weaker students could only explain in their own words and the strongest students 
have even presented three equivalent formulas. 
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To check how they reflected their formula students were asked if their findings are 
valid, since their measured values and the corresponding quotients/products weren’t 
constant. They differed in small intervals due to random measurement errors. Before 
the experiments began, the instructor told the students that one could never measure 
exactly and that they had to keep that in mind. That is not easy as the following 
example shows: 

Buoyancy experiment 

S6: In the beginning I thought that I had to take the numbers which we had 
measured and then I thought for a longer time, if that was right. 

After they accepted the influence of measurement errors, they rounded the quotients 
and then all but one were constant. Then they were convinced about the constant 
quotient. 

I2: Did you notice anything about your result? In the case of normal water and 
air? 

S5: Yes, the result was always 1.1; always the same. 

They are convinced of the correctness of their formula because they have actively 
experienced that their results weren’t always correct, but close to the “correct” 
answer. 

Boyle-Mariotte experiment 

S2: they aren’t that correct. 

I1: But the formula, that you have written down, is exact, isn’t it? 

S2: Well not that exact. It is… It could be also 7.1 instead of seven. 

I1: Would you say your relationship is valid or your relationship is wrong? 

S2: I would say, the relationship is valid, because with this device you can’t 
determine that number that exactly. And the numbers I have written down, 
are actually as exact as possibly can be done with this device. 

The use of experiments stimulates one to critically review the results and actively 
discuss the validity of the formulas found. Some students tend to extrapolate their 
formula after measuring a few values.  

Buoyancy experiment 

S3: (constant quotient) It is actually with all numbers! With six it is the same. 

S4: That I don’t know. You can’t say … You don’t know, what is with six. We 
haven’t done that. 

S3: Yes, but with 1 and 2 it is same, too. 

But student 3 would not be convinced anymore, when one measures other values. 
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S3: and if we were to repeat that and would get other results, then we would be 
in a fix and wouldn’t know what would be right. 

But the more students measure the more convinced they are about their formula. 
Thermal expansion experiment: 

I8: You have found a formula, if a teacher comes to you […] and says your 
formula is wrong, would you say your formula is wrong or your formula is 
right? 

S17: Yes, I think it is right, because of the different experiments we have done. 
Well with the different degrees and with the table at the beginning. We 
have measured the head of liquid and the difference of temperature six 
times and that was true all the time. 

Hence physical experiments stimulate discussion about the formula. Reflection and 
validation of their formula is promoted.  
Static component of variable & limit of modelled formula 
If you ask students about the specific constant, you implicitly ask about the limit of 
their formula found. The (anti-)proportional constant is only constant in the same 
context. Changes of the context might cause a change of those constants. In the 
experiments, students were asked if the formula changes when you change the 
setting. In the buoyancy experiment, they were shown a man reading newspaper in 
the Dead Sea and asked if and how their formula would change, if they did the same 
experiment with salt water. Students doing the thermal expansion experiment were 
asked, if they were to change the thermometer, would that cause a change of their 
formula. In the Boyle-Mariotte experiment, students were asked if changes in the 
environment would cause changes of the formula. 
Most of the students say that the formula changes and explain it on a descriptive 
level. Stronger students can tell which part changes while the strongest students set 
up a general formula. 

Thermal expansion experiment 

S10: We have found out that, if the glass tube is thicker, then it raises slower and 
if the glass tube is thinner, the liquid raises faster. 

 

Buoyancy experiment 

I3: Good. Is there a term, which doesn’t change? Or changes everything? 

S3: I think, if you stay in normal water, then it is always 1.2. 

S4: Well, once you add a liquid, it will be heavier 

S3: Yes, salt water or – then 

S4: is, I think, heavier. 
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S3: Then 1.2 will be 

S4: bigger. 

 

Boyle-Mariotte experiment 

I1: If I change anything on this device, how would your position and pressure 
change? 

S1: mmhmm. Well, I think. Well, position will be the same but pressure will 
change. 

 

Thermal expansion experiment 

S17: If you change the glass tube, that means making them wider or yes thicker 
or thinner, then the constant changes. Otherwise it stays constant with the 
same glass tube. 

I8: How does it change if you have a wider or thinner …? 

S17: There it changes, well with a thinner, when it gets thinner, then the constant 
will get higher and when it gets thicker, then it will get lower. […] 

 That x is the constant, well, in our experiment it was six und it can change 
when the glass tube gets thicker or thinner. 

As you have seen, questions about the specific constant have a great potential for 
discussion about the limits of a given model. 

CONCLUSION 
The use of physical experiments to introduce the concept of variable is as well a good 
way to promote the modelling process. 
All of the aspects of variable as an object according to Malle are touched, especially 
within the functional relationship of two measurands. Formulas make sense to them, 
because they can identify variables with concrete objects. Not everybody touches the 
aspects on an abstract level but most do on a descriptive level. In the lessons 
afterwards those students will have fewer problems to understand abstract formulas 
because they can make connections to those experiments. 
Like Maass (2006) found out, that students of lower secondary level were able to 
develop modelling competencies. Physical experiments can contribute to those 
competencies since the complete modelling cycle is covered. Especially “reflecting, 
analysing and offering a critique of a model and its results” has a main role in that 
concept. That is mainly through the appearance of measurement errors. Students learn 
that the modelled formula is an idealization, but still a good representation of the 
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phenomenon. They can discover the limit of the formula found by scenarios they can 
imagine. Experimenting in groups stimulates the discussion about the model. 
Students are motivated to do experiments, but finding a formula is a cognitive 
challenge. That’s why students might get frustrated. A working sheet covering all 
aspects on the concept of variable and modelling on a descriptive level, i.e. without 
students coming up with a formula by themselves, would be better in cognitively 
weaker classes. If one stays on the descriptive level major phases of the modelling 
process are still touched. Then emphasis goes even more to analysing and criticizing 
the model. 
This sequence is also a good basis for interdisciplinary teaching to see the same 
phenomenon with “subject driven” eyes. An overview gives the framework “Math 
and Science under one roof” which can be found on the homepage of the EU 
ScienceMath Project http://www.sciencemath.ph-gmuend.de. 
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In this study we report on an analysis of the mathematical developments of twenty 
two 11 year old students as they worked on a complex environmental modeling 
problem. The activity required students to analyse a real-world situation based on the 
water shortage problem in Cyprus using Google Earth and spreadsheet software, to 
pose and test conjectures, to compare alternatives, and to construct models that are 
generalizable and re-usable. Results provide evidence that students successfully used 
the available tools in constructing models for solving the environmental problem. 
Students’ mathematical developments included creating models for selecting the best 
place to supply Cyprus with water, finding and relating variant and invariant 
measures such as tanker capacity, oil consumption, and water price. Finally, 
implications for further research are discussed.     

Keywords: Modeling, technological tools, environmental modeling problem.  

INTRODUCTION 
The importance of modeling and applications has been well documented and a 
significant number of researchers discussed the impact of modeling in the teaching 
and learning of mathematics (Pollak, 1970; Blum & Niss, 1991; Lesh & Doerr, 
2003). Additionally, professional organizations, like the National Council of 
Teachers Mathematics (NCTM, 2000), recommended that the inclusion of real world 
based problems in the curriculum can capture students’ interest and students will gain 
mathematical problem solving skills, as well as an appreciation of the power of 
mathematics and some essential mathematical concepts and skills (NCTM, 2000). 
Students, even at the elementary school level, need to be able to successfully work 
with complex systems that daily appear to the mass media (English, 2006). More than 
ever before, the nature of the mathematical problem-solving experiences has to be 
changed, if we want to prepare students to adequately deal with the complexity of the 
rapidly changing world (English, 2006; Lesh & Zawojewski, 2007). Traditional 
forms of problem solving constrain opportunities for students to explore complex, 
messy, real-world data and to generate their own constructs and processes for solving 
authentic problems (Kaiser & Sriraman, 2006). In contrast, mathematical modeling 
provides rich opportunities for students to experience complex data within 
challenging, yet meaningful contexts. Students’ interactions within these experiences 
can assist them in building mathematical understandings and in developing their 
problem solving skills (Mousoulides & English, 2008).  
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In this attempt, given the potential value of technology for enhancing learning, it is 
imperative that students undertake realistic modeling problems and appropriately use 
technological tools for developing their ideas about and their understandings of 
related mathematical concepts (Mousoulides, Sriraman, & Lesh, 2008; Mousoulides, 
2007). Although the increased interest on modeling and applications, even at the 
elementary school level, only a limited number of researchers focused their agendas 
on investigating the role of technology in mathematical modeling, on exploring how 
spreadsheets are used in constructing models (Blomhøj, 1993; Mousoulides et al., 
2008), and on identifying how dynamic geometry software features might influence 
the modeling process (Christou et al., 2005).  
This paper reports on the mathematical developments of one class of eleven year old 
students, as they worked on an environmental modeling problem that involved 
interpreting a real world situation and dealing with digital maps, tracing ship routes, 
working with tables of data, exploring relationships among data, and representing 
findings in visual and written forms. We were particularly interested in exploring the 
ways in which the students used the available tools (Google Earth and spreadsheets) 
in constructing the necessary mathematical developments for solving the problem.   
 

MATHEMATICAL MODELING AND TECHNOLOGY IN THE 
ELEMENTARY SCHOOL 
Mathematical models and modeling have been defined variously in the literature 
(e.g., Greer, 1997; Lesh & Doerr, 2003). In this paper, models are defined as 
“systems of elements, operations, relationships, and rules that can be used to describe, 
explain, or predict the behavior of some other familiar system” (Doerr & English, 
2003, p.112). A definition of modeling, as a problem solving approach, is presented 
in Lesh and Zawojewski (2007): “A task, or goal-directed activity, becomes a 
problem (or problematic) when the “problem solver” (which may be a collaborating 
group of specialists) needs to develop a more productive way of thinking about the 
given situation” (p. 782). 
Research studies have shown that mathematical modeling can be considered as an 
effective medium to improve students’ problem solving abilities in working with 
unfamiliar complex real world situations by thinking flexibly and creatively (Haines, 
Galbraith, Blum, & Khan, 2007; English, 2006). One approach to having students 
solve complex problems is through team oriented activities, called model eliciting 
activities (MEAs). These activities are based upon the models and modeling 
perspective (Lesh & Doerr, 2003), and they are designed to document students’ 
thinking. MEAs, therefore, provide an ideal setting to assess the knowledge and the 
abilities that students express during the modeling process (Lesh & Doerr, 2003). 
MEAs usually consist of three sessions. The first session provides the problem 
statement and introduces students to the modeling activity. Students define for 
themselves the problem, assess the problem situation and create a plan of action to 
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successfully solve the problem. During the problem solving session of the modeling 
problem students work in small groups and go through multiple iterations of testing 
and revising their solution(s) to ensure that their solution(s) is the best possible for 
the problem situation. In the third session of the modeling activity each group of 
students present their solution(s) to the rest of the class for constructive feedback and 
discussion of the mathematical ideas presented in the modeling activity 
(Mousoulides, 2007; Lesh & Doerr, 2003). 
Modeling activities, set within authentic contexts, engage students in mathematical 
thinking that extends beyond the traditional curriculum, as they embed the important 
mathematical processes within the problem context and students elicit these as they 
work the problem (English, 2006). Problems presented in modeling activities are not 
carefully mathematized for the students, and therefore students have to unmask the 
mathematics by mapping the problem information in such a way as to produce an 
answer using familiar quantities and basic operations (English, 2006). The problems 
necessitate the use of important, yet underrepresented in traditional mathematical 
curriculum, mathematical processes such as constructing, describing, explaining, 
predicting, and representing, together with quantifying, coordinating, and organizing 
data (Mousoulides, 2007). Key mathematical ideas that appear in the modeling 
problems can be accessed at different levels of sophistication and therefore all 
students through questions, revisions and communication can have access to the 
important modeling and mathematical content. This can result in improving 
competencies in using mathematics to solve problems beyond the classroom (English, 
2006; Kaiser & Sriraman, 2006; Mousoulides et al., 2008).   
Recent research studies focusing on mathematical modeling at the elementary school 
level indicated that students can build on their existing knowledge and develop their 
mathematical ideas and modeling competencies that they would not meet in the 
traditional school curriculum (English, 2006; Mousoulides & English, 2008). 
Students’ informal knowledge and ideas assist students in understanding the problem 
presented in the modeling activity, in identifying variables and constrains, and in 
building mathematical models for solving the modeling problem (Mousoulides, 
2007). The framework of modeling activities does not narrow students’ work in only 
performing calculations or working with ready made models; on the contrary, 
students need to construct models in a meaningful way for solving a real problem and 
this approach can lead to conceptual understanding and mathematization (Greer, 
1997; Mousoulides et al., 2008; Mousoulides & English, 2008). Conceptual 
understanding was also reported as students worked in modeling activities in 
exploring quantitative relationships and in comparing varying rates of change (Doerr 
& English, 2003), in probabilistic reasoning (English, 2006), and in geometric 
reasoning and spatial abilities (Mousoulides et al., 2006).  
The availability of technological tools is one factor that might influence students’ 
work and outcomes in working with modeling activities (Mousoulides et al., 2006). 
Recent research studies indicate that appropriate use of technological tools can 
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enhance students’ work and therefore result in better models and solutions. In 
Blomhøj’s (1993) research, students successfully used a specially designed 
spreadsheet for setting models and for expressing relations between variables in 
spreadsheet notation. More recently, Mousoulides (2007) reported that school and 
undergraduate students successfully used spreadsheets in developing simple and more 
complex models for connecting the real world problem with the mathematical world. 
The contribution of technological tools in modeling problems was also examined in 
the areas of geometry and spatial geometry. Christou and colleagues (2005) reported 
that students, using a dynamic geometry package, modelled and mathematized a real 
world problem, and utilized the dragging features of the software for verifying and 
documenting their results. In line with previous findings, Mousoulides and colleagues 
(2007) reported that students’ work with a spatial geometry software broadened 
students’ explorations and visualization skills through the process of constructing 
visual images and these explorations assisted students in  reaching models and 
solutions that they could not probably do without using the software. As a concluding 
point, it is important to underline that the inclusion of appropriate software in 
modeling activities can provide a pathway in better understanding how students 
approach a real world problem and how they might develop technology-based 
solutions for these problems.  
 

THE PRESENT STUDY 
Participants and Procedures   
One class of 22 eleven year olds and their teacher worked on an environmental 
modeling problem as part of a longitudinal study, which focuses on exploring 
students’ development of models and processes in working with modeling problems. 
The students are from a public K-6 elementary school in the urban area of a major 
city in Cyprus. The students only met such modeling problems before during their 
participation in the current project, as the mathematics curriculum in Cyprus rarely 
includes any modelling activities. Students were quite familiar in working in groups 
for solving more complex problems than those appear in their mathematics textbooks. 
However, this was the first time students had the opportunity to work with 
spreadsheets and Google Earth for solving a real world modeling problem.  
The data reported here are drawn from the problem activities the students completed 
during the first year of the project. The Water Shortage modeling problem (appears in 
the appendix) entails: (a) a warm-up task comprising a mathematically rich 
“newspaper article” designed to familiarize the students with the context of the 
modeling activity, (b) “readiness” questions to be answered about the article, and    
(c) the problem to be solved, including the tables of data (see Table 1). This 
environmental modeling problem presented in the activity asked from students to 
help the local authorities in finding the best country for supplying Cyprus with water. 
Water shortage is one of the biggest problems Cyprus face these days. As a result, 
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students were very familiar with the problem, since almost everyday there are 
discussions on TV about the possible solutions to the problem.  

Table 1: The Water Shortage Problem Data 

Country 
Water Supply 
per week (metric 
tons) 

Water Price 
(metric ton) 

Tanker 
Capacity 

Oil cost per 
100 km 

Port 
Facilities for 
Tankers 

Egypt 3 000 000 € 3.50 30 000 € 20 000 Good 

Greece 4 000 000 € 2.00 50 000 € 25 000 Very Good 

Lebanon 2 000 000 € 4.00 50 000 € 25 000 Average 

 
The problem was implemented by the authors and the classroom teacher. Working in 
groups of three to four, the children spent five 40-minute sessions on the activity. 
During the first two sessions the children worked on the newspaper article and the 
readiness questions and familiarize themselves with the Google Earth and spreadsheet 
software. Introduction to Google Earth focused on the following commands: “Fly to” 
for visiting a place, “Add Placemark” and “Ruler” for calculating the distance 
between two points, and “Path” for drawing a path between two points. In contrast to 
regular maps, Google Earth can help students in making accurate calculations, being 
more precise in drawing the tanker routes, in “visiting” the different countries for 
exploring their major ports and finally in observing country’s landscape. In the next 
three sessions the children developed their models, wrote letters to local authorities, 
explaining and documenting their models/solutions, and presented their work to the 
class for questioning and constructive feedback. A class discussion followed that 
focused on the key mathematical ideas and relationships students had generated.  
 
Data Sources and Analysis 
The data sources were collected through audio- and video-tapes of the students’ 
responses to the modeling activity, together with the Google Earth and spreadsheet 
files, student worksheets and researchers’ field notes. Data were analysed using 
interpretative techniques (Miles & Huberman, 1994) to identify developments in the 
model creations with respect to the ways in which the students: (a) interpreted and 
understood the problem, (b) used and interacted with the software capabilities and 
features in solving the environmental problem, and (c) selected and categorized the 
data sets, used digital maps and applied mathematical operations in transforming 
data. In the next section we summarize the model creations of the student groups in 
solving the Water Shortage activity.    
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RESULTS AND DISCUSSION 

Group A Model Creations 
Group A started their exploration by visiting Lebanon, a nearby country, using the 
“Fly to” command. This approach helped students in identifying that there were many 
mountains and therefore Lebanon could supply Cyprus with water. In their final 
report, students documented that: “Lebanon has a high percentage of precipitation, 
because there are many mountains there. So, they will probably sell water to Cyprus”. 
They then “zoom in” for finding a port. They decided that Tripoli was a major port 
and their next step was to add a placemark to Tripoli. Students then “zoom out” from 
Lebanon and gradually moved to the west for finding Cyprus. Students in group A 
directly focused on Limassol, the major port in Cyprus and added a second 
placemark. Group A then used the “ruler” feature of the software for calculating the 
distance between Tripoli and Limassol.  
Students followed the same approach for placing placemarks in Pireus (in Greece) 
and Cairo (Egypt), and for finding the distances between Cyprus and the other three 
countries. Since the data table (see Appendix) was supplied in spreadsheet software, 
students added one column presenting the distances between the three different 
countries and Cyprus. Students explicitly discussed about oil price, and they reached 
the conclusion that buying water from Greece would be more expensive than buying 
water from Lebanon or Egypt due to the greater distance between Greece and Cyprus. 
Students, however, failed to successfully use the provided data and they finally based 
their choice (Lebanon) partly on the provided data and on their calculations, without 
providing a coherent model.     

Group B Model Creations 
Similar to the work of Group A, students in this group quite easily visited the three 
countries and added placemarks in their major ports. They drew precise paths 
between each country’s port and Limassol and used ruler to calculate the distances 
(see Figure 1). They reported that: “It is not easy to decide from which country 
Cyprus should buy water. Lebanon for example is closer than Greece, but water from 
Greece is much cheaper than water from Lebanon. After calculating the distances 
between the countries using Google Earth, they moved into the spreadsheet software 
and added one column in the provided table, presenting the distances. They, however, 
failed to incorporate into their model the provided data about oil cost, tanker capacity 
and water price. 

Group C Model Creations 
This group commenced the problem by finding a major port in each one of the three 
countries and by drawing paths from these ports to Limassol. Students in this group 
then calculated the distances between the ports and continued in calculating oil and 
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water cost for each tanker trip. In contrast to Groups A and B, students in this group 
incorporated within their model one more factor; instead of calculating the total cost 
for each  trip and then  ranking the three countries, they  decided to calculate the cost 

 

 
Figure 1: Finding the distance between Tripoli and Limassol. 

per water metric ton and based their ranking on this factor. As a result, this model 
ranked Lebanon as the best possible choice, since the average cost per water ton was 
only €4.20. On the contrary, the average costs for Egypt and Greece were €6.70 and 
€7.00 respectively. Student calculations and final selection are presented in Table 2.  

Table 2: Group C calculations and final model 

Country Distance Oil cost Water cost 
per tanker Total cost Average water 

cost per ton 

Egypt 480 € 96000 € 105000 € 201000 € 6.70 

Greece 1100 € 275000 € 75000 € 350000 € 7.00 

Lebanon 240 € 60000 € 150000 € 210000 € 4.20 

 

Although this group differed from other groups in that they used a more refined 
model, they also failed to apply in their model factors such as port facilities for 
tankers and each country’s resources for supplying water to Cyprus. Students in this 
group, similar to group A and B did not use in their calculations round trips but they 
rather based their calculations on single trips.    
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Remaining Groups’ Model Creations  
Students in the remaining four groups faced a number of difficulties in ranking the 
different countries. In the first component of the problem, using Google Earth for 
finding appropriate ports and calculating the distances between Cyprus and the three 
countries, two groups focused their efforts only on Greece, by finding the distance 
between Pireus and Limassol. Some other groups faced a number of difficulties in 
using the software itself.    
In the second component of the problem, transferring the distance measurements in 
the spreadsheet software and calculating the different costs, the students faced more 
difficulties. Most of their approaches to problem solution were not successful. Many 
students, for example, just made random calculations, using partially the provided 
data, and finally making a number of data misinterpretations. One group, for example 
reported that buying water from Greece is the best solution, since the water price per 
ton from Greece was only €2.00 (see Table 1).    

CONCLUDING POINTS 
There are a number of aspects of this study that have particular significance for the 
use of modeling in mathematical problem solving in elementary school mathematics. 
First, although a number of students in the present study experienced some 
difficulties in solving the problem, elementary school students can successfully 
participate and satisfactorily solve complex environmental modeling problems when 
presented as meaningful, real-world case studies. Second, our findings show that the 
available software broadened students’ explorations and visualization skills through 
the process of constructing visual images to analyze the problem, and by using 
appropriately the spreadsheet’s formulas they performed quite complex calculations.  
The students’ models varied in the number of problem factors they took into 
consideration. Interestingly, at least three groups succeeded in identifying dependent 
and independent variables for inclusion in an algebraic model and in representing 
elements mathematically so formulae can be applied. A number of groups of students 
made the relevant assumptions for simplifying the problem and ranking the three 
countries. Finally, the first three groups (as presented in the results session) 
successfully chose the technological tools/mathematical tables to make precise 
graphical models in Google Earth and to enable calculations in spreadsheets.  
Substantial more research is clearly needed in the design and implementation of 
technology-based modeling problems and in studying the learning generated. Of 
interest are, for example, the developments in elementary school students’ learning in 
solving technology-based modeling problems, the ways in which the features of the 
technological tools can assist students in broadening their explorations and in 
constructing better models for solving modeling problems, and the teacher 
professional development training programs that are needed to facilitate mathematical 
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modeling as a problem solving. In concluding, using computer based learning 
environments for mathematical modeling, at the school level, are a seductive notion 
in mathematics education. However, further research towards the investigation of 
their role is needed, to promote both students’ conceptual understandings and 
mathematical developments.   
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APPENDIX 

Water Shortage Problem: Cyprus will buy Water from Nearby Countries 
Background Information: One of the biggest problems that Cyprus face nowadays is 
the water shortage problem. Instead of constructing new desalination plants, local 
authorities decided to use oil tankers for importing water from other countries. 
Lebanon, Greece and Egypt expressed their willingness to supply Cyprus with water. 
Local authorities have received information about the water price, how much water 
they can supply Cyprus with during summer, tanker oil cost and the port facilities.        
Problem: The local authorities need to decide from which country Cyprus will 
import water for the next summer period. Using the information provided, assist the 
local authorities in making the best possible choice. Write a letter explaining the 
method you used to make your decision so that they can use your method for 
selecting the best available option (The following table was supplied).  

Country 
Water Supply 
per week 
(metric tons) 

Water Price 
(metric ton) 

Tanker 
Capacity 

Oil cost per 
100 km 

Port 
Facilities for 
Tankers 

Egypt 3 000 000 € 3.50 30 000 € 20000 Good 

Greece 4 000 000 € 2.00 50 000 € 25000 Very Good 

Lebanon 2 000 000 € 4.00 50 000 € 25000 Average 
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INTRODUCTION 
ADVANCED MATHEMATICAL THINKING 

Reflection on the work at the conference 
Roza Leikin, Israel, Claire Cazes, France,  

Joanna Mamona-Dawns, Greece, Paul Vanderlind, Sweden 

AGENDA 
In 1988 D. Tall argued that "Advanced Mathematical Thinking" (AMT) can be 
interpreted in at least two distinct ways as thinking related to advanced mathematics, 
or as advanced forms of mathematical thinking. Following this distinction, we 
suggested to the participants to take part in the discussion in two interrelated 
perspectives: 
According to mathematically-centered perspective we planned to consider AM-T as 
being related to mathematical content and concepts at the following levels:  upper 
secondary level, tertiary educational level, the transition stages between and within 
the two secondary and tertiary levels. The research presented in this category 
included (but was not bounded to) conceptual attainment, proof techniques, problem-
solving, instructional techniques and processes of abstraction.  
According to thinking-centered perspective we suggest to address A-MT through 
focusing on students with high intellectual potential in mathematics (e.g., 
mathematically gifted students). The research in this perspective can, for example, 
ask how these students differ in their actions from other students of the same age 
group. In this perspective we can address such characteristics of mathematical 
thinking as creativity, reasoning in a critical mode, persistence and motivation. 
In this perspective, we planned to encourage participants to attain their attention on 
individual and group differences related to advanced mathematical contents. We shell 
note that thinking-related perspective was less enlightened in the contributions and 
during the work at the conference. 
The group was focused on original research mainly of the first perspective. 
Contributors adopted different the research paradigms, theoretical frameworks and 
research methodologies. Contributors addressed a variety of issues in the field of 
AMT, amongst the following themes:    
A.  Learning processes associated with development of AMT 
B.  Problem-solving, conjecturing, defining, proving and exemplifying at the 

advanced level 
C.  Effective instructional settings, teaching approaches and curriculum design at the 

advanced level. 
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Setting 
All the participants of WG-12 were divided in three small groups according to the 
abovementioned themes (Croups A, B and C). Participants of Groups A, B and C 
prepared main questions for the discussion in Groups B, C, and A correspondingly. 
Of these questions, participants in each small group chose questions that they 
considered as most important and interesting for the discussion. Bellow we present 
our reflection on the outcomes of our work at the conference.   

FOCAL TOPICS 
Learning processes associated with development of AMT 
Discussion on this topic was coordinated by Claire Cazes. The participants of the 
small group focused their discussion on Learning processes associated with 
development of AMT, students' difficulties, concept image-concept definition on 
advanced level. This group included the following contributions:  Theoretical model 
for visual-spatial thinking (by Conceição Costa and her collegues), Secondary-
tertiary transition and students’ difficulties: the example of duality (presented by 
Martine De Vleeschouwer), Learning advanced mathematical concepts: the concept 
of limit (António Domingos), Conceptual change and connections in analysis 
(Kristina Juter), Using the onto-semiotic approach to identify and analyze 
mathematical meaning in a multivariate context (presented by Miguel R. Wilhelmi et 
al.), Derivatives and applications: Development of ONE student’s understanding 
(Gerrit Roorda et al.), and Finding the shortest path on a spherical surface: 
“Academics” and “Reactors” in a mathematics dialogue (Maria Kaisari and Tasos 
Patronis). 
The most intriguing distinction between the papers in this group was connected to the 
conceptual frameworks chosen by the authors for their studies. These frameworks 
related to AMT include different basic concepts. Thus, among other questions, 
formulated by group C, members of group A chose to focus on the following 
questions: 

• How could you compare the meanings of the basic concepts in the theoretical 
frameworks addressed in different papers? How are they different? How are 
they similar or interchangeable?” 

Group A found that the complexity of the topic that concerning in the diversity of the 
approaches and diversity of the frameworks that were raised. Figure 1 demonstrated 
main points addressed in this discussion: 
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Figure 1: Complexity of the topics 
Based on the papers of the participants of group A, the members presented the 
following theoretical frameworks: Antonio Domingos discussed Tall and Vinner 
(1981) concept-image, concept definition framework as the central framework for 
research on AMT. Additionally he presented Tall's view on the development of 
mathematical understanding through embodied, symbolic and axiomatic worlds (Tall, 
2006a, b).  
Gerrit Roorda stressed the better mathematical understanding might be reflected by 
more and better connections between representations, within representations, between 
applications and mathematics (for elaboration see Roorda, et al. in the proceedings of 
CERME-6). Conceição Costa framed her framework based on the views on cognitive 
processes, embodiment, sociocultural perspectives, and theoretical perspectives on 
teaching and learning geometry. She presented her own framework developed 
through studying visual reasoning (see figure 2, for elaboration see Conceição et al. 
in the proceedings of CERME-6). 

 
Figure 2:  Costa (2008) –AMT and visual reasoning 
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Martine De Vleeschouwer presented Chevallard's Institutional point of view as the 
main theoretical framework that allows exploring advances mathematical thinking. 
This framework focuses on four main components: Type of tasks, Technique, 
Technology, and Theory. Milguel R. Wilhelmi presented Epistemic Configuration 
that they developed for the development of didactical situations of different kinds and 
the analysis of AMT developed in these situations. Definitions, procedures and 
propositions in this framework are the "the rules of the game", argumentation and 
justification are integral characteristics of the situations associated with AMT (see 
Fugure 3). 

 
Figure 3: Epistemic Configuration 

Claire Cazes summarized this discussion and outlined further directions to be 
addressed in future research. She stressed the need in finding connections between 
five theoretical frameworks used in different studies (see Figure 4). She also pointed 
out the need (a) to specify why each approach is useful for study AMT, (b) to make 
“cross analysis " by working by pairs and  analyse the same data with two different 
frameworks. Then the following questions are important and interesting for the future 
exploration: Do we focus on the same points?  Are the results: opposite, additional, 
identical? 

  
Figure 4: Theoretical frameworks observed in the Group. 
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Problem-solving, conjecturing, defining, proving and exemplifying at the 
advanced level. 
This theme was coordinated by Joanna Mamona-Downs. The group participants 
based their discussion on the following contributions: Number theory in the national 
compulsory examination at the end of the French secondary level: between 
organising and operative dimensions (Véronique Battie), Defining, proving and 
modelling: a background for the advanced mathematical thinking (García M., V. 
Sánchez, and I. Escudero), Necessary realignments from mental argumentation to 
proof presentation (Joanna Mamona-Downs and Martin Downs), An introduction to 
defining processes (Cécile Ouvrier-Buffet), Problem posing by novice and experts: 
Comparison between students and teachers (Cristian Voica and Ildikó Pelczer), and 
Advanced Mathematical Knowledge: How is it used in teaching? (Rina Zazkis, Roza 
Leikin). 
The group chose to focus on the questions:  

• What are the relationships between problem solving, conjecturing, defining 
and proving? 

• What is the effective use of problem solving?  
• How to help students in justifying formal proof?  

The group decided that features of Problem Solving depend on the level of problem 
solver, the place in a course, the context and other factors. Problem Solving Features 
depend on the problem solving aspects the solver is engaged in: (a) formulating 
questions (b) engaging in a proof process or in a modeling process, (c) making 
mistakes, (d) expecting posing more questions, (e) communicating with other persons 
while solving or redefining the problem, (f) communicating about results. 
Veronique Battie performed her research in the number theory. She focused on two 
following dimensions and the relationships between them: The Organizing dimension 
concerns the mathematician’s "aim" (i.e., his or her "program", explicit or not); 
induction, reduction ad absurdum (minimality condition); Reduction to the study of a 
finite number of cases; Factorial ring’s method; Local-global principle. The 
Operative dimension relates to those treatments operated on objects and developed 
for implementing the different steps of the aim, forms of representation of objects, 
algebraic manipulations, using key theorems, distinguishing divisibility order and 
standard order.  
Cristian Voica presented distinctions in problem posing activities for teachers and 
students. He argued that teachers' views on problem posing are influenced by the 
curricula and the exams subjects, guided by pedagogical goals and by attention to the 
formulation of the problem. Students are interested in extra-curricular contexts and 
solution techniques, see problem posing as a self-referenced activity, and (many of 
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them) generate problems with an unclear statement, or does not choose a good 
question. 
Cecile Ouvrier-Buffet explored defining processes. Her design of a didactical 
situation is aimed to make students acquire the fundamental skills involved in 
defining, modelling and proving, at various levels of knowledge; to work in discrete 
mathematics but also in linear algebra because similar concepts are involved in this 
situation; and to have a mathematical experience and to raise mathematical 
questionings. While she chooses an epistemological approach to data analysis, she 
considers defining processes as a tool for characterizing mathematical concept. 
All the participants shared concerns regarding connections between school and 
University mathematics. They observed the gap between the teaching approaches, the 
requirement for rigor mathematics and the role of defining and proving in learning 
process in these two contexts. Zazkis and Leikin pointed out that school teachers' 
conceptions of advanced mathematics and its' role in school mathematical curriculum 
reflect this gap. They argued that mathematics teacher preparation should explicitly 
introduce connections between school and tertiary mathematics.  
Effective instructional settings, teaching approaches and curriculum design at 
the advanced level 
Group C, coordinated by Isabelle Bloch, discussed Effective instructional settings, 
teaching approaches and curriculum design at the advanced level Urging calculus 
students to be active learners: what works and what doesn't (Buma Abramovitz, 
Miryam Berezina, Boris Koichu, and Ludmila Shvartsman), From numbers to limits: 
situations as a way to a process of abstraction (Isabelle Bloch and Imène Ghedamsi), 
From historical analysis to classroom work: function variation and long-term 
development of functional thinking (Renaud Chorlay), Experimental and 
mathematical control in mathematics (Nicolas Giroud), Introduction of the notions of 
limit and derivative of a function at a point (Ján Gunčaga), Advanced mathematical 
thinking and the learning of numerical analysis in a context of investigation activities 
(poster presented by Ana Henriques), Factors influencing teacher’s design of 
assessment material at tertiary level (Marie-Pierre Lebaud), Design of a system of 
teaching elements of group theory (Ildar Safuanov). 
This group chose to focus on the following points 
• Importance for the students to be active learners when they study AM. 
• Making abstraction accessible (“Abstract” and “formal” are not the same). 
• Minding the secondary – tertiary gap. 
The group argued that generally speaking they look for more opportunities for high 
school students to be engaged in high-level abstracting and proving, and for 
university students to be engaged in activities elaborating the meaning of (abstract) 
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concepts they study. It implies the necessity for gradual change in didactical 
contracts, both in secondary and university education 
Buma Abramivich with colleagues reported an on-going design experiment in the 
context of a compulsory calculus course for engineering students. The purpose of the 
experiment was to explore the feasibility of incorporating ideas of active learning in 
the course and evaluate its effects on the students' knowledge and attitudes. Two one-
semester long iterations of the experiment involved comparison between the 
experimental group and two control groups. The (preliminary) results showed that 
active learning can have a positive effect on the students' grades on condition that the 
students are urged to invest considerable time in independent study. They presented 
two episodes from different settings and concluded that the answer to their research 
question appears to be more complex than expected (see for elaboration Abramovich 
et al.). 
Isabelle Bloch discussed ways of designing a milieu that helps students constructing   
mathematical meaning. She argued that when they enter the University, students have 
a weak conception of real numbers; they do not assign an appropriate meaning to 2 , 
or π, or to variables and parameters. This prevents them to have a control about 
formal proofs in the field of calculus. She presents some situations to improve 
students' real numbers understanding, situations that must lead them to experiment 
with approximations and to seize the link between real numbers and limits. They can 
revisit the theorems they were taught and experience their necessity to work about 
unknown mathematical objects (see Bloch in this proceedings).   
Nicolas Giroud focused on mathematical games as an effective didactical tool for 
development AMT. He presented a problem which can put students in the role of a 
mathematical researcher and so, let them work on mathematical thinking and problem 
solving. Especially, in this problem students have to validate by themselves their 
results and monitor their actions. His purpose was centered on how students validate 
their mathematical results. His paper is related to learning processes associated with 
the development of advanced mathematical thinking and problem-solving, 
conjecturing, defining, proving and exemplifying. 
Renaud Chorlay presented work on mathematical understanding in function theory. 
Based on a historical study of the differentiation of viewpoints on functions in 19th 
century involving both elementary and non-elementary mathematics he formulated a 
series of hypotheses as to the long-term development of functional thinking, 
throughout upper-secondary and tertiary education. The research started testing 
empirically three main aspects, focusing on the notion of functional variation: 
(1) “ghost curriculum” hypothesis; (2) didactical engineering for the formal 
introduction of the definition; (3) assessment of long-term development of cognitive 
versatility. 
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CONCLUDING REMARK 
Very naturally all the three groups admitted the gap between school and tertiary 
mathematics. Rina Zazkis managed a special discussion on the way of bridging 
school and university mathematics. Most of the examples provided by the 
participants were extracurricular tasks from the university courses that in the 
presenter's opinion may be used in school as well. However the question of the 
integration of AM-T in school teaching and learning remains open.  
A-MT is another issue that needs further attention of the educational community. 
This perspective was less addressed and requires investigations associated with 
AMT. It may be suggested as one of the topics for the discussion at the future 
meetings of AMT group. 
Chevallard, Y. (2005). Steps towards a new epistemology in mathematics education. Opening 
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A THEORETICAL MODEL FOR VISUAL-SPATIAL THINKING 

Conceição Costa, José Manuel Matos, and Jaime Carvalho e Silva 

Escola Superior de Educação de Coimbra, Universidade Nova de Lisboa, 
Universidade de Coimbra 

This paper presents part of a study (Costa, 2005) intending to create, explore and 
refine a theoretical model for visual-spatial thinking that includes three visual-spatial 
thinking modes along with the thinking processes associated to them. This paper will 
focus on the final theoretical model. 

Many researchers have emphasized the value of the visualization and the visual 
reasoning in the mathematics learning (Bishop, 1989; Presmeg, 1989, Zimmerman & 
Cunningham, 1991). In the literature we find terms such as visualization, visual 
thinking, visual reasoning, spatial reasoning, spatial thinking to name mental acts 
combining visual, spatial, and visual-spatial thinking. The visual reasoning often 
parallels visualization (Hershkowitz, Parzysz & Dormolen, 1996) and visualization 
itself has different definitions according to the context of mathematics education, 
mathematics, or psychology. The terms, spatial thinking or spatial reasoning appear 
frequently tied to spatial abilities (Clausen-May e Smith, 1998). Dreyfus (1991) 
included visualization as a component of representation crucial in AMT. 

This paper presents part of a research (Costa, 2005) intending to create, explore and 
refine a theoretical model for visual-spatial thinking, thus deepening meaning of a 
thinking-centered perspective on AMT. This research was developed through a three-
stage process. Firstly, an initial model for visual-spatial thinking, condensed from 
relevant literature, was developed; secondly, this initial model was confronted with 
data from an empirical study; finally, the initial model was refined. The methodology 
for the empirical study was qualitative, integrating video registrations of individual 
answers and tasks performed in classroom activity. These episodes were analyzed and 
a constant comparison approach was used to fine-tune the initial model. The refined 
version of the model was elaborated and evaluated according to the standards for 
judging theories, models and results proposed by Schoenfeld (2002). 

This paper will focus on the final theoretical model. The theoretical framework took 
into account research in the areas of cognitive processes in mathematics education, 
embodiment in mathematics, a perspective on learning with emphasis on the social 
construction of knowledge and on semiotic mediation, theoretical perspectives on the 
teaching and learning of geometric concept. 

A THEORETICAL VISUAL-SPATIAL THINKING MODEL 

The final model for understanding the visual-spatial thinking differentiates four 
distinct modes of thinking: the visual-spatial thinking resulting from perception 
(VTP) — intellectual operations on sensory, perceptual and memory material —; the 
visual-spatial thinking resulting from mental manipulation of images (VTMI) — 
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intellectual operations related to the manipulation and the transformation of images 
—; the visual-spatial thinking resulting from the mental construction of relationships 
among images (VTR) — intellectual operations related to the mental construction of 
relationships among images, the comparison of ideas, concepts and model—; the 
visual-spatial thinking connected with transmission-communication and 
representation, that is to say, connected with the exteriorization of the thinking (VTE) 
— intellectual operations related to the representation, translation and communication 
of ideas, concepts and methods. 
 

Visual-spatial thinking modes Definition 

Visual-spatial thinking resulting 
from perception (VTP). 

Intellectual operations on sensory, 
perceptual and memory material. 

Visual-spatial thinking resulting 
from mental manipulation of 
images (VTMI). 

Intellectual operations related to the 
manipulation and the transformation of 
images. 

Visual-spatial thinking resulting 
from the mental construction of 
relationships among images 
(VTR). 

Intellectual operations related to the 
mental construction of relationships 
among images, the comparison of ideas, 
concepts and models. 

Visual-spatial thinking resulting 
from the exteriorization of 
thinking (VTE). 

Intellectual operations related to the 
representation, translation and 
communication of ideas, concepts and 
methods. 

TABLE I. Visual-spatial thinking modes and respective definitions. 

In the next sections, we will discuss each mode and characterize the associated 
mental processes. 

VISUAL-SPATIAL THINKING RESULTING FROM PERCEPTION 

The visual-spatial thinking mode resulting from perception (VTP) is the nearest to 
sensations, that is to say, to the electric impulses that arrive at the brain. Its 
intellectual operations occur on sensory, perceptual and memory material. It is 
constructed from sensory stimulus and takes advantage of information gained from 
experience. This thinking mode involves experiences of mental concentration, of 
control, and observation. The observation experiences involve perception and 
interpretation, depend on past experience, memory, motivation, emotions, attention, 
the individual neuronal mechanisms, previous knowledge, verbalizations, and cultural 
aspects and so, what we saw depends on our relationship to the situation. The 
sociocultural factors, from which the perception depends on, are not less importance 
and they regulate how the members of a culture see. 
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This mode uses concrete images and memory images (Brown & Presmeg, 1993). 
Concrete images may be thought of as “a picture in the mind”, and are not the same 
for all persons; memory images are produced when images of experience are brought 
up again. These are representations of visual information connected to the perception 
of movement, for example, the images remaining immediately after we visually check 
for in-coming vehicles, before crossing the street. 

Mental processes of this mode 

Thinking processes involved in this visual-spatial thinking mode are:  primary 
intuitions; intuitive inference; visual construction; representation again and image 
evaluation; visual recognition; objects and models identifications, formation of a  
“gestalt”, global apprehension of a geometrical configuration; perceptual abstraction 
and abstraction connected with recognition; and generation of concepts. 

The first mental processes associated with the VTP mode are intuitions. Using the 
terminology of Fischbein (1987), we include in this mode the primary intuitions, — 
cognitive acquisitions that develop in individuals independently of any systematic 
instruction as an effect of personal experience. The primary intuitions are connected, 
for instance, with space representation related to body movement, and to images as 
models. Images may inject properties and relationships in the process of concepts 
construction that do not belong to the conceptual structure (points as spots, lines as 
bands). It also includes intuitive inferences, which are shown, for example, when a 
child sees a ball, runs after it according to the ball’s position and adapts his reactions 
to the ball’s movements. The child not only sees the ball moving, but also expects 
that it goes on moving, existing and preserving its shape and properties. 

Visual construction is a mental process, which is present in this mode and may be 
illustrated, for instance, when alterations of distance or size “are seen” in optic 
illusions (even though the mind knows the perception is illusory), or when we 
perceive the fluctuations of the figure-ground in ambiguous designs. 

The mental process of evaluating an image consists in representing again the image 
and this act of re-presentation is complex and subtle (Wheatley, 1998). These re-
presented images are not immutable, because they may undergo change over time. In 
many cases the re-presented image may have been modified or it might be a 
prototype, which is then transformed, based on the demands of the context. The 
nature of the re-presentation is greatly influenced by the intentions of the individual 
and in many cases the re-presented image may come again more elaborated. 

The information that comes through our eyes is involved in visual perception 
containing two phases (Gal & Linchevski, 2002), the visual information processing 
phase which consists in registering the sensory information, and the visual pattern 
recognition phase, which involves the interpretation of the identified shapes and 
objects. In the first stage of visual perception, shapes and objects are extracted from 
the visual scene. To form the object we need to know “what goes with what” and they 
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are organized into groups similar to the gestalt principles. In the second phase of 
visual perception, shapes and objects are recognised. Recognition is the result of 
feature analysis, in which the object is segmented into a set of sub-objects, as the 
output of early visual processing of the first phase. Each sub-object is classified, and 
when the pieces out of which the object is composed and their configuration are 
determined, the object is recognized as a pattern composed of these pieces. The 
cognitive processes designated by visual recognitions, objects and models 
identifications, formation of a gestalt, global apprehension of a geometrical 
configuration belong to the second phase of visual perception while the remainder are 
included in the first phase of visual perception. 

Although abstraction is more developed in the others thinking modes, it shows in 
VTP as a basic perceptual procedure — when we isolate (identify) something from 
the visual scene —, or in the recognition of a familiar structure in a given situation. 
Generation of concepts is done when the recognition of relations and idea emerge. 

VISUAL-SPATIAL THINKING RESULTING FROM MENTAL 
MANIPULATION OF IMAGES 

Visual-spatial thinking mode resulting from mental manipulation of images (VTMI) 
embraces different levels of imagery processing, mainly to foresee the result of 
transforming an image and envision the trajectory of that same transformation. We 
will include in this thinking mode the dynamic imagery and the pattern imagery 
proposed by Brown and Presmeg (1993). Dynamic imagery involves the ability to 
move or to transform a concrete visual image and pattern imagery is a highly abstract 
form of imagery where concrete details are rejected and pure relationships are 
depicted in a visual-spatial scheme. Owens (without date) using the conceptual frame 
of Presmeg, showed a kindergarten child extending a square using pieces of bread to 
make a “skinny” rectangle. This child also used dynamic imagery foreseeing 
(mentally) the result of the transformation a square into a rectangle before executing 
(physically) this same transformation. According to Owens (1994) the dynamic 
imagery was the means by which the child was linking her images for the concepts of 
squares and rectangles. Another child, for instance, makes the medium triangle with 
the small triangles in the tangram puzzle (Owens, without date). This child also used 
a patterned imagery because she can see a certain configuration, structure (triangle) as 
a composition of other structures. 

The VTMI mode incorporates the transformational reasoning referring to the 
foresight and mental transformations of objects, postulated by Simon (1996). Simon 
assumes, more than the inductive and deductive reasoning used in the comprehension 
and validation of mathematics ideas, a third type of reasoning, transformational 
reasoning, is defined as 

“The mental or physical enactment of an operation or set of operations on an object or set 
of objects that allows one to envision the transformations that these objects undergo and 
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the sets of results of these operations. Central to transformational reasoning is the ability 
to consider, not a static state, but a dynamic process by which a new state or a continuum 
of states are generated” (p. 201). 

This transformational reasoning is supported by transformational reproductive images 
or by antecipatory images. Reproductive images evoke objects or events already 
known and anticipatory images represent, through figural imagination, events 
(movements or transformations, for example) that have not previously been 
perceived. In either case, someone is able to visualize the transformation resulting 
from an operation; however, transformational reasoning is not restricted to mental 
imaging of transformations. A physical enactment may be used to examine the results 
of a transformation. For example, a student who is exploring the validity of the 
statement, “If you know the perimeter of a rectangle, you know its area”, might work 
with a loop of string observing what happens to the area as she makes the rectangle 
longer and thinner. But in order for the student to model this problem it is required a 
mental anticipation, that is, he must know, before handling the string, how to model 
the rectangles and use the string to observe the results of the operation (Simon, 1996). 
In both transformational reasoning and VTMI mode, mental operations or 
transformations on objects may be made and mentally envisioned as well their 
results. 

Mental processes of this mode 

The following mental processes are associated with this visual-spatial thinking mode: 
secondary intuitions and anticipatory intuitions; unitizing; mental transformations; 
reflective abstraction, constructive generalization; synthesizing; spatial structure; 
coordination; and visual construction. 

The intuitions associated to VTMI, following the Fischbein´s terminology, are of two 
types: secondary intuitions and anticipatory intuitions. The secondary intuitions are 
affirmative intuitions that represent a stable cognitive attitude with regard to a more 
general, common, situation. The secondary intuitions are developed as the result of a 
systematic intellectual formation and they are interpretations of various facts taken as 
assured. Integration into dynamic and perceptively rich situations, as for instance, the 
use of a microworld, seems to enrich the acquisition of intuitions. Particularly 
secondary intuitions may be acquired (Fischbein, 1987). 

Anticipatory intuitions also characterize this visual-spatial thinking mode. These 
intuitions do not simply establish a (apparently) given fact. They appear as a 
discovery, a preliminary solution to a problem, and the sudden resolution of a 
previous endeavour. Moreover, one may assume that anticipatory intuitions are 
inspired, directed, stimulated or blocked by existing affirmative intuitions. The 
anticipatory intuitions may be the effect of a creative activity in mathematics, of a 
constructive process in which inductive procedures, analogies and plausible guesses 
play a fundamental role (Fischbein, 1987). 
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Unitizing, which consists in the mental operation of constructing, creating and 
coordinating abstracts mathematical units, identified as a base for much mathematical 
activity in both geometric and numeral settings, are present in VTMI. 

The term mental transformation is used to refer a type of process which involve the 
change of a mental representation in one of two aspects or in a composition of the 
two: to dislocate, that is to say, to change the position and to transform, where there is 
only a change of shape. These two aspects are related to each other and there is only a 
difference of complexity between displacements and transformations. In particular, to 
change the shape of an object may consist in dislocating the parts. Reciprocally, when 
we dislocate an object without changing its shape, this may dislocate en reference to 
another and changing the configuration of the whole.  

Gusev and Safuanov revealed three types of operating with images (in order of their 
increasing complexity): transformations resulting in the change of a spatial position 
of an image (1st type); transformations changing the structure of an image (2nd type); 
long and repeated performance of transformations of first two types (3rd type). 

This thinking mode is characterized by a particular type of abstraction, the reflective 
abstraction — essentially the construction by the subject of mental objects and of 
mental actions on these objects. The subject, in order to understand, deal with, 
organize, or make sense out of a perceived problem situation or to know a 
mathematic concept, uses schemes that invoke a more or less coherent collection of 
objects and processes. Understanding the trajectory as a coordination of successive 
displacements to form a continuous whole is an example of reflective abstraction in 
children thinking (Dubinsky, 1991). The pseudo-empirical abstraction (in the Piaget 
sense) as a sub-variety of the reflective abstraction is present in this visual-spatial 
thinking mode, focused on children actions and the properties of the actions and it 
appears from their successive coordinations.  

Constructive generalization creates new forms, new contents, that is to say, a new 
structural organization. The mental process synthesizing that means to combine or 
compose parts in such way that they form a whole, an entity, is a basic prerequisite to 
the abstraction. The spatial structuring is the mental act of constructing an 
organization or form for an object or set of objects. It determines an object’s nature or 
shape by identifying its spatial components, combining components into spatial 
composites and establishing interrelationships between and among components and 
composites (Battista, 2003). 

A fundamental cognitive process to the understanding of the reasoning in this 
thinking mode VTMI is the coordination which involves diverse aspects, one of them 
is that indicated by Battista (2003, p. 79) “it arranges abstracted items in proper 
position relative to each other and relative to the wholes to which they belong”. 
Another aspect of the coordination is related with the ability of using structures 
(references systems) as a way to organize the thinking. So, for instance, a student 
adopts structures of references to codify the spatial positions of the objects that may 
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come to be defined: references systems centred in himself, references systems centred 
in the objects or in external structures which are or provided by the spatial structure 
or they are imposed mentally by the space (environment). 

The visual construction process included in this visual-spatial thinking mode is 
related with making or modifying a spatial structure in such way that it meets certain 
predetermined geometric criteria. The visual construction comprises abilities such as 
the anticipation and the logic organization. 

VISUAL-SPATIAL THINKING RESULTING FROM THE MENTAL 
CONSTRUCTION OF RELATIONSHIPS BETWEEN IMAGES 

The intellectual operations of the visual-spatial thinking mode resulting from the 
mental construction of relationships between images (VTR) are related to the mental 
construction of relationships between images, the comparison of ideas, concepts and 
models. 

Mental processes of this mode 

We consider that the visual-spatial thinking resulting from the mental construction of 
relationships between images, mode VTR, may be associated to the following 
thinking processes: anticipatory intuitions; discovery of relationships between 
images, properties and facts; comparisons; synthesis; reflective abstraction; 
metacognition. The metacognition process is fundamentally understood as a 
regulation of cognition which includes the planning before beginning to solve the 
problem and the continuous evaluation while solving the problem. 

VISUAL-SPATIAL THINKING RESULTING FROM THE 
EXTERIORIZATION OF THINKING 

The visual-spatial thinking mode resulting from the exteriorization of thinking (VTE) 
is connected to the process by which mental representations are materialized, to the 
communication and the dissemination of ideas, to the construction of argumentation, 
to the description of the mental dynamics and to the support of conceptualizing 
abstract entities. The VTE mode has a nature different from the other thinking modes 
because is like the conveyor of those thinking modes. The VTE mode is a cognitive 
space of action, representation, construction and communication and as a whole may 
integrate components such the body, the physic world and the culture. This mode 
allows us to infer the imagery and the mental dynamics of students and to understand 
how they perform mathematical tasks. 

For communicating their mental representations, the students may construct patterns, 
drawings, figures, and graphics, musical and rhythmic productions, to use gestures 
(corporal language, facial expression), actions, verbal descriptions (spoken or 
written), mathematic representations, etc. The VTE thinking mode relies 
fundamentally on verbal and gestured, visual language and it requires the use of 
concrete, memory, dynamic, pattern images and also kinaesthetic images (Brown & 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2252



  

Presmeg, 1993) which involve muscular activity of some type (the muscular activity 
may be limited to the use of hands and fingers). 

Mental processes of this mode 

The mental processes associated to the visual-spatial thinking mode resulting from 
the exteriorization of thinking are: representations; translation; description of the 
mental dynamics through verbalization and gestures; construction of argumentation, 
of conjectures; and the use of analogies. The concept of representation is essential to 
understanding constructive processes in learning and doing of mathematics and, 
roughly speaking, an external representation is a configuration of some kind that 
represents something in a special manner. For instance a word may represent an 
object of the real life, a numeral may represent the cardinal of a set, or even the same 
numeral may represent a position in a numeric line. The representations do not occur 
in isolation and usually they belong to highly structured systems, either personal and 
idiosyncratic or cultural and conventional (Goldin & Kaput, 1996). Among the 
external representations we find external physic embodiments, structured external 
physical situations or a set of situations which may be mathematically described or 
seen as embodying a mathematic idea; linguistic expressions, verbal or syntactic and 
formal mathematic constructions. 

The representation of visual-spatial information used by the student is going to 
depend on the context where the problem is posed. The same task may require from 
the student different spatial abilities or different levels of abstraction. This 
representation may be a concrete image or a diagram or a concept representation: the 
reflection around a line, or the pattern construction or a tessellation. 

Translation is a process that is intimately related to the conversion among 
representations. For example, the conversion of what is given of symbolic form in 
information given by figures or passing a problem from natural language or graphic 
form to some other form. 

The description of the mental dynamic designates mental images evidenced in oral 
language, actions or gestures and in metaphoric expressions. Gesture is used to refer 
to any of a variety of movements, we want to identify mainly movements of hands, 
non-conventional gestures (gesticulations and language-like gestures) that accompany 
the speech with which they form an integrated whole. The description of the mental 
dynamic is going to be designated by factual if the objects of description are 
geometric objects and by analytical if the objects of description are geometric 
properties. 

Analogies or metaphoric expressions are appealing modes of externalizing visual-
spatial thinking, particularly ways of mathematic communication and of building of 
meaning. Two objects, two systems are said to be analogical if, on the basis of a 
certain partial similarity, one feels entitled to assume that the respective entities are 
similar in other respects as well. The difference between analogy and trivial similarity 
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is that analogy justifies plausible inferences. So analogies imply similarity of 
structure (Fischbein, 1987). The visual-spatial thinking mode VTR may involve the 
use of analogies, which may conduct to new images, to new models or to draw 
comparisons, transformations and discoveries of relationships between images. Gusev 
and Safuanov (2003) say that the new images processed under the influence of some 
associations and analogies emerge frequently with unexpected qualities, creative 
imagination and they are the result basically operating the second and third type of 
transformations (behind explained). The visual-spatial thinking mode VTE is the 
conductor of those analogies, is linked to the externalization through the language, 
actions and gestures or through a distributed blend of perceptual sources coming from 
the screen and the gestures, if the student has not yet a language to describe and to 
theorize the events, appropriately. 
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SECONDARY-TERTIARY TRANSITION AND STUDENTS’ 
DIFFICULTIES:  

THE EXAMPLE OF DUALITY 

Martine De Vleeschouwer 

Unité de support didactique, University of Namur (FUNDP) – Belgium 
 

Abstract : We are presenting a study about duality and its learning in linear algebra. 
We have elaborated a device of follow-up of knowledge and difficulties of students 
enrolled in first-year university mathematics or physics programs, concerning this 
theme. We are presenting the results of this device categorizing students’ difficulties. 
We present moreover a perspective on transition allowing us to interpret  students’ 
difficulties in duality  in terms of transition. 
 
Key-words :  linear algebra, duality, tertiary level, institutional transition 

1. INTRODUCTION AND THEORETICAL FRAMEWORKS 
The study presented here focuses on the teaching of duality at university. This work 
is thus naturally related with WG12 theme “Advanced mathematical 
thinking (AMT)” of CERME6, and is more precisely connected with the sub-theme 
“Effective instructional settings, teaching approaches and curriculum design at the 
advanced level”. 

Duality is taught in most countries only at tertiary level, and is even more ‘advanced’ 
than elementary linear algebra. One aspect of our contribution is to precise possible 
meanings of ‘advanced’, in order to enlighten students’ difficulties, a necessary step 
before proposing a teaching design.   

From an epistemological point of view, duality takes a central place in linear algebra. 
Indeed, the notion of rank, essential in linear algebra, has first emerged in what 
Dorier terms the dual aspect, meaning the smallest number of linearly independent 
equations (Dorier 1993, p. 159).   

Even if since the mid-eighties didactical works are interested in linear algebra, they 
mostly concern elementary notions of this part of mathematics (Dorier 2000, 
Trigueros & Oktac 2005,…).  

However, when the duality is studied as an object (Douady 1987) in a course of linear 
algebra in first year of university, we notice that the students are confronted with 
numerous difficulties. Our main objective is to understand the origin of these 
difficulties, and to be able, in a later work, to propose adapted teaching devices.  

In our work, we try, in a first step, to identify different kinds of difficulties, according 
to mathematical content that can be problematic, and after to interpret these 
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difficulties from an institutional point of view. So we try to answer the following 
questions : 

- What are the difficulties tied to duality itself, those that are linked more 
generally to linear algebra, or also to other connected contents? 

- How can we interpret these difficulties, which hypotheses can we do about 
their causes ? 

Our work, beyond duality, also has for objective to enlighten the specific difficulties 
of novice university students. These difficulties have already been the object of 
numerous works (Artigue 2004, Gueudet 2008). Here we adopt an institutional point 
of view (Chevallard 2005). The difficulties don’t only result from the fact that new 
knowledge is met. They can be caused by the fact that the same knowledge will be 
differently approached in the secondary school institution and in the undergraduate 
institution. So a same type of tasks can be associated with a new technique, to solve 
the corresponding exercises ; a same technique will be differently justified… So, in 
our research, we use the « praxeology » notion, also named « mathematical 
organization », introduced by Chevallard (2002). He defines a punctual mathematical 
organization as an union of two blocks [Π / Λ], each one containing two parts. The 
first block, Π = [T / τ], named « practico-technical » block, is made of a type of tasks 
T and a technique τ allowed to realize tasks related to type T. The second block, Λ = 
[θ / Θ], named « technologico-theoretical », is made of a technology θ, which is a 
discourse justifying the technique τ, and a theory Θ justifying the technology θ. A 
complete mathematical organization is then an organization that we can note [Π / Λ] 
or [T / τ / θ / Θ].  

Let us illustrate these concepts by an example. Suppose we propose to a student to 
solve the following exercice: « Compute the dual basis of the canonical basis of  

4
�  ». We can say that this exercise is related with the type of task T « given a n-(sub-
)vector space E and one of its bases, to determine the dual basis of the given basis ». 
A technic τ associated with this type of tasks T consists in solving n systems (i = 

1,…,n) of n equations in n unknowns ( ipα ): 
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of the j th vector of the given basis. This technic τ is justified by a discourse, called 
technology θ : « To find the dual basis, firstly define the general expression of any 

linear form y in the given space : 
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vector x in E. Then solve n systems of n equations in n unknowns : 
, 1,..., : ( )i j iji j n y x δ∀ = =  where jx  are the vectors of the basis given in the type of task ». 

This technology θ is justified by the theory 1 : « Given E an n-vector space, and { } 1
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=
 of the dual space E’ so that 
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, 1,..., : ( )i j iji j n y x δ∀ = = . The defined basis { } 1

n

i i
y

=
 is also called the dual basis associated 

with a basis of the primal space E ». 
 

We also use a framework proposed by Winsløw (2008), especially focused on 
“concrete-abstract” transition issues, and drawing on praxeologies. Winsløw 
considers that when a student arrives in an undergraduate institution, he/she is 
confronted with two types of transition. The first type of transition origins in the 
secondary school’s teaching, where almost only the block « practico-technic » 
intervenes. The first transition that a student meets changing institution, is that at  
university, the « technologico-theoric » block is also present, completing the 
mathematical organizations. But a second transition appears when the recently 
introduced elements of « technologico-theoretical » block also become objects that 
the students have to manipulate, constituting then the « practico-technic » block of 
new mathematical organizations. We will explain why the learning of duality in 
linear algebra at university depends of this second type of transition. 

In this article we present the analysis of responses to a survey that has been proposed 
to students enrolled in first year university mathematics or physics programs in the 
University of Namur (Belgium) concerning duality. In a first step (part 2), we 
describe the survey. Then in part 3 we present the analysis of the survey’s results. 

2. DESCRIPTION OF THE SURVEY 
In (DeVleeschouwer 2008), we describe how the teaching of the duality in linear 
algebra is structured, focusing on the concepts of dual (as vector space), linear form, 
dual basis, annihilator and transposed transformation. Through the analysis of various 
textbooks (books and course notes), we have analysed the duality as an object 
(Douady 1987) of teaching in the university institution. We also studied the different 
aims of the tool function of the duality : we distinguished the analogy-tool, the 
resolution-tool, the illustration-tool, the definition-tool and the demonstration-tool for 
duality. 

Thanks to these analyses we have designed a survey addressed to students enrolled in 
first year of university, meeting the teaching of duality in linear algebra. This survey, 
which focuses on the duality in its ‘object’ aspect (Douady 1987), is based on the 
elements identified in the analysis of textbooks, and will enable us to precise the 
difficulties faced by the students. 

This survey contains two parts : 

- The first one is constituted of a questionnaire. 37 students enrolled in the first 
year of mathematics or physics programs at the University of Namur answered 
to this (written) questionnaire (February 2008). The students had two hours to 
answer it. Some interviews allowed to highlight the answers brought to the 
questionnaire for 16 of these students (May 2008).  
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- The second part of the survey is a group work. 23 students enrolled in the first 
year of mathematics programs took part of this group work. The students, 
divided in four groups of 5 or 6, had 5 weeks to return a written report about 
the asked work. It was recommended then to consult an assistant during the 
two first weeks of their work ; and an interview (varying from 30 to 90 
minutes) was mandatory when giving the written report (March 2008). 

Before the survey, the students have already seen, in the theoretical course and in the 
exercises, the vector spaces (algebraic structures, linear dependence and dimension, 
sub-vector spaces) ; the linear applications, the associated matrices; the linear forms, 
and also the dual space (and bases) and the reflexivity; the linear and transpose 
transformations. The theoretical course had already approached determinants 
(without exercises).  

We have to precise that in the secondary school Belgian pupils have only approached 
the vector’s notion at the geometric level (Hillel 2000, p.193). The notion of 
transpose was only presented to the pupils of the secondary school who specialize in 
mathematics, principally when approaching the definition of the inverse matrix (using 
the transpose of the cofactors matrix). 

2.1. THE QUESTIONNAIRE 

The questionnaire (appendix 1) comprises two parts, each one composed by the same 
questions but contextualized in different frames. The two chosen frames are the 
vector space IR 4; and the frame of matrices with real coefficients, particularized to 2 
by 2 matrices ( 2 2xM ).  

The different types of tasks (Chevallard 2005) associated with the exercises proposed 
in the questionnaire are described in (De Vleeschouwer 2008). We only propose here 
a short description of types of tasks present in the questionnaire : 

- « Example of linear form », noted T_Exemp_FL : given a (sub-)vector space, give 
an example or counter-example of a linear form. 

- « General expression of a linear form »,noted T_ExpGen_FL : given a (sub-)vector 
space, describe a general expression of a linear form defined on the studied space. 

- « Primal and dual basis », noted T_Base_P&D : given a n-(sub-)vector space and a 
set of n vectors of the considered vector space, determine if this set  is a basis of the 
vector space and if it is, to find the dual basis. 

For the rest of or study, we had to subdivide the type of tasks T_Base_P&D into sub-
types of tasks : 

- « Primal basis », noted ST_Base_P : given a n-(sub-)vector space and a set of 
n vectors of the considered vector space, determine if this set is a basis of the 
vector space . 

- « Dual basis », noted ST_Base_D : given a n-(sub-)vector space and a set of n 
vectors of the considered vector space, determine its dual basis. 
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- « Coordinates functions », noted T_FctCoor : given a basis and its dual basis, 
determining the coordinates of a vector from the primal vector space. 

- « Definition of the transpose transformation», noted T_Def_TTransp : given a 
linear transformation defined on a (sub-)vector space, to define its transpose 
transformation. 

2.2. THE GROUP WORK 

The group work (GW) is composed of several parts, that we will not present in details 
in this article. The two first parts of the GW are corresponding to the questionnaire. 
What follows complements then the questionnaire, notably : 

- asking for the relation between the two parts of the questionnaire ; 

- taking the same plan that the two parts of the questionnaire, but in the algebraic 
theoretical frame because « il s’agit de proposer des apprentissages qui portent sur 
divers cadres à propos d’une même connaissance »1 [Robert 1998, p.155]. Knowing 
that « ce n’est pas toujours le travail dans un cadre général, formel, qui est le plus 
difficile »2 [Robert 1998, p.151], we adapt the common plan of the two parts of the 
questionnaire notably with bringing new types of tasks for the algebraic theoretical 
frame. For example, concerning the transpose : 

-  « Representation of the transpose », noted T_Repr_TTransp : explain, choosing 
one or several semiotic representation registers, what represents the transpose 
transformation. We want to know if the students think that the transpose 
transformation is defined on the dual space, or if they feel that the transpose 
transformation applied to a linear form is in fact the compound of the linear form 
and the initial transformation. 

-  « Properties of the transpose », noted T_Prop_TTrans : establish or prove 
transpose’s properties. Especially, we ask the students if it is possible to claim that 
( )t tf f= . They have then to justify their answer. That question allows us to 
investigate the students’ perception about the relation between the bidual and the 
primal and more especially about the canonic isomorphism between these two 
finite-dimensional spaces.  

3. RESULTS OF THE SURVEY 
The first observations of the analysis of the student’s answers to the survey lead us to 
perceive different natures of students’ difficulties when learning duality. Drawing on 
this analysis, and on our analysis of the way duality is structured in textbooks, and 
articulated with linear algebra (DeVleeschouwer 2008), we have chosen to classify 
the appeared difficulties in three main categories: difficulties tied to an insufficient 
mastery of elementary concepts of linear algebra, difficulties common to the 

                                                 
1 “ We have to propose learnings which concern diverse frames about the same knowledge.” 
2 “ It is not still the work in the general, formal frame, that is most difficult.” 
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elementary linear algebra and duality, and finally difficulties specific to duality. 
Naturally, intersections between these categories are possible. 

Some difficulties, obviously, are even more general : for example, we observed a 
confusion between a function f and the value of the function in an element of the 
departure’s space : f(x,y,z,t). Another well-known fact is that mathematical writing is 
not mastered by the students yet (obstacle of formalism, Dorier 2000). We don’t 
detail here these types of difficulties, preferring to focus on linear algebra. 

All the listed difficulties can be analyzed from an institutional point of view (the 
same object is differently considered in different institutions). In particular, we shall 
show (section 3.2) that the difficulties listed in the third category can be interpreted in 
term of second type of transition (Winsløw 2008). 

3.1. OBSERVATION AND CLASSIFICATION OF DIFFICULTIES IN 
DUALITY 

3.1.1. Insufficient mastery of elementary concepts of linear algebra 

By elementary concepts of linear algebra, we mean concepts considered as 
elementary with regard to the notion of duality which we study. 

Let us consider for example the notion of linear application or linear form. Indeed, 
only 62% of the students who answered to the questionnaire give a correct example 
of linear form within the frame of IR 4. This rate decreases to 27% in the matrix frame. 

The students also have difficulties to build examples of vector spaces. They propose 
for example the set of polynomials of degree 3; or still the set of polynomials of 
degree superior or equal to 3. Asking the students to design for examples, is frequent 
at the university, and hardly present at secondary school; it is thus difficult for novice 
students (Praslon 2000). 

We can also notice that generally speaking, the students prefer to work within the 
frame of IR 4 rather than within the frame of matrices. The exercises corresponding to 
the various types of tasks are also better solved there. The vector space of the 2x2 
matrices is not familiar to the students. In the University institution, it is necessary to 
consider objects recently defined in linear algebra as familiar objects on which and 
from which we are going to work. For example the fact that the object matrix can be 
considered as an element of a vector space, that’s to say a vector. We can thus 
consider the coordinates of a matrix, or define linear applications acting on matrices. 

Being able to change frames is important for the learning of a notion. In the case of 
duality this requires in particular the knowledge of several vector spaces. 

3.1.2. Difficulties common to linear algebra and duality 

We also observe difficulties common to elementary linear algebra and to duality, for 
example the confusion between a vector and its coordinates. This confusion, well 
known in linear algebra (Dorier 1997), becomes crucial when learning duality. 
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Within the framework of 4-tuples, we could say that the confusion between vectors 
and coordinates is natural or unnoticed. We can think that it is one of the reasons for 
which the students privilege this frame in the questionnaire. We notice that the 
students tend to work with the coordinates of objects (vectors, matrices, linear forms) 
and not with objects in themselves. So, it is frequent to see appearing in the answers 
the equality between the i th linear form of dual basis (often noted yi by the students) 
and the 4-tuple taking back its coordinates in the canonic base (that the students 
nevertheless learnt to note [yi]

e’ ). 

Another problem that we identified is the fact that the students prefer to present the 
solution of an exercise as an element of the vector space being of use as frame to the 
task (IR 4 or 2 2xM ). So, during the resolution of exercises corresponding to the type of 
task T_FctCoor, concerning the computation of the coordinates of an element 
(quadruplet or matrix) of the considered vector space, it is frequent to see students 
presenting calculated or deducted coordinates (in the second part of the questionnaire 
by analogy with regard to the first part) as a 4-tuple or as a matrix.  

So, the only student having correctly solved the exercise corresponding to the type of 
task T_TTransp within the framework of 4-tuples ends then his answer by identifying 

( )tf y  with a 4-uplet containing his coordinates in the canonic dual basis, without 
mentioning however these are coordinates in this basis. In the matrix frame, this 
student presents the transpose in the form of matrix. 

3.1.3. Difficulties directly related with duality 

We can also classify difficulties directly related with duality, often connected with 
the very abstract character of the involved objects. It will lead us naturally to the 
following section dealing with the “concrete-abstract” transition (Winsløw 2008). 

The definition of the transpose transformation can illustrate our comments because it 
is about a transformation defined on a vector space which elements are linear forms. 

So, during the resolution of an exercise corresponding to the type of tasks 
T_Def_TTransp, within the frame of 4-uplets, three students mix up the transpose 
transformation with the inverse transformation. They have a general idea of a 
“reverse” process, associated both with inverse and with transpose. We also can 
notice, within the frame of IR 4, that some students don’t even try to work with the 
given transformation : they only give the theoretical definition of the transpose or 
another explanation onto what they think the transpose should be, without trying 
however to resolve effectively the proposed task. For these students, the transpose is 
only a part of the abstract world, and they don’t manage to mobilize it in a 
contextualised frame. 

Within the frame of the 2x2 matrices, we find almost the same proportion of students 
working with the given transformation among the students trying to solve the 
question corresponding to the type of tasks T_Def_TTransp. But in this frame, the 
answers are more varied because the students associate the proposed type of task with 
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a notion approached on the institution secondary school in Belgium : the transpose 
matrix. For example, to resolve an exercise depending from the type of tasks 
T_Def_TTransp in the matrix frame, some students simply take back the matrix 
which is given to them in the statement and transpose it. The notion of matrix 
dominates on the notion of application when the term “transpose” is used. 

3.2. « CONCRETE-ABSTRACT » TRANSITION 

The difficulties directly related to duality presented in the previous section can be 
interpreted in terms of "concrete-abstract" transition (Winsløw 2008), which 
corresponds to the second type of transition described in the section 1. According to 
Winsløw, in the secondary school institution, it is essentially the "practico-technical" 
block of the mathematical organizations that is worked. This coincides with what we 
can notice when we analyze the answers of the students who were asked to say, in the 
work group, if there is, according to them, a link between the first two parts (IR 4 
frame and matrix frame). The students concentrate themselves on the practico-
technical part of mathematical organizations described by Chevallard (2005), and 
generally let down the technologico-theoretical block. Indeed, students answer that 
“both exercises represent the same transformations in two very similar vector spaces” 
and that “the question 2 is exactly the same than the question 1, there is only their 
representation which changes”. By using the term “similar”, the students do not 
identify the vector spaces, but indeed elements constituting the vectors of each of 
these two spaces. The students notice that only the “representation changes”. We can 
suppose that by writing it, the students think of applying identical techniques 
(computation of dual basis,…) to the various proposed statements. Always 
concerning the link between both parts of the questionnaire, the other students say, in 
the end, that "we find the same solutions". They fall again into the practico-technical 
block : according to them, the numerical values appearing in the solution are the most 
important. They do not mention the isomorphism used to justify this practice. 

In the University institution, the technologico-theoretical block takes more 
importance. It is a first transition. Some students already adapted to this evolution. To 
illustrate our comments, let us turn to the exercises corresponding to the types of 
tasks T_Exemp_FL and T_ExpGen_FL. Even if these exercises did not a priori 
require any justification, a student justifies explicitly the fact that the supplied 
example is a form and also that the linearity is verified. 

A second transition appears when elements constituting the technologico-theoretical 
block of a mathematical organization become elements on which calculations will be 
made and in which techniques are going to be applied. These elements constitute then 
the practico-technical block of new mathematical organizations. It is what happens 
when we work with the duality as an object : linear forms are considered as vectors 
because the set of linear forms is a vector space. The theories developed on the dual 
justify techniques applied to the linear forms. But when we consider the transpose 
transformation, the dual shifts from the technologico-theoretical block of a previous 
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mathematical organization to integrate the practico-technical block of a new 
mathematical organization, because the dual is then considered as the departure space 
of the transpose transformation. According to Winsløw, this second transition is even 
more difficult than the first one. Indeed, concerning the type of tasks T_Def_TTransp 
for example, we observe that the students have difficulties to define correctly the 
departure space of the transpose transformation. 

However, when we ask the students, in the group work, if we can assert that ( )t tf f= , 
we notice that the question is very well answered by all groups. To solve a task of the 
type T_Prop_TTrans presented in an algebraic theoretical frame, the students choose, 
rightly, the technologico-theoretical block. For the transpose of the transpose, the 
students agree spontaneously to look for the solution in the theory. Sometimes, to 
make the link between the theory and the examples is more difficult than to stay in 
the theory. 

4. CONCLUSIONS, DISCUSSION AND PERSPECTIVES 
We classified the difficulties observed in the students’ answers in three principal 
categories: the difficulties tied to an insufficient mastery of elementary concepts of 
linear algebra, those common to the elementary linear algebra and duality, and finally 
those specific to duality. We have seen, particularly, that the movement from 
elementary linear algebra to duality can be interpreted as a transition, according to 
Winsløw’s meaning (2008). This confirms that transitions exist beyond the precise 
moment of the university’s entry.  

So, proposing a teaching device which searches to improve the learning of duality, 
asks to sit solid bases of linear algebra, and to devote specific attention to very 
abstract concepts as the transpose; but also to think about transition between 
elementary linear algebra and duality. 

We will use these facts to propose an experimental teaching of duality in first year of 
university, in a further stage of our work. 
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APPENDIX 1 : Questionnaire 
To answer the questions below, you may use as you prefer, the formal mathematical language, the 
French language, graphics or drawings,… 
1. Consider the vector space, built on the field of reals. 

a. Give an example on a linear form defined on IR 4. 
b. Give the general expression of a linear form defined on IR 4. 
c. Given 1 (1,2,0,4)x = , 2 (2,0, 1,2)x = − , 3 (1,0,0, 1)x = − , 4 (2,0,0,3)x = ; 

given { }1 2 3 4, , ,X x x x x= . Is the set X  a  base of  IR 4? 

If yes, determine its dual basis. 
d. If the set  { }1 2 3 4, , ,X x x x x=  defined above is a basis and  if you were able to compute its dual 

basis, what could be the coordinates of the vector (15,8,10,5) in the basis X ? Please explain 
your solution. 

e. Given the linear transformation  f : IR 4 → IR 4 so that ( , , , ) (2 ,2 , , 3 )f x y z t x t y z x y t z= − − − − − . 
How will you define the transpose transformation ? 

2. Consider the vector space 2 2xM , the vector space of 2 lines, 2 columns matrices, with real 
coefficients, built on the field of reals. 
a. Give an example of linear form defined on2 2xM . 
b. Give the general expression of a linear form defined on 2 2xM . 

c. Given 1

1 0

2 4
M

 
=  
 

, 2

2 1

0 2
M

− 
=  
 

, 3

1 0

0 1
M

 
=  − 

, 4

2 0

0 3
M

 
=  
 

 ; 

given { }1 2 3 4, , ,X M M M M= . 

Is the set X  a basis of 2 2xM  ?  If yes, determine its dual basis. 
d. If the set { }1 2 3 4, , ,X M M M M=  defined above is a base and you had computed the dual 

base, what could be the coordinates of the matrix 
30 20

16 10

 
 
 

 into the base X  ? Please explain 

your solution. 

e. Given the linear transformation  2 2 2 2: x xf →M M  so that 
2

2 3

a c a d a b d
f

b d b c c

− − −   
=   − −   

.  

How will you define the transpose transformation ? 
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This paper looks for the difficulties of the students of tertiary educational level in the 
understanding of the mathematical concepts. Based on the Advanced Mathematical 
Thinking (AMT) notion and some cognitive theories about the construction of the 
concepts, it is intended to characterize the understanding of the concept of limit 
revealed by students in the beginning of tertiary educational level. Using the notion 
of concept definition and concept image, the theory of the reification and the 
proceptual nature of the concepts we try to identify these difficulties in students at a 
course of first year in Calculus. More specifically the main research question is to 
characterize understandings of advanced mathematical concepts at the beginning of 
tertiary education. A discussion of a mathematical-centred perspective of AMT is 
undertaken. The methodology used is of qualitative nature involving a teaching 
experiment. We conclude that it is possible to define three levels of concept image, 
incipient concept image, instrumental concept image and relational concept image 
that represent a progression in the level of understanding of the concept in study. 
These levels are based on objects, processes, properties, translation between 
representations and proceptual thinking that these students use when they intend to 
explain the concept. 

CHARACTERISTICS OF ADVANCED MATHEMATICAL THINKING 
The development of the mathematical thinking of students since the elementary level 
until the tertiary level or has been considered an important theme of study.  David 
Tall and Tommy Dreyfus have written about these problems showing some of their 
essential characteristics in concrete situations. Tall (1995, 2004, 2007) characterizes 
the evolution of three worlds of mathematics under a perspective that shows the 
cognitive growth of the mathematical thinking. The conceptual-embodied world, 
based on perception of and reflection on properties of objects, the proceptual-
symbolic world that grows out of the embodied world through action and 
symbolization into thinkable concepts, developing symbols that may be used as 
procepts, and the axiomatic-formal world that is based on formal definitions and 
proof. 

The perceived objects are first seen like visual-spatial structures. When these 
structures are analyzed and their properties tested, these objects are described 
verbally and submitted to a classification (first in collections, later in hierarchies). 
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his corresponds to the beginning of a verbal deduction related to the properties and 
to a systematic development of a verbal demonstration.  

Actions on the objects, for example, to count, lead to a type of different development. 
The process of counting is developed using numerical words and symbols that will be 
conceptualized as number concepts. These actions become symbolized as processes 
that later are encapsulated in procepts. This type of development that begins with 
Arithmetic, develops into Algebra and then in Advanced Algebra. In this approach, 
Tall (1995) makes a distinction between elementary and advanced mathematics, 
considering that the transition for the advanced mathematics occurs on the level of 
Euclidean demonstration and Advanced Algebra. This characterization, that places 
advanced mathematical thinking on the level of formal geometry, of the formal 
analysis and formal algebra supported by the formal definitions and logic supports 
the development of a creative thought and the investigation.  

The distinction between the two ways of thinking is blurred in Dreyfus (1991) when 
he considers that it is possible to think on topics of advanced mathematics using an 
elementary form. He distinguishes between these two types of thinking by 
performing on the complexity which. He considers that them is not prefunded 
distinction between many of the processes that are used in the elementary and 
advanced mathematical thinking. However advanced mathematics is essentially based 
in the abstractions of definition and deduction. 

The processes that Dreyfus considers in the two types of thought are the processes of 
abstraction and representation, and the main difference is marked by the complexity 
that is demanded in each one. The processes involved in the representation are the 
process of representation beyond itself, the change of representations and the 
translation between them and modelling. The processes involved in the abstraction 
are generalization and synthesis. Dreyfus (1991) considers that, through 
representation and abstraction, we can move between one level of detail to another 
one and based on this movement we can manage the increasing complexity in the 
passage from a way of thought to the other. This vision of the Advanced 
Mathematical Thinking seems to be more useful for the study of the mathematical 
concepts because it places the emphasis in the complexity of these concepts and not 
in the level of formalization needed to develop understanding. 

COGNITIVE THEORIES ON THE CONSTRUCTION OF THE 
MATHEMATICAL CONCEPTS 
This study intends to identify the difficulties felt by the students in the understanding 
of complex mathematical concepts. We will briefly discuss the theories about concept 
definition and concept image, theory of reification and the proceptual thinking, where 
the symbols have an essential role. 
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Concept definition and concept image 
The formation of the concepts is the one of the topics of main importance in the 
psychology of the learning. According to Vinner (1983) there were two main 
difficulties to deal with this question: one is linked with the notion of the concept 
itself and another with the determination of when the concept is correctly formed in 
the mind of somebody. A model of this cognitive process was based on the notions of 
concept image and concept definition. The concept image is something not verbal 
associated in our mind to the name of the concept. It can be used to describe the 
cognitive structure associated to the concept, that includes all mental images, all 
properties and all processes that may be associated to him. For concept definition it 
was understood the verbal definition that explains the concept in an exact mode and 
in a not circular manner (Tall and Vinner, 1981; Vinner, 1983, 1991). This vision of 
the concept definition seems to be based on the teaching of the mathematical 
concepts at the end of secondary education and in tertiary education, where is 
possible to present a formal mathematical definition for the concept. It is this 
definition that is reported by Vinner as being part of the concept definition, being all 
the other representations associated to the concept included in the concept image. 
This form of thinking seems to induce that the mind and the brain can be separate. 
However for Tall (2008) the mind is thought as the way in which the brain works and 
consequently it is an indivisible part of the structure of the brain. Thus, instead of a 
separation between concept definition and concept image, Tall considers that the 
concept definition is no more than one part of the total concept image that exists in 
our mind. For him, the concept image describes the total cognitive structure that is 
associated with the concept, this formularization is very close to that detailed above, 
while the concept definition acquires a statute that is not only linked to the formal 
definition such as it is conceived by the mathematicians. It is this conception that is 
followed in the development of the present study. 

Theory of reification 
Making the analysis of different representations and mathematical definitions we can 
conclude that the abstract concepts can be conceived of two different forms:  
structurally, as objects, and operationally, as processes (Sfard, 1987, 1991, 1992; 
Sfard and Linchevki, 1994). These two views seem to be incompatible, but they are 
complementary. It is possible to show that learning processes can be explained based 
in an interrelation between operational and structural conceptions of the same 
concepts. Based on historical examples and in light of some cognitive theories Sfard 
shows that the operational conception is usually the first step in the acquisition of 
new mathematical concepts. Through the analysis of stages of the formation of the 
concepts, she concludes that the transition from the operational mode to the abstract 
objects is a long and difficult process composed by the phases of interiorization, 
condensation, and reification. In the interiorization phase the individual makes 
familiar itself to the processes that eventually give origin to a new concept. The phase 
of condensation is a period of compression of long sequences of operations in more 
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easy manipulated. This phase is real while the new entity remains firmly linked to the 
process. But when the person will be able to conceive the notion as a finished object 
we can say that the concept was reified. The reification refers to the sudden capacity 
to see something familiar in a totally new form. The individual suddenly sees a new 
mathematical entity as a complete and autonomous object endowing with meaning. 
Thus, while interiorization and condensation are gradual and involve quantitative 
changes, the reification is an instantaneous jump: the process solidifies in one object, 
in a static structure. The new entity is quickly disconnected from the process that 
gave origin to it and starts to acquire its meaning by the fact it belongs to one 
definitive category. This state is also the point where the interiorization of concepts 
of higher level starts. 

Proceptual thinking 
Another perspective on the construction of the mathematical knowledge is proposed 
by David Tall (1995) and is based on the form as the human being, based in activities 
that interact with the environment, develop sufficiently subtle abstract concepts. The 
appearance of the Symbolic Mathematics has special relevance here. Given the nature 
of this type of conceptual development, symbols have an essential role, joining 
thinking the symbol as a concept or as a process. This allows us to think about 
symbols as manipulable entities to make mathematics. Gray and Tall (1994) consider 
thus that the ambiguity of the symbolism expressed in the flexible duality between 
process and concept is not completely used if the distinction between both remains in 
the mind. It is necessary a cognitive combination of process and concept with its own 
terminology. Consequently, the authors appeal to the term procept to mention the set 
of concept and process represented by the same symbol. An elementary procept will 
therefore be an amalgam of three components: a process that produces an 
mathematical object and a symbol that represents at the same time the process and 
object. To explain the performance in the mathematical processes Gray and Tall 
(1994) leave of the nature of the mathematical activities where the terms procedure, 
process and procept represent a sequence in the development of the concepts more 
and more sophisticated. 

The proceptual thinking can be characterized by the ability to compress phases in the 
manipulation of the symbols, where they are seen as objects that can be decomposed 
and be recombined in a flexible way. This kind of thinking plays an essential role in 
the understanding of the mathematical concepts being the symbolism and its 
ambiguity the privileged vehicle for the development of this thought. 

METHODOLOGY OF THE STUDY 
This study is based on a qualitative methodology supported by observation of lessons. 
A design akin to a teaching experiment, involving semi-structured interviews, where 
students are invited to solve mathematical problems related to the tasks developed in 
classes followed-up by a discussion of their procedures, was used. 
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The study was performed at an institution of tertiary education of the region of 
Lisbon, where engineering courses are taught. The participants belonged to the course 
of Mathematics, Engineering Electrotechnic and Computers and Teaching of Natural 
Sciences. All the students attend during a semester the discipline of Mathematical 
Analysis I. The education process was developed around theoretical and practical 
lessons, where the concepts were essentially introduced based on their formal 
definition, which was later worked in the practical lessons based on the resolution of 
exercises. The lessons where were observed by the investigator, having in the end of 
the semester lead interviews semi-structured to some of the students. Based on the 
interviews, in the comments of the lessons and documents produced by the students, 
we made an analysis of content and three levels of concept image of the students 
were identified: incipient concept image, instrumental concept image and relational 
concept image. The establishment of these levels is elaborated on the basis of the 
objects, processes, translation between representations, properties and proceptual 
thinking that the pupils reveal when answers to the cognitive tasks that are placed to 
it. The case of the limit concept and examples of each one of the levels of the concept 
image are now presented. 

IMAGES OF THE CONCEPT OF LIMIT 
During the teaching process, the concept of limit was introduced on the basis of the 
following definition: 

"Let’s f:  D ⊂R →R and a an adherent point to the domain of f. One says that b is limit 
of f in the point a (or when x tends for a), and it is written bxf

ax
=

→
)(lim , if    

δεεδ <−⇒<−∧∈>∃>∀ |)(|||:00 bxfaxDx .  

The data presented below was part of a more general study (Domingos, 2003). 

In the task placed to the students in the interview situation we made an approach that 
we can consider with characteristics of an 
teaching experiment. We started with an 
concrete example, the expression 
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x

x  (figure 1), so that the 

students could give a geometric 
interpretation that allowed them to support 
the symbolic translation of this concept. It 
is presented below a detailed 
characterization of each one of the concept 
images founded. 

 
Figure1. Graph of the function 1

12

−
−

x
x   presented 

to the students (it has a "hole" in the graph 
in the point of absciss 1) 
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Incipient concept image 

When Mariana is asked to explain the meaning of the expression 2
1

1
lim

2

1
=









−
−

→ x

x
x

, she 

says:  

Mariana – Then, aaa… When the x tends… when the x tends to 1… the function comes 
closer to the image, of its image that is two… It is approaching 2…  

She considers that the value of the limit is the image of 1. For such she relates the 
proximity of the images of the point 2 when x approaches 1. When the graph of the 
function (figure 1) is showed and she is asked for to explain the same situation based 
on it, she use the notion of proximity cited previously in terms of intervals: 

Mariana – Then, aaa… In a small interval near of the 1, to the left [points to the graph] 
comes close to the 2. And on the right also it comes close to the 2. 

Inv. – Therefore, you consider an interval here [indicated a neighbourhood of the 1, in the 
horizontal axis] and what happens here? [indicated a neighbourhood of the 2, in the 
vertical axis]… It has that to be always very close… 

Mariana – Of the 2. In a neighbourhood ε . 

 Inv. – (…) Therefore, what you says is: when the x is in the neighbourhood of the 1… 
the images … 

Mariana – Are in the neighbourhood of the 2. 

She makes use of to the lateral limits to explain her notion of limit considering 
separately a neighbourhood to the left of 1 and another one to the right of 1, but 
without having the concern to define also a neighbourhood in terms of the images. 
When the interviewer points to a singular interval at the neighbourhood of 1, she 
mentions the existence of a neighbourhood of 2 with ray ε . Using only the resources 
of the language of the neighbourhoods she does not provide the symbolic translation 
of any part of the definition. Them the interviewer supplied the formal description of 
this example as it might have occurred class (figure 2). 

δεεδ <−⇒<−∧∈>∃>∀ |2)(||1|:00 xfxDx  

Figure 2. Symbolic representation of the expression ( )1
1

1

2

lim −
−

→ x
x

x
= 2 presented to students. 

When she was asked to explain the meaning of |x-1|< ε  in terms of neighbourhoods, 
Mariana did not provide any intended translation between the two representations:  

Mariana – This [|x-1|< ε ] is the neighborhood of the 1… Of ray 1. Not? …  

Her conception of neighbourhood seems to be based essentially on a relation of 
proximity in geometric terms but for which she does not provide a symbolic 
representation. She does not provide the translation between the different 
representations that are presented to her, showing some difficulty in following the 
suggestions made by the interviewer.  
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Mariana presents thus a concept image of limit essentially based on a geometric 
interpretation from which she retains a dynamic relation between objects and images. 
This does not allow her to attribute meaning to the symbolic definition where some of 
the most elementary procedures are translated by symbols. 

Instrumental concept image 

For José the explanation of the expression 2
1

1
lim

2

1
=









−
−

→ x

x
x

 his based on a graphical 

representation, even when such representations are not present. When mentioning the 
previous expression he detaches what happens in the vertical axis "is that the function 
is come close to the 2… of the YYs ". He relates what happens with the images in the 
vertical axis and when confronted with the graph of figure 1, finishes by saying: 

José – When we approach here in the axis of the XXs for 1, of the two sides… It is going 
to tend for 2, in the axis of the YYs. It’s approaching the 2. 

José shows the processes that underlie the relation between the objects and the 
images. He also shows that he sees as a dynamic relationship. 

When asked to establish the symbolic representation of limit he says he cannot do it, 
but provides the translation of some of the processes that he described previously. 
Thus when he refers to the fact that the x approaches 1 he suggests that it can be 
represented by "1 minus x less than anything" and as the x approaches the right and 
the left he considers that it can use the module and writes |1-x|. He even considers 
that this module must be smaller than a very small value, he does not use any symbol 
to represent it and when the investigator suggests that he can be ε , he does not know 
how to write this symbol. In the same way he establishes what happens in the 
neighbourhood of the limit. Using the module symbol he writes |2- f(x)| considering 
that also it can be minor that ε . He uses the same symbol ε  in both cases, not 
because he is convinced that both must be equal, but because he does not remember 
of another different symbol. When the investigator tries to explain that this parameter 
cannot be the same, he usesα , and writes |2-f (x)|< α . When asked to describe the 
role of quantifiers José imagines that the universal quantifier is applied toε . It seems 
that he considers that any object has an image and therefore the universal quantifier 
would be related to the objects. Finally, he writes a symbolic definition (figure 3), 
showing some difficulty in drawing the symbols of the quantifiers, and was not able 
to explain their role in the definition. 

 

Figure 3. José’s symbolic representation of ( ) 2lim 1
1

1

2

=−
−

→ x
x

x
. 

José’s concept image of limit it can thus be characterized by incorporating a complete 
graphical component that allows him to relate the objects and the images 
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dynamically. Based in this component he symbolically translates some parts of the 
concept, namely what happens in the neighbourhood of the point for which the 
function tends and on the limit point. However he is not able to give meaning to the 
quantifiers as well as identifying the symbols that represent them. 

Relational concept image 

 To Sofia the explanation of the expression 2
1

1
lim

2

1
=









−
−

→ x

x
x

 is based in a graphical 

sketch (figure 4): 

 

 

 

 

 

 

 

 

 

 Sofia – Then we are saying that when the x, that is… If here we will have the 1. We are 
to say here in this in case that, when the x is to tend for 1. 

Inv. – Hum, hum. 

Sofia – For different values of 1, I think that is different, yes because this never can… the 
images is to approach it… (…) of 2. Therefore the function, here is the point of the 
function or … 

Sofia starts to explain her notion of limit using a system of axis, without representing 
the function graphically. She uses it to describe the fact that x tends to 1 and the 
images tends to the value of the limit, 2. This representation caused some 
apprehension to her because she needs to materialize the image of the 1in the sketch. 
She finishes her concluding that this point does not belong to the domain, and then 
she needs to consider that it should tend for different values of point itself. Based on 
this boarding she establishes the symbolic definition: 

Sofia – I think that it is thus. For all the positive delta, exists one epsilon positive, such 
that the x belongs to R except the 1… And… x aaa… x-1 has that to be minor that 
epsilon, and there that is … f(x) minus 2, module, minor that delta.  

[She writes the expression of figure 5] 

Figure 4. Graphical sketch that translate 
the notion of limit of Sofia. 
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Figure 5. Sofia’s symbolic writing of ( ) 2lim 1
1

1

2

=−
−

→ x
x

x
. 

In this way Sofia translates symbolically the limit under study. It seems that she did 
not memorize the definition, because when she establishes the role of the parameters 
ε  andδ , she draws them in the graph of figure 1, representing the ray of the 
neighbourhoods centred in the points of abscissa 1 and ordinate 2 respectively. It is in 
the role of the quantifiers that inhabits the main difficulty, over all when she intends 
to explain how they influence the reach of the definition.  

Sofia’s concept image of limit seems to be the result of the coordination of the some 
underlying processes, through which she relates the different representations of the 
concept, conferring to them some generality, with exception to the role played for the 
quantifiers. 

CONCLUSIONS 
Based on cognitive theories of the learning and in the notion of advanced 
mathematical thinking it is possible to identify the complexity involved in the 
understanding of these concepts. In the cases studied, the analysis of the answers of 
students allowed us to verify a satisfactory verbal performance of the concept. 
However, when translating this verbal ability into a symbolic representation, 
performance decreases significantly as anticipated. The key findings of this study, 
however, lie on the distinction among three levels of concept image, namely: a) an 
incipient concept image, translating verbally only some parts of the symbolic 
definition; b) an instrumental concept image, making the symbolic translation of 
some parts of the concept; and c) a relational concept image that is translated into the 
capacity to represent the concept symbolically. These findings are relevant to AMT in 
the sense that they characterize complex concept images with greater accuracy. 
Further studies must deepen these distinctions. 
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CONCEPTUAL CHANGE AND CONNECTIONS IN ANALYSIS  

Kristina Juter 

Kristianstad University College and Växjö University, Sweden 

The paper presents a work in progress which is part of a larger study. Students 
learning analysis was investigated with the aim to find out how their concept images 
changed from the beginning of an analysis course to a year after the course. Their 
links between concepts were studied after the year had passed. The influence of the 
students’ pre-knowledge was durable and sometimes prevented students from making 
connections or abstractions.    

Key-words: Mathematics, analysis, university students, concept development, 
concept image. 

INTRODUCTION 

Mathematical analysis comprises several challenging concepts to link together. 
Conceptions change as they are evoked. The changes may be irrelevant to the over all 
conception, for example just another experience of a routine operation, or they can 
have an important impact on related concepts if, for example, a misconception is 
revealed and rectified. Conceptions that are not evoked may also change over time. 
The changes, if not sturdily enough integrated to prior knowledge or used, sometimes 
revert to former constellations as if they never occurred (Smith, diSessa & Rochelle, 
1993). The present study deals with changes over time as three students were asked to 
explain their conceptions of functions, limits, derivatives, integrals and continuity 
before a course and then again a year after. 

    The research questions posed are: What relevant pre-knowledge do students have 
at the start of a basic analysis course? How have the conceptions changed a year after 
the analysis course? How do the students connect different concepts in analysis a year 
after the analysis course?  

DEVELOPMENT OF CONCEPT IMAGES 

A concept image (Tall & Vinner, 1981) encompasses representations of concepts and 
processes learned or just briefly perceived arranged in mental networks. Impressions 
from instructions, discussions, solving tasks and reading, which all lead to 
mathematical thinking, have an impact on the development of the concept image. 
Tall’s (2004) three worlds of mathematics depict a development from just perceiving 
a concept through actions to formal comprehension of the concept. The first world is 
called the embodied world and here individuals use their physical perceptions of the 
real world to perform mental experiments to create conceptions of mathematical 
concepts. Intuitive representations naturally develop here from the lack of stringency. 
The second world is called the proceptual world. Here individuals start with 
procedural actions on mental conceptions from the first world, as counting, which by 
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using symbols become encapsulated as concepts. The third world is called the formal 
world and here properties are expressed with formal definitions and axiomatic 
theories comprising formal proofs and deductions. Individuals go between the worlds 
as their needs and experiences change and mental representations of concepts are 
formed and altered in the concept images.  

    Understanding a concept means that an individual is able to connect that certain 
concept to his or her concept image in a significant way (Hiebert & Lefevre, 1986) 
which is different from just being able to perform a particular operation. Pinto and 
Tall (2001) described two ways of understanding a concept, trough formal or natural 
learning. A formal learner uses definitions and symbols as a ground, whereas natural 
learners logically construct new knowledge from their concept images. The former 
has, if successful, a neat structure to build on, but, if not, a meaningless mass of 
symbols. The latter may have problems to formalise the knowledge from their 
concept images as there is a risk of problems to separate formal representations from 
their own, perhaps intuitive or naive, images. One benefit from natural learning is the 
logical understanding of concepts’ relatedness that comes from reconstruction.  

    New concepts are sometimes introduced intuitively, perhaps with an image, which 
lays the ground for more strict representations later on as the learner is able to link the 
intuitive representation to a stricter one or a complete one. Images of concepts can 
however work in a way opposed to the intended as Aspinwall, Shaw and Presmeg 
(1997) found in their case study on mental imagery. A person’s concept image can 
confuse, rather than ease making sense of concepts and links between them, if it does 
not cohere with formal concept definitions, i.e. definitions of mathematical concepts 
generally used in the mathematics society.     

    Research expose students’ struggle to link intuitive representations to formal 
representations (e.g. Cornu, 1991; Juter, 2006; Sirotic & Zazkis, 2007; Williams, 
1991). Sirotic and Zazkis claimed that underdeveloped intuitions often are due to 
flaws in formal knowledge and an absence of algorithmic experience. Links between 
intuitions, formal knowledge and algorithms are necessary for anyone to understand 
the topic at hand. Functions, limits, derivatives, integrals and continuity are tightly 
linked together in an analysis course. All topics comprise studies of functions. 
Derivatives and integrals are defined by limits of different kinds (limits of difference 
quotients and sums of infinitely thin rods respectively). Derivatives and integrals 
have a quality of being each others inverses with the possible exception of constants. 
Continuity is closely linked to limits by their definitions, and also to derivatives since 
differentiability is a stricter condition than continuity of the function’s smoothness. 
Merenluoto and Lehtinen (2004) studied students’ conceptual changes at upper 
secondary school. The concepts density, limit and continuity were studied in 
connection to number. The students showed almost no links relating the different 
concepts. The endurance of prior knowledge was one reason for the students’ disjoint 
concept images. Hähkiöniemi (2006) investigated students learning the derivative and 
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concluded that students had difficulties to link their procedural conceptions to formal 
mathematics. A similar result was drawn from a study on students learning limits of 
functions (Juter, 2006) where students’ intuitive perceptions often were incompatible 
with the formal concept image leaving the students with two incoherent 
representations, one for theory and one for problem solving. Students’ struggle with 
separated concept images from disability to formalise the intuitive representations 
and the lack of links to other concepts causes the feeling of a threshold for the 
students to surmount. Viholainen (2006) has also presented results of students’ 
difficulties to use concepts in the embodied world in a constructive correct manner 
when they worked with continuity and differentiability. This means that some 
students have an intuitive sometimes procedural conception of the concepts and need 
guidance to take the next step to formalise their knowledge. 

THREE STUDENTS’ CONCEPTIONS  

The students investigated were enrolled in an analysis course. The part presented here 
is part of a larger study of students’ pre-knowledge and their knowledge at times after 
analysis courses in mathematics teacher education (Juter, in press). The students were 
aged 19 years or older. Three students were selected in a group of 15 for further 
investigations, based on their results on the exam and on their responses to initial 
queries, so that there was an average achieving student, one higher achieving and one 
lower achieving student. The course was part of their teacher education programme, 
but it was also given outside the program. All students had, at least, had an 
introduction to the concepts studied in this article at upper secondary school.  

    The course was given fulltime over ten weeks. The students had two lectures (40 
minutes each) and two sessions for problem solving (40 minutes each) twice every 
week which gives a total of 80 lessons and problem solving sessions. The syllabus of 
the course included limits of functions, continuity, derivatives, and integrals (i.e. the 
topics studied in this paper) with derivatives and integrals as main parts of the course. 
Differential equations, parametric equations, polar coordinates and infinite sequences 
and series (Taylor and Maclaurin series) were also taught. The students worked in 
groups with tasks between the scheduled sessions. The tasks were designed to help 
the students understand definitions and theorems, e.g. the intermediate value theorem 
and the limit definition: A  is called the limit of )(xf  as ax→ , if for every 0>ε  there 
exists a 0>δ  such that ε<− Axf )(  for every x  in the domain with  δ<−< ax0 .  

    On their first session of the course the students filled out a questionnaire where 
they were asked to describe the concepts and also to write what the concepts are used 
for. The concepts in the tasks were not specified other than functions, limits, 
derivatives, integrals and continuity. The reason for this open approach was to 
prevent the students from becoming restrained with other formulations than their 
own. The aim was to keep the students from writing what they thought was expected 
of them and in stead let them explain in their own words.  
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    One year after the course, the three selected students were interviewed. They got 
the same questionnaire about functions, limits, derivatives, integrals and continuity as 
before the course. In addition, four graphs were presented for the students to 
determine differentiability, integrability, limits and continuity at all points. At the end 
of the interview they got a table with words or phrases listed in connection to the 
concepts studied. The words were selected from the students’ prior descriptions in the 
questionnaire and from formulations in the textbooks used in the course and lectures. 
The aim was to evoke different characteristics in the students’ concept images of the 
different concepts and from that see how they linked them together.  

    The design with only a questionnaire at the beginning of the course and interviews 
after means that there is much more information about the students’ concept images 
after the course leaving the results somewhat unbalanced. The questionnaire was used 
for selecting students to interviews as well as revealing their conceptions of the 
concepts and it was not possible to conduct interviews with all students to make such 
a selection.  

    Pseudonym names, Alex, Ian and Kitty, are used to retain anonymity for the 
students. The sample selection was done based on their questionnaire responses to 
become as representative as possible of the group. Kitty was achieving a bit higher 
than average students scoring the highest mark, VG (passed with honours), on the 
exam, Ian was a typical average student awarded the mark G and Alex achieved 
somewhat lower as he did not pass on the first try, but got a G (passed) on the second.  

Students’ conceptual change over a year 

The results are presented in tables 1 to 3 which show the students’ individual 
responses, before and a year after the course, to the five tasks: Describe the concept 
of function/limit/derivative/integral/continuity in your own words.  

 

 

Table 1. Alex’s responses to the five tasks before and one year after the course 

Alex Before the course A year after the course 

Function A function is an approximation 
like an equation with the 
difference that you can picture a 
function on a graph. 

mkxy +=  is a function for me, 
you use x and y. You can draw 
a graph on it. 

Limit A limit is what the word “says”, a 
limitation so you know for 
example within what values to 
stay. 

When you press these [the end 
points of an interval on the y-
axis close to the function] 
together as much as possible 
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you get a limit. 

Derivative You can describe a derivative as a 
means to “simplify” equations. It 
is something you do to get other 
functions in a graph. 

You change the function […] 
you can get more information 
from the function, you see the 
function differently. 

Integral The opposite to derivative. Is used 
as derivative but in reversed 
meaning. 

You change a function, get 
different information. 

Continuity It [the function] behaves the same 
way all the time. There are no 
“surprises” in the graph. 

A continuous function […] 
changes in a re-occurring 
pattern all the time. [Linear 
and sine functions are given as 
examples] 

 

Alex’s perceptions from before the course endured the course and a year after for the 
concepts function, derivative and integral. A severe misconception is clear from his 
descriptions of derivative and integral as he saw them as means to simplify or change 
functions. He was unable to explain the concepts in more detail. The changes he 
made on limits remained for the year with an emphasis on the limit definition and the 
illustration used in the course literature and in the lectures. Illustrations worked in a 
fruitful manner as the image had become a constructive part of his concept image. He 
was not able to present a formal definition of any of the concepts. 

Table 2. Ian’s responses to the five tasks before and one year after the course 

Ian Before the course A year after the course 

Function A sequence of events presented 
by a formula or a coordinate 
system.  

A sequence of events but on 
paper in a graph so to say […] 
or a system, a coordination 
[changed later to coordinate] 
system. 

Limit Limits are either maximum or 
minimum values in the function 

There are several kinds of 
limits […] maximum and 
minimum values […] average 
value of the curve. 

Derivative The derivative of a function is 
used to show what values are 
maximum and minimum. 

If you take the derivative of 
something, you get for 
example velocity and 
acceleration and so, but I do 
not remember. 
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Integral - You go in the opposite 
direction [to derivative]. In 
stead of acceleration to 
velocity you take velocity to 
acceleration. 

Continuity It [the function] moves the same 
way all the time, for example the 
sine curve. 

It was this funny thing […] it 
did not have an infinite value. 
The curve may not shoot off 
upwards or downwards […] it 
often becomes a gap in the 
curve but then it may shoot 
straight up or something. […] 
If it is continuous then it is 
whole. 

 

Ian used similar descriptions before and after the year on the concepts of function and 
limit. He perceived a function both as a process, a sequence, and an object, the 
coordinate system, at both times. Limits, integrals (after the year) and derivatives 
were process oriented in their descriptions with an emphasis on applications. 
Continuity was first seen as a process, i.e. as a function that moves the same way. A 
year later, his description focused the graph as an entity with the feature of being 
whole. Before the course, he had no description of integral despite his experiences 
from upper secondary school.  

He was unable to give any formal definition for the concepts. 

 

Table 3. Kitty’s responses to the five tasks before and one year after the course 

Kitty Before the course A year after the course 

Function A function is a constructed series 
of events. 

Numbers and an x to 
determine. A graph. 

Limit A limit is something you calculate 
as something tends to for example 
zero or infinity. 

A graph […] closing in on a 
value but it never gets there. 

Derivative You derive a function and get for 
example zero values. 

Area under a graph. [first but 
after some thought about 
integrals changed to:] A 
measure on how fast 
something accelerates. 
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Integral Reversed derivative where you 
calculate the area under a function 
on a certain interval. 

Area under a graph divided in 
small rectangles depending on 
how accurate you are. 

Continuity When there are no gaps in the 
graph and there is only one x-
value per y-value. 

If you go from one value to 
another there can not be any 
gaps in it. 

 

Kitty had a conception of functions similar to Ian’s before the course as a series of 
events, but she changed it to a view of the objects used when working with functions.  
On limits, she went from calculating to the limiting process, with the not so unusual 
misinterpretation that limits are unattainable (e.g. Cornu, 1991; Juter, 2006; Williams, 
1991). There was obvious development in Kitty’s concept image that remained for 
the year on derivative and integral. She presented no formal definition though. 

    Kitty had some confusion of her conceptions during the interview but she was 
often able to alter her concept image when needed. One example is concerning 
continuity and derivatives when she had answered the question about continuity in 
table 3: 

Kitty:  And then there was something about not having any edges.  

Interviewer:  Peaks and so you mean? 

Kitty:  Yes … or perhaps it was continuous then too, but there were something 
about those peaks anyway.  

Interviewer:  Yes. 

Kitty:  Maybe that you could not take the derivative on those peaks or something 
like that … no I might be thinking incorrectly.  

[The interview goes on and four graphs are presented where Kitty shall determine 
differentiability, integrability, continuity and limits. One has a peak.] 

Kitty:  If you derive, to determine how the other curve [the derivative] shall look, 
are you not supposed to draw those lines to see? [She shows a tangent line 
with her finger] 

Interviewer:  Mm. 

Kitty:  And that is impossible at the peak there because then you do not know if it, 
because it is pointy, you do not know what slope it has.  

Kitty worked with her existing knowledge and found out the logical and correct 
properties. This way of reasoning was typical for her during the interview.   

Networks of concepts 

The students connected different concepts and processes together with relevant links, 
i.e. links that are correctly justified and true as well as irrelevant or untrue links. 
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Typical examples of relevant and true links were, for example, Alex’s link between 
difference and limit in the sense that the difference is between the borders in the 
interval ε<− Axf )(  from the limit definition. Kitty connected change to derivative as 

she said: “Derivative […] is a measure of change […] how the velocity change, kind 
of, and then you draw it”. Ian, slightly vaguely, linked sums and integrals and 
explained: “If you calculate the area under the curve you get a sum”. Ian had a 
revelation when he tried to explain the connection between limits and continuity:  

Ian:  A graph can be continuous, that is what you mean? 

Interviewer:  Mm. 

Ian:  But it can at the same time be a straight line or go straight up. 

Interviewer:  Mm. 

Ian:  And then there is no limit on it so … yes there is an outer limit … but then 
there is a limit. Yes, then we take continuity on it [marks the box linking 
limits and continuity at the paper]. 

Ian managed to reason with himself to make sense of the relation between the 
concepts, similarly to Kitty’s strategy.  

    The patterns of links were different for the students. Alex had, by far, the highest 
number of links between concepts but if the selection was restricted to relevant links 
Kitty had the most links. She also had irrelevant or wrong links, but only few. Alex 
had several links to continuity, none of then relevant whereas Ian and Kitty only had 
a few each where Kitty had one and Ian three relevant links. Derivatives and integrals 
mere the two topics with the highest rate of links as could be expected from the 
syllabus. 

CONCLUSIONS 

The students had pre-knowledge of various characters when they came to the course 
as tables 1 to 3 show. Some pre-conceptions endured the course and a year, for 
example Alex’s unfortunate perceptions of derivative and integral as means to change 
functions and Ian’s more practical view of functions. Kitty’s concept image of 
integrals was partly the same but a development of further understanding had 
occurred (table 3). Building up concepts this way is stable since no changes of prior 
knowledge are required, there is only a phase of adding new knowledge strongly 
linked to the former. 

    A drawback of pre-conceptions is when they are wrong and remain, despite 
teaching and own work within a course stating the opposite of the pre-conceptions 
(Smith, diSessa & Rochelle, 1993). Alex’s interpretations of derivatives and integrals 
are obvious examples of such wrongly established conceptions. A conception that has 
been there for some time is not easily changed since it also demands changes in the 
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nearby parts of the concept image. Another reason to retain familiar conceptions is 
the comfort and security of the known that may not be readily surrendered. 

    Mental representations naturally connect to pictures, self constructed or otherwise, 
supporting understanding. All three students mentioned graphs. Ian, for example, 
described continuity as from a picture at the latter data collection. Kitty mixed up 
derivatives with integrals as she stated that the derivative is the area under the graph. 
When she, shortly after, was describing integrals she was able to make sense of her 
pictures of ‘areas under graphs’ and she went back to rethink derivatives. In Alex’s 
case of limits after the year the picture is easily recognised from lectures in the 
course. He had used the picture to strengthen his concept image in a, for him, useful 
manner. Pictures can however, as afore mentioned (Aspinwall, Shaw & Presmeg, 
1997), cause confusion rather than insight. The same picture as Alex used give many 
students the impression that limits actually are the limits of the intervals from the 
absolute values in the limit definition mentioned before (Juter, 2006).  

    The lack of connections between limits and continuity and other concepts is clear 
and consistent with Merenluoto and Lehtinen’s (2004) results. The present study 
explicitly investigates the links between further concepts which gives a fuller image 
of the scarcity of appropriate links. The students’ naive or wrong pre-knowledge was 
not easily changed with the effect that they were held back from reaching Tall’s 
formal world (2004). Understanding these concepts is not the same as being able to 
formally express them. Students also need to have a strong and rich foundation 
tightly linked to the formal expressions which has been proven to be difficult 
(Hähkiöniemi, 2006; Juter, 2006; Viholainen, 2006). Kitty had a functional 
foundation to formalise and she showed evidence to be on her way to reach the 
formal world. Ian had less such evidence and Alex essentially none. The students in 
the study are future upper secondary school teachers in mathematics and their 
mathematical understanding need to be rich and well connected in order for them to 
be able to perform their profession satisfactorily. 
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The main objective of this paper was to apply the onto-semiotic approach to analyze 
the mathematical concept of different coordinate systems, as well as some situations 
and university students’ actions related to these coordinate systems. The 
identification of mathematical objects that emerge from the operative and discursive 
systems of practices, and a first intent to describe an epistemic network that relates 
these operative and discursive systems was carried out. Multivariate calculus 
students’ responses to questions involving single and multivariate functions in polar, 
cylindrical and spherical coordinates were used to classify semiotic functions that 
relate the different mathematical objects.  

Introduction 

This study, in particular, embraces the aspect of thinking related to advanced 
mathematics. Mathematics education literature concerning university level 
mathematics, such as multivariable calculus, is relatively sparse.  Yet it cannot be 
taken for granted that mathematical understanding at this level is unproblematic: the 
data from research such as that represented in this paper makes this clear.   

The subject of curvilinear coordinates in the context of advanced mathematics 
requires transiting between the different coordinate systems (change of basis in the 
language of linear algebra) within a framework of flexible mathematical thinking.  
The achievement of conceptual clarity, while important is itself, is required in the 
context of applications in different areas (physics, geography, engineering) where a 
total lack of homogeneity in terms of notation, especially notorious when comparing 
calculus textbooks with those of other sciences, is presented (Dray & Manoge, 2002). 

The issue of transiting between different coordinate systems, as well as the notion of 
dimension in its algebraic and geometric representations, are significant within 
undergraduate mathematics.  Deep demands are made in both conceptual and 
application fields with respect to understanding and competence.  

“The move into more advanced algebra (such as vectors in three and higher 
dimensions) involves such things as the vector product which violates the 
commutative law of multiplication, or the idea of four or more dimensions, 
which overstretches and even severs the visual link between equations and 
imaginable geometry.” (Tall, 1995). 

      On the other hand, argument is made for the onto-semiotic approach as 
representing a distinct difference from approaches seen as situated within paradigms 
of mathematical theories represented by set theory and classical logic. This opens the 
door to a possible modelling of the communication of advanced mathematics as a 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2286



  

semiotic system.  The concept of semiotic function is addressed and related 
substantively to linguistic, symbolic and gestural expressions documented in 
situations that involve demanding mathematical connections.      

Different Coordinate Systems 

The mathematical notion of different coordinate systems is introduced formally at a 
precalculus level, with the polar system as the first topological and algebraic 
example. The emphasis is placed on the geometrical (topological) representation, and 
transformations between systems are introduced as formulas, under the notion of 
equality ( 2 2cos ,x r r x yθ= = + , etc.). The polar system is usually revisited as part of 
the calculus sequence; in single variable calculus, the formula for integration in the 
polar context is covered, as a means to calculate area. In multivariate calculus, work 
with polar coordinates, and transformations in general, is performed in the context of 
multivariable functions. It is in calculus applications that the different systems 
become more than geometrical representations of curves.  

The different systems, which are related to each other by transformations, are meant 
to be dealt with through the algebraic and analytic theory of functions, although the 
geometric representation will still play a large role in the didactic process. As has 
been established (Montiel, Vidakovic & Kabael, 2008), the geometric representations 
need to be dealt with very carefully. For example, it was reported that techniques 
such as the vertical line test, used to determine if a relation is a function in the 
rectangular context, were transferred automatically to the polar context. Hence the 
circle in the single variable polar context, whose algebraic formula r = a certainly 
represents a function of the angle θ (the constant function), when θ is defined as the 
independent variable and r as the dependent variable, was often not identified as a 
function because, in the Cartesian system, it doesn’t pass the vertical line test.  

The graphs are symbolic representations of the process with their own 
grammar and their own semantics. It is for this reason that their interpretation 
is not unproblematic (Noss, Bakker, Hoyles & Kent, 2007, 381). 

When multivariate functions are introduced in the rectangular context, in particular 
functions with domain some subset of R2 or R3 and range some subset of R, the 
institutional expectation is that the student will “generalize” the definition of 
function. The assumption is that students have flexible mathematical thinking, that is, 
that they are capable of transiting in a routine manner between the different meaning 
of a mathematical notion, accepting the restrictions and possibilities in different 
contexts (Wilhelmi, Godino & Lacasta, 2007a, 2007b).  

Research on the epistemology and didactics in general of multivariate calculus is 
virtually non-existent, and it is for this reason that no real literature review is given 
on the subject. It is a “new territory” that is being charted in this respect. Nonetheless, 
it is in the multivariate calculus course where students, many for the first time, are 
expected to deal with space on a geometric and algebraic level after years of single 
variable functions and the Cartesian plane. They must define multivariable and vector 
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functions, deal with hyperspace (triple integrals), find that certain geometrical axioms 
for the plane do not hold over (lines cannot only intersect or be parallel, they can also 
be skew), and work with functions in different coordinate systems. Students must 
learn operations that are dimension-specific (such as the cross product) and make 
generalizations which require flexible mathematical thinking.  These are just some of 
the aspects which make multivariate calculus a rich subject for many of the research 
questions that arise when trying to analyze the epistemology, as well as the didactical 
processes, in the transition to higher mathematics.  

On the other hand, multivariate calculus in itself, with its applications, is an important 
subject for science (physics, chemistry and biology), engineering, computer science, 
actuarial sciences, and economics students. For this reason, it is important to analyze 
the contexts and metaphors used in its introduction and development, because 
generally there aren’t evident translations between college and workplace 
mathematics (Williams & Wake, 2007). 

Conceptual Framework 

Clarifying the meaning of mathematical objects is a priority area for research in 
Mathematics Education (Godino & Batanero, 1997). In this paper, a mathematical 
object is: “anything that can be used, suggested or pointed to when doing, 
communicating or learning mathematics.” The onto-semiotic approach considers six 
primary entities which are (Godino, Batanero & Roa, 2005, 5): (1) language (terms, 
expressions, notations, graphics); (2) situations (problems, extra or intra-
mathematical applications, etc.); (3) subjects’ actions when solving mathematical 
tasks (operations, algorithms, techniques); (4) concepts, given by their definitions or 
descriptions (number, point, straight line, mean, function, etc.); (5) properties or 
attributes, which usually are given as statements or propositions; and, finally, (6) 
arguments used to validate and explain the propositions (deductive, inductive, etc.).  

The following dual dimensions are considered when analyzing mathematical objects 
(Godino et al., 2005, 5): (1) personal / institutional; (2) ostensive / non-ostensive. (3) 
example / type; (4) elemental / systemic; and (5) expression / content.  

The present study carries out analysis with this classification, and relies on the 
reader’s intuition and previous knowledge to understand how they are used in the 
context. The emphasis on mathematical objects in the present study is represented by 
the words of Harel (2006) when referring to Schoenfeld:  

A key term in Schoenfeld’s statement is mathematics. It is the mathematics, its 
unique constructs, its history, and its epistemology that makes mathematics 
education a discipline in its own right. (p. 61) 

The situating of onto-semiotic approach within the domain of theories such as 
category theory, and non-bivalent logic is much more than a mere academic exercise. 
In the ICMI study Mathematics Education as a Research Domain: A Search for 
Identity, Sfard (1997) stated that: 
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Our ultimate objective is the enhancement of learning mathematics…Therefore 
we are faced with the crucial question what is knowledge and, in particular, 
what is mathematical knowledge for us? Here we find ourselves caught 
between two incompatible paradigms: the paradigm of human sciences… and 
the paradigm of mathematics. These two are completely different: whereas 
mathematics is a bastion of objectivity, of clear distinction between TRUE and 
FALSE… there is nothing like that for us. (p. 14)  

It is clear that the possibility of situating research in mathematics education within 
the paradigm of mathematical theories other than set theory and classical logic was 
not contemplated in the previous quote.   

The onto-semiotic approach to knowledge proposes five levels of analysis for 
instruction processes (Font & Contreras, 2008; Font, Godino, & Contreras, 2008; 
Font, Godino & D’Amore 2007; Godino, Bencomo, Font & Wilhelmi, 2006; Godino, 
Contreras & Font, 2006; Godino, Font & Wilhemi, 2006): 

1) Analysis of types of problems and systems of practices; 
2) Elaboration of configurations of mathematical objects and processes; 
3) Analysis of didactical trajectories and interactions; 
4) Identification of systems of norms and metanorms; 
5) Evaluation of the didactical suitability of study processes. 

The present study concentrates on the first level, while touching on the second as 
well. The same empirical basis, with the same notions, processes and mathematical 
meanings will be used in future studies to develop the second and third aspects. 

Context, Methodology and Instrument 

The context of the present study is multivariate calculus as the final course of a three 
course calculus sequence, taught at a large public research university in the southern 
United States. Six students were interviewed, in groups of three, and the interviews 
were video-recorded. The students were first given four questions in a questionnaire 
(figure 1), on which they wrote down their responses, and they were then asked to 
explain them. In this paper, we analyze exclusively the first question because of 
limited space. In the figure 2, a semblance of the answers that were expected from the 
students by the researchers is given, as well as selected student work.   

For each question, the students were chosen in a different order, but it was inevitable 
that who spoke first would influence, in some way, the other two. They were asked to 
explain verbally on an individual basis, but group discussion was encouraged when it 
presented itself. It should be noted that these students participated after taking their 
final exam, so they had completed the course. The students were assured that their 
professor would not have access to the video-recordings until after the final grades 
had been submitted.  
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Question 1. Are the given graphs functions in the single variable set up of polar coordinates, when  
 is considered a function of  ( ( ))?r rθ ρ θ=  

 Circle your choice and explain the reason. 
Function r = 2 r = cos(4θ) 3/πθ =  

Graphs 

   

Answer 
YES  NO 
Explanation: … 

YES  NO 
Explanation: … 

YES           NO 
Explanation: …  

Question 2. Shade the region and set up how would you calculate the area enclosed by: outside r = 
2, but inside r = 4 sin(θ); Use DOUBLE integration. [DO NOT CALCUALTE THE INTEGRAL.] 

Question 3. In rectangular coordinates the coordinate surfaces: x = x0, y = y0, z = z0 are three 
planes.  

(a) In cylindrical coordinates, what are the three surfaces described by the equations: r = 
r0, θ = θ0, z = z0? Sketch. 

(b) In spherical coordinates, what are the three surfaces described by the equations: ρ 
=ρ0, θ = θ0, z = z0? Sketch. 

Question 4. What are the names of the following surfaces that are expressed as the polar functions: 
(a) . Sketch the surface. Find the volume of the solid by triple integration (use 

cylindrical coordinates) when  Does your answer coincide with the formula for 
the volume of this solid (if you happen to remember)?  

(b) . Sketch the surface. Find the volume of the solid by triple integration. 

Figure 1. Questionnaire 

The nature of this study does not require the reader to have detailed information on 
each of the students, as the focus is upon the mathematical objects and not on the 
cognitive processes of the participants. Another article, with a more cognitive focus, 
will be developed with this same data, as the onto-semiotic approach can be used as a 
framework in theories of learning and teaching mathematics (communication), as 
well as the epistemology and nature of mathematical objects. 

The first question was in three parts, and was identical to the question presented to 
second course calculus students (calculus of a single variable) and reported upon in 
Montiel, Vidakovic and Kabael (2008). The objective was to determine if the 
students could distinguish when a relation between r and θ was a function or not, 
taking θ as the independent variable and r as the dependent variable. This is not a 
trivial question, as the geometric representation of the constant function in polar 
coordinates, r = a, is a circle, which is not a function in rectangular coordinates, as 
was reported in the previous study. 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2290



  

The generic definition of function, which we can paraphrase as ‘a 
transformation in which to every input there corresponds only one output’, 
seems to often be lost amongst the different representations students are 
exposed to, without recognizing any implicit hierarchy. (p. 18) 

For this reason, in the previous study the vertical line test, valid for the rectangular 
system but not for the polar coordinate system, was used as a criterion to say, 
mistakenly, that r = a was not a function. This same question was now asked to 
students who had completed a multivariate calculus course, and who were expected 
to know how to identify and “do calculus” with not only single variable functions, but 
multivariable functions as well, in rectangular, cylindrical and spherical systems. It 
was of interest to analyze the answers and explanations to question 1 with this new 
student sample.  

Analysis Using the Onto-Semiotic Approach 

The plan will be to go through the question; as there are six subjects and two groups, 
S1, S2 and S3 will represent the participants in the first group, and S4, S5 and S6 the 
participants in the second interview session. Usually the two sessions will not be 
differentiated as emphasis will be placed on the questions themselves and the 
mathematical content. There are also written answers which will be referred to at 
times.  

The essence of the first question is the fact that the exact same geometrical 
representation, a circle, which is not considered a function in rectangular coordinates, 
is in fact a function in the polar coordinate system. Language seen as a mathematical 
object, one of the primary entities, and understood as terms, expressions, notations 
and graphics, and semiotic functions that map language (expression) to content 
(meaning), play an important role here. For example, S2 specifically mentioned that 
the vertical line test could not be used, making it understood that the “definition of a 
function by the vertical line test” was not valid in polar coordinates, because in polar 
coordinates “anything goes”. What is inside the quotations, of course, are personal 
objects in a very colloquial language, although from the institutional point of view 
the answer is correct, given that she circled “yes” for “a” and “b”, and “no” for “c”. 
However, as can be seen in Appendix, her explanation differs from the usual 
institutional expression.  

In figure 2, it can be appreciated that S3 gave as his explanation “for every θ there is 
only one r”, using the concept (definition) and properties of function in its 
underlying, structural meaning, which does not rely on a particular coordinate 
system, as well as employing impeccable institutional expression. S4 related the two 
systems by saying that “in the rectangular system there is one y for eachx , so here 
there is one  r for eachθ ”, while S1 used the radial line test to justify the equation as 
representing a function; the radial line test had been briefly mentioned in class.  

The concept (definition) of function, as seen from the onto-semiotic approach 
(Wilhelmi et al, 2007a), can be understood in different mathematical contexts, such 
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as topological, algebraic or analytical. Furthermore, when the concept of function is 
first introduced, usually at the secondary algebra level, it is not possible to embrace 
all the systems of practices, so even when the underlying structural definition is given 
(“for every element in the domain, there corresponds one and only one element in the 
codomain”, or, “for every input there is only one output”), what often remains in 
students’ minds (Montiel et al., 2008) is the geometric language with the vertical line 
test, as different coordinate systems are not included. Even though polar coordinates 
are introduced at the precalculus level, their geometric representations are usually 
presented in textbooks as exotic curves (lemnicate, etc.), not as functions.  

Expected answer. 

(a) Answer:  YES   NO.            Explanation:  For every element θ  in the 
domain, there corresponds one, and only one, element in the codomain. For every 
input θ, there corresponds one, and only one, output.  

(b) Answer:  YES   NO.            Explanation: Same as in part (a).  

(c)  Answer:  YES   NO.            Explanation:  For π/3 there are infinite 
values (more than one) of r. 

Answer from S2. 

(a)  

 

(b) 

  

Answer from S3. 

(a) 

 

(b) 

 

                                                                              

(c) 

 

(c) 

 

Figure 2. Expected answers and actual student answers 
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The elementary-systemic dichotomy also is applicable here, because all the different 
coordinate systems, including the general “curvilinear” coordinates, and the 
transformations between them together with the determinant of the Jacobian matrix, 
form a compound object, that is, a system. The actual curve in a particular system, as 
graphical language, would be an example of an elementary - or unitary- object. At the 
same time, the ostensive/non-ostensive duality is also relevant, as the graphical 
representations and the set up of double and triple integrals in different systems lead 
up to the mathematical concept of changing variables in multiple integration. 

On the other hand, it is interesting to observe that in this study the students had no 
problem with realizing that θ  was changing, although the point on the graph 
appeared to be in the same place. That is, that a point with polar coordinates, say, 

)2,4( π  was different from the points )23,4(),25,4( ππ −  and so on. They also 
recognized θ  and r as independent and dependent variables, even though the pairing 
(r, θ) often creates confusion, as it is reversed when compared to the convention in 
the rectangular system, where the independent variable is the first component and the 
dependent variable is the second component ((x, y)). In these cases students portrayed 
much more adhesion to the following mathematical norm: “the determination of an 
ordered pair consists of knowledge about the elements, the order in which they 
should be expressed and the meaning of each component”, as compared to the single 
variable calculus students faced with the same problem (Montiel et al, 2008).  

Many standard calculus textbooks do not help in clarifying the concept of function in 
polar coordinates. Varberg and Purcell (2006) state that:  

…There is a phenomenon in the polar system that did not occur in the 
Cartesian system. Each point has many sets of polar coordinates due to the fact 
that the angles θ +2πn, n = 0, ±1, ±2…, have the same terminal sides. For 
example, the point with polar coordinates )2,4( π  also has coordinates 

)25,4( π , )29,4( π , )23,4( π− , and so on (p. 572). 

However, we ask, if there is a switch from Cartesian to polar coordinates, is the 
element )2,4( π  really the same as )29,4( π ?   

It should be pointed out that, this “phenomenon” comes about because a point in 
polar coordinates is being identified with an equivalence class. That is, a point ( , )r θ  
is equivalent to another point (r,θ’) if θ’ = θ  ± 2π. In other words, it is presupposed 
that the dual dimensions example/type and expression/content should be avoided, as 
they constitute an unnecessary difficulty. However, this “simplification” can limit 
students’ access to the overall institutional meaning.  

In Salas, Hille and Etgen (2007, 479), it is also stated “Polar coordinates are not 
unique. Many pairs (r,θ’) can represent the same point”. On page 492, the problem is 
avoided by strictly stating the domain of the variable θ as limited to (0, 2π). There is 
no mention of the radial line test in any of these texts. 

When the geometric language, and the system of practices developed around it, are 
not taken specifically into account, the elementary algebraic entity, in the example 
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above, is a perfectly defined function r(θ) = 4, with no restriction on the domain. If 
the formal structure of the object “function” must be coherent in all coordinate 
systems, then the fact that the point is “apparently” the same does not make for sound 
mathematics. If “for every input there is only one output” captures this underlying 
structure, then the textbooks might need to take this into account.  

Conclusion 

Different coordinate systems, apart from their intrinsic mathematical interest, are 
used in many types of applications in science and engineering. The main objective of 
this paper was to apply aspects of the onto-semiotic approach, especially those related 
to the notion of meaning and mathematical objects to different coordinate systems. In 
the process, the systems of operative and discursive practices associated with this 
mathematical concept were identified. As previous research, within any framework, 
on this mathematical concept, and on multivariate functions in analysis in general, is 
practically non-existent, a much more sophisticated description of an epistemic 
network for this subject is a goal that we hope to reach in the near future. The 
transformation of expressions to content through semiotic functions, and the 
identification of chains of signifiers and meanings, could be accomplished because of 
the rich layering and complexity of the mathematical concept at hand.  

“The notion of meaning, in spite of its complexity, is essential in the foundation and 
orientation of mathematics education research” (Godino et al., 2005).   

It is essential to organize what must be known in order to do mathematics. This 
knowledge includes, and even privileges, mathematical concepts, and it is the search 
for meaning and knowledge representation that has stimulated the development of the 
mathematical ontology. However, the onto-semiotic approach gives us a framework 
to analyze, as mathematical objects, all that is involved in the communication of 
mathematical ideas as well, drawing on a wealth of instruments developed in the 
study of semiotics. It is hoped that this attempt to apply this ontology and these 
instruments to a mathematical concept that involves so many subsystems, provides an 
example of the kinds of studies that can and should be undertaken. Further studies on 
this particular mathematical concept can only clarify aspects of the knowledge 
needed in the communication and understanding of it.  
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DERIVATIVES AND APPLICATIONS; 

DEVELOPMENT O F ONE STUDENT’S UNDERSTANDING 
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This paper reports on a longitudinal observation study characterising student’s 
development in their understanding of derivatives. Through the Dutch context-based 
curriculum, students learn this concept in relation to applications. In our study, we 
assess student’s understanding. We used a framework for data analysis, which 
focuses on representations and their connections as part of understanding deriva-
tives, and it includes applications as well. We followed students from grade 10 to 
grade 12, and in these years we administered four task-based interviews. In this 
paper we report on the development of one ‘average’ student Otto. His growth 
consists of an increasing variety of relations, both between and within represen-
tations and also between a physical application and mathematical representations. 
We also find continuity in his preferences for and avoidances of certain relations.  

 

Keywords: Derivative, applications, procedural and conceptual knowledge, process-
object pairs, case study. 

INTRODUCTION 

In the Dutch mathematics curriculum for secondary schools, the role of applications 
increased over the past 15 years. When the concept of the derivative is taught in 
grades 10-12, most textbooks provide students with opportunities to learn the concept 
in different contexts. Often an introduction in grade 10 starts with contexts related to 
velocity, steepness of graphs and, for example, increasing or decreasing temperatures. 
Textbooks provide tasks on the average rate of change, average velocity and the slope 
of a secant. The step towards instantaneous rate of change is kept intuitive, as most 
textbooks avoid the use of the formal limit definition, or only mention it on one page 
without using the notation with a ‘limit’. Also in the conceptual extension of the 
derivative in grades 11 and 12, most chapters contain applications.  

During their school time, students construct their knowledge of different concepts. 
One of these concepts is the derivative, which is not only a multifaceted mathematical 
concept, it also has relations to other school subjects. Knowledge of the derivative 
may support the learning of physics and economics, but physics teachers complain 
that students cannot apply what they have learned in their mathematics classes (e.g. 
Basson, 2002). In our research, we investigate which aspects of the concept 
derivative are becoming available to students, and whether and how students can 
relate the concept between different subjects such as mathematics, physics and 
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economics. Our aim is to describe and analyse the development of students’ 
understanding of derivatives, not just as a mathematical concept in itself, but as a 
mathematical concept in relation to applications. 

THEORETICAL BACKGROUND 

Understanding the concept of the derivative 

It is complex to determine to what extent a student understands the concept of 
derivative. Many publications on understanding concepts use words such as scheme, 
structure, connections and relations. Anderson and Krathwohl (2001) define 
conceptual knowledge as: the interrelationship between the basic elements within a 
larger structure that enables them to function together. Thus, they perceive it as more 
complex and organized forms of knowledge. Procedural knowledge is defined as: 
methods of inquiry and criteria for using skills, algorithms, techniques and methods. 
Hiebert and Carpenter (1992) describe understanding in terms of the way, in which 
information is represented and structured. The degree of understanding depends on 
the number and strengths of connections between facts, representations, procedures or 
ideas. Connections can have different characteristics. In our analysis of students’ 
connections, we identify procedural and conceptual knowledge. To describe a 
student’s understanding of the derivative in relation to applications, we describe the 
connections made by a student (Roorda, Vos & Goedhart, 2007), distinguishing: 
(i) Connections between mathematical representations,  
(ii) Connections within mathematical representations and  
(iii) Connections between an application and mathematical representations. 
We will explore these three types of connections further. 

Connections between representations 

Hähkiöniemi (2006) discusses different viewpoints on representations. According to 
him, the traditional view on representations is that a representation is conceived as 
something that stands for something else, and representations are divided into 
external and internal ones (cf. Janvier, 1987). In his study Hähkiöniemi defines a 
representation broader as: 

“.. a tool to think of something, which is constructed through the use of the tool; a 
representation had the potential to stand for something else but this is not necessary. 
A representation consists of external and internal sides which are equally important 
and do not necessarily stand for each other but are inseparable.” (p. 39)  

As such, a gesture by a hand in the air can be a representation of a tangent. Without 
ignoring the existence of internal representations, we will follow the more traditional 
view, because external representations can be observed and they can be considered as 
external indicators of someone’s internal representations. In different research the 
following representations are distinguished: formula, graph, table, words, physical 
background, gestures (Asiala, Cotrill, Dubinsky & Swingendorf, 1997; Hähkiöniemi, 
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2006; Kendal & Stacey, 2003; Kindt, 1979; Zandieh, 2000). Kendal and Stacey 
(2003) look especially at three mathematical representations: formula, graph and 
table. Students can talk about derivatives from a formulae viewpoint (such as rate of 
change), from a graphical viewpoint (slope), or from a numerical viewpoint (such as 
average increase). 

Connections between representations and the ability to switch between these are 
important features for solving tasks (Dreyfus, 1991; Hiebert & Carpenter, 1992). 
Hähkiöniemi (2006) states that conceptual knowledge often refers to the making of 
connections from one representation to another. However, we will show in this paper 
that a connection between two representations can also have a more procedural 
character. 

Connections within representations 

As mentioned above, not only connections between representations but also within 
one representation are important (Dreyfus, 1991). For the derivative, Kindt (1979) 
distinguishes four levels within each representation. For example, in the formulae 
representation the four levels are: function, difference quotient, differential quotient 
and derivative, in the graphical representation: graph, slope of a chord, slope of the 
tangent and graph of the derivative. Zandieh (2000) indicates the steps between these 
four levels as process-object pairs, since each level can be viewed both as dynamic 
process and as static object. To illustrate the idea of process-object pairs we look at 
the second level of the formulae representation, the difference quotient. A difference 
quotient :y x∆ ∆  is a division, which can be viewed as a process: divide a difference 

in y by a difference in x. The outcome of this division, denoted by y
x

∆

∆
, is a value 

which can be seen as an object. Likewise, in the graphical representation: the division 
of two lengths is the process, which results in an object, the slope of a chord.  

Zandieh (2000) explains why the differential quotient and the derivative function 
both also can be viewed as process-object pairs. In the difference quotient a limiting 
process is involved, and ‘the derivative acts as a process of passing through 
(possibly) infinitely many input values and for each determining an output value 
given by the limit of the difference quotient at a point.’ 

When a student makes connections between levels within a representation, 
Hähkiöniemi claims this to be mostly procedural. However, these connections can 
also be conceptual, for example in a graphical explanation of the limiting process.  

Connections between applications and mathematics 

The mathematical concept ‘derivative’ has relations with different applications. 
Thurston (1994) describes different ways of understanding derivatives. One way is to 
understand derivatives in terms of the instantaneous speed of f(t) when t is time. Also, 
derivatives are used in physics lessons for concepts such as velocity, acceleration or 
radioactive decay, and in economics lessons for calculating maximum profits of 
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marginal costs and revenues. Zandieh (2000) included a column physical into her 
framework. She argued that the context of motion serves as a model for the 
derivative. This extension can be made to other applications of the derivative as well. 

Our research question in terms of the described framework is: what are characteristics 
of a student’s development with respect to connections made between and within 
representations, and between applications and mathematical representations? 

METHODOLOGICAL DESIGN 

To study the development of students’ understanding, we designed a longitudinal 
multiple case study with twelve students. Between April 2006 and December 2007, 
approximately every six month a task-based interview was conducted, yielding four 
interviews of 75 minutes with each student. In the interviews, we used think-aloud 
and stimulated recall techniques. The interviews were videotaped and transcribed. 

The first interview was held before students were introduced to the theory of 
derivatives. Between the second and the last interviews, derivatives were a re-
occurring topic in mathematics lessons. For this paper, we report on interview 2 (I-2) 
in November 2006 and interview 4 (I-4) in November 2007, because these contained 
the same five tasks, enabling us to compare in time. We will report on the work of 
one student, Otto. By zooming in on the work of one student, we can look more 
precisely at the solution strategies and statements of this student. We selected an 
average student with a positive attitude. 

All tasks in the test dealt with the concept of derivative, but this was not explicitly 
mentioned. The tasks were designed to give students many opportunities to show 
their understanding of derivatives in different representations and applications. We 
describe three exemplary tasks, named Emptying a Barrel, Petrol and Ball.  

Barrel: A barrel is emptied through a hole in the bottom (Figure 1). 
For the volume of the liquid in the barrel, the formula 

21
6010(2 )= −V t  and its graph are presented. The question is to 

calculate the out-flow velocity at 40t = .  

Petrol (Kaiser-Messmer, 1986): In a car an installation measures the 
petrol consumption related to the distance driven. The amount of 
petrol, used by a car, depends on the travelled distance. The task includes a graph and 
a table. ( )V a  is the petrol consumption after a km. The question is to interpret 

( ) ( )V a h V a

h

+ −
 (h is a value, which you can choose). 

Ball: A ball falls from a height of 90 cm. A table, a graph and the formula for the 
height 2( ) 0,9 4,9h t t= −  are presented. The question is to calculate the velocity at a 
certain point. 

Figure 1 
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Our analytic framework (presented in Roorda et al. 2007) contains elements of earlier 
frameworks of Zandieh (2000), Kindt (1979) and Kendal & Stacey (2003) In one 
dimension we have three mathematical representations: (a) formulae, (b) graphical; 
(c) numerical. In the other dimension we have the three object-process layers as 
connections between the four levels. See Table 1. 

Table 1: Representations and levels of the concept derivative 

 Formulae Graphical Numerical 

Level 1 F1: f : function G1: graph N1: table 

Level 2 F2: 
f

x

∆

∆
 difference quotient G2: average slope  N2:average increase 

Level 3 F3: 
d

d

f

x
 differential quotient G3: slope of a tangent 

 

N3:instantaneous rate of change 

Level 4 F4 : f ′ derivative G4: graph of derivative N4: table with rates of change 

To solve an application problem, students can choose which mathematical 
representation can be helpful. In this way, they make a connection between an 
application and a mathematical representation. In the table below, different non-
mathematical representations are displayed, matching the format of the table above. 

Table 2: Different applications 

 
General application Economics Physics: velocity Physics: acceleration 

Level 1 
S1: ( )A p : A depends 
on p 

E1: TK total costs Pa1: ( )s t  
displacement 

Pb1: ( )v t velocity 

 

Level 2 S2: 
p

A

∆

∆
 average 

change of A 

E2: 
[ ]TC

q

∆

∆
 average 

increase of costs 

Pa2: 
s

t

∆

∆
 average 

velocity  

Pb2: 
v

t

∆

∆
 average 

acceleration 

Level 3 S3: 
dp

dA
 instantaneous 

rate of change 

E3: 
[ ]d TC

dq
 marginal 

costs  

Pa3: 
ds

dt
instantaneous  

velocity 

Pb3: 
dv

dt
 for t a=   

instantaneous acc. 

Level 4 
S4: A’(p) derivative E4: MC marginal 

costs 
Pa4: ( )v t  velocity Pb4: ( )a t acceleration 

The difference with earlier frameworks is that we operationalise understanding of the 
concept of the derivative through the connections between representations, within 
representations and between representations and applications. In our analysis, we use 
arrows (as connectors) to visualize the connections in the scheme above. During the 
problem solving process a student may switch, for example, from a function (F1) to 
the derivative function (F4), yielding the code F1→F4. Another difference is the role 
of applications: these are not only viewed of as a support for understanding 
mathematics, but also as a part of other school subjects. When, for example in an 
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economic problem, a student focused on the graph, drew a tangent line, and 
calculated the slope, without economic interpretation, we will denote this as: 
E1→G1→G3. However, when a student solves a problem by calculating marginal 
costs, without mentioning relations with functions, graphs or table, we will denote 
this as E1→E4→E3. 

RESULTS 

In this section, the analysis and coding of students’ strategies in terms of our 
framework is illustrated by looking at the task Barrel. In Table 3 we summarise 
Otto’s work on this task during I-2 and I-4. 

Table 3: Otto’s typical statements and activities; Associated codes for Otto’s 
connections; task Barrel  

Interview 2 (I-2) Interview 4 (I-4) 

Otto: I have to calculate the velocity at that 
point [plots the graph and uses the option 
‘Tangent’ of his graphing calculator. In the 
window of the calculator the tangent appears 
and the formula y = −0,4428191485x+35,49..] 

Otto goes on to say: I think I have to different-
tiate, I get the formula of the tangent by 
differentiating. He calculates the derivative, 
without using the chain rule, fills in 40t = , 
makes a calculation error, writes down 

(40) 493,333V ′ = − . 

To check his answer, Otto tries to calculate the 
average out-flow velocity of the tank over the 

whole period, by a self-made rule:
2

begin end+
 

Otto calculates the derivative with some errors: 
(40) 59,8V ′ = . He discovers a miscalculation, 

corrects his answer into −555,56 litre per 
minute. To check his answer, Otto draws a 
tangent into the graph of the task and calculates 

35 0

80

y

x

∆ −
=

∆
 = 437,5 l/m. He says: This is a bit 

imprecise. I think it is possible. […] you can 
check with a graphical calculator by drawing a 
tangent. 

Otto plots the graph and the tangent: [O writes 
down: GR→ tangent(40)→-0,444x+35,56] 

He writes down 444,4 l/min. He thinks he 
made a miscalculation in the derivative. 

Connections interview 2 
S1→F1→G1→G3: use of formula; plots the 
graph; plots tangent 
S1→F1→F4→F3→S3:derivative (with error); 
derivative at t = 40; back to application 

Connections interview 4 
S1→F1→F4→F3→S3: formula; derivative 
(with error); fills in t = 40; back to application 
S1→G1→G3→S3: graph; tangent; application 

F2→G2 slope of tangent with y

x

∆

∆
  

F1→G1→G3→S3 graph, tangent; application 

Some observations: Otto used in I-2 and I-4 similar solution methods, such as 
differentiating the formula and plotting the tangent. Differences are also visible, for 
example in I-4 Otto checked his solution additionally by drawing the tangent on 
paper. Also, the connection between applications and mathematics G3→S3 was 
added, because Otto interpreted the slope of the tangent in terms of the application.  
In table 4 the same overview is given for the tasks Ball and Petrol. We will analyse 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2301



  

the data of these three tasks by examining the connections between representations, 
within representations and between application and mathematical representations. 

Connections between representations 

In I-2 the connection F1→G1 is frequently observed. In the tasks, Otto used the given 
formula as a starting point to plot a graph on his graphical calculator. Only one time 
we saw Otto make a table with his graphing calculator. Throughout I-2, Otto made a 
connection between derivative and tangent (F3/F4 →G3), but he could not explain 
this relation precisely. He said, for example: When you differentiate you get the 
formula of the tangent (see Table 3) and: to approximate the tangent, you use the 

formula 
( ) ( )V a h V a

h

+ −
 (see Table 4). 

Table 4: Otto’s typical statements and activities; Associated codes; tasks Ball and 
Petrol 

Interview 2 Interview 4 
Otto reads the task Ball and says: I think I have 
to use a derivative. He calculates the derivative 
but he fills in t = 2,4 instead of t = 0,24. 
Then he says: When you differentiate you get the 
formula for the tangent, and that corresponds to 
the velocity, I think. 
On his graphing calculator he plots a graph and a 
tangent but after a long silence he states: I don’t 
get any wiser from this. 
 
 
 
 
Connections: Pa1→F1→F4→F3 formula; 
derivative; fills in a wrong value for t. 
F1→G1 →G3 graph; tangent 

Otto thinks he can calculate the velocity of the 
ball by the formula txv ∆= . He calculates the 
average velocity over de first 0,24 seconds. 
This is followed by some confusion because 
Otto thinks the ball also moves horizontally. 
When de interviewer asks him to check his 
answer, Otto calculates the derivative. This 
answer is better, according to him, because in it 
he recognizes the derivative 9,8 as the gravity 
acceleration. He also says: I could draw a 
tangent and calculate the slope of it. At last Otto 
mentions a method with kinetic energy, but for 
that he needs the mass of the ball. 
Connections:Pa1→F1→F4→F3→Pa3: formula;  
derivative; fills in a value for t; velocity 
G1→G3 slope of tangent 

Statements of Otto in the task Petrol 
It’s the oil consumption at that point. 
On a small interval it becomes precise. 
On a small part you can approximate the 
tangent. 
Differentiating is for the formula of the tangent. 
It is a specific value for the tangent 
How many liters per kilometer he uses (F2→S2) 
 
 

Statements of Otto in the task Petrol 
It is the approximation on a certain point;  
It is a certain slope, when you take a small h you 
calculate exactly the slope at a certain point 
(F3→G3; F2→F3); 
You get the consumption very precisely; 
When h is larger it is the average consumption 
over a certain distance. (F2→S2); 
It is a formula to calculate the consumption over 
a certain period of time. 

Compared to I-2, in I-4 we observed more relations between representations, also at 
different levels of the concept. Otto more often used the given graph to solve the task. 
In I-4 Otto stated that the value of the derivative equals the slope of the tangent. He 
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also made a connection between the formula of the difference quotient and the slope 
of a secant. He never used the numerical representation. 

Connections within representations 

Both in I-2 and I-4, we often coded the connection between levels F1→F4→F3 and 
G1→G3. These two connection strings (calculating a derivative and plotting a 
tangent) were standard procedures for Otto, displaying a strong procedural 
understanding, but in I-2 Otto cannot yet explain this relation accurately. 

In the tasks Barrel and Ball, Otto never mentioned the difference quotient at a small 
interval or slope of a secant; the tasks obviously did not activate his potential 
knowledge of the limiting process of the derivative (connections within level 2 and 3) 
although the task Petrol gave ample opportunities to reason about the impact of a 
larger or smaller h. In both interviews, Otto was unable to explain the formula 
precisely, but in I-4 Otto made more correct statements than in I-2 (see table 4). As 
we see in I-4, Otto tried to explain the limiting process, but even in I-4 his 
formulations are not very accurate. 

Connections between applications and representations 

In I-2 Otto connected derivative, tangent and velocity, when saying: “When you 
differentiate you get the formula of the tangent, and that corresponds to the velocity, I 
think.”  Nevertheless, Otto did not accurately put these concepts together. In I-4 Otto 
mentioned and used more relations between formula/graph and applications. He 
interpreted the tangent-formula correctly to find the velocity of the ball, and in the 
Petrol-task the link between the mathematical notation and the application is 
correctly described by Otto. 

In I-2 Otto did not connect mathematical and physical methods (such as using the 
formula v a t= ⋅ ). A year later, in I-4 Otto made a few remarks, in which he 
connected mathematics and physics. For example, Otto noticed that in the derivative 

( ) 9,8h t t′ = −  the value 9,8 is the acceleration of gravity, and he mentioned a 
calculation method using kinetic energy. In I-4 Otto stated (in another task): “the 
derivative is the formula for the velocity, and the second derivative is for distance 
moved [..] Once, my math teacher gave this as notes.” This is an incorrect 
formulation, because Otto meant ‘acceleration’ instead of ‘distance moved’. 

CONCLUSIONS AND DISCUSSION 

This study uses a case study methodology, the focus of the data analysis is on the 
student as an individual. From individual results we can not prove any 
generalizations, which is clearly a limitation of this paper, but we can find 
counterexamples and existence proofs.  

In this paper, we reported on Otto’s development in understanding the derivative. 
Compared with I-2, we measured in I-4 an increased number of connections, both 
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between and within representations. Connections made in I-2 reoccurred in I-4. 
Otto’s preference for the graphical and the formulae representation was continued in 
I-4 and also his avoidances of the numerical representation. The preference for 
graphical representation corresponds to research by Zandieh (2000), who observed 
that six out of nine students prefer the graphical representation in tasks and 
explanations about derivatives. In the case of Otto, we saw that this preference 
prevailed throughout the learning process.  

In I-2 at several occasions, Otto equalled the derivative to the tangent, instead of ‘the 
slope of the tangent’. This was not a slip of the tongue, because Otto repeatedly 
displayed an incorrect idea about the connection between ‘tangent’ and ‘derivative’. 
This phenomenon is also reported by Asiala et al.(1997) and Zandieh (2006). In 
addition to the research of Zandieh, we see that Otto’s misstatements hinder him 
during problemsolving. A year later in I-4, Otto knows that the derivative yields the 
slope of the tangent, so his understanding of the formula of a tangent is corrected. 

Basson (2002) reported that physics teachers frequently complain that students 
cannot use what they have learned in their mathematics classes. In the case of an 
average student such as Otto, we observe indeed difficulties to connect mathematics 
and physics correctly. Although there is some progress in the accuracy of statements, 
for example in recognizing the gravity acceleration, the use of the rule ‘derivative is 
velocity’, his understanding of these connections stays weak.  

Otto improved his procedural knowledge. Although he often uses the same 
procedures, especially plotting the graph (F1→G1), plotting a tangent (G1→G3), or 
calculating a derivative at a point (F1→F4→F3), he seems to be more certain of his 
work and he is more sure about the connections between the different procedures. On 
the other hand, a recurring feature with Otto was that he sometimes chose an incorrect 
method, for example in the task Ball, in which he calculates in I-4 an average velocity 
instead of an instantaneous velocity, without any corrections on his work. 

Between I-2 and I-4, his conceptual knowledge increased. In I-4 Otto could explain 
relations between mathematics and physics to a certain extent, the connection 
between tangents and the derivative function improved and he connected more 
frequently to the levels 2 and 3 of the derivative. On the other hand, the connections 
made were not verbally well explained and some possible connections were not 
mentioned. So his conceptual knowledge increased, but nevertheless remained weak. 

We have used a framework for analysing students’ understanding of the derivative in 
application problems. The resulting arrow-schemes describe students’ strategies in a 
structured way by indicating patterns between cells of the table (see table 1). This 
facilitates the interpretation of students’ statements and operations. Our framework 
also gives a clear description of transitions between applications and mathematical 
representations, which students make during problem solving. We added notes on 
procedural and conceptual knowledge displayed by the students. A challenge remains 
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to use students’ misstatements, which are presently not described although these can 
be indicators of students’ understanding. 
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FINDING THE SHORTEST PATH ON A SPHERICAL SURFACE: 
“ACADEMICS” AND “REACTORS” IN A MATHEMATICS 

DIALOGUE   
 

Maria Kaisari and Tasos Patronis 
University of Patras, Department of Mathematics. 

 
The geometry of the surface of the Earth (considered as spherical) can serve as a 
thematic approach to Non-Euclidean Geometries. A group of mathematics students at 
the University of Patras, Greece, was asked to find the shortest path on a spherical 
surface. Advanced Mathematics provides different aspects of students’ mathematical 
thinking. In this paper we focus on a dialectic of two types of students’ attitude, which 
we call “academics” and “reactors”, and we analyze students’ dialogue according 
to a theoretical framework consisting in three main frames of understanding 
mathematical meaning.     
Keywords: Thematic approach, project method, academics, reactors. 

INTRODUCTION AND THEORETICAL FRAMEWORK  

   As a well-known research team at the Freudenthal Institute has shown, Spherical 
Geometry can give opportunities to students for exciting “mathematical adventures” 
(van den Brink 1993; 1994; 1995). Van den Brink’s descriptions of designing and 
carrying out a series of lessons on spherical geometry for high school students are 
convincing enough (however see Patronis, 1994, for students’ difficulty to accept the 
ideas of non-Euclidean Geometry). In particular, an intuitive, non-analytical mode of 
presentation and discussion in the classroom seems to be very satisfactory at this 
level: perhaps this is the most natural way to link this geometry with everyday 
problems of location, orientation and related cultural practices. 

 Project method, discussed in the context of Critical Mathematical Education (see 
Skovsmose, 1994a; Nielsen, Patronis, & Skovmose, 1999), involves the selection of 
themes of general or special interest. For us, a thematic approach to non-Euclidean 
Geometry involves a choice of a main theme according to the following criteria. First, 
this theme should be formulated in a language familiar to students and create a link 
between Elementary and Higher Geometry. On the other hand, the same theme might 
represent some critical conflicts in the History of Mathematics and function as an 
epistemological “dialogue” between different conceptions and views. The geometry 
of the Surface of the Earth (taken as spherical) was taken as such a theme of more 
general interest, which was used as a starting point in our project and provided 
opportunities for the formulation of more special tasks. 

One of the most significant tasks in the Freudenthal Institute experience mentioned 
above was to determine the path of shortest length between two places on the surface 
of the Earth. The present paper describes and analyses a mathematics dialogue 
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between university students on the same task. This dialogue is part of a long-term 
project in the Mathematics Department of Patras University, during two academic 
semesters, with a group of students of 3rd or 4th year. The paper focus on a dialectic of 
two types of participants’ attitudes in this experience. The first type of attitude 
corresponds to the role of an «academic» and consists in students’ tendency to choose 
coherent theoretical models or methods for solving the given tasks. The second type 
of attitude corresponds to the role of a «reactor» and amounts to exercise control, or 
“improve” academics’ proposals. The first type corresponds more or less, to a 
formalist’s view and the second may include various reactions to formalism (Davis& 
Hersh 1981 ch.1, Tall 1991 p.5). Thus we decided to focus on these two attitudes, as 
the analogues of formalist and non-formalist views of mathematics in students.  We 
shall describe the dialectic of the attitudes of academics and reactors in terms of a 
framework of understanding mathematical meaning, which follows.  

 According to Sierpinska (1994, p.22-24) meaning and understanding are related in 
several ways. One of these, which we follow here, is typical in Philosophical 
Hermeneutics: understanding is an interpretation (of a text, or an action) according to 
a network of already existing “horizons” of sense or meaning (see also Pietersma 
1973 for “horizon” as implicit context in phenomenology). Thus we are going to 
analyze our empirical data according to a theoretical framework involving three main 
frames (or “horizons”) of understanding mathematical meaning namely: i) 
mathematical meaning as related to students’ common background, ii) mathematical 
meaning as specialized theoretical knowledge, and iii) mathematical meaning as 
pragmatic meaning. 

I. Mathematical meaning as related to students’ common background 
The first main frame of understanding mathematical meaning in our framework 
consists, roughly speaking, in what almost all students «carry with them» from school 
mathematics or first year calculus and analytic geometry. Mathematical terms in this 
frame may have an intuitive as well as a formal meaning. The mathematical language 
used is mixed and some times ambiguous (as e.g. it is the case with the word “curve” 
in school mathematics). The influence of this frame of understanding meaning is very 
strong may become an «obstacle» in the construction of new mathematical 
knowledge (Brown et al 2005).   

II. Mathematical meaning as specialized theoretical knowledge 
The second main frame of understanding mathematical meaning is typical in 
specialized university programs in Mathematics, at an advanced undergraduate or a 
postgraduate level. Examples of this frame of understanding mathematical meaning 
are offered by advanced courses of Algebra, Topology, and Differential Geometry (or 
Geometry of Manifolds). Mathematical terms in this frame are coherently and 
formally defined (usually by means an axiomatic system) and proofs are given 
independently of common sense (Tall 1991).                     
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III.  Mathematical meaning as (socially negotiated) pragmatic meaning 
As the third main frame we consider pragmatic meaning: the meaning of a sentence 
or a word is determined by its use in real life situations or in given practices. An 
important example in this frame of understanding mathematical meaning is offered 
by the case of practitioners in the field of navigation and cartography during 16th 
century (Schemmel 2008 p.15-23). In some classroom situations we can also consider 
this kind of meaning as socially negotiated meaning. It has been observed that in 
interactive situations negotiation of meaning involves attempts of the participants to 
develop, not only their mathematical understanding, but also their understanding of 
each other (Cobb, 1986, p.7).     

PARTICIPANTS AND COLLECTION OF DATA 

During the first semester of the year 2003-2004, all mathematics students at Patras 
University, attending a course titled “Contemporary view of Elementary 
Mathematics”1, were informed about the project «Geometry of the Spherical Surface» 
and were invited to participate.  Eleven students responded. Five of them, who were 
particularly involved in the project, formed the final group of participants. Only one 
of the participants was a girl (Electra2), who worked together with one of the boys 
(Orestes), while the rest worked alone. Orestes, Electra and Paris were students of the 
third year and Achilles was at the last (fourth) academic year. An exceptional case is 
Agamemnon, who was not normally attending this course but participated by pure 
interest.  

 A narrative text was given to the participant students adapting Jules Verne’s novel 
“Un capitaine de 15 ans” (in Greek translation). After reading this text we had a 
discussion with the students in the classroom, which led to the formulation of the task 
examined in the present paper:  

Which is the shortest path between two points on the surface of the Earth (considered 
as spherical) and why? 

During of the project we collected data by personal interviews (formal or informal), 
by recording classroom meetings and by gathering students’ essays or intermediate 
writings in incomplete form.   

ANALYSIS  

As we already announced, we are going to analyze students’ dialogue and some of 
their essays by using the   crucial distinction between academics and reactors.   
 
 Academics 

 
As we already said, this type of attitude characterizes the students who use 
conventional and/or coherent methods or higher mathematics to solve a problem. 
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Mathematical knowledge used may have different origins, but usually academics use 
school or first year university mathematics. This choice corresponds to the first frame 
of understanding mathematical meaning. More specifically, academics may try to use 
elementary mathematics in order to solve an advanced mathematical problem. On the 
other hand, students of the same type of attitude may follow the second frame of 
understanding mathematical meaning. According to this frame students use advanced 
mathematical knowledge from university courses in order to solve (advanced) 
mathematical problems. They may also use knowledge even from postgraduate 
courses, producing formal proofs without originality and intuitive understanding. A 
general characteristic of academics is that they can only act in a single frame (first or 
second) and not in many frames at the same time. They seem to have a difficulty to 
change frames of meaning.     
  
Our first case, representing academics following the first frame of understanding 
mathematical meaning, is Agamemnon. On the other hand Achilles represents 
academics at the second frame of understanding meaning. As we shall see, Achilles 
uses advanced mathematical tools from differential geometry in order to prove that 
great circles are geodesic lines on a spherical surface. Here are some extracts from his 
presentation in the classroom. 
 

Achilles: We are going to define a very important concept, the concept of geodesic 
curvature. The definition is singk k θ=  (Where k is the curvature of a space 

curve). According to Darboux formulas we have 
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                       …I suppose we don’t need this formula but the equivalent one: 

                                            ,      (5)g g

dt
k n

ds
=

r
r

. 

The participant observer intervenes and asks why (4) and (5) are equivalent. After 
some thought, Achilles says that formula (5) results from (1) by scalar multiplication 
with gn

r . 

   Meanwhile, Agamemnon writes his own answer to the participant observer’s 
question:  
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                  , 0 , , 0 , ,a b a b a b a b a b′ ′ ′ ′= ⇒ + = ⇒ = −   

 (Agamemnon means that a, b can be any vector functions( ) ( ),a t b t
rr .) 

Achilles continues by proving that a curve γ is a geodesic on a surface if and only if 

0 0n N= ±
rr . He concludes that great circles are geodesic for the surface of the sphere.  

  This proof involves concepts from the postgraduate course “Geometry I”, taught at 
the first year of the postgraduate program of the department of Mathematics. Achilles 
ignores the formulation in the given context (as we described in section 2) and 
focuses at the mathematical task. This choice to use differential geometry is not 
accidental. At the end of his presentation he said that this solution is the better and the 
prettier one because, given a curve on a surface we must use Curve Theory and 
Surface Theory. It is also interest to compare the reactions of Achilles and 
Agamemnon to the participant’s observer question: Achilles acts in the second frame 
of understanding and gives an answer by using again advanced mathematical tools. 
On the other hand Agamemnon acts in the first frame of understanding meaning and 
using elementary mathematics gives an answer that is in fact a new proposition (a 
lemma).                         
Agamemnon’s project is quite different and uses a notation of his own.  
 

Agamemnon:       We define a function 

                               
(((( ]]]] (((( ]]]]

(((( ))))

: 0,2 0,

              

R

R

R R

x x

µ π

µ

→→→→

→→→→
  

 where (((( ))))R xµ  is the length of the smaller arc corresponding to the     

spherical chord x. 
Let   1 2, , ,  be n 3nA A A εΣK ∈ ≥∈ ≥∈ ≥∈ ≥  points on the spherical surface. We can 

prove that…I will first write and then explain: 
                               (((( )))) (((( ))))1 0R i i R kA A A Aµ µΣ ++++

≥≥≥≥       (1) 

 
Agamemnon proves inequality (1) (a generalization of the well known Triangle 
Inequality for Spherical Triangles) using mathematical induction.  
 

Let a curve in three dimensional space, with ends A, B. We try to 
approximate the length of this curve with polygonal lines. 

                                
                                                           Fig. 1  
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Agamemnon tries to approximate a curve on a spherical surface by arcs of great 
circles:  

Let now be 
�

µ
ΑΒ

 the length of the great circle that passes through A, B and 

γµ  the length of an arbitrary line connecting A, B. We are going to prove 

that
� γµ µ
ΑΒ
≤ . We approach γµ  with spherical broken lines… If we assume 

that 
� γµ µ
ΑΒ
>  then, by using (2) for a suitable choice of points ix  on the 

spherical surface we have: 
                            (((( ))))1R i iA Aγµ µ εΣ ++++

− <− <− <− < , a contradiction with (1). 

 
Although Agamemnon promises that he will explain his choices, in fact he is not in a 
position to do this, and his peers cannot follow his thought. 
As we already said, Agamemnon acts in the first frame of understanding 
mathematical meaning. His proof is characteristic of this frame following a similar 
idea with that of the proof concerning plane curves. We find essentially the same 
proof in Lyusternik (1976) but in a more intuitive formulation, without using formal 
mathematical notation. Agamemnon was not aware of this proof since he used school 
and first year geometry textbooks in Greek. The notation he used is a creation of his 
own, expressing his formal kind of thinking. Contrary to Achilles he is interested in 
creating a new proof, and despite his difficulties he never consults the University 
Library.          
 
Reactors 

 
The second type of students’ attitude expresses itself in the form of, either a 
disagreement, or a proposal of “simplification” or “improvement”. Students of this 
type of attitude can act in at least two frames of understanding mathematical meaning 
at the same time. Moreover, a frame of meaning particularly use by reactors it is the 
third one. Pragmatic meaning is provided by the scene of action and transforms the 
first frame of mathematical meaning in a non-conventional way. Some of these 
students act within the given social context and are mainly inspired by it. Thus not 
only they react to academics’ proposals, but they also try to introduce a different way 
of thinking.  
 
Before their final presentation, students interchanged opinions. Agamemnon tries to 
communicate with others students by expounding his thought. In this phase Orestes 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2311



reacts to him by proposing a “simpler” solution by using orthogonal projection and 
Orestes himself interacts with Paris. 
 

Agamemnon: Consider a curve on the spherical surface and a sequence of points on this 
curve. For any two points we consider the smaller arc of a great circle… I 
thing we can call these lines spherical broken lines. 

 
  

Agamemnon draws Figure 1 and Orestes reacts as follows: 
 

Orestes: Let us draw the perpendiculars from the end points of these arcs to the 
chord AB, and compare, for example, chord AM with segment AH. Since 
AM is the hypotenuse of the triangle AHM, it is be greater than AH. 
Similarly MN is greater than ME=HZ Continuing in the same way we find 
that the sum of all those chords is greater than the chord AB. Now we wish 
to find a relation between chords and arcs.  

                                                                                                  
At this point the participant observer asks Orestes where all those chords (arcs and 
perpendiculars) lie on. Orestes knows that they lie on different planes. Paris shows 
with his hands a warped triangle. Orestes makes Fig.2 and continues: 
 

Orestes: The only thing that matters is the length. That the hypotenuse is greater than 
perpendicular… 

                           
 

                                                                 Fig.2 
Paris has a difficulty to imagine the figure in 3D-space: 
 

    Paris:      From what Orestes said, I though that we could project the figure in the 
plane… like Mercator projection. Then we could work in the plane…that 
will be easier. 

Achilles: This projection must be isometric and Mercator’s projection I do not think 
is going to help. 

     Paris:   If we project small areas from a part of the Earth. 
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Achilles: For large areas France will be came equal to North America.  

     Paris:  We can make divisions as we do in integrals …I’ ill thing about that. 

    
As we see here, both academics and reactors act and react to each other. 
Agamemnon tries to expose his thought and Orestes responses by trying to “simplify” 
his attempt. It is difficult, however, to communicate their ideas each other in a way to 
understand each other. Although Orestes responses to Agamemnon, it is obvious that 
he cannot follow his thought. Moreover Orestes is not concerned about the context 
when he says that the only thing that matters is the “length” and seems to ignore that 
he is working on a spherical surface. Paris reacts to Orestes and proposes a projection 
on the plane. Achilles reacts to Paris by disputing the suitability of this proposal.                     
 
In a later essay Paris presented three different plans of proof, neither of which was 
complete. In one of these plans he formulated the following lemma, which is typical 
of the first frame of understanding mathematical meaning:   

                                                                        
 Let (K,R) be a great circle on a spherical surface and (K΄, Ŕ ) a small circle so that the 
chords AB and A΄Β΄ are equals (Fig.3). Then the arc of the small circle is longer than the 
arc of the great circle with the same chord because the small circle has a greater curvature.   

                            
                                                        Fig.3 
In another plan, Paris introduces a system of parallel circles (similar to that used for 
the Globe) and tries to combine the first and second frame, by using chords instead of 
corresponding circular arcs.  
We could say that Paris acts in first but also in the third frame of understanding 
mathematical meaning since the globe but also the planar projections have central 
position in his attempts.   
 
Finally, some of the reactors act in the third frame by “transferring” knowledge from 
navigation practices to the given problem, without any further elaboration. For 
example Orestes (in his final essay) uses the globe in order to describe the concepts 
of loxodrome and orthodrome.    
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                                                         Fig. 4 

 Orestes finally chooses the method of “logistic orthodrome”, in which middle points 
must be found between A and B (Fig.4). He describes this method without using any 
projection, working this time on the spherical surface of the Earth.  
    

 FURTHER DISCUSSION AND PERSPECTIVES  

The three frames of understanding mathematical meaning, which we used in our 
analysis, may be helpful into some more general perspectives, which perhaps are 
already present in our experience but are not yet thoroughly studied in this context. 
One of these perspectives comprises argumentation and proving processes at the 
tertiary level of geometry teaching. In this direction the frames introduced here may 
by seen as different frames of arguing and proving or of understanding proofs. As an 
example of a proof in the first frame we may consider the elementary mathematical 
proof of the fact that great circles are geodesic lines on a spherical surface, which we 
find in Lyusternik (1976; p.30-35). An example of a proof in the second frame is the 
proof of the same fact in the context of Differential Geometry (followed by Achilles 
in our experience - for a complete proof see Spivac 1979). Again Lyusternik (1976) 
offers us an example of (pragmatic) argumentation in the third frame in p.49-51, of 
his book by which he establishes Bernoulli’s theorem: For an elastic thread q 
stretched on surface S to be in a state of equilibrium it is necessary that at any point 
of q, the principal normal of q coincides with the normal to the surface S (i.e. q is 
stretched along a geodesic of S).  

It seems difficult, in general, to combine any two of the above three frames of 
understanding mathematical meaning (and proof). As we have already said, 
academics act either in the first or in the second frame, being almost unable to 
combine frames. This combination provides a link between Elementary and 
Advanced Mathematics that is essential in Tertiary Mathematics Education. On the 
other hand, reactors can combine the two first frames (students’ common background 
and pragmatic meaning), while there is no combination of the second with the third 
frame, which shows a need for enrichment of the scheme academic/reactor with 
more special categories of attitudes. Here a question arises for further theoretical and 
empirical study, namely how can old textbooks of mathematics or other related 
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historical sources be used in teaching to provide a “dialogue” between various 
epistemological perspectives.                   
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NUMBER THEORY IN THE NATIONAL COMPULSORY 
EXAMINATIO N AT THE END OF THE FRENCH SECONDARY 

LEVEL: BETWEEN ORGANISING AND OPERATIVE 
DIMENSIONS 

Véronique BATTIE 

University of Lyon, University Lyon 1, EA4148 LEPS, France 

In our researches in didactic of number theory, we are especially interested in 
proving in the secondary-tertiary transition. In this paper, we focus on the 
“baccalauréat”, the national examination that pupils have to take at the end of 
French secondary level. In reasoning in number theory, we distinguish two 
complementary dimensions, namely the organising one and the operative one, and 
this distinction permits to situate the autonomy devolved to learners in number theory 
problems such as baccalauréat’s exercises. We have analysed 38 exercises, from 
1999 to 2008, and we present the results obtained giving emblematic examples. 

INTRODUCTION  

At the end of French secondary level (Grade 12), there is a national compulsory 
examination called baccalauréat and the mathematics test includes three to five 
exercises (each one out of 3 to 10 points). In French Grade 12, there is an optional 
mathematics course in geometry and number theory and the test for candidates who 
have attended this optional course differs from that for others candidates by one 
exercise (out of 5 points); this exercise includes or not number theory. In our 
researches in didactic of number theory, we are especially interested in the 
secondary-tertiary transition1, so especially interested in the baccalauréat which 
plays a crucial role in this transition. Within didactic researches related to secondary-
tertiary transition (Gueudet, 2008), we propose to study some of the ruptures at stake 
in terms of autonomy devolved to Grade 12-pupils and students. In this paper, we 
focus on characterizing this autonomy in baccalauréat’s exercises using the 
distinction that we make in the reasoning in number theory between the organising 
dimension and the operative dimension (Battie, 2007). 

We distinguish two complementary dimensions. The organising dimension concerns 
the mathematician’s « aim » (i.e. his or her « program », explicit or not). For 
example, besides usual figures of mathematical reasoning, especially reductio ad 
absurdum, we identify in organising dimension induction (and other forms of 
exploitation in reasoning of the well-ordering ≤ of the natural numbers), reduction to 

                                           
1 In secondary-tertiary transition, number theory is primarily concerned with structures and properties of the integers 

(i.e. Elementary number theory). For a detailed consideration of various facets falling under the rubric of number 

theory, see Campbell and Zazkis, 2002. 
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the study of finite number of cases (separating cases and exhaustive search2), factorial 
ring’s method and local-global principle3. The operative dimension relates to those 
treatments operated on objects and developed for implementing the different steps of 
the program. For instance, we identify forms of representation chosen for the objects, 
the use of key theorems, algebraic manipulations and all treatments related to the 
articulation between divisibility order (the ring Z) and standard order ≤ (the well-
ordered set N). Among the numerous didactic researches on mathematical reasoning 
and proving (International Newsletter on the Teaching and Learning of Mathematical 
Proof and, especially for Number theory, see (Zazkis & Campbell, 2002 & 2006)), 
we can put into perspective our distinction between organising dimension and 
operative dimension (in the reasoning in number theory) with the “structuring 
mathematical proofs” of Leron (1983). As we showed (Battie, 2007), an analogy is a 
priori possible, but only on certain types of proofs. According to us, the theoretical 
approach of Leron is primarily a hierarchical organization of mathematical sub-
results necessary to demonstrate the main result, independently of the specificity of 
mathematical domains at stake. As far as we know, Leron’s point of view does not 
permit access that gives our analysis in terms of organising and operative dimensions, 
namely the different nature of mathematical work according to whether a dimension 
or another and, so essential, interactions that take place between this two dimensions. 

In this paper, we present the results obtained analyzing 38 baccalauréat’s exercises, 
from 1999 to 2008, in terms of organising and operative dimensions. In the first part, 
we study the period from the reintroduction of number theory in French secondary 
level (1998) to the change of the curriculum in 2002 (addition of congruences). In the 
second part, we focus on the next period, from 2002 to 2008. 

NUMBER THEORY IN BACCALAUREAT’S EXERCISES FROM 1999 TO 
2002 

After 15 years of absence, number theory reappeared in 1998 in French secondary 
level, first in Grade 12 as an optional course (with geometry). From 1998 to 2002, 

                                           
2 For example, an exhaustive search to find the divisors of a natural number n is to enumerate all integers from 1 to n, 

and check whether each of them divides n without remainder. We talk about strict exhaustive search when there is not a 

limitation phase of possible candidates (for the solution) before checking whether each candidate satisfies the problem's 

statement. 

3 An elementary example is given in (Harary, 2006): Proposition. Let m be an integer checking m = 4r(8s + 7), r and s 

integers > 0. Then the equation x2+y2+z2 = m has no rational solution. Demonstration. If there was a rational solution, 

there would be an non-trivial integer solution (in “hunting” denominators) for the equation (8s+7)t2=x2+y2+z2. Even if it 

means to divide x, y, z, t by the same number, then we can assume they are relatively prime. Then we look at the 

equation modulo 4: in Z/4Z, the squares are 0 and 1; and t can not be even otherwise x²+y²+ z² would be divisible by 4 

implying that x, y, z are all even, contradicts the hypothesis. But if t is odd, then (8s+7) t² is congruent to -1 modulo 8 

and x²+ y² + z² too, which is impossible because the squares of  Z/8Z are 0, 1, 4. 
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Number theory curriculum as an option comprised: divisibility, Euclidian division, 
Euclid’s algorithm, integers relatively prime, prime numbers, existence and 
uniqueness of prime factorization, least common multiple (LCM), Bézout’s identity 
and Gauss’ theorem4. In one of our researches (Battie, 2003), we tried to find all 
baccalauréat’s exercises related to the optional course in number theory (and 
geometry) in French education centers in the world. From 1999 (in 1998 there was 
only geometry exercises) to 2002, within the 40 exercises we found, 20 concern 
exclusively number theory, 10 are mixed (number theory and geometry) and 10 
concern exclusively geometry. We analysed therefore 30 baccalauréat’s exercises5. 
In this ecological study, after grouping together exercises related to the same 
mathematical problems, the objectif is to assess the richness of what is "alive" in 
these exercises and to situate the autonomy devolved to pupils in terms of organising 
and operative dimensions. What are the results of this study?  

The identification of mathematical problems involved in these 30 baccalauréat’s 
exercises highlights a real diversity through the existence of three possible groups6 : a 
first one defined by solving Diophantine equations (18 exercises), a second group 
defined by divisibility (21 exercises) and a third one characterized by exogenous 
questions compared to the first two groups (3 exercises associated with at least one of 
the first two groups). However, refining the analysis, we observe that all exercises are 
constructed from a relatively small number of types of tasks. This is primarily solving 
in Z Diophantine equations ax + by = c (gcd (a,b) divide c) in the first group of 
exercises (we’ll note T afterwards) and, for the second group, proving that a number 
is divisible by another one or determining gcd of two numbers. 

The analysis of first group’s exercises confirms the emblematic character of T: we 
identify T in 16 of the 30 exercises. There is three cases related to its role in each 
exercise: T, as an object, is essential in the exercise and comes with direct 
applications (8 exercises), T occupies a central place and comes others problems (3 
exercises), T is an essential tool to solve a problem outside number theory (5 
exercises). The autonomy devolved to pupils to realize T is almost complete, at the 
organising dimension and at the operative dimension, undoubtedly because of routine 
characteristic. Indications for the organising dimension, according to the technique 
taught in Grade 12, appear through cutting the resolution in two questions: a first 

                                           
4 If an integer divides the product of two other integers, and the first and second integers are coprime, then the first 

integer divides the third integer. 

5 France (june 2002, 2001, 1999, september 2002, 2001), Asia (june 2002, 2000, 1999), North America (june 2002, 

2001, 1999), South America (november 2001), Foreign centers group 1 (june 2002, 2001, 1999), Pondicherry (may 

2001, 1999, june 2002, 2000), La Réunion (june 2000), Guadeloupe – Guyana – Martinique (june 2001, 2000, 1999, 

september 2001), Polynesia (june 2002, 2001, 2000, 1999), New Caledonia (november 2001, march 2001). 

6 It’s not a classification: an exercise can be associated to several groups.  
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question about existence of a solution and another one about obtaining all solutions 
from this solution (linearity phenomena); the set of solutions is given only in one 
exercise. The treatment of the logical equivalence at stake is under the responsibility 
of pupils in almost all exercises. At the operative dimension, Bézout’s identity and 
Gauss’ theorem, both emblematic of Grade 12 curriculum, are respectively the 
operative key for finding a particular solution and to obtain all solutions from this 
particular solution. We identify four types of exercises for the first step (finding a 
particular solution): 4 exercises with only checking whether a given candidate 
satisfies the equation, one exercise where an obvious solution is requested, 5 
exercises where using Euclid's algorithm is recommended more or less directly and 5 
exercises without indication. Note that a justification for such a solution is at stake in 
a third of exercises; Bézout’s identity is expected. For the second step (obtaining all 
solutions from the particular solution), the operative dimension is entirely under 
responsibility of pupils (except for one exercise). Despite the important role of T, 
both qualitatively and quantitatively, this type of tasks is not completely 
standardized: we highlight levers chosen by baccalauréat’s authors to go beyond its 
routine. Generally, such an extension is achieved by reducing the resolution to N or 
to a finite Z-subset (12 exercises on the 16 at stake) and is often “dressing” the 
problem which naturally leads to this reduction (geometry (9 exercises), astronomy (2 
exercises), context of "life" (1 exercise)). The organising dimension favoured by the 
authors is one whose aim is using Z-resolution. This dimension is clarified in 5 
exercises (through the phrase "Deduce" or "application"); these include especially 
those where the set of solutions is infinite. When the set of solutions is finite and 
when the resolution is in a finite Z-subset, there is no explicit indication and we 
identify an opening in terms of autonomy devolved to pupils at the organising 
dimension; this is the example of [Polynesia, June 2001]: 

1. Let x and y be integers and (E) be the equation 91x + l0y = 1.  

a) Give the statement of a theorem to justify the existence of a solution of the equation 
(E). 

b) Determine a particular solution of (E) and deduce a particular solution of the equation 
(E’) 91x + l0y = 412. 

c) Solve (E’). 

2. Prove that the integers An
 = 32n – 1, with n a non-zero natural number, are divisible by 

8 (one of the possible methods is an induction).  

3. Let (E’’) be the equation A3x + A2y = 3 296. 

a) Determine the ordered pairs of integers (x, y) solutions of the equation (E”). 

b) Prove that an ordered pair of natural numbers is a solution of (E”). Determine it. 
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We can analyze the issue 3. by identifying Z-resolution and N-resolution as two 
separate problems, i.e. without giving to Z-resolution the status of under problem in 
issue 3.b. This is a N-resolution of (E’’) according to this aim:  

91x + l0y  =  412 

91x = 2 (206 – 5y) 

Necessarily 2 divide x by using Gauss’ theorem. x and y are natural numbers so  

91x ≤ 412 and then x ∈{2; 4}. Only x = 2 is ok (y = 23). 

The specificity of possible solutions is exploited in operative work to reduce the 
research by containing the set of solutions: the organising dimension is an exhaustive 
search with limitation phase. The uniqueness of the solution announced, we can also 
choose a strict exhaustive search. However, it seems unlikely that a student does not 
use the Z-resolution, in particular because of the didactic contract. We have an 
exception, [France, June 2002], related to levers chosen by baccalauréat’s authors to 
go beyond the routine characteristic of T:  

1. Let (E) be the equation 6x + 7y = 57 in unknown x and y integers. 

a) Determine an ordered pair (u, v) of integers checking 6u + 7v = 1. Deduce a particular 
solution (x0, y0) of the equation (E). 

b) Determine the ordered pairs of integers, solutions of the equation (E). 

2. Let ),,,( kjiO
rrr

 be an orthonormal space’s basis and let’s call (P) the plane defined by 
the equation 6x + 7y + 8z = 57.  

Prove that only one of the points of (P) contained in the plane ),,( jiO
rr

 has got 
coordinates in N, the set of natural numbers.  

3. Let M(x, y, z) be a point of the plane (P), x, y and z natural numbers.  

a) Prove that y is an odd number.  

b) y = 2p + 1 with p a natural number. Prove that the remainder of the Euclidian division  

of p + z by 3 is 1.  

c) p + z = 3q + 1 with q a natural number. Prove that x, p and q check x + p + 4q = 7. By 
deduction, prove that q is equal to 0 or equal to 1.  

d) Deduce the coordinates of all points of (P) whose coordinates are natural numbers. 

In this exercise, the routine characteristic of T is broken by its extension through an 
original (related to Grade 12 teaching culture) type of problems: the N-resolution of 
Diophantine equations ax + by + cz = d (a, b and c relatively prime). A characteristic 
of the organising dimension behind the exercise’s statement is that it does not use the 
Z-resolution, breaking with the conception of other exercises. The organising 
dimension is an exhaustive search with limitation phase, and in this case, autonomy 
devolved to pupils is very small (throughout the limitation phase). However, 
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confirming the analysis of other exercises, the (phase of) strict exhaustive search and 
the logical equivalence at stake is under responsibility of pupils.  

In the second group of exercises around the concept of divisibility, we find all main 
operative dimensions used in our epistemological analysis: forms of representation 
chosen for the objects, the use of key theorems, algebraic manipulations and all 
treatments related to the articulation between divisibility order (the ring Proceedings 
of the 28th International Conference for the Psychology of Mathematics Education.) 
and standard order ≤ (the well-ordered set N). The autonomy devolved to pupils at 
operative dimension is very variable, unlike T which it is almost complete. This 
variability is a function of the complexity of operative treatments to be developed. 
For example, we find the extreme case where nothing is provided to pupils when he 
can use Bézout’s identity to show that two numbers are relatively prime and, 
conversely, we have 2 exercises where an algebraic identity, operative key expected, 
is given to show a divisibility relation. Regarding the organising dimension, the 
algorithmic approach of strict exhaustive search is most relevant to resolve many 
issues of divisibility. Using induction is explicitly expected 5 times in 3 exercises 
(this organising dimension is also explicit in one of the first group but in a geometry 
issue). We identify several times reasoning by separating cases. The autonomy 
devolved to pupils is defined as follows: for reasoning by separating cases there are 
the two extreme positions (autonomy empty or not) and, for the strict exhaustive 
search and induction, autonomy is complete. We suppose that the existence of 
substantial autonomy devolved to pupils demonstrates that organising dimensions at 
stake are not considered as problematic by the educational institution, as the case of 
logical equivalence.  

According to us, exploitation of the potentialities highlighted in baccalauréat’s 
exercises is poor because the conception of this examination is strongly governed by 
the will assess pupils on emblematic and routine Grade-12 tasks. In addition, we 
believe that the authors seek a compromise between assess pupils on different things 
to "cover" maximum the curriculum (one of the recommendations for authors) and 
build up a coherent mathematical point of view. It seems that the aspect "patchwork" 
of certain exercises, especially those attached to the third group, reflects this 
institutional constraint. 

Now, we’re going to study the 2002 change of curriculum limiting us to national 
baccalauréat’s exercises: how the new curriculum alter the conception of the this 
examination? Especially for the autonomy devolved to pupils: is it situate as the same 
way than before 2002 (2002 exercises included)? 

NUMBER THEORY IN BACCALAUREAT’S EXERCISES FROM 2003 TO 
2008 

At the start of the 2002 academic year, Grade 12 number theory curriculum has been 
modified with the addition of congruences (without the algebraic structures are 
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clarified). We are interested here in baccalauréat’s exercices given in France since 
the curriculum’s change so from June 2003 to June 2008. Within the 11 exercises at 
stake, 5 concern exclusively number theory, 3 are mixed (number theory and 
geometry) and 3 concern exclusively geometry; we find significantly same 
proportions than in the 40 exercises mentioned in the first part of this paper. We now 
focus on the 8 exercises with number theory issues (note that exercise of September 
2005 is a QCM, a new form of assessment for this examination).  

Resuming the three groups of exercises defined in the first part: 3 exercises (June 
2008, September 2005 and 2006) can be associated to the T’ group and only one 
exercise (June 2004) in the second group (concept of divisibility), without 
congruences are mentioned, and the two types of tasks that we have identified are 
represented in this exercise. For these 4 exercises, conclusions of an analysis in terms 
of organising and operative dimensions are the same as before 2003 (except in the 
case of QCM where no indication is given, except from the data sets of potential 
solutions). Closely associated with the second group, a third one is possible from 
congruences and 5 exercises can be linked (June 2006, 2003, September 2007, 2005, 
2003). Now, we focus on this third new group. 

The main types of tasks encountered in this third group are calculating in Z/nZ and 
solving congruences equations, particularly in relation to the field structure of Z/pZ 
(p prime), both without the algebraic structure is clarified. With one exception (June 
2003), congruences have only the status of object (not a tool) in exercises. The 
introduction of congruences enriches potentialities of the curriculum in terms of 
operative dimension and specifically in terms of forms of representation chosen for 
the objects. In an interactive way, this enrichment could be extended in terms of 
organising dimension with the local-global principle announced in the introduction, 
but we only identify the strict exhaustive search associated with the direct work in 
Z/nZ. As in the first part, we find that this organising dimension is under the 
responsibility of pupils in baccalauréat’s exercises. We have the example of the issue 
3.a. of the exercise of June 2003: 

[…] 

3. a) Prove that the equation x² ≡ 3[7], in unknown x an integer, has no solution. 

b) Prove the following property:  

for all integers a and b, if 7 divides a²+b², then 7 divides a and 7 divides b. 

4. a) Let a, b and c non-zero integers. Prove the following property: 

If the point A (a, b, c) is a point of the cone Γ [equation y²+z²=7x²], then a, b and c are 
divisible by 7. 

b) Deduce that the only point of Γ whose coordinates are integers is the vertex of this 
cone. 
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Emphasize the unusual nature of this issue in a exercise in all issues, except this one, 
are unified by a unique mathematical problem (research of points of a cone with N-
coordinates). According to us, this unusual characteristic refers to the institutional 
constraint mentioned in the first part, so to emblematic characteristic of this type of 
tasks entirely under the responsibility of pupils. Beyond the desire to assess pupils in 
relation to a emblematic type of tasks, we are assuming that this issue 3.a, by the 
effect of didactic contract, is an operative indication for the issue 3.b, namely using 
congruences (modulo 7) to study divisibility by 7. 

Finally, we zoom on the June 2006 exercise:  

Part A  

1) Enunciate Bézout’s identity and Gauss’ theorem.  

2) Demonstrate Gauss’ theorem using Bézout’s identity.  

Part B 

The purpose is to solve in Z the system (S)   

1) Prove that exists an ordered pair of integers (u,v) such that 19u + 12v = 1 (in this 
question it’s not required to give an example of such an ordered pair). Check that for 
such an ordered pair N = 13×12v + 6×9u is a solution of (S). 

2) a) Let 0n be a solution of (S). Check that the system (S) is equivalent to 

b) Prove that the system    is equivalent to ( )1912mod  0 ×≡ nn . 

3) a) Find a ordered pair ( )vu,  solution of the equation 11219 =+ vu  and calculate the 
corresponding value of N. 

b) Determine the set of solutions of (S) (it’s possible using question 2)b). 

This problem is a particular case of Chinese remainder theorem. To prove this 
theorem, the main organising dimension refers to an equivalence that can be 
interpreted in terms of existence and uniqueness of a solution of the system or in 
terms of surjective and injective function which is, in this case, a ring’s isomorphism  
(let m1, m2 be coprime integers, for all x, element of Z, the application at stake, from 
Z/m1m2 to Z/m1× Z/m2, associates to each element x mod (m1m2) the sequence of x 
mod m1 and x mod m2). For the operative dimension, the key to prove the existence 
of a solution is Bézout’s identity (m1 and m2 are relatively prime); this is precisely 
the subject of Question 1. To prove the uniqueness of such a solution, the essential 
operative element is the result stating that if an integer is divisible by m1 and m2 then 
it is divisible by the product m1m2 and this can be achieved here as a consequence of 
Gauss’ theorem (but also via the concept of LCM); this is the subject of Question 2b. 
In this exercise, we find again the importance of Bézout’s identity and Gauss’ 
theorem in the operative dimension underlying baccalauréat’s exercises; both are in 
Part A, a course issue, and using them in the resolution of the problem (Part B) is 
under the responsibility of pupils. For the organising dimension, many indications are 
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given; it is not a problem associated with a routine type of tasks of Grade 12. Indeed, 
breaking with what is proposed in this exercise, a change of objects in the operative 
dimension (equivalent transformation of the system (S) into the equation 12v-19u = 
7) offers the possibility of a new organising dimension via the emergence of the type 
of tasks T.  

CONCLUSION  

An analysis in terms of organising and operative dimensions permits to situate the 
autonomy devolved to pupils in number theory baccalauréat’s exercises. This 
autonomy is mainly located at the operative dimension. The organising dimension is 
under pupils’ responsibility only for routine tasks as resolution of Diophantine 
equations ax+by=c (gcd (a,b) divide c), and when it considered as non-problematic 
by the institution, such as the treatment of logical equivalences, or strict exhaustive 
search much more important since the introduction of congruences in 2002 in Grade 
12 number theory curriculum. In Grade 12-University transition, we observe a 
transfer of the autonomy devolved to learners in proving tasks (proposal contribution 
for the ICMI Study 19 “Proof and proving in mathematics education”7): breaking 
with the culture of Grade 12-teaching, the skills related to organising dimension 
become important at the University. According to us, this transfer is one of the 
sources of difficulties encountered by students arriving at University to prove in 
number theory: except for routine tasks, their control of organising level is very too 
low. 
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This paper is a part of the large study that explores what 16-18 year old students 
have learnt with respect to defining, proving and modelling, considered as 
metaconcepts that constitute a background to the advanced mathematical thinking. In 
particular, we focus on the characterization of students’ justifications and its 
persistence (or not) when making decisions related to tasks that involve those 
metaconcepts. Through the study, we have identified different types of considerations 
that underlie students’ justifications. Our results have shown how students that 
maintain different types of considerations do not react in the same way to the same 
mathematical situations. 

Key words: students’ understanding, students’ justifications, defining, proving, 
modelling 

INTRODUCTION 

The mathematical background of first year university students is an issue of concern 
and debate in our country. Throughout the last years, university mathematics teachers 
have been observing in the first year students a lack of understanding of basic 
mathematical ideas, which affects in a significant way the access to the mathematical 
advanced thinking. In order to improve this situation, some Spanish universities are 
offering courses of basic mathematics to students who want to access scientific and 
technological degrees. In this context, the highest grade (16-18 year-old students) of 
Secondary Education in Spain requires special interest. This grade is a non-
compulsory level and its duration is two academic years. Among their aims is its 
importance as preparatory stage, which should guarantee the bases for tertiary 
studies. 

Our study seeks to explore the understanding of students of the 16-18 level with 
respect to three metaconcepts that we consider fundamental in mathematics and 
didactics of mathematics: defining, proving and modelling. We consider them 
metaconcepts, due to their complex, multidimensional and universal configuration, 
admitting that each of them includes several aspects of very different complexity. In 
addition, we assume that they are key elements in the construction of the 
mathematical knowledge, and we decide to approach them jointly, since they 
contribute in different and interrelated ways to the above mentioned construction, and 
therefore to the students' learning process. 
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We want to emphasize that, at least in Spain, those metaconcepts are not explicitly 
mentioned in the school curriculum, but students approach them in an indirect way, 
through other mathematics curricular topics. 

CONCEPTUAL FRAMEWORK 

We think that the acquisition of intellectual skills is closely linked to sociocultural 
context (Brown, Collins & Duguid, 1989; Lave & Wenger, 1991). From this basic 
assumption, we approach students’ understanding related to metaconcepts through: 

- the use they make of the metaconcepts when they solve tasks in which the 
mathematical objects are those metaconcepts (metaconcepts are involved), and  

- the justifications that they provide about their decision-making.  

From a theoretical point of view, we needed to select some elements that allowed us 
accessing to that ‘use’ and those justifications. 

With respect to the use, in an initial phase of our research we selected some elements 
that were considered the ‘variables’ of our study: 

- identification variables, considered the characteristics that allow for a clear 
identification of metaconcept, and  

- differentiation variables: role, representing different facets of the metaconcepts, and 
type, establishing differences inside them, including different systems of 
representation.  

We think these variables are ‘aspects’ that can represent or describe in some way the 
metaconcepts and, furthermore, the relationship between the student and those 
aspects can inform us about his/her understanding of those metaconcepts. 

These variables were specified for each metaconcept. 

The variables in the case of defining. We considered “defining”, among other 
characteristics, as prescribing the meaning of a word or phrase in a very specific form 
in terms of a list of properties that have to be all real ones. This prescription had 
characteristics that could be imperative (not contradictory, not ambiguous, and 
invariant under the change of representation, hierarchic nature) or optional (for 
example, minimality) (van Dormolen & Zaslavsky, 2003; Zaslavsky & Shir, 2005). 

With respect to the differentiation variables, we selected the four roles mentioned by 
Zaslavsky & Shir (2005), which included: introducing the objects of a theory and 
capturing the essence of a concept by conveying its characterizing properties, 
constituting fundamental components for concept formation, establishing the 
foundation for proofs and creating uniformity in the meaning of concepts. In addition, 
we contemplated two types of definitions. Procedural type refers to what different 
authors consider definitions for genesis (Borasi, 1991; Pimm, 1993), which included 
what has to be done to obtain the mathematical defined object. Structural type 
referred to a common property of the object that is defined, or of the elements that 
constitute the object.  
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The variables in the case of proving. The contributions of different authors 
(Balacheff, 1987; Moore 1994; Hanna, 2000; Healy & Hoyles, 2000; Knuth, 2002; 
Weber, 2002) led us to include among the characteristics of proving the existence of 
both a premise / terms of reference / proposition and a sequence of logical inferences, 
which are accepted as valid characteristics by the mathematical community in the 
sense of ‘not erroneous’. 

Moreover, we took into account the five roles proposed by Knuth (2002). This 
author, on the basis of several roles identified by previous authors and proposed in 
terms of the discipline of mathematics, which he considered to be useful for thinking 
about proof in school mathematics, suggested the following roles: 

 “to verify that a statement is true, to explain why a statement is true, to communicate 
mathematical knowledge, to discover or create new mathematics, or to systematize 
statements into an axiomatic system” (Knuth, 2002, p.63).  

In addition, we identified three types: pragmatic proof, intellectual proof and formal 
proof. Pragmatic proof is restricted by the singularity of the event. That is, it fails in 
accepting the generic character and, in occasions, it depends on a contingent material 
that can be imprecise or depending on local particularities. Intellectual proof requires 
the linguistic expression of mathematical objects that intervene and of their mutual 
relationships. Lastly, formal proof makes use of some rules and conventions, 
universally accepted as valid by the mathematical community (Balacheff, 1987; 
García & Llinares, 2001). 

The variables in the case of modelling. Mathematical modelling was characterized as 
a translation of a real-world problem into mathematics, working the mathematics, and 
translating the results back into the real-world context (Gravemeijer, 2004). Among 
the different roles, we included solving word problems and engaging in applied 
problem solving, posing and solving open-ended questions, creating refining and 
validating models, designing and conducting simulations, and mathematising 
situations. We selected two types: ‘model of’ and ‘model for’. ‘Model of’ deals with 
a model of specific situations. ‘Model for’, deals with a model for situations of the 
same type (Cobb, 2002; Lesh & Doerr, 2003; Lesh & Harel, 2003). 

With respect to the students’ justifications, they have been considered in mathematics 
education from very different context and points of view (Yackel, 2001; Harel & 
Sowder, 1998). In particular, in our case they were analyzed according to the two 
main types of considerations identified by Zaslavsky and colleagues (Shir & 
Zaslavsky, 2002; Zaslavsky & Shir, 2005). Mathematical considerations included 
principally arguments in which mathematical concepts and relationships are involved. 
Communicative considerations were mainly based on ideas as clarity and 
comprehensibility, among others.  

The part of the large study reported here focuses on the characterization of students’ 
justifications and its persistence (or not) when making decisions related to tasks that 
involve the different metaconcepts. 
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METHOD 

Participants 

Ninety-eight students (aged 16-18 years) participated in this part of the study. They 
belonged to three different Secondary schools (A, T and C in the text) of three 
different towns, with no special characteristics in relation to their socio-cultural 
context. The role of teachers and schools was not considered in the part of research 
reported here.  

Data collection 

Our data source included questionnaires and semi-structured interviews for teachers 
and students. Considering the aims of this part of research, we focus on the results of 
students’ questionnaire, we will detail only this research instrument. 

The questionnaire consisted of an initial presentation followed by three parts (one for 
each metaconcept). These parts had in general lines the same structure. They included 
two types of statements to access to different aspects related to the way in which the 
students had constructed the different metaconcepts, so that they allowed gathering a 
variety of points of view (Healy & Hoyles, 2000). 

In the first type of statements, students were asked to provide descriptions on every 
metaconcept, expressing in their own words the associated meaning, and including an 
example that they were considering more suitable. 

The second type of statements presented different possibilities for each metaconcept 
according to the type and role (differentiation variables). These statements were 
related to two mathematical topics. They included three correct/incorrect expressions 
for each topic. The mathematical topics belonged to different mathematical domains 
(Algebra, Analysis and Geometry), and were practically extracted from the textbooks 
used at school. For example, with respect to the metaconcept defining, we selected 
three definitions of perpendicular bisector (mediatrix) and three of the greatest 
common divisor (they are not included due to the limitation in extension of this 
paper). The students had to indicate whether or not these definitions were correct, 
which one they preferred and which one they thought their teacher would prefer, 
giving reasons for each of their answers. 

The initial version of the questionnaire thus obtained was then sent to five expert 
secondary teachers, who were asked to comment on the general structure of the set of 
statements, and to give comments and suggestions about specific items. Their 
comments were used to modify the formulation of almost every statement. 

Next, the revised version of the questionnaire was piloted. For this purpose, a sample 
of 26 secondary students was chosen. These students belonged to one of the 
secondary schools that participated in our study, but they were not included in the 
final sample. According to the analysis of their answers, some items were 
subsequently deleted from the questionnaire, because the original formulation was 
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ambiguous or unclear, or not provided important information. The final version of the 
questionnaire was administered to the 98 students. 

Data analysis 

The data in this part of the study consisted of individual students’ written responses 
to the different items of the questionnaire. From a qualitative / interpretive approach, 
in a first step we followed an inductive and iterative process in which every response 
was divided in units of analysis. In a second step, these units were categorized 
depending on the type of considerations (mathematical or communicative) identified 
in the justifications. We exclusively considered the questionnaires belonging to 
students that had answered all the items. Because of that, only 67 were selected.  

RESULTS 

This section reports and discusses the results of the study and is organized around the 
two aforementioned research questions: the characterization of students’ justifications 
and its persistence (or not) when they make decisions related to tasks that involve the 
different metaconcepts. 

In the justifications provided by our students, we have found the two main types of 
considerations identified for Zaslavsky and colleagues (Shir & Zaslavsky, 2002; 
Zaslavsky & Shir, 2005). In addition, we have found some considerations on the 
basis on institutional-cultural aspects. This type of considerations was based in the 
context provided by schools that includes teachers, curriculum, principals and so on. 
The students identified as A217 and T17 (the first letter identifies the school, the 
following number the course (1 or 2) and, finally, the last numbers indicate the 
student) were representatives of this type of considerations: 

Student A217:  [I chose this…] because teachers explained it this way and this is how    
they taught me this topic    

Student T17:   Because that is how we were taught this topic at primary school and I 
have got used to it …..   

With respect to the persistence of the students’ justifications through the different 
metaconcepts, we have been able to identify: 

- seventeen students that always followed considerations communicative or 
mathematical, independently of the considered metaconcept;  

- six students that always combined mathematical and communicative 
(mathematical/commnicative) considerations, independently of the considered 
metaconcept; 

- thirty-one students varied their considerations depending on the metaconcept. These 
considerations could be mathematical, communicative, institutional/cultural or they 
combined these types the considerations; 

and  
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- thirteen students that used different considerations depending on the different 
statements in each metaconcept; in this case, we were not able to identify the type of 
consideration and they were not considered here. 

In relation to the 17 students that maintained a common consideration, we show in 
the Table 1 the types of considerations identified and the corresponding students:  

Types of 
considerations 

Students 

Communicative A15,A16,A28,A213,A216,C16,C19,C120,C135 

Mathematical A25,T13,T14,T113,T114,T21,T25,C127 

 Table 1: Students that maintained communicative or mathematical considerations 

The nine students situated in a communicative perspective considered their own 
person as the ‘centre’ of the considerations. The following excerpt is representative of 
this: 

Student A16:   I like statement 1 because it seems to be the easiest one for me 

In general, communicative students’ decisions were related with ideas as clarity, 
comprehensibility and so on. They saw mathematics and teacher (considered as a 
vehicle of communication between student/mathematics) from a very personal point 
of view. 

In the case of the eight students situated in a mathematical perspective, their 
considerations were related to the use of mathematical expressions, lack of accuracy 
and so on. The following excerpt exemplifies this aspect: 

Student A25:  Statement 1 is not correct because it tells you what normally happens 
… in the majority of cases is the greatest number… but it doesn’t not 
always have to be this way … it is incomplete …. 

These students were able to consider separately the mathematical aspects from the 
personal aspects. 

In addition, communicative students made a weak distinction of the identification 
variables (characteristics that allow the identification of a metaconcept). In relation to 
students situated in mathematical considerations, we can say that the majority of 
these students identified the incorrect expressions of the three metaconcepts, although 
they showed different degrees of accuracy in their mathematical arguments for 
justifying their decisions. The percentage of communicative students that were able 
to decide whether or not a statement on the different metaconcepts was correct was 
less than 40% in all cases. This percentage increased up to a 90% in the case of 
students that adopt mathematical considerations.  

In particular, in the case of defining, 7 out of 9 communicative students chose both 
for teacher and students the same definition of mediatrix and the greatest common 
divisor, independently of characteristics, role and type and representation system. The 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2331



communicative students did not see these characteristics as relevant because the 
centre was his/her own person. This result was also found in proving, with a slight 
difference between topics (7 of 9 and 6 of 9 in each case), and in modelling. This 
result differed in the case of mathematical students, who did not show a clear 
coincidence. 

With respect to the thirty-one students who adopted different justifications depending 
on the metaconcept, the three main types of considerations (communicative, 
mathematical and institutional-cultural) were combined in some cases. We were able 
to identify several types of mixed considerations (communicative/ institutional-
cultural, communicative /mathematical, mathematical/ institutional-cultural). We 
show in the Table 2 the students that were situated in each consideration.  
 

 Proving Defining Modelling 
Communicative considerations/mathematical considerations 

in each metaconcept 
A210  A215,  A217 A210,  A215 

T11, T15 T112 T17, T112 

 
 
Communicative 
 C12, C116, C119 

C122, C123, C132 
C138, C139 

 C119, C122, C123 
C134, C138 
 

 A211 A29, A211 

T18, T19, T112 
T22,T23,T29, 
T210 

T12, T28, T119 
 

T11, T18, T19 
T115, T119 
T22,T23,T28,T29 

 
 
Mathematical 
 

C137  C116, C139 C129 

Mixed considerations in each metaconcept 
A217  A217 
T17   

Communicative
/Institutional-
cultural C129 C119, C123,C134  

A29, A211, A215 A29, A210  
T12, T115, T119 
T28 
 

T11, T17, T18, 
T19, T115 
T22, T29, T210 

T12 
T210 
 

 
 
Communicative
/Mathematical 
 C134  C12, C122, C129,  

C132, C137, C138 
C12, C116,  
C132, C137, C139 

Mathematical/  
Institutional-
cultural     

T118 
 

T15, T23, T118 
 

T15, T118 

Table 2: Students that varied their considerations depending on the metaconcept 
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As we can see in the Table 2, globally considered there were not significant 
differences between the number of communicative or mathematical considerations 
(23 and 26 respectively). The communicative/mathematical considerations (C/M) 
prevailed, being the most common in the three metaconcepts. Communicative 
considerations had a significant presence in proving and modelling with respect to 
defining.  

In addition, 6 students (A14, A19, A21, C110, C126, and C130) maintained 
communicative/mathematical considerations in all metaconcepts. These students used 
communicative considerations when the focus of their justification was the 
relationship between the metaconcept and themselves; when the relationship was 
between metaconcepts and the teacher, the type of consideration was mathematical. 
We can say that in these cases those considerations were associated with the 
‘character’ (student or teacher).  

It is worth to point out to the great number of students that belong to the Secondary 
School T and who were situated in mathematical considerations. Although the 
reasons provided by the teachers in the large research have been very useful in 
explaining, from their point of view, some of the differences between the different 
Secondary Schools, as we mentioned above this is not the aim of the part the research 
reported here. 

CONCLUSIONS 

Our study examines three metaconcepts that we consider basic in the construction of 
students’ mathematical knowledge. The findings suggest that the type of research 
instrument we designed has proven to be a valuable research tool in the identification 
of students’ justifications.  

Students’ communicative and mathematical considerations proposed by authors as 
Shir & Zaslavsky (2002) for defining have been enlarged in the case of other 
metaconcepts as proving and modelling. In addition, the presence of institutional-
cultural considerations showed in the other kind of justifications, which indicate the 
importance of the aspects linked to school context, that are considered as a ‘source’ 
for the justifications. Moreover, we were able to see the presence of mixed 
considerations (Communicative/institutional-cultural, communicative/ mathematical, 
and so on).  

Our results have shown the students that justify their decisions on the basis of 
mathematical or communicative considerations do not react in the same way to the 
same mathematical situations. In particular, we have been able to see the difficulties 
communicative students have in making decisions both on distinguishing the 
characteristics of metaconcepts and on differentiating between the teacher and 
themselves, showing that their decisions are related to personal aspects. For 
mathematics teachers this fact implies the importance of considering the existence of 
students whose analytical tools are based on communicative aspects and the 
difficulties that means in helping them to construct other types of reasoning. 
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With respect to the findings related to the students that varied their type of 
considerations depending on the metaconcepts, they inform us about the necessity of 
going deep into the relationships among the motives that students have to link a 
specific type of considerations to a specific metaconcept. In some way, these 
relationships could inform us about some characteristics of students’ understanding. 

Finally, although it has not been considered in this paper, the differences among 
secondary schools that we have identified in our findings lead us to the need to 
incorporate in the design of future research some instruments that allow us to answer 
the following question: up to which point is the adoption of any determined 
consideration influenced by the specific education (training) of a secondary school 
and particularly by secondary school teachers?  As researchers, we need to deepen 
the characteristics of the relationships between students and teachers in a specific 
secondary school that might encourage a determinate type of considerations.  

NOTES 

The research reported here was supported by a grant from the Spanish Ministerio de Educación y 
Ciencia (SEJ2005-01283/EDUC), and partly financed by FEDER funds. 
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NECESSARY REALIGNMENTS FROM MENTAL 
ARGUMENTATION TO PROOF PRESENTATION  

Joanna Mamona-Downs   Martin Downs 
University of Patras - Greece 

 
This paper deals with students' difficulties in transforming mental argumentation into 
proof presentation.  A teaching / research tool is put forward, where the statement of 
a task is accompanied by a given written piece of argumentation suggesting a way to 
resolve the task intuitively.  The student must convert this into an acceptable 
mathematical form.  Three illustrative examples are given.   

Key words: mental argumentation; proof presentation; mathematical language; 
refinement of expression; transparency.  

 

INTRODUCTION 

It has been noted in several papers (eg. Gusman, 2002; Moore, 1994) that in certain 
circumstances students can 'see' a proof but they cannot express their intuitive ideas 
in terms of mathematical language.  The students use representations that are or have 
become over time divorced from the mathematical frameworks that allow explicit 
tools of exact analysis.  Thus an impasse occurs. 

On the other hand, the usual style of presentation of proof can seem 'monolithic'.  It 
denies in most cases not only a history of aborted attempts, but also it does not 
communicate essential conceptual and cognitive input that supported the initial 
formation of the proof.  In this respect, reading a proof has a facet that has to be 
deciphered.  When assessing proofs we should not be only concerned in investigating 
the 'mechanics' that explain how a given proof succeeds in what it was meant to 
achieve.  We also should be concerned with the creative processes involved in 
producing the 'mechanics' in the first place.   

Hence, the circumstance where a student can discern an argument informally but 
cannot express it in a ratified mathematical format is exacerbated by the fact that past 
exposure to proof presentation hardly is supportive.  A possible remedial measure 
might be to seek for a radical change in how proofs are written, to better reflect the 
cognitive input that otherwise would be repressed.  However in the next section we 
will argue that there are compelling reasons to retain the traditional styling of proof 
presentation.  Taking this in mind, if students are to develop the skills to convert 
mental argumentation into mathematical frameworks allowing deductive reasoning, 
channels have to be found to help the students to achieve this.  In this paper, we put 
forward such a channel. 
In particular, we consider the situation where a student is given not only a task, but 
also has an informal description how to deal with the task. The description can be 
self, peer, or teacher generated.  The job of the teacher is to guide the student to 
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transform the information that is provided into a strict proof.  This is envisaged as a 
sustained teaching practice, which hopefully would encourage student emulation in 
their independent work.  The education researcher also has a role.  Beyond 
investigating which kinds of guidance given by the teacher will be the most effective, 
the researcher would be interested in identifying specific types of discrepancies that 
can occur between informal and formal reasoning, and their effect in cognitive terms.   

The main body of this largely theoretical paper will comprise a discussion of three 
worked examples.  These worked examples follow a certain format of design.  We 
envisage that this format could be consistently adopted as a research tool for an 
educational program of a larger scale.  For each example, its content will be carefully 
separated between the 'givens' and the 'material to be produced'.  The 'givens' have 
two components; the first is a task or a proposition, the second is a mental argument 
that addresses it informally. The material to be produced will include a 'rigorous' 
solution or proof influenced by the given mental argument.  In addition, in order to 
ease the transition to the proof, the material to be produced may further involve the 
formation of an enhanced version of the initial informal argument.  

The examples are chosen to illustrate how the identification of structural properties in 
the informal argumentation can lead to an entry point into a mathematical framework, 
and ways that proof presentation may seem not to respect the informal line of 
thought.  The approach taken here would be most pertinent to the upper-secondary 
and tertiary levels, as it is at these levels that the insistence of proof production 
becomes more poignant.     

We acknowledge some points in our undertaking might deny some important aspects 
in combining intuitive and formal sources in the doing of mathematics.  For example, 
ideally the students themselves could be constructing their own representations and 
mental argumentation.  Representations and mental argumentation made by peers or 
the teacher may not be comprehended by the students.  Further, often it is the case 
that mental argumentation and the thinking consonant to mathematical frameworks 
might evolve mutually.  These points might suggest that what we are endeavouring to 
do in this paper has its limitations.  However, we do believe that the direction we take 
constitutes an important device for analysing the learning and teaching of 
mathematical modelling, and the potential difficulties that are involved.   

 

MENTAL ARGUMENTATION AND PROOF; HOW DO THEY DIFFER? 

It has often been observed both by mathematicians and educators that the proofs 
published in mathematical journals are far from being completely rigorous 
(e.g.,Thurston, 1995; Hanna & Jahnke, 1996).  This has prompted some educators to 
view proof mostly in terms of conviction. However, in certain circumstances even a 
highly naive argument can be so compelling that any reasonable person would be 
'convinced' of the proposed conclusion.  The problem is that however 'obvious' or 
'transparent' an intuitive argument is, there might not be a way to directly reduce it to 
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fundamental principles.  The point is not so much about conviction, but how we can 
clarify the bases of the reasoning employed.  The notion of a 'mathematical warrant' 
(Rodd, 2000) addresses the issue of justifying the grounds that support students' 
belief in the truth of a mathematical proposition.  Still, in how this term is employed 
suggests a certain primacy to 'embodied processes' over any mathematical setting 
demanding deductive argumentation.  

This primacy might be challenged by some.  For example, the construction of a proof 
can be regarded as an activity to make argumentation more precise.  From this 
viewpoint, proof refines any intuitively based argument.  Perhaps a more balanced 
stance to take is that it is artificial to try to distinguish informal thinking from formal 
thinking.  Thurston talks about a mathematical language (replacing the 'myth' of 
complete rigour).  As in any language, there is ample space to express ideas in casual, 
incomplete, or inexact formulations.  However mathematical language is strongly 
rooted to a vocabulary referring directly to defined mathematical entities, and its 
expression is conditioned by respecting previously ascertained properties.  Drawing a 
sharp characterisation of this language might be a difficult undertaking, though 
preliminary remarks are made in Downs & Mamona -Downs (2005).  Assertions 
made by Thurston are that it is very difficult for students to become fluent in the 
mathematical language, but ultimately it is in this medium that mathematical thought 
evolves. 

In the introduction we employed the term 'mental argumentation'.  What place does 
this have in our discussion above?  From our perspective, mental argumentation rests 
on collating sources of intuitive knowledge.  One character of intuitive knowledge is 
that, cognitively, it deals with self-evident statements.  Unlike perception, intuitive 
knowledge exceeds the given facts (see Fischbein, 1987).  Also, it is accumulative; it 
depends on past assimilation of conceptual matter.  The collation involved in mental 
argumentation can be made either at the level of instinct or at the level of insight.  
Both rely on a certain degree of vagueness (see Rowland, 2000, for the importance of 
vagueness in the doing of mathematics).  Mental argumentation should convince the 
practitioner but not necessarily others; the practitioner would be aware that someone 
else might demand a warrant.  Mental argumentation can lie either inside or outside 
the mathematical language.  Which of the two depends on whether the collation of 
intuitive knowledge is guided by mathematical insight rather than instinct.  Indeed if 
the argument is based on instinct, there is a lack of self-awareness of the sources 
drawn on in making the reasoning, including mathematical backing. 

Harel, Selden & Selden (2007) have put forward a framework for the production of 
proof by distinguishing a 'problem - oriented' part and a 'formal - rhetorical' part.  
(The word rhetorical here serves to point out that what is accepted as formal proof 
can include some standard linguistic devices beyond strict logic).  We suggest that 
mental argumentation stresses the 'problem - oriented' part; the 'formal - rhetorical' 
part is as yet opaque, and it is drawn on only when it is required to bolster the 
intuitive line of thought.  A 'naturalistic' proof is obtained by respecting the original 
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problem solving aspects, but fills the 'gaps' in the reasoning by explicitly bringing in 
mathematical sources permitting tight deduction.  A 'naturalistic' proof should be 
explanatory; Hanna & Jahnke (1996) suggest that proof that explains is preferable to 
proof that does not.  However 'naturalistic' proofs are not always feasible; in the 
process of converting the original mental argumentation into a framework allowing 
deductive argument, certain mathematical constructs have to be made to 
accommodate the intuition, but in doing this there might well be clashes in cognition 
that cannot be side-stepped.  Because of this, formal proof presentation often does not 
seem to communicate the thinking processes that first motivated its formulation.  
However, the formal presentation is not simply a contrived imposition, stipulating 
that your argument has to be validated by a vague standard of rigour.  It is something 
that is encompassed in the mathematical language.  In that context, the original 
thinking processes should be retrievable.  Hence, we have a duality between the 
problem-solving element needed in forming a proof and that needed in reading a 
proof (see Mamona-Downs and Downs, 2005).  

A teaching/research practise similar to that proposed in the introduction is forwarded 
by Zazkis (2000). It deals with relatively simple examples that only involve 
translation from mental argumentation to naturalistic proof.  

                                                                                                                                                 

THREE ILLUSTRATING EXAMPLES 

In this section we write down and discuss three tasks and proposed solutions.  The 
purpose is to illustrate some cognitive issues concerning the conversion of mental 
argumentation into proof presentation.  In considering just three tasks, our exposition 
will bring up only a sample of the points that potentially can be made; we believe that 
many other points and elaborations can be drawn in the future. 

Each example will be divided into three parts.  The 'givens' is the material that would 
be given to the student if a fieldwork were undertaken.  The 'material to be produced' 
always includes a form of a suitable proof presentation, but might also involve a 
middle step enhancing the original mental argumentation.  The 'material to be 
produced' is made in a putative spirit rather than regarding it as a 'model solution'.  
Finally, the 'comments' relate the cognitive factors extracted from the examples.  

   

Example 1 

Givens 

Task: Two persons, A and B, start a walk at the same time and place along a 
particular path of length d.  Person A walks at speed v1 for half of the time that A 
takes to complete the walk; after he walks at speed v2, where v2 <v1.  Person B walks 
at v1 for half of the distance, and after walks at v2.  Who finishes the walk first? 
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Mental argumentation: Person A covers more distance in the first half of the time 
when walking at v1 than the distance achieved in the second half of the time walking 
at v2 (as v1 >v2).  Thus A walks further than the half point in distance, i.e. d/2, at the 
faster speed v1, whereas person B walks only the half- distance at v1; hence A arrives 
first. 

Material to produce 

Proof presentation: Let d1 be the distance at which A changes speed.  Let t1, t2 be the 
time for A, B to complete the walk respectively.  Then  

 

Comments 

This example constitutes a relatively smooth transition from the mental 
argumentation to the proof presentation.  Even so, we envisage that many students 
might have problems in executing it.  Even the required assignation of symbols (d1, 
t1, t2) has a modest constructive element that should not be assumed easy for the 
students to adopt.  The thrust of the proof lies in the transformation of d/2 into (d1 - 
d/2)+(d- d1).  The motivation in doing this is (d1 - d/2) represents the distance that A 
walks at the highest speed v1 beyond B does; (d – d1) represents the distance for 
which both A and B walk at the lower speed v2. Hence one term pinpoints where the 
behaviour of A and B is different, the other where their behaviour is the same. This 
'move' might be difficult to make unless you have the support of the mental 
argumentation, so the student would have to have a tight grasp of how the intuitive 
reasoning is guiding the algebra.   

This task appears in Leikin & Levav-Waynberg (2007) in the context of connecting 
tasks.  Another approach different to the one above would be to take the strategy: 
explicitly determine the time that A and B take separately and then argue which time 
is the shorter.  However, there is not a sense here that a mental argumentation is 
playing a role; the task is immediately modelled into an algebraic context, and the 
argumentation is accomplished completely at this level.  This latter approach 
certainly provides more explicit information (beyond what was demanded), but lacks 
the transparency that the first provides. 
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Example 2 

Givens 

Task: Suppose that the real sequence (an) is convergent, and there is an infinite subset 
M of the set of natural numbers Ν and a real number t such that an=t whenever n∈M.  
Prove that the limit of (an) is t.   

Mental Argumentation: There is an 'infinite number of terms' that take the value t, so 
however far the sequence has progressed there must still be a term having the value t 
not reached as yet.  At the limit, the terms must be tending to the limiting value, but 
as far progressed the sequence is, t 'occurs', so the limiting value must be t. 

Material to produce 

Enhanced mental argumentation: Suppose that in fact it is not true that the limiting 
value is t.  Then the value must be a number l≠t.  There is an explicit number         
expressing the distance between l and t.  However progressed is the sequence, the 
value t 'occurs' and so there will always be terms that have a certain fixed distance 
from the limiting value.  This contradicts the idea that the sequence is tending to the 
limiting value.  Thus it cannot be true that l and t are different.   

Proof Presentation: Suppose that lim an=l and l≠t.  Let ε = (l -t)/2.  Then there is a 
natural number N such that for all n>N, an∈(l-ε, l+ε) and we have chosen ε such that 
t∉(l-ε, l+ε).   Now there are only a finite number of n∈Ν such that an∉(l-ε, l+ε).  This 
means that only a finite number of n∈Ν satisfy an=t.  This is a contradiction. 

Comments     

The first mental argument could persuade some students on reading it, but the basis 
of its acceptance rests on a degree of personal instinct that likely would not be shared 
by others.  An enhanced mental argument might arise as an attempt to remedy some 
of the shortcomings of the first; if the argument lacks concreteness when it is used to 
justify a proposal, you might be forced to consider the consequences if the proposal 
was not true.  These consequences might run contrary to the specifications of the task 
environment.  In this way, we believe that logical devices such as proof by 
contradiction can, up to a point, be naturally handled in the confines of mental 
argumentation. 

There remains a point of vagueness shared by both mental arguments, i.e. the claim 
'however the sequence has progressed there must still be a term having the value t not 
reached as yet'.  Likely the acceptance of this would depend much on the student 
having a suitable mental image of what an infinite sequence is.  Without this, a 
student might be doubtful about how the claim could be justified.   

For a justification, one has to refer to the mathematical definitions providing the 
means to decide on issues dealing with limits.  Much research has reported clashes of 
intuitive images with the dictates of the definition of the limit.  With this in mind, it is 
not surprising that some switches of focus have to be made to transform the mental 
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argumentation into a proof presentation, Mamona-Downs (2001).  What the 
definition provides is an 'ε-strip' around l that stipulates that however small ε is, there 
is a 'stage' of the sequence beyond which the values taken must be trapped in the 
strip.  (This makes use of imagery that is usually made available in the teaching 
process.)  By choosing ε small enough, we can arrange the ε-strip to 'avoid' the value 
of t if t≠l.  Then there are only a finite number of terms 'at the start of the sequence' 
that can possibly take the value of t, and we reach a contradiction. 

The switch then is that instead of employing the fact that there are infinitely many 
terms taking the value of t as a basis for argument, one employs the definition of the 
limit of a sequence as a basis for finding contrary evidence.  The character of the 
contradiction here is somehow different from the one found in the enhanced mental 
argument.  The difference could be expressed by comparing "if the result was not 
correct, then a condition is transgressed" with "a perceived property (tending to the 
limit) is contravened".   

Note that the negotiation of what direction the proof should follow is itself couched 
in casual terms.  This illustrates how mental argument can be a part of the 
mathematical language.  Even though the supporting mental argument guides the 
structure of the proof, the proof presentation does not acknowledge its role.  
Particularly stark is the setting, almost as a fiat, of the value of ε.  However, from our 
strategy making, the choice of ε is pre-motivated, and it could take any value in the 
interval (0, l-t).  A reader of the proof might not appreciate this.  Another feature of 
the proof presentation is the compression involved in the statement ' we have chosen 
ε such that t∉(l-ε, l+ε) '.  Set theoretically, a justification of it would take several 
lines.  But because the value of ε was picked especially to satisfy the property 
involved, these details can be safely suppressed.  In general, the transition from one 
line to another in a proof presentation often goes beyond deductive implication; it 
often 'hides' input from mental argumentation.  The skeletal form of the proof 
presentation has an advantage in that the 'gaps' that appear can be filled through 
insight, but if this fails one can always resort to the mathematical tools available to 
complete the minutiae synthetically.  This discussion throws a light on the respective 
roles of mental argumentation and proof presentation in the mathematical language.  

 

Example 3 

Givens 

Task: Let n be a natural number. Suppose that rn is the highest power of two dividing 

the factorial of 2
n
. Find rn.  

Mental argumentation: (Student produced) 
 "We know that from the numbers 1, 2, 3, …, 2 n, there are 2 n-1  
numbers which are divisible by 2 .  We note that from the numbers 
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1, 2, 3, …, 2 n-1 , there are 2 n-2  numbers that are divisible by 2.  
We note that from the numbers 1, 2, 3, …, 2 n-2 , there are 2 n-3  
numbers that are divisible by 2.  Continuing to the end we have 
that 2 n! = 1.2.3…2 n is divisible by 2 raised to the power  

2n-1  +2 n-2  +2 n-3   +… +2 2 +2+1.  

This means that rn equals 2
n
 -1." 

Material to produce 

Proof production: Here there is a choice. One tack that can be taken is to conjecture 
that the result obtained is correct and then use induction. This is fairly easy to do, and 
it will be left to the reader. The other tack is to produce a proof not assuming the 
result. Such a proof might follow the lines as below:  

For each i = 1,…, n, let 

 Ai = {s ∈ N: s≤ 2
n
 and is a multiple of 2

i
} 

 Bi: = {t ∈ N: 2
i
 divides t and t/ 2

i
 is odd} 

 ai: = | A i|,    bi:= | Bi| 

By construction, 

 

Comments 

In this example, contrary to the previous two, the mental argumentation was 
produced by two students (working together) whilst doing project work, and this 
constituted their final answer.  In a subsequent interview, it became clear that they 
did not consider their response to constitute a proof, however the terse manner of 
their exposition seems to be influenced by an image of a proof being minimally 
expressed.  In the interview the students were able to explain the origin of the stated 
lists of numbers, but only in informal terms.  It is significant that the students did not 
spot the induction option, as in other work they showed themselves adept in 
identifying and applying this general proof technique.  The impression was that they 
wanted a proof that reflects and respects the procedure for which they invested a lot 
to obtain the answer, rather than building up an argument employing the answer as a 
working conjecture.  Quite likely, if their presentation were shown to other students 

  

rn = ibi
i=1

n

∑ , ai = bi + bi+1 +K + bn and ai = 2n− i

Hence, for i ≠ n

ai = bi + ai+1 ⇒ bi = ai − ai+1

⇒ rn = n + i(
i=1

n−1

∑ ai − ai+1) = n− (n−1)+ ( (i − (i −1))
i=2

n−1

∑ ai ) + a1

=1+ ai
i=2

n−1

∑ + 2n−1 = 2i

i=1

n−1

∑ = 2n −1
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to refine, those students would be more inclined to take the induction method.  This 
proposition illustrates that we should expect some differences in student behaviour 
when they are reacting to their own mental argumentation rather than that provided 
by others.   

The proof stated was achieved by the students with guidance of one of the authors 
during the follow-up interview.  The degree of guidance will not be described here; in 
accordance with the other two examples, the proof will be discussed hypothetically in 
terms of cognitive demands in producing it from the existing mental argumentation.  
First, notice that the proof involves the construction of families of sets.  Although the 
importance of sets (and functions) to the foundations of mathematics is usually 
emphasized in teaching at the tertiary level, generally students tend to be poorly 
equipped to design sets for specific purposes.  Returning to the example, the family 
of sets Ai reflects the process that is implied in the mental argumentation; had the two 
students based their argumentation on these sets, the exposition of the solving 
algorithm would have been clarified.  The family of sets Bi had the role to model the 
situation given by the task environment.  The Bi' s give the grounding, the Ai' s the 
calculating power.  Thus the Bi 's appear from theoretical considerations, and are 
related (in the form of their orders) to the Ai' s to realize the numeric expression 
sought.  In this way, the translation from the mental argumentation to a proof 
presentation needed the construction of sets together with a strategic understanding 
how these sets would avail what was desired.  We see then that proof production can 
involve significant problem solving aspects, as noted before. 

 

CONCLUSIONS 

There is plenty of evidence that students experience severe difficulties in the 
production of mathematical proofs.  A particularly frustrating circumstance for a 
student is when he/she can 'see' a reason why a mathematical proposition is true, but 
lacks the means to express it as an explicit argument in one form or another.  One 
problem is that students feel that the 'reason' has to be immediately couched in 
'rigorous' mathematical terms.  In fact, there is no harm in trying to write informal 
descriptions, which can be a first step in developing mental argumentation ultimately 
giving access to 'mathematization'.  The paper proposes a teaching / research tool 
designed to give students support in this process.  This tool provides, beyond the 
stated aim of the task, an informal account how the aim might be achieved.  This 
format has several advantages.  One is that it should help students to regard mental 
argumentation as being legitimate.  Second, mental argument comprises an 
environment that allows refinement of expression.  Third, mental argumentation is 
not just a way of negotiating an entry into established mathematical systems, but even 
the writing of proof presentation is highly dependent on it, though its influence is 
usually left implicit. 
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AN INTRODUCTION TO DEFINING PROCESSES 

Cécile Ouvrier-Buffet 

DIDIREM, Paris 7 – IUFM de Créteil, Paris 12  

Abstract. The aim of this paper is to bring some theoretical elements useful for the 
characterization of defining processes. A focus is made on a situation which engages 
students in the construction and the definition of concepts used in linear algebra 
(such as generator, independence). Such concepts have a reputation of being difficult 
to learn and to teach. The specificity of such a situation is that it comes from discrete 
mathematics and it allows a mathematical questioning and a mathematical 
experience. 

Key words: defining processes, concept image, discrete mathematics, linear algebra, 
(in)dependence, minimality, generator. 

INTRODUCTION 

The defining process represents a specific constant of the language and of the human 
thought. In mathematics, as well as in all the scientific fields, to define is intrinsically 
linked to the objects: the action of “defining” attests to the existence of new objects 
and gives them the status of “scientific objects”. In a formal theory, definitions seem 
to be undeniable, immutable and appear like definitive statements. Nevertheless, the 
forms, the status and the roles of definitions change notably, throughout the centuries 
(history of mathematics teaches us a lot), but also through teaching and learning 
processes. From one point of view among others, a definition can be a statement 
given in order to know what one talks about (such as Euclidian definitions which are 
declarative statements: everybody already knows what it refers to). A definition can 
also be the only way one can grasp a concept, at the beginning of a presentation. 
From another perspective, a search of a proof can make room for a new concept: that 
is the notion of proof-generated definitions introduced by Lakatos (1961, 1976). All 
these elements underline the gap between defining processes in real live mathematics 
where definitions come at the end of a research process and are generally intrinsically 
linked to a proof perspective and formal theories where definitions come at the 
beginning of a presentation. In fact, the way one considers definitions depends on the 
view one has about the mathematical experience, and then the view one has about 
“proof”. Formal and axiomatic mathematical presentations hide scientific concepts, 
their pertinence and their usefulness. That obviously explains why students have 
difficulty learning and understanding new concepts. Indeed, students must construct 
concepts from the definitions given at the start of a chapter where all concepts appear 
as divided into compartments. Moreover a formal definition is generally a minimal 
one because axiomatic theories should be nice with a small number of axioms and 
non-redundant definitions. Then, with a formal minimal definition, a student only has 
a view of a concept. But, when grasping a new concept, a student needs to have 
several properties of this concept, several representations, links with other concepts 
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and equivalences between different kinds of properties. Furthermore, a definition can 
become a proposition used in a proof in order to make an inference. That prevents 
students to distinguish clearly among axioms, theorems and definitions. 

In my opinion, the question of mathematical definitions is a crucial one in an 
advanced mathematical perspective. The existence of formal definitions and formal 
proofs marks Advanced Mathematical Thinking. It is taken into account by Tall and 
Vinner with the notions of concept definition and concept images. Students construct 
concept images to give meaning to formal mathematical concepts. Therefore, 
studying concept images represents one way of characterizing concept formation and 
a part of the students’ understanding of a concept, even if the students’ concepts 
images are not always easily accessible. I suggest focusing my paper in a 
mathematically-centered perspective as proposed in this working group, studying 
more specifically definitions in the general background of “Problem-solving, 
conjecturing, defining, proving and exemplifying at the advanced level”. Questioning 
the defining processes at stake in the work of real live mathematicians can bring 
answers to didactical research about concept formation. My approach is an 
epistemological one and tends to question the practice of mathematicians concerning 
definition construction processes. I intend to explore what a mathematical experience 
can be, focusing on defining processes, which are difficult to characterize meta-
processes. I will also propose the broad outlines of a framework useful for analyzing 
a situation for the transition stage between upper secondary level and university. 

KEY CONCEPTS FOR THINKING MATHEMATICAL GROWTH 
THROUGH DEFINING PROCESSES 

The work of Tall (2004) is ambitious and paramount. I have commented it (Ouvrier-
Buffet, 2006), taking into account the specific perspective of definitions, in the 
following way. Tall (2004, p. 287) gains “an overview of the full range of 
mathematical cognitive development” by scanning a whole range of theories. A 
global vision of mathematical growth then emerges, making room for three worlds of 
thinking: the “embodied world”, the “proceptual world” and the “formal world”. In 
this way, a more coherent view of cognitive development may be obtained. Endorsing 
this point of view, I will question the place of definitions in such a theory. “Formal 
definitions” admittedly belong to Tall’s “formal world”. What happened before the 
“smooth” definitions were arrived at? What were the heuristic processes involved? 
Although the apprehension of new mathematical concepts began in the “embodied 
world” through perception, I still assume that the “proceptual world” is not always 
adequate to characterize a concept which is being constructed. So how are we going 
to grasp the dialectic between concept formation and definition construction within 
this theoretical range? I think we can safely assume that there is another world, 
different from the “embodied”, “proceptual” and “formal” worlds, which is both 
transversal and complementary, fostering the characterisation of mathematical growth 
through definition construction processes in particular. I will not characterize such a 
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fourth world (because it is a transversal one to the previous three), but I will try to 
give key concepts for thinking mathematical growth (i.e. concept formation in my 
perspective) through defining processes. 

What does it “defining processes” mean? This wide question cannot be entirely dealt 
with in such a paper. Let me give some elements of my research perspective. 

The concept of “definition” can actually be approached in several ways because it is 
at the intersection of different fields. Studying “definitions” inevitably leads us to 
philosophical questions, joining the famous nominalism/essentialism debate, the 
problem of the existence of the objects one defines, and logic and linguistic 
considerations. Because a definition is a part of a theoretical system, the field of logic 
and meta-mathematics (how to build formal and axiomatized theories) should be 
explored but is not the purpose of this paper. 

The heuristic approach as proposed by Lakatos (1961, 1976), where a definition is an 
answer to a problem, and the concept formation approach, as proposed in different 
directions by Vygotsky and by Vinner for instance, represent my research interests. 
Vygotsky (1962), in the famous Chapter 6, underlines the structure of scientific 
concepts organized in systems (interdependence of concepts within networks) and the 
distance between the growth of scientific concepts and the growth of everyday and 
spontaneous concepts. But Vygotsky does not take into account the nature of the 
concepts. Vinner does. To map the concept formation implies to grasp students’ 
concepts images and the links which they are able to do with other knowledge. 

Let me now summarize two fundamental notions about definitions. Tall and Vinner 
made a distinction between the individual way of thinking of a concept and its formal 
definition, introducing the notions of concept image and concept definition. It allows 
to take into account mathematics as a mental activity and mathematics as a formal 
system. Then, practice of mathematicians and students’ cognitive products can be 
studied from that perspective. Moreover, I retain that Vinner emphasizes the 
importance of constructing definitions: “the ability to construct a formal definition is 
for us a possible indication of deep understanding” (Vinner, 1991, p. 79) and explains 
the “scaffolding metaphor” which presents the role of a definition as a moment of 
concept formation. Within his theoretical framework, Vinner suggests to expose a 
flaw in the students’ concept image of a mathematical concept, in order to induce 
students to enter into a process of reconstruction of the concept definition and 
proposes some interplay between definition and image. Vinner assumes that “to 
acquire a concept means to form a concept image for it (…) but the moment the 
image is formed, the definition becomes dispensable” (p. 69, ibid). I underline the 
first part of this quotation and the main interest of using concept image (and concept 
definition) as a theoretical tool to analyze dynamical defining processes. From a 
didactical perspective, the main question is the following: how can one make easier 
the construction of students’ concept image? And how can one use markers in order 
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to characterize such a process? The notion of concept image, according to Watson 
and Mason, is used: 

to encompass all the images, definitions, examples and counterexamples, associated 
links, and their interrelationships that are all held together in a structured way and 
constitute the learner's complex understanding of the concept (Watson & Mason, 2005, p. 
97). 

It is time to introduce Vergnaud’s idea of invariants which make the students’ action 
operational. Vergnaud (1996) distinguishes concepts-in-action and theorems-in-
action, in reference to the concepts and the theorems of mathematics. In particular, he 
defined concepts-in-action in the following way: 

Concepts-in-action are categories (objects, properties, relationships, transformations, 
processes, etc.) that enable the subject to cut the real world into distinct elements and 
aspects, and pick up the most adequate selection of information according to the situation 
and scheme involved (Vergnaud, 1996, p. 225). 

I extend these notions to definitions-in-action and properties-in-action in order to 
guide an analysis on the students’ invariants. 

My research about definitions had led me to also adopt an epistemological point of 
view, taking into account simultaneously logic, linguistic, axiomatic and heuristic 
approaches. Let me focus here on the Lakatosian heuristic point of view (and not on 
the formal aspect of the reconstruction of a theory), where definitions are temporary 
sentences and also at the dialectic interplay with proofs. Therefore, I use 
Lakatos’ categories of definitions, namely zero-definitions, emerging at the start of an 
investigation, and proof-generated definitions, directly linked to problem situations 
and attempts at proof. In the context of the immersion of a proof in a classification 
task (Euler’s formula and polyedra), Lakatos has showed that a definition is not only 
a tool for communication, but also a mathematical process taking part in the 
formation of concepts. In the example at hand, the aim consists in a characterization 
of markers in order to examine the concept formation process, and, in particular, to 
identify specific statements in the defining process. Let me underline that the kind of 
problem proposed by Lakatos can be inscribed in a problem-solving perspective 
because of the dialectic between the construction of a definition and the validity of a 
proof (involved in Euler’s formula). But the starting point is “only” a classification 
task. Such a situation can be kept in mind. We now have some cognitive and 
epistemological elements in order to try to grasp defining processes (namely concept 
image, definitions-in-action, zero-definitions and proof-generated definitions).  

SITUATIONS INVOLVING DEFINING PROCESSES 

Can we now imagine several kinds of situations involving defining processes? Of 
course, there is the case of the construction of a theory, when several theories are in 
competition (Popper, 1961). However, I will not develop this aspect, even if it plays a 
leading role in the defining processes (indeed definitions are chosen, reconstructed 
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etc. during axiomatization), because it is not a beginning from a didactical 
perspective when one wants students to be engaged in a process of knowledge 
construction. There are not a lot of propositions for constructing definitions and 
building new concepts in the relevant literature in mathematics education (I do not 
take into consideration the situations of reconstruction of definition of a known 
concept). My research is focused on the design and on the analysis of situations in 
which students are engaged in defining processes in order to build new concepts. I 
therefore had to work out a theoretical framework through epistemological, didactical 
and empirical research in order to characterize definitions construction processes 
(Ouvrier-Buffet, 2006). My experiments were conducted in discrete mathematics 
with the following concepts which are of different natures: trees (a known discrete 
concept, graspable in several ways), discrete straight lines (a concept which is still at 
work, for instance in the perspective of the design of a discrete geometry) and a wide 
study of properties of displacements on a regular grid. I have chosen to develop this 
last point for two reasons. Firstly, this kind of situation contributes to make students 
acquire the fundamental skills involved in defining, modelling and proving, at various 
levels of knowledge. A mathematical work on (“linear”) positive integer 
combinations of discrete displacements actually mobilizes skills such as defining, 
proving and building new concepts. Secondly, it leads us to work in discrete 
mathematics but also in linear algebra because similar concepts are involved in this 
situation. So we can focus on concepts which are known as difficult, at the university 
level, namely concepts of linear algebra. These concepts have the specificity of being 
inscribed in a very formalized theory, and historically, they have a unifying and 
generalizing power. They are well-known for being difficult to learn... and to teach.  

The challenge, from my point of view, is to find a “good” situation i.e.: 1) a situation 
which allows the construction of some concepts and leads students to explain and to 
explore a mathematical questioning and then, to have a mathematical experience; 2) a 
situation which does not generate well-known obstacles in teaching and learning 
linear algebra (and so which avoids the problems connected to the lack of practice in 
basic logic and set theory of students for instance and their difficulty connecting new 
concepts to previous knowledge etc.); 3) a situation which allows the construction of 
zero-definitions and the catalysis of proof-generated definitions, trying to instil a kind 
of concept images in particular (the study of Harel (1998) underlines that the students 
do not build effective concept images for the concepts of linear algebra, in particular 
for the notion of independence); 4) a situation which brings a kind of useful and 
dynamic representation of some concepts of linear algebra, avoiding the trap of using 
2D or 3D geometry: indeed, the attempts to connect linear algebra to 2D and 3D 
geometry in order to give an image of some concepts (linear (in)dependence in 
particular) have showed their limits (Hillel, 2000; Harel, 1990 & 1998 for instance). 
What a challenge… Is it really sensible? 
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A CASE STUDY: DISPLACEMENTS ON A REGULAR SQUARED GRID ( ����²) 

A situation in discrete mathematics  

Let G be a discrete regular grid. This grid can be squared or triangulated for instance. 
For the rest of this article, G is a squared regular grid. A “point” of the grid is a point 
at the intersection of the lines. Let A be a starting point. An elementary displacement 
is a vector with 4 positive integer coordinates (it can be described with the directions: 
up, down, left and right, for instance “2 squares right and 3 squares down). A 
displacement is a positive integer combination of k elementary displacements, written 
a1d1 + a2d2 + … + akdk (ai are natural numbers, 1 ≤ i ≤ k).  

The general problem is: let E be a set of k vectors with integer coordinates. 
Starting from a given point, which points of the grid can one reach using 
positive integer combinations of vectors of E? 

In vector space, the notions of generator and dependence are highly correlated. In a 
discrete situation, the lack of definitions of these notions may allow an activity of 
definition-construction. The situation above is decontextualized with regard to 
classical introduction of concepts in linear algebra. It is an open problem, which the 
students do not know. The concepts of generator, minimality but also (in)dependence 
and basis can be studied. I stress the fact that the linear algebra is not the model for 
the situation of displacements. Linear algebra brings well-known obstacles, in 
particular with its definitions and a unifying formalism. So this explains the necessity 
of a “decontextualization” in order to give an access to the mathematical problematic. 
This decontextualization in discrete mathematics allows a work on properties which 
are co-dependant in the continuous case. 

As seen in the mathematical study below, the situation suggests an activity on the 
definition of “different” paths, but also the definition of generator, minimality, 
density and “a little bit everywhere”. The students were induced to define besides 
being challenged to discover an answer to the “natural” questions: How can we reach 
each point of the regular grid? What does it mean? Does a minimal set of 
displacements exist in order to go everywhere? Furthermore, I assume that the notion 
of generator should come naturally and will lead students to the notions of 
(in)dependence and minimal generator (basis). 

The mathematical study in brief 

1) How to reach all the points of the grid? 

There exists a set of displacements which allows all the points of the grid to be 
reached. The four elementary displacements represented here obviously form one 
such set. Now, can we characterize all the sets of displacements which allow us to 
reach all the points of the grid? We have to work on two different properties 
simultaneously: 
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- the “density”: all the points of a zone of the grid are reached. 

- and “a little bit everywhere”: let P be a point of the grid. There exists a reached 
point, called A, “close to P”, i.e. such that the distance between A and P is bounded 
(for every P, independently of P). We will call this property “ALBE”. 

 

We can reach all the points of the grid when these two properties (“density” and 
“ALBE”) are satisfied simultaneously. These properties imply the definition of 
“generator set”. 

2) Reciprocal problem and minimality 

Let E be a set of elementary displacements. What points can one reach with E? When 
the set of reached points is characterized, a new question emerges: is it possible to 
remove an elementary displacement of E without changing the reached points? This 
is a question about the minimality of the E set. E is called minimal when removing 
one of its elementary displacements modifies the set of reached points. With this 
definition, how do we characterize a minimal set and a generator set of 
displacements? Furthermore, are the minimal and generator sets of displacements 
minimum too, i.e. do they have the same cardinality?  

3) Paths and different paths 

Let E be a set of k elementary displacements written as d1, d2, …, dk. What can we 
say about the paths from the fixed point A to the reached point B? A path from A to 
B is an integer combination of elementary displacements of E. A path can be 
described by a k-tuple (a1, a2, …, ak) where ai, for ki ≤≤1 , are the integer coefficients 
of this combination.  

Two paths from A to B are called different if and only if the k-tuples characterizing 
them are different. Note that the order of the elementary displacements does not 
interfere because of the commutativity of displacements. Then, we can form a 
question on the relationship between the number of the paths from A to B and the 
minimality of E: when there are (at most) two different paths, is it possible to remove 
an elementary displacement in E? The answer is ‘No’: the study of that is a difficult 
one, even if we limit the study to �. Here is a counter-example on the discrete line. 
Let E be a “displacement” composed by 2 squares to the right and 3 to the right, i.e. E 
is composed by the natural numbers 2 and 3, and we look at the numbers which can 
be generated by 2 and 3. With the displacements of E, we can reach 11 in two 
different ways: either with 4 × 2 + 1 × 3, or with 1 × 2 + 3 × 3. But we cannot remove 
2 or 3 from E otherwise 11 will not be reached. Then, E is generator and minimal for 
11. It can lead us to the famous Frobenius problem (Ramirez-Alphonsin, 2002).  

We notice that the existence of several paths does not necessarily imply the non-
minimality of E. Then we have to consider three kinds of E sets. 1) There is no 
uniqueness of the path for one point at least i.e. there exists at least one point which 
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can be reached with at least two different ways. This does not imply that E is non-
minimal. 2) Every point of the grid can be reached in at least two different ways. We 
call this property “redundant everywhere”. Thus, the E set is non-minimal: this is the 
case when an elementary displacement of E is an integer combination of other 
elements of E. 3) Every point of the grid can be reached in only one way (uniqueness 
of the path): we call this property “redundant nowhere”. The E set is clearly minimal.  

4) Discussion on the minimal generator sets of ���� and their cardinalities 

The minimal generator sets can have different cardinalities. For example, you can see 
below a minimal generator set with 4 elements and another one with 3 elements: with 
both of them you can go everywhere on the grid, that is to say “ALBE” and with 
“density”.  

 

       Card E = 4    Card E = 3 

We can succinctly study this specificity of the discrete case with the integers. 

In order to build a set of minimal generator elementary displacements on �, we have 
to use coprime numbers (i.e. gcd of them is equal to 1). Thus, the “density” property 
is true for natural integers (Bezout’s theorem). Some of these coprime numbers 
should be negative in order to go “a little bit everywhere” (a little bit to the right and 
a little bit to the left). For example, if we want to generate � with 4 integers, we build 
4 natural numbers which are coprime as a whole (for instance 2×3×7, 3×5×7, 2×3×5, 
2×5×7 i.e. 42, 105, 30 and 70). Then we can reach 1 (according to Bezout’s theorem) 
that is to say we can go with density on �. Now if we take one of these numbers as a 
negative one, we can go “a little bit everywhere” and we get: E = {42; 105; - 30; 70} 
is a generator of �. So we can build several sets of minimal generator displacements 
with different cardinalities. Another example: E = {1; -1} and F = {2 ; 3 ; -6} are 
generator and minimal, card(E) is 2 and card(F) is 3. 

Then, we have the following theorem:  

Theorem: there exists, in �, sets of minimal generator elementary 
displacements with k elements, k being as big as one wants. 

Therefore, the cardinality of sets of minimal generator elementary displacements of � 
is not an invariant feature. However, the study of the generation of integers has 
showed that this problem is mathematically closed for �. The reader can consult the 
wider and more complex NP-hard Frobenius Problem (Ramirez-Alphonsin, 2002).  

We will show that the problem is not mathematically closed in �², by proving that we 
can build minimal generator sets with as many elementary displacements as we want. 
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5) Construction of sets of minimal generator elementary displacements, in ����², with 
k elements 

We call Ek the set of all generator displacements with k elementary displacements. 
We want to generate all the points of the regular grid. A starting point is given. The 
study of the “generator” and “minimal” properties on a discrete grid is more complex 
than on �: that is the reason why the study of the first cases (homework for the 
reader) Ek, k = 2, …, 5, is necessary. It leads us to a theorem of existence.  

Theorem: there exist, in �², sets of minimal generator elementary 
displacements with k elements, k being as big as one wants.   

Indications for the proof: one constructs a set of horizontal minimal generator 
elementary displacements with (k-2) elements in order to generate � and then add 
two vertical elementary displacements in order to go everywhere by translation.  

But, k being given (as big as one wants), we do not know how to construct all the sets 
with k minimal generator elementary displacements. The next crucial question is: 
how to prove that a set of elementary displacements is generator or minimal? 

CONCLUSION: PRESENTATION OF SOME EXPERIMENTAL RESULTS 

I will present a complete analysis of students’ procedures during the Conference, 
exploring the concept formation and the perspectives that the situation of 
displacements offers to other fields of mathematics. But let me briefly outline some 
experimental results coming from an experiment with freshmen audiotaped recorded.  

The situation of displacements allows a work on mathematical objects 
(displacements, paths) graspable through a basic representation close to that of 
vectors. The main difficulty lies in the fact that properties have to be defined 
(generator, independence, redundancy, minimality). Indeed, the objects we work with 
do not need to be explicitly defined at first: we have to focus on properties, to 
characterize and to define them. These specificities of the situation of displacements 
partially explain why the students did not engage in characterizing mathematical 
properties. Indeed, only some zero-definitions were produced but they did not evolve 
into operational definitions. Nevertheless, a “natural” definition of “generator” (i.e. 
“to reach all the points of the grid”) has been produced and has been transformed into 
an operational property (“to generate four points or elementary displacements”). 
Furthermore, I have identified two definitions-in-action: one for “generator minimal” 
and one for “minimal set”. The presence of definitions-in-actions proves that students 
can not stand back from the manipulated objects: students stayed in the action, in the 
proposed configurations. Their process did not move to a generalization which would 
have allowed a mathematical evolution of zero-definitions or definitions-in-action. A 
plausible hypothesis is that this distance (between manipulation and formalization, 
formalization merely a first step, not a complete theorization) is too rarely 
approached in the teaching process. It goes along the lines of previous 
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epistemological and didactical results which conclude that formalism is a crucial 
obstacle in the teaching of linear algebra. 

The didactical analysis of the productions of the students is very difficult. In fact, the 
dialectic involving definition construction and concept formation is useful to 
understand the students’ procedures and their ability to define new concepts in order 
to solve a problem. To understand how concept formation works implies exploring 
the wide field of mathematical definitions considered as concepts holders. That will 
be discussed during the Conference. 
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Lately, problem posing gained terrain in mathematical education research due to its 
connection with mathematical understanding and thinking. Still, comparisons 
between novice’ and experts’ problem posing are still scarce. In this paper we 
compare students’ and teachers’ generated problems on three aspects: variety of 
problem types and of tasks, and quality of questions. We found that  teachers use 
their pedagogical knowledge to constrain problem types and tasks, and that teachers’ 
classroom experience shapes their view on difficulty. In conclusion, teachers are 
always guided by the audience they have in their mind in contrast with what can be 
observed at students. 

INTRODUCTION 

Research on problem posing can be structured along several lines. First, there is a 
research trend on relating problem posing to instruction: by which means a problem 
posing approach can be beneficial in the classroom. Studies that can be subscribed to 
this category look at the relation between problem posing and problem solving (in 
case of pre-service teachers – Crespo, 2003; in-service teachers – Chang, 2007; both 
– Silver et al., 1996; students – Imaoka, 2001), international comparisons (Cai, 1997) 
or problem posing and mathematical understanding, modelling and open ended 
problems (Lin, 2004; Pirie, 2002). Another line of research focuses on enhancing 
problem posing skills: in traditional (Yevdokimov, 2005) or by development of 
computational settings (de Corte et al., 2002). There are also a series of studies that 
relate problem posing to individual attitudes towards mathematics and affect (Akay & 
Boz, 2008). A fourth line of research connects problem posing to creativity and 
evaluates the posing process and results from creativity point of view (Silver, 1997). 
However, comparisons between novices (from some particular point of view) and 
experts are scarce and there is no commonly agreed framework that would allow this.  

One explanation to such a situation is the fact that mathematical problems need a rich 
characterization of them. However, such an inquiry leads to questions like: when a 
situation turns into a problem, what makes it to belong to a particular topic, which of 
the problems elements (like given, asked for) should be considered and which meta-
characteristics are important (like solvability, cognitive resources involved in 
                                           
1 The first author was partially supported by Grant CNCSIS ID-1903. 
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solution, etc.). In conclusion, researchers need to take into account the particular 
topic, beside general aspects, in order to define their evaluation criteria. 

In the present paper we intent to contribute on this line by proposing a framework for 
the evaluation of problems and apply it to compare problems posed by university 
students (pre-service teachers, considered as novice from the point of view of 
classroom teaching) and in-service teachers (considered as experts). The 
categorization into novice and expert is done on terms of pedagogical, mathematical 
knowledge and classroom teaching experience. 

METHODOLOGY 

In the present study, 88 persons from Romania (25 first year or second year 
mathematics students, 41 middle school teachers, and 22 high school teachers) 
completed a problem posing task. Students were of 18-20 years old and entered to 
university after completing an admission exam. Teachers had more that 5 years 
teaching experience. Participants were selected randomly, without any reference to 
their professional or scientific performance. None of them has been subject of 
training in problem posing, however it is possible that some of them would have 
experience in Olympiads as students or teachers.  

The participants had to generate three sequence problems (as home assignment task) 
such that to have an easy, one of average difficulty and a difficult problem. They had 
a week at their disposal to finish; at the end, they responded a questionnaire regarding 
their problem posing process. It was requested to hand in not only the final 
formulations, but also the scratch work. The questions were about the following 
aspects of the problem posing process: the existence of an initial idea (for each 
problem of different difficulty), change of the idea during generation, problem types 
from which to start the generation process, a theorem or generalization as from where 
to trigger the problem posing process and difficulty criteria they used.  

ANALYSIS OF THE POSED PROBLEMS 

It has to be mentioned, before the presentation of results, that we found two situations 
along with the expected one: first, not all participants posed problems for each 
difficulty level and, second, some of them, posed more than one problem for a 
specific difficulty level. The problems were analyzed from three perspectives: variety 
of problem types and of questions, and problem formulation . 

Problem - type analysis 

The problem typology for sequences was taken from Pelczer and Gamboa (2006). 
Theoretical problems are the ones in which there is no quantitatively specified 
sequence, but rather a generic sequence is specified as the mathematical object under 
inquiry. The term “contextual” was employed as in Borasi (1986), meaning the 
situation into which the problem is embedded. The rest of categories refer to the way 
in which the general term is specified. Table 1 contains the results concerning 
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problem types, in percent (E – easy, A – average, D - difficult). The total number of 
problems appears in the last line of this table.  

Table 1. Statistical results on problem types. For each problem type we specify, in 
parenthesis, as a triplet the number of problems posed by students, secondary and 
high school teachers. 

Students Secondary High school   

Problem types E A D E A D E A D 

Theoretical - - - - - - - - - 

Contextual (8,-,-) 12 12 10 - - - - - - 

Explicit (13,42,40) 28  4 5 41 38 27 73 67 43 

Implicit (15,6,1) 12 36 14 5 2 8 4 - - 

Linear Recurrence (27,4,5) 44 36 33 - 5 5 - 16 10  

 Non-linear Recurrence (8,3,3) 4 12 18 - 2 5 - - 14 

Enumeration  (2,37,5) - - 10 40 30 25 19 4 - 

Sum, Product (2,26,11) - - 10 14 23 30 4 13 33 

Total nr. of problems  25 25 21 41 40 36 22 22 21 

We can observe from table 1 that at students recurrence problems dominate; at high 
school teachers prevails the problem in which the general term is expressed explicitly 
by a formula and at secondary teachers the “enumeration” type (sequence specified 
by the enumeration of few initial terms) is the most frequent. The dominance of 
enumeration type at secondary teachers can be explained by the curricula: the accent 
is on identifying and formalizing the sequence’s patterns and moving between 
different representations of the sequences (geometric, analytic, formal and 
recurrence).  

The observation holds for high school teachers, too, with the remark that in their case 
there is an increase also in non-linear recurrence problems. In case of high school 
teachers, the dominance is one of the explicit problems – situation which, again, can 
be explained by the curricula. High school teachers concentrate on clarifying basic 
calculus concepts, like limit, convergence, monotony and for all these explicit 
problems are proper. As the difficulty of the problem has to increase, they move 
towards the types “sum” and “non-linear recurrence”. These problems, when 
analyzed, showed that teachers still focused on theorems and criteria present in 
textbooks (just as in case of easy problems with explicit general term), but asking for 
skillful application of them. By “skillful application” we mean that no advanced 
techniques are needed, but rather good knowledge of algebra (identities, inequalities) 
or typical examples and sequences (like in case of applying the majoring criteria). 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2358



  

This later is the main aspect that differentiate students’ and teachers’ problems. As it 
can be seen in the above table, students prefer implicit or recurrent definitions of the 
sequences. It is also interesting that many students pose “contextual problems”, that is 
problems in which sequences appear as a collateral issue: the main focus is on 
another mathematical object so that the problem can’t be seen as strictly relating to 
introductory analysis. 

These results suggest that students see problem posing as a self-referenced activity 
focused on problems and with no specific audience. Problem difficulty is judged 
based on the ability to solve the problem and use of techniques, meanwhile teachers 
build their problems with their students in their mind. When speaking about the 
problem posing process they mention that the addressee is their classroom and 
difficulty is judged based on curricular indications and classroom experience. The 
case of the (posed) difficult problems is interesting: where students ask for specific 
transformations (usually beyond the textbook’s reach) or use non-familiar contexts, 
teachers concentrate on situations about which they know that the application of the 
usual theorems can be problematic. Therefore, they prefer problem types (like non-
linear recurrence or explicit) that can be solved with text-book theorems and the 
difficulty relies in identifying the instances that satisfy the conditions of application. 
In these terms, teachers problem posing can be seen as a constraint based process, 
where constraints arise from their classroom experience.   

Questions’ analysis 

Some interesting conclusions about the posing process were reached by the analysis 
of the task specified by the problem, that is, by the analysis of the problems’ 
questions. We defined four principal categories. In the first category we included 
questions related to the verification of the concepts, that is the question refers to the 
statement of some definitions or theoretical results, recognition of some property, 
construction of examples or counter-examples. In the second category are the 
demonstration tasks, those that ask for justification (through mathematical reasoning) 
of some facts of algebraic or analytic nature. In these cases, the problem statement is 
imperative and the facts to be demonstrated are explicitly stated. A third category 
contains exploration tasks. These can ask for the verification, study or observation of 
a property, identification of a sequence’s pattern given by some terms and/or 
generation of following terms, discussions of the results on the value of parameters or 
different representations of a mathematical object. The questions from this category 
are characterized by doubt, meaning that a priori one can obtain several answers. The 
last category of questions – of computations – include tasks that ask for the 
application of some formula (in case when the expression of the general term is 
given), computation of the general term, of a limit, sum, or the determination of a 
parameter’s value such to have some conditions satisfied. 

In table 2 the statistical results are shown (in percentage for the questions types), for 
the four category of questions (tasks) and the three category of participants. The total 
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number of problems and questions appears at the end of the table and a ratio of 
question/problem is computed. 

Table 2. Statistical data on questions 

 Students Secondary High school  

 E A D E A D E A D 

Verification   - 3  3 - - - - - - 

Proof 29 26 23 22 22 27 3 11 24 

Exploration 10 20 23 35 26 20 48 22 30 

Computation 61 51 52 43 53 53 48 67 47 

#Questions 31 35 31 63 58 59 29 27 34 

#Problems 24 25 21 42 41 37 20 20 22 

Ratio 1.29 1.4 1.48 1.5 1.41 1.6 1.45 1.35 1.55 

The data from table 2 leads to some interesting conclusions. A first one is that none 
of the participant categories seems to be interested in problems that aim the 
verification of concept understanding. There are only two problems asking for 
construction of examples, but these are in a special context in which very complex 
properties are required. A possible explanation of such situation can be the fact that 
these types of questions are not very common in textbooks, evaluation exams, 
although probably they are quite common in everyday class activities. Still, teachers 
and students do not seem to give them importance as stand-alone problems. 

A second, surprising, conclusion is that high school teachers seem to be less 
interested in demonstrations and exploration in favour of computation, when 
compared with the other two participant category. More, high school teachers, tend to 
put problems of demonstration type more as difficult ones (24% in difficult against 
3% of easy problems). In the meantime, the distribution of demonstration type 
questions is more equilibrated in case of students and secondary school teachers. 
Such results can be related to the tendency toward an algorithmic training, as 
preparation for end school exams, observed in the Romanian education lately (Pelczer 
et al., 2008). 

We also identified a certain disposition of teachers (independently of the school level 
that teach) for questions that refer to passing sequences from one representation into 
another, aspects lacking from students’ problems. This suggest that teachers know 
and pay attention to the importance of multiple representations of a concept; passing 
a sequence between different representational forms has a high pedagogical value. It 
is interesting that teachers consider exploration as proper, mostly, for easy problems. 

As far the ratio between questions and problems is concerned, we see a small 
tendency of teachers to pose more questions than students. The tendency is even more 
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visible when we count all the questions (even those that are of the same type). Such 
situation is explained by the fact that teachers generate problems with an audience in 
their mind (their own class), an audience that is made up of problem solvers; 
therefore, their tendency for multiple questions reflects their way of acting in the 
class. We even found problems with more than 5 questions for it. In conclusion, we 
see that teachers create, through the posed problem, a context for learning in which, 
on the same problem statement multiple skills can be practiced.  

Problem formulation 

The first aspect refers to the adequacy of the question with the context of the problem 
and the difficulty level. In any context there are several questions that can be asked; 
the context with the question gives a particular instance. By considering that we are 
interested in classroom problem posing, we study these instances from the point of 
view of their pedagogical value (Baker, 1991). This attribution is subjective, based on 
the experience of the authors of the present article. Adequacy with the difficulty level 
refers to the correspondence between the attributed difficulty and the elements of the 
problem. In particular, it means to analyze the selection of the question (from a 
possible set of questions that can be formulated in that context) and whether there 
were better alternatives. Then, problems are analyzed from the point of view of well-
formulatedness: are all the elements necessary for solution mentioned in the problem? 
The last aspect refers to the solvability of the problem: can the problem be solved 
under the given specifications? 

As pedagogical value of the problems is concerned it can be told that there are some 
common goals between the three categories of participants, for example, the 
verification/ application of concepts of monotony, boundedness or convergence. 
However, there are two interesting results. First, no student posed a problem that 
would require the identification of the sequence’s pattern nor asked for exploration of 
different situations. Second, students tend to pose problems (especially, when it 
comes to difficult ones) that require the application of algorithms or techniques that 
are not in the textbook. This tendency is explained by their vision of difficult 
problem: one that is out of their own (or most students) reach. However, it is 
important to underline that such a perception goes beyond of difficulty appreciation; 
it reflects, partially, their view of a well-prepared student: one that has an extensive 
knowledge of algorithms and techniques.  

It has to be remarked that neither teachers pose problems that aim to check whether 
there is a deep understanding of the concepts involved with sequences. Above, we 
already described a possible explanation for this situation. Still, teachers tend to ask 
for exploration and their problems can be solved just by methods shown in the 
textbook. This aspect turns us back to the difficulty issue: students make more 
difficult problems by involving techniques that are beyond the textbook or by 
transforming the context of the problems, meanwhile teachers involve algebraic 
knowledge in the expression of the problem such to remain strictly related to the 
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topic. With regard to difficulty, students also have problems in finding the proper 
question in a context – the question that would turn a problem in a difficult one. 
Teachers’ problems are more typical, the questions  that could be asked in a specific 
situation (and the mathematical object on which focuses the question) are the 
standard ones, so they choose from a more restricted set of questions and are more 
familiar with the setting. Students, meanwhile, often create richer settings, but do not 
necessarily know how to choose a good question.  

In other situations, students do not formulate properly the question. We give two 
examples from students.  

Example 1.  Let ( )n na  be a sequence given by 1 1a = , 2 1a = , and 1 1sin( ) cos( )n n na a a
+ −
= + . 

Study if this sequence has a finite limit. 

Example 2. Let ( )n na  be the sequence defined by 1 12a = , 2 288a = , and 

1 124 144 , 2n n na a a n
+ −
= − ≥ . Calculate 

1

n

n k
k

b a
=

=∑  and examine the monotony 

and the convergence of the sequence ( )n nb . 

In the first example (Example 1, given as difficult problem), the student’s question 
(the “finite” word) suggest that he had not paid enough attention to the expression of 
the general term: the limit, if it exists, obviously it can’t be infinite. In the second 
example (given also as difficult problem), the second question refers to the monotony 
and convergence of a sequence defined from the previous one. Once the general term 

na  is determined, it is “obvious” the monotony and the divergence of the second 
sequence (its general terms is positive and major to 1).  

Our main conclusion to this first part of the analysis is that teachers’ problems are 
typical ones that require only textbook material for solving and have specific 
pedagogical goals; their approach is shaped by their classroom and teaching 
experience: they pose problems having a specific audience in their mind (their own 
classroom) and think of curriculum as the main guide for the type of knowledge that 
must be used.  

By well-formulated problem we mean a problem in which all the elements necessary 
for solution are given and there is no contradiction between the given elements. 
Textbooks, problem books always contain well-formulated problems, a situation 
which at its turn can lead to the case that students don’t know what it is and how they 
could check a problem from the point of view of formulation. Exactly this situation 
make well-formulatedness an important factor in the evaluation of the problem 
posing results.  

Solvability, another characteristic, refers to the possibility of finding a solution for 
the problem with a certain set of knowledge. As in the case of well-formulatedness, 
students experience in classroom is limited to solvable problems, which gives them a 
bias when it comes to evaluate the posed problem: often this aspect will not be 
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considered. However, it is true that students frequently do not know to decide 
whether a problem is not solvable or is just that they can’t solve it. Still, in the 
problem posing context it is natural to expect to pose problems that are solvable, even 
if not by the author of the problem. It also needs to be underlined that well-
formulatedness affects the solvability of the problem, therefore there will be always 
less solvable problems than well-formulated ones. 

In the analysis we carried out there were no cases of ill-formulated or non-solvable 
problems at teachers. However, at students this appears in few cases. Ill-formulated 
problems can be grouped as problems that have not enough elements in their 
statement (like “under formulated”) and ones that have contradictory information in 
their statement (in some cases, over-formulated). We consider two relevant examples. 

Example 3. Consider the following recurrence formula: 1 12n n na a a
+ −
= − . Calculate the 

general term na . 

Example 4.  If ( )n na  a sequence such that 
1

1n

n

a

a
−

>  and 
1

1n

n

a

a
+

> , decide if it is convergent. 

In example 3 we illustrate the case of under-specification: without specifying the first 
terms, the general term can’t be computed. Example 4 shows a case of contradictory 
information, that makes that the problem has no sense under the current specification.  

Why do teachers create well-defined and solvable problems? We argue that these 
problems can serve to reach the pedagogical goals they envision, and that they have 
the mathematical knowledge and teaching experience that allow them to verify their 
posed problems (or, from the beginning, to restrict themselves to problems that are 
“worthy” to be done). Whether teacher’s choice for well-defined problems is result of 
the use of textbooks and exams practices or, rather, it is a conscious decision remains 
a question on which we shall not delve in this paper. On the other hand, students 
often are not aware of this aspect or are not considering it when reviewing their own 
problems – a fact that can be (partly) explained by the fact that since they had no 
particular receiver in their mind during the generation they didn’t “looked” at the 
problem form the solvers’ point of view. 

As overall conclusion, we can say that differences between teachers’ and students’ 
generated problems can be identified at every level (problem types; questions types; 
meta-characteristics of the problems – well-formulatedness, solvability and 
adequacy) and the differences can be explained by teacher’s classroom and 
pedagogical experience, on one hand, and mathematical knowledge, on other hand. 

CONCLUSIONS 

The analysis of the posed problems leads to the conclusion that there is a specific trait 
for each participant group. This can be underlined by different ways. 
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In the first place, teachers (secondary and high school) seem to be strongly influenced 
in the choosing of the problem type and question formulation by the curriculum and 
the subject usually given at final exams (mostly national scale examinations). High 
school teachers seem to concentrate on the development of computing abilities, 
meanwhile secondary teachers pay equal attention to demonstrations, exploration and 
calculations. Students seem to be interested in extra-curricular contexts and solution 
techniques. We explain this situation by the fact that teachers have permanently an 
audience in their mind at the moment of generation and they employ their 
pedagogical and mathematical knowledge such to adapt the problems to an 
envisioned concrete classroom situation (known from their classroom experience). 

The explanation is congruent with the next conclusion, too. Teachers seem to be 
guided by diverse pedagogical goals and take into consideration their class when 
adapting the difficulty level. On contrary, students see problem posing as a self-
referenced activity focused on the problems with no specific audience. There are two 
further arguments in this line. On one hand, a teacher starts, in general, from a 
specific idea of problem generation and formulates (in average) more tasks (or 
questions). On other hand, teachers pay much more attention to the formulation of the 
problem, in comparison with students: many of students’ generated problems have an 
unclear statement or the proposed solutions are erroneous which very rarely occurs at 
teachers.   

The analysis we carried out has several benefits. First, sheds light on what students 
and teachers do perceive as important in teaching, evaluating and knowing about 
sequences. Second, the analyses proves interesting for pre-service teacher education. 
Some time after beginning their careers as teachers, these students will start to choose 
or pose the problems with a focus on their audience, but maybe it would be beneficial 
to explicitly train them, before getting into the classroom, to think on meta-
characteristics of the problems and to identify and use techniques that help building 
them. We consider that our conclusions are in favour of using a problem posing 
approach or training in pre-service teacher education. 
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ADVANCED MATHEMATICAL KNOWLEDGE:  

HOW IS IT USED IN TEACHING? 

Rina Zazkis, Simon Fraser University, Canada 

Roza Leikin, University of Haifa, Israel 

 

For the purpose of the study reported here we define Advanced Mathematical 
Knowledge (AMK) as knowledge of the subject matter acquired during 
undergraduate studies at colleges or universities. We examine the responses of 
secondary school teachers about the ways in which they implement their AMK in 
teaching. We find an apparent confusion between what teachers perceive as difficult 
or challenging for their students and what is ‘advanced’ according to our working 
definition. We conclude with a call for a more articulated relationship between AMK 
and mathematical knowledge for teaching.  

 

Research reported here is the beginning of our journey aimed at identifying explicit 
relationships between school mathematics and university mathematics, as perceived 
by secondary school teachers. We first describe the relationship (or lack thereof) 
between teachers’ knowledge of mathematics and the achievements of their students, 
which led researchers to posit a need for ‘specialized’ mathematical knowledge for 
teaching. Then we describe different kinds of teachers’ knowledge and provide a 
working definition of advanced mathematical knowledge (AMK) and its relation to 
advanced mathematical thinking (AMT). Acknowledging the existing gap between 
secondary and undergraduate mathematics we illustrate suggestions for reducing this 
gap. We then describe the views of several secondary school mathematics teachers 
about their usage of AMK in their teacher practice.  

SUBJECT MATTER KNOWLEDGE AND TEACHING 

While teaching is unimaginable without teachers knowing the subject matter, it is 
unclear how “knowledge for teaching” can be measured. The most used measure, the 
number of mathematics courses taken by a teacher, did not lead to conclusive results. 
Begle (1979) found that students’ mathematical performance was not related neither 
to the number of university courses their teachers had taken, nor to teachers’ 
achievement in these courses. However, Monk (1994) found a minor increase in 
secondary students’ achievement associated with the number of college courses in 
mathematics taken by mathematics teachers. Further, “researchers at the National 
Centre for research on teacher education found that teachers who majored in the 
subject they were teaching often were not more able than other teachers to explain 
fundamental concepts in their discipline” (NCRTE, 1991, quoted in CBMS, 2001, p. 
121). 
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More recent studies recognized the inherent complexities with these kind of results, 
mainly that the degree held and number of courses taken by a teacher are not 
appropriate measures of mathematical knowledge. Following a comprehensive 
literature review, Hill, Rowan and Ball (2005) concluded that measuring teacher’s 
mathematical knowledge more directly – by looking at scores on certification exams 
or exam items related to a specific topic – generally revealed a positive effect of 
teachers’ knowledge on their students’ achievement.  

Struggling with the question of what kind(s) of teachers’ knowledge benefit teaching 
and learning, researchers realized that mathematics knowledge for teaching (Ball, 
Hill & Bass, 2005) may be a special ‘register’ of knowledge, a special combination of 
content and pedagogy, that relies on deep understanding of the subject and awareness 
of obstacles to learning. This specialized knowledge has received some attention at 
the elementary level (e.g., Ma, 1999), and it has been shown that such specialized 
knowledge for teaching was significantly related to students’ achievement at 
elementary grades (Hill, Rowan & Ball, 2005). However, the issue has yet to be 
explored in detail at the secondary level. We believe that achieving this specialized 
knowledge for teaching at the secondary level is impossible without sufficient 
exposure to advanced mathematical content. 

TEACHERS’ KNOWLEDGE 

Epistemological analysis of teachers’ knowledge reveals significant complexities in 
its structure (e.g., Scheffler, 1965; Shulman, 1986; Wilson, Shulman, & Richert, 
1987). Addressing these complexities and combining different approaches to the 
classification of knowledge, Leikin (2006) identified three dimensions of teachers’ 
knowledge, as follows: 

Kinds of teachers’ knowledge: based on Shulman’s (1986) classification where 
subject-matter knowledge comprises teachers’ knowledge of mathematics, 
pedagogical content knowledge includes knowledge of how students approach 
mathematical tasks, as well as knowledge of learning setting; and curricular content 
knowledge includes knowledge of types of curricula and knowledge of different 
approaches to teaching mathematics.  

Sources of teachers’ knowledge: based on Kennedy’s (2002) distinction, systematic 
knowledge is acquired mainly through studies of mathematics and pedagogy in 
colleges and universities, craft knowledge is largely developed through classroom 
experiences, whereas prescriptive knowledge is acquired through institutional 
policies.  

Forms of knowledge: based on Atkinson and Claxton (2000) and Fischbein (1984) 
distinction, intuitive knowledge determines teacher actions that cannot be 
premeditated, and formal knowledge is mostly connected to planned teachers’ 
actions. 
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In these terms, we investigate connections between teachers’ systematic formal 
subject matter knowledge, within and beyond the secondary curriculum, and its 
possible transformation into their pedagogical content knowledge or mathematical 
knowledge for teaching.  

ADVANCED MATHEMATICAL KNOWLEDGE 

We study teachers’ advanced mathematical knowledge (AMK) rather than advanced 
mathematical thinking (AMT). We define AMK as systematic formal mathematical 
knowledge beyond secondary mathematics curriculum, likely acquired during 
undergraduate studies. We acknowledge that existence of different curricula makes 
this definition time and place dependent, however, sufficient similarities among the 
curricula make it useful for our pursuits.   

Coordinators of the WG-12 at CERME-6 suggested two interrelated perspectives on 
AMT: According to mathematically-centred perspective AM-T is related to 
mathematical content and concepts approached at the upper secondary and tertiary 
levels. According to thinking-centred relativistic perspective A-MT is addressed 
through focusing on students with high intellectual potential in mathematics. 

This study is performed within the context of mathematically-centred perspective on 
AMT. The notion of AMT is receiving continuous attention in mathematics 
education. The seminal volume Advanced Mathematical Thinking edited by David 
Tall (1991) was a landmark that positioned AMT as an area of research in 
mathematics education. It also intensified conversations on what constitutes AMT, 
and how it can be identified and supported. Tall (1991) characterised AMT as a 
transition “from describing to defining, from convincing to proving in a logical 
manner based on definitions” (p. 20). Tall also suggested that advanced mathematical 
thinking must begin in early elementary school and should not be postponed until 
postsecondary studies.  

The difference in perspective on what constitutes AMT shifted the focus, or at least 
the description of the research area, from AMT to tertiary mathematics (Selden & 
Selden, 2005). As such, our definition of advanced mathematical knowledge (AMK) 
accords with this shift: AMK is knowledge related to topics in tertiary mathematics.  

There are significant gaps between secondary school mathematics and tertiary 
mathematics. The discontinuity of experience appears not only at the level of 
presentation of mathematical content and lack of readiness for challenges but also in 
unresponsive styles of teaching and assessment (Goulding, Hatch & Rodd, 2003). 
These gaps have two significant outcomes relevant to mathematics education: (1) 
students, even those identified in school as high-achieving students, experience 
unexpected difficulties in entry-level undergraduate mathematics courses, and (2) 
many teachers perceive their undergraduate studies of mathematics as having little 
relevance to their teaching practice. The latter issue is of our interest in this paper. 
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Our goal is to examine teachers’ ideas of how AMK is implemented, both actually 
and potentially, in teaching secondary mathematics. 

PROCEDURE 

The study included two stages. 

At the first stage we interviewed several secondary school teachers. During the 
interviews the teachers were asked to reflect on their teaching and to share 
experiences in which they used their advanced mathematical knowledge. Following 
the difficulty our interviewees had responding on the spot, and because of the 
vagueness of some responses, we designed and implemented a formal written 
questionnaire that attempted to elicit specific and detailed responses.  

At the second stage 18 in-service mathematics teachers were asked to complete the 
written questionnaire. It included the following questions:  

1. To what extent are you using AMK in your school teaching? 

2. Provide 3 examples of mathematical topics from the curriculum in which, in your 
opinion, AMK is essential for teachers. In each topic specify the usage of AMK. 

3. Provide 3 examples from your personal experience of a teaching situation (such as 
classroom interaction, preparing a lesson, checking students’ work, etc.) in which 
you used AMK. Provide detailed description of each case.   

4. Provide 3 examples of mathematical problems or tasks from the school curriculum 
in which AMK is necessary or useful for a teacher. In each case describe the usage 
of AMK.   

The time for completing the questionnaire was not limited and the teachers could 
consult any resources they found appropriate. The questions were preceded with a 
definition of AMK, consistent with our above working definition:  

In this questionnaire we refer to knowledge acquired in Mathematics courses taken as 
part of a degree from a university or college as “Advanced Mathematical Knowledge”  

In the context of CERME WG12 – Advanced mathematical thinking – we report on 
the results from secondary-school mathematics teachers only (n=6). 

RESULTS 

Most participants in our study, in responding to Question #1, acknowledged the 
importance of AMK in secondary teaching.  They indicated that they are or have been 
using AMK in preparation for teaching, in supporting students’ solutions and in 
generating pedagogical examples. However, exemplifying such usage with detailed 
descriptions proved to be more challenging.  

In responding to Question #2, most topics that participants mentioned related to 
Calculus. Teachers mentioned definition and usage of derivative, limits, and 
asymptotes. These topics further featured in teachers’ examples provided in response 
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to questions #3 and #4.  This is hardly surprising, as the topics of Calculus are the last 
ones taught in high schools for a selected population of students and are usually the 
first ones encountered in undergraduate studies of mathematics. Of note is a response 
of one participant, Gal, who acknowledged his explicit attempt to avoid Calculus 
related topics, as those examples were in his opinion “obvious, taken for granted”. 
His three examples of topics included geometrical representation of equations and 
inequalities, normal distribution and linear programming. We appreciate his attempt 
to avoid the ‘obvious’, but we also note that his first example is not really 
‘advanced’, and the other two examples mentioned topics that were introduced to the 
Israeli curriculum relatively recently.  Though Gal was exposed to these topics at the 
university, they would not be considered ‘advanced’, according to our definition, to a 
recent high school graduate.  

In teachers’ oral responses, and on written responses to Question #3 and #4 we 
identified the following themes (1) connection to the history of mathematics, (2) 
meta-mathematical issues, (by “meta-mathematical” we mean cross-subject themes, 
such as definition, proof, example, counterexample, language, elegance of a solution, 
etc.) and (3) mathematical content. Within issues related to mathematical content we 
further differentiated between responses that identified mathematical tasks or 
situations clearly related to AMK, responses that mentioned ‘extra-curricular’ tasks 
with solutions requiring AMK, and descriptions of complicated tasks or problems 
with solutions based on the mathematical content from the school curriculum, rather 
than AMK.    

In what follows we exemplify each theme with illustrative examples.  

Connection to history  

Tanya noted that she learned in a university that logarithms were invented 
independently from the exponential function. As such, while the local curriculum 
introduces logarithms as the “inverse” of exponential notation, she introduces 
logarithms consistent with their historical development, building a relation between 
geometric and arithmetic sequences.  

Greg noted that he learned in a university course about the Pythagoreans and their 
decision to keep secret their discovery of irrational numbers. He often uses this story 
to motivate students when he teaches the topic of irrational numbers.  

We note that though both experiences exemplify pedagogical content knowledge and 
describe valuable teaching situations, they do not really rely on advanced 
mathematical content.  

Meta-mathematical issues 

Proof: Paul noted in his interview that he finally understood the meaning of 
mathematical proof after failing a first course in analysis. He claimed this made a 
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profound impact on how he teaches ‘proof,’ but he was not able to articulate this 
claim with any examples. 

Language: Nadia stated that undergraduate mathematics made her very sensitive to 
mathematical language, and this influences her teaching in not allowing students to 
use sloppy expressions. As an example, she shared a recent exchange in which a 
student said, “these angles make 180” and she asked him to rephrase, aiming for an 
expression like “the sum of the measures of these angles is 180 degrees”. 

Precision and Aesthetics: Donna wrote: “The importance of mathematical discourse 
connected in my mind to my studies in the university. I pay attention to the 
preciseness of mathematical language used in my classroom and explain to my 
students differences in the precise and imprecise mathematical formulations. I also 
am aware of the aesthetics that exists in mathematics and try to bring to my 
classroom examples of beautiful solutions and encourage students finding beautiful 
solutions”. 

Many responses focused on meta-mathematical content and referred to appreciations 
of meaning or of elegance, understanding versus procedural fluency. This tendency 
identifies a clear connection between AMT and AMK.  

Mathematical content 

Examples related to school curriculum and AMK 

In her interview Rachel described that when working with low achieving students on 
solving a system of two linear equations, she wanted the results to be integers. To 
achieve this, without building the equations by substituting the solutions, she relied 
on her knowledge of determinant and inverse matrix algebra, acquired in a linear 
algebra course. She showed that when the determinant is 1 or (-1) the values of 
unknowns are integers. She exemplified this using the parametric form of equations:  

If ax+ by =c and dx + ey = f, then x = (ec-fb)/(ae-bd) and y = (fa-cd)/(ae-bd) 
As such, in building equations she chose det [ ] = ae-bd = ± 1. 

Pat recalled that when the task was to find the coordinates for the vertex of a 
parabola, Grade 11 students, not exposed to Calculus, had to find the roots of the 
related polynomial, where the midpoint between the roots was the x-coordinate, and 
then use the equation for a parabola to find the y-coordinate. She could quickly check 
their solution using Calculus, finding the derivative and, with the help of derivative, 
finding the extremum point.  

The task Michelle chose was to prove that 2n ≥ n for all n , by induction or in any 
other way. Usually in the framework of school mathematical curriculum students 
learn proofs by induction without formal learning of Peano Axioms. Michelle’s 
solution included use of this axiom. Michelle provided a precise solution of the task 
(that we do not display herein) and then wrote: 
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Peano axiom (In each subset of natural numbers there is a minimal element) serves as 
basic assumption for the set of Natural numbers. The other one is the axiom of induction. 
This topic belongs to the Number Theory. Use of Peano axiom makes solutions shorter 
many times and makes solutions possible at all.  

In these three examples we identify three different ways in which AMK can be 
implemented: Rachel described a situation of creating a task for her students, in 
which she applied her knowledge of Linear Algebra. Pat mentioned a teaching 
situation in which she was able to check students’ solution rather ‘fast’ using her 
knowledge of Calculus. Michelle’s example included a specific task from Grade 12 
curriculum, for which she was able to produce a proof using her AMK of Number 
Theory, in addition to the ‘standard’ proof expected in school.  

Whereas our request, both in the interviews and in the written questionnaire, invited 
respondents to draw connections between their AMK and teaching or curriculum, in 
many cases it either received no attention or was misinterpreted in two different 
ways: examples of AMK without relation to teaching or school curriculum, and 
teaching/curriculum related examples without AMK.  

Examples related to AMK beyond school curriculum 

Searching for tasks that require AMK or are related to AMK, some teachers provided 
examples of tasks that are out of the scope of the secondary mathematical curriculum, 
in its most advanced stream. For example Kevin’s task was “Find ∫ dxxex ”. His 

solution included integration by parts which exemplifies his AMK, but does not 
attend to the request to provide examples related to teaching situation from personal 
experience or tasks related to school curriculum.  

Donna’s example also relied on content beyond school curriculum:  

Given a sequence of numbers an =
5n− 3
2n+1

 , prove that for this sequence 2
3
≤an≤ 2

1
2
 for 

any n. In the proof provided in her written work she relied on the calculation of a 
limit, a notion that is not explored in the current curriculum. As in the example 
provided by Kevin, her choice demonstrated her AMK, but did not attend to teaching 
or curriculum.  

Examples of curricular mathematical content without AMK    

Ivan suggested the following tasks:  

1. Given two points A(7,5) and B(3,1). Write the equation of a circle with diameter 
AB   

2. Let us take for example the rational function 
342

2

+−

−
=

xx

x
y and go through the 

steps: (a) What is the range and the domain of the function? (b) What are the 
asymptotes? (c) What are the extremum points? (d) Sketch the graph. 
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Both examples provided by Ivan belong to the high school curriculum and are not 
explored further in undergraduate mathematics courses. In a classroom conversation 
with peers Ivan noted that these tasks were difficult for his students and thus were 
considered as related to AMK.  We note that while exploring a rational function and 
sketching its graph is not an easy assignment, it is not beyond the reach of a student 
who learned this topic within the school curriculum.  

Comments on teachers’ examples 

An appropriate response to our request, both in interviews and in a written 
questionnaire, is an example of knowledge that a teacher would possess and use in an 
instructional situation, but to which a good student would not have an access, within 
the considered curriculum. As mentioned above, responses provided by Rachel, Pat 
and Michelle – that we judge as ‘appropriate’ – exemplify implementation of 
teachers’ knowledge beyond the specific curriculum content presented to their 
students, but which is applicable in a teaching situation. Kevin and Donna attend to 
AMK, but ignore curriculum, while Ivan attends to curriculum, conflating AMK with 
“what students find difficult”. As such, we consider their examples as ‘inappropriate’. 
However, based on the available data it is impossible to determine whether the 
examples these teachers provided result from their inability to exemplify what was 
requested, or from their misinterpretation of our request. 

We would like to note that Questions #3 and #4 of the questionnaire were designed in 
order to avoid vague general claims that we encountered in the interviews and 
anticipated in participants’ responses to Questions #1 and #2.  That is why in creating 
the questionnaire we explicitly asked participants to exemplify specific problems, and 
to determine a connection between the presented situation or task and the AMK. 
However, in 18 situations and 19 task examples generated by 6 secondary-school 
teachers in their written responses, only 5 situations and 8 task examples were 
formulated concretely and accompanied by solutions. The other 13 situations and 11 
tasks suggested by the teachers provided only an outline for the mathematical 
content.    

Further, among the written responses, Michelle’s was the only one that explained 
explicitly the relationship between the tasks and problems that she generated and 
AMK. Her ability to connect the content learned in school with the content learned in 
the university is an important feature of her mathematical awareness. Further 
research, based on a combination of written responses with follow up clinical 
interviews, is necessary to determine whether this ability is a rare gift of only a few 
teachers or whether specific prompting is needed to bring this ability to surface.  

CONCLUSION 

While undergraduate content requirements for secondary teachers exist almost 
everywhere, it has not been investigated how mathematical knowledge acquired at the 
undergraduate level – referred to here as AMK, “advanced mathematical knowledge” 
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– is manifested in teaching practice. In this paper we report on our first steps in this 
investigation.  

The results of our preliminary exploration indicate that teachers tend conflate the 
usage of AMK in teaching practice with either demonstrating their AMK in general 
or with attending to curricular content that is perceived as difficult. Given the small 
size of both groups of participants we focused on identifying repeating themes in 
their responses, rather than providing precise account of occurrences. Further 
research will determine to what extent the identified themes persist within a larger 
and more diverse population.  

Our study calls for identifying explicit connections between AMK and mathematics 
taught in school. An explicit awareness of these connections and an extended 
repertoire of examples will inform the instructional design in teacher education.  
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URGING CALCULUS STUDENTS TO BE ACTIVE LEARNERS: 
WHAT WORK S AND WHAT DOESN'T  

Buma Abramovitz*, Miryam Berezina*, Boris Koichu** , Ludmila Shvartsman* 
*Ort Braude College, Karmiel, Israel 

** Technion – Israel Institute of Technology 

We report an on-going design experiment in the context of a compulsory calculus 
course for engineering students. The purpose of the experiment was to explore the 
feasibility of incorporating ideas of active learning in the course and evaluate its 
effects on the students' knowledge and attitudes. Two one-semester long iterations of 
the experiment involved comparison between the experimental group and two control 
groups. The data were collected from observations, research diary, course exams, 
attitude questionnaire and two additional questionnaires designed to explore patterns 
of students' learning behaviors. The (preliminary) results show that active learning 
can have a positive effect on the students' grades on condition that the students are 
urged to invest considerable time in independent study. 

Key words: active learning, achievements, attitudes, calculus, design experiment    

THEORETICAL BACKGROUND 

Research on undergraduate mathematics education convincingly argues that active 
learning is more beneficial for students than learning in traditional mode (e.g., 
Artigue, Batanero & Kent, 2007). Following Sfard (1998), we refer here to active 
learning as learning through participation based on engaging in problem solving and 
collaborative activities, and to traditional learning – as learning through acquisition 
based on listening to a teacher exposing theoretical material or demonstrating 
problem-solving approaches. We learn from the research literature that active 
learning can help either in developing positive attitude to mathematics (e.g., Tall & 
Yusof, 1999) or in improving students' grades in undergraduate calculus, algebra and 
statistics courses (e.g., Burmeister, Kenney & Nice, 1996).  

Teaching in accordance with the principles of active learning is not an easy 
endeavour. There is a growing body of research that explores pitfalls of active 
learning, either from academic staff' or students' perspectives. For instance, Pundak & 
Rozner (2008) reviewed the reasons why academic staff frequently resists innovative 
teaching and suggest that adopting by the lecturers and TAs active learning paradigm 
heavily depends on: 

...(1) teaching staff readiness to seriously learn the theoretical background of active 
learning, (2) the development of an appropriate local model, customized to the beliefs of 
academic staff; (3) teacher expertise in information technologies, and (4) the teachers' 
design of creative solutions to problems that arose during their teaching" (p. 152).  
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Solow (1995), cited in Roth-McDuffie, McGinnis & Graeber (2000), found that 
active learning oriented faculty were anxious about resistance and negative reaction 
from their students who did not want their teachers "to shake their comfortable 
relationship with math, no matter how distasteful that relationship may be" (p. 226). In 
summary, existing students' and teachers' beliefs and perceptions about mathematics 
teaching and learning are pointed out as the major barriers to spreading active 
learning methods (e.g., Roth-McDuffie, McGinnis & Graeber, 2000). 

Are there more barriers? Apparently, yes, and it seems reasonable that some of them 
are embedded in the current educational system. For instance, the aforementioned 
study of Yusof & Tall (1999) reported success in implementation of active learning in 
a problem solving course with a flexible syllabus, in which some topics could 
apparently be omitted, and the released time could be used for learning in more depth 
the remaining topics. Such flexibility is rarely allowed. In another aforementioned 
study reporting success, by Burmeister, Kenney & Nice (1996), the students were 
provided practically unlimited assistance, and, even more importantly, they were 
ready to accept it. Again, such a situation is rather a lucky exception from what is 
observed in many colleges and universities.  

We found rather a surprising lack of research that takes into account the apparent 
tension between what active learners are expected to do and what they can do, given 
the entire burden of college study.  Our on-going study contributes to addressing this 
lacuna. In this paper, we describe an experiment aimed at incorporating active 
learning in a compulsory calculus course for engineering students and focus on the 
following questions:    

1. How do engineering students cope, in terms of time and effort, with 
requirements of calculus course, in which tutorials and assignments are 
organized to promote active learning?  

2. How does the promotion of active learning, under given constraints, affect the 
students' grades and attitudes towards the subject? 

METHOD 

The research setting 

The experiment is conducted at ORT Braude Engineering College, in the contest of a 
multi-variable calculus course given for second-semester undergraduate students. The 
syllabus of the course consists of the following topics: vector-valued functions, 
differentiation of scalar functions, maxima and minima, double and triple integrals, 
integrals over paths and surfaces, the integral theorems of vector analysis and 
applications. The course is compulsory for the students; its syllabus is compulsory for 
the teachers. The students take the course in continuation of a one variable calculus 
course. We will refer to the first-semester course as CAL1, and to the second-
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semester course as CAL2. CAL2 is taught 6 hours a week: four hours of lectures in 
groups of 40-60 students and two hours of tutorials in groups of 20-30 students.   

The study design 

The study was initially designed as a one-semester quasi-experiment with a control 
group (Cook & Campbell, 1979). It then evolved into a design experiment (Cobb, 
2000; Cobb et al., 2003) of several one-semester long iterations. This paper is written 
after the second iteration and before the third one. The purpose of a quasi-experiment 
was to find out the effect of implementation of active learning ideas, in terms of the 
course grades. The need in continuation of the study in the form of design experiment 
emerged from the lack of satisfaction from the results of the first semester and from 
our thinking how to refine the teaching and to capture various effects of active 
learning. For these reasons we decided to keep comparing the experimental group 
(G1) and the control groups (G2 and G3) within every iteration.  

Participants 

Overall numbers of students (NS) in G1, G2 and G3 groups and the numbers of 
tutorial classes to which each group was divided (NTC) are given in Table 1. The 
groups G1 and G2 consisted of all second-semester students of the Department of 
Software Engineering. At the beginning of every semester, the students were given 
brief information about two different styles of tutorials, active and traditional. Based 
on this information, some students chose to join G1, and the rest – G2. Group G3 
consisted of all the students of the Department of Electrical and Electronic 
Engineering. They were not given the choice and were taught in a traditional mode 
(see Theoretical Background section). 

G1 G2 G3  

NTC NS NTC NS NTC NS 

Iteration 1 1 25 2 40 3 62 

Iteration 2 1 20 2 46 4 94 

Table 1: The sample    

Groups G1and G2 were taught by Ludmila Shvartsman, one of the authors of this 
paper, who conducted both lectures and tutorials. Group G3 was taught by a team of 
lecturers and TAs, including another author of this paper, Buma Abramovitz. All the 
lecturers and TAs involved in the experiment were of comparable teaching 
experience and of similar level of teaching achievements. Specifically, their past 
students, on average, achieved similar grades in the course and gave similar feedback. 

The mathematical content of the lectures, as well as the problems and exercises given 
to the students in the tutorials, were the same in all the groups. All the students had 
access to the same theoretical materials and examples published at the course website. 
Also, the students were given the same midterm and final exams. The difference 
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between G1 and the rest of the groups was in the styles of conducting tutorials and in 
the use of homework assignments, as will be described below.  

The research tools 

The experiment is described in detail in the research diary written by Ludmila. It 
includes descriptions of and reflections on all tutorials in G1, a protocol of a lesson in 
G2 compared with a lesson in G1 based on the same problems, and protocols of more 
than 10 meetings of the research team. One lesson in G1 was videotaped. The 
information about teaching in G3 was collected from Buma who taught there and 
from many meetings and conversations with the other lecturers and TAs of G3. We 
also developed and run a student questionnaire in all the groups. We call it Tutorial 
Styles Questionnaire (TSQ). The questions concerned the students' opinions about 
tutorials and patterns of their participation in the tutorials. The questionnaire was 
validated in 8 interviews with G1 students at the end of the first iteration.   

During the first and the second iterations, G1 students' final grades in CAL2 and 
CAL1 were compared with grades of G2 and G3 students. The variance in CAL2 
final grades was explained using stepwise multiple regression analysis, in which 
CAL1 grades and the variables indicating to which group a student belonged served 
as independent variables. 

After the first iteration we developed and implemented two additional multiple-
choice questionnaires. The first one concerns the students' attitudes to multi-variable 
calculus and solving problems. It is adapted from Yusof and Tall (1999). We call it 
Attitudes Questionnaire (ATQ). The second one was developed to estimate effort that 
students invest, or can invest, in studying the course before and after the lessons. We 
call it Effort Distribution Questionnaire (EDQ). 

RESULTS AND ANALYSIS 

Iteration 1 

During the first semester active learning in the experimental group was promoted, but 
not urged. The G1 students were required to read relevant theoretical material and to 
approach problems, published on the course website, before every tutorial lesson. The 
solutions were also published. In addition, all the students were invited to get help 
from Ludmila during her office hours. The tutorials' content and conduct were built 
on the assumption that the students would come to the lesson being familiar with the 
basic problems.  

During the lessons, the students were given more advanced problems than those 
published on the web. The students were given some time to think and discuss these 
problems in small groups, and then their ideas were presented to the whole class. 
Finally, the solutions emerged from these discussions and presentations. The teacher 
acted more as a mediator of the discussions than as an authority providing the 
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solutions. The G1 classroom supported such interactive and collaborative activities 
(see Pundak & Rozner, 2008, for a detailed description of this special classroom).  

All G1, G2 and G3 students were given an optional once-a-week Webassign home-
works of 4-5 exercises, the answers to which were to be submitted and checked 
electronically (see www.webassign.net for details). G1 students in pairs were also 
offered an opportunity to solve additional, more challenging, homeworks. These 
homeworks were commented and graded by the teacher every week. The purpose of 
these additional homeworks was to further promote interactive and cooperative 
learning. We call the former type of homework Webassign homeworks, and the latter 
one – Commented homeworks. Both types of homeworks could be resubmitted for 
one time to improve the grades.  

The components of final course grades are presented in Table 2.   

Group Final exam  Midterm exam 
Webassign 
homeworks 

Commented 
homeworks 

G1 70% 20% 5% 5% 

G2, G3 70% 20% 10%  

Table 2: The structure of final grades in the first semester 

Midterm exams, Webassign homeworks and Commented homeworks were optional, 
that is, it was up to the students to include or not the homework grades into a final 
course grade. The final grade of the students who did not take part in midterm exam 
and/or did not submit homeworks was fully determined by the final exam.  

The reality appeared to be more complicated than our expectations. Most of G1 
students appreciated the new for them style of the tutorials, but only about half of the 
group actually followed the requirements (it was evident from TSQ, the diary and the 
interviews). We observed that some G1 students indeed came prepared for the 
tutorials, and others did not. Some were engaged in cooperative problem solving, and 
some remained the consumers of the solutions demonstrated by others. Some students 
had benefited from the feedback on the homeworks, and others had ignored them.  

Ludmila became more satisfied with the conduct of the tutorials and the students' 
collaboration at the second half of the semester. Generally speaking, the desired style 
of the tutorials has been finally achieved in G1, and it indeed was different from the 
traditional style in G2 and G3. This was evident from the comparative analysis of two 
lesson protocols and TSQ. However, the desired change in out-of-class study was not 
achieved. In particular, G1 students devoted less time to homework than it was 
expected: from 30 to 60 min instead of 2 hours a week. G3 students, on average, also 
invested in the homeworks from 30 to 60 min a week, and G2 students – less than 30 
minutes.     
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Comparative analysis of the final course grades was also not in favour of G1. The 
mean and SDs were: 63.9 (19.5), 66.0 (22.7) and 76.0 (15.9) for G1, G2 and G3, 
respectively. A stepwise multiple regression analysis revealed that belonging to G3 
was beneficial even after neutralizing the fact that, on average, CAL1 grades in G3 
were higher than in G1 and G2 (72.15 (11.98) in G3, 70.32 (12) in G1, and 69.72 
(12.34) in G2). Let us remind that G1 and G2 were taught by the same teacher, and 
G3 was taught by other teachers.     

At the end of the semester, we summarized the findings and designed the second 
iteration. We decided: 

- To urge students to work more out of the class by changing the structure of the 
course final grade. 

- To control more aspects of the experiment. In particular, we decided to 
measure the students' attitudes towards the subjects (see the Research Tools 
section).  

- To check feasibility of the requirements to learn actively by taking into 
consideration the students' overall burden of study.    

 Iteration 2 

The second iteration was started six month after finishing the first one. The in-
between time was used for validating TSQ, developing EDQ, piloting new elements 
of teaching and refining the evaluation tools.    
First, challenging preparatory problems were published on the web without solutions. 
These problems were discussed at the beginning of each tutorial during 10-15 min. 
The rest of the lesson was conducted as in the first iteration.   
Second, Webassign homeworks that included technical exercises were cancelled for 
all the students. The Commented homeworks became compulsory for G1 students, 
and remained optional for G2 and G3 students.  
Third, a new compulsory test was offered in addition to an optional midterm exam 
and a compulsory final exam. This test was composed from two out of about 150 
preparatory problems and the problems that appeared in the Commented homeworks; 
we call it Homework test. All the students were aware of its structure and the source 
from which the tasks were to be chosen. The components of a final grade of the 
course are presented in Table 3.   
 

Group Final exam Midterm exam Homework test 
Commented 
homeworks 

G1 65% 20% 10% 5% 

G2, G3 65% 20% 15%  

Table 3: The structure of final grades in the second semester 

For those students, who decided not to take the midterm exam, the weight of the final 
exam was 85%. 
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These changes worked as follows. At the beginning of the semester, about three 
quarters of G1 students were ready for the tutorials and actively participated in the 
discussions. Less than half of the students remained active learners in the middle of 
the semester. They explained that they merely did not have enough time to properly 
prepare themselves for the tutorials, so we decided to try something else. Ludmila 
started asking different pairs of students to take a lead during the lesson. Naturally, 
the leading students had to invest more time in preparations. This made the lessons 
more interesting and, in a way, showed the rest of the class that they can do the same.  

As in the first iteration, TSQ results enlightened the difference between tutorial styles 
in G1 and the other two groups, however, the levels of satisfaction of G1, G2 and G3 
students from the tutorials were about the same. The attitudes towards the subject, in 
terms of ATQ, were also not different in all the groups.  

EDQ data showed that G1 students devoted more time to out-of-class study than G2 
and G3 students (on average, 6.24 (2.43) hours in G1 vs. 4.98 (1.75) hours in G2 and 
G3 a week, t=1.97, df=41, p<0.05); about 60% of the time was devoted to doing the 
homework in G1, and 47% - in G2 and G3. Note that, according to our estimation, an 
average student needs about 8 hours a week to fully cope with the requirements. EDQ 
also showed that G1 students studied systematically during the semester, whereas G2 
and G3 students increased the time of independent study towards the end of the 
semester.  

In addition, the students were asked in EDQ: "Given the general load of your study 
and time constraints that you have, which minimal grade in CAL2 course would you 
accept as satisfying?" and then "How much additional time are you ready to invest 
per week in study in order to obtain a 10% higher grade than that you have indicated 
in the previous question?" Surprisingly, the responses of G1, G2 and G3 students to 
these questions were very close. We interpret this finding as follows. First, learning 
motivation of G1 students was not significantly higher than that of G2 and G3 
students. Second, the expectation that an average student should invest about 8 hours 
a week in out-of-class study was not beyond of what the students said they could do 
(on average, the students of all the groups were ready to invest 4 additional hours).     

This time G1 students did better than their peers in terms of the course final grades. 
The mean and SDs were: 71.5 (16.3), 52.4 (26.6) and 65.2 (26.7) for G1, G2 and G3, 
respectively. A significant regression equation showed that belonging to G1 was 
beneficial in comparison with belonging to either G2  or G3, even after neutralizing 
the differences in CAL1 grades (71.6 (12.7) in G1, 64.4 (9.2) in G2, and 73.8 (11.4) 
in G3).  

Thus, we can report success, in terms of course grades, of an experimental style of 
conducting tutorials. However, the students' attitudes to the subject did not change 
and remained relatively low. It should also be noted that our expectations about the 
students learning behaviors were only partially fulfilled. Specifically, we succeeded 
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more in urging the students to do their after-the-lesson homeworks than in convincing 
them to solve recommended problems before the tutorials. 

We are going to deal with these issues in the future iteration(s). In particular, we 
consider publishing more problems on the course website before the lesson, and 
asking students to choose which problems they are interested to discuss during the 
lesson. We hope that the students will take more responsibility for their learning 
outcomes (cf. Brousseau, 1997). This may encourage them to invest more time in 
preparation for the tutorials and have more influence on the content of the course. In 
turn, this may affect their attitudes to the subject.  

DISCUSSION AND CONCLUSIONS 

The main lesson that we have learned from the first two iterations of the experiment 
can be put in words of Latterell (2008): "Students do what is expedient, and not 
necessarily what professors think they should" (p. 12). So, for us, the crucial issue was 
how to make active learning of calculus expedient for the students. The first iteration 
of the experiment showed that conducting tutorials in interactive and cooperative 
mode is not sufficient in order to obtain traceable improvements in the students' 
achievements and attitudes. It has become evident that fulfillment of our expectations 
requires changes also in the students' learning behaviors out of class, and that these 
requirements should be supported by appropriate modification of the structure of a 
course grade. This idea was realized during the second iteration and appeared 
feasible, in terms of time and effort, for the students. The second iteration resulted in 
significant advantage of the experimental group in comparison with two control 
groups. Is the observed effect due to incorporated innovations? We believe that it is, 
for the following reasons:  

- The experimental group did better not only in comparison with G2 control group, 
taught by the same teacher, but also in comparison with G3 control group taught 
by the others. The teachers were aware of competitive nature of the experiment. 
They all were of comparable experience and past achievements in teaching, so it 
is unlikely that the observed advantage of the experimental group can be just 
attributed to the differences in the teachers' professionalism or enthusiasm. 

- The mathematical content of the course was exactly the same in all three groups. 

- We admit that random assignment of students to the experimental and control 
groups would be preferable. Even though it could not be realized under the 
conditions embedded in practice of college education, the achieved effect cannot 
be attributed just to the differences in students' learning motivation or 
mathematical background. This claim is supported by EDQ data and by the 
regression analysis. Note that our way of dealing with the issue of non-random 
assignment is in line with what is done in some other studies (cf. Schwingendorf, 
McCabe & Kuhn, 2000). 
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We are aware, of course, that the reported effect may be due to some combination of 
the aforementioned factors or to some uncontrolled in our experiment ones. This adds 
us motivation to keep running the experiment. Currently, we see the process of 
educating undergraduate students to learn actively as a multi-stage enterprise, in 
which many factors are involved. Some of them, for instance, beliefs of students and 
teachers, are extensively explored (Pundak & Rozner, 2008; Roth-McDuffie, 
McGinnis & Graeber, 2000). Others only recently deserved attention of the 
mathematics education research community.  

The distinction that Harel (2008) made between intellectual and psychological needs 
involved in learning mathematics is particularly relevant to discussion of our 
findings. The intellectual needs, such as the need to construct new knowledge in 
response to a perturbing problem that otherwise cannot be solved, are in the focus of 
contemporary mathematics education research. Psychological needs, such as the need 
to be competent and secure in relationships with others, frequently remain peripheral. 
However, the latter needs are crucially important in our and our students' real lives 
and must be taken in consideration when one requires his or her students to be active 
learners, and thus, to put more time and effort in study. As a matter of fact, one 
difference between the first and the second iteration of our experiment can be 
explained in these terms: the first iteration was focused on intellectual needs of the 
students, whereas the second one was organized so that the students could be more 
successful when conforming to the requirements of active learning. In a way, this 
distinction calls for balance between active and traditional learning modes, as 
suggested by some theorists (e.g., Sfard, 1998) and practitioners (e.g., Tucker, 1999) 
since the active learning mode relies mostly on the students' intellectual needs, and 
the traditional mode – on their psychological needs.  

The last comment is about content dependency of the presented findings. Because of 
our intention to outline a long study in a brief paper, examples of calculus problems 
from the tutorials and examples from the questionnaires are not included. It may 
create an impression that the reported findings are not exclusive for the chosen 
mathematical context. Perhaps, they are not indeed. We hope to discuss this topic in 
the oral presentation and in the future publications.   
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FROM NUMBERS TO LIMITS: SITUATIONS AS A WAY TO A 
PROCESS OF ABSTRACTION 

Isabelle Bloch Université Bordeaux IV, IUFM d'Aquitaine 

Imène Ghedamsi, Université de Tunis 

Abstract: When they enter the University, students have a weak conception of real 

numbers; they do not assign the right meaning to a writing as 2 , or π, but neither x 
or parameters. This prevents them to have a control about formal proofs in the field 
of calculus. We present some situations to improve students' real numbers 
understanding; these situations must lead them to experiment approximations and to 
seize the link between real numbers and limits. They can revisit the theorems they 
were taught and experience their necessity to work about unknown mathematical 
objects.   

SIGNS AND SITUATIONS IN THE PROCESS OF TEACHING CALCULUS 

Noticing that mathematical work in the field of Calculus is usually very difficult for 
even good students when they are entering the French University, we have studied the 
transition between the secondary mathematical organisation in teaching (pre)calculus, 
and the University one. Our questions address the problem of the links that can be 
built between the intuitive approaches of Upper Secondary School and the formal one 
that is predominant in University. This research led us not only to analyse students' 
productions in the field of calculus, but to try to design situations to make them do 
the required step between the two levels of conceptualisation.  

The theoretical frame we use is due to Brousseau, for the Theory of Didactical 
Situations (TDS), and C.S. Peirce for its semiotic part.  

According to Saenz-Ludlow (2006), "For Peirce, thought, sign, communication, and 
meaning-making are inherently connected. (…) Private meanings will be continuously 
modified and refined eventually to converge towards those conventional meanings already 
established in the community. (…) "… A whole sign is triadic and constituted by an 
object, a 'material sign' (representamen), and an interpretant, the latter being an 
identity that can put the sign in relation with something – the object. A very 
important dimension in Peirce's semiotics is that interpretation is a process: it evolves 
through/by new signs, in a chain of interpretation and signs. The interpretant – the 
sign agent, utterer, mediator – modifies the sign according to his/her own 
interpretation. This dynamics of signs' production and interpretation plays a 
fundamental role in mathematics where a first signification has always to be re-
arranged, re-thought, to fit with new and more complex objects.  

Peirce – who was himself a mathematician – organised signs in different categories; 
briefly said, signs are triadic but they are also of three different kinds. We will 
strongly sum up the complex system of Peirce's classification (ten categories, 
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depending on the nature of each component of the sign, representamen, object, 
interpretant: see Everaert-Desmedt, 1990; Saenz-Ludlow, 2006) by saying that we 
will call an icon a sign referring to the object as itself – like a red object refers to a 
feeling of red. An index is a sign that refers to an object as a proposition: 'this apple is 
red'. A symbol is a sign that contains a rule. In mathematics all signs are symbols to 
be interpreted as arguments, though they are not exactly of the same complexity; and 
so are the language arguments we use in mathematics for communication, reasoning, 
teaching and learning. The semiotic theory will help us to identify the kind of sign 
produced in teaching-learning interactions, and the appropriateness (with regard to 
the situation) of how students interpret the given signs. Then we use the theory of 
didactical situations to build situations appropriate to knowledge.  

Signs and situations 

Mathematics aims at definition of ‘useful’ properties that can help to solve a problem 
or to better understand the nature of concepts. A strong characteristic of these 
properties is their invariance: they apply to wide fields of objects – numbers, 
functions, geometrical objects, and so on. This implies the necessity of flexibility of 
mathematical signs and significations. To grasp the generality and invariance of 
properties, students have to do many comparisons – and mathematical actions – 
between different objects in different notational systems. While the choice of 
pertinent symbols and different classes of mathematical objects is necessary to reach 
this aim, it is not sufficient. To produce knowledge, the situation in which students 
are immersed is essential. By ‘situation’, we mean the type of problems students are 
led to solve and the milieu with which they interact. Brousseau's Theory of Didactical 
Situations (Brousseau 1997) claims that to make mathematical signs ‘full of sense’ – 
which means that signs have a chance to be related to conceptual mathematics objects 
– it is necessary to organise situations that allow the students to engage with 
validation, that is, to work with mathematical formulation and statements. In Bloch 
(2003), we explained how we build situations where the aimed knowledge appears as 
a condition to be satisfied in a problem. In Bloch (2007b) we illustrated how such a 
situation – the Pythagoras's lotto – could be carried on to restore the meaning of 
multiplication in specialised classes.  

In the present paper, we first explain how students' difficulties can be lightened by 
using Peirce's system and how this system helps us to identify the needs of the 
subsequent teaching; then we present three situations that were experimented with 
students of first year of University. We try to make it clear how these situations could 
lead students from a rather iconic or indexical point of view about numbers and limits 
to the aptitude to an argumentation.  

FROM LIMIT ALGEBRA TO FORMAL PROOF  

In our main studies we chose the concept of limit because it is the first analytic 
concept students meet, and it is possible to build a very rich and contrasted corpus of 
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tasks about limits, from the Premiere and Terminal – in upper secondary school for 
scientific students in France – to the first year of University.  

At the entrance to the University, almost all exercises carry the structural conception 
of the notion of limit. These exercises are based on general conjectures; their 
resolution requires a perfect adaptation of students to the formal definition of the 
limit, whereas at the high school, the limit notion is conceived as a process. Its 
representations appear to be more susceptible of operational interpretations. In a 
previous study (Bloch & Ghedamsi, 2004) we proposed to identify didactical 
variables that are pertinent to characterise the extent of the rupture. These variables 
are the degree of formalisation in the domain of the analysis; the setting of validation, 
the limit algebra or the analysis one, the degree of generalisation; the number of new 
notions introduced in the limit environment; the type of tasks (heuristic or graphic or 
algorithmic); the choice of techniques, the degree of autonomy solicited; the mode of 
intervention of the notion, process status or object one; the type of conversion 
between the semiotic representation settings.   

The identification of these variables allows us to detect global ruptures at the passage 
from the secondary teaching institution to the superior one. At each level, the values 
given to these didactic variables are seen as mutually exclusive. We can observe that 
almost all the variables change, and that the rate of change is considerable. Students 
are confronted with a global revolution in the required work and of their means of 
work. By this conceptual "jump" students are supposed to (Peirce's levels are in 
italic): 

� Work with general notations (x, f…) and no more with specific numbers or well 
known functions: overtake the indexical idea of numbers and functions to assume 
a symbolic one; 

� Be able to achieve reasoning on generic mathematical objects: produce signs as 
right symbols and arguments; 

� Know calculus theorems and how they can be useful: link taught arguments and 
personal ones;  

� Deduce specific properties from general reasoning about sequences, functions, 
limits:  go back from a general argument to an index. 

And then:  
� Achieve reification about the concept of limit; 
� Gain the unifying formalism (definition with ε, N ), and by this way generalise the 

notion of limit and be able to use formal tools to prove.  

NUMBERS AS TOOLS TO DO CALCULUS 

The use of formal tools includes the manipulation of 'generic numbers', written x: 
teachers at University usually do not even notice that this could be a problem. For 
instance, these exercises are considered as rather plain:  

Find the limit in 0 of: x → x×sin(1/x)  
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Solve an equation as f(x) = x (with the limit of a sequence)  

Find the limit of a sequence with a parameter in the function, as (xn): x0 = 1 and  

xn+1 = a sinxn +b  

However, in our studies we can notice that even good students at University have an 
uneasy use of real numbers' notation, and not only with an x, but also with a number 

as 2  or π. This difficulty prevents them to be able to assign the right meaning to a 
letter in a mathematical writing, as a sinxn +b. The status of a, b, x, n is not clear for 
them. The number π, for instance, is seen as a 'notation' – that is, an icon or an index 
in Peirce's system – but not really a number because numbers are 'well known' – for 
students the common model of numbers is a rational number, or even better an 
integer. In a previous study (Bloch & al. 2008) we noticed that the field of numbers 
students met at secondary school was very narrow: the main reason is that when a 
new notion is introduced, teachers present it with familiar numbers to avoid an 
increase of difficulties. It follows that students meet occasionally some irrational 
numbers when they are told these numbers exist, but they never use them to calculate 
on vectors, functions, limits, derivatives…  

Signs as ∃, ∀, or even parentheses are not well understood; students often say they 
are in a mathematical sentence to indicate something about the variables, but they do 
not know exactly what; they do not know either why they should be in an order more 
than in another (Chellougui, 2007). These signs are clearly iconic for them.  

As we intended to build situations about the concept of limit, we thought it necessary 
to reintroduce a work about numbers; students need numbers to experiment and prove 
and it is not possible they master formalism about numbers if they do not know what 
numbers are.  

As said in Bloch & Schneider, 2004:  

Building situations for learning the concept of limit must then take into account the kind 
of semiotic representatives that is used; and we must not forget that a proper 
mathematical knowledge, especially including proof, is built only if the selected semiotic 
representatives and the milieu allow adequate reasoning, and if students can seize these 
tools of control.  

We observe then that in the work about limits students cannot seize the numerical 
tools of control. For this reason we planned to build situations about the concept of 
limit, those situations including a students' work about approximations, nature of 
numbers – rational, irrational, and transcendent (even if the question is obviously not 
to prove the transcendence at this level). We have experienced these situations with 
classes of students – two classes for the von Koch snowflake, one for each of the two 
others. This is a clinical experiment; we do not talk here of the reproducibility, but 
the thorough a priori analysis that is performed for each situation guaranties the 
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experimental reproducibility. Of course the actual one depends on the conditions in 
each class and it could not be else. Séances were videotaped or registered.  

THREE SITUATIONS ON LIMITS  

1. The Von Koch snowflake 

This situation takes place with scientific students, 17 years old. The aim is to study a 
shape – a fractal – which perimeter is infinite as the area is finite: this dialectic 
between two types of limits aims at making them build reasoning to decide on which 
condition a limit can be infinite or finite. A first experiment is to be done with a 
pocket calculator; students can then make a conjecture about the perimeter and the 
area (see annex for the schemas).  

The formula for the perimeter is Pn = P0×(4/3)n  so lim
n →+∞

Pn= +∞

 
It will  be proved with the Euler's inequality (1+a)n > 1+na. We observe that half of 
the students think that the perimeter is finite, and half of them think that it is not: so it 
is not evident. 

The area is An = A0 + 
5

3A0 [1 + (
9

4 )n] so  A∞= Anlim
n →+∞

=8
5

A0

 

Notice that if we start from a equilateral triangle of side a , A0 = a 3 /4, so it is 
irrational. It is an important value of a didactical variable, because it prevents 
students to try to 'catch' the limit with decimals: they have to carry out a reasoning to 
know if the area is infinite or not. To prove the result it is possible to introduce the 

logarithm function and show that (
9

4 )n , which is the functional term in this formula, 

tends to zero: it can be made smaller than every 10-p, for any value of p: 

n log (
9

4 ) < log10-p gives n > -p/ log
9

4  because, of course, log
9

4  <0.  

According to their first opinion, half of the students think that the area is infinite, one 
of them saying: "Anyway the area does the same as the perimeter". We also observe 
that the symbol of a function incorporated in the area formula is not seen by a lot of 
students. They have to work a long time before some of them become able to identify 
this symbol. The other ones seem to think the formula as a whole, a kind of icon of 
function. Sequences acquire a clearer meaning of "a way to attain a number", but the 
link between a sequence and its limit is however still indexical: they appear to be 
disconnected in a way. It's just that the sequence refers to the limit.   

All this work eventually leads students to reasoning about sequences, functions, ways 
of experimenting and proving. It is a real entrance into the way of reasoning in 
Calculus, but it does not make students necessarily link their knowledge about IR and 
the limits. This is why we tried to build and experiment the two other situations. 
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2. The Euclidean algorithm of 2  

In her thesis, I.Ghedamsi (Ghedamsi, 2008) makes students – in a course of first year 
at University – experiment the construction of a sequence of rational numbers tending 
to an irrational number d , where d is an integer, d≥2; d is not a square number as  d-

1 is. For instance, the antiphérèse of 2  leads to a development of 2  in a sequence 
of unlimited continued fractions, the condition to get a finite development being that 
the number would be rational.  

We assume that ( ) 1
d

d
− =

+
α

α
 allows to give a development of √d in a sequence of 

unlimited continued fractions, 1
d=  + 

1
2

1
2

2 +etc.

α
α +

α +
α

 ; 

and the sequence converging to 2  is given by : u0 = 1 and un+1 = 1 + 
nu+2

1  

And finally:  

2

31 1

2

1 1 1 1
2=1 + 1 + 1 + 1 + 

1 r 1 1
2 22

r 1r r 22
1r 2+

1
2+

1
2+

2+etc.

= = =
+ ++

++

 

 

…where r1, r2…are the remainders 
that appear in a geometric way in the 
following rectangle triangle: 

  

 

 

 

 

 

The work on the sequence leads students to realize that they can find a 'good' 

approximation of 2 , as good as they decide. Students' work can lean on the 
geometric illustration, which gives a reality to the number. Students say that before, 

they thought 2  was a kind of 'notation' – an icon – and now they realize that it is a 
real number, in both meanings! Notice that at the same time they have enhanced their 
calculation ability on sequences and they become able to make a link between 
mathematics theorems (existence of a limit) and an already known number. They also 
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conceive now what it means that Q is dense in IR. We observe that they become able 
to really link the existence of a number and the sequence that 'gives' the number.  

Nevertheless, they now just consider numbers as 2 , which is not sufficient to get 
into the idea of numbers that cannot be 'seen' or 'calculated'. This is why another 
situation is necessary: it must compel students to cope with numbers we reach only 
through the use of mathematical theorems as the nested intervals theorem, the limited 
development of a function, or the Newton's method to find a fixed point. Of course 
this progression is also a mathematical one, from algebraic numbers to other 
irrational ones. It is also a semiotic process from numbers as writings and theorems as 
abstract rules to numbers as mathematical objects and theorems as useful statements 
to work about these objects, theorems as tools of the mathematical work. Theorems 
become arguments to do the work.  

3. The fixed point of cosine 

The cosine function is continuous in [-1,1] and maps it into [-1, 1], and thus must 
have a fixed point. This is clear when examining a sketched graph of the cosine 
function; the fixed point occurs where the cosine curve y = cos(x) intersects the line y 
= x. Numerically, the fixed point is approximately x = 0.73908513321516 (thus x = 
cos(x)); but students cannot have an spontaneous idea of this value.  

The aim is to make students work about a number they do not know, and cannot 
'represent' except in a graphical way – but the curve of cosine is not a calculator. We 
do not describe the situation here (for details see Ghedamsi 2008), we just say that the 
problem is to compare two approximation methods to reach the fixed point: 
dichotomy and the Newton method.  

Students are really surprised not to 'find' the number, as can be seen below: 

"S1: u3 = cosu2 and u2 = cosu1 and… we have to choose an u0… 
S2: u0 is in the interval (0,1)… 
S1: but finally… it's the same! We cannot find the exact value??? 
S3: even with good software?!! As for e… (the basis of exponential function).  
Teacher: How does software proceed to calculate a number? 
S1: I think they use sequences and calculate how many terms they need… 
S2: It means that the fixed point of cosine has no exact value… it exists because we find a 
sequence… 

Teacher: Is it the same with 2 ? 
S3: 2  has an exact value because its square is 2 
Teacher: and how do we call a number like this? It is transcendental. And what do you 
propose to calculate this number?  
S1: We could use sub-sequences… " (Then students work about adjacent sequences) 
 

We observe that the progression of the situations leads to cope first with an idea of 
limit, the fact that we need theoretical tools to attest that a sequence has got a finite or 
infinite limit; then they work about density of Q in IR; and finally they are led to use 
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theorems they were taught to become able to speak of a number "that cannot be seen". 
The meaning of these theorems appears: the function of Analysis theorems is to allow 
the work on unknown objects, but it supposes that we can make a verification that 
theorems fit to find the unknown number.  

Then this last situation compels students to become aware that the conditions of a 
theorem are of some interest and that they cannot neglect them.   

CONCLUSION 

Situations based upon a numerical heuristic work confirm to be efficient to engage 
students into a proof process. We noticed that they had to become able to achieve 
reasoning on generic mathematical objects: situations aim at doing a connection 
between their previous numerical knowledge and the notion of real number, which 
must be linked with the use of theorems.  

In order to link heuristic and formal work, situations were organized in three steps: 1) 
first meetings with the tools of calculus; 2) an investigation about algebraic well 
recognised numbers that allow to experiment and give examples or counter examples; 
3) finally a situation that needs the use of theoretical means.  

We can conclude that:  

- The use of approximations allows identifying mathematical objects which 
existence is only formal; it is a work about mathematical symbols – arguments 
and no more kinds of indexes of a knowledge.  

- Situations organize comings and goings between intuitions and formalism; 

- Situations were built with the concern of a balance between the values of the 
macro-didactic variables: more or less formalisation, generalisation; limit 
algebra or the use of theorems.  

We can attest that the work in these situations creates an epistemological change in 
students' conceptions. They are made able to consider real numbers with their true 
nature, that is, conceptual objects in relation with other coherent objects in a 
mathematical theory. They eventually accede to the argumental nature of 
mathematical objects and do not see them anymore as icons drawn by the teacher.  
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ANNEX 

The Von Koch snowflake, F1 to F4 

 

F1

F3
F

4

F2

 
 

What are the perimeter and area of F∞ , the final fractal?  
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FROM HISTORICAL ANALYSIS TO CLASSROOM WORK:  

FUNCTION VARIATION AND LONG-TERM DEVELOPMENT OF 
FUNCTIONAL THINKING 

Renaud Chorlay 

R.E.H.S.E.I.S. (UMR 7596 C.N.R.S. – Université Paris 7) 

I.R.E.M. Université Paris 7 

 

ABSTRACT : We present the outline and first elements of the second phase of our 
work on mathematical understanding in function theory. The now completed first 
phase consisted in a historical study of the differentiation of viewpoints on functions 
in 19th century elementary and non-elementary mathematics. This work led us to 
formulate a series of hypotheses as to the long-term development of functional 
thinking, throughout upper-secondary and tertiary education. We plan to empirically 
investigate three main aspects, centring on the notion of functional variation : (1) 
“ghost curriculum” hypothesis; (2) didactical engineering for the formal 
introduction of the definition (3) assessment of long-term development of cognitive 
versatility.  

Key-words: functional thinking, concept-definition, cognitive versatility, AMT, 
historical development of mathematics. 

NON-STANDARD QUESTIONS EMERGING FROM HISTORICAL STUDY 

In 2006, the history of mathematics group of the Paris 7 Institute for Research on 
Mathematics Education (IREM1) completed a study on the “multiplicity of 
viewpoints”, with funding from the French Institute for Research on Pedagogy 
(INRP). The challenge was to combine historical and didactical investigations, and 
the main results were published in (Chorlay 2007(a)) and (Chorlay & Michel-Pajus 
2008). On the basis of this theoretical work, we engaged in 2007 in a second research 
phase which involves field-work and deals with issues of AMT2 and teaching of 
mathematical analysis at both upper-secondary and tertiary levels. 

The first phase started when we became aware of possible interactions between 
historical and didactical work : on the one hand, R. Chorlay was engaged in a 
dissertation of the historical emergence of the concepts of “local” and “global” 
(Chorlay 2007(b)); on the other hand, didactical work was being conducted on similar 
issues with regard to teaching at upper-secondary (Maschietto 2002) or tertiary levels 
(Praslon 1994, 2000), under the supervision of Pr. Artigue and Pr. Rogalski. We 

                                           
1 http://iremp7.math.jussieu.fr/groupesdetravail/math.html 

2 (Tall 1991) and (Artigue, Batanero & Kent 2007). 
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engaged in a historical study, centred of 19th century elementary and non-elementary 
mathematical analysis, so as to gain insight into the explicit emergence and 
differentiation of the four “viewpoints” which didactical work on mathematical 
analysis had distinguished : point-wise, infinitesimal, local and global.  

Our work centred on the history of several hot-spots where the viewpoints interact 
strongly : definition of “maximum”, use of the two-place “ function f is [property] on 
[domain]” syntagm, proofs of the mean value theorem, proofs of the theorem linking 
the variation of f and the sign of its derivative, proof (if any) of the existence theorem 
for implicit functions. The interactions with typically AMT issues occurred at four 
different levels : (1) in terms of mathematical concepts : function concept3, real 
numbers, limits and continuity4, proofs in calculus, use of quantifiers; (2) in terms of 
curriculum, we focused on typically higher-education maths topics and transition 
from secondary to tertiary education stakes; (3) we centred on issues of cognitive 
flexibility 5, in particular the ability to change viewpoints, levels of abstraction, 
theoretical frames, and semiotic registers6 in an autonomous manner; (4) the explicit 
use of meta-level terms to describe abstract viewpoints (such as “local” or “global”) 
raise many questions in terms of transmission (implicit/explicit classroom use, 
transmission by definitions or by paradigmatic examples) and efficient use (effective 
problem solving or proof design based on meta-level knowledge)7. 

This work left us with a few unexpected and unanswered questions, though. The 
historical work on the notion of function, maximum or domain showed us that some 
of the aspects that we thought would be the least problematic evolved at a different 
pace from that of apparently more sophisticated ones. To be more specific : notions 
of domain, maximum, and function variation seem to be of a rather elementary 
nature. In the French curriculum they are the first notions to be taught (in the first 
year of upper-secondary education) when the notion of function is first introduced, 
one year before students begin calculus. From a didactical viewpoint, these notions 
depend only on the point-wise and global viewpoints; they are compatible with a 
mere proceptual view of functions. Thus we were puzzled by the discovery that the 
notion of variation, for instance, only came to be defined8 in Osgood’s 1906 course 
on mathematical analysis (Osgood 1906). The characteristics of this non-elementary 
textbook are analysed in (Chorlay 2007(b), chapter 7) : it helps document the strict 
co-emergence of (1) the notion of domain in elementary analysis, (2) the explicit use 

                                           
3 (Vollrath 1989), (Artigue 1991), (Dubinsky & Harel 1992), Carlson’s paper in (Dubinsky and Kaput 1998), or for 
more recent developments (Stölting 2008). 
4 (Tall & Vinner 1981), (Cornu 1991). 
5 (Robert & Schwartzenberger 1991), see also Robert’s and Rogalski’s papers in (DIDIREM 2002). 
6 See Duval’s paper in (DIDIREM 2002) 
7 See Robert’s and Artigue’s papers in (Baron & Robert 1993). 
8 To the best of our knowledge, that is.  
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of “local” and “global” as meta-level descriptive terms, and  (3) the point-wise 
definition of formerly undefined functional properties, such as variation. The not-so-
elementary epistemological nature of these notions is also documented in Poincaré’s 
work : he listed them among “qualitative” properties of function which, he claimed in 
1881, form a new and difficult field of inquiry (Poincaré 1881); needless to say 
Poincaré’s notion of “qualitative” study encompasses more than intuitive or graphical 
aspects. 

It turned out that these unexpected historical facts echoed teaching problems which 
we had experienced over the years, as teachers of mathematics (at upper-secondary 
and tertiary levels) and pre-service or in-service teacher trainers. I engaged in a new 
study, centring on the (elementary ?) notion of function variation, with a few 
epistemologically founded hypotheses on its role in the long-term maturing of 
functional thinking. Small-scale empirical study conducted in 2007-2008 helped me 
specify the lines of inquiry; larger scale empirical study is now to consider. I would 
like to present here three related aspects of this work. 

THE “GHOST CURRICULUM” HYPOTHESIS 

Let us present some elements of the French syllabus for upper-secondary students 
who major in science. For our purpose, it is interesting to separate notions in two 
families, depending on whether they use “elementary” or “sophisticated” concepts9 : 

For the sake of brevity we only presented in this table the list of notions, but it is 
absolutely necessary to complement it by an analysis of their ecology, an analysis for 
which the tools from Chevallard’s praxeology theory (task / technique / technology / 
theory) seem to us to be the relevant ones (Chevallard 1999). At university level, 
students usually start with a big recap of all they (are supposed to) know, with formal 
definitions and proofs of everything; then they move on to typically higher-education 
topics : Taylor series, Fourier series, differential equations etc.  

Our hypotheses are : 

� An analysis of tasks can show that, at high-school level, there is actually very little 
interplay between the two columns. 

� The poor cognitive integration of the “basic” point-wise aspects of the 
“elementary” column (in particular : domain and variation) may be rather 
harmless at high-school level but turns into a obstacle (of mixed epistemological 
and didactical nature) in the secondary-tertiary transition. Empirical evidence is 
already available in (Praslon 2000). 

                                           
9 For the sake of clarity : though we want to question  the “elementary” nature of some concept (or, more precisely, 
conceptual elements of a body of knowledge), we will not choose the easy way out by saying “in the end, every 
mathematical concept is sophisticated and thorny” … end of the story. The question of function variation is interesting 
because there are good reasons to consider it to be elementary (point-wise, proceptual etc.). 
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� The case of function variation is a typical case in which an element of the concept 
image10 is integrated early on and proves remarkably stable over the years, but the 
formal definition hardly plays any part11. 

Year “elementary” “sophisticated” 

1  

age 15/16 

Basic notions/vocabulary about 
functions : function as abstract 
mapping, domain, graph, maximum 
and minimum, variation. Properties  
of basic functions :  

x a ax+b, x2, 1/x. 

 

2 

age 16/17 

Composition of functions; theorem 
on the variation of composite 
functions. 

Definition of the derivative, of 
tangents. Theorem (without proof) 
linking the variation of f and the 
sign of f ′. Limits : intuitive notion 
for functions, formal notion for 
sequences. Sines and Cosines as 
functions. 

3  

age 17/18 

 Limits : formal definition for 
functions; definition of continuity. 
Exp and Ln functions. 

Integral calculus (based on a semi-
intuitive definition of the integral). 

Completeness of the set of real 
numbers; proof of intermediate 
value theorem. 

 

To be more specific, French students are taught the following definition : function 
f, defined over interval I, is an increasing (resp. decreasing) function over 
subinterval J if, for any two elements a, b of J, a ≤ b implies f(a) ≤ f(b) (resp. f(a) 
≥ f(b)); “increasing” means order preserving, “decreasing” means order reversing. 
Our hypothesis as to the poor integration of the concept definition in the concept 
image is twofold : 

� Poor integration of the definition, even in the long term. We have two ways to 
test this empirically. The obvious one is to ask students (from high-school 2nd 

                                           
10 We consider the notion of variation to be an element of the function concept. 

11 See, for instance, Vinner’s paper in (Tall 1991); or, for recent work on definitions (Ouvrier-Buffet 2007) 
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year to University 3rd year) to define “increasing function”. We will also test 
students’ ability to recognise and name the concept they’re working with; in 
particular, at the end of an exercise in which, in several steps, it is established 
that inequalities of the a≤b type imply inequalities of the f(a)≤f(b) type, 
students will be asked to sum up in words what they have just proved. 

� Easy integration in the concept image, from the outset. For instance, we would 
like to asses to what extent 1st year high-school students succeed when faced 
with the following task : given the graph of a function, compare f(1) and 
f(1,0001). This is a slightly unusual question (compare f(1) and f(2) would be a 
standard question), which reflects the intuitive perception of order preservation 
or reversing. Our hypothesis is that a high proportion of students do well when 
asked this question even before the formal definition is given, and that the 
proportion doesn’t change dramatically after the definition is given. This 
would mean that the fact that “variation has to do with order” is a strong 
cognitive root, but that it is not accepted as a definition. We have historical 
evidence in 19th century analysis that it can be considered obvious that 
variation has consequences in terms of order, without it being defined in terms 
of order (or defined at all, for that matter). 

From the theoretical viewpoint, this work should contribute to the general reflection 
on the role of visual imagery in the building of formal concepts12. 

It is this large set of hypotheses, regarding both sets of tasks (and their evolution in 
upper-secondary and tertiary education) and issues of cognitive integration (or lack 
thereof) that we label the “ghost curriculum” hypothesis. 

DIDACTICAL ENGINEERING 

Our historical work on the 19th century allowed us to document a great variety of 
ways of expressing and dealing with function variation. We selected three of them on 
which to base didactical engineering for the introduction of the definition in the 1st 
year of high-school. All three rest on the “cognitive root” hypothesis, that is : it can 
be made intuitively clear to most students that variation (a word which they manage 
to use properly in semi-concrete or graphical contexts) “has something to do with 
order”. 

Definition A : the official definition in the French curriculum (see above). 

Though this definition relies only on the point-wise viewpoint and is consonant with 
a purely proceptual view of functions, the (somewhat hypocritically !) hidden double 
universal quantification is certainly a major obstacle. The other two definitions that 

                                           
12 See, in particular (Pinto & Tall 2002), where the understanding of quantifiers is also discusses. It should be noted 

that, with its two existential quantifiers, the definition of functional variation has different mathematical and cognitive 

properties from that of limit. 
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we’re coming up with have to satisfy two criteria : (a) try to avoid this quantification 
problem (b) be equivalent to definition A (which is, eventually, what students are to 
learn). 

Definition B : “function f is an increasing function over interval J” means : 
whenever a list of numbers from J can be ordered x1 ≤ x2 ≤ x3 … ≤ xn, then the 
images are similarly ordered : f(x1) ≤ f(x2) ≤ f(x3) … ≤f(xn). 

This definition clearly satisfies criterion (b), but it seems to be even harder to 
swallow in terms of quantification ! This may be true from a technical point of view 
but we have reasons to think it is not from a cognitive point of view. For one thing, it 
echoes ordering tasks which are familiar to students (as from primary school), thus 
adding the new abstract notion to the list of methods for ordering numbers. We have 
deeper epistemological reasons to support our claim, though. Definition A 
fundamentally rests on the idea that a function is a map between sets, variation 
properties being properties of maps between ordered sets. There are ways to teach the 
notion of abstract map (e.g. potatoes and arrows) but these are not taught in the 
current curriculum. Studying 19th century mathematics showed us how professional 
mathematicians used efficiently other function concepts than the map-concept. In 
what we described as a World of Quantity model (Chorlay 2007(a), 2008), the basic 
notions are not “set” and “map” but “variable quantity” and “dependence between 
two quantities”. To make a long story short, a single quantity can “vary”, and two 
dependent quantities x and y have dependent variations. This different conceptual 
frame leads to different definitions and different proof-styles; it also rest heavily on a 
specific semiotic register (DIDIREM 2002) which we called the “narrative style”. 
Our definition B was suggested by both this theoretical frame and semiotic register, 
thus resting to some extent on the idea of a variable quantity which we feel the long 
x1 ≤ x2 ≤ x3 … ≤ xn chain expresses in a discrete fashion : it should smooth out the 
transition from the purely intuitive grasp of (continuous) variation of a single quantity 
to the purely discrete mapping-between-ordered-sets formulation of definition A 
(which expresses no idea of “variation” whatsoever). The extent to which definition 
B really reflects what is found in the 19th century is a deep question, but  we have no 
time to go into that here. Let us move to  

Definition C : “f is increasing on interval [a,b]” means that for every number c 
between a and b, f(c) is the maximum of f on interval [a,c]. 

Again, this definition satisfies criterion (b) (a two-line proof based on transitivity of 
order does the trick); it satisfies criterion (a) since we are down to one universal 
quantifier instead of two : it can thus help us asses to what extent the double 
quantification of definition A is a specific obstacle. The cognitive root this time is not 
that of “continuously variable single quantity” but that of maximum, which is part of 
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the official curriculum13. Actually we worked out this definition on the basis of 
Cauchy’s conception of function variation14. 

We should start testing teaching scenarios based on definitions B and C as steps 
towards definition A with 1st year high-school students next academic year, though 
we still have engineering work to do. 

LONG-TERM ASSESMENT OF COGNITIVE VERSATILITY  

This work on definitions, their formulation and their integration in the concept image, 
is not the only relevant aspect; understanding, remembering and identifying (whether 
proactively or retroactively) a definition are not the only necessary skills for a 
versatile thinker : devising counter-examples for incorrect assertions, recognising and 
proving the equivalence of different formulations of the same concept, understanding 
complex proofs, devising simple proofs … are also essential skills, especially in the 
transition from secondary to tertiary education. We have several leads regarding these 
aspects, some of which we started testing in 2007-2008. Let us mention three. 

The first two rest on a list of pairs of statements, from which we give three examples 
here : f is a function which is defined over [0,1] 

 True False 

If f increases on [0,1] then f(0) ≤ f(1)   

If f(0) ≤ f(1) then f increases on [0,1]   

 

 True False 

If f increases on [0,1], then f(x) decreases as x decreases   

If f(x) decreases as x decreases, then f increases on [0,1]   

 

 True False 

If f increases on [0,1] then, for any two distinct numbers a and b 

(between 0 and 1), 
ab

afbf

−

− )()(  is positive 

  

Reciprocal of  the former   

 

                                           
13 However, this formulation might cause cognitive dissonance : students usually come across maxima which are also 

local maxima, what is not the case in this definition. 

14 See (Cauchy 1823), p.37. Cauchy’s viewpoint was local, but we opted for a global formulation. 
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We have a list of 12 such pairs in which levels of abstraction, cognitive roots, and 
semiotic registers vary. This pool of (pairs of) statements can be used in at least two 
different ways. We used it last year to ask 2nd year high-school students to devise 
graphical counter-examples when they deemed the statement to be false. This work 
on graphical counter-examples is interesting since it promotes a deeper understanding 
of the concept without trying students’ ability to devise formal written arguments 
using quantifiers (and negations of implications, and the like). In contrast, we will use 
some of these pairs (or definitions A, B and C) with more advanced students in order 
to asses their ability to devise written formal arguments for the statements they deem 
to be true : these should be tested with senior high-school students, undergraduate 
university students, and pre-service maths teachers. Using the same pool of 
statements at different levels in upper-secondary and tertiary education should help us 
gain insight into stages of cognitive maturity. 

The third lead concerns the proof of the following theorem : Let f be a differentiable 
function, defined on interval I; if f ′ is positive on I then f increases on I. The proof 
which is usually taught at university level first appeared in the 1850s15 but we 
documented many other “proofs” in the 19th century, most of which are flawed. We 
were quite fascinated though by Cauchy’s proof, which is not flawed yet differs 
significantly from our standard proof, both in proof-pattern and view of function 
variation. What field-work is to be based on this material is yet to be determined. 

CONCLUSION 

We presented the outline of a new research project which, to some extent, is the 
sequel of a former historical and epistemological work16. We identified a series of 
questions which directly bear on issues of teaching and learning at upper-secondary 
and tertiary levels; they naturally fit within the research field on AMT in terms of 
maths topics (mathematical analysis) and didactical issues (cognitive versatility, 
proof, concept image / concept definition dialectics). The specific topic of function 
variation is but a tool to assess the conditions for successful learning of function 
theory, conditions which we assume partially rest on the understanding of seemingly 
elementary (point-wise, procept-compatible) notions. Exciting field work is now 
ahead of us. 
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EXPERIMENTAL AND MATHEMATICAL CONTROL IN 
MATHEMATICS 

Giroud Nicolas 

Maths à Modeler team,  Fourier Institute, University of Grenoble 1, France 

This paper talk about a problem which can put students in the role of a mathematical 
researcher and so, let them work on mathematical thinking and problem solving. 
Especially, in this problem students have to validate by themselves their results and 
monitor their actions. The purpose is centred on how students validate their 
mathematical results. I also present the first results of my experimentations.  So, this 
paper is related to learning processes associated with the development of advanced 
mathematical thinking and problem-solving, conjecturing, defining, proving and 
exemplifying. 

BACKGROUND 

The maths à modeler team (www.mathsamodeler.net) is developing a type of problem 
for the classroom called RSC [1] (Grenier & Payan, 1998, 2002 ; Godot, 2005 ; 
Ouvrier-Buffet, 2006). The aim of a RSC is to put students in the role of a 
mathematical researcher. Grenier and Payan (2002) define a RSC as a problem which 
is close to a research one and, often, only a partially solved problem. The statement is 
an easy understandable question which is situated on the outside of formal 
mathematics. Initial strategies exist, there are no specific pre-requisites. Necessary 
school knowledge is, as much as possible, the most elementary and reduced. But,  
many strategies to put forward the research and many developments are possible for 
the activity and for the mathematical notions. Furthermore, a solved question, very 
often, postponed to new questions. 

A RSC seems very interesting for gifted students because it is a challenging problem 
where they can find new results and be confronted with uncertainly and doubt. 
However, a RSC was not developed to be used only by gifted students, a RSC is for 
all the students and the goal of a RSC is not only to challenge students but, firstly, to 
make them work on mathematical thinking and especially “transversal knowledges 
and skills” which means: Experimenting, Conjecturing, Modelling, Proving, 
Defining...  

So, in a RSC, students are confronted with an open-field where they have to make 
their own investigations and validate by themselves their results and actions. They 
have also to manage their research, for example by trying to solve sub-problems or  
easier ones instead of the initial problem. Moreover, it can also be a way for students 
to develop their problem solving skills as it can be considered as a “non-routine” 
problem.  

In French handbooks, it seems that problems do not give the responsibility of the 
validity of their results to the students. Whereas, it is important for students to be 
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confronted with uncertainly and doubt in mathematical problems because first, they 
have to control their results to be sure that they are true. Second, they have to 
convince themselves and their colleagues that their results are true. So, even if they 
do not give a mathematical proof, they enter in a phase of argumentation which can 
let them give mathematical arguments like counter-examples. Third, they have to 
monitor more carefully their actions as they do not know a solution or a plan to solve 
the problem. 

So, a RSC is a type of problem which can give responsibility to the students. But a 
RSC can also let students work on definition (Ouvrier-Buffet, 2006), modelling 
(Grenier & Payan, 1998), experimental approach (Giroud, 2007) and more generally 
on transversal knowledges and skills. 

In this paper, I present a RSC,  the game of obstruction, which is a discrete 
mathematics optimization problem. This problem is only partially solved. I propose 
this problem for 2 reasons: let students work on mathematical thinking and problem 
solving, and in his quality of very challenging problem.  

I give a mathematical and didactic analyses of the problem. I also propose results of 
my experimentations that will be centred on how students control their mathematical 
results,  especially with these types of control: 

Different types of results control in mathematics 

The experimental control: Dahan (2005) claims that there exists 2 types of 
experimentations in mathematics: generative experimentations, which are 
experimentations that we carry out to generate facts when we have no idea of the 
result ; and checking experimentations that we carry out to check  an hypothesis [2] 
or a conjecture. So, the checking experimentation can be a way to control the results. 
But unfortunately, even if a result is experimentally checked as true a lot of time, it 
can be false. In mathematics, we need a proof. However, we can use the experimental 
validation before going to the proof stage to convince ourselves that the result is true.  

For example, if we do not know whether the Goldblach conjecture: all even number 
superior to 2 can be written as the sum of two prime numbers, is true, we can control 
this proposition by carrying out checking experimentations on 2, 4, 6, 8, 1284... And 
as we seen that each times it works, it can convince us that the conjecture is true. 

The mathematical control: the mathematical control is what we call proof. We can 
not have a “better” control. 

It is essential to have a proof to name a fact theorem, for example the Goldblach 
conjecture is true for all even number higher than 2 and lower than 4*1014 (Richstein, 
2000) but we can not call it theorem because we do not have a proof for all even 
numbers.  

We have also others types of control, for example if an analogue problem is known to 
be true. 
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But here, the 2 types of control that I will consider are the experimental and 
mathematical control. 

These 2 kinds of control,  mathematical and experimental, do not contradict each 
other.  Considering Polya's distinction between plausible and demonstrative 
reasoning (1990), it appears that the experimental control is part of the plausible 
reasoning whereas the mathematical control is part of the demonstrative reasoning. 
And as Polya (1990) claimed: 

Let me observe that they do not contradict each other; on the contrary, they complete 
each other.  

Indeed, in mathematics both are useful, we can use the experimental control to 
estimate the plausibility of a result and we need the mathematical control to be 
completely sure. 

Now, I present the theoretical framework that I use to make my analysis. 

THEORETICAL FRAMEWORK 

I recall briefly what is a didactic variable. For Brousseau (2004), a didactic variable 
of a problem P is a variable which can change  the solving strategies of P and which 
can be used by the teacher. So, by using the didactic variable the teacher can change 
the knowledge in game in P for the students.  

I also use the notion of research variable (Grenier & Payan, 2002 ; Godot, 2005). A 
research variable of a problem P is a variable of P which is fixed by the students. The 
didactic choice for the teacher is to choose which variables of P will be used as 
research variables. This choice is made by considering the questions, conjectures, 
proofs that these variables could generate.  In a RSC, there are research variables as it 
can let students manage their research.  

The notion of didactic contract (Brousseau, 2004) is also used. The didactic contract 
corresponds with the implicit relations between the students and the teacher. An 
example in French classrooms is when students learn the factorization of 
polynomials, when the teacher asks a student to factorize 4X2+4X+1, the answer that 
the teacher wishes is (2X+1)2 not a factorization like 4*(X2+X+1/4) which is, even, a 
right factorization but not a factorization in irreducible polynomials which is 
implicitly asked. 

And to analysis the experimentations, I use the framework developed by Schoenfeld 
(2006) to analysis mathematical problem solving behaviour: 

the key elements of the theory are: 

− knowledge; 

− goals; 

− beliefs; 
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− decision-Making. 

The basic idea is that an individual enters any problem solving situation with 
particular knowledge, goals, and beliefs. The individual may be given a problem to 
solve – but [...] what happens is that the individual establishes a goal or set of goals – 
these being the problems the individual sets out to solve. The individual's beliefs 
serve both to shape the choice of goals and to activate the individual's knowledge – 
with some knowledge seeming more relevant, appropriate, or likely lead to success. 
The individual makes a plan and begins to implement it. As he or she does, the 
context changes: with progress some goals are met and other take their place. With 
the lack of progress, a review may suggest a re-examination of the plan and/or re-
prioritization of goals. [...] This cycle continues until there is (perceived) success, or 
the problem solving attempt is abandoned or called to a halt. 

THE GAME OF OBSTRUCTION 

The situation was suggested by Sylvain Gravier. In order to present the problem we 
will need some useful definitions. A (n, c)-card game 
(or for short card game) is a set of cards having n lines, 
each of which contains a color in {1, …, c}.  

Given a (n, c)-card game, the color of the ith line of a 
card C will be denoted by Ci. A bad line in a set of 3 
cards C, C’ and C” is a line i for which either (Ci = 
C’ i = C”i) or (Ci ≠ C’i ≠ C”i and Ci ≠ C”i).  

An obstruction is a set of 3 cards such that all lines  

are bad.  

Now the problem can be stated as follows: 

Given two integers n and c, find the largest (n, c)-
card game which does not contain an obstruction. (P1) 

Some examples: 

 

 

 

 

 

First, one can observe that: one may consider a card game for which all the cards are 
distinct. Indeed, given an obstruction-free card game of cardinality m for which all 
the cards are distinct, by duplicating each card, we obtain an obstruction free card 
game of cardinality 2m. Conversely, there are no 3 copies of the same card in an 
obstruction-free card game. 
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Figure 1: A (3,3) card 
game 
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Figure 2: An obstruction 

Figure 3: A (3,4) card game 
containing an obstruction 

 
Figure 4: An obstruction-free 
(3,4) card game 
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According to that, we will now only consider card games for which all the cards are 
distinct. The cardinality of a largest (n, c)-card game with no duplicated cards will be 
denoted by Max(n, c).  

Mathematical analysis 

It is worth noticing that (P1) is still an unsolved problem so before trying to solve it 
one may study a weaker version: (P2) How can we build a set without obstruction 
?(P2) problem suggests determining an efficient method (algorithm) to check if a 
given set of cards contains an obstruction. I will denote this problem by (P3). 

Another way of simplification will be to fix n and/or c. To work on optimization 
problems, we need to consider the following problem: (P4) How can an upper bound 
be found? 

(P2) and (P4) split (P1) into the two aspects of an optimization problem: lower and 
upper bounds. 

Unfortunately, since (P1) is still not solved, we do not have yet a general strategy to 
solve (P4) efficiently. Mainly, a strategy (SP4) to answer (P4) is based on 
enumerating all possible obstruction-free card games. For a low value of n, an easy 
enumerating argument shows that theorem:  

Theorem 1: For any integer c ≥ 2, we have Max(1, c) = 2 and Max(2, c) = 4. 

Now, I present some strategies to solve our problems. First, concerning (P3), a 
“naïve” way would be to check all sets of 3 cards among a given card game. 
Nevertheless this strategy fails when the number of cards m is large since it requires 
O(m3) cases to be explored. Nevertheless, a strategy based on the structure of the 
given card game exists. For i in {1, …, c}, the i-block of a card game G is the subset 
C1, …, Ct of G such that C11 = … = Ct

1 = i.  

(SP3)  First check that each block does not contain an obstruction (you can apply this 
strategy recursively). Secondly, search obstructions that have at most one card per 

block. 

In general, this strategy is no more efficient than the “naïve” way. Nevertheless, it 
appears that for large obstruction free card game G, the colours are recursively and 
equitably distributed on each block, therefore (SP3) checks in O(Logc (m)3) steps that 
G has no obstruction.  

Another interest for using (SP3) is that it allows first results on Max(n, c) to be 
obtained. Indeed, consider an obstruction-free (n, c)-card game, then each block is at 
most Max(n-1, c) in size. Therefore Max(n, c) ≤ c.Max(n-1, c), which gives an 
answer to (P4). 

Moreover, from an obstruction free (n-1, c)-card game G of cardinality t, one can 
build an obstruction free (n, c)-card game of cardinality 2t. Indeed, for i=1, 2 , 
consider the obstruction free (n, c)-card games Gi obtained from G by adding a line to 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2410



  

each card and assigning color i to this new line. The set G’ = G1υG2 is an obstruction-
free (n, c)-card game of cardinality 2t, which gives an answer to (P2). 

                

 

 

 

 

  These two remarks lead to: 

Theorem 2: Given integers n and c ≥ 2, we have that:     
      2.Max(n-1, c) ≤ Max(n, c) ≤ c.Max(n-1, c).  

Observe that for c = 2, we get: Max(n, 2)=2n. Notice that this result can be proof 
without theorem 2 by giving an inductive proof. 

Nevertheless, when c ≥ 3, one can find obstruction-free card game of larger 
cardinality than 2.Max(n-1, c). To find such obstruction-free card game one can apply 
“greedy” strategies: 

(S1P2) Start from an obstruction free card game G (it can be empty) and add a card 
C such that GυC is still obstruction-free until there is no such card. 

(S2P2) Start from a card game G and while there is an obstruction in G, remove a 
card from this obstruction. 

Observe that these two strategies give Max(n, 2) since there is no obstruction in a (n, 
2)-card game. In general, an obstruction-free maximal card game G is built (i.e. for 
every card C not in G, GυC contains an obstruction). It is worth noticing that (SP3) 
produces also obstruction-free maximal card game G, but this requires additional 
arguments. If one chooses an appropriate order for eliminating cards one can find an 
optimum of (P1) using (S1P2) or (S2P2). Of course, finding such an order remains an 
open problem. Nevertheless, when n is ‘large’, one may use a suitable order which 
ensures that one considers all possible cards ; for instance the lexicographic ordering. 
Unfortunately, even when n=3, the lexicographic ordering gives a maximal 
obstruction free (3, 3)-card game of cardinality 8. However, by applying (S1P2) or 
(S2P2) with other orderings, one can find an obstruction free (3, 3)-card game of 
cardinality 9 (> 2.Max(2, 3)). Similarly, one can exhibit an obstruction free (4, 3)-
card game of cardinality 20. 

Moreover, by applying a (SP4) strategy one can prove:  

Theorem 3: Max(3, 3)=9 and Max(4,3)=20. 

Didactic analysis 

I decided to use n  the number of lines and c the number of colours as research 
variables (Grenier & Payan, 2002 ; Godot, 2005).  Since they can lead to new 
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Figure 5: An example of the inductive construction based on SP3 
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questions like: what is the link between a n-line game and a n+1-line game ? Trying 
to solve this question would provide an inductive construction of obstruction free 
card games which can be seen as an inductive proof.  Moreover, it can let students 
generalize some results, especially with 2-colours. So, students can use these 
variables to manage their research. 

There exists a more general problem than (P1), in which the size of an obstruction is 
a variable of the problem, but here, I decided to use it as a didactic variable by fixing 
its value to 3. I choose a size of 3 because for 1 or 2, the situation is very easy. It 
becomes sufficiently complex from 3.  

Through mathematical analysis one can determine the following knowledge involved 
in solving (P1): 

• The definition of an obstruction requires the understanding of logic 
quantifiers. 

• (S1P2) and (S2P2) suggest using an algorithmic approach to solving (P2) 
using eliminating  ordering (for example lexicographic ordering). Moreover, 
since these strategies build a maximal obstruction-free card game, one can 
discuss local /global maximum. Therefore, these strategies will produce 
solutions which can be conjectured as optimal. 

• (SP3)  allows a card game to be modelled which can be reinvested to 
(partially) solve (P2) and (P4) as shown in proof of Theorem 3. Moreover, 
(SP3) applied on (P2) gives an inductive construction of obstruction-free (n, 
c)-card game based on two copies of an obstruction-free (n-1, c)-card game. 

• (SP4) is an enumerating approach for solving (P4). To reduce the number of 
cases to be considered it will be convenient to use variables for the 
enumerating. 

• The distinction between problems (P2) and (P4) is related to lower and upper 
bounds on an optimization problem (P1) which is closely related to necessary 
and sufficient conditions.  

• Solving (P1) with c = 2 provides all possible 2n cards in a card game on n lines 
to be counted. 

OUR EXPERIMENTATIONS 

Two experiments were carried out, one with a “seconde” (tenth grade) class, E1, and 
another with a “première scientifique” (eleventh grade) class, E2. Pupils worked in 
groups of 3-4. In each class, we let them search for 2 hours. The E1 experiment was 
carried out before the E2 one. We filmed one group in each experiment. 

The problem was presented orally with examples on the blackboard. We gave to them 
some material with which they can experiment. In E1, we gave plain circles of 4 
different colours and in E2, we added n-line cards with no colours and n=1, 2, 3, 4. 
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But in both experiments the problem is posed generally as (P1), we did not ask 
students to only use the number of colours or the number of lines that is given 
materially.  

Results of experimentations 

First, my analyses are focused on how one group of the tenth grade class tried to 
solve (P3), that is to say, how they control the presence of an obstruction in a card 
game.  

They started by building an obstruction free card game with 3 lines and 4 colours  
with the additive strategy (S1P2). They built a card game G1 of cardinality 4 and then 
they added a card C. Then they searched obstructions in G1υC by trying to check 
“randomly” all triple of cards. They did not find any obstructions but they were not 
sure to have tested all triple. Here, the knowledge of how to find all triple is missing. 
Then, they formulated this question (P3a): How can we know if all triples of cards 
were checked ? They tried to answer (P3a) during one minute but they did not find a 
solution. After that, they concluded that they checked all triples of G1υC although 
they did not.  Thus, they decided to give (P1) a higher priority than (P5). Seeing that 
they could not solve (P5) quickly and believing that their experimental control based 
on “checked all triples” is sufficiently efficient, they decided to rely on the 
experimental control.  

During all the session they relied on the experimental validation for the obstruction's 
property although, I showed them obstructions in their card games. They did not 
decide to re-examine their plan by searching an other strategy to solve (P3) than 
“check all triples”. Despite that, they observed that this strategy is too difficult to do 
and that the experimental control based on this strategy was not efficient.  

So, it seems they gave (P3) a lower priority than (P1). It joins Schoenfeld (1992) 
observations that students are more concerned about the initial problem than to sub-
problems, although sub-problems can be key elements. And here, (P3) is key element 
to make progress on (P1). The group said 11 times that a card game was obstruction-
free and it was true only once.  

In the two experimentations, none of the group seemed to search an efficient method 
to answer (P3), they only used strategies based on “checked all triples”, although 
many of them were confronted to (P3). So it seems that students decided to rely on 
the experimental validation and not on the mathematical validation for the obstruction 
free property. An interpretation could be that students did not find a solution so they 
decided to rely on the experimental control to progress in (P1). However,  for the 
group above, it seems, as they only search for one minute, that they decided to not 
spend too much time on (P5). So, they did not recognize the role of (P5) and (P3) for 
solving (P1). 

Summarize of the experimentations: 
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It appears that the use of material during experiments E1 and E2 led pupils to carry 
out their own experiments in mathematics. Students started to manipulate and carry 
out experimentations to solve (P3) and (P2). Even if (P3) was identified, they stayed 
in the experimental control. Consequently, there were some group which did not 
obtain results on 3 lines. But, they made hypotheses or conjectures that they checked 
with experiments like “this card game is maximum”, “by using this strategy, we build 
an obstruction free card game” or  “with only 2 colours on  each card, there are no 
obstructions”, which allowed them to find counter-examples. Here, students are 
responsible of deciding the validity of their propositions. But for one group, it was 
not the case, they made an experimental control of the obstruction free property of 
their card game and after called us to validate their results. They did not take the 
responsibility of the result's validity. There was a problem in the didactic contract. 

They proved Max(n, 2) for n=1, 2 and 3. But only one group generalized this result 
and this group made the 2 experimentations.  

They used at most 4 colours and did not try to generalize with more. Moreover, they 
tried to use all the colours. Here, we can see a consequence of the didactic contract:  
use all that is given and not more. So, the didactic contract has to be changed to let 
students manage their research. 

The concept of variable useful in an enumerating strategy like (SP4) was not 
discussed. Similarly no good eliminating ordering was proposed by the pupils ; they 
remained in a ‘naïve’ strategy. 

BRIEF CONCLUSION 

This situation was experimented with “ordinary” students and show that this problem 
can let students take the role of a mathematical researcher. Although they did not use 
the variables of the problem to try to solve easier sub-problems, they carried out 
experiments to try to answer their own questions, formulated conjectures and made 
proofs. Moreover, it seems, as in Schoenfeld (1992) studies,  that contrary to an 
expert they have some difficulties to identify one of the key element to solve (P1) ;  
although they identified (P3), they relied on the experimental control.  

Students did not work on all knowledges identified in the didactic analysis, especially 
the concept of variable which is a powerful abstract concept. We tested this situation 
on a longer time (18 sessions during one year). In this context, strategies (SP3) and 
(SP4) were developed and their corresponding results were obtained.  

NOTES 

1.  RSC: Research Situation for the Classroom. 

2. Here the definition of hypothesis used is: a proposition that we enunciate without opinion. It is 
not the same as the usual definition of a mathematical hypothesis,  
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3. In France, seconde corresponds at a tenth grade class, it is a general section. Première 
scientifique corresponds to a eleventh grade class and it is the scientific section. 
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INTRODUCTION OF THE NOTIONS OF LIMIT AND 
DERIVATIVE OF A FUNCTION AT A POINT 

Ján Gunčaga 

Catholic University in Ružomberok, Slovakia 

This paper contains the results of a pedagogical research devoted to the 
understanding of   the notions of finite limit and derivative of a function at a point. In 
case of teaching limits, the effort spent by a teacher is not effective because for 
students the notion of a limit is very formal. This claim is supported by our 
pedagogical research using graphs of functions. We present also a concept of 
differentiable functions and derivatives. The notion of a differentiable function  f  at a 
point  x  is based on the existence of a function  φ  such that  f(x+ u) – f(x) = φ(u)u  
for all u  from some neighborhood of  0 and  φ  is continuous at  0. We show 
applications of this concept to teaching basic calculus. 

INTRODUCTION 

At present, the notions of limit and derivative of a function at a point is taught 
according to the Slovak curriculum in the last year of secondary school. In future, 
according to a new curriculum, this part of mathematics will be taught only at 
universities. In this article we will present some results of our pedagogical 
experiment with students at secondary school and university students - future 
teachers. We carried out the experiment at St Andrew secondary school in 
Ružomberok during the school year in the regular class according to official 
curriculum. Analogously, we carried out our experimental teaching of calculus to 
freshmen at the Pedagogical Faculty of Catholic University in Ružomberok during 
the regular calculus tutorial classes.   

We base our didactical approach on the calculus teaching concept by Professor Igor 
Kluvánek. He was a well-known Slovak-Australian mathematician. He prepared a 
new course of mathematical analysis during his 23-rd year stay at the Flinders 
University in Adelaide, South Australia. Even though Kluvánek was a renowned 
researcher, an essential attribute of his lectures was his effort to present the calculus 
to students in a clear and simple way. 

THEORETICAL BACKROUND 

In the field of Mathematics Education there is abundant literature discussing the 
problems of teaching and learning limit and derivative of a function at a point. The 
notions of limit and derivative are taught at Slovak secondary schools in the (senior) 
last year. In a Slovak textbook Hecht (2000) the notion of derivative is introduced in 
several parallel ways. One of them is via the tangent of a function at a point. This 
approach is according to Hecht static and it is based on finding of the tangent with the 
help of secant, which has two common points with the graph of the function. The first 
is the point of tangency and the second point is “in the limit movement” to the to 
point of tangency. Hecht (2000) at this point introduced also the notion of the 
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functional limit. According to Tall & Vinner (1981) the limit of the function is often 
considered as a dynamic process, where x approaches a, causing f(x) to get close to c. 
Conceptually, the differentiation may include a mental picture of a chord tending to 
tangent and also of the instantaneous velocity. The intuitive approach prior to the 
definition is often so strong that the feeling of the students is a dynamic one: 

as x approaches a, so f(x) approaches L 

with definite feeling of motion.  

Kluvánek (1991) in his concept of calculus teaching used the notion of continuity as 
a  base notion. Kluvánek proposed to teach first the notion of continuity and with this 
notion he defines the notion of limit: 

„It is not suitable to teach first the notion of limit of continuous variable and after 
this to define the continuity. Logically, it doesn’t matter what of notions is first. 
However, there exists from pedagogical point of view a great difference.  Each 
experienced teacher underlines that the limit of the function is not the value of the 
function at this point. The reason for this teacher’s activity is: The teacher will not 
have problems by explaining the notion of continuity. The students cannot 
differentiate limit of the function at a point and study continuity of the function at a 
point.”   

In case of teaching limits, the effort spent by a teacher is not effective because for 
students the notion of a limit is very formal. At this stage of teaching calculus, a 
teacher does not have big chances to use the notion of a limit as a prime notion of 
calculus. The next advantage of the continuity is the number of quantifiers. The 
definition of the limit of the function at a point can be written in the form: 

A number k is said to be a limit of the function f  at a point x if for every real number 
ε > 0 there exists a number δ > 0  such that for every x satisfying the inequality         
0 <  | x – a |  < δ we have  | f(x) – k |  < ε. 

This definition has four quantifiers and the definition of continuity has three 
quantifiers:  

A function f is continuous at a point a if for every real number ε > 0 there exists a 
number δ > 0 such that for every x  satisfying the inequality 0 < | x – a |  < δ  we have 
| f(x) – f(a)|  < ε. 

Kluvánek comes on and shows the following formal definition of continuity:  

A function f is continuous at a point a, if for every neighbourhood V of the point   f(a) 
there exists a  neighbourhood U of the point a such that for every  x ∈ U we have  
f(x) ∈ V.  

This definition is possible to formulate with two quantifiers: 

A function f is continuous at a point a if for every neighbourhood V of the point  f(a) 
there exists a  neighbourhood U of the point a such that  f(U) = { f(x): x ∈ U}  ⊆ V. 
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Now suppose we are given a function defined at every point of a neighbourhood of a 
point a with the possible exception of the point a itself. We may try to find a number 
k such that, if it is declared to be the value of the given function at a, then the 
function becomes continuous at a. Such a number k is then called the limit of the 
given function at the point a. Let us state the definition of limit more clearly and 
precisely. 

Definition 1.  Given a function f, a point a and a number k, let F be the function such 
that 

1. F(x) = f(x), for every x ≠ a in the domain of the function f; and 

2. F(a) = k. 

The limit (left limit, right limit) of a function f at a point a is the number k such that 
the function F, defined by the requirements 1 and 2 is continuous (left-continuous, 
right-continuous, respectively) at a. 

Similarly as in the case of limits, Kluvánek (1991) introduces the differentiation 
of a function at a point via continuity:   

Definition 2. Let f  be a function defined in some neighbourhood of a point x. A 
function f is said to be differentiable at a point x if there exists a function ϕ, 
continuous at 0, such that  for every u in a neighbourhood of  0 we have f(x+u) – f(x) 
= ϕ(u)u . The value ϕ (0) is called the derivative of  f at the point x.  

Kluvánek shows also more practical interpretations of this definition. If the 
function  f(x)  is interpreted as the law of motion of a particle on a straight-line, then x 
and x+u represent instants of time and the values f(x) and f(x+u) the corresponding 
positions of the particle. The difference f(x+u) – f(x)  is the displacement of the 
particle during the time-interval between the instants x and x+u. The particle moves 
at a constant velocity given by the function  ϕ(u). The velocity is the rate of 
displacement. 

Let  f(x)  be the costs of producing x units of the given commodity,  f  is the costs 
function of this commodity and  ϕ(u)  is the marginal costs.  

Let  f(x)  be the amount of heat needed to raise the temperature of a unit mass of 
the substance from 0 to x (measured in degrees). Then ϕ(u)  is the amount of heat 
needed to raise the temperature of a unit mass of the substance by one degree; ϕ(u) is 
the specific heat of the substance. 

Temperature extensibility can be approximated by linear function l=l 0(1+α∆t) . 
The value of the function φ(u)=l0α  describes the change of longitude of a solid 
according to the unit change of temperature. 

These definitions 1 and 2 of the limit and derivative of the function we use in our 
experimental teaching.  
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In Kluvánek`s opinion, more proofs in calculus can be carried out easier and he 
criticised the proof in the course of pure mathematics in Hardy (1995), because 
Hardy used the limits instead of continuity. 

Theorem. If a function f is differentiable at a point x and a function g is 
differentiable at he point y = f(x), then the composite function h = gf is differentiable 
at the point x and h´(x) = g (́y) f ´(x). 

Proof. Since f is differentiable at x, there exists a function ϕ continuous at 0 such that 
ϕ(0) = f ´(x) and  f(x+u) – f(x) = ϕ(u)u  for all u in a neighbourhood of 0. Since g is 
differentiable at y, there exists a function ψ continuous at 0 such that ψ(0) = g  ́ (y) 
and  g(x+v) – g(x) = ψ(v)v, for all v in a neighbourhood of 0. 

Hence, 

h(x+u) – h(x) = g(f(x+u)) – g(f(x)) =  

= g(f(x) + (f(x+u) – f(x))) – g(f(x)) = g (f(x) + ϕ(u)u) – g ( f(x)) =   

= ψ (ϕ(u)u) ϕ(u)u   

for every u in a neighbourhood of 0. 

Let χ (u) = ψ(ϕ(u)u)ϕ(u) for every u such that ϕ(u)u belongs to the domain of the 
function ψ. By properties of continuous functions, the function χ is continuous at 0 
and our calculation shows that h(x+u) – h(x) = χ (u)u for every u in a neighbourhood 
of 0. Hence, the function h is differentiable at x and 

 h (́x) = χ (0) =ψ (0) ϕ(0) =  g (́y) f ´(x)   

Kronfellner (1998) proposed to integrate history of mathematics in the teaching 
process. This is possible also in case of a derivative. Kronfellner (2007) used the next 
example of the derivative of x3 according to Isaac Newton (1643 – 1627) from his 
“Quadrature of Curves”: 

“In the same time that x, by growing becomes x + o, the power x3 becomes (x+o)3, or  

x3 + 3x2o + 3xo2 + o3 

and the growth or increments  

(x + o) – x = o and (x + o)3 – x3 = (x3 + 3x2o + 3xo2 + o3) – x3 = 3x2o + 3xo2 + o3 

are to each other as 

1 to 3x2 + 3xo + o2 

Now let the increments vanish, and their “last proportion” will be 1 to 3x2, whence 
the rate of change of x3 with respect to x is 3x2.”     

Popp (1999) presented Fermat`s method of searching of extremes. This method is 
based on the fact that the difference between functional values f(x) and f(x + h) is 
small, because the number h is “near to zero”. We apply this to the quadratic function 
f(x) = ax2 + bx + c: 
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                                 f (x) ≈ f (x + h)  

ax2 + bx + c ≈ a(x + h) 2 + b(x + h) + c 

           ax2 + bx ≈ ax2 + 2ahx + ah2 + bx + bh  

    0  ≈ 2ahx + ah2 + bh  

         0  ≈ 2ax + ah + b 

Now if h = 0, then  0 = 2ax + b and 
a

b
x

2
−= . 

If we will find the derivative of a function f by this method, we can use the 
interpretation of derivative as a slope of the tangent of the function f. For this reason 
we use the function g(x) = f(x) – sx. Now we calculate the derivative of the function 
f(x) = x2. In this case g(x) = x2 – sx. We use now similar algorithm than by quadratic 
function: 

                         g (x) ≈ g (x + h)  

                x2 – sx ≈ (x + h) 2 – s.(x + h)  

                      x2 – sx ≈ x2 + 2hx + h2 – sx – sh  

                   0  ≈ 2hx + h2 – sh  

                 0  ≈ 2x + h – s 

Now if h = 0, then  0 = 2x – s and 
2

s
x =  or s = 2x. This result is very similar to y´=2x. 

The problem of Fermat`s method is that it is partially not correct. The number h is 
used in different senses. First, it is the finite number which we use for division. After 
the division we suppose h = 0. Popp expect that this problem solved in the history of 
mathematics Gottfried Wilhelm Leibniz, but the complex solution is provided by the 
nonstandard calculus. 

EXPERIMENTAL TEACHING 

Barbé J., et al. (2005) described two basic didactical aspects of teaching limits. The 
first is algebra of limits. It assumes the existence of the limit of a function and poses 
the problem of how to determine its value – how to calculate it – for a given family of 
functions. This aspect prevails in Slovakia. Unfortunately a lot of students calculate 
the limits mechanically without understanding.  

The second aspect topology of limits emerges from questioning the nature of “limit of 
a function” as a mathematical object and aims to address the problem of the existence 
of limit with respect to different kind of functions. This aspect is seldom used in 
Slovakia. Similar situation is also when teaching of derivatives.    

We carried out an experimental teaching devoted to understanding by students the 
notions of finite limit and derivative of a function at a point. We will stress to 
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students not to calculate the limits and derivatives mechanically. We stress to 
students the existence and non-existence of limits and derivatives. We use in our 
experimental teaching the calculus concept developed by Professor Igor Kluvánek. 
Our experimental group consisted of 27 students of the St Andrew secondary school 
in Ružomberok.  

The goal of the research was also to analyze the students’ mistakes and to find their 
roots. The problems we have solved with students are usually not contained in typical 
mathematical textbooks. In this article we describe qualitative research using excerpts 
from student answers in the framework of field notes method.  

The notion of the limit we introduced by the definition 1 via continuity of the 
function at a point. We used this definition for the examples, which we solved with 
students using graphs. For this approach we have been inspired by Habre & Abboud 
(2005). They show that the students have a better capability of handling the 
difficulties with derivatives, if they assimilated the notion of derivative visually.    

Dominik: =+
→

)32(lim
3

x
x

           D( f ) = R        




=

≠+
=

.3for

,3for32
)(

xL

xx
xF  

Teacher: Sketch the graph of the function F for x ≠ 3. 

(Dominik sketched the graph, see Figure 1)  

Teacher: What we have to do in order that 
this function becomes to be continuous? 

Miroslava: We fill the circle. 

Teacher: Which functional value at the point 
3 do we use? What does it mean for the limit 
of the function at the point 3? 

Dominik: 9 and so  =+
→

)32(lim
3

x
x

9.  
Figure 1 

 

Erika:  =
−→ 3

1
lim

3 xx
  







=

≠
−=

.3for

,3for
3

1
)(

xL

x
xxF        

 Teacher: Is it possible to find the value F(3) 
so that this function becomes to be 
continuous? 

More students from the class: It’s impossible. 

Teacher: What does it mean for the limit of 
the function at the point 3?  

Erika: It doesn’t exist.  
Figure 2 
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In the similar way the students calculate with the help of graph the limit 

3

542
lim

3

3 −
−

→ x

x
x

. After this example the students calculate the limits without graphs and 

this teaching unit we ended by the following example: 

Example 1. Which of the following functions has limit at the point 1? Describe your 
argumentation. 

 
Figure 3 

Every student made some mistakes. One half of them wrote, that the function in a) 
has limit. In b) only 3 students did so. It was difficult for students to understand that 
if the function is not continuous at one point and has some functional value at this 
point, then this function can have a different limit at this point. Three quarters of 
students wrote the correct answer that the function in c) does not have a limit.  One 
student wrote that the function in d) has a limit because this function is defined at the 
point 1. Similar mistake committed 20 percent of students in e). In f) and g) 25 
percent of students wrote that these functions are continuous at the point 1 and wrote 
nothing about the limit. The function in h) was difficult for three quarters of students. 
They wrote that this function hasn’t a limit at the point 1, one student wrote that this 
function is not continuous at the point 1. 

Similar conception to build a notion in calculus teaching via continuity was used 
when we introduced the derivative of the function at a point. The function              

ϕ(u) 
u

xfuxf )()( −+
=  from Definition 3 was replaced by the function of the slope 

of chord given by formula 
ax

afxf
xs af −

−
=

)()(
)(, . We illustrate our procedure in next 

example. 
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Teacher: Calculate the derivation of the function y = x2 at the point 1 from the definition! 

Robert: 2xy = , 1=a .  






=

≠
−
−

=
.1

,1
1

1
)(

2

1,

xk

x
x

x
xsf  1

1

)1)(1(

1

12

+=
−

+−
=

−
−

x
x

xx

x

x
 





=

≠+
=

.1

,11
)(1, xk

xx
xsf  

Teacher: Do you know to describe the graph 
of the function 1+= xy ? 

Robert: The line.  

Teacher: More precisely. 

Robert: The straight line. 

Teacher: What is it possible to add so that the 
previous function becomes continuous? 

 
Figure 4 

Miroslava: We have to fill the circle. 

Teacher: How? 

Ivan: By number 2. 

Teacher: What does it mean for the value of derivation of the function y = x2 at the point 
1? 

Robert: It is equal to 2. 

Teacher: We considered functions with derivation at every point of the domain. Now, we 
are going to deal with functions having no derivation at least at one point. 

Pavol: f ´ (2) = | x – 2|  f ´ (2) = ?              




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≠
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Teacher: Is it possible to extend the function (to 
define its value at 2) so that it becomes 
continuous? 

Lukáš, Lucia: No, it isn’t. 

Teacher: What does it mean for the derivation 
at the point 2? 

Pavol: It doesn’t exist. 

 
Figure 5 

We worked now with derivative of polynomial functions and after we give the 
students following example: 
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Example 2. Which function      of 
the next functions (see Figure 6) 
has the property  f ´ (3) = 2? 

Only 15 percent of student 
correctly solved this example. 
The correct answer in a) had 90 
percent of students, but incorrect 
answer in b) had 60 percent and 
incorrect answer in d) had 40 
percent of students.  The correct 
answer f) had 25 percent of 
students. Nobody had incorrect 
answers c) and e). 

 
Figure 6 

CONCLUSIONS 

At the end we borrow few lines from Kluvánek (1991): 

“If the reader does not value mathematics and mathematical analysis more than a 
comfortable feeling that the way calculus is taught at his and other famous 
universities is essentially all right, then for him the present paper does not have much 
to say.” 

We feel that the quality and the amount of intellectual activities needed to 
transform the mathematics understood (limit and derivation of a function at a point) 
into the mathematics suitable for teaching should never be undervalued. The effort 
needed to understand mathematical knowledge matches the effort to invent it. If one 
wants to write a good mathematics textbook, he has to carry out a mathematical 
research in the usual sense of the word. In our paper we wanted to follow the idea 
cited above. From the historical point of view very similar approaches is possible to 
find by Karl Weierstrass (1815 – 1897), because in his lectures of 1859/60 gave 
Introduction to analysis.   

We believe that practically there is not sufficient effort to understand problems 
related to the existence of a limit and a derivation of a function at a point. Our 
approach makes teaching basic notions and solving problems easier. Students are able 
to solve most of problems applying the before mentioned method. 

The exploitation of graphs provides opportunity to solve and calculate limits and 
derivations of a function at a point without mechanical calculations. Graphs of 
functions not only provide easy specification of the value of limit and derivation of a 
function at a point, but they lead to visual understanding of its nonexistence, too.  

We are agree with results in Tall D. et al. (2001) in the sense that teaching limits and 
derivatives should be done in the wider context of learning mathematics through 
arithmetic, algebra, calculus and beyond. We show that it is possible to build the 
notions not mechanically, but with understanding. In our experimental teaching we 
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also carried out an output test which shows that the visual representation of limits and 
derivative helps students to solve the examples devoted to understanding the notions 
in question (especially existence and non-existence of limits and derivative).    

Visual representation of calculus notions is important in the international studies such 
PISA and TIMSS. Interesting research about using graphs in the teaching process can 
be found in Cooley, Baker, & Trigueros (2003).  

Remark: Supported by grants MVTS ČR/Poľ/PdgFKU/08 and 141967-LLP-1-2008-
GR-COMENIUS-CMP PREDIL  

 

REFERENCES 

Barbé J., et al.: (2005), Didactic restrictions on the teacher’s practise: the case of 
limits of functions in Spanish high schools, Educational Studies in Mathematics 
59, 235-268. 

Cooley L., Baker B.,  &  Trigueros M.: (2003), Thematization of the Calculus 
Graphing Schema, Proceeding of the PME-NA Conference, 57-64. 

Hardy G. H.: (1995), The course of pure mathematics. Heidelberg; Berlin; Oxford: 
Spektrum Akademischer Verlag. 

Habre S., Abboud M.: (2005), Students´ conceptual understanding of a function and 
its derivative in an experimental calculus course, Journal of Mathematical 
Behavior 25, 57-72.          

Hecht T.: (2000), Matematická analýza. Logika. Bratislava: Orbis Pictus 
Istropolitana. 

Kluvánek I.: (1991), Čo nie je dobré vo vyučovaní matematickej analýzy? I/II. In: 
Matematické obzory  36, 23 – 49/37, 47 – 66. 

Kronfellner M. (1998), Historische Aspekte im Mathematikunterricht. Eine 
didaktische Analyse mit unterrichtsspezifischen Beispielen. Wien: Verlag Hölder – 
Pichler – Tempsky.  

Kronfellner M.: (2007), Historical Aspects in Calculus Teaching, Mathematics at 
School now and tomorrow. Ružomberok: PF CU, 39 – 48. 

Popp W.: (1999), Fachdidaktik der Mathematik. Köln: Aulis Deubner Verlag. 

Riečan B. et al. (1987), Matematika pre 4. ročník gymnázia. Bratislava: SPN. 

Tall D. et al.: (2001), Symbols and the Bifurcation between Procedural and 
Conceptual Thinking, Canadian Journal of Science, Mathematics and Technology 
Education 1, 81–104. 

Tall, D. & Vinner, S.: (1981), Concept image and concept definition in mathematics 
with particular reference to limits and continuity, Educational Studies in Mathematics 
12, 151-169. 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2425



  

FACTORS INFLUENCING TEACHER’S DESIGN OF 
ASSESSMENT MATERIAL AT TERTIARY LEVEL 

Marie-Pierre Lebaud 

UFR mathématiques, Université de Rennes 1, France 

We study the process of design of examination papers in the first year of French 
university and identify some institutional constraints and some teachers' beliefs that 
influence this process. 

Keywords: university expectations, teacher’s collective work, documentary genesis, 
assessment material 

INTRODUCTION 

Numerous research works considered the difficulties met by the universities' first-
year students. These works identify various reasons for those difficulties, offer 
various interpretations and develop various means of didactic action. The attention of 
researchers was initially centred on the new knowledge met and was then devoted to 
the new reference consisting in the practices of the expert mathematicians.  It 
eventually moved upon new institutional expectations (see for a synthesis Gueudet on 
2008). It led in particular to observe that students' private work is focused on learning 
how to mimic techniques, whereas teachers expect that students develop a real 
mathematical autonomy (Lithner 2003, Castela 2004). 

The researchers who made those reports highlighted a difference between teachers' 
expectations and institutional expectations, the latter being particularly visible 
through the exam subjects. Those would in fact be organized around the mimicking 
of methods studied during the tutorials. As teachers of the tutorial write the 
examination texts, the latter would choose to question students on simple contents, 
such as exercises similar to those studied and corrected in class, notably to avoid a 
too important failure. Yet, the impact of evaluations on the work of students is very 
important (Romainville 2002). Besides many innovative teaching designs propose 
new assessment modes, such as group projects with oral examinations (Grønbæk and 
Winsløw 2006). 

Here we do not wish to suggest an innovation, but simply to investigate whether 
examinations are really related to the mimic of methods. In the case of a positive 
response, we try to understand why university teachers propose such evaluations. 
This preliminary study will allow us to propose other modes of assessments. 

This paper is directly related to the themes of CERME 6 group 12, adopting a 
mathematics-centered perspective about the teaching at tertiary level, and considering 
the important part of effective teaching settings constituted by assessments.  

The development of an examination text is a documentary work, implying various 
resources, generally carried out in a collaborative way by a team of teachers. The 
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documentary approach of didactics (Gueudet and Trouche in press) showed that such 
a work was influenced by beliefs, expectations, etc., of teachers, and that documents 
resulting from this work influenced in return these beliefs (Cooney 1999). This 
process of both development of documents (here of examination texts) and evolution 
of teachers' beliefs depends strongly on the institutional context. The institution 
indeed influences its actors through a system of conditions and constraints which can 
be very general or related to precise contents (Chevallard 2002) and which shape the 
knowledge within the institution. 

Considering this point of view, we chose to study a first-year mathematics course in a 
French university, for which we followed the development processes of the 
examination texts. In section II, we present this tutorial and our methodology. We 
noted that the assessment relates only to the mimics of techniques. Thus, our central 
question here is the following one: 

Which institutional conditions and constraints and which beliefs of the teachers 
control the choices carried out during the development of the examination papers? 

We give some elements of answer by analyzing in section III the institutional 
constraints, conditions, and beliefs of teachers who lead to the choice of a specific 
exercise. In section IV, we illustrate the consequences of these constraints through the 
successive evolutions of the statement of a given exercise, and also show the 
phenomena of inertia related to the manner in which the examination papers are 
developed. 

Finally, we conclude by evoking possible clues for an improvement of the assessment 
practices that could foster the students' mathematical activity. 

CONTEXT AND METHODOLOGY OF THE STUDY 

We study more particularly a mathematics course from the first semester in a French 
university. This course is devoted to students graduating in physics. 

During the first semester, students follow six courses, only one being in mathematics.  
Our choice came from the author's involvement in the course. We initially thought 
that the context (teaching mathematics to Physics students) could lead to exercises 
coming from physics situations in the examination papers. We quickly noted that it 
occurred neither in the tests, nor in the sheets of exercises. We will not improve this 
question here. 

To help with the secondary-tertiary transition, this course - like all those of the first 
semester - is organized in small groups of about thirty students (five groups), each 
group having a unique mathematics teacher.  The course is 4 hours a week over 12 
weeks. To ensure coherence between the various groups, a blow-by-blow program 
(the topics studied are specified, as well as the time that should be devoted to them) is 
given to each teacher and the sheets of exercises are the same for every group. Both 
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program and sheets of exercises come from the background of the teachers involved 
in this course during the two previous years. 

The contents were chosen according to the mathematical tools necessary in the other 
courses: complex numbers, study of functions, Riemann integrals, first and second 
order linear differential equations. It thus contains secondary level knowledge in each 
of the first three topics, with each time a deepening and new knowledge: nth roots of a 
complex number, inverse of trigonometrical functions, change of variables in an 
integral... All these topics are introduced to solve some kinds of differential 
equations. 

The assessment consists of two one hour-long exams at the end of week 5 and of 
week 9 and of a two hours-long final one at week 12 (just after the end of teaching). 

The mark of a student is the maximum mark between the final exam and a weighted 
average of the three tests (1/4 for each one hour exam, 1/2 for the last one). Indeed 
this topic should deserve a specific study and we will not study it in this article. 
Students who don’t succeed have a resit, but we focused on the three tests that gave 
the first final mark. 

The development's work of examination texts is shared out at the beginning of the 
course among the teachers: the first exam (CC1) was entrusted to Omar and Georges, 
the second one (CC2) to Omar and Thierry while the final examination paper (E) was 
prepared by Marc (responsible for this course), Thierry, Georges and Marie-Pierre 
(author of this paper). In the three cases, the appointed teachers initially worked 
together before proposing an almost finished text to the other ones.  

The data were gathered through interviews (appendix A) of teachers involved in a 
same exam, initially before the development work to question them about their 
intentions, then to discuss their choices afterwards. We paid attention on the 
following points: coordination between the teachers and supports used for the 
development of the text, choices for the contents of this one and objectives that 
guided these choices. 

We now will present the analysis of the gathered elements. 

CONSTRAINTS AND BELIEFS: REASONS FOR IMPLEMENTATION OF 
METHODS 

The examination texts given since September 2004 (i.e. during 4 academic years) are 
mainly composed of exercises aiming to the use of methods learned during this 
course. In this section we detail various aspects of this choice, and the reasons for it, 
by illustrating our point with an exercise, which seemed to us emblematic. 

Texts of assessment: agglomerates of short exercises 

Each examination paper is made up of a list of short exercises: it never relates to one 
or two long problems. Various reasons lead to this choice. First, the duration of 
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exams (1 h or 2 h) is limited (the mathematics exam of the French end of secondary 
school certificate for scientific students, "Baccalauréat S", lasts 4 hours). This 
duration is an institutional constraint of general level; in particular, the 3 hours 
examinations were gradually removed at the University of Rennes 1 in order to make 
possible two examinations in the same half-day: it optimizes the occupancy of the 
rooms of examination and the working time of the university porters. This 
optimization is crucial because of the increase in the number of exams. Indeed, it is 
observed "the bursting of the academic year in semesters and the courses in units of 
teaching involved an increase of the number of evaluations" (Gauthier & al 2007) 

Beyond this time constraint, a big factor emerges from our interviews, factor which 
deals with the objectives that the teachers assign to assessment, and thus of what we 
name under the generic term of belief: an evaluation must include all the parts of the 
previous program, particularity that we will name the belief of exhaustiveness. Omar 
stresses that an assessment must make it possible for the student to have a diagnosis 
of his knowledge: any gap could then be filled before the following tutorial. This 
diagnosis must thus be complete. This argument is not valid any more for the final 
examination; however, Marc regards as very important the fact that the examination 
paper covers all the contents, on the one hand to force the students to revise 
everything, and on the other hand "to draw a distinction between those who have been 
working enough and those who have not". However, the content of this course is divided 
in five chapters: this is also an institutional constraint, which relates more directly to 
the mathematical contents and which we name constraint of the knowledge 
organization. Now, the final examination paper generally consists of five exercises 
(or four exercises, with one in two sections) 

Moreover, assessment never consists in long problems because of the importance 
attached to the success rate:  teachers fear a "snowball effect" (Omar) of a mistake 
because of linked questions. We will return now to this fundamental factor. 

Exercises of detailed implementation of methods 

Let us consider the following exercise, resulting from the final examination paper 
(December 2007): 

1. Determinate the square roots of 3+4i. 

2. Solve, in C, the equation z2 +3iz-3-i=0. 

We want to underline some important points about this exercise. It applies the method 
of resolution of quadratic equations with complex coefficients, method learned during 
the tutorial. The intermediate calculation of square roots is the subject of the first 
question. Thus the student can check the result in question 2), since they have to find 
the value given into 1) (it is a typical effect of contract didactic, Brousseau 1997). In 
addition, all the numerical values are whole numbers, never exceeding two digits, 
which allows the student to check very easily, and even allows a relatively effective 
method by trial and error in question 1. 
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However, this exercise is emblematic of such assessment. The same kind of exercise 
is found in each subject of the first exam and of the last one for the 4 last years.  

The use of whole numbers is an institutional constraint specific to mathematics in the 
first year at the University of Rennes 1: the constraint of ban on calculators. This 
constraint is associated with the teachers' beliefs of the need for the students to 
understand calculations that a software can carry out automatically: this topic requires 
a specific study, which we will not undertake here. 

The primary reason that explains the choice of such an exercise is the objective of a 
sufficient success rate. This clearly appears in the exchanges of emails, when this 
exercise is proposed, following remarks on the fact that “it misses complex numbers” 
(Georges); “one could have put a short exercise, but easy, on the complexes” (Thierry). 
Marc then suggests the exercise saying: “It should easily improve their marks. What do 
you think about it?” The other teachers approve: "this exercise seems very fine to me" 
writes Georges. "I agree with Georges, as that will increase the chances of the students" 
Thierry adds. In his interview, Marc recognizes that question 2 could have been only 
asked, but, according to him, question 1 ensures that the intermediate stages will be 
visible in the writing of the students, thus making it possible “to give points”. 

The constraint of success rate is crucial in the choices of examination papers on all 
school levels, but perhaps even more in universities in scientific studies, victim of 
disaffection. The average mark for a given course cannot be under 10.  This exercise 
provides any student who attended the course with 2 valuable points. The degree of 
freedom left to teachers for the development of the assessment is restricted by these 
constraints and beliefs. This, however, is not enough to explain the astonishing 
similarity of the examination papers year after year. 

RULES IN ACTION: GENESIS OF AN EXERCISE 

We saw in previous section some very strong constraints and beliefs: time constraint; 
belief of exhaustiveness associated with the constraint with the knowledge 
organization; constraint/belief of ban on calculators; constraint/belief of success rate. 
We will now see their influence upon the development of one of the exercises of the 
second exam. 

Work in each group of the appointed teachers always started by the choice of the 
contents to evaluate. These contents are divided into exercises, and each teacher then 
assumes the wording of some of these exercises. 

During their first meeting, Omar and Thierry identify four contents of knowledge to 
be evaluated in the second examination: integration with, on the one hand its 
definition and on the other hand calculations, then two topics on functions. The 
exercise that we will study was relating to the definition of the Riemann integrals, i.e. 
by the integral of step functions. Omar was in charge of its drafting. 
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A non-standard exercise is proposed 

The first text proposed by Omar is given in appendix B. The announced objective 
was the approximation of ln(2) by integrals of step functions "In the first questions, the 
objective is to make them calculate the integral of step functions, then, in the last one, to see 
that it is convergent, therefore to make them apply what they learned". Omar is a young 
teacher (PhD student): he proposes a relatively non-standard exercise. 

He wanted to give sense to the calculations usually requested from the students by 
showing that these calculations yield the approximation of ln(2). 

Omar submits this exercise to Thierry thinking it is too long (time constraint) and that 
the only first three questions will be kept. The exercise looking indeed too long to 
Thierry, he decides, after having spoken about it with Marc, to remove the last two 
questions "it is a little long, it is necessary to remove the question which embarrasses more 
the students, therefore n ". One thus finds the constraint of success rate to which one 
could add a belief of the teachers that calculation with parameters are too difficult for 
students. We will not speak about this didactic difficulty, which does not enter within 
the framework of our study. 

Change of aim 

Thierry will not be satisfied with the simple shortening. He will return it strongly 
modified to the great distress of Omar: the idea of approximation (chosen to give 
sense to calculations) completely disappeared. There remains only the calculation of 
integrals of step functions. The values remain the same ones with two exceptions: the 
value of f on the interval ] 4/3,5/3 [ became negative and f takes a different value in 
point 4/3. This second change is, according to Thierry, “to see whether the students 
understood that integration is independent of the choice of the value in a point”. The 
change of sign allows the calculation of the integral of f, then of its absolute value. 
The set aim is, always according to Thierry, to evaluate a usual error: “there are people 
who are also mistaken, [thinking that] the absolute value of the integral is the integral of the 
absolute value”. 

In both cases, the aim is not to check the understanding of the implementation of a 
method, but rather of mathematical concepts. In the first case, the question illustrates 
a concept, whereas, in the second one, it illustrates some properties of this concept. 

This exercise is also non-standard in the choice of the numerical values. If the choice 
of these values had a mathematical reason at the beginning (approximation of the 
function 1/x), they were kept in the final version, in spite of a relative opposition of 
the other teachers. Marc will ask for example: "do you really want all those 1/3...?" He 
will add, at the end of the module, that: “the colleagues for the second control were a 
little creative, which resulted in the average not being good”. One finds again the 
constraint of success rate, here joined however with the belief that to propose non-
standard exercises (that is to say exercises not present in the sheets of exercises) will 
not answer the institutional constraint of success rate. However here, this exercise, 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2431



  

that Marc qualifies the “creative one”, did not induce a specific failure of the students 
contrary to the opinion that he expresses. 

There thus still exists a certain degree of freedom in the design of the subjects, but it 
seems to be exploited only by young teachers (Thierry has been teaching only for 4 
years). It would be interesting to follow their later evolution. 

The effect of documentary geneses 

Our observations show that the documentary geneses constitute an important factor of 
inertia. All the teachers consulted past papers: either for the contents of the exercises 
by changing only some values, or in the structure of the evaluation with the choice of 
the exercises' number and of the selected topics. "The reasons for which I thought of 
making 4 [exercises], it is that the last time, they were 4” tells us Omar who will 
recognize: “I nevertheless looked at past papers” and “I looked at the exercises' sheets to 
give exercises which are not completely new”. Marc will be more positive on this point: 
“ the exam is rather standard; examination papers always have 5 exercises out of the 5 
topics. […] I asked people to send exercises on the 5 topics”. Past papers are distributed 
to students before each exam and are corrected during the course. Students 
interpreted thus these texts as matching to the didactic expectations of the teachers. 

The teachers looked at these former subjects in their development of a new 
examination paper because they made it possible to obtain the average expected by 
the institution. “The average [with CC2] was not good and so I absolutely wanted to make 
again a [standard] subject” will acknowledge Marc 

Which didactic actions can one consider following this study? We give hints in the 
conclusion below. 

CONCLUSION AND PROSPECTS 

Our study deals with the teachers' activity, and more precisely with a part of this 
activity which goes on apart from the class. It must not be forgotten that the students 
and their learning constitute the central objective of our work.  We stressed the 
importance of the questions of didactic contract in the teachers' choices of 
assessment. However the didactic contract involves teachers as well as students, and 
fixes the responsibilities for each one concerning the knowledge. The past papers 
constitute for the student a central reference, determining the institution expectations. 
Exam texts are composed of short exercises, consisting most of the time of the 
implementation of techniques: thus the private student's work turns naturally to the 
mimics of techniques.  

Beyond this consequence on students' work, one observes an influence of the 
assessment on the teaching contents, and on the evolutions of these year after year. 
This extract of Marc's interview seems extremely significant to us in this respect: 

“The more I teach this course, the more I… for example last year [...] I defined the integral 
[...] This year I said: listen, it has something to see with the area [...] if I teach that still 2,3 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2432



  

years I do not know what will remain. I make really more and more recipes by requiring 
nevertheless more rigor than in the physics tutorials.” 

“According to you, what leads you to teach more recipes? ” 

“The level of the students and the expectations of the students.” 

Marc gives us the worrying description of a teaching emptied little by little of its 
contents, because of the “level of the students” (perceptible by their marks) and their 
expectations; however these expectations are largely determined by the didactic 
contract, and thus by the examination texts. 

Thus to leave the present situation, to escape in particular inertia related to the 
documentary geneses, seems to us a real need. 

To master methods is important in mathematics. Part of the assessment could be 
officially turned towards this objective. It would even be possible to make pass such 
an exam on computer by using e-exercise bases (such as WIMS, Cazes et al. 2007). 
Indeed, the implementation of methods is hardly the requirement object of wording: 
assignments were not corrected. 

An exam on computer, directly providing a mark, could make it possible to free up 
time for another mode of assessment, based on a real problem solving, and to give 
place to a written work. Must this work have a time limit; must it be completed by an 
oral examination? The precise organization has to be specified. 

In addition, in particular for a course involved in the mathematical tools for physics, 
the use of a calculator seems absolutely necessary to us. Indeed, the use of whole 
numerical values is clearly out of touch with the physical situations. Our study shows 
that a change of assessment, and even a joint change of the pedagogic resources and 
practices, are essential if the mathematics teaching at University must contribute to 
the increasing of students' mathematical autonomy. 

The context of our work was a course for Physics students: what about assessment in 
the case of Mathematics students? We conjecture a similar development - testing 
rather methods - but a precise study has to be done. 
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APPENDIX A 

Questionnaire before the development of the examination paper (written 
answers) 

1. What coordination is planed between the teachers dealing with the conception of 
the examination paper (meetings, mail exchange...)? 

2. What coordination is planed with the other teachers of the tutorials (contents of 
the assessment, proof reading...)? 

3. Which resources do you expect to use (exercises books, past papers of this tutorial 
or of another one...)? 

4. Which a priori shapes do you think to give to this exam (exercises, problems, 
multiple-choice questionnaire)? Why? 

5. What do you want to assess in this exam? 

Questionnaire after the test (interview guide) 

1. Presentation of the teacher and his teaching experiences. 

2. Looking back on the first questionnaire: Has the conception of the examination 
paper happened as expected? Otherwise, what have been the changes, and why? 
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3. Analysis of the examination paper, exercise by exercise. Details of choices and 
expectations. As far as the intermediate exams are concerned: which exploitation 
during the next tutorials? 

4. In general about the reasons for the choices made in the conception of an 
examination paper in this course: 

• To give something close to exercises made in the tutorial 
• To give something which allows to adapt the teaching according to the 

results of the test 
• To test all the studied contents 
• To test the most important points (which one ?) 
• To test what will be useful for the following tutorial 
• To respect the time-frame 
• To give a subject quick to correct 

APPENDIX B 
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DESIGN OF A SYSTEM OF TEACHING ELEMENTS OF GROUP 
THEORY 

Ildar Safuanov 
Moscow City Pedagogical university 

 
In order to teach on the basis of the genetic approach, one should undertake an 

analysis consisting of the following two stages: 1) a genetic elaboration of the subject 
matter and 2) an analysis of the arrangement of contents including a consideration of 
various ways of representing it and its effect on students. The genetic elaboration of subject 
matter consists in the analysis of the subject from four points of view: historical, logical, 
psychological and socio-cultural. Also important is the epistemological analysis of the 
subject. We describe here the design of the system of study of the concepts of group theory. 
 
Keywords: tertiary mathematics education, teacher education, group theory, genetic 
approach, genetic teaching. 

1. INTRODUCTION. 
In this paper, we describe the design of the system of teaching of the concepts of 
group theory using the genetic approach. Recently, teaching of group theory was 
discussed in the number of papers, and modern textbooks on the subject appeared, 
see, e.g., Armstrong (1988), Burn (1985), Burn (1996), Dubinsky, Dautermann,  
Leron & Zazkis (1994), Dubinsky & Leron (1994), Leron & Dubinsky (1995), Zazkis 
& Dubinsky (1996). 
However, in the textbooks created by M. Armstrong and R.Burn, only geometrical 
sources of group theory are emphasized and used for motivating the learning. Articles 
are mainly restricted to using constructivist teaching or APOS theory (Dubinsky & 
McDonald, 2001). 
Our approach based on the genetic principle combines historical and epistemological 
elaboration of the subject matter with psychological and socio-cultural aspects and 
allows to construct effective system of teaching the subject.  
In preparation of the system of teaching, we also use the principles of concentrism 
and of multiple effect (Safuanov, 1999). 
The principle of concentrism requires the following means in teaching a subject: the 
preparation and, in particular, the anticipation; the repetition on the higher or deeper 
level and the increase; the fundamentality (the deep and strong study of the carefully 
selected foundations of a discipline). 
The principle of multiple effect (on students) states that the essential educational 
result can be achieved not with the help of one means, but many, directed to one and 
the same purpose. For example, the following means of expressiveness may be used 

WORKING GROUP 12

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2436



in teaching undergraduate mathematics: the variation, splitting (subject matter into 
smaller pieces), the contrast. 

2. SYSTEM OF TEACHING BASED ON THE GENETIC APPROACH 
In (Safuanov, 2005) the genetic approach in the teaching of a mathematical discipline 
(a section of a mathematical course, an important concept, or a system of concepts) is 
described. Its implementation requires two parts: 1) a preliminary analysis of the 
arrangement of the content and of methods of teaching and 2) the design of the 
process of teaching. 
The preliminary analysis consists of two stages: 1) the genetic elaboration of the 
subject matter and 2) the analysis of the arrangement of contents, the possible ways 
of representation, and the effect on students. The genetic elaboration of the subject 
matter, in turn, consists of the analysis of the subject from four points of view:  
historical;  
logical;  
psychological;   
socio-cultural.  
The purpose of the historical analysis is twofold: 1) to reveal paths of the origin of 
scientific knowledge that underlie the educational material and 2) to find out what 
problems generated the need for that knowledge and what were the real obstacles in 
the process of the construction of the knowledge. 
For the construction of the system of genetic teaching, it is very important to develop 
problem situations on the basis of historical and epistemological analysis of a subject. 
The major aspect of the logical organization of educational material consists in 
organizing a material in such way that allows the necessity of the construction and of 
the development of theoretical concepts and ideas to be revealed.  
The psychological analysis includes the determination of the experience and the level 
of thinking abilities of the students (whether they can learn concepts, ideas and 
constructions of the appropriate level of abstraction); and the possible difficulties 
caused by beliefs of the students about mathematical activities. The analysis also has 
the purpose of planning a structure of the students’ activities related to mastering 
concepts, ideas, and algorithms, of planning their actions and operations, and also of 
finding out the necessary transformations of objects of study.  
One more purpose of the psychological analysis of the subject matter is finding out 
ways to develop the motivation for learning. 
The socio-cultural analysis allows us to establish connections of the subject with the 
natural sciences, engineering, with economical problems, with elements of culture, 
history and public life; to reveal, whenever possible, non-mathematical roots of 
mathematical knowledge and paths of its application outside mathematics. 
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During the second part of the analysis, considering the succession of study, it is 
necessary, in accordance with the principle of concentrism, to find out, on the one 
hand, which concepts and ideas studied before should be repeated, deepened and 
included in new connections during the given stage, and, on the other hand, which 
elements studied at the given stage, anticipate important concepts and ideas, which 
will be studied more deeply later. 
The principle of multiple effect on students requires also the search for the 
possibilities of multiple representation of concepts under the study, possibilities of 
using three modes of transmission of information (active, iconic and verbal-
symbolical) and other means of effect on students (the style of the discourse, 
emotional issues, elements of unexpectedness and humor). 
After two stages of analysis, it is necessary to implement the design of the process of 
study of the educational material. We divide the process of study into four stages.  
1) Construction of a problem situation. In genetic teaching, we search for the most 
natural paths of the genesis of processes of thinking and cognition. 
2) Statement of new naturally arising questions 
3) Logical organization of educational material 
4) Development of applications and algorithms. 
According to principles described above, we present here the design of a system for 
the teaching of the concepts of group theory. 

3. THE PRELIMINARY ANALYSIS.  
1) Genetic development of a material.  
a) Historical analysis. 
F.Klein, who had brought in the essential contribution to the development of the 
group theory due to “Erlangen program” of the study of geometry through the study 
of groups of geometrical transformations, argued that “the concept of a group was 
originally developed in the theory of algebraic equations” (Klein, 1989, p. 372). 
Thus, groups, in his opinion, have arisen as groups of permutations. However, such 
fundamental concept as a group had also other roots in mathematics. As indicated in 
“The Mathematical encyclopedic dictionary” (1988, p. 167), sources of the concept 
of a group are in the theory of solving algebraic equations as well as in geometry, 
where groups of geometrical transformations have been investigated since the middle 
of the 19-th century by A. Cayley, and in number theory, where in 1761 L.Euler “in 
essence used congruences and partitions into congruence classes, that in the group-
theoretic language means decomposition of a group into cosets of a subgroup” (ibid.). 
However, abstract groups were introduced by S.Lie only at the end of the 19-th 
century.  
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The main conclusion from this historical analysis is that the theory of groups has 
grown out of the development of many diverse ideas and constructions in 
mathematics and serves to the generalization and more effective theoretical 
consideration of these ideas and constructions. 
b) Logical and epistemological analysis.  
For the introduction of the concept of a group, the preliminary knowledge of a lot of 
set-theoretical and logical concepts and constructions is necessary which can be seen 
from the detailed logical and epistemological analysis of the homomorphism theorem 
(Safuanov, 2005. p. 260). In turn, the group-theoretical concepts are used in the 
subsequent sections. Abelian groups are used in the definition of vector spaces, rings, 
ideals and fields. The cosets of a subgroup and quotient groups are used in the 
definition of cosets of ideals and quotient rings. The groups are used also in 
geometry, in the study of groups of linear, affine and projective transformations. At 
last, groups will further occur in useful for the future teachers special courses on 
Galois theory, on geometry of Lobachevsky etc. 
From the point of view of epistemology, groups serve for the organization of ideas 
connected to permutations, bijections and symmetries, therefore, examples connected 
to these ideas will serve to the good formation of the concept of a group in students’ 
minds.  
c) Psychological analysis. 
School graduates are not actually prepared for mastering such abstract concept as a 
group. They can not operate with general concepts of algebraic operations and even 
with mappings. Therefore, in particular, they can not freely investigate geometrical 
transformations and their compositions. 
On the initial stage, in our view, it is inexpedient to motivate the introduction of the 
concept of a group by examples of sets of transformations (for example, translations 
or rotations), because, as the experience of teaching geometry to the first year 
students of pedagogical universities shows, the geometrical imagination of many 
students (and spatial imagination in general) is very poorly developed. One more 
serious complication is bad understanding of quantifiers. On the initial stage the 
weaker students perceive quantifiers formally, poorly understanding and confusing 
their sense; they try to learn formulas with quantifiers by rote, confuse the 
arrangement of quantifiers in the formulas. As a result, the sense of the definition of a 
group becomes deformed, when the students try  to reproduce the definition: it turns 
out, for example, that for any element of a group there is a distinct neutral element or, 
on the contrary, for all elements of group there is a common inverse. For the 
elimination of these difficulties it is necessary to offer the students special exercises, 
performance of which would reveal the role of the arrangement of quantifiers. 
As the majority of the school graduates perceive mathematics mainly as actions with 
numbers, it is necessary to use these representations at the initial stage of the 
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construction of group-theoretical concepts. Besides, the school graduates remember 
such rules as associativity and commutativity of addition and multiplication, and 
these properties anticipate associativity and commutativity of group-theoretical 
operations. 
According to the activity approach (Leontyev, 1981, p. 527-529), in order to operate 
with group-theoretical concepts (for example, groups, subgroups, cosets), it is 
necessary that intellectual operations (say, finding out the structure of a group, 
construction of cosets of a subgroup etc.) were carried out at first as actions, i.e. as 
purposeful procedures. It accords also to Ed Dubinsky’s APOS (action - process - 
object – scheme) theory of the learning of concepts. Therefore it is necessary to plan 
skills which should be acquired by students at intermediate stages of learning group-
theoretical concepts. It is necessary to design actions, which should precede 
mastering these skills. For example, before the study of the general way of 
construction of cosets (as results  of the “multiplication” of the entire subgroup to an 
element of a group), the students should get experience of construction of concrete 
cosets of finite and infinite subgroups. 
One more remark of the psychological character. It is well-known that the concept of 
a group isomorphism is narrower than the concept of a homomorphism and, 
moreover, in some sense more difficult, as it includes rather complex requirement of 
the bijectivity of a mapping. However, the teaching experience shows that, 
nevertheless, at the initial stage it is expedient to acquaint the students only with the 
concept of an isomorphism, as it is easier to be interpreted as the “similarity” of 
groups in some sense (for example, the similarity of the multiplication tables of finite 
groups); it is easier and more natural also to consider various examples of 
isomorphisms than those of homomorphisms.  
d) Analysis from the point of view of possible applications. 
The concept of a group since several decades became rather popular part of the 
cultural property of mankind. For example, the psychologist J.Piaget tried to use this 
concept for theoretical study of the psychological theory; the experts in the quantum 
mechanics believed that the group theory can be used for solving any problem. The 
group theory turned out to be extremely useful in the search of elementary particles 
and in the study of the structure of chemical molecules. Of great interest are the 
consideration of symmetry groups of geometrical figures and the use of groups for 
the research of patterns. Good examples of the applications of the group theory are 
the investigation of the “Fifteen puzzle” and graceful group-theoretical proofs of 
number-numerical theorems of L.Euler and P. Fermat. 
2) Analysis from the point of view of the arrangement of a subject matter, of the 
opportunities of use of various means of representation of objects, concepts and 
ideas and of the influence on students. 
Using results of the genetic elaboration, it is possible to offer the following version of 
the arrangement of a subject matter and of the use of means of influence. 
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As the theory of groups has grown out of generalizations of diverse ideas and 
constructions, we offer also to use some lines leading to group-theoretical concepts 
from the different perspectives: numbers, cosets, bijective transformations and 
permutations. 
In accordance with the official abstract algebra syllabus, we devote to the study of 
groups several (four) stages at different places of curriculum, and such arrangement 
allows to effectively use elements required by principles of concentrism and multiple 
effect. As a result, students cumulatively acquire the necessary knowledge and skills, 
not losing their interest and motivation to the learning from the beginning to the end 
of the study of group theory. 
The first stage: already at the introductory lecture it is possible to suggest to the 
students to consider systems of integers under the addition and non-zero rational 
numbers under the multiplication, to recollect properties of these arithmetic actions. 
It is expedient to help the students to reveal the properties of associativity, of the 
existence of neutral and inverse elements in the system of integers,  and the students 
will be able to reveal independently by analogy the same properties in the system of 
non--zero rational numbers. Further it is necessary to try to lead the students to the 
idea that it would be useful to study properties of arithmetic actions based on the 
revealed fundamental properties and abstracting from the concrete number systems 
considered above. Here is “the moment of truth” (Safuanov, 2005) where axioms of 
group should be formulated. Note that the moment of truth is similar to the act of 
reflective abstraction (as the interior co-ordination of operations of the subject in a 
scheme) in the theory of Piaget (Dubinsky, 1991), and also to a moment of reification 
(Sfard, 1991). Such organization of teaching may be difficult and not always 
completely possible. Therefore, sometimes the appropriate help of the teacher may be 
useful. 
In the ideal case, students should do it independently. Nevertheless, most likely, on 
this stage the teacher will have to formulate axioms of group himself or to offer the 
students to find the definition in a textbook.  
At this first acquaintance the concept of a group will not be quite strict, as it will be 
based only on students’ intuitive representations about binary algebraic operations 
(“actions on elements of sets”), and the possibility of non-commutativity of an 
operation is not emphasized at all. In effect, this preliminary concept serves only as 
the anticipation of more detailed acquaintance at the following stages.  
The second stage: after the consideration of the addition of cosets and the addition 
tables for small modules (for example, 2, 3, 4), it is possible to raise the question 
about the performance of  addition in a set of cosets modulo arbitrary n>1. Properties 
will be similar to properties of the addition of numbers. The students can guess the 
fulfillment of laws of associativity and commutativity, the existence of neutral and 
inverse elements, and even in some extent to participate in proving these properties. 
After that it is possible to introduce a stricter definition of a group, beginning with the 
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definition of ordered pairs and binary algebraic operations (as the rules putting in 
correspondence to every ordered pair of elements of a given set a certain element of 
the same set - at this stage students are not yet familiar with the concept of a  direct 
product of sets). Here it should be underlined that the considered groups of cosets 
under the addition, as well as groups of integers under the addition, are Abelian 
(commutative), though there are also examples of non-commutative groups. 
The third stage: preliminary, but already quite strict statement of elements of the 
theory of groups after the consideration of elements of the theory of sets, direct 
products, mappings, including bijective ones, and permutations. At this stage all 
formal definitions of concepts necessary for the strict introduction of group-
theoretical concepts are available as well as sufficient amount of motivating and 
illustrating properties and examples. At this stage, after the introduction of the formal 
definition of a group and proof of the elementary properties, it is expedient to 
consider symmetry groups of geometrical figures. It is useful also for the 
maintenance of interest to the theory of groups and for the accumulation of the 
necessary amount of interesting and useful examples for the illustration of further 
constructions. Just at this stage the examples of non-commutative groups (symmetry 
groups and groups of permutations) are considered. 
At this stage the concepts of a subgroup and isomorphism of groups should be strictly 
introduced, but in detail they should not be studied yet: they only anticipate 
systematic study of group-theoretical concepts and constructions at later stages, after 
studying linear algebra. 
The group-theoretical knowledge acquired at the third stage, is used at the 
construction of concepts of rings, fields (in particular, of the field of complex 
numbers) and vector spaces. 
The fourth stage: systematic study of elements of the theory of groups (including 
generalized associativity, cosets, normal subgroups, Lagrange’s and homomorphism 
theorems). This knowledge already is sufficient for further study of quotient rings, 
Galois theory etc. 
As to means of influence on students, in the teaching of elements of the theory of 
groups it is possible to use various evident ways of representation of a subject matter, 
considering, for example, permutations, symmetry of geometrical figures, 
geometrical transformations. Among ways of representation of groups it is possible to 
employ, in case of finite groups, lists of elements, multiplication tables etc. Among 
other means of influence one can mention the contrast (examples of groups versus 
semigroups which are not groups, normal subgroups versus subgroups that are not 
normal), variation (Abelian and non-Abelian groups, additive and multiplicative ones 
etc.). 
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3. DESIGN OF THE PROCESS OF STUDY OF GROUP-THEORETICAL 
CONCEPTS. 
In the designing process of teaching we take into account all the results of the 
preliminary analysis, and thus the task of designing becomes considerably facilitated. 
Note that after designing and checking the intended system of study of a theme in 
practice, using a feedback, results of the control and assessment, it is necessary to 
bring in corrective amendments, sometimes essential, to the designed system. So, for 
the study of the theory of groups we at the third stage (after studying permutations) at 
first intended to prove the generalized associativity. However, the experience has 
shown that this rather short inductive proof nevertheless requires from students the 
well-developed logic reasoning and inordinately large efforts for mastering. 
Therefore, we have transferred this proof to the last, fourth stage devoted to 
systematic study of algebraic systems. 
1) Construction of a problem situation. 
As is already shown, for the successful construction of a problem situation it is 
necessary to organize it (including new questions, naturally arising from it) so that in 
a certain time there would occur the “moment of truth” when the students 
independently or with the minimal help of the teacher would open for the new 
concept for themselves. 
For the first time such moment of truth arises already during the introductory lecture, 
when the preliminary version of the concept of a group arises as a generalization of 
properties of arithmetic actions in sets of integers (addition) and non-zero rational 
numbers (multiplication). At further stages this preliminary version of the definition 
forms the basis for the motivation of the consideration of the concept of a group, 
basis for its stricter study. So, for example, studying properties of the addition of 
cosets or multiplication of bijections of a set, permutations of a finite set, symmetries 
of a geometrical figure, the students already can find out that each time they deal with 
groups – and thus new moments of truth arise. 
2) Statement of new naturally arising questions.   
For example, when constructing a problem situation at the third stage (when passing 
to types and elementary properties of groups), one can use questions of the following 
kind: whether are groups under consideration commutative? Whether there exists an 
infinite non-commutative group? Is the neutral element of a group unique? For a 
given element of a group, is an inverse element unique? Is it possible to solve 
equations in groups? At the fourth stage (systematic study of more complicated 
group-theoretical concepts) the questions are pertinent: do the right and left cosets 
coincide? Do cosets of a normal subgroup form a group under  multiplication? etc. 
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3) Conceptual and structural analysis and logical organization of educational 
material. 
Conceptual and structural analysis and logical organization of group-theoretical 
concepts is rather complicated, as is seen, e.g., from the genetic decomposition of the 
homomorphism theorem (Safuanov, 2005. p. 260). This process is not 
straightforward, but rather long and, moreover, often occurs in several stages divided 
in time. From group axioms the properties of groups are deduced, and at final stages 
of study of groups a number of rather difficult theorems is proved. 
4) Development of applications and algorithms. 
Despite the importance of the theory of groups, its applications are too non-trivial: so 
in an obligatory course it is problematic to consider such major applications, as the 
Galois theory or, say, geometrical applications, which are more appropriate for 
considering in detail in a geometry course. Nevertheless, it is important to consider 
such simple and interesting examples of applications as the fifteen puzzle, group-
theoretical proofs of number-theoretical theorems of L.Euler and P.Fermat, symmetry 
groups of geometrical figures etc.  
The students also should learn such procedures as construction of the multiplication 
table of a finite group, finding cosets of a normal subgroup (i.e. construction of a 
quotient group) etc.  
Concerning the development of cognitive strategies note that, according to the 
genetic approach, it is important to teach the students to construct analytical proofs, i. 
e. such ones that start from the statement that must be proved, and include the search 
of the facts necessary for the proof of the final statement. Then one searches how to 
find these necessary facts etc. It resembles going from the end of the proof to the 
beginning (in computer science such approach is referred to as “backtracking”) (see  
Goodman&Hidetniemi, 1977). The theory of groups gives such opportunities.  

4. IMPLEMENTATION. 
This system of teahing was successfully implemented in practical teaching at the 
pedagogical universities of Ufa and Naberezhnye Chelny for two decades. The 
students studying abstract algebra course by this system constantly show much better 
achievements and, most important, more positive attitude and interest to the subject 
than students studying the discipline by  traditional deductive and “definition – 
theorem – example – exercise” approach.  
Of course, the genetic approach can be applied for teaching other mathematical topics 
and mathematical disciplines. 
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INTRODUCTION 
COMPARATIVE STUDIES IN MATHEMATICS EDUCATION 

Organisers 
Eva Jablonka (chair), Luleå University of Technology, Sweden 
Paul Andrews, University of Cambridge, United Kingdom 
Birgit Pepin, Sør-Trøndelag University College, Norway 
 
AIMS AND SCOPE OF THE WORKING GROUP 
The call for papers for the 2009 meeting of the working group set out with a 
description of the scope and aims of comparative studies in mathematics education. 
These include studies that document, analyse, contrast or juxtapose similarities and 
differences in mathematics education at different levels, such as: 

• cross-cultural or cross-national comparison; 
• comparison between sectors of school-systems; 
• comparison between groups that share specific characteristics (for example, 

gender, language, social and economic background, cultural affiliation or other 
demographic features); 

• comparing mathematics education with other school subjects. 

There were no restrictions in the aspects of mathematics education that can be 
usefully addressed in a comparative study. These might, for example, include: 
Intended curricula; tools, teaching materials and resources; specific mathematical 
activities or the enactment of distinct mathematical topics; learning environments; 
teachers’, student teachers’ and students’ aspirations, goals and values; student 
achievement and participation; features of classroom practices or features of teacher 
preparation programs. 
The aims of the working group included to: 

• share findings and outcomes of empirical studies that adopt a comparative 
approach; 

• further develop research methodologies that are specific to comparative studies; 
• identify ways in which macro-level survey studies and micro-level case studies 

can productively interact; 
• develop a better understanding of how various theoretical approaches and 

conceptual frameworks shape the goals and the design of comparative research; 
• consider how comparative studies can inform teaching and learning practices. 

The group invited contributions with an empirical, methodological or theoretical 
focus. Papers with a methodological or theoretical focus could, for example, address 
issues of comparability of culturally-grounded practices, challenges of interpreting 
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outcomes of large-scale international achievement studies, methods of data 
aggregation in quantitative studies, technicalities of classroom-video studies, issues 
of cultural bias in coding or any other problématique that is specific to comparative 
studies.  
PAPERS AND POSTERS 
As the working group brings together researchers who share an overall approach 
rather than a focus on a set of topics, we find an interesting range of aspects of 
practices in mathematics education that were subjected to comparison in the research 
reports and posters. The participants’ studies, some of which are ongoing projects, 
addressed mathematics education in different places of the world. The countries and 
regions include Australia, China, the Czech Republic, Finland, France, Germany, the 
Hong Kong Special Administrative Region, Hungary, Israel, Italy, Norway, the 
Slovak Republic, Syria, the United Kingdom of Great Britain and the United States 
of America. The titles of the papers and posters indicate the variety of aspects of 
mathematics education that were subjected to a comparison (presenting authors are 
underlined): 
Paul Andrews, United Kingdom: Comparing Hungarian and English mathematics 
teachers’ professional motivations 
David Clarke and Xu Li Hua, Australia: Spoken mathematics as a distinguishing 
characteristic of mathematics classrooms in different countries 
Tiruwork Mulat and Abraham Arcavi, Israel: Mathematical behaviours of successful 
students from a challenged ethnic minority 
Giancarlo Navarra, Nicolina A. Malara, Italy; András Ambrus, Hungary: A problem 
posed by J. Mason as a starting point for a Hungarian-Italian Teaching Experiment 
within a European project 
Hans Kristian Nilsen, Norway: A comparison of teachers’ beliefs and practices in 
mathematics teaching at lower secondary and upper secondary school 
Birgit Pepin, United Kingdom/ Norway: Mathematical tasks and learner 
dispositions: A comparative perspective 
Jennifer von Reis Saari, United Kingdom: Elite mathematics students in Finland and 
the Washington: Access, collaboration, and hierarchy 
Constantinos Xenofontos, United Kingdom: International comparative research on 
mathematical problem solving: A framework for new directions 
As the posters are not included in the proceedings, short summaries are given in the 
following: 
Maha Majaj, France: Comparative study of the place of elementary number theory in 
the programs and the textbooks in the middle school between France and Syria 
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The teaching of elementary number theory has undergone changes in the French and 
Syrian education systems. In Syria, its place changed with the evolution of the 
textbooks about five years ago and in France it was reintroduced, after fifteen years 
of absence, in 1998 (grade 12), 1999 (grade 9) and 2001 (grade 10). The study 
compares elementary number theory in the programs and textbooks, topic by topic, 
by taking into account a distinction between tool and object and identifies the 
didactical transposition choices and their effects on the design of textbooks. An initial 
study indicated that the choices of the Syrian educational system can be seen as 
corresponding to the French program since the beginning of the 20th century. This 
observation led to including an analysis of the evolution of the French program and 
textbooks from the reform in 1902 onwards. 
Jan Sunderlik, Slovak Republic: Intrinsic motivation and student teaching practice at 
universities from Great Britain, the Czech Republic and the Slovak Republic 
The study in progress sets out to investigate pre-service teachers’ teaching practice in 
Great Britain, the Czech Republic and the Slovak Republic with a focus on their 
strategies for motivating students. It is to understand how the accumulated body of 
research on students’ motivation may be useful for classroom teachers struggling 
with the issue. The notion of motivation is complex and, for example, described as 
linked to social needs, beliefs, behaviour and affect. One challenge of the research is 
to describe motivation in observational terms. 
SNAPSHOTS AND CLOSEUPS FROM THE DISCUSSION 
The groups at the CERME adopt a mode of working that assumes that all papers have 
been read before the start of the conference. The presenters in our group were invited 
to draw our attention to specifics and to expand on one or two points in order to 
provide us with 'an experience' for entering the discussion. The productive work and 
stimulating discussion lived on the continuous engagement of all participants, which 
made it possible to allude to a wide range of topics. In the following, a summary of 
some issues, which were not specific to a particular research report, is given. 
Agendas and modes of comparison 
The group agreed that although comparative studies serve to achieve a variety of 
goals, comparison does not itself constitute the goal of a comparative study. 
Comparison was seen as being always of interest because looking at practices from 
another culture (see below “units of comparison”) provides a new ‘lens’ for looking 
at our own; it helps to make the familiar look unfamiliar. For the activity of 
describing similarities and differences in the empirical findings, the metaphor of 
“collecting stamps” was introduced. Synthesis was seen as a more far reaching goal 
of a comparative study than a mere description of similar and different aspects, and 
comparison was described as “the fuel of synthesis”. A comparative approach can 
also aim at assisting theory construction. It is useful for this purpose especially 
because the emergence of differences supports cultural explanations, while 
similarities suggest structural (sociological) interpretations. While the improvement 
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of “home” teaching practice was seen as an important goal for a cross-national or 
cross-cultural comparative study, the members of the group agreed that not all 
research in mathematics education has to be advocatory. 
“Units of comparison” 
Acknowledging that all empirical research has a comparative aspect, one recurring 
point in the discussion concerned the question, are there ‘units’ for comparison that 
are too small or too big for  allowing a study to be described as comparative. 
Agreement was reached that comparison has to be between aspects of “social 
conglomerates”, between two cultures (with shared discourse and identities). Just the 
fact that members of a group share an attribute does not mean that their membership 
of the group is related to that attribute, neither as a condition for or a consequence of 
that membership. 
Examples of “units for comparison” discussed in relation to the research reports 
were: curriculum, ideologies in education, schools, processes of change, students’ 
productions, lesson structure, lesson events, groups of students in different 
institutional cultures, groups of successful and unsuccessful students from the same 
culture.  
Methodology and Methods 
Many problems identified in the discussion are not specific to comparative research, 
but the challenge of working across cultures makes them more visible. The research 
designs in the comparative studies presented in the group comprise a variety of 
approaches for creating accounts of the practices to be compared. The discussion 
focused on three approaches: documentation, cross-national intervention study (a 
“perturbation of practices”) and on the comparison with a different teaching practice 
(with a different pedagogy) as a quasi-experimental design.  
Interpreting “silence in the data” 
This discussion emerged out of an example of interview transcripts with students 
from two different cultures. The participants did not say anything after a prompt from 
an interviewer. In the group we created several interpretations of this fact: Silence is 
a normal part in any conversation – it is a thinking pause; silence is a sign of cultural 
or social alienation; silence is a general cultural behaviour; silence is an individual’s 
preference. 
In the course of the discussion, “silence” was used metaphorically for missing aspects 
of a practice. These silences go unrecognized from within the practice and thus 
comparison can fill the gap left by silence. 
To what extent are the outcomes comparable and can be synthesised? 
Group members observed that the cultural differences sometimes are so fundamental 
that comparison is impossible. The results can then only be juxtaposed. The question 
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was also asked to what extent psychological frameworks could be useful in 
comparing groups from different cultural contexts. 
Cultural affiliation of research personnel (interviewers, transcribers) 
Group member were aware that inter-researcher reliability is a problem in all studies, 
but it is likely to be exacerbated in a cross-cultural comparative study or a study of 
different institutional cultures or any other social conglomerates with a shared 
discourse. Some methods were suggested and discussed. “Member checking” 
includes exchanging the accounts between the different communities (both the 
“researched’” or the researchers’) and letting them check from their lens. One 
interesting example was provided in a study in which teachers in one country had 
been asked to read the accounts from teachers in other countries of what they do and 
why they do it. 
How to avoid a culturally biased interpretation? 
Group members shared the observation that interpretations are loaded with values 
from our own teaching tradition as well as research tradition. Researchers may 
project their home-grown categories into the other culture’s data, which amounts to a 
culturally biased gaze. Researchers might as well be at risk to produce an ‘idealistic’ 
description of their own practice, or alternatively (depending on the culture!), provide 
an account that is too critical of the home practice and celebrates the other. 
The group found that exploiting different conceptual frameworks might help to 
identify the blind spots of each. The French “praxeology” served as an example. 
Some found that ‘contextualised tasks’ were not given attention as a category because 
the French curriculum does not include those as a characteristic element. In an 
approach that is more focused on the empirical material and does not set out with 
theoretical categories, the interpretative accounts for one set of data from one site 
maybe considered as the framework for interpreting the other (and vice versa). This 
approach is reminiscent of constant comparison as a standard method in qualitative 
data analysis. 
All agreed that language matters, also within a culture, e.g. as a sociolect, as 
difference between formal and informal language use. This point draws attention to 
how to deal with translated transcripts; the choice of language into which protocols 
are translation is already a source for a cultural bias. The group pointed to the need of 
defining the cultural frame of each report. 
Eva Jablonka, Paul Andrews, Birgit Pepin 
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COMPARING HUNGARIAN AND ENGLISH MATHEMATICS 
TEACHERS’ PROFESSIONAL MOTIVATIONS 

Paul Andrews 
University of Cambridge, UK 

In this paper I present qualitative analyses of interviews undertaken with English and 
Hungarian teachers of mathematics. One aim of the interviews was to elicit teachers’ 
professional motivations – what were their subject-specific reasons for teaching 
mathematics? I frame the analyses against the altruistic, intrinsic and extrinsic 
motivational framework found widely in the literature before discussing its 
limitations and proposing refinements to highlight substantial differences within 
superficially similar sets of culturally located espoused motivations. 

INTRODUCTION 
A frequently cited reason for undertaking comparative education research is that 
“studying teaching practices different from one's own can reveal taken-for-granted 
and hidden aspects of teaching” (Hiebert et al., 2003, 3). In part this is because: 

teaching and learning are cultural activities (which)... often have a routineness about 
them that ensures a degree of consistency and predictability. Lessons are the daily routine 
of teaching and learning and are often organized in a certain way that is commonly 
accepted in each culture (Kawanaka 1999, p. 91). 

Explanations for such routines draw on beliefs that cultures “shape the classroom 
processes and teaching practices within countries, as well as how students, parents 
and teachers perceive them” (Knipping 2003, 282), to the extent that many of the 
processes of teaching are so “deep in the background of the schooling process ... so 
taken-for-granted… as to be beneath mention” (Hufton and Elliott 2000, 117). Thus, 
it is probably not surprising that a substantial proportion of comparative mathematics 
teacher research has focused on explicating the mathematics teaching script 
(Andrews, 2007a; Hiebert et al., 2003; Stigler et al., 1999), with a number of other 
studies having investigated particular contributory factors. For example, text books 
have been scrutinised (Haggarty and Pepin, 2002; Pepin and Haggarty, 2001; 
Valverde et al., 2002), teachers’ mathematical content knowledge has been analysed 
(An et al., 2004; Delaney et al., 2008; Ma 1999); as have teachers’ mathematics-
related beliefs (Andrews and Hatch, 2000; Andrews, 2007b; Barkatsas and Malone, 
2005; Cai, 2004; Correa et al., 2008). However, a largely ignored field in comparative 
teacher research concerns teachers’ motivations for their professional activity: what 
stories do they tell to warrant their roles as teachers of mathematics? This paper is a 
first explicitly comparative examination of mathematics teachers’ professional 
motivation. 
According to available evidence, teachers' professional motives fall into three 
categories: altruistic, intrinsic or extrinsic (Kyriacou and  Newson, 1998; Kyriacou 
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and Coulthard, 2000; Moran et al, 2001; Andrews and Hatch, 2002), although 
recently Cooman et al (2007) have highlighted a fourth - interpersonal. An altruistic 
motive presents teaching as a socially worthwhile act related to a desire to facilitate 
the development of both the individual and society at large. An intrinsic motive 
includes, inter alia, a person's desire to work with children or their subject specialism, 
while an extrinsic motive pertains, for example, to salary, conditions of service, 
holidays or status. Lastly, interpersonal motives refer to “social interactions 
commonly present in a teaching job” (Cooman et al, 2007, p. 127). An individual's 
personal motivation to teach is likely to be an amalgam, in varying proportions, of 
these factors (Moran et al, 2000) although there is evidence that preservice teachers in 
developed countries are motivated by both intrinsic and altruistic factors, while in 
developing countries extrinsic motivations (or mercenary) appeared more prominent 
(Bastick, 2000). Indeed, in respect of the former, intrinsic motives appeared dominant 
for preservice teachers in the US (Serow and Forrest, 1994) Greece  (Doliopoulou, 
1995), England (Reid and Caudwell, 1997; Priyadharshini and Robinson-Pant, 2003; 
Whitehead et al, 1999), Northern Ireland (Moran et al., 2000) and Australia (Manuel 
and Hughes, 2006). 
In respect of the professional motivations of mathematics teachers there is little 
research (Reid and Caudwell, 1997). In respect of the UK, students following a post-
graduate mathematics teacher education programme were less intrinsically motivated 
than those of other subjects, showing, in their greater enthusiasm for teaching as a 
good career, a more extrinsic perspective (Reid and Caudwell, 1997). Also, in 
contrast with mathematics undergraduates, who privileged intrinsic factors such as 
being able to use their subject knowledge or working with children (Kyriacou & 
Newson, 1998), post graduate teacher education students were less enthusiastic about 
sharing their knowledge, continuing their subject interest, improving children’s life 
chances than their non mathematical colleagues (Reid and Caudwell). In terms of 
serving teachers, Andrews and Hatch’s (2002) study showed that few people 
espoused either altruistic or extrinsic reasons, with most citing motivations intrinsic 
to either mathematics itself or teaching as a profession. 
In sum, the totality of the above highlights the extent to which the tripartite 
framework has been used in different research contexts. However, with so little 
comparative work, and with most studies drawing on different instruments, we know 
little about the extent to which it adequately represents the motivations and beliefs of 
teachers in different contexts. In this paper we examine this issue by means of an 
initial comparative examination of mathematics teachers’ professional motivations. 

METHOD 
Many of the studies cited above used survey approaches to explore teachers’ 
motivations. Of these, many exploited factor analytic techniques to identify or 
confirm, depending on the type of analysis, motivational constructs. However, such 
approaches rely, essentially, on predetermined categorisations of motivation and may 
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miss not only subtle variations within the three dimensions but, importantly, 
components hitherto unconsidered. In this paper we attempt to let teachers tell their 
own stories and, to do so, look to narrative research. Narrative research is of interest 
due to its “potential to access the research subjects’ voices and to offer deeper, 
sensitive and accurate portrayals of experience that have escaped positivist 
quantitative research and less sensitive, objectivist qualitative research” (Swidler, 
2000, p. 553). It “is probably the only authentic means of understanding how motives 
and practices reflect the intimate intersection of institutional and individual 
experience in the postmodern world” (Dhunpath, 2000, p. 544). Narrative researchers 
believe that teachers construct stories to make sense of their professional world 
(Swidler, 2000; Drake, 2006). That is, stories, “as lived and told by teachers, serve as 
the lens through which they understand themselves personally and professionally and 
through which they view the content and context of their work” (Drake et al. 2001, p. 
2). Moreover, “these stories are subject-matter-specific and may differ greatly from 
subject to subject” (ibid). 
With this in mind, 45 teachers from two regions of England, and 10 from Budapest, 
Hungary, were interviewed in the months following a questionnaire study of their 
conceptions of mathematics and its teaching. In both countries colleagues were drawn 
from a variety of institutions, which, as shown by various indicators, were 
representative of state schools in the different regions. The interviews, which were 
intended to elicit details about informants' professional life histories, were semi-
structured and invited colleagues to describe how their careers had developed and to 
discuss the key episodes, “critical events” (Woods, 1993) or “critical incidents” 
(Measor, 1985) that had informed or transformed their professional lives. In order to 
frame their stories, colleagues were invited, fairly early in their interviews, to explain 
why they had decided to become teachers before being asked to consider the place of 
mathematics in the curriculum and their personal justification for both its curricular 
inclusion and their teaching it. Interviews, which were conducted in colleagues' 
schools, were tape-recorded and transcribed. Transcripts were posted to them for 
agreement as to their content although not one was queried. The method of constant 
comparison (Glaser and Strauss 1967, Strauss and Corbin 1998) necessitated that 
transcripts were read and re-read to identify categories of response. As new 
categories were identified, previously read transcripts were re-read to see whether or 
not the new category applied. The two sets of data, English and Hungarian, were 
analysed separately to ensure that culturally located differences were not obscured. 

RESULTS 
The reader is reminded that this paper draws on, in many cases, informants’ 
recollections of events of many years earlier. Thus, it is not improbable, particularly 
acknowledging the temporal shift between events, that for some teachers, 
recollections concerning decisions about career choice may have been vague and 
romanticised. In particular, it is not improbable that recollections drew on colleagues’ 
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affective responses to the profession which had dominated their lives. In some cases, 
but clearly not all, these would have been positive and, possibly, a little heroic. 
Consequently, some caution should be exercised when interpreting informants’ 
utterances. In the following, all names are pseudonyms. Due to constraints of space, 
only a partial analysis is reported, which draws on the same three substantial 
categories of response that emerged from the data of each country. These focused on 
personal pleasure, the extrinsic properties of mathematics and the intrinsic properties 
of mathematics. These were not exclusive categories with most teachers alluding to at 
least two of them. 
English teachers: Personal pleasure 
Twenty seven English teachers indicated that their professional motives were located 
in the pleasure they gained from working with students. Jane, typical of most, 
described an enjoyment located explicitly in their students’ mathematical success. 
She said: 

I just enjoy teaching it (mathematics)… I can't explain it. I enjoy teaching it. I enjoy 
watching children who can't do maths suddenly discover they can add up. You know, 
children for whom it's not made sense all of a sudden this…“Oh that's why it works”, 
“Oh now I understand”. And I think it's that, and it doesn't matter what level that is. 
Whether it's down at the bottom end or it's up at the top end, it's that discovery that it 
works. That's what I enjoy doing. I enjoy seeing children make that leap. Sometimes it 
happens more often than others; with some children it's very slow, you know, the 
understanding, but when it comes it's like light dawning and they're so pleased and I 
think that's what it is. 

For the others, like Hazel, their pleasure seemed less altruistically focused. She said: 
I think I would always have ended up as a teacher. I loved being around little kids when I 
was a child… I’m a maths teacher because that’s what I was good at and if I’d been 
good… at… French then I think I would have been a French teacher. 

English teachers: Extrinsic properties of mathematics 
Forty-two teachers commented that they were teaching mathematics to prepare 
students to manage successfully a world beyond school. The explicit foci of these 
comments varied but the underlying message was essentially the same; a child who 
cannot understand mathematics would struggle to make sense of the real world or 
everyday life. James commented: 

I feel that maths is a tool and that if students… are to be fully prepared for what the 
modern world is to throw at them... I think that it's very important that they are... able to 
handle all the things that can be thrown at them. 

For others this was explicitly linked to employment. Jack, who had previous work 
experience in cotton mills and council offices, suggested that: 

WORKING GROUP 13

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2455



  
It’s there all throughout isn’t it? I mean, at basic levels, the practical jobs, measurement 
and things like that through to, yes, obviously people want to be well qualified to go on 
and do, you know, industrial engineers or civil engineers, work that involves high 
powered mathematics as well. 

Susan indicated yet another utilitarian perspective. She said that: 
I think my main reason for supporting maths is because I think it's a support subject for 
other subjects as in you can't take your science or computers nowadays or anything 
further, if you, if students want to, without a basic knowledge of maths. So you can't do a 
lot of things further and develop knowledge that way. So I see it being a support subject 
for other subjects. 

English teachers: Intrinsic properties of mathematics 
Fifteen teachers offered statements indicative of their justifying their teaching of 
mathematics as a consequence of its intrinsic properties. Jean commented that “I 
always got a… buzz out of solving particular problems…especially when you've 
worked on them for quite some time. And so it's that enjoyment of the subject that I 
like to try and put across to children”. Judy, in addition, discussed wanting her 
students to become critical thinkers: 

I want children to feel the need to solve a problem. I give them the skills and help them to 
think through how to achieve that, even if it's a very, very simple idea, I always give 
them a reason why… I always say, don't ever be satisfied with well that is how it is, 
always ask and if I can't give you a reason then I should go away and find you a reason 
because I won't expect you to believe it just because I say so. 

In similar vein Frank, discussed his belief in the importance of mathematical 
reasoning. He said that “the one area of maths that I really enjoy working with 
students is, is trying to get them to explain things, I suppose, explain, justify, prove 
along some sort of continuum there”. 
Hungarian Teachers: Personal Pleasure 
Eight of the ten Hungarian teachers talked about pleasure gained from their 
professional activity. For the most part, this drew on students’ mathematical 
successes. Vera commented that, “It feels good to teach the children to think”, 
although most indicated that their pleasure derived from their students understanding 
of mathematics. Emese, for example, said that when “I tell them something new…and 
although they would probably have learnt about it without me, not only do they know 
it but they also understand it”. 
Two teachers located their comments on student understanding within the domain of 
problem solving. Ilona commented that: 

I would like my students to understand and think about smaller or bigger problems in 
mathematics with joy... And I think it’s the greatest thing in the world that I can teach 
mathematics because it’s a fantastic way for educating children... when I see twenty kids 
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sit down and think and wrinkle their foreheads, and they put their heads in their hands 
and they turn the small wheels around until they get to some solution independently. 

Hungarian Teachers: Intrinsic properties of mathematics 
Every Hungarian teacher commented in ways indicating that, for them, mathematics 
possessed important and, essentially, intrinsic qualities. Emese noted that “students 
have to see that in mathematics you have to think logically”. Robert, expressing a 
similar theme, commented that “it is important that a child learns a particular thinking 
scheme and can solve problems with this method… how you can make a child to 
become a thinking child”. 
At an explicitly philosophical level, Eva commented that “I like to quote an aphorism 
which more or less determines my life. Leonardo said mathematics is the most 
important tool for understanding the truth everywhere and in everything and this is 
my philosophy” while Robert added that mathematics “was a spiritual adventure and 
this was what attracted me so much (to the teaching of the subject)”.  
Unlike the English data, three intrinsic subthemes emerged from the analysis. These 
concerned mathematics as problem solving, mathematics as a connected body of 
knowledge and mathematics as experientially learned. 
Mathematics as problem solving 
Nine Hungarian teachers discussed the importance of problem solving in their 
conceptualisation of mathematics and its teaching. Vera, outlined a view that teachers 
should alert students to  

... certain types of problem which come up again and again …, they should know the 
typical problems that they have to go through. And then it’s also good if there are 
problems, we give them problems, which don’t have completely unique solution so they 
should find them in other ways.  

Emese, in addition, acknowledged the affective domain as part of the problem solving 
experience. She commented that: 

We should teach them how to recognise the problem, develop ideas for the solution, put 
them into a logical order, and this way you reach the solution… The most beautiful and 
simple thing in the world is when you solve a problem and you realise that you were able 
to solve it…It can help you with a little more self confidence too. 

Mathematics as a connected body of knowledge 
Five teachers commented explicitly on mathematics as a connected body of 
knowledge. Rita, talking about number theory and geometry, commented that: 

Within number theory, for example... you can take the numbers apart. Think of numbers 
and how they are built up. This building up is very important. And with other topics too, 
in geometry it's important to be able to build up things… This taking apart, building up, 
and often the building up is at least as important as taking apart. 
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Robert offered a more abstract perspective, commenting that “mathematics is built in 
such a way that it states certain things and it calls them axioms or statements which 
are considered as true and then I start to build up something and I wonder how far 
you can get from it”.  
Mathematics as an intellectual challenge 
Five alluded to mathematics as an intellectual challenge, something for which 
learners should expect to struggle. Eva commented that students: 

shouldn’t get everything ready-made but should have to look for the truth, to search for 
it. I mean it’s more the research than the experience. I, for example, like geometry very 
much when they have scissors in their hands and they’re folding and cutting papers and 
getting experiences… Still you can research to look for different solutions. We get to the 
same truth in different ways.  

Kati, commented in similar vein, that children should experience the “joy of 
research… I think that one of the most important things is that children should be 
brave and should be able to get close to an unknown problem. And it's also very 
important that this love of adventure shouldn't be spoilt by me”. Zsolt, commented 
that “they have to get experiences. No matter what topic of mathematics they’re 
learning, they should get as much experience as possible”. 
Hungarian Teachers: Extrinsic properties of mathematics 
Five teachers commented explicitly that mathematics provided key skills for a world 
beyond school. Vera noted, briefly, that it “has an influence on their whole life; the 
rational way of thinking”, while Ilona said: 

I think we teach mathematics to help children find their way in life more confidently. 
Whatever they become, a cleaning lady, a banker, a doctor or anything... mathematics is a 
logical skill. Facts and things thought over a logical way will help them make their way 
more confidently.  

In similar vein Emese commented that children “should be able to calculate the 
change in the shops and I want them to understand all it's good for in everyday life… 
I think they have to see that mathematics is about life”, while Rita said that it’s “good 
if they can count. If they can look through how much is how much. Estimating is very 
important... I always say, you cannot read a book if you have to think about each 
letter”.  

DISCUSSION 
The above, albeit limited, results show that when located alongside their subject 
specialism, teachers of mathematics in England and Hungary report intrinsic 
motivations, although the three categories of response comprise embedded altruistic, 
intrinsic and extrinsic characteristics respectively. Thus, on the one hand, it could be 
argued that English and Hungarian teachers of mathematics present similar subject-
related professional motivations. On the other hand, the widely differing proportions 
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of teachers reporting these categories indicate something profoundly different. Of 
course, the differences can be explained against a variety of cultural frameworks. For 
example, the dominance of the mathematically intrinsic motivations of Hungarian 
teachers and mathematically extrinsic motivations of English teachers reflect the 
underlying rational encyclopaedist and classical humanist traditions of Hungary and 
England respectively (Andrews and Hatch, 2000). But such explanations offer little 
by way of highlighting differences other than in the frequencies of the three 
dimensions. Therefore, the following is a tentative revision of the framework drawing 
on notions of rhetorical and warranted motivations. 
Firstly, in respect of mathematically altruistic motivations, English teachers talked, in 
an unspecified manner, of motivations linked to mathematical understanding, while 
their Hungarian colleagues spoke of understanding-informed mathematical thinking 
and problem solving. Thus, on the one hand, around half the English sample 
presented rhetorical altruistic mathematical motivations, while, on the other, almost 
all the Hungarian teachers articulated a warranted altruistic mathematical motivation. 
Secondly, in terms of mathematically intrinsic motivations, English teachers tended 
to articulate a perspective concerning problem solving and the logical skills necessary 
to solve them, while the Hungarian teachers presented a variety of perspectives 
concerning not only problem solving but also the structural properties of mathematics 
and the intellectually challenging nature of the subject. Thus, the English teachers 
presented a weakly warranted, almost rhetorical, intrinsic mathematical motivation 
when compared with the Hungarian teachers’ robustly warranted intrinsic 
mathematical motivation. Thirdly, in respect of mathematically extrinsic motivations, 
almost every English teacher and half the Hungarian teachers discussed mathematical 
success as a necessary prerequisite for employment or the learning of other subjects. 
In this regard, both groups of teachers presented a moderately warranted extrinsic 
mathematical motivation. 
In summary, the qualifiers of rhetoric and warrant allow us to distinguish between the 
two sets of motivations and understand more fully the ways in which mathematics 
teachers’ professional motivations are products of the cultures in which they live and 
work. A speculative conclusion would be that while both sets of teachers present a 
moderately warranted wider-world (extrinsic) justification for the teaching of 
mathematics, the English tend towards rhetorically-based motivations while the 
Hungarian tend towards warranted motivations. 
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SPOKEN MATHEMATICS AS A DISTINGUISHING 
CHARACTERISTIC OF MATHEMATICS CLASSROOMS 

IN DIFFERENT COUNTRIES 
David Clarke and Li Hua Xu 

University of Melbourne, Australia 
This paper reports research into the occurrence of spoken mathematics in some well-
taught classrooms in Australia, China (both Shanghai and Hong Kong), Japan, 
Korea and the USA. The analysis distinguished one classroom from another on the 
basis of public “oral interactivity” (the number of utterances in whole class and 
teacher-student interactions in each lesson) and “mathematical orality” (the 
frequency of occurrence of key mathematical terms in each lesson). Our concern in 
this analysis was to document the opportunity provided to students for the oral 
articulation of the relatively sophisticated mathematical terms that formed the 
conceptual content of the lesson. Classrooms characterized by high public oral 
interactivity were not necessarily sites of high mathematical orality. The contribution 
of student-student conversations also varied significantly. Of particular interest are 
the different learning theories implicit in the role accorded to spoken mathematics in 
each classroom. 
Key words: Spoken mathematics, classroom research, international comparisons 

INTRODUCTION 
The Learner’s Perspective Study (LPS) sought to investigate the practices of well-
taught mathematics classrooms internationally. Data generation focused on sequences 
of ten lessons, documented using three video cameras, and interpreted through the 
reconstructive accounts of classroom participants obtained in post-lesson video-
stimulated interviews (Clarke, 2006). The post-lesson interviews address the 
challenge of inferring student conceptions from video data (Cobb & Bauersfeld, 
1994). The LPS approach of conducting case studies of classroom practices over 
sequences of at least ten lessons in the classes of several competent eighth grade 
teachers in each of the participating countries offers an informative complement to 
the survey-style approach of the two video studies carried out by the Third 
International Mathematics and Science Study (TIMSS) (Hiebert et al., 2003; Stigler 
& Hiebert, 1999). The criteria for the identification of the competent teachers studied 
in the LPS were specific to each country, in order to reflect the priorities and values 
of the school system in that country. In this paper, we report analyses of lessons 
documented in classrooms in Australia, China (Hong Kong and Shanghai), Japan, 
Korea, and the USA. 
The complete research design has been detailed elsewhere (Clarke, 2006). For the 
analysis reported here, the essential details relate to the standardization of 
transcription and translation procedures. Since three video records were generated for 
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each lesson (teacher camera, student camera, and whole class camera), it was possible 
to transcribe three different types of oral interactions: (i) whole class interactions, 
involving utterances for which the audience was all or most of the class, including the 
teacher; (ii) teacher-student interactions, involving utterances exchanged between the 
teacher and any student or student group, not intended to be audible to the whole 
class; and (iii) student-student interactions, involving utterances between students, 
not intended to be audible to the whole class. All three types of oral interactions were 
transcribed, although type (iii) interactions could only be documented for the selected 
focus students in each lesson. Where necessary, all transcripts were then translated 
into English. All participating research groups were provided with technical 
guidelines specifying the format to be used for all transcripts and setting out 
conventions for translation (particularly of colloquial expressions). 
In this paper, our unit of analysis is the utterance and we distinguish private spoken 
student-student interactions from whole class or teacher-student interactions, both of 
which we consider to be public from the point of view of the student. Our major 
concern in this analysis was to document the opportunity provided to students for the 
oral articulation of the relatively sophisticated mathematical terms that formed the 
conceptual content of the lesson and to distinguish one classroom from another 
according to the manner in which such student mathematical orality was afforded, 
promoted, constrained or discouraged in both public and private arenas. 

STUDYING SPOKEN MATHEMATICS IN THE CLASSROOM 
This paper reports four stages of a layered attempt to progressively focus on the 
significance of the situated use of mathematical language in the classroom. In our 
first analytical pass, an utterance is taken to be a continuous spoken turn, which may 
be both long and complex. We restricted our second-pass analysis to those 
mathematical terms and phrases that referred to the substantive content of the lesson 
(usually designated as such in the teacher’s lesson plan and post-lesson interview). 
The third and fourth passes repeated the focus on utterances and then mathematical 
terms, but in the context of student-student (private) conversation. 
We take the orchestrated use of mathematical language by the participants in a 
mathematics classroom to be a strategic instructional activity by the teacher. In this 
paper, we invoke theory in two senses: (i) the (researchers’) theories by which the 
actions of the classroom participants might be accommodated and explained, and (ii) 
the (participants’) theories implicit in the classroom practices of the teacher and the 
students. A particular focus is the role of the spoken word in both. The instructional 
value of the spoken public rehearsal of mathematical terms and phrases central to a 
lesson’s content could be justified by reference to several theoretical perspectives. 
Interpretation of this public rehearsal as incremental initiation into mathematics as a 
discursive practice could be justified by reference to Walkerdine (1988), Lave and 
Wenger (1991), or Bauersfeld (1994). The instructional techniques employed by the 
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teacher in facilitating this progression could be seen as “scaffolding” (Bruner, 1983) 
and/or as “acculturation via guided participation” (Cobb, 1994).  
The oral articulation of mathematical terms and phrases by students could be 
accorded value in itself, even where this consisted of no more than the choral 
repetition of a term initially spoken by the teacher. Teachers and students in some of 
the classrooms we studied clearly attached value to this type of recitation. In other 
classrooms, the emphasis was on the students’ capacity to produce a mathematically 
correct term or phrase in response to a very specific request (question/task) by the 
teacher. In such classrooms, both of these activities accorded very limited agency to 
the learner and the responsibility for the public generation of mathematical 
knowledge seemed to reside with the teacher. By contrast, in other classrooms, the 
instructional approach provided opportunities for students to “brainstorm” or to 
generate their own verbal (written or spoken) mathematics, with very little (if any) 
explicit cuing from the teacher (e.g. the classrooms in Tokyo).  
The role of student-student spoken interactions also varied widely among the 
classrooms studied. The teacher’s posing of particular mathematical tasks (Mesiti & 
Clarke, in press) could prompt (and even promote) certain forms of individual, dyadic 
or small group mathematical behaviour and even monitor and guide that behaviour 
during classroom activities such as Kikan-Shido (Between-desks-instruction) 
(O’Keefe, Xu, & Clarke, 2006). However, within these constraints, students have 
significant latitude and agency in their use of spoken mathematics. The frequency of 
occurrence of student-student utterances varied from zero in some lessons (eg. Seoul) 
to as many as 100 distinct student-student utterances per lesson by individual students 
in classrooms in Australia and the USA. In each classroom, the activity of speaking 
mathematics was performed differently. 
The results that are reported in this paper certainly suggest that the teachers in this 
study differed widely in the opportunities they provided for student spoken 
articulation of mathematical terms, whether in public or in private, and in the extent 
to which they devolved agency for knowledge generation to the students. The 
demonstration of such differences (and we would like to argue that these differences 
are profound and reflect fundamental differences in basic beliefs about effective 
instruction and the nature of learning) in the practices of classrooms situated in 
school systems and countries that would all be described as “Asian” suggests that any 
treatment of educational practice that makes reference to the “Asian classroom” 
confuses several quite distinct pedagogies. This observation is not to deny cultural 
similarity in the way in which education is privileged and encountered in 
communities that might be described as “Confucian-heritage.” But, the identification 
of a one-to-one correspondence between membership of a Confucian-heritage culture 
and a single pedagogy leading to high student achievement is clearly mistaken, and 
cultural similarity is not a sufficient indicator of those instructional practices that 
might be associated with the educational outcomes that we value. 
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THE USE OF MATHEMATICAL TERMS 
In this paper, “utterance” and “mathematical term or phrase” require clear 
specification (below). Our analysis of public and private classroom interactions has 
restricted its attention to key and related (primary and secondary) terms, however the 
analysis of the post-lesson student interviews also considered ‘other’ terms used by 
students in interview to explicate the lesson’s content or in reflecting on the nature of 
mathematical activity in general. This paper focuses on analysis of public and private 
classroom interactions. Consideration of student use of spoken mathematics in the 
post-lesson interviews will be reported in another paper. 
Figure 1 shows the number of utterances occurring in whole class and teacher-student 
interactions in each of the first five lessons from each of the classrooms studied in 
Shanghai, Hong Kong, Seoul, Tokyo, Melbourne and San Diego. An utterance is a 
single, continuous oral communication of any length by an individual or group 
(choral). Used in this way, the frequency (and origins) of public utterances constitute 
a construct we have designated as public oral interactivity. This does not take into 
account either the length of time occupied by an utterance or the number of words 
used in an utterance (problematic in a multi-lingual study like this one). Figure 1 
distinguishes utterances by the teacher (white), individual students (black) and choral 
responses by the class (e.g. in Seoul) or a group of students (e.g. in San Diego) 
(grey). Any teacher-elicited, public utterance spoken simultaneously by a group of 
students (most commonly by a majority of the class) was designated a “choral 
response.” Lesson length varied between 40 and 45 minutes and the number of 
utterances has been standardized to 45 minutes. 
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Figure 1: Number of Public Utterances in Whole Class and Teacher-Student 
Interactions (Public Oral Interactivity) 

Figure 1 suggests that lessons in Melbourne and San Diego demonstrated a much 
higher level of public oral interactivity than lessons in Shanghai, Hong Kong, Seoul, 
or Tokyo. There were also substantial differences in the relative frequency of teacher, 
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student and choral utterances. It is worth noting that both teacher and student 
utterances in Shanghai tended to be of longer duration and greater linguistic 
complexity than elsewhere. 
The classrooms studied can be also distinguished by the relative level of public 
mathematical orality of the classroom (that is, the frequency of spoken mathematical 
terms or phrases by either teacher or students in whole class discussion or teacher-
student interactions) and by the use made of the choral recitation of mathematical 
terms or phrases by the class. This recitation included both choral response to a 
teacher question and the reading aloud of text presented on the board or in the 
textbook. For the purposes of this paper, those mathematical terms were coded that 
comprised the main focus of the lesson’s content. 
Figure 2 shows how the frequency of public statement of mathematical terms varied 
among the classrooms studied. In classifying the occurrence of spoken mathematical 
terms, we focused on those terms that could be related to the main lesson content 
(e.g. terms such as “equation” or “co-ordinate”). This meant that our analysis did not 
include utterances that constituted no more than agreement with a teacher’s 
mathematical statement or utterances that only contained numbers or basic operations 
that were not the main focus of the lesson.  
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Figure 2: Frequency of Occurrence of Key Mathematical Terms in Public Utterances 
(Mathematical Orality) 

In the case of the Korean lessons, the choral responses by students frequently took the 
form of agreement with a mathematical proposition stated by the teacher. For 
example, the teacher would use expressions such as, “When we draw the two 
equations, they meet at just one point, right? Yes or no?” And the class would give 

WORKING GROUP 13

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2467



the choral response, “Yes.” Such student statements did not contain a mathematical 
term or phrase and were not included in the coding displayed in Figure 2.  Similarly, 
a student utterance that consisted of no more than a number was not coded as use of a 
key mathematical term. It can be argued that responding “Three” to a question such 
as “Can anyone tell me the coefficient of x?” represented a significant mathematical 
utterance, but, as has already been stated, our concern in this analysis was to 
document the opportunity provided to students for the oral articulation of the 
relatively sophisticated mathematical terms that formed the conceptual content of the 
lesson. Frequencies were again adjusted for the slight variation in lesson length. 
The most striking difference between Figures 1 and 2 is the reversal of the order of 
classrooms according to whether one considers public oral interactivity (Figure 1) or 
public mathematical orality (Figure 2). The highly oral classrooms in San Diego 
made relatively infrequent use of the mathematical terms that constituted the focus of 
the lesson’s content. By contrast, the less oral classrooms in Shanghai made much 
more frequent use of key mathematical terms and phrases. Since a single utterance 
might contain several such terms, and it was terms that were being counted in this 
analysis, Figure 2 provides a different and possibly more useful picture of the 
Chinese lessons, where both teacher and student utterances appeared to be longer and 
more complex than elsewhere.  
 Comparison between those classrooms that might be described as “Asian” is 
interesting. Key mathematical terms were spoken less frequently in the Seoul 
classrooms than was the case in the Shanghai classrooms. Even allowing for the 
relatively low public oral interactivity of the Korean lessons, the Korean students 
were given proportionally fewer opportunities to make oral use of key mathematical 
terms in whole class or teacher-student dialogue. In contrast to the teachers in 
Shanghai and Tokyo, the teachers in the Hong Kong and Seoul classrooms did not 
appear to attach the same value to the spoken rehearsal of mathematical terms and 
phrases, whether in individual or choral mode. It should be noted that Hong Kong 3 
used English as the instructional language, while Hong Kong 1 and 2 used Cantonese, 
so any common features of the Hong Kong classrooms are likely to reflect dominant 
pedagogical practices, rather than be a specific result of the use of the Chinese or 
English language. The teacher in Hong Kong 2 appears similar to the three Shanghai 
teachers in the sense that he conducted his teaching most frequently in the form of 
whole class discussion. But his lessons show no signs of the pattern, evident in all 
three Shanghai classrooms, where the students were systematically ‘enculturated’ 
into the language of school mathematics. In particular, despite similarities between 
the public oral interactivity of Hong Kong 2 and Shanghai 1 (for example), the 
frequency of student use of mathematical terms in Hong Kong 2 was much lower. 
While the overall level of public oral interactivity in the Tokyo classrooms was 
similar to those in Seoul, the Japanese classrooms resembled those in Shanghai in the 
consistently higher frequency of student contribution, but with little use being made 
of choral response. The value attached to affording student spoken mathematics in 
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some classrooms could suggest adherence by the teacher to a theory of learning that 
emphasizes the significance of the spoken word in facilitating the internalisation of 
knowledge. The use of choral response, while consistent with such a belief, could be 
no more than a classroom management strategy. The Hong Kong classrooms offered 
students least opportunity to use spoken mathematical terms of all the classrooms 
studied and student spoken mathematical contribution, whether individual or choral, 
was extremely low, even though the student component of general public oral 
interactivity of the Hong Kong classrooms was at least as high as in Shanghai. 

THE RELATIVE SIGNIFICANCE OF STUDENT–STUDENT INTER-
ACTIONS 
While the private conversations recorded in any one lesson were only those of the 
Focus Students, it was possible to compare the public oral interactivity of these 
students with their private oral interactivity and, similarly, their public and private 
mathematical orality. From the outset, it must be noted that six classrooms stood out 
because of the virtually complete absence of student-student interaction: those in 
Shanghai and Seoul. In these six classrooms, student-student conversation can be 
discounted as an instructional strategy (or as a subversive practice by students). For 
example, in Seoul classroom 1, there were no instances of student private talk in the 
first four recorded lessons and only two private utterances from one of the focus 
students in lesson five. The first utterance was “That’s yours” and the second was 
“No.” Obviously, neither involved any technical mathematical terms. 
In reporting the results that follow, we have put both Shanghai and Seoul to one side. 
The role played by private student-student interactions in the remaining classrooms is 
particularly interesting. In Table 1, the figures quoted for both public and private Oral 
Interactivity and Mathematical Orality are per focus student per lesson and have 
therefore been averaged over the spoken contributions of around 10 students per 
classroom. This should minimize the effect of individual student timidity or 
extroversion, although awareness of being recorded will have been a common 
characteristic of all focus students (and of their teachers). In reading the ratio 
columns of Table 1, it is simplest to think of the results as indicating, for example, 
that focus students in Hong Kong class 1 used a mathematical term on average once 
every eight public utterances but only once every 48 private utterances. 
It seems a reasonable hypothesis that student use of mathematical terms would be less 
likely in private contexts than in public teacher-orchestrated contexts. For seven of 
the 11 classes reported in Table 1, this was clearly the case. It is all the more 
interesting, therefore, that in all three Japanese classrooms and one of the Hong Kong 
classrooms the focus students were at least as likely to use mathematical terms in 
private conversation as they were to use them when participating in teacher-
orchestrated public discussion. Hong Kong 2 seems anomalous in its very low 
number of student utterances per lesson, both private and public. With such small 
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utterance numbers, slight variations in count may have the effect of inflating the ratio 
of private utterances to privately spoken mathematical terms. 

Table 1: The use of spoken mathematics by students in public and private contexts 

Oral Interactivity 
(utterances per focus 
student per lesson) 

Mathematical Orality 
(mathl. terms per focus 
student per lesson) 

 
Schools 

Public Private Public Private 

Public 
Ratio 
(utts./ 
term) 

Private 
Ratio 
(utts./ 
term) 

Hong Kong 1 4.21 22.59 0.52 0.47 8.10 48.06 
Hong Kong 2 2.84 7.15 0.41 1.30 6.93 5.50 
Hong Kong 3 2.39 23.80 0 0.83 n.a. 27.67 
Tokyo 1 6.13 14.79 0.28 2.24 21.89 6.60 
Tokyo 2 2.08 33.85 0.23 9.46 9.04 3.58 
Tokyo 3 6.92 11.67 0.61 0.99 11.34 11.79 
Melbourne 1 16.16 99.14 2.85 5.59 5.67 17.74 
Melbourne 2 14.36 83.75 0.18 0.30 79.78 279.17 
Melbourne 3 15.78 73.51 0.17 5.63 92.82 13.06 
San Diego 1 12.69 6.64 1.36 0 9.33 n.a. 
San Diego 2 9.31 55.33 1.12 3.56 8.31 15.54 

The Japanese result remains interesting; suggesting that Japanese students have a 
fluency in spoken mathematics that persists even across the public/private interface. 
It is also clear that student-student mathematical exchange was a feature of the Tokyo 
mathematics classrooms studied to a much greater extent than for the classrooms in 
Shanghai and Seoul. 

CONCLUSIONS 
It appears to us that the key constructs Public Oral Interactivity and Public 
Mathematical Orality distinguished one classroom from another very effectively. 
Particularly when the two constructs were juxtaposed (by comparing Figures 1 and 
2). The contemporary reform agenda in the USA and Australia has placed a priority 
on student spoken participation in the classroom and this is reflected in the relatively 
high public oral interactivity of the San Diego and Melbourne classrooms (Figure 1). 
By contrast, the “Asian” classrooms, such as those in Shanghai, were markedly less 
oral. However, this difference conceals differences in the frequency of the spoken 
occurrence of key mathematical terms (Figure 2), from which perspective the 
Shanghai classrooms can be seen as the most mathematically oral. However, students 
in the Tokyo classrooms used spoken mathematics in both public and private 
situations. The relative occurrence of spoken mathematical terms is one level of 
analysis. We should also distinguish between repetitive oral mimicry and the public 
(and private) negotiation of meaning (Cobb & Bauersfeld, 1994; Clarke, 2001). 
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Despite the frequently assumed similarities of practice in classrooms characterised as 
Asian, differences in the nature of students’ public spoken mathematics in classrooms 
in Seoul, Hong Kong, Shanghai and Tokyo are non-trivial and suggest different 
instructional theories underlying classroom practice. Any theory of mathematics 
learning must accommodate, distinguish and explain the learning outcomes of each of 
these classrooms. Consideration of the non-Asian classrooms is also interesting. With 
frequent teacher questioning and eliciting of student prior knowledge, the students in 
the Melbourne classrooms were given many opportunities to recall and orally 
rehearse the mathematical terms used in prior lessons. In terms of overall public 
mathematical orality and level of student contribution, Melbourne 1 resembles 
Shanghai 1 (without the use of choral response). In Melbourne 1, this public orality 
was clearly augmented by small group discussions, in which students drew upon their 
mathematical knowledge to complete tasks at hand. Such student-student 
conversations occurred much more frequently in the Melbourne classrooms. Student 
use of mathematical terms in situations not directly orchestrated by the teacher can be 
taken as a reasonable indicator of both the perceived need and the capacity for the 
purposeful employment of the technical language of mathematics. The relative 
infrequency of mathematical terms in student-student interactions in Melbourne 2 
compared with the other two Melbourne classrooms suggests that these indicators are 
reflective of teacher influence. 
To summarise: Students in the mathematics classrooms in Seoul have few 
opportunities to speak in class (either privately or publicly) and seldom employ 
spoken mathematics. Students in the Hong Kong classrooms are publicly and 
privately vocal, but make very little use of spoken mathematical terms in either 
context. Students in the mathematics classrooms in Shanghai are guided through the 
public orchestrated rehearsal of mathematical terms by their teachers, but seldom 
speak to each other in private during class time. Students in the mathematics 
classrooms in Tokyo participate orally in both public and private discussion and 
employ mathematical terms to a significant extent in both. By comparison, the 
students in Melbourne classroom 1 are highly vocal in both public and private 
contexts, and make more frequent public use of mathematical terms than any of the 
three Japanese classrooms, but less frequent use of mathematical terms in their 
private conversations. These different combinations of oral interactivity and 
mathematical orality represent at least five distinct pedagogies. 
The next question is, of course, whether or not students are advantaged in terms of 
their mathematical achievement and understanding by classroom practices that afford 
the opportunity to develop facility with spoken mathematics. The implicit assumption 
in the classrooms studied in Hong Kong and Seoul seems to be that the employment 
of spoken mathematics is not to the students’ benefit. Classrooms studied in 
Melbourne, Tokyo and Shanghai, despite differences in implementation, seem to 
make the opposite assumption. The post-lesson interviews may provide evidence of a 
connection between classroom mathematical orality and student learning outcomes. 
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This analysis is currently underway. We suggest that the empirical investigation of 
mathematical orality (in both public and private domains) and its likely connection to 
the distribution of the responsibility for knowledge generation are central to the 
development of any theory of mathematics instruction. 
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MATHEMATICAL BEHAVIORS OF SUCCESSFUL STUDENTS 
FROM A CHALLENGED ETHNIC MINORITY 

Tiruwork Mulat and Abraham Arcavi 
The Weizmann Institute of Science, Rehovot, Israel 

This study explored the mathematical behavior of resilient students of Ethiopian 
origin (SEO), members of an underrepresented and challenged ethnic group in 
Israel. Using qualitative methodologies, we examined six SEO, three in an advanced 
secondary school mathematics track and three in a pre-academic course while 
working on non-routine mathematical tasks. The mathematical behaviours and views 
of these students were found to be highly consistent with their professed beliefs and 
behaviors, which we explored in a previous study. Success was attributed to beliefs 
enacted during problem solving and was accounted for by neither giftedness nor 
special ethnic characteristics, but rather by high motivation, self-regulation, and 
persistence driven by positive identities, personal agency and ethnic identification. 
Key words: Mathematical behavior, beliefs, self-regulation, resilient, ethnic identity. 
INTRODUCTION 
In many countries all over the world, immigrants and ethnic minorities often face 
barriers at school resulting from various factors. Many researchers and educators 
believe that differential student learning, achievement, and persistence along ethnic 
and racial lines is one of the most troubling issues in mathematics education and in 
education in general (e.g. Martin 2000, 2003). In the case of Israel, educators and 
researchers have done much to describe and classify social, cultural, educational, and 
other societal difficulties encountered by different groups of immigrant Jews and in 
particular, those students of Ethiopian origin (SEO, more than half of whom are 
second generation). A range of studies have documented the overall academic 
underachievement, the relatively high dropout rates, and the high representation of 
SEO in special education programs (e.g. Lifshitz, Noam, & Habib, 1998; BenEzer, 
2002; Levin, Shohami, & Spolsky, 2003; Wolde Tsadik, 2007). In mathematics, SEO 
are significantly underrepresented in the advanced tracks towards Matriculation. For 
example, during the years 1999-2003, among all SEO who were eligible for the 
'Bagrut', the Matriculation exam taken at the end of grade twelve in different subjects, 
only 2% studied mathematics in the advanced track [1], compared with 17% of the 
entire student population.  
In different countries, some groups of immigrants and ethnic minorities achieve well 
academically; sometimes they even outperform mainstream students. Several studies 
have focused on explaining differential achievements between various minority 
groups and within certain minority groups (e.g. Ogbu, 1991; Martin, 2000, 2003; 
OECD, 2006). Most findings challenge the belief that the disadvantages and 
difficulties created by being an immigrant or a member of a minority prevent students 
from excelling in education.  
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Researchers are increasingly linking motivational, cognitive, and social environ-
mental aspects of learning. Many studies have provided new insights into why 
individuals choose to engage in different learning activities, and how their identities, 
beliefs, values, and goals relate to their engagement and mathematics achievements 
(Steele, 1997; Nasir, 2002; Martin, 2000, 2003; Sfard & Prusak, 2005). It is argued 
that students' problem-solving processes are influenced by beliefs about the self, 
about the nature of mathematics knowledge, the task at hand, and its context (e.g. 
Schoenfeld, 1983). Moreover, implementing self-regulation during problem solving 
is regarded as an important variable affecting the quality of the solving process: self-
regulated learners analyze tasks and set appropriate goals to accomplish these tasks, 
monitor and control their behaviors during performance, make judgments of their 
progress and alter their behaviors according to these judgments (Zimmermann, 1989). 
Social cognitive theorists, assume that self-efficacy is a key variable affecting self-
regulated learning and performance (Bandura, 1986); self-regulated learning is 
believed to occur to the degree that a student can use personal (i.e. self) processes to 
strategically control and direct both his/her behavior and the immediate learning 
environment (Bandura, 1986; Zimmermann, 1986). 
Based on the personal and environmental factors identified by research in 
mathematics education and especially based on the findings related to the success of 
individuals from populations at risk of academic failure, we sought to understand the 
success factors of SEO, students enrolled in the advanced mathematics track towards 
Matriculation. We focused on these students' views about their personal experiences 
in learning mathematics and the perceived impact of the personal and environmental 
variables on their persistence and success [2]. The conceptual framework used to 
guide our inquiry is based on the assumption that there are certain malleable personal 
and environmental factors that play significant roles in these students' academic 
resilience, defiance of the odds and their ultimate academic achievement. We adhere 
to the claim that, as opposed to studies of failure (regardless of their academic depth), 
studies of success constitute a more promising way of understanding and eventually 
increasing the circle of successful students (Garmezy, 1991; Martin, 2003). In our 
studies we sought to understand what enables some SEO to succeed despite the 
potential obstacles they face. We attempt to answer the following questions: 

1. To what perceived personal/environmental variables do SEO in Israel attribute 
their success in mathematics?  

2. What are the salient mathematical behaviors of SEO when working on 
mathematical tasks? How do they view, and reflect upon, their own behaviors?  

3. How do the perceived variables, the enacted mathematical behaviors, and the 
students’ views of these behaviors relate to each other?  

 

WORKING GROUP 13

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2474



 
In a previous study we explored the first question, through students' self-reports 
obtained using semi-structured interviews (see below a summary of this study). In the 
present study we present findings concerning the second and third questions.   
FINDINGS FROM THE PREVIOUS STUDY: STUDENTS' SELF-REPORTS 
A diverse group of SEO enrolled in the advanced mathematics track towards 
Matriculation were interviewed and followed up. The group consisted of fourteen 
students aged 17-19 (seven males and seven females), of which nine were high 
school students from four different cities and the other five were students enrolled in 
a special pre-academic program in a prestigious technological university in Israel 
(each from a different city). All were 'solos', i.e., the only SEO in the advanced 
mathematics track in their cohort at their schools, which is the optimal situation in 
most high schools. Our goal was to better understand how these students interpret 
their experiences and academic achievements within the advanced track in 
mathematics, in high school and in the university preparatory program, where the 
presence of students of Ethiopian origin is scarce. Using the qualitative methodology 
of a collective case study (Yin, 1984; Shkedi, 2005), we analyzed interview 
transcripts using a grounded approach and employing open coding techniques 
(Strauss & Corbin, 1990). Data were also triangulated with other sources such as 
classroom observations and interviews with other students, teachers, and parents. The 
key elements of success we identified were organized under three major categories 
(Mulat & Arcavi, submitted): 

(1) Motivational variables related to mathematics (e.g., mathematics identity, 
personal agency, productive attribution beliefs, academic goals, ethnic 
identification, and social goals activated by a positive cultural model)  

(2) Actions and strategies – perceived behavior (e.g., fostered use of academic 
self-regulation and coping strategies) 

(3) Immediate environmental variables (mathematics classrooms, teachers, and 
parental support) 

The central finding of the study was that the synergy among students' motivational 
variables, their academic self-regulation and coping strategies, shaped and supported 
by their interaction with the environment, appeared as the key to their success in 
mathematics.  
THE PRESENT STUDY  
The aim of the study reported here is to explore the mathematical behaviors and the 
task-related views of a subgroup of the participants in the previous study, and to 
examine how the findings of the two studies relate to each other.   
METHODOLOGY 
Subjects: Six SEO from the previous study participated in this study. Three of them 
(Eden, Melka, and Jacob) were high school students, and the other three (Selam, 
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Ronnie, and Danny; all pseudonyms) were students in the pre-academic program. The 
selection of these participants depended upon the availability of extensive data 
relevant to this study. 
Tasks: The students worked on five mathematical tasks, selected especially for this 
study according to the following criteria: The tasks had alternative solutions; they 
varied in their level of difficulty; their content level was rather basic and accessible to 
high school students, yet they were non-routine, challenging, and required some 
planning strategies. The problems were previewed by mathematics educators who 
agreed on the mathematical appropriateness for high school students. 
Data collection and analysis: The data consisted of students' written work, the 
interviewer's recorded observations, the protocols of the dialogues, questions and 
reflections that emerged during task completion, and the transcripts from follow-up 
interviews. In the interviews, all students were asked to describe their solution 
approaches and their thinking processes in completing the tasks and to describe their 
perspectives. These tasks were also given to students' peers in the lower mathematics 
tracks of the secondary schools. A qualitative descriptive methodology was used to 
analyze the combined data (Shkedi, 2005).  
FINDINGS 
A description of students' solution processes, along with the observed behaviors and 
views for three of the tasks are given, followed by a summary of the significant 
findings. 
Problem 1. 

Find the equation of the line parallel to the given pair of parallel lines and that lies 
exactly midway between them: (1) 3x-2y-1=0                                                                                     

                                         (2) 3x-2y-13=0     

Task completion: All participants efficiently completed this problem. The task was 
characterized by all of them as non-routine since its formulation was seen as different 
from what they usually encountered at schools, yet it was perceived as easy and 
accessible by available tools or algorithms.  
All subjects showed confidence in their ability to complete this task, and had 
completed it easily; appearing to be satisfied with their ability (two had minor 
computational errors). However, despite the existence of alternative ways to solve the 
problem, both the high school and the pre-academic students applied the 'slope-point 
formula' procedure they learned at school. Accordingly, the common stages in the 
students' solution procedures were in this order:  

• Transformation of the equations to an explicit form 
• Identification of the common slope 
• Identification of the y-intercepts (some solved for the x-intercepts) 
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• Finding the midpoint between the intercepts (using formula or graphs) 
• Writing the answer - equation of the line 

The participants attributed their success to their rich experience and mastery of 
similar school tasks. Yet, this task was found to be difficult to many students in the 
lower tracks, who blindly tried to solve the pair of simultaneous equations in search 
of a point, after they found the common slope, the first two stages above.  
Although both the high school students and the pre-academic students were equally 
successful in solving this task, we detected a difference in their use of a heuristic and 
the perception of its necessity. Two of the high-school students drew the graphs of 
the lines to find the midpoint of the intercepts, whereas all of the pre-academic 
students did not, claiming that they do not need the graphs to solve this problem and 
if they do, they can imagine them. The following quotations exemplify these 
differences among students: 

Instead of visualizing in your head, it is already in your notebook and it is hard to get 
confused that way. (Jacob) 

Here I do it in my head. You see that they have the same slope…when I can't see things 
with my imagination, I use sketches. But here you know the question leads you to the 
solution. (Selam) 

Problem 2. 
ABC is a right-angled triangle, ∠ ABC=90°. 
AB=16; BC=12 and BE=9; BD is the median to AC, and 
 BE is the altitude to AC.  
There is an error in one of the given numbers.   
(a) Show that there is an error (report all your processes). 
(b) Change only one of the numbers (9, 16, or 12) 
     to correct the error. 

Task completion: Students showed different performance levels on this task. All 
students started by marking the given numbers on a triangle they drew and by 
calculating the length of the hypotenuse AC=20 (one made a computational error). 
Five of the students also marked AD=BD=DC=10, referring to the theorem about the 
median to the hypotenuse in a right triangle, but only three used this information to 
produce their solutions later. Only three of the students completed both parts of the 
task independently showing ease and confidence (but one had computational as well 
as other major errors and thus got a wrong answer). The other three students had 
difficulties in devising a plan and an effective strategy to proceed with the task; they 
were stuck for a long time; two of them said that they checked whether there is a side 
with a length greater than the sum of the other two sides. These students were 
confused and disturbed since they did not know how to plan their solution procedure 

A 

12 

16 

9 

D 
E 

C B 

WORKING GROUP 13

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2477



 
and were uncertain about their understanding of the question. After some 
unsuccessful trials, they quit and proceeded with the other questions and returned to 
complete the task after receiving supporting clues and prompts from peers and from 
the interviewer.  
In the first part of the task, students used different strategies to show that a triangle 
having the given sizes is not possible. Two showed that they got two different areas 
for the same triangle, three showed two different sizes for a side of the triangle; 
another student showed that the corresponding sides of similar triangles are not 
proportional. Five of these students used the same strategies they used for the first 
part to answer the second part of the question. One chose to use a trial and error 
method. Half of the students mentioned the possibility that the error could be 
corrected by changing any one of the three numbers. Since there were different ways 
to show that there is an error, the error could be corrected by changing any one of the 
three numbers, implying different ways and possibilities to answer the second part of 
the question. Yet all participants decided to change 9 (which was a good choice); four 
students (two of them with support) completed the problem successfully. The other 
two students, one who used a trial and error method and another who made a major 
error in her computations to change 9 got wrong results.  
All students characterized this task as non-routine, saying that it is not like school 
tasks that they usually solve with great ease and success, and that here they could not 
just apply known algorithms to obtain a solution. Danny, who completed all the tasks 
successfully, characterized this task as 'a deceptive question'. Jacob said: 

This is a question in geometry, but never, at least I never encountered questions like this, 
saying that there is a mistake, correct a mistake. Usually they give you exercises that 
have solutions at the very beginning, and if you work by the book, you succeed, but here 
you have to think more. 

Melka also referred to her school experiences:  
We are not used to such kind of questions; they never tell us to correct mistakes; they 
always provide us with given objects and ask to do other things and not to correct 
mistakes. 

In sum all the students (some with probing), completed the first part of this task 
successfully by using different strategies. While four of them also succeeded with the 
second part, the other two students used ineffective strategies and got wrong answers. 
Problem 3. 

Given is an array of natural numbers arranged under four  

columns, A, B, C, and D, as shown here.  

(a) Under which letter does the number 101 appear? 

(b) Under which letter does the number 1001 appear? 

A     B     C       D 
1      2      3        4 
8      7      6        5 
9     10    11     12 
        …   14     13  
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(c) Answer questions (a) and (b) above, for a five-column array of numbers with the 
same pattern 

Task completion: This task seemed to be more difficult than the other tasks 
especially for the high school students. It also took most students more time than each 
of the other tasks. Only two students (both pre-academic) found effective rules and 
gave correct solutions with clear explanations.  
As a first step towards finding a solution to this problem, all students added more 
numbers to the list following the given pattern. All of them tried for quite a long time 
to find a possible pattern or rule to solve this task (unlike students in the lower tracks, 
who tried to answer it by listing numbers to reach 101 without looking for a rule). As 
stated above, only two students (both pre-academic) proposed a similar rule: even and 
odd multiples of 4 can be found in alternate lines of the outer left and outer right 
columns (A and D), respectively. The other pre-academic student, however, did not 
recognize the sequences' pattern on the extreme columns and added to the list in a 
wrong order. Consequently, she did not succeed in completing the task, but she 
refused to hear a solution method and asked to complete the task at home by herself. 
Three of the high school students did not write their rule clearly, and their answers 
were mostly wrong or not justified, although two were certain they had obtained a 
working rule. The other student, who seemed less confident, said that she solved it 
logically, using her common sense, and that she did not know how to communicate 
her method.   
This task was characterized as difficult by all participants. One of the students even 
commented that it is not a mathematical question; the other said it is a 'thinking' 
question that challenges the mind, and that schools do not offer such questions. 
SUMMARY 
As stated above, this study explored the mathematical behaviors displayed by 
successful SEO, and analyzed the relationships between these behaviors and the 
professed beliefs and reflections found in a previous study in which the students also 
participated. Some of the findings from the previous study (e.g., ethnic identification, 
social goals, and parental support) were not salient in the present study due to their 
very nature; these categories are rarely captured while students work on mathematical 
tasks. However, in other findings we found consistency between the 'professed' 
beliefs and behaviours and the 'enacted' mathematical behaviors, as described in the 
following.  
Motivational beliefs: Students showed a variety of behaviors and performances. 
Although some students lacked confidence when they had no handy effective 
strategies, their behaviors were consistent with their professed efficacy beliefs and 
their confidence in their ability to solve the problems. They said that they have the 
mathematical knowledge necessary for completing the tasks and shared their 
enjoyment and satisfaction of being engaged in questions that demand thinking. They 
attributed their difficulties in solving these problems to a lack of previous experience 
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with non-routine questions. They expressed their expectations that schools should 
provide opportunities to encounter and practice such tasks that require 'thinking'. 
Self-regulation strategies: Self-regulation is one of the characteristics that we had 
identified in the previous study as playing a prominent role in these students' success 
in school mathematics. The students expressed their belief that what it takes to 
succeed in school is planning and evaluating their own actions and strategies by 
investing time and effort to study what is taught at school. When these students failed 
to solve some of the non-routine tasks of this study, they attributed it to not having 
the right tools, since their learning efforts were directed to what school had taught 
them. Thus, cognitive regulation and retrieval of the appropriate knowledge and the 
strategic tools needed for the tasks in this study were difficult for them. Many of the 
students quit after some unsuccessful trials, moved on to other questions but still 
returned to the unsolved tasks later. We took this willingness not to give up as yet 
another manifestation of these students' good self-regulation strategies applied to 
difficult situations for which they were unprepared. This strategy was found to pay 
off for some students, since with some probing they succeeded to complete the tasks.  
Solo learning: Though students were told that they can work with their peers (three 
of them had opportunities to do so) and also that they can ask for support from the 
interviewer at any time while working on the tasks, they did not use these 
opportunities productively. Suggestions to support the students when they were stuck 
at certain stages were all initiated by the interviewer. The preference of students to 
work alone was also in line with these students' professed 'solo learning' 
characteristics.  
Perceptions about the tasks: The tasks were characterized as non-routine, including 
the first question that all could easily solve, yet they expressed their enjoyment and 
satisfaction in performing such tasks. The students were very critical about 
mathematics lessons at schools that do not offer students opportunities to face 
challenging tasks.  
Differences within groups: Though the tasks are appropriate for any high school 
student, overall, the pre-academic students showed (a) greater confidence in 
completing the tasks (even when they were not always successful), and (b) better 
communication skills to write and explain clearly their solution processes. These 
differences could be attributed to the pre-academic students' self-reports that in 
contrast to high school teachers, the teachers in the program have exposed them to 
meaningful mathematics learning, which also developed their confidence, intrinsic 
interest in mathematics and mathematics identity. 
DISCUSSION AND CONCLUSION 
Whereas these SEO's success in school was, to some extent, due to learning by 
playing well the school rules, which are mostly rehearsing and following algorithms, 
completing the tasks of this study engaged these students with a quite different 
experience. Thus, since these students were not especially gifted and their knowledge 

WORKING GROUP 13

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2480



 
resources come only from school, their success can be attributed to their mathematics 
identity, motivation, and self-regulation skills; all these were supported by their other 
professed beliefs and views in relation to the tasks. Moreover, the heterogeneity of 
solution approaches and strategies observed in this study is proposed as a further 
confirmation how resilient and minded to success these students are, each of whom 
mustered resources and alternatives from his/her own to solve the tasks. 
In sum, neither exceptional cognitive ability nor common cognitive characteristics of 
a certain "ethnic" group are variables that play significant roles in analyzing success 
(or failure) of these SEO. It is their determination, personal identities and support that 
shape their self-regulation, persistence and beliefs that shape their behaviours and 
ultimately their success. From this and related findings, we argue that educational 
systems that want ethnic minorities to succeed academically have much to learn from 
these and related findings regarding the roles of identities, self regulation, 
enhancement of motivation and support of learning which can take place in 
collaboration with peers. 
NOTES 
1. In the Israeli education system not all students are eligible for Matriculation; eligibility is 
determined according to the students' prior achievements. In mathematics, those eligible have taken 
one of three levels: basic (3 units), intermediate (4 units), and advanced (5 units). 

2. In this study success refers to enrolment in the advanced track towards Matriculation 
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A PROBLEM POSED BY J. MASON AS A STARTING POINT 
FOR A HUNGARIAN-ITALIAN TEACHING EXPERIMENT 
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The paper reports on a collaborative project involving Italy and Hungary, within the 
European Project PDTR [1], and presents an analysis of its implementation and 
outcomes. The work stemmed from a problem about the exploration of regularities, 
proposed by John Mason, scientific advisor of the project. We start from the 
preliminary analysis of the problem carried out by the two teams, present re-
elaborated versions, planning of the activities and modalities for implementing them 
in the classroom in the respective countries, discuss the outcomes of the experiment, 
final reflections made by experimenting teachers and general ones made by the teams 
about the materials elaborated during the activities. 
Key words: Arithmetical Regularities, Early Algebra, Teachers Professional 
Development, Teaching Experiment, Teaching-Research 

INTRODUCTION 
The central aim of PDTR project has been to engage teachers of mathematics in the 
process of systematic, research-based transformation of their classroom practice so to 
initiate, using teaching-research as the leading methodological agent, the 
transformation of mathematics education towards a system which, while respecting 
the standards and contents of the national curricula, would be more engaging and 
responsive to student's intellectual needs, promoting independence of thought, and 
realizing fully the intellectual capital and potential of every student and teacher. 
The teachers’ work, in a first phase, addressed issues and questions of the PISA test, 
with particular reference to the promoted competencies, some of them - such as 
argumentation, posing and solving problems, modelling and representations – are 
clear indicators of a new way of conceiving the mathematical teaching and classroom 
activity. In a second phase, the PDTR apprentices and IT designed teaching 
experiments, collected data, observed their pupils with a new investigatory eye, 
analyzed and discussed the data with their team members. 
In this context, some teaching experiments were carried out with the aim of 
promoting a direct exchange between the teams on the ways of implementing 
common activities in the participating countries. The richest exchange occurred in the 
Hungarian-Italian Bilateral Teaching Experiment (HIBTE), which was developed in 
the field of the algebraic and pre-algebraic thinking (Malara & Navarra, 2003). 
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METHODOLOGY 
Meaningful increasing research in mathematics education points to the renewal of its 
teaching through a linguistic and socio-constructive approach in the sense of early 
algebra with pupils of k-8th gr. In this perspective, teachers come to play a complex 
role in the classroom and they need to face a number of unpredicted and not easily 
manageable situations. Regarding this, several scholars highlight the importance of a 
critical reflection by teachers on their activity in the classroom (Mason, 2002; Ponte 
2004) so that they can also become aware of the macro-effects on classroom activities 
caused by their (sometimes not appropriate) micro-decisions. To promote this attitude 
in teachers, within the Italian Team (IT), a complex written activity of critical 
analysis of classroom transcriptions, in which the teachers, their mentors, the mentor 
coordinator and the academic researcher cross their comments, has been enacted. It is 
called Multi-Commented Transcripts Methodology (MCTM) (Malara, 2008). The 
methodology of work between the two teams developed in 5 phases: 1) Adjustment 
by HT of the proposal made by John Mason, PDTR expert, to the Hungarian Team 
(HT) teachers; 2) didactical transposition of the adjusted proposal in HT classes (9th-
12th gr.), evaluation of the results; 3) analysis, adjustment of HT proposals by IT and 
transposition in IT classes (6th-7th gr.); 4) implementation of MCTM; 5) analysis by 
HT of IT transcripts; 6) cross reflections. 

DISCUSSION 
The original proposal by John Mason to Hungarian PDTR teachers 
During his lecture in Debrecen (Hungary), Mason asks the participants (about 30 pre-
service mathematics teacher and about 30 secondary school mathematics teachers) to 
solve the following problem (Fig.1). After 10-15 minutes, it is clear that such type of 
problems are very uncommon to Hungarian teachers and students, most of them 
cannot do anything. Seeing the difficulties, Mason numbers the rows and sketches the 
fourth row in the shape of a ‘cloud’ which hides the sum (Fig.2). 

1= 

 

1+3+1= 

 

1+3+5+3+1= 

 

 
Please, continue. 

Draw 4th and 5th rows. Try to 
generalise. 

→

1st row 1= 

2nd row 1+3+1= 

 

3rd row 1+3+5+3+1= 

 

4th row  
 
What are the elements of the sum in 
this case? How can we express the 
sum covered by the cloud? 

Fig.1: Mason’s problem    Fig.2: Mason’s problem adapted 
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At this point, a lot of participants still have difficulties, so the generalization is led by 
the lecturer himself. Based on this experience, the Hungarian team (HT) decides to 
investigate this phenomenon and leads an a-priori analysis of the question. 
Two additional preparatory problems to Mason’s problem 
On the base of the analysis, HT decides to employ two additional preparatory 
problems (Figg.3, 4, 5) in the classroom-based experiment. 

 

Let us continue the sequence till to 17.th element! Which figure is standing on the 
243-th place? What is the order number of the 25th circle? Try to find a general 
expression for the positions of squares, circles and triangles! 

Fig.3: HP1 - first preparatory problem 

1st row  1= 

 

2nd row  1+3= 

 

3rd row  1+3+5= 

4th row 
… 
10th row 
… 
nth row 
… 

Prove your conjecture for the nth 
row! You may use algebraic and 
geometrical arguments (if possible, 
prove with both methods). 

 

1st row  1= 

 

2nd row  1+3+1= 

 

3rd row  1+3+5+3+1= 

4th row 
… 
nth row 
… 

Prove your conjecture for the nth 
row! You may use algebraic and 
geometrical arguments (If possible, 
prove your conjecture with both 
methods). 

Fig.4: HP2 - second preparatory problem Fig.5: HMP3 - Mason’s problem 

The Hungarian teachers involved in the experiment report after two weeks that their 
9th grade students are able to do some steps of the first problem but no one in the 
second and third problem. HT asks other teachers to conduct the test in higher grades 
(170 students of 9th, 11th, 12th), but difficulties and blocks are still detected in the 
students. Based on these results, the Hungarian team (HT) decides to share the 
experiment with other PDTR teams, by posing the question to investigate on these 
difficulties and particularly on the reasons underlying students’ inability to generalise 
and represent the sequences in general terms.  
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Reactions by Hungarian students and teachers 
In November 2007 Mason’s problem, its a priori analysis, HP1, HP2, HMP3 and the 
commented outline of the results obtained in Hungarian classes are sent out to the IT, 
together with comments like the following: 

“… The first experiences with Mason’s proposal are very negative. The Hungarian 
students are not used to open problems, to visual representations, to induction and 
generalization”. 

The Italian team in turn analyses the problems. The coordinator writes to the 
Hungarians: 

“… The teachers reacted to these problems by saying that it is nonsense to bring this task 
into a class, independently on the plan of work, because this proposal requires a lot of 
time (time for the students’ individual and/or small group exploration, for assessing 
students’ results, for organizing and realizing in the class the discussions on the students’ 
contributions).” 

The teams are stuck. Both students and teachers react to the experiment with either a 
sense of frustration or hostility. An in-depth reflection on the HIBTE is then enacted, 
and the discussed themes start from the Mason-episode to widen up. 

FIVE KNOTS 
Five central issues emerge from the analysis: 
1) What are HIBTE’s objectives? The first answer, provided by both Hungarian and 
Italian teachers, was: to look at if/how students explore/solve the three problems. But 
the main issue is: were these Mason’s objectives, or those which HT and IT 
attributed to Mason’s proposal and consequently to HIBTE? 
2) Who is HIBTE’s referent? There are three possible answers: the students, the 
teacher-researchers, the researchers. The answer ‘the student’ was the first one and 
brought about problems to both Hungarian and Italian teachers: unusual problems, 
classes not prepared to tackle them, missing pre-requisites, activity not included in a 
planning which requires a lengthy time (particularly if the class has not experienced 
similar activities). But is it true that students were the main referents of the HIBTE? 
3) What are the needed competencies? Are the mathematical ones the only or main 
ones? The question is: perhaps the needed competencies are wider and the 
mathematical ones are only a subset? 
4) How can the problem proposed by Mason be set in the class’ teaching and learning 
context? Mason’s proposal may be viewed as a virtual proposal. He provided an input 
and it was up to the single countries to compare it to their own cultural reality, their 
school systems, their teacher training programs and their usual behaviours. In the 
prior analysis, HT and IT needed to give a sense to the proposal, with relation to their 
specific theoretical frameworks, for instance: in the prior analysis HT focused on 
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didactical-mathematical aspects and on students, whereas IT focused on 
methodological aspects and on teachers. So: actually setting the problems out in the 
classes, is this the sense of the proposal? 
5) Why studying sequences and regularities? The answer is: Mason meant to be 
provocative. He perfectly knows that the theme is highly important (modelling, 
generalizing and so on) but he also knows that its underlying spirit is completely, or 
at least largely, stranger to the school systems of many countries. His proposal 
means: do not think of setting the problem in the class immediately, get really 
engaged with this question, and think about what might/should happen in your class, 
and therefore in your way of thinking, and therefore in your school system and 
therefore in your country’s teacher training system, so that these problem situations 
and activities may become components of the spine of a different way of conceiving 
mathematics teaching, as well as of implementing it. 
Let us get back to our initial questions: who is the referent of HIBTE? Which are the 
objectives? If we think that students are the referents and their competencies in 
mathematics the objectives, we would break an open door: given the premises, a 
negative outcome would be easily predictable. The actual referents are trainee- 
teachers-researchers and researchers. The objectives are not ‘only’ mathematical 
knowledge and the strategies to enact it, but rather reflection – initially individual and 
then shared – on methodological issues that, appropriately set, can make this type of 
problems feasible and meaningful in the class. It is in this line that IT opens up the 
theoretical umbrella under which the HIBTE will develop. It is decided that an initial 
experiment will be carried out by Navarra [2], with his class (6th grade) and later by 
some other trainee teacher-researcher, in 6th- 7th grade classes, on the basis of HP1 
and HP2. Mason’s problem is left aside, because teachers consider it as unsuitable for 
the expertise of pupils of this age. 

1) The teaching experiment in Italy 
The transposition of Hungarian problems in two 6th and 7th grade classes 
Navarra’s class could be defined as ‘expert’ since pupils have in their background (K-
5th gr) more than five years activities on the study of regularities in an early algebra 
setting (40-50 hours with Navarra teaching together with the class teacher). The class 
is used to working in an ArAl environment and therefore to verbalizing, arguing and 
constructing knowledge socially. Navarra proposes a new version of HP1 (Fig.6): 

 

Pupils are asked to start from the drawing to imagine what questions might be 
proposed to another class, so that their curiosity might be stimulated, and organize 
both drawing and questions in a problem. 

Fig.6: HNP1 – initial problem situation, HP1 version 
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Turning an input into a problem is not a new practice. Pupils, divided in groups, 
elaborate 36 questions and then reduce them to 13, through a large collective 
discussion. The first 6, out of the 13 questions, are defined ‘ice-breaking questions’ 
purposefully organized for a ‘non expert’ class; 4 are defined ‘opening questions’; the 
last 3 questions (‘difficult questions’) are, in fact, the same as in HP1 (Fig.7). 

A. Ice-breaking questions 
 
1. What does the arrow 

mean? 
2. Which is the module? 
3. How many figures is a 

module made of? 
4. How does the sequence 

carry on? 
5. If I repeat the module 50 

times, how many times is 
the circle repeated? And 
the square? And the 
triangle? 

6. When triangles will be 
345 how many modules 
will there be? 

B. Opening questions 
 
7. The squares are at places 

1, 4, 7, 10, 13. What 
about circles and 
triangles? 

8. Is every type of figure at 
even places? Only at odd 
places? Both at even and 
odd places? 

9. In 23 modules how many 
figures are there? 

10. Were the shapes 100, 
how many modules would 
we have? 

C. Difficult questions 
 
11. Explain how you can find 

the figure at place 34. 
And place 95? And 243? 

12. Explain how you can find 
out in what position are 
the 56th triangle, the 
192nd square, the 368th 
circle? 

13. Can you arrange general 
formulae to find out at 
which position is any odd 
square, circle or 
triangle? 

Fig.7: Questions proposed by pupils 

Pupils themselves solve the questions, during discussion, analyzing, comparing, 
modifying and eliminating them. Altogether, eight hours of work in class; four diaries 
drawn from four digital recordings. The class goes through the experience 
productively because they set it in a familiar context. Warning: one does not say 
‘extraordinary context’, but rather ‘familiar’; one means a suitably constructed 
context, with an internal consistency pupils were aware of, undertaken when they 
were five years old. 
The problem of analyzing pupils’ questions is proposed by Navarra in a 6th grade 
class of a colleague of his. Pupils’ reactions to the first six questions are of  
confusion, and make Navarra realize that, before tackling them, he needs to broach, 
although in a short time, with some very delicate methodological questions coming 
well before the solution, that is: pupils are scarcely used to talking about 
mathematics, have an initial block when they need to explore a problem situation, are 
not familiar enough with competencies like verbalizing, arguing, controlling and 
comparing different languages and translating from one language to another; focus 
more on ‘results’ than on strategies and thinking processes. Moreover: the approach 
to generalization and modelling are nearly unknown; there is a stereotype about the 
impossibility of a creative and functional attitude in the production of mathematical 
expressions; there is a weak control over mathematical contents such as: 
multiplicative structures, divisibility, division algorithm, properties of operations, use 
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of letters, etc.; there is a poor use of tables to explore and compare data as well as to 
analyze what is constant and what varies. One could say that it is a standard class, 
with standard pupils, a standard teacher, standard programs. 
The ‘ice-breaking’ questions allow groups to produce mathematical expressions that 
are reported on the blackboard, compared and selected in a search for the most 
correct, consistent and the clearest. The first 10 questions turn out to be effective, and 
the outcomes of the activity in this second class (8 hours) are globally satisfactory. 
The eight hours of work in the first class on the first task produce four diaries, drawn 
from four digital recordings. The transcripts, commented by Navarra, are sent out to 
other components of the IT who comment them in turn, following the multi-
commented transcripts methodology. After this, HP2 (Fig.4) is analysed and then 
structured in three worksheets A, B, C [3] so that the difficulties may be diluted. The 
worksheets are meant to favour a representation through letters: (A) of the relation 
between the last addendum (a) and the ranking number (n) of the nth row (a=2n-1); 
(B) of the relation between the ranking number (n) and the sum (s) of the nth row (s= 
n2); (C) of the sum of the first n odd numbers. The protocols relating to Navarra’s 
experiment are analyzed and classified by IT. Based on the outcomes, the worksheets 
are refined with some changes and then proposed to a 7th grade class, with teacher 
Marco Pelillo, novice trainee researcher. 
Classification of the results is based in particular on the following aspects: (i) 
identification of how different perceptions of written expressions and of drawings 
influenced the related algebraic or ‘pseudoalgebraic’ expressions produced by pupils 
(i.e. many interpreted the two graphical representations, seeing the first, as 
representing the operations of sum of odds indicated, and the second, as representing 
the result of the sum; this interpretation was encouraged by the fact that a dot was 
missing in the first line of the second representation); (ii) strategies and consistency 
used by students to develop their explorations up to the identification of general 
forms and ways to express them in either natural or algebraic language; (iii) analysis 
of pupils’ verbal representations’ like “The line number is always doubled by 2 and 
decreased by 1”; “The difference between the line number and the last term of the 
sum is always equal to the number of the previous line; adding up the line number to 
the number of the previous line you get the last term of the sum as result”; (iv) 
identification and analysis of algebraic expressions that could be reduced to a=2n-1 
like: a=n+n-1, a=(n+1):2, a=n·2-1, a=n+(n-1) (a = ‘last addendum’ and n = ‘row 
number’); (v) analysis of written expressions that could be reduced to s=n2 or to 
s=n×n (s = ‘sum’ and n = ‘row number’); (vi) analysis of written expressions to be 
reduced to 1+2+3+…+2n-1=n2 or n×n, to test pupils’ capacity to spot the equality 
between the sum of the first n odd numbers and the square of n. At the end of the 
experience Pelillo makes the following comment: 

“…It was very hard to make pupils represent the equality, since they were not able to 
express the sum of the first n odds in general terms, despite the hard work made to 
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represent the last term... I produced a justification of that equality in a recursive way, on 
the basis of geometric remarks, and representing the odd number to be added to the 
subsequent line of data with the gnomon of the square corresponding to this one... Many 
pupils immediately grasped the regularity. The identification of the result of the sum of 
the first n odds was easy, whereas more problematic was the representation of the sum of 
the first n odds... The linguistic aspects turned out to be problematic. A basic difficulty 
was evident in pupils’ linguistic expression... We might talk about a proximal use of the 
Italian language.” 

In February 2008 the Italian versions of the problems, the commented transcripts by 
Navarra (32 pages), the classifications of protocols are sent out to HT. 

2) The teaching experiment in Hungary 
HT analyses materials sent by the IT and, on the basis of this, decides to carry out a 
teaching experiment in two classes (5th and 6th grade, Béla Kallós, novice teacher 
researcher trainee). In July 2008 HT sends to IT the synthesis of the work carried out 
at Kallós on HP1 and HP2 together with the teachers’ remarks on the Italian materials. 
Comments by Béla Kallós 

“… The students were divided into two groups. The groups received the task sheet. I 
asked the students to read the text carefully, if they did not understand something, they 
could ask me. I have planned 25-30 minutes for the pair work. In the last 10-15 minutes 
we discussed the solutions with the whole class... The students did not understand the 
problems in all cases... We have seen that at this age some students can express their 
solution using formal language” 

“Some reflections on myself as a teacher. In PDTR J.P. da Ponte formulated four main 
phases in the development of the teacher-researchers: teacher; good teacher; researcher; 
teacher researcher. I am a very young teacher yet, not with much experience. I am just on 
the way to be a good teacher. Most of my teaching actions are intuitive, based on my 
personality and some experiences as a student, teacher student and teacher. Until now my 
main aim was to teach mathematics and science as might as possible effectively. These 
two experiments are my first trials in research in mathematics education... I was 
socialized by the traditional Hungarian education. Mathematics has a high prestige in 
Hungary, the competitions, the fostering of talented students are in the centre. We in 
Hungary are focused on teaching mathematics and not on children.” 

“About my teaching style: I audio-recorded my lessons first time and it was a surprise for 
me to hear myself. I need to develop my articulation, my construction of sentences. I 
should have given more time for the students to think about the solution of the problems. 
I need to have more tolerance to the students’ misconceptions and mistakes.” 

Use of open problems: “We have seen how much difficulties the most open formulated 
version caused for Hungarian students. In my experiment I modified the task sheet into 
such small concrete questions that the originally open problem became a closed one. It is 
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clear that in such a case the students do not have too much freedom to be creative, 
flexible. I think I should use more time for problem posing, problem variation.” 

Some Hungarian teachers’ reflections on Navarra’s transcript 
“As for the used teaching method: the students of 9th, 11th, 12th worked in groups, they 
got about 15 minutes to solve Mason’s problem... In Hungary the group work is very 
rare, the teacher’s leading role is very strong and is based on the ideology that everybody 
must achieve the same high level.” 

“In the Italian commented transcript the activity contains very detailed analysis of 
students’ products. In Hungary, we usually close the discussion after some minutes, very 
fast with the right result!... From the point of view of handling the mistakes, for us it was 
interesting to observe how tolerant the teacher was with the students’ mistakes. We must 
accept the effectiveness of the Italian style: the students need to explain the source of the 
mistakes. For example, Navarra says to the pupils: ‘It is important for you to understand 
the mistake’ and, in one case: ‘What is more important for you in this moment, focusing 
on the tenth at the division, or on the remainder?’ In Hungary the written division 
algorithm is taught in 4th grade, in higher classes our teachers don’t consider this question 
necessary to handle anymore, because ‘everybody must know it’.” 

“In developing the students’ way to form arguments and explanations, it is fascinating to 
observe how the teacher tended to improve students’ arguing: ‘Please, make your 
thinking method understandable!’... It is typical for this age that pupils cannot express 
themselves: ‘I can do it, but I cannot explain why!’ Very often students repeat the process 
they used as explanation. We can only agree that to develop the PISA competence 
‘mathematical communication’ is a long process, and we must do it consciously”. 

“Varying the figures of the unit is a good possibility to check the understanding of the 
students both of the process vs. product and of the general rule. The younger students 
tend to concentrate only on the product and not on the process... Simply, the Hungarian 
mathematics teachers do not care for this problem.” 

“We wondered how many children participated in the communication at this problem, 
changing the number of figures in one unit, changing the type of figures, using reverse 
problems... Navarra always summarized the results and the pupils analyzed them on the 
whiteboard. In our opinion for this age group the clear visual explanation is important.” 

CONCLUSIONS 
Enacting International collaborative projects in the educational field requires great 
involvement by all participants. But enacting meaningful forms of collaboration, 
regarding issues with a shared value, requires the construction of a common ground, 
where conceptions (of mathematics and its teaching) and educational values might be 
questioned and the cultural and environmental operating conditions are made explicit. 
In the case of HIBTE, the will to engage in a single task and communicate methods 
and results, provided a basis for important in-depth analysis, far from the initially 
predicted one. The original proposal by Mason was lived as a stimulus to lead 
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teachers to reflect upon many issues, very important from general points of view: the 
role and the way of being in the class, the capacity of anticipating the class’ 
behaviours as a reaction to teaching proposals; the need to acquire a range of 
competencies to enable improvisation in the classroom. Therefore, more than 
carrying out an in-depth analysis of mathematical aspects, which is in the ‘natural 
spirit’ of the exploration of problem situations like the ones we proposed, in our case, 
exchanges occurred under a methodological, before being mathematical, theoretical 
umbrella. The main referents were teachers, well before students; the main questions 
concerned linguistic and social competencies, well before cognitive aspects. The 
meaningful part was the fact that teachers acknowledged how much verbalization, 
argumentation and dialogue with peers may be productive to promote the 
mathematical construction, as well as to produce conscious and meaningful learning 
in pupils. 

NOTES 
1. The European PDTR project, Professional Development of Teacher-Researchers, involved seven 
teams of mathematics teachers, apprentices in the craft of teaching-research, from: Hungary 
(Debrecen); Italy (Modena, Naples); Poland (Rzeszów, Siedlce); Spain (Barcelona) and Portugal 
(Lisbon). 

2. G. Navarra is a teacher-researcher sharply involved in teachers education in early algebra. He is 
responsible with N.A. Malara of the teaching experiments and production of the ArAl teaching 
materials. In PDTR Project he has been mentor of the Italian team (leader N.A. Malara). 

3. Due to space constraints, worksheets A, B, C can be found in www.aralweb.unimore.it. 
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A COMPARISON OF TEACHERS’ BELIEFS AND PRACTICES 
IN MATHEMATICS TEACHING AT LOWER SECONDARY 

AND UPPER SECONDARY SCHOOL 
Hans Kristian Nilsen 

Sør-Trøndelag University College, Norway 
The focus of this paper is a comparison of lower and upper secondary teachers’ 
beliefs regarding teaching mathematics in general. This is linked to a research 
project concerning the transition from lower secondary to upper secondary school 
and the learning and teaching of functions. In Norway the transition from the 10th to 
the 11th grade always involves these separate institutions. The results presented here 
are based upon interviews with teachers at both lower and upper secondary level of 
schooling and some interesting differences in their views of mathematics teaching are 
uncovered. Hopefully, these preliminary findings could give rise to meaningful 
discussions related to how a qualitative approach to the transition issue might be 
carried out. 
Keywords: mathematics teaching, transition, lower secondary, upper secondary 

INTRODUCTION 
In Norway, the transition between different phases of schooling, particularly in 
relation to the learning and teaching of mathematics, is an area where little research 
has been done and the major part of the international research in this field concerns 
the transition from upper secondary school to university/university college (often 
denoted as the secondary-tertiary transition) (Gueudet, 2008; Guzmán et al., 1998). 
My own experiences as a student and a teacher, at both lower and upper secondary 
school levels have led me to believe that the traditions and beliefs in these institutions 
differ in ways which in turn might affect students’ learning. As a PhD student (in my 
second year), I have chosen this transition as the focus of my research. It is important 
to note that in Norway, upper secondary schooling is divided in two main 
programmes: the vocational programmes, which are orientated towards practical 
professions and the general study program, which aims to prepare students for higher 
education. The curriculum is different in these programmes and is considered to be 
more ‘theoretical’ at the general study program. This is also the case for mathematics 
as a subject. Both of these programmes are included in this research. Further, I have 
chosen to focus on functions as this is an area highly relevant to both levels of 
schooling, and personally I find the development of students’ conceptual 
understanding of functions to be an interesting research area. It is also possible to 
expand this area of research, for example by taking the universities/university 
colleges into the consideration, as the learning and teaching of functions is an 
important issue in several of these study programmes. However, in this paper I will 
focus on mathematics teaching in general (not only teaching related to functions). 
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RESEARCH QUESTIONS 
I pose the following research questions, relevant for this paper: 
What are the differences in the didactical approaches related to mathematics 
teaching, in lower secondary versus upper secondary school? How are such possible 
differences perceived by the teachers at both these levels of schooling?  
To approach the first question, I compare the lower and upper secondary teachers’ 
views and practices concerning the teaching of mathematics in general. Concerning 
the second question, I present the lower secondary teachers’ statements related to 
how they think upper secondary teachers perceive the teaching of mathematics in 
lower secondary school. These statements are then being compared to the actual 
statements of the teachers at upper secondary school.  

THEORETICAL BACKGROUND 
An established and well-documented argument within educational research is that 
teachers’ beliefs are one of the best indicators of the decisions teachers make 
throughout their career (Pajares, 1992). The link between beliefs and actions, 
therefore, motivates for many of my interview questions. As indicated by Mosvold 
(2006, p. 37) research shows that many of these “beliefs are shaped from the 
experiences of those who taught them”. What often seems to be conflicting interests, 
or even paradoxes, experienced in teachers everyday practice, is described by Mellin-
Olsen (1987; 1991) as characteristics of a ‘double bind’. According to Mellin-Olsen, 
double bind can be recognized at many levels. One aspect of this can be that the 
individual is tightly connected with his environment, and consequently left with few 
individual choices. Often this relates to the ‘didactical contract’ which in its simplest 
form means that “the teacher is obliged to teach and the pupil is obliged to learn” 
(Mellin-Olsen, 1987, p. 185). Hidden (or in some countries even explicit) competition 
between teachers at the same time as they need to cooperate can be an example of a 
double bind. The confidence the teachers often express that they feel in traditional 
teaching, for example the early introduction of standard algorithms without giving 
their students ‘permission’ to use alternative methods, can be another example. Such 
‘permission’ could, from the teachers’ point of view, imply a break in the didactical 
contract. In turns this could lead some teachers into what they consider as ‘safe’ and 
effective curriculum-oriented teaching, preparing students for an oral or written 
exam. According to Mellin-Olsen (1987, p. 150), a double bind “is due to the 
handling of metaknowledge about the control caused by the taxonomies.” Based on 
information found in some of my interviews, I have reasons to believe that at least 
some of the teachers on different levels experience what could be described as aspects 
of double binds. Some, especially recently educated teachers, state that their “ideals 
of teaching” often have to be set aside because of their obligations to the curriculum 
and the upcoming exam.  
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As my observations in the classroom concern the teaching of functions I find it 
relevant to include the Leinhardt et al. (1990) quote: “There is no proven optimal 
entry to functions and graphs” (p. 6). It is therefore, in my view, important to be 
aware of the multitude of different didactical approaches and to be conscious about 
the various conclusions. 

METHODOLOGY 
Five different classes in five different lower secondary schools participated in this 
research. Two of these schools are private schools while the other three are public. 
The private schools were included in an attempt to seek some diversity in the sample, 
while the public schools were somewhat randomly selected, with the only criteria 
being that they, due to practical reasons, were located within a ‘reasonable’ distance 
from my working place. As the Norwegian school system is quite homogenous I 
believe that these schools are representative to their area. The headmasters were 
contacted via telephone and their school was invited to participate. The number of 
students willing to participate from each class varied from three to ten. In total 33 
students participated and I am currently conducting follow-up research on ten of 
these as they have now entered upper secondary school. I have chosen the follow-up 
students on the basis of three criterions: equal gender distribution, students at both 
vocational and general study programmes, and variations of ‘skills’ (on the basis of 
their marks). The purpose is to gain a rich material with some diversity. My data 
collection at lower secondary school mainly consisted of five “phases”: Observations 
of the teacher teaching, recorded conversations with the students engaging in 
mathematics in the classroom, interviews with the students, collection of students’ 
handwritten material and an interview with their teacher. This provides me with a 
diverse and rich data material which allows me to study mathematics education from 
various perspectives. The data collection at upper secondary school is done in a 
similar way, and I consider the fifth phase (teacher interviews) to be most valuable 
for this paper, as this relates to both teachers beliefs and practices. My use of research 
instruments did vary somewhat from school to school, primarily due to the fact that 
some teachers imposed restrictions for example on my use of a video camera. By the 
use of semi-structured interviews I aim to seek information mainly about teachers’ 
beliefs. However, I also try to get a broader picture of their teaching practice, by 
asking them to estimate the use of different teaching methods. They were interviewed 
for about 45 minutes, and in addition to their teaching practice they were asked about 
their views on ‘good teaching’ in general. They were also asked to provide some 
personal background information. I have aimed to design the interview questions in 
accordance with Kvale (1997, p. 77), suggesting that “The questions should be easy 
to understand, short and free for academic terminology” [1]. 
It was also important for me to formulate questions that would make it possible to 
compare teachers’ beliefs and ideas in lower and upper secondary education. These 
interviews were all recorded with a Dictaphone.  
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EXAMPLES AND ANALYSIS 
Teachers at lower secondary school  
I will start this section by presenting excerpts from teachers own statements regarding 
what they consider as good teaching in mathematics. These first three statements are 
excerpts from the interviews with the teachers at the 10th grade at lower secondary 
schools.    

In your opinion, what characterises good teaching in mathematics? [2] 
Jon:  Good teaching…eh…variation, organised towards the individual 

student…eh…, adjusted according to different teaching styles, and that you 
go through the given exercises with this in mind. 

Interviewer:  Could you please go into some details about how you organise teaching 
towards the individual student in your practice? 

Jon:  Yes, this can be done by different tools, we might use the blackboard as a 
medium, and we might use the computer as a medium. We can do some 
practical exercises, where we work in a physical way, or we can make some 
problem solving exercises. We can do this interdisciplinary along with 
other subjects.  

 …… 

Sue: Good teaching in mathematics…eh…ideally, good teaching in 
mathematics, the start of a lesson…eh…it should be some repetition from 
the last time, in terms of “what did you learn?” Eh…maybe about five 
minutes, “what did you learn the last time?” Then a period in which you go 
through new content on the blackboard. And maybe a longer period, where 
the students can do some exercises. 

 …… 

Ann: In general, I think it is important that the individual student is making 
progress from his or her own starting point, within the subject that we are 
dealing with. Of course this has to be done in accordance with the 
curriculum, and so forth. But you have to achieve this. That is what I think. 

Interviewer: Do you have any concrete ideas related to how this might be carried out? 

Ann: Well, this has to do with differentiation. You know…eh…it is a very big 
gap, and you have to motivate students to make progress from where they 
stand, actually. But this is difficult to achieve. This can be done by giving 
different levels in the tasks given at the students’ working plans. We also 
try to differentiate in the tasks given in the folder. [3] 

We notice that their answers are not quite univocal, and the three teachers’ views on 
“good teaching in mathematics” seem to differ in some ways. Jon seems to give an 
account of some general aspects of good teaching, and Sue seems to relate the 
question to a concrete situation, like a recipe of a good lesson. Common for both Jon 
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and Ann is the importance of differentiation. The tables below show the teachers’ 
suggestions of how frequent different teaching methods are used. The time measured 
in minutes estimates the time used in each lesson. The three schools all have 4 lessons 
a week, each 45 minutes. These numbers are only based upon what they have done 
related to the class participating in this research. 

Teacher Lectures-
blackboard 

ICT Homework 
Discussions 

Individual 
Exercises 

Pair/group-
work 

Problem 
solving 

Jon 1-3 lessons a 
week 
15-20 min 

1-3 lessons a 
week 
30 min 

1 lesson a 
week 
10 min 

Almost each 
lesson 
30 min 

2 lessons a 
month 
Whole lessons 

Sometimes 
(hard to 
establish) 

Sue Each lesson 
30 min 

6 lessons 
(this year) 
Whole 
lessons 

Each lesson 
5-10 min 

2-3 lessons a 
week 
15 min 

Not 
organised[4] 

Never 

Ann 2 lessons a 
week 
30 min 

Sometimes 
(hard to 
establish) 

2 lessons a 
month 
5-10 min 

2 lessons 
15 min + 
2 whole 
lessons 

2 lessons a 
month 
Whole 
lessons 

A few 
Times 
(hard to 
establish) 

Table 1: The frequencies of different teaching methods (assumed used most 
frequently) 

Teacher Interdisciplinary 
Projects 

Excursions Outdoor 
Activities 

Jon 2-3 weeks a year Never Never 
Sue 2 weeks a year 

(together with Art 
and Design) 

Never Never 

Ann Never  Never 1 day a year 

Table 2: The frequencies of different teaching methods (assumed used less frequently) 

The tables show for example that Sue states that she never uses ‘problem solving’ as 
a method of teaching and seldom uses ICT. She also seems to use the blackboard and 
discussions related to homework more frequent than the others. It is also interesting 
to notice Jon’s relatively frequent use of ICT. The pre-assumed more rarely used 
methods, as interdisciplinary projects, outdoor activities, and excursions appear with 
quite similar frequencies.  
The idea behind the next question is to grasp one aspect of the teachers’ beliefs 
concerning upper secondary school. 
How do you think that the teachers at upper secondary school conceive of the 
teaching in mathematics at lower secondary school? 

Jon:  I do not really know – maybe they shake their heads and think “what in the 
world have we done at lower secondary school?” But I also think they have 
completely different pre-conditions for their activity. 

Interviewer:  In what way? 
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Jon:  Well, you do not have “the herd” in an ordinary class at upper secondary 

school – they come there because they have applied for going there – but 
we have the average of the whole Norwegian population in one class!  

 …… 

Sue: I am very convinced that the teachers at upper secondary school feel 
frustrated about the students at lower secondary school and their total lack 
of knowledge. 

Interviewer: Ok…? 

Sue: Well, maybe, and here they come at upper secondary school, and they can 
not add two fractions! 

Interviewer: Mm…? 

Sue: Here they come at upper secondary school and do not manage this! They 
have not learned anything… 

 …… 

Ann: I do not really have any strong opinions here, but my impression was, when 
I worked there myself, that the teachers there were very different. I also 
think that there was a big difference among the students, related to which 
lower secondary school they attended before they started.  

Although this question could be regarded being a bit speculative, since most of the 
answers are hypothetical, I was surprised by the level of consensus. As we can see, 
both Jon and Sue indicated some negative assumptions, while Ann was more neutral. 
Both of them seemed to share the worries that the teachers at upper secondary school, 
to some extent, are frustrated by the limitations of their students’ starting point. The 
negative assumptions were also shared by the two other teachers, not presented here.  
Teachers at upper secondary school 
I will now consider four of the teachers at upper secondary school answering the 
corresponding questions. The first two excerpts are from teachers at the general study 
programme. 
In your opinion, what characterises good teaching in mathematics? 

Tony:  Well, maybe the most important aspect in such a subject dealing with 
systematics, is clarity. Clarity in the presentations and that one manages to 
simplify complicated issues. The teacher’s job, in a way, is to simplify the 
textbook for the students, because we observe that this is a subject that is 
very hard to study on your own and you are very dependent on going 
through the content. 
…… 

Mary: It must be teaching…eh…in such a way that the students understand what 
they are doing. Eh…and that they are motivated to continue to work with 
mathematics 
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Interviewer: Do you have any thoughts of how this can be done? 

Mary: I think on this level, if they are mastering the mathematical content, this in 
itself is good enough for motivation. Helping them to master the exercises 
is very important, because most of the students like mathematics.  

In this next excerpt, the same question is asked to a teacher at a vocational 
programme. 

Lisa: I have some years with experience from the lower secondary school, and I 
think that working with concretes and go outdoors and do things is a good 
way of working with mathematics. Good teaching will be to organize such 
activities in a good way. Now at upper secondary school I almost only teach 
by giving lectures at the blackboard, in and old-fashioned way. 

Interviewer:  What is the reason for that, you think? 

Lisa: It is another culture here. They are all working, determined to get the 
students through the textbook in an efficient way.  

Interviewer:  Why do you think it is difficult to teach the way you would like? 

Lisa: Well, I am new here and I do not want to go against my colleagues.   

It is interesting to notice Lisa’s reflections on her own situation, probably much due 
to her background from lower secondary school. The two other teachers at the general 
study programmes do not express the same kind of worries. They both seem to share 
the value of good explanations and the importance of doing exercises from the 
textbook. Jon stresses the importance of clarity and Mary the importance of mastering 
the textbook content.  
In the same manner as for the teachers at lower secondary, the teachers at upper 
secondary school were asked about their use of different teaching methods. The 
results are presented in the tables below. Tony and Mary’s classes have five lessons a 
week and Lisa’s has three. 

Teacher Lectures- 
Blackboard 

ICT Homework 
Discussions 

Individual 
Exercises 

Pair/group-
work 

Problem 
solving 

Tony Each lesson 
15 min  

2 lessons 
a month 
30 min  

1 lesson a  
week 
10 min 

Each lesson 
30 min 

Not 
organized 

Never 

Mary Each lesson 
15 min  

5-10 lessons
this year 
Whole  
lessons 

1 lesson a 
 week 
10 min 

Each lesson 
30 min 

Not 
organized 

Never 

Lisa Each lesson 
20-25 min 

Never A few times 
(hard to 
establish) 

Each lesson 
20-25 min 

Not 
organized 

Never 

Table 3: The frequencies of different teaching methods (assumed used most 
frequently) 
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Teacher Interdisciplinary

Projects 
Excursions Outdoor 

activities 
Tony  Never Never Never 
Mary Never Never Never 
Lisa Sometimes at the 

mechanical 
working rooms 

Never Never 

Table 4: The frequencies of different teaching methods (assumed used less frequently)  

As illustrated the use of methods assumed less frequently, are rarely/never used. The 
more common methods appear in quite similar frequencies, and the ‘typical’ lesson 
seems to be divided in two, with the first part consisting of a lecture at the blackboard 
and the second part consisting of individual exercises from the textbook. In general it 
seems like there are only small variations between these teachers and their use of 
methods. 
The next question was posed with the intention to compare the upper secondary 
teachers’ statements with the lower secondary teachers assumptions.    
Which thoughts do you have concerning mathematics teaching at lower secondary 
school? 

Tony:  It is always easy to blame the teacher responsible for the class, the previous 
year, but they have whole classes with enormous gaps between the students. 
Probably much time is used just to keep them quiet. So the students coming 
to us may not have got the follow-up which they should, from the lower 
secondary school. They take to easy on it [the students] and their efforts are 
not as they should have been. 

 …… 

Mary: I think teaching at lower secondary school is very dependent on the 
personality of the teacher…eh…and this is of course also the case at upper 
secondary school. But in general I will assume that it is quite similar. 
Maybe it is more group work at lower secondary school. 

 …… 

Lisa: I think the students get to work on their own to much, and they do not take 
that responsibility, they are not keeping up and they end up here. That being 
said I think the teachers vary their methods more, as I said before. I also 
think that much of the differences are due to the teachers’ background. At 
lower secondary school they are educated at general teacher education 
institutions, but here they are educated at universities. 

By the exception of Mary being more neutral to the question, the other two seem to 
express some kind of worries. Common for these are the suspicions that the students 
do not get the required follow-up from their teachers. It is also interesting to notice 
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how Lisa is pointing to the teachers’ background as a possible reason for different 
ways of teaching.   
The comparison of these interview excerpts and the tables from the lower and upper 
secondary level of schooling, gives rise to some reflections. While at least two of the 
teachers at lower secondary emphasized differentiation and the importance of 
reaching the individual student, the teachers at upper secondary school tend to 
emphasize the importance of good explanations, techniques and individual task 
solving, mainly from the textbook. The exception here is Lisa, who expresses some 
frustration of being ‘forced’ into a teaching tradition which seems to go against her 
own principles. The tendencies expressed by these teachers are also to some extent 
reflected in the tables, and the overview of the teachers’ use of methods in the 
classroom.  
The lower secondary teachers’ beliefs concerning the upper secondary teachers’ 
perception of teaching in the lower secondary level showed some consensus. These 
were at most negative assumptions, and to some extent they were in accordance with 
what the teachers in upper secondary actually stated. Although their suspicion of the 
insufficient follow-up of the student was not actually stated among the lower 
secondary teachers, they shared the worries concerning their students’ ‘insufficient’ 
mathematical knowledge. Despite these remarks, it is important to notice that the 
statements within the group of teachers at both lower and upper secondary school are 
far from univocal. This is also the situation if we study the interviews in a more 
holistic manner. 

CONCLUSION AND FURTHER DISCUSSION 
So what can we infer from the examples above? The teachers at lower secondary 
school related some of the challenges in teaching to their students’ abilities, and the 
diversity within their group of students. This was also mentioned by some of the 
teachers at upper secondary school. I think that common to these, and similar 
statements, are the relation to what Mellin-Olsen (1987; 1991) denotes as a double 
bind. This is because the concerns of most of these teachers relate to what in their 
view are conceived of as conflicting issues. The obligations of getting through a 
given curriculum, and at the same time being able to teach in a fruitful way, for some, 
seemed to cause a dilemma. Apparently the teachers at upper secondary school feel 
that the most ‘safe’ way of coping with the demands of the curriculum is in terms of 
traditional teaching methods. One reason might be that there usually is a higher 
probability for the students in upper secondary school having to take an exam. 
Another reason, also indicated among both group of teachers, could be that there 
exists a view that students at upper secondary level have made a more specific choice 
related to their career, and the mathematics is in a way a part of that choice. Therefore 
it becomes important for the teachers that nothing is ‘omitted’, and hence few ‘risks’ 
are taken. Being aware that these are only speculations, I still think these could be 
important hypotheses to investigate further upon. In Lisa’s case, being loyal to her 
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colleagues and at the same time manage to teach in a way that she considered as 
appropriate obviously constituted a dilemma.  
As Lisa further mentioned, cultural issues such as the fact that teachers at upper 
secondary level tend to have a university background while teachers at lower 
secondary tends to come from general teachers education should also be considered, 
in an attempt to understand possible differences in their beliefs and practices.  

NOTES 
1. Translated from Norwegian by the author. 

2. All the transcriptions are translated form Norwegian, with an attempt to preserve the teachers’ 
original statements as authentic as possible.  

3. This teacher regularly gave her students exercises which they were supposed to put into a folder. 
The folder was evaluated by the teacher. In total the folder counted as one third of their final marks 
in mathematics.  

4.  This means that the students were allowed to cooperate at their individual tasks, but no group 
work was organized by the teacher. 
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MATHEMATICAL TASKS AND LEARNER DISPOSITIONS: 
A COMPARATIVE PERSPECTIVE 

Birgit Pepin 
University of Manchester, UK 

Mathematical tasks in textbooks, their ‘mediation’ by teachers and the classroom 
environments in England, France and Germany are the focus of this study. The 
author claims that the different mathematical tasks in textbooks (in connection with 
their mediation by teachers) influence, to a large extent, the differences in activities 
and practices that are going on in mathematics classrooms, and that these in turn 
mediate different kinds of learner dispositions. The classroom culture, with its 
differing dimensions, is likely to set the scene for pupil development as ‘learners of 
mathematics’. The web of these connections is studied in this report. 
Keywords: Mathematical tasks; learner identity; comparative education; socio-
cultural; culturally figured worlds. 

INTRODUCTION 
Mathematical tasks in textbooks, learning opportunities and pupil dispositions 
Students spend much of their time in classrooms working on mathematical tasks 
chosen from textbooks. In recognition of the central importance of textbooks, the 
framework of the Third International Mathematics and Science Study (TIMSS) 
included large-scale cross-national analyses of mathematics curricula and textbooks 
as part of its examination of mathematics education and attainment in almost 50 
nations (Valverde et al, 2002). They claim that  

Textbooks are the print resources most consistently used by teachers and their students in 
the course of their common work (ibid., p. viii). 

Moreover, they comment on different learning opportunities being offered to students 
in different mathematics classrooms.   

Clearly, one issue of pervading importance to the nations that participated in TIMSS was 
the quality of educational opportunities afforded to students to learn mathematics and 
science - and the instruments that optimise such quality (ibid, p. viii). 

Textbooks are a major source of provision of these educational opportunities. 
Romberg and Carpenter (1986), for example, noted that the textbook was consistently 
seen (in the US) as “the authority on knowledge and the guide to learning”. (p. 25) 
It appears that tasks in textbooks influence, to a large extent, how students experience 
mathematics. Textbooks provide children with opportunities to learn, and learn those 
things which are regarded as important by their government. Teachers mediate 
textbooks by choosing and affecting tasks, and in that sense student learning, by 
devising and structuring student work from textbooks.  
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It can also be argued that tasks, most likely chosen from textbooks, influence to a 
large extent how students think about mathematics and come to understand its 
meaning. Indeed, Henningsen and Stein (1997) assert that  

the tasks in which students engage provide the contexts in which they learn to think about 
subject matter, and different tasks may place different cognitive demands on students …. 
Thus, the nature of tasks can potentially influence and structure the way students think 
and can serve to limit or to broaden their views of their subject matter with which they 
are engaged. Students develop their sense of what it means to “do mathematics” from 
their actual experiences with mathematics, and their primary opportunities to experience 
mathematics as a discipline are seated in the classroom activities in which they engage …  
(p. 525) 

Hiebert et al (1997) similarly argue that students  
also form their perceptions of what a subject is all about from the kinds of tasks they do. 
… Students’ perceptions of the subject are built from the kind of work they do, not from 
the exhortations of the teacher. … The tasks are critical. (p. 17-18) 

Moreover, they assert that  
the nature of the tasks that students complete define for them the nature of the subject and 
contribute significantly to the nature of classroom life …. The kinds of tasks that students 
are asked to perform set the foundation for the system of instruction that is created. 
Different kinds of tasks lead to different systems of instruction. (p. 7) 

It appears that mathematical tasks are central to student learning, their developing 
perceptions of what the mathematics is and what doing mathematics entails.    

CLASSROOM ENVIRONMENT, MATHEMATICAL TASKS AND 
LEARNER IDENTITY 
According to Lave and Wenger (1991), tools (and artefacts) constitute the resources, 
and students learn by participating in social practice using the tools. This also relates 
to ‘conceptual tools’, most likely reflected and used in tasks. If students use a 
conceptual tool, as perhaps advised by a worked example, or teacher’s exhortations, 
or an exercise, and if they use the tool actively, they are likely to build an 
increasingly rich understanding of the ‘usefulness’ of this tool in their mathematical 
world, and of the tool itself. Learning how to use a conceptual tool involves much 
more than the set of explicit rules it may describe. The occasions and conditions for 
the use arise out of the contexts of tasks and activities that students are expected to 
do, and they are framed by the ways the members of the community (e.g. textbook 
authors) see the world of mathematics. 
Different practices in mathematics classrooms are likely to influence the development 
of different learner identities. For example, Boaler et al (2000) investigated the 
practices of secondary school teaching from a student’s perspective “in order to 
understand how they construct a sense of themselves in relation to mathematics” (p. 
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4). They argue that in the US and UK classrooms they studied there exists an 
“unambiguous vision of what it means to be successful at mathematics, and of what it 
means to be a mathematician” (p. 8).   
According to Henningsen and Stein (1997) what it means to ‘do mathematics’, or to 
‘behave mathematically’, for students, is largely dependent on the nature of the tasks 
and activities students are engaged in, and these in turn ‘colour’ their perceptions of 
the subject. Thus, doing mathematics, and developing certain perceptions of the 
subject, is likely to ‘produce’ particular ‘mathematical dispositions’ or a 
‘mathematical point of view’ (Schoenfeld, 1988), as well as acquiring mathematical 
knowledge. 
As Boaler (2000) emphasises, students do not just learn methods, or how to carry out 
a task or to apply algorithms, in mathematics classrooms, but they learn ‘to be 
mathematics learners’. Different classroom cultures, different constraints and 
affordances, provided by different settings and opportunities for engagement in 
mathematical practices, are likely to influence their perceptions of what it means to 
learn and do mathematics. Learning how to engage successfully with the mathematics 
means learning how to and identifying with the norms of the classroom community. 
Particular tasks in textbooks may reinforce practices initiated and propagate by the 
teacher, or vice versa.   
Furthermore, Boaler and Greeno (2000) use the notion of identity formation in 
“figured worlds” (Holland et al., 1998) to explore pupil learning and the influence of 
pedagogies on their learning. Figured worlds are perceived here as places “where 
agents come together to construct joint meanings and activities” (p. 173). 
Mathematics classrooms can be regarded as such figured worlds, because students 
and teachers work together in these environments and construct meanings of the 
mathematics, and within that of themselves as learners of the mathematics. Holland et 
al (1998) is cited to draw attention to actors, and to interpretations by actors when 
asserting that figured words are socially and culturally constructed realms “of 
interpretation in which particular characters and actors are recognised, significance is 
assigned to certain acts, and particular outcomes are valued over others” (p. 52).  
This is particularly interesting in terms of comparing “figured worlds” in different 
countries’ classrooms. Questions such as the following may arise: What is similar, or 
different, in mathematics classrooms in England, France and Germany? What are the 
rituals of practice? What kinds of tasks are pupils expected to perform, what kinds of 
activities do pupils, and teachers, engage in? What kinds of interpretations are made, 
what kinds of acts are respected, what kinds of outcomes are valued? 

RESEARCH DESIGN 
In a previous study (e.g. Pepin, 1999; Pepin, 2002) the author developed an 
understanding of practices in lower secondary mathematics classrooms in England, 
France and Germany, concluding that national educational traditions were a large 
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determinant and influence on what was going on in these classrooms. In a more 
recent study, Pepin and Haggarty have investigated mathematics textbooks in the 
three countries, and connected to that, the ways they were used, by teachers (e.g. 
Pepin & Haggarty, 2003). This not only supported some of the earlier findings, but 
also suggested that the use of curricular materials (such as textbooks), together with 
the selection of (mathematical) tasks, impacts to a large extent on the mathematical 
‘diet’ offered to students.  
The author thus re-analysed the amount of data collected over the years, in particular 
mathematical tasks in selected textbooks, in terms of potential pupil disposition and 
identity formation. Particularly relevant, and useful, was the work of Boaler and 
Greeno (2000) and the notion of pupil identity formation in ‘figured worlds’ (Holland 
et al, 1998). In terms of analysis a procedure involving the analysis of themes similar 
to that described by Burgess (1984) was adopted, which had already proved useful in 
other cross-national studies (e.g. Broadfoot & Osborn, 1993). However, due to the 
additional cross-cultural dimension, it was important to address the potential 
difficulties with cross-national research, in particular issues related to conceptual 
equivalence, equivalence of measurement, and linguistic equivalence (Warwick & 
Osherson, 1973; Pepin, 2002). In order to locate and understand teacher pedagogic 
practices and the classroom cultures in England, France and Germany, it was useful 
to draw on knowledge gained from earlier research (see above) which highlighted the 
complex nature of practices in mathematics classroom environments, and the value of 
comparing.  
The main questions asked was: How may mathematical tasks in textbooks, teacher 
practices and classroom environment influence pupil identity construction as learners 
of mathematics in England, France and Germany?  

DISCUSSION AND CONCLUSIONS 
To connect tasks in textbooks to students’ developing identities as learners of 
mathematics is not a common link made. Textbooks are often frowned upon, and 
teachers do not wish to be seen to teach ‘according to the book’. However, for better 
or for worse, and as research indicates, textbooks are the main resources used in 
mathematics classroom all over the world (Valverde et al, 2002). 
This is also true for England, France and Germany. Moreover, teachers choose tasks 
and exercises from those books, for pupils to complete, students learn from the kinds 
of work they do during class, and the tasks they are asked to carry out shape to a large 
extent the kind of work they do. Pupils learn the conceptual tools provided by the 
tasks in textbooks, by ‘legitimate peripheral participation’ (Lave & Wenger, 1991) in 
the practice of school mathematics. However, there are particular school mathematics 
practices in different countries, and within those countries differing practices in 
different school ‘streams’ and ‘sets’ that are supported by different textbooks for 
those groupings. Moreover, the types of tasks, the mathematical connectivity between 
tasks, the conceptual tools suggested for solutions, amongst others, reflect and 
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support a particular school mathematical culture. Pupils are socialised into these 
cultures, and as members of the cultures, develop dispositions and form identities as 
learners of mathematics. However, it would be difficult to claim that in each country 
there exists a homogeneous mathematical culture supported by textbooks. Instead, the 
developing  ‘identities’ here are seen as those potentially emerging from the analysis 
of mathematical tasks in textbooks, and the mediation of those tasks by teachers, thus 
the tools used by teachers in their classroom practice. 
What would pupils learn from the tasks provided by the textbooks analysed, and what 
kinds of work/activities would they do related to the tasks? In order to engage in the 
mathematics, pupils must find the task intriguing, something they would like to 
resolve. This assumes that students relate to the task in the sense that the contexts and 
situations make it real for them. On the basis of results from this study it is argued 
that in all three countries pupils are likely to be asked to do exercises and to complete 
tasks (from textbooks) that are presented in context- context embeddedness seems to 
be important- and these contexts are similar. Whether the contexts are relevant to 
pupils, whether they connect to their life experiences is beyond the scope of this 
study. What is different in the three countries is how the mathematics is linked to the 
contexts and what pupils are asked to do in those tasks. Whereas in German 
textbooks it appeared that context and mathematical concepts are connected in the 
tasks analysed, and links are forged between them, in the English textbook chapter 
pupils are asked to do contextualised tasks where context are chosen seemingly for 
their own sake, and with little logical progression or connection to the underpinning 
mathematical ideas. Most exercises could be done without knowing about concepts of 
the topic area. To what extent students may deduce concepts, by simply doing the 
exercises, is not clear. Interestingly, French textbook exercises studied appeared to 
use contexts as a pretence for introducing the mathematics, a Trojan horse to lead 
students to the ‘essential’ section, the ‘cours’, the mathematical concepts. 
To ask what students would learn from these tasks also needs a more nuanced 
perspective. By addressing the mathematics at the conceptual level (e.g. 
‘oppositeness’ in negative Numbers) one could argue that in France and Germany 
students would get more insights into the conceptual nature of mathematics, and 
perhaps its structure, than through English textbook tasks. A second type of ‘residue’ 
(Hiebert et al, 1997), it can be argued, may be given through the strategies or 
methods, for solving problems, provided. French textbooks are explicitly addressing 
this in a separate section (‘apprendre a resoudre’) and exercises are organised 
accordingly. Putting the three country’s textbooks on a continuum, it is argued that 
English textbooks leave it to pupils, or their teachers, to devise or identify strategies 
to solve problems, and this is likely to be with common sense, whereas in particular 
French textbooks are explicit about how to solve particular problems. 
The message that students may therefore get is that (1) mathematics is simply there to 
be done (e.g. English KM 7²), and that contexts and concepts do not necessarily ‘talk 
to each other’; that (2) it is not the contexts that matter (e.g. French Cinq sur Cinq), 
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but the underlying mathematical concepts, and that there are strategies to ‘reduce’ the 
contextualised problems to ‘simple’ mathematical tasks; or that (3) concepts and 
contexts may be connected, and that the formally structured mathematics, including 
its strategies for solving problems, may be useful in real life problems (e.g. German 
Grammar school LS7). 
In terms of teacher mediation of tasks it appears that one of the most important 
responsibilities for a teacher is to set appropriate tasks. Teachers in all three countries 
chose those tasks predominantly from textbooks. What was different were to what 
extent teachers initiated pupils into those tasks and the ways they chose to introduce 
the mathematical ideas necessary to do the exercises selected from textbooks. The 
picture that was painted was that whereas in one country (Germany) teachers 
introduced the mathematical notion in whole-class discussions and chose particular 
tasks to ‘consolidate’ the concept, in another (England) teachers gave relatively brief 
introductions or rules, and wanted a large number of straight forward exercises to 
practice. In another (France) teachers were provided with activity type tasks, from 
textbooks, to initiate pupils into the concept, and after explaining the ‘essentials’ 
(cours) teachers wanted differentiated exercises to attend to the perceived 
heterogeneous class.  
To what extent teachers selected appropriate and related tasks, so that pupils could 
see the same mathematical idea from a different angle, or to chain tasks in such a way 
that opportunities are created to gradually increase pupil understanding was not clear. 
The literature (e.g. Hiebert et al, 1997) claims that tasks that are related in such away 
increase the coherence of students’ mathematical experiences. Coherence here means 
that students would perceive the sequence of activities and exercises to fit together 
and make sense. This goes beyond the scope of this study, but it could be argued that, 
from the analysis of textbook tasks in selected English textbooks, and looking at the 
sequence of tasks in selected chapters, students are likely to be asked to do a series of 
individual, nearly random, tasks that are relatively disconnected and appear not to be 
leading anywhere. French textbooks provide exercises, graded with respect to the 
level of perceived difficulty and for particular areas within the topic. 
In addition, results from a previous study (e.g. Pepin, 1999) show that French, and in 
particular German Gymnasium teachers chose exercises, that were perceived to 
exemplify the idea well and to be ‘difficult’, for solving in class, and sometimes in 
whole-class discussion, whereas ‘easy’ routine exercises were assigned for 
homework. English teachers said that most of their students needed ‘much of the 
same’ to practice. 
In terms of classroom environment and culture teachers have a great influence, and 
this was true for England, France and Germany. Within the limits of the system, 
whether students were taught in mixed classes (collège France), whether they were 
setted (England) or streamed (Germany), teachers had some freedom to select tasks 
that could potentially guide their instruction and they could mediate those tasks in 
ways they thought best. To what extent teachers created cognitive conflict, in order to 
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challenge pupils’ ideas, is beyond the scope of this investigation, but in terms of tasks 
in textbooks this may potentially be provided by selected cognitive activities 
(activitées) in French textbooks (Pepin & Haggarty, 2003). Moreover, allowing 
mistakes, perhaps even inviting them for pupil learning, or asking open questions 
would be another way of influencing the mathematics classroom culture. Looking at 
tasks in textbooks, there were no open questions in the English textbook chapter 
analysed, and hardly any in the French and German textbooks. Teacher pedagogic 
practices, however, may be interpreted as going some way towards that goal: all 
teachers, but particularly German teachers, used mistakes in homework exercises as a 
site for deepening pupil understanding (Pepin, 1998). These were discussed in detail 
and at times over an extended period of time. 
In summary, it can be argued then, albeit from this limited research, that the 
dispositions that pupils are likely to develop as learners of mathematics, are linked to 
the textbook tasks provided by teachers, the practices that pupils are engaged in when 
doing those tasks, and the environment they work in and experience in class during 
engagement- and these are different in the three countries. Whereas in all three 
countries one could argue that pupils are ‘conditioned’ to become ‘conformists’- 
hardly any negotiation about the mathematics and its learning is provided-, in 
England the mathematical diet in textbooks may also offer learners to become 
‘common sensers’. Can one say that in France the ‘instrumentalist’ identity may be 
favoured, and in Germany the ‘connector’, in addition to the ‘conformist’? If this link 
was seen to be strong, one would need to consider to what extent pupils are ‘trapped’ 
in these identities, for better or worse, according to what they are offered by their 
teachers. What kinds of opportunities would need to be provided for change to be 
possible? 
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ELITE MATHEMATICS STUDENTS IN FINLAND AND 
WASHINGTON: ACCESS, COLLABORATION, AND HIERARCHY 

Jennifer von Reis Saari 
Faculty of Education, University of Cambridge 

This paper draws from a small scale study of elite mathematics students' beliefs, 
motivations and access in Finland and Washington State. In particular, students’ 
experiences with extracurricular mathematics, collaborative learning, and their elite 
peer groups are examined. 
INTRODUCTION: FINLAND, WASHINGTON AND ELITE MATHEMATICS 
Large scale international comparisons exert seemingly unavoidable influence on 
educational systems. Such numerical comparisons of performance are often read as 
competitions; the results become lists of winners and losers, focusing attention on the 
high-scoring educational systems. However, even if large scale international compari-
sons can tell us where to look, they cannot tell us what to look for. 
Within Mathematics and Science education, Finland has recently drawn such 
attention for its success in the PISA studies. One of the most striking features of the 
Finnish educational system is the lack of tracking, or separating students according to 
perceived ability, until the end of lower secondary (yläaste), at roughly age fifteen or 
sixteen. This has drawn the attention of de-tracking reformers (see e.g. Oakes, 2008). 
While the efficacy of tracking has been questioned (e.g. Rothenberg, McDermott & 
Martin, 1998 or Boaler, 2002), de-tracking may have negative consequences for high 
-achieving students (Terwell, 2005, p. 663). In this paper, I focus on those students 
who would be expected to benefit most from tracking: students enrolled in the highest 
possible track available, whom I call elite mathematics students. In Finland, these 
students have enrolled in an academic upper secondary, and then in Long 
Mathematics (pitkä matematiikka) instead of Short (lyhyt matematiikka). In 
Washington, where tracking may begin as early as third grade (age 8 or 9) these 
students are taking courses classified as Honours, Advanced Placement (AP), or 
International Baccalaureate (IB). All would reach at least Calculus by graduation. 
Participation in elite tracks has been shown to have lasting negative effects on 
students' mathematical self-concepts (e.g. Marsh, Trautwein, & Lüdtke, 2007), best 
known as big-fish-little-pond effect.  Structure, then, seems to effect the development 
of students’ beliefs and identities as mathematics learners, influencing students' 
academic decisions. It seems worthwhile, then, to ask how elite mathematics 
students’ identities and beliefs, as well as opportunities to learn within a partially de-
tracked system, Finland, compare to those of students in a heavily tracked system, 
Washington State [1]. Osborn (2004, p. 265) cautions against the “...growing 
tendency to `borrow' educational policies and practices from one national setting 
where they appear to be effective and to attempt to transplant these into another, with 
little regard for the potential significance of the cultural context...” The object of this 
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study, however, is not to set policy, but to illuminate, through the juxtaposition of 
two systems, features of each. 
RESEARCH DESIGN 
The research described in this paper was a small scale study designed to explore elite 
mathematics students' identities, beliefs, and access to learning in Finland and 
Washington State conducted with the help of Jasu Markkanen from the University of 
Turku. The study consisted of 13 student interviews conducted in Spring 2008 in 
Finland and Washington State. Markkanen conducted four interviews (at Päijänne and 
Keitele). While many themes emerged from these interviews, in this paper, I will 
briefly focus on three specific questions:    

What extracurricular mathematic experiences have these students had, or had access to? 

What are the students' experiences with and views on cooperative learning?  

What are students' characterisations of their peer groups, which were cited by participants 
from both countries as a key benefit of elite mathematics tracks?  

These are a combination of prefigured themes and themes that emerged during the 
interviews. While questionnaires already exist regarding students' beliefs and 
motivations, (Malmivuori & Pehkonen, 1996), and are being refined to function 
internationally (Diego-Manecón, Andrews & Op't Eynde, 2007), they are not focused 
on the particular population of elite mathematic students I wished to examine, hence 
the need for an exploratory study.  
Semi-structured interviews were chosen to allow opportunity for participants to 
impact the research, while considering the need for some comparability across 
interviews. Students were intended to be interviewed in pairs, but sometimes were 
interviewed in groups of three; extra students who turned up for the interviews were 
not turned away. Paired interviewing was inspired by its use in other studies (Boaler 
2008, Evens & Housartt, 2007). The interview schedule was piloted with two Finns 
and one Washingtonian, all who had studied mathematics at the tertiary level. 
When analysing the data I have attempted to consider that ‘...there are clear dangers 
in saying that the interviews simply tell us more about the answers of the individual, 
as this ignores the presence of their interview partner.’(Evens & Houssart, 2007, p. 
22). I see the students’ words as public statements, at times inspired, supported, or 
edited by the presence of peers in the interview setting. I also acknowledge that the 
interviews may also have served as much in constructing or clarifying certain beliefs 
as in recording them. 
The Selection of Cases and Participants 
Eisenhardt (1989, p. 537) writes that while “...cases may be chosen randomly, 
random selection is neither necessary, nor even preferable.” Here, I have chosen 
cases with an eye towards both comparability and capturing a diverse population.  
These highlighted characteristics of the schools make them more identifiable, and so 
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to assure anonymity, Finnish and American English pseudonyms have are used for 
the cities as well as the schools and student-participants. The cities I shall call 
Jokimaa and Riverview are small metropolitan areas with a similar population 
(roughly 170 000 people), with higher than average immigration when compared 
with Finland or Washington at large, and containing at least one university. 
From each community I chose one IB school with higher immigrant enrolment, and 
two schools considered strong in mathematics or mathematics related fields. A fourth 
school was added in Riverview as described later. In Finland, these schools were: 

 
Figure 1: Interview Map for Jokimaa, Finland 

Keitele Lukio, known for having a strong and extended mathematics programme  

Inari Lukio, an IB programme in an area of high immigration for the Jokimaa area 

Päijänne Lukio, offering a special IT line including university level courses  

In Washington these schools were:  

 
Figure 2: Interview Map for Riverview, Washington 

Columbia High, known for strong performance in academic competitions and state 
exams and offering the most advanced AP mathematics course 

Sahale High School, an IB programme with a higher minority enrolment rate 
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Cougar High is the most affluent high school in Riverview    

Students from a fourth school approached me to be included in the study:  

Olympus High has the lowest state tests scores, and is majority Latino/Hispanic.  

RESULTS FROM THE INTERVIEWS 
In this section I will discuss the development of three themes: extracurricular 
involvement, collaborative learning, and the conceptions of the elite mathematics 
peer group, first in Finland, then in Washington. The quotes below are selected to 
illustrate general themes (or exceptions) throughout the interviews. 
Jokimaa, Finland: Extracurricular mathematics 
Students interviewed from Jokimaa had no experience with extracurricular mathema-
tics besides sitting for an optional national exam. Neither did they seem to be aware 
of any opportunities such as mathematics clubs. However, when explicitly asked, 
students did not seem to regret the lack of opportunity: 

Saari(JS): Do you think you would have used the opportunity if there’d been some 
kind of extra-curricular mathematics? 

Tuomas:  Well, maybe not. [Laughing] 

Heikki:  [Laughing] To be honest no! 

JS:  And why, why not? 

Heikki:    Well, I, uh, value my other leisure activities more, perhaps. 

Jokimaa, Finland: Collaborative Learning 
Similarly, most Jokimaa students seemed to have little experience with collaborative 
learning, either formally or informally. For example Äinö said “...usually I've just 
done things by myself, and haven’t cooperated with anyone.” 
While collaborative learning was described as mostly positive, when there was a 
mismatch in the level of achievement, it becomes. For example, while Leena enjoys 
the group work assigned in her IB mathematics course where collaborative work 
‘...benefits, because if you know something and the other one knows something else 
then you can combine those and maybe understand it better.', she found it frustrating 
in other contexts, for instance in lower secondary prior to tracking: 

Leena:  Well, not in that case cause they were the easy problems that I had already 
solved and other ones asked me all the time that ``how can you do this?’’ 
and stuff and...  yeah I didn’t like it. [laughs a tiny bit]  

JS:  Okay, so you didn’t really feel like you were getting any academic benefit?  

Leena:  Yeah, I was just telling them how to do it. 

Neither informal nor formal collaborative learning seemed to play a large role in the 
students’ experiences, and perceptions of collaborative learning were ambivalent.  
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Jokimaa, Finland: Elite Mathematics Peer Groups 
Among the students interviewed, the community of peers within elite mathematics 
courses in Finland was considered a key benefit of the course. Students believed their 
peers to be more interested and focused on mathematics, and that this enriched the 
course. For example, from Marja: 

On the Short, there are many people there who study it because they have to, because 
maths is obligatory, and there is an atmosphere that maths isn't fun, even though there 
may also be people there who have just wanted to choose short maths [...] it’s my 
experience that on the Long Maths, there are many who really want to invest in the 
subject and are able to listen during the lesson and all. 

Students considered that the nature of the peer group allowed for deeper and more 
worthwhile content:  

Jarkko: Yeah, I think I sort of feel, like, in principle, when the study group in long 
mathematics consists of the people who are interested in mathematics, at 
least, then the environment is easily more pleasing than the short 
mathematics study group where you can have many people who simply 
aren't interested in anything mathematical.  So it is more encouraging as a 
study environment, and also in that you get deeper into all the things, you 
don't- it's like- you can see things as wholes and not only get small bits.  

 Elisa:  Yeah, I actually agree... that at least is an advantage- that those who only 
take the courses and aren't at all interested, those people aren't there.  And 
that when you have interested people you get to go deeper.  

Jokimaa students seemed to emphasise that peers’ interest and willingness to learn 
mathematics was a key asset for their own learning, and a mechanism of selection 
into elite courses. Students did not portray peer groups as a reason for retention in 
mathematics. This coincides with Jokimaa students' choice of elite tracks in 
accordance with future plans, as well as a greater independence from peer and family 
influence in school and track choice when compared with Riverview. 
Riverview, Washington: Extracurricular Mathematics 
All of the Riverview students had ample access to mathematics related extracurricular 
activities and most participated. However, they did not seem to consider involvement 
as an influential factor in their mathematical careers. One exception was Cory, who 
had an intention of pursuing mathematics at the tertiary level: 

I feel like I'm almost entirely developed on the outside. Cause like, I have my classes 
which I kind of just do...like not just do it like C's but I mean, I do and I do good and I 
um- But like usually I find- cause I don't- I don't know, sometimes I don't feel challenged 
in a lot of my classes anyways. 
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Elsewhere, students revealed a lack of real enrichment in these activities, such as 
when I questioned two of the most accomplished students about a mathematics 
competition they had been involved in for several years, Math is Cool: 

JS:  Okay, so, hmm... did you do anything related to number theory? 

Sandra:  Um. 

JS:  Have you- have you guys seen- 

Sandra:  What is number theory? 

JS:  Well have you seen like modular arithmetic?  I'm just curious. 

Fiona:  Oh! Modu- okay like  

Sandra:  Yeah 

Fiona:  Modular arithmetic 

JS:  I'm not asking you what it is I'm just- just wondering if-  

Sandra:  Like mod, like that thing, with the dividing? 

Fiona, JS:  Yeah 

Sandra:  That's in Math Is Cool. 

Fiona:  It's in Math Is Cool, like, it's a really challenging- but we don't actually 
know what it is, just if you give us one simple type of problem with that 
we'd be able to do. 

Sandra:  We'd be able to do it. We don't understand it, but we could do it. [Laughs] 

While students were exposed to mathematics to which they would otherwise not have 
had access, it did not often seem to facilitate deeper understanding.  
Riverview, Washington: Collaborative Learning 
Many of the students interviewed in Riverview had strong collaborative networks 
outside the classroom. Such students considered these networks crucial in their 
success and persistence in elite mathematics. Students, such as George and Elizabeth, 
created lasting partnerships with daily mathematics collaboration. 
As in Finland, however, there were students who found the idea of collaboration 
compelling, but frustrating in practice. For example Adrienne said:  

Well, to teach someone something you have to really understand it, so... you learn it 
better and you have to remember it more, because you have to figure out exactly what 
you are talking about before you can help them understand it.    

However, her experience was dissonant with this ideal. Again from Adrienne: 
Well, sometimes it's frustrating because I'm not exactly patient, so if a person has trouble 
understanding something that I think is really obvious then I have to keep trying to find 
different ways to explain it to them and that's kind of tiresome... 
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While in general, collaboration was discussed positively, as in the Jokimaa case 
where there was a mismatch in achievement, actual encounters could be negative. 
Collaborations were also limited by hierarchy, which Sandra describes legal terms: 
`There's like this kid John, who's like the smartest kid, and then we're like the second, 
legally, or third'. Hierarchy determines collaboration as Fiona says, “It’s more like 
among the smart people we ask each other questions”. 
While intensive collaborations were more evident in Riverview than in Jokimaa, they 
did not seem to regularly extend past a tight sub-group of peers. 
Riverview, Washington: Elite Mathematics Peer Groups 
As in Jokimaa, elite mathematics students enjoyed their peer groups, and emphasised 
that such a community was a strong motivation for staying in elite mathematics 
tracks. Riverview students also defined themselves against other students in order to 
explain the benefits of their elite tracks. Here Bethany and Alexander use their 
experience with a 'regular' or mixed-ability class: 

Bethany:  And there was- half the people would not care at all, they were just- they- 
Some of them were just going to drop out of high school right there, but 
there were some people who actually cared, they wanted to learn what was, 
the teacher was trying to teach, and as the AP honours classes are 
introduced, it’s the people who care about what they... get in a high school 
or want to go to college and need good grades and good classes, those are 
the people that go on to the AP classes.  So instead of being held back by a 
group of trouble makers-  

Alexander:  [overlapping] Oh it’s so hard to learn- [laughing]  

Bethany :  or potential drop outs, [Alexander: sound of disgust]- instead surrounded by 
people who keep on wanting to learn more who are kind of the driving 
force of the class, and you’re all about the same level throughout it.  

Throughout the interviews, the peer groups’ positive characteristics were a motiva-
tion to continue in elite mathematics, and separation from struggling, ill-behaved, or 
unmotivated students a key benefit. Furthermore, access was believed to be mediated 
by character. Hard work and desire were the necessary prerequisites, even when 
students discussed significant parental involvement in track placement.   
Nicole and Katherine were the only students who questioned the sorting mechanisms: 

Katherine:  [It] kind of makes you wonder.  [...]  It makes you wonder if- 

Nicole:  The racism is really gone.   

Katherine:  Yeah. And then you see in your class when you’re a class of almost- 

Nicole:  Thirty 

Katherine:  All Caucasian people [In a majority Latino/Hispanic school] talking about 
Affirmative Action it’s kind of like, how... 

WORKING GROUP 13

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2519



  
However, while questioning the visible sorting at Olympus in several instances, 
Nicole and Katherine also see access to elite courses as a question of character.  
Nicole said: “It has a lot to do with work ethic. And if they want to be pushed or if 
they just wanna breeze right through.”  
DISCUSSION AND CONCLUSIONS 
There were stark contrasts in access to extracurricular mathematics in Jokimaa and 
Riverview; Jokimaa students had no opportunities for sustained involvement, 
whereas Riverview students had diverse choices, and almost all of them had been 
involved in mathematics related activities. Most Riverview students downplayed the 
effects of such involvement. However, for at least one student, Cory, involvement 
was key to his interest and persistence in mathematics. 
In Finland, participation in mathematics competitions such as Math Olympiad is used 
as a signifier of talent (see e.g. Nokelainen, Tiiri, and Merenti-Välimäki, 2002). Yet, 
the students I interviewed had no access to this, or other, enrichment programmes. 
So, while PISA finds evidence of equality in Finland's performance, it may be 
masking inequality of access at the top.  
In neither Jokimaa nor Riverview was there evidence of the sort of collaborations 
described by, for example, Boaler (2008). While collaborative learning is often 
associated with de-tracking, the Finnish students seemed to have less experience with 
peer-supported learning. Students from both communities had ambivalent feelings 
about collaboration where there was a mismatch in achievement.  There seems to be 
room in both communities for further exploration of modern collaborative learning. 
For both Jokimaa and Riverview students, an elite group of peers was a positive 
aspect in mathematics tracking. However, the descriptions used by Riverview 
students were more hierarchical, and attributed blame to low performing students. 
Their characterisations seemed close to Sayer's (2005, p. 233) description of belief in 
the `moral well-orderdness' of the world, where: 

 ...[T]he extent to which individuals' lives go well or badly is believed to be a simple 
reflection of their virtues and vices. It refuses to acknowledge the contingency and moral 
luck which disrupt such relations arbitrarily. 

George said “...it kind of disgusts me to see the people that sit there and just ‘Oh- I 
have a D in this class and I’m taking Algebra for the fifth time because I don’t do my 
homework’” That such descriptions seem common among elite mathematics students 
in Washington, but seemingly not in Finland, is notable. They would arguably be 
more appropriate in Finland, where there is greater intergenerational class mobility 
(see Pekkarinen, Uusitalo & Pekkala 2006 or Breen & Jonsson 2005). Furthermore, 
these themes have resonance with Zevenbergen’s (2005) study of Australian students 
within a tracking system, where the discussion of classroom ethos and mathematical 
habitus using Bourdieu presents a possible way to deepen future work on this project. 
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The strong positive characterisations of elite peer groups in both Finland and 
Washington (also seen in Zevenbergen’s (2005) study), and their place in improving 
learning and retention in elite mathematics, raises questions about how elite students 
might reply to the big-fish-little-pond concept or the possibility of de-tracking.   
Limitations and Conclusions 
There are several limitations to this study: more students were interviewed, and 
interviewed for slightly longer in Riverview, generating richer data from Washington, 
the linguistic aspects of the research are rough, and there were differences in 
interview styles between Jasu Markkanen and myself. The students’ responses are 
thoroughly embedded not only in their schools, but their wider communities.  
However, important reforms, such as universal education and desegregation have 
involved changes in culture; culture is not fixed. 
Regarding elite mathematics students, this study suggests a potential benefit from 
conducting international comparisons beyond the focus of studies such as PISA.  
Equality of provision may look different depending on the questions asked, and a 
comparative lens may clarify where to focus our attention. 
NOTES 
1. Education is governed mostly on the state level in the US. Washington is a better unit of 
comparison (than the US) with Finland in terms of population and resources and in addition, 
recently revised its mathematics curriculum through comparison with Finland, see Plattner (2007). 
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INTERNATIONAL COMPARATIVE RESEARCH ON 
MATHEMATICAL PROBLEM SOLVING: 

SUGGESTIONS FOR NEW RESEARCH DIRECTIONS 
Constantinos Xenofontos 

University of Cambridge, U.K. 
This paper is divided in two sections. In the first part, three problem solving views 
are discussed (problem solving as a process, as an instructional goal and as a 
teaching approach). In the second part, four research dimensions for international 
comparative studies on problem solving are proposed: (a) the research trends on 
problem solving in different countries-the researchers’ perspective; (b) the curricular 
importance and justification of problem solving-the policy-makers’ perspective; (c) 
teachers’ beliefs, competence and practices in problem solving-the teachers’ 
perspective; (d) students’ beliefs and competence in problem solving-the students’ 
perspective.  
PROBLEM SOLVING-A MULTIDIMENSIONAL CONCEPT 
Within the domain of mathematics education, the words problem and problem 
solving are extensively used. However, there is no consensus upon definitions, since 
many people use these terms to mean different things. The apparent agreement on the 
importance of problem solving does not say much about what problems and problem 
solving mean. In fact, it may mask very different views of what constitutes a problem 
and what kinds of problem solving abilities are desirable, teachable and evaluable 
(Arcavi & Friedlander, 2007). In respect of ‘problems’, there is evidence of 
polarisation, with some labelling problems as routine exercises that provide practice 
in newly learned mathematical techniques and others reserving the term for tasks 
whose difficulty or complexity makes them genuinely problematic (Schoenfeld, 
1992; Goos et al., 2000). Furthermore, problem solving has been mostly viewed as a 
goal, process, basic skill, mode of inquiry, mathematical thinking, and teaching 
approach (Chapman, 1997). It appears, however, that the main perspectives on 
problem solving are those seeing it as a process, as an instructional goal and as a 
teaching approach.  
Problem solving as a process 
Various writers have developed frameworks for analysing problem solving as a 
process. Polya (1945), as the inaugurator of the research in the field, suggested four 
phases for the problem solving process: understanding the problem, devising a plan, 
carrying out the plan, and looking back. Polya’s model comprised the basis on which 
other models were developed, for instance the six-phase one proposed by Kapa 
(2001): identifying and defining the problem, mental representation of the problem, 
planning how to proceed, executing the solution according to the plan, evaluation of 
what the problem solver knows about his/her performance, reaction to feedback. 
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However, ‘Polya-style’ models are often misinterpreted as a linear application of a 
series of steps, either because of the way they are presented in numerous textbooks 
(Wilson et al., 1993) or because they are perceived as such by most teachers (Kelly, 
2006). In recognising the above deficiency, Mason et al. (1985) analyse three phases 
for the process of tackling a question; Entry, Attack and Review. It could be argued 
that Mason’s phases are parallel to those of Polya. This is partly true, since there are 
obvious similarities between the Entry and understanding the problem, the Attack and 
the devising and carrying out the plan, the Review and the looking back. 
Nevertheless, Mason et al.’s (1985) attack phase appears not to necessitate a 
predetermined plan in the manner of Polya’s devising and carrying out a plan. 
Problem solving as an instructional goal 
Mathematics proficiency, according to Kilpatrick et al. (2001), refers to successful 
mathematics learning and has five strands (conceptual understanding, procedural 
fluency, strategic competence, adaptive reasoning and productive disposition). 
Strategic competence is defined as the ability to formulate, represent and solve 
mathematical problems. For many educational systems, the strategic competence in 
problem solving has a central role in mathematics teaching/learning and has been set 
as a fundamental instructional goal. For instance, problem solving has been identified 
as one of the five fundamental mathematical process standards along with reasoning 
and proof, communication, connections, and representations, by the National Council 
of Teachers of Mathematics (NCTM, 2000). For NCTM, mathematics teaching and 
learning and problem solving are synonymous terms; therefore the building of new 
mathematical knowledge through problem-solving should be in the centre of 
mathematics education. Similarly, in the context of China, Cai and Nie (2007) argue 
that the activity of mathematical problem solving in the classroom is viewed as an 
important focus of instruction that provides opportunities for students to enhance 
their flexible and independent mathematical thinking and reasoning abilities. 
Problem solving as an instructional approach 
Kilpatrick (1985), in a retrospective account of research on problem solving between 
1960 and 1985, has identified five instructional approaches in teaching mathematical 
problem solving (osmosis, memorisation, imitation, cooperation, reflection). Despite 
the differences on how mathematical problem solving is approached in each of these 
categories, there is a common element: Problem solving is viewed as a cluster of 
skills students should acquire. From a different perspective, Nunokawa (2005) 
proposes four types of problem solving approaches in teaching mathematics. These 
approaches equate problem solving and mathematics teaching/learning. The first type 
refers to emphasizing the application of mathematical knowledge students have, 
through which students are expected to enrich their schemata of the targeted 
mathematical knowledge. This corresponds to ‘teaching for problem solving’. The 
second type is about emphasizing understanding of the problem situation. As 
Nunokawa points out, “what is important in this type is deepening students’ 
understanding of the situations that they are exploring using their mathematical 
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knowledge” (p. 330). The third type regards emphasizing new mathematical methods 
or ideas for making sense of the situation. In other words, the teaching of 
mathematics occurs via problem solving. The teacher should select problematic 
situations that are appropriate to bring to light informal or naïve approaches from 
students, some of which can be formulated into the targeted mathematical knowledge. 
Finally, the fourth type is about emphasizing management of solving processes 
themselves. This corresponds to ‘teaching about problem solving’; what students 
should obtain is “the wisdom concerning how to treat problematic situations, manage 
their solving processes, and put forward their thinking” (Nunokawa, 2005, p. 334). 
THE NEED FOR INTERNATIONAL COMPARATIVE RESEARCH ON 
PROBLEM SOLVING  
The diversity and interactivity of the international mathematics education community 
provides both the opportunity and motivation for comparative studies. Comparative 
research can claim to be a useful tool towards a better understanding of the 
educational process in general and in one’s own system in particular (Grant, 2000); it 
is not necessarily meant to supply answers to questions but rather to enable planning 
and decision-taking to be better informed (Howson, 1999). Comparative research 
could be about the mutual benefits of sharing good practice and about the adaptive 
potential of the policies and practices of other educational systems to our own 
(Clarke, 2003). 

Challenges confronting the international research community require the development of 
test instruments that can legitimately measure the achievement of students who have 
participated in different mathematics curricula, research techniques by which the 
practices, motivations, and beliefs of all classroom participants might be studied and 
compared with sensitivity to cultural context, and theoretical frameworks by which the 
structure and content of diverse mathematics curricula, their enactment, and their 
consequences can be analysed and compared (Clarke, 2003, p. 144). 

Comparative studies in mathematics education can be distinguished as two types: 
large-scale (mostly quantitative) and small-scale (mostly qualitative) studies. Large-
scale studies such as TIMSS and PISA, have had much criticism. In my opinion, their 
biggest weakness is that they implicitly promote the idea of a global mathematics 
curriculum (a curriculum to which all school systems would subscribe), an idea based 
on the awareness of the world as one (Andrews, 2007b). Additionally, they are 
increasingly interpreted as competitions with inevitable winners and losers. Small-
scale studies usually compare only two or three educational systems in relation to 
mathematics (Kaiser, 1999). They “share a common characteristic of seeking insight 
into the ways in which mathematics is systemically conceptualized and presented to 
learners in different countries” and generally celebrate cultural differences and 
identify the adaptive potential of one system’s practices for another, by 
acknowledging culturally located traditions (Andrews, 2007b, p. 489).  
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During the 1980s and 1990s, problem solving has been the subject of extensive 
research in the U.S.A. The results of these studies have influenced the research and 
curricula development in many countries, such as in China (Cai & Nie, 2007), 
Australia (Clarke et al., 2007), Japan (Hino, 2007), Brazil (D’Ambrosio, 2007), 
Singapore (Fan & Zhu, 2007) and so many others. However, despite the US’s 
influential research and curricular lines, problem solving research in many countries 
has evolved differently. Not only does the term problem solving mean different things 
in different countries, it has often changed dramatically in the same country (Torner 
et al., 2007). This has to be taken into consideration by comparative researchers in the 
field of problem solving, because many attempts to make international comparisons 
across countries fall into the trap of assuming that things with the same name must 
have the same function in every culture (Grant, 2000).  
There is a lack of small scale studies on problem solving in the whole gamut of 
international comparative research. Taking all the above into account, I propose four 
distinct but also overlapping dimensions that comparative research on problem 
solving could focus on. Studies regarding these four dimensions should aim at in-
depth investigation and analysis of how mathematical problem solving is being 
conceptualised in different educational settings. Nonetheless, studies of this kind 
should be approached and interpreted as efforts of the international mathematics 
education community towards international cooperation and national improvement. 
In the following pages I describe each of the four dimensions briefly. 
a) The research trends on problem solving in different countries - The 
researchers’ perspective 
Comparative studies, from this point of view, should aim at comparisons between the 
research interests of mathematics educators and the research produced in each 
system. Comparing evidences from single-national studies around the world reveals 
that the problem solving research produced in different countries varies enormously. 
From the Australian perspective, for instance, Clarke et al. (2007) describe problem 
solving research in terms of three themes (obliteration, maturation, generalisation). 
Similarly, with respect to Portuguese research, Ponte (2007) states that the interest 
has now moved from mathematical problems to mathematical investigations and 
describes three research themes: the development of students’ ability to do 
investigations, the promotion of students’ mathematics learning, the influence of 
these activities on students’ attitudes and conceptions. Other countries have not 
developed problem solving as a separate area of mathematics education research for 
various reasons. In the context of France, didactic research is influenced both by the 
Theory of Didactic Situations and the Anthropological Theory of Didactics (Artigue 
& Houdement, 2007). In both theories, problem solving has a central role; therefore 
the didactic research on mathematics is not separated from research on problem 
solving. In Brazil, however, this phenomenon appears for a different reason: problem 
solving is not examined as a separate area of mathematics education, but as part of 
the current reflection on Education and Cognition (D’Ambrosio, 2007).  
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b) The curricular importance and justification of problem solving - The policy-
makers’ perspective 
Comparative research in this area should examine the explicit and/or implicit 
emphasis on problem solving in intended curricula and how problem solving within 
them is cultivated. By intended curricula I refer to “documents or statements of 
various types (often called guides, guidelines, or frameworks) prepared by the 
education ministry of by national or regional education departments, together with 
supporting material, such as instructional guides, or mandated textbooks” (Mullis et 
al., 2004, p. 164). In his paper, Xie (2004) compared the cultivation of problem 
solving between national mathematics standards issued by the National Council of 
Teachers of Mathematics (NCTM) in the U.S.A. and the Ministry of Education 
(MoE) of China. Both NCTM and MoE consider problem solving abilities to be the 
main goal of mathematics education. The definitions they offer of problem solving 
seem to be related to similar goals. However, there are certain differences between 
their goals. In NCTM, the term “problem-solving” is used to refer both to an end and 
an approach; while in MoE, problem-solving is seen mainly as a goal. Unlike the 
NCTM, the MoE does not mention students learning on their own but rather that they 
should apply the learned mathematics language to think or communicate 
mathematically. Differences do not only exist cross-nationally. In their single-
national study in Israel, Arcavi and Friendlander (2007) interviewed the managers of 
different curriculum development projects. Despite the similarities on the participants 
views and approaches to problem solving (i.e. its importance, recognising the 
existence of different sorts of problems, etc) there are noticeable differences among 
the different theoretical and practical approaches to problem solving, even within the 
same community (of curriculum developers), focusing on the same target population 
(elementary schools) within a centralised system (in Israel) with a uniform syllabus. 
 
c) Teachers’ beliefs, competence and practices in problem solving - The 
teachers’ perspective 
International comparative studies about teachers’ mathematics related beliefs (i.e. 
Whitman & Lai, 1990; Correa et al., 2008; Santagata, 2004; Andrews & Hatch, 2000; 
Andrews 2007c) and practices (i.e. Leung, 1995; Andrews, 2007a; Givvin et al., 
2005) suggest that these two factors are more similar to each other within single 
countries than they are across countries. While there are some single-national studies 
about teachers’ problem solving beliefs and practices, as for example in Australia (i.e. 
Anderson et al., 2008) and Cyprus (i.e. Xenofontos & Andrews, 2008), I am not 
aware of any cross-national studies in this area. From a different starting point 
(examining English and Hungarian teachers’ beliefs about mathematics teaching), 
Andrews (2007c) concludes that English teachers tended to view mathematics as 
applicable number and the means by which learners are prepared for a world beyond 
school, while Hungarian teachers perceived mathematics as problem solving and 
logical thinking and independent of a world beyond school. Taking all the above into 
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account, the similarities and differences of teachers’ problem solving beliefs, 
competence and practices could be another dimension of the international 
comparative research in the field.  
d) Students’ beliefs and competence in problem solving - The students’ 
perspective 
Students’ beliefs, competence and performance have traditionally attracted 
mathematics education researchers all around the world. Problem solving literature is, 
in my opinion, dominated by papers from students’ perspective (i.e. Mason, 2003 in 
Italy; Nicolaidou & Philippou, 2003 in Cyprus; Op’Eynde & De Corte, 2003 in 
Flanders; Goos et al., 2000 in Australia, Cooper & Harries, 2002 in England and so 
on). International comparative studies, such as TIMSS (Mullis et al, 2004) and PISA 
(OECD, 2003) have examined students’ problem solving performance in different 
countries. Particularly, PISA included mathematical literacy in its mandate (Clarke, 
2003) and looked at mathematics in relation to its wider uses in people’s lives 
(OECD, 2003). Mathematics literacy in PISA is measured in terms of students’ 
capacity to recognise and interpret mathematical problems encountered in every-day 
life, translate these problems into a mathematical context, use mathematical 
knowledge and procedures to solve problems, interpret the results in terms of the 
original problem, reflect on the methods applied, and formulate and communicate the 
outcomes (Clarke, 2003). Both TIMSS and PISA were large-scale projects. What is 
needed in researching students’ beliefs and competence in problem solving are small-
scale qualitative studies that compare two or three educational systems.  
 
 
CONCLUSIONS 
The importance of mathematical problem solving in mathematics teaching and 
learning is internationally well defended. By acknowledging and investigating the 
cultural diversity of problem solving in different educational systems with respect to 
the four dimensions proposed above could be beneficial. The creation, promotion and 
establishment of a problem solving culture around the world is, in my opinion, 
important for better mathematics teaching and learning. International collaborations 
and comparative research could be the vehicle towards this direction. 
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INTRODUCTION TO WORKING GROUP 14: EARLY 

YEARS MATHEMATICS 

Patti Barber 

Institute of Education - University of London 

 
The working group met for the first time at CERME 6 and we found many 
similarities but also considerable differences in our countries and individual 
contexts. Most countries represented were reappraising Early Years’ educa-
tion and due to recent research (Clements and Sarama 2007a) were also re-
considering the curriculum offered to the youngest children in mathematics. 
 

One of the most significant changes observed in Germany, UK and Israel has 
been to look at the ways in which children are being taught and what they are 
being taught. A few years ago, mathematics did not play an official role in 
German kindergarten. Learning mathematics was reserved for school. Kin-
dergarten teachers were not confronted during their job training with math-
ematics education. Now different documents in matters of educational policy 
are raised, where mathematics learning now is included. But the curricula of 
the single federal states of Germany differ in the explicitness of the state-
ments made concerning mathematics. It ranges from very in-depth descrip-
tions of mathematical contents in kindergarten, to others, where mathematics 
does not play an important role.Schooling for 3-6 year olds is not compulsory 
and is paid for.  
In England there is full time free education for all children from the age of four 
and part time for all children from three.There is now a prescribed curriculum 
for this age group containing problem solving, reasoning and numeracy ? as 
the mathematics strand of the new curriculum document named as ‘The Early 
Years Foundation stage’ for ages from 0-5.The curriculum is compulsory but 
there are no specific ways of doing it. Training for the teachers is seen as very 
important largely due to research ( The Effective Provision of Pre-School 
Education (EPPE) Project:Final Report A Longitudinal Study Funded by the 
DfES 1997-2004) highlighting that the best practice in Early Years settings 
was with qualified teachers. 
 
In Israel school is compulsory from the age of 6 and the new curriculum here 
is compulsory.It covers the basic ideas in maths with some free play but is 
also teacher orchestrated.  
In Denmark the thinking about mathematics is similar to the German thinking. 
The philosophy is on the development of the whole child. There are no spe-
cific goals for children and the emphasis is on play but there is a movement 
towards a specific curriculum. There is a raising awareness of mathematics 
pedagogy and how to it but there are problems with the cost. 
In New Zealand children begin school at 5. The curriculum document for 0-8 
is Te Whariki and it advocates a holistic approach to teaching and learning 
In Finland all teachers have Masters in early education. There is pre-school 
until 6. Skills are taught to develop mathematical thinking. 
In Portugal education for 3-6 year olds is not compulsory but the majority at-
tend. 
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In Poland there are not enough pre school places for those who want them 
and it is not obligatory.Fees are paid for pre school therefore there are finan-
cial reasons why some children do not attend. Children attend school at 7.In  
the 0-6 kindergarten there is preparation for school. In mathematics this con-
sists of numbers, counting, and shapes. There is no special training for pre 
school teachers but all teachers are educated with masters. 
 
Cyprus has a system where children attend Nursery from 3 years old. The 
formal curriculum begins between 5 and 6.the EY maths curriculum consists 
of free play, building structures, numeracy, and geometric shapes. 
All teachers have to have a degree and maths education is part of this.there 
are a huge number of people who want to do the job. 
 
In Norway 80-90% from 1yr. at 3 yrs more than 90% of children attend the 
kindergarten. It is felt that all children should be able to go to kindergarten. 
School begins at 6 years old. In 2006 there were official documents mention-
ing mathematics – numbers,space and form.The 
training is 3 yrs at university.  
 
There were many papers submitted and we organised them into the following 
themes  
 

 
• Discussion of theoretical concepts and models and how they are used 

in analysis  
• Research methods/methodologies: discussions on how very young 

children are able to articulate their understanding of mathemat-
ics/mathematical thinking e.g. drawings, gestures and recordings (writ-
ten notations). 

• Discussion on how parents can contribute to our perspective of what 
children are doing. 

• Our challenges: we are working in different paradigms, a discussion on 
what we mean by learning to make that explicit in our papers and dis-
cussions  

• Many perspectives are observed: very young children, teachers, other 
adults 
 

After discussion of the papers the following challenges emerged for the group  
in the future: 

• Impact on policy makers 
• Cooperation and collaboration between members of the group 
• Gender! Teachers (salary, role models, social standing) Children (dif-

ferences in teaching and learning outcomes)  
• What is mathematics in the early years and what does it look like? 
• How can we support children’s mathematical thinking in the early 

years? 
 
Clements, D.H. and Sarama, J. (2007a) Effects of a preschool mathematics 
curriculum : summative research on the building blocks project in Journal of 
research in Mathematics Education 2. 136-163. 

WORKING GROUP 14

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2536



GIRLS AND BOYS IN “THE LAND OF MATHEMATICS” 
6 TO 8 YEARS OLD CHILDREN’S RELATIONSHIP TO MATHEMATICS 

INTERPRETED FROM THEIR DRAWINGS 
 

Päivi Perkkilä & Eila Aarnos 
Finland 

 University of Jyväskylä  
Kokkola University Consortium Chydenius   

In this paper we highlight 6 to 8 years old children’s relationship to mathematics. 
For this task we use children’s drawings. Children were asked to imagine themselves 
in math land. We describe, reduce, and interpret to organize our analyses of gender 
differences. Theoretical basis lies on theoretical knowledge of math learning, and 
interpretation of children’s drawings. We found that there are meaningful 
connections between gender, children’s developmental level, emotions, and math 
productions.  
 
METHODOLOGICAL INTRODUCTION  
This paper is based on our multidisciplinary research project “Children and 
Mathematics”. We have gathered data from 6 to 8-year-old children (n = 300) by our 
pictorial test (Perkkilä & Aarnos, 2007a). Pictorial test has two parts: a picture 
collection presented to children and children’s drawings of themselves in the math 
land. In this paper we concentrate on children’s drawings. Drawings give children 
another language with which to share feelings and ideas. Our goal is to reach the 
usefulness of multidimensional approaches for understanding children’s drawings. 
The main aims are:  
 

1. To describe math contents and impressions girls and boys produced in their 
drawings. 

2. To reduce results towards the core meaning of math and contextual basis for 
math learning. 

3. To interpret girls’ and boys’ mathematical and psychological needs for math 
learning environment. 

 
The interpretative framework we use to organize our analyses of gender differences 
n children’s drawings “Me in the Math Land” is shown in Figure 1.  i

 
 Mathematical Perspective Psychological Perspective 
Description Children’s productions Impressions 
Reduction Meaning of Math Contextual basis for math learning 
Interpretation Math needs Psychological needs  

Figure 1: Framework for analysing girls’ and boys’ drawings 
 
As the column headings “Mathematical Perspective” and “Psychological 
Perspective” indicate, the analytical approach involves coordination two distinct 
theoretical viewpoints on mathematical activity. In our analysis we’ll take three steps: 
description, reduction and interpretation. The entries in the column under 
mathematical perspective indicate three aspects of children’s relationship to 
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mathematics, and the entries in the column under psychological perspective indicate 
three related aspects of individual basis for children’s math learning. 
 
The drawings were analysed by an open method; all the contents, colours, and 
impressions were classified. We found from the data following categories:  

1. “Me” (person in the picture) with two subcategories: a) activities, and b) social 
situations, 

2. Real life contents with four subcategories: a) wild nature, b) animals, c) 
buildings, and d) vehicles, 

3. Mathematical contents with five subcategories: a) amounts of numbers, b) 
quantity of numbers, c) arithmetical problems, d) geometrical forms, and e) 
mathematical talk, and 

4. Impressions with five subcategories: a) human expressions, b) colours, c) 
emotional expressions, d) creativity, and e) maturity. 

T
 

he background variables were gender and grade. 
PERSPECTIVES ON MATHEMATICS LEARNING  
Hersh (1986) has answered to the question “What is mathematics?” as follows: “It 
would be that mathematics deals with ideas. Not pencil marks or chalk marks, not 
physical triangles or physical sets, but ideas (which may be presented or suggested by 
physical objects). The main properties of mathematical knowledge, as known to all of 
us from daily experience, are:  

1) Mathematical objects are invented or created by humans.   
2) They are created, not arbitrarily, but arise from activity with existing 

mathematical objects, and from the needs of science and daily life.   
3) Once created, mathematical objects have properties which are well-

determined, which we may have great difficulty in discovering, but which are 
possessed independently of our knowledge of them.” (Hersh, 1986, 22.)   

The nature of mathematics comes up especially then when you try to develop 
mathematical model from every day situation, and to apply mathematical system for 
example in the problem situation to another new every day situation (Ahtee & 
Pehkonen, 2000, 33-34). The daily life problems are increasingly emphasized in 
recent mathematics curricula in various countries. For example an illustration of the 
daily life problems in arithmetic could begin by having children use their own words, 
hands-on-materials, pictures, or diagrams to describe mathematical situations, to 
organize their own knowledge and work, and to explain their strategies. Children 
gradually begin to use symbols to describe situations, to organize their mathematical 

ork, or express their strategies. (Singer & Moscovici, 2007, 1616.)  w 
Mathematical knowledge cannot be revealed by a mere reading of mathematical 
signs, symbols, and principles. The signs have to be interpreted, and this 
interpretation requires experiences and implicit knowledge – one cannot understand 
these signs without any presuppositions. Such implicit knowledge, as well as attitudes 
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and ways of using mathematical knowledge, are essential within a culture. Therefore, 
the learning and understanding of mathematics requires a cultural environment. 
(Steinbring 2006, 136.) According to Berry and Sahlberg (1995, 54) many children 
have preconceptions about modelling which are based on interpretations of real 
models. They argue that it is worth to utilize these preconceptions in school 
mathematics. According to Presmeg (1998) there is strong evidence that traditional 
mathematics teaching does not facilitate a view of mathematics that encourages 
students to see the potential of mathematics outside the classroom. Although some 
reports indicate that children are involved in many life activities with mathematical 
aspects, they continue to see mathematics as an isolated subject without much 
relevance to their lives.  
 
EARLY MATHEMATICS LEARNING AND GENDER ASPECTS  
According to Aunio’s (2006, 10) research review there are contradictory research 
results in children’s mathematical performance and gender. For example Dehaene’s 
(1997), Nunes & Bryant’s (1996) research results show that girls and boys possess 
identical primary numerical abilities. Carr and Jessup (1997) have reported that 
during the first school year, boys and girls may use different strategies for solving 
mathematical problems, but there is no difference in the level of performance. 
Whereas Jordan, Kaplan et al. (2006) found in their research small but reliable gender 
effects favouring boys on overall number sense performance as well as on nonverbal 
calculation.  
 
According to Ojala and Talts (2007), we can better understand why girls in school 
and afterward usually achieve their learning goals better. Their study shows that 
gender differences in learning are probably emerging early before school starts. The 
gender differences were present in most areas of learning expect language, 
mathematics, and science. (Ojala & Talts, 2007, 218.) 
 
According to Geist and King (2008) to support excellence in both boys and girls we 
must design experiences and curriculum that meet the needs of both boys and girls by 
understanding their uniqueness. Most teachers would never consciously treat boys 
and girls differently; however assumptions about gender roles and myths about 
learning mathematics can sometimes lead to us treating boys and girls differently 
without even realizing it. This is what is know as the "self-fulfilling prophesy." (Geist 

 King, 2008, 44-50.) &
 
According to Muzzatti and Agnoli (2007), gender differences exist also in gender 
stereotyping of mathematics. Despite the lack of gender differences in actual 
mathematics performance, girls evaluate themselves as being less competent, and as 
they grow older, both boys and girls lose confidence in their ability and perceive this 
subject matter as more difficult and as less likeable. (Muzzatti & Agnoli, 2007, 757.) 
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Interpreting and understanding children’s drawings 
 
The children are telling us in pictorial language how they feel about themselves and 
the determining influences in their lives. They are also telling us how they need other 
persons. An attempt to interpret child art within a single theoretical framework can 
only result in frustrating oversimplification. More productive than a single-minded 
approach is an eclectic one that draws upon disciplines that have contributed 
significantly to our understanding of the infinite variety of human behaviour. (DiLeo, 
1983, 214-216.) In this paper such an eclectic approach will draw upon mathematics 
learning and teaching, educational and developmental psychology. 
 
The first representation of the human form has been observed wherever children’s 
drawings have been studied. During the preschool years, spontaneous drawings tend 
to be more elaborate with the inclusion of other items of significance, notably houses, 
trees, sun, and other aspects of nature. Human figures in particular are regarded as 
valuable indicators of cognitive growth. A qualitative as well as a quantitative change 
occurs at about seven or eight years when “intellectual realism” gives way to “visual 
Realism”, a change that finds its correspondence in the Piagetian concept of a shift 
from the preconceptual (preoperational) to the concrete operational stage. These 
terms express, in substance, a metamorphosis in thinking from egocentricity to an 
increasingly objective view of the world. (DiLeo, 1983, 37.) 
 
Two developmental stages of drawing are especially relevant to our research: 
intellectual and visual realism (see fig. 2). According to Malchiodi (1998, 1) drawing 
has been undeniably recognised as one of the most important ways that children 
express themselves and has been repeatedly linked to the expression of personality 
and emotions. Children’s drawings are thought to reflect their inner world. Although 
children may use drawing to explore, to problem solve, or simply to give visual form 
to ideas and observations, the overall consensus is that art expressions are uniquely 
personal statements that have elements of both conscious and unconscious meaning 
in them and can be representative of many different aspects of the children who 
create them. (cf. fig. 2) 
________________________________________________________________________ 
Age Drawing   Cognition  
 
4-7 Intellectual realism  Preoperational stage (intuitive phase)  
 Draws an internal model, not         Egocentric. Views the world subjectively.  
 what is actually seen. Draws   Vivid imagination. Fantasy. Curiosity.  
 what is known to be there.   Creativity. Functions intuitively, not  
 Expressionistic. Subjective.   logically.  
 
7-12 Visual realism   Concrete operations stage 
 Subjectivity diminishes. Draws  Thinks logically about things. No longer 
 what is actually visible. Human  dominated by immediate perceptions.  
 figures are more realistic. Colour
 are more conventional. _______ s Concept of reversibility. 

_ _____________________________________________________________________________________ 

Figure 2: Intellectual and visual stages related to Piaget’s stages of cognitive 
development according to DiLeo (1983, 37-38.) 
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According to Malchiodi (1998) phenomenological approach is a way to understand 
children and their drawings. Understanding children’s creative work is attractive 
because it entails looking at drawings from a variety of perspectives, including 
mong others developmental and emotional influences. (Malchiodi, 1998, 35-40.) a 

Themes of children’s drawings may also be gender-related. General differences in the 
themes of boys´ and girls´ drawings, observing that “the spontaneous production of 
boys reveal an intense concern with war fare, acts of violence and destruction, 
machinery, and sports contents, where as girls depict more tranquil scenes of 
romance, family life, landscapes, and children at play”. Girls use fairy tails images 
such as kings and queens and animals such as horses as the subjects of their 
drawings. Whether this, tendency to portray specific subjects by boys and girls is 
developmental or the result of parental or societal influences or both remains as an 

nsolved question. (Malchiodi, 1998, 186-187.) u 
Vygotsky (1978) viewed drawing as a way of knowing, as a particular kind of 
speech, and emphasized the critical role of drawing in young children's concept 
development; particularly because the drawing event engages children in language 

se and provide an opportunity for children to create stories.  u 
R ESULTS 
D escriptions 
Children drew themselves in rich forms, produced math contents and informal 
contents (e.g. nature and buildings). Most children were standing alone in the math 
land. Most girls were smiling and some of the boys seemed to be involved in action. 
Girls and boys equally expressed numbers and arithmetical problems. Besides 
hildren themselves wild nature was the main content of the pictures.  c 

M athematical productions 
 Girls (%) Boys (%)  Girls (%) Boys (%) 
None 23,2 28,3 Numbers (≤10) 44,5 40,0 
Numbers 76,8 71,7 

 

Numbers (>10)   32,3 31,7 
 
T able 1: Number expressions          Table 2: Number quantities 
 Girls (%) Boys (%)  Girls (%) Boys (%) 
None 65,8 65,5 None 12,9 15,2 
Arithmetical 
problems 34,2 34,5 

 

Numbers with forms 29,0 29,7 

    Other forms 58,1 55,2 
 
T able 3: Arithmetical problems           Table 4: Forms 
There were no differences in girls’ and boys’ math expressions (Tables 1- 4). These 
results have similarities with some other researches e. g., Nunes and Bryant (1996), 
Carr and Jessup (1997), Perkkilä and Aarnos (2007a).   
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In figure 3 drawers are practicing their number sense which is essential part of early 
math curriculum. Still there is a worry that this kind of number practicing is not 
nough in children’s early math learning. e

 

    
Figure 3: First-grader boy’s and first-grader girl’s drawings demonstrating huge 

umber productions n 

    
Figure 4: Second-grader boy’s and second-grader girl’s drawings demonstrating 
reative use of numbers c 

These children also are practicing their number sense but in a more creative way than 
children in figure 3. However, we have to accept that it is difficult to conclude any 
differences only by the pictures. Concerning to this challenge, we sustained 
trustworthiness by comparing these differences to children’s other responses in our 

ictorial test, and by finding parallel results. p 
E motional expressions 
 Girls (%) Boys (%) 
Sad 4,5 19,3 
Neutral 42,6 60,0 
Joy 52,9 20,7 

 
Table 5: Emotional impressions ( =41.8***) 2χ
 
Statistically significant gender effect can be seen in girls’ and boys’ emotions (Table 
5). Most girls express in their drawings joyful attachment for mathematics whereas it 
was hard to see clear emotional expressions in most boys’ drawings, and so they were 
interpreted to have neutral attachment for mathematics. We wonder if results have 
basis in either the differences in girls’ and boys’ development (e.g. Bornstein et al. 
2006) or early gender stereotypes (e. g. Steele 2003; Golombok et al. 2008).  
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R eduction  
 Girls (%) Boys (%)   Girls (%) Boys (%) 
Alone 73,5 63,4  Standing 67,1 62,1 
With others 7,7 9,7  Moving 22,0 18,0 
With fairy 15,4 14,5  Housing 3,2 1,4 
None 3,2 12,4  None 7,7 18,5 

 
T able 6: “Me” in Math Land    Table 7: “My Action” in Math Land 
The meaning of math for these children seems to be “being alone, silent, producing 
numbers and arithmetical problems”. Most children seem to be at level of intellectual 
realism (see Fig. 2). Contextual basis for math learning is for most children in this 
research outside school buildings, mostly in wild nature (Table 8).  

         
 
 
 
 
 

 Girls (%) Boys (%) 
Wild nature 80,6 62,1 
Animals 36,1 23,4 
Buildings 36,1 44,8 
Vehicles 3,2 13,1 

T able 8: Contents of Math Land   
Typically, in boys’ drawings there were few more buildings and vehicles whereas 
girls produced few more animals and wild nature (e.g. Malchiodi 1998, 186-187). 

he buildings in the drawings were towers, cottages, castles, home houses etc.   T 

    
Figure 5: First-grader boy’s and first-grader girl’s drawings demonstrating no 

umeric content n 
In these drawings (Fig. 5) children seem to practise early mathematical skills e.g. 
classifying, grouping, and making series. In general, these skills develop in early 

ears. y 
I nterpretation 
Different kinds of needs can be interpreted from children’s drawings “Me in the math 
land”. Children have both mathematical and psychological needs. Concerning the 
math learning we could find three different groups of children: “traditional school 
mathematicians” (Fig. 3), “wild and creative mathematicians” (Fig. 4), and beginning 
mathematicians” (Fig. 5). These groups need differentiations in math teaching (cf. 
Geist & King, 2008). In order to collect the main gender effects, three main scales 
were counted of the categories presented earlier: emotions, developmental level, and 
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math productions. The connections were analysed by t-test (gender differences), and 
by correlations (dependences between scales).  Concerning the psychological needs 
there are great discrepancies in children’s developmental level and emotional basis. 
Still there can be seen gender views (Fig. 6). 
 

 

 
 
 
  
 
 
 
 
  
Figure 6: Statistically meaningful connections between gender and basic scales 
nterpreted and counted in children’s drawings i 

All connections between gender and three scales (emotions, developmental level, and 
math productions) are statistically significant, favouring girls. The most powerful 
connection is between gender, children’s developmental level, and math productions. 
Furthermore, children’s mathematical skills have strong effect in their mental 
development. Therefore children need mathematical inspirations in their growing 
nvironments. e 

We found a strong cumulative circle between children’s developmental level, 
mathematics productions, and emotions (fig. 6). Aunola et al. (2004) have shown that 
children’s mathematical skills develop in a cumulative manner from the preschool to 
the first years of school, even to the extent that the initial mathematical skills in 
beginning of preschool were positively associated with their later growth rate: the 
growth of mathematical skills was faster among those who entered preschool with 
already higher mathematical skills. Aunola et al. (2004) also showed that by the end 
of grade 2 children have problems both in attachment for mathematics and in math 
earning.  l 

According to Geist and King (2008), when boys enter school they are often less able 
than girls to write numbers correctly or align numbers for tasks such as adding and 
subtracting on paper. Girls, on the other hand, find writing and completing 
worksheets much easier. (Geist & King 2008, 45-46.) Boys’ weaker fine motor skills 
were also seen in children’s drawings. As shown in tables 1 to 4 there were no gender 
differences in math expressions themselves. While interpreting profoundly the data 
we have looked at the issues behind math expressions e.g. emotions and 
evelopmental level. d 

Many teachers believe that girls achieve in mathematics due to their hard work, while 
boy's achievement is attributed to talent. These differing expectations by teachers and 

WORKING GROUP 14

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2544



parents may lead to boys often receiving preferential treatment when it comes to 
mathematics. Children may internalize these attitudes and begin to believe what their 
teachers and parents believe. As a result girls' assessment of their enjoyment of 
mathematics falls much more drastically than boys' assessment as they move through 
the grades. These attitudes may shape the experiences that children have as they are 
earning mathematics. (Geist & King 2008, 44-45.) l 

Concerning the need for learning environments, children’s math land is mostly in the 
nature. They spontaneously combine the informal and formal mathematics. Boys 
seem to need more lively actions and constructions in their learning environments. 
Girls’ expectations towards mathematics learning environments are more positive 
than boys’. Teachers and other educators should recognize how powerful out-of-
school learning experiences could be in math learning. Mathematical experiences are 
essential parts in children’s world from very early of life. The child’s focusing on 
numerosity produces practice in recognizing and utilizing numerosity in the 

eaningful everyday context of the child. m 
C ONCLUSIONS 
The description and interpretation of children’s drawings gave us insights into 
children’s math experiences and needs. Children’s drawings can be an effective of 
evaluating important basis of math learning, e.g. their relationship towards 
mathematics. This method also allowed children, who found written reporting and 
recording difficult, a better opportunity to reveal their understanding the nature of 
mathematics and their inside needs for the learning situations. (cf. DiLeo, 1983; 

alchiodi, 1998; Vygotsky, 1978) M 
The Finnish curriculum (2004, 17) is giving more attention to the following aspects: 
Special needs of girls and boys; Equal opportunities for children to learn and to start 
school; Strengthening children’s positive self-concept and their ability to learn skills; 
Having children learn to understand the significance of a peer group in learning; and 
Having children learn to join learning and to face new learning challenges with 
ourage and creativity.  c 

According to Perkkilä and Aarnos (2007b, 3), in school children have to learn 
formulas, exact proofs, or formalized definitions. Without real life connections this 
kind of math learning may restrict the talk about math in to formal mathematics. In 
present research children drew themselves mostly in real life situations. Daily life 
problems and narratives in learning situations could promote early math learning (cf. 

inger & Moscovici, 2007; Presmeg, 1998).  S 
The gender variations found in children’s drawings are important to think about. We 
suggest that early math learning environments should be child centred and gender 
sensitive. 
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“NUMBERS ARE ACTUALLY NOT BAD”  
Attitudes of people working in German kindergarten  

about mathematics in kindergarten1 
Christiane Benz 

University of Education, Karlsruhe 
The following article deals with the results of a questionnaire survey, in which 
attitudes and beliefs of German kindergarten teachers2 about “mathematics”, 
“teaching and learning of mathematics” and “mathematics in the early years” were 
evaluated. After a quantitative analysis it can be stated that a schematic view of 
mathematics of kindergarten teachers prevailed and active and constructive learning 
of mathematics was highly agreed upon. The answers of the open question about 
learning goals revealed a broad range. With the help of the results, consequences for 
pre-service and in-service kindergarten teacher education are shown. 
 
Key words: early years, kindergarten teachers, attitudes, competences, kindergarten 
teacher education 

INTRODUCTION AND BACKGROUND 
The interest in mathematics learning and education for the early years has increased 
immensely in the last years. A few years ago, mathematics did not play an official 
role in German kindergartens. Learning mathematics was reserved for school. 
Kindergarten teachers were not confronted during their pre-service education with 
mathematics education. Recently, different educational policy documents have begun 
to include references to mathematics learning. But the curricula of the single federal 
states of Germany differ in the explicitness of the statements made concerning 
mathematics. It ranges from very in-depth descriptions of mathematical content to be 
used in kindergartens, to others, where mathematics does not play an important role. 
In most of the curricula, there are very vague statements about learning goals. 
Therefore it depends heavily on the knowledge, attitudes, values and emotions of the 
people who are working in the kindergarten if and how they do mathematics together 
with the children. The kindergarten teachers play an important role because they 
create and influence the contexts for learning mathematics in kindergarten. “They are 
the architects of the environment, the guides and mentors for the explorations, the 
model reasoners and communicators and the on-the-spot evaluators of children’s 
performances” (Greenes 2004, p. 46). 

                                           
1 In Germany the pre-school institution is called kindergarten (for children from year 3 to 6). 
2 In German language the expression teacher is not used for people working in kindergarten, they are called educator. 
For this article I use the expression kindergarten teacher according to the English expression nursery teacher. 
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Results of the research of belief domain confirm that beliefs are behind teachers’ 
behaviour in their classroom and act as a filter to indications of curriculum (Leder, 
Pehkonen & Toerner 2002). We can see this in the description of beliefs of 
Furinghetti and Pehkonen (2000, p.8): “Beliefs form a background system regulating 
our perception, thinking and actions; and therefore, beliefs act as indicators for 
teaching and learning”. Skott (2001) also describes the consistency between beliefs 
and practice. Ngan Ng, Lopez-Real & Rao (2003) revealed in their study the strong 
influence of beliefs especially for kindergarten teachers. They noticed that there were 
more consistencies between beliefs and practices in kindergarten teachers compared 
with primary grade teachers. The big influence of prior knowledge, attitudes, 
emotions and individuals’ understanding is also emphasized by the representatives of 
the cognitive-constructivist psychology of learning (Seel 2003) and the neurobiology 
(Roth 1997). 
The construct “belief” consists of different components. One component is the view 
of mathematics. Mathematics as a science has different dimensions. According to 
Grigutsch, Raatz & Toerner (1998), there are four different aspects. Grigutsch et al. 
conducted an empirical study with over 300 math teachers and validated four aspects 
through different statistical tests: formalism, scheme, application and process. The 
aspect of formalism characterizes mathematics strictly by logical and precise thinking 
in exactly defined subject terminology with exact reasoning. Mathematics as a 
collection of calculation acts and -rules, which precisely indicates how to solve 
problems, describes the aspect of scheme. The aspect of application describes that 
mathematics has a practical use or a direct application. Mathematics also can be seen 
as problem-related process of discovery and understanding. Freudenthal (1982) 
describes the aspect of process very clearly, by defining mathematics as human 
activity in contrast to ready-made mathematics. 
Next to the different aspects of mathematics, the belief about how mathematics 
should be learned and taught influences our exposure to children and to mathematics. 
Here, two contrasting positions can be described: “The assumption that the goal of 
mathematics instruction is to transmit knowledge to students and the view that 
students construct mathematical knowledge by active reorganizing their cognitive 
structures” (Cobb 1988, p. 87). The constructivist view of learning is generally 
accepted in mathematics education. Many research reports and even official 
documents represent a view of children who actively construct mathematics.  
In conclusion it is obvious that the emotions and conceptions of kindergarten teachers 
about mathematics and mathematics education are important factors which influence 
their actual practice of doing mathematics in kindergarten. It is important to know 
some aspects of their conceptions and emotions related to mathematics education 
when discussing basic and advanced training of kindergarten teachers.  
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DESIGN 
A questionnaire survey was conducted in the Karlsruhe area3 with 589 kindergarten 
teachers (Benz 2008) in order to evaluate the conceptions of kindergarten teachers. 
With the questionnaire it was examined, which attitudes, experiences and prior 
knowledge kindergarten teachers have concerning “mathematics” and “mathematics 
education”.  
At the beginning of the year 2007, 550 questionnaires were distributed in 
kindergartens, of which 281 were returned. Moreover, 308 prospective kindergarten 
teachers of 2 vocational schools were surveyed. Of the 589 respondents, 554 were 
female and 35 were male. None of the kindergarten teachers that were working in a 
kindergarten at the time of the survey had had “mathematics in kindergarten” as part 
of their vocational education. Only the prospective kindergarten teachers who started 
to work after 2008, dealt with the topic of “mathematics in kindergarten” during their 
education to be a kindergarten teacher. The gradual changes in the education policy 
led to changes of the curricula. 
The single items of the questionnaire were differently constructed. In the first part, 
the kindergarten teachers could express their feelings towards mathematics in 
mulitple answers. In later questions, they could give their agreement to single 
statements on “mathematics”, “learning of mathematics” and “mathmatics in 
kindergarten” with the help of a rating scale from 1 (does not apply at all) to 4 
(applies completely). Which competences children should gain in kindergarten was 
asked in “open questions”. “Open” questions were used in order not to restrict or 
influence the answers too much.  

RESULTS 
Feelings about mathematics are better than their reputation  
In the questionnaire, four adjectives were given, that could be seen as emotionally 
neutral (useful, important, abstract, useless). Four emotional positive items 
(challenging, interesting, clearly understandable, fascinating) and four negative 
adjectives concerning emotions (confusing, frightening, boring, incomprehensible) 
were listed too. Table 1 set out the results from the questionnaires. 

useful 63% confusing 35% frightening 15% 

important 59% incomprehensible 24% clearly understandable 9% 

challenging 52% abstract 21% boring 7% 

interesting 40% fascinating 19% useless 3% 

Table 1: Feelings towards mathematics in percentages 
                                           
3 There are kindergarten teachers working in the city of Karlsruhe (280 000 inhabitants) and also kindergarten teachers 
who are working in suburbs and villages around Karlsruhe. 

WORKING GROUP 14

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2549



  
Adjectives that could be described as neutral feelings with a positive value 
judgement, like useful and important, were chosen more frequently than any other 
terms. This is in contrast to the often cited public bad images of mathematics. The 
next most frequently chosen words were challenging and interesting. This concerns 
adjectives, which could be linked to positive feelings. Then follow two negative 
feelings like incomprehensible and confusing. Incomprehensible expresses that 
mathematics cannot be understood at all, while confusing can relate to a part of 
mathematics. This could be the reason why confusing was chosen more often than 
incomprehensible. 
Thus, it must be noted that, concerning mathematics, positive emotions are more 
often predominant than negative emotions. Still, it is not to underestimate that one 
third of all kindergarten teachers regard mathematics as confusing.  
Schematic view of mathematics prevails  
The kindergarten teachers got a variety of statements where they could show their 
agreement in a multilevel rating scale from 1 (does not apply at all) to 4 (applies 
completely) in order to see which aspect prevails. In each case, 5 answers could be 
related to the aspect of scheme and formalism (e.g. mathematics demands formal 
accuracy), the aspect of process (e.g. solving problems is a main part of mathematics) 
and the aspect of application (e.g. mathematics trains abilities that are useful in 
everyday life). In order not to confront the kindergarten teachers with too many items 
the aspect of scheme and the aspect of formalism were jointed together. Grigutsch et 
al. (1998, 45) pointed out a very strong correlation between these two factors: “The 
formalism and scheme aspects positively correlate with one another and represent 
both aspects of a static view of mathematics as a system. They stand in opposition to 
the dynamical view of mathematics as a process”4.  
The mean values of every aspect for every person were calculated5. Then it was 
looked on which aspect the kindergarten teachers preferred. The results can be seen in 
Figure 1. 68% of all kindergarten teachers, agreed mostly to statements of the aspect 
of scheme and formalism. 16% agreed mostly to the aspect of application and only 
4% agreed mainly to the aspect of process. For the remaining 12%, one prevailing 
aspect could not be determined. 
Currently employed kindergarten teachers responded differently to these questions 
than did pre-service teachers. The pre-service kindergarten teachers were more likely 
to choose the aspect of scheme and formalism. Kindergarten teachers who are 
currently employed are more are more likely to choose the aspect of application. 
                                           
4 The new categories were verified through a factor analysis. 44% of the common variance can be explained with these 
three factors. Cronbach's alpha for the aspect of formalism and scheme is 0.58, for the aspect of process 0.60 and for 
the aspect of application is 0.74. For every factor there is a very significant intercorrelation between each of the items 
of the factor. 
5 The mean value for all kindergarten teachers for the aspect of process is 2.5; for the aspect of application it is 2.7; and 
the aspect of formalism and scheme it is 3.2. 
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The low part of kindergarten teachers choosing statements of the aspect of process is 
probably due to their own experiences in school. Mathematics was not experienced as 
a lively science, in which problem solving, creating of own solution strategies and 
personal ideas was common. Grigutsch et al. (1998) show the opposite tendency. 
They noticed in their study that the aspect which math teachers agreed mostly was the 
aspect of process. The aspect of application was also highly agreed upon whereas the 
aspect of scheme and the aspect of formalism was least agreed upon.  
 

 
Figure 1: Prevailing aspects of mathematics 

Active and constructive learning of mathematics gets high agreement  
After the statements of different views about mathematics, the respondents were 
confronted with statements concerning the acquisition of mathematical knowledge. 
Thereby, five statements had related to transmission, for example: “mathematics is 
best learnt when model solutions are demonstrated“ and five statements related to 
constructivist learning theory, such as “children should discover new knowledge on 
their own, I just give the hints”6. The answers concerning more a view of 
transmission had a mean value of 2.8. Statements that are based more on constructive 
learning theories achieved a mean value of 3.3. 
As before, after calculating the mean value, the answers of the kindergarten teachers 
were sorted according to the prevailing aspect. The results can be seen in Figure 2. 

                                           
6 The categories were verified through a factor analysis. The scree test showed an extraction of two factors. 41% of the 
common variance can be explained with these two factors. Cronbach's alpha for the aspect of transmission is 0.57 and 
for the constructivist aspect it is 0.76. For every factor there is a highly significant intercorrelation between each of the 
items of the factor. 

Prevailing aspects of mathematics in % 

 Already 
working 

N= 281 

Prospective 
teacher 

N= 308 

no 
preference 

13.2 11.4 

process 4.6 3.9 

formalism 
scheme 

60.9 74.0 

application 21.4 10.7 
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Figure 2: Prevailing aspects concerning the acquisition of mathematical knowledge 

In doing so, it becomes clear that the kindergarten teachers, which are already 
working, set a higher value on constructivist aspects and less value to the aspect of 
transmission. Looking on the mean value of single items the tendency can be 
demonstrated too. Kindergarten teachers (M=3.32; SD=.75) already agreed more to 
the constructive statement “mathematical tasks can be solved in different ways” than 
prospective kindergarten teachers (M=2.98; SD=.86).  
A constructivist conception of learning includes a certain awareness of mistakes: 
Mistakes are thereby an essential part of the way of learning and a normal aspect of 
the exploring learning process. They are not a blemish that should be deleted. Only a 
person, who learns, makes mistakes. The person, who does not make mistakes any 
longer, has stopped learning. In order to know what kindergarten teachers think about 
mistakes, there were two items concerning mistakes. The quite low mean values of 
2.5 (“The most important thing is to achieve correct results” see figure 3 left) and 2.3 
(“avoiding mistakes is important“ see figure 3 right) of the negatively formulated 
items show a positive attitude towards mistakes.  

      
Figure 3: Attitude towards mistakes 
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But more than 25% of the kindergarten teachers chose “3” of the rating scale and 
15% chose the top agreement “4” for both statements. So many kindergarten teachers 
think that errors should be avoided. This shows that a positive attitude concerning 
mistakes is not yet completely prevailing for all kindergarten teachers.  
Broad spectrum of desired competences  
As already mentioned in the introduction, there are not many concrete learning goals 
with respect to content in many curricula, which children should have acquired at the 
end of their kindergarten time.  
There was an open question about what kindergarten teachers believed that children 
should learn. The answers were summarized in the following categories. The 
frequency of statements to each category is illustrated in Table 2 (Percentage of the 
kindergarten teachers making a statement to the respective content).7 

counting 48% reading or writing of numbers 29% 

sets 38% geometry  (building, shapes, patterns)  26% 

calculating 36% measures  (length, weights, time, volume)  17% 

Table 2: Expected competences 

The range of content was very broad. Very few kindergarten teachers noticed 
“nothing” or “mathematics should be learned at school and not in kindergarten”. But 
most of the kindergarten teachers wrote some competencies. Many content topics 
from primary school mathematics were mentioned. Counting as well as handling of 
sets was brought up most often. According to the kindergarten teachers, the children 
should also already learn simple arithmetic problems, often with the additional 
comment “embedded in situations” or “with objects”. Mathematical competencies 
concerning measures were rarely mentioned. This is astonishing, because the 
reference to everyday activities is very obvious concerning measures. 
It makes one thoughtful when reading some statements about very high expected 
competences of the children such as “conceptual knowledge up to 100”, “numbers up 
to 100”, “counting up to 100”, “all basic operations like addition, subtraction, 
division and multiplication”, “multiplication tables”. 

CONCLUSION 
Due to the illustrated tendencies, the following components seem to be meaningful 
and essential for a pre-service and in-service teacher education in the area of 
preschool mathematical education: 

                                           
7 One kindergarten teacher wrote: “Numbers are actually not bad, so children should learn numbers in kindergarten”. 
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Focus on the aspect of process with regard to mathematics 
Because most of the kindergarten teachers preferred the schematic view of 
mathematics, it is important that mathematical components should be included in 
Kindergarten teachers’ education. Kindergarten teachers should have the possibility 
to make their own mathematical experiences and thus experiencing the aspect of 
process and problem-solving of mathematics. Similar to an important goal of 
elementary teacher education, the important goal of mathematical components in and 
for preschool teacher education is to: 

contribute to breaking a vicious circle. Many (prospective) teachers do not feel confident 
with mathematics due to their own prior negative learning experiences. Thus, they are 
likely to perpetuate their limited understanding to their own students. In this context, 
(prospective) teachers' encounters with mathematics play a crucial role, as they offer 
opportunities to encourage them to develop a lively relation to the activity of doing 
mathematics. (Selter, 2001, p.198) 

Focus on active construction of knowledge with the consequence for doing 
mathematics with children 
Although there was a high agreement to statements which can be referred to a 
constructivist view of learning, there were quite a lot of mostly prospective 
kindergarten teachers who showed a higher agreement to statements according to the 
aspect of transmission. So another important aspect for the basic and advanced 
kindergarten teacher education are the fundamentals of the cognitive-constructivist 
learning theory like e.g. the active meaningful construction of the knowledge. It is 
also important to concretise this with the help of learning environments to provoke 
children’s curiosity and to enable individual exploration. Thereby, an important 
aspect is the role of the kindergarten teacher as a learning companion, who is able to 
inspire and support the children’s own constructions. In addition to providing 
learning environments, it is also important that kindergarten teachers can use 
children’s daily experience. Everyday situations can provide rich mathematical 
experiences quite often. Therefore, kindergarten teachers should develop a view for 
opportunities of learning mathematics in order to see this in everyday kindergarten 
activities. 
Valuing children’s own construction  
When children construct their own knowledge, not standardised generalisations and 
analogies are included. They occur as spontaneous systematic errors. A child which 
construct the counting sequence, twenty-seven, twenty-eight, twenty-nine, twenty-ten 
do overextend the pattern it has noticed (e.g. the twenties are formed by combining 
the term twenty with each number in the single-digit counting series one, two, three 
…nine, Baroody & Wilkins 2004). As already stated 25% of the kindergarten 
teachers chose “3” of the rating scale and 15% chose the top agreement “4” for the 
statements “it is most important to achieve a correct result or “it is important to avoid 
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mistakes”. Therefore it is important that learning mathematics take place in an 
environment where errors do not have to be avoided. So the valuing of child’s own 
constructions and patterns they have explored is one basic component of pre-service 
and in-service kindergarten teacher education.  
Focus on content regarding learning goals 
As could be seen in the open question, the range of learning goals was very broad. 
Many content topics from primary school mathematics were mentioned, even As 
Steinweg (2008) mentions, it is essential, to talk about helpful basic competences that 
help the children in the transition from kindergarten to school. Concerning these basic 
competences, it is important to keep in mind that the learning goals from school 
should not transferred into the kindergarten and thus pressurising kindergarten 
teachers and children. Therefore learning goals should be one aspect of the discussion 
of mathematics education in the early years. 
In summary, the important aim of the early learning of mathematics is that children 
have the possibility to playfully explore mathematics as a lively science It is the 
challenge of people involved in mathematics education to provide opportunities for 
all kindergarten teachers so that they can explore and develop to be learning 
companions who are creative, curious and imaginative.  
In addition to consequences for pre-service and in-service kindergarten teacher 
education, the research results point out that further research is needed. One aspect to 
focus on is the first sight minor differences between prospective kindergarten 
teachers and kindergarten teachers who have practical experiences already. Another 
question is to investigate the actual practice of doing mathematics in kindergarten. 
Furthermore it is interesting if at all and how a kindergarten teacher education that 
focuses on the mentioned components influences the practice. 

REFERENCES 
Baroody, A. J. & Wilkins, J.L.M. (2004). The development of informal counting, 

number and arithmetic skill and concepts. In J. Copley (Ed.) Mathematics In The 
Early Years. (3rded.) (pp. 48-65). Reston, VA: NCTM, Inc. 

Benz, C. (2008). Zahlen sind eigentlich nichts Schlimmes. In E. Vásárhelyi (Ed.) 
Beiträge zum Mathematikunterricht 2008. Vorträge auf der 42. Tagung für 
Didaktik der Mathematik (pp. 43-46). Münster: Stein. 

Cobb, P. (1988). The tension between theories of learning and instruction in 
mathematics education. Educational Psychologist, 23(2), 87-103. 

Freudenthal, H. (1982). Mathematik – eine Geisteshaltung. Grundschule, 4, 140-142. 
Furinghetti, F. & Pehkonen, E. (2000). A comparative study on students´ beliefs 

concerning their autonomy in doing mathematics. NOMAD, 8/4, 7-26. 

WORKING GROUP 14

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2555



  
Greenes C. (2004). Ready to learn: Developing young children’s mathematical 

powers. In J. Copley (Ed.) Mathematics In The Early Years. (3rded.) (pp. 39-47). 
Reston, VA: NCTM, Inc. 

Grigutsch, S., Raatz, U. & Toerner, G. (1998). Einstellungen gegenüber Mathematik 
bei Mathematiklehrern. Journal für Mathematik-Didaktik 19(1), 3-39. 

Leder, G. C. & Forgasz, H. J. (2002). Measuring Mathematical Beliefs and their 
Impact on the Learning of Mathematics: A New Approach. In G.C. Leder, E. 
Pehkonen & G. Törner (Eds.) (2002). Beliefs: A Hidden Variable in Mathematics 
Education?(pp. 95-114). Dordrecht: The Netherlands: Kluwer.  

Leder, G. C., Pehkonen, E., & Toerner, G. (Eds.) (2002). Beliefs: A Hidden Variable 
in Mathematics Education? Dordrecht: The Netherlands: Kluwer 

Ngan Ng, S., Lopez-Real, F. & Rao, N. (2003). Early mathematics teaching: The 
relationship between teacher’s belief and classroom practices. In N. Pateman & B. 
Dougherty (Eds): Proceedings of the 27th Conference of the International Group 
for the Psychology of Mathematics Education. (Vol. 3 pp 213-220). Hawaii: 
University of Hawaii 

Roth, G. (1997). Das Gehirn und seine Wirklichkeit. Kognitive Neurobiologie und 
ihre philosophischen Konsequenzen. Frankfurt: Suhrkamp.  

Seel, N.M. (2003). Psychologie des Lernens. München, Basel: Reinhardt. 
Steinweg, A. (2008). Zwischen Kindergarten und Schule - Mathematische 

Basiskompetenzen im Übergang. In F. Hellmich & H. Köster (Eds.) Vorschulische 
Bildungsprozesse in Mathematik und in den Naturwissenschaften (pp. 143-159). 
Bad Heilbrunn: Klinkhardt. 

Selter, C. (2001). Understanding – The underlying goal of teacher education. In M. 
van den Heuvel (Ed.), Proceedings of the 25th Conference of the Group for the 
Psychology of Mathematics Education. (Vol. 1, pp. 198-202) Utrecht, the 
Netherlands: University. 

Skott, J. (2001). The emerging practices of novice teachers: The roles of his school 
mathematics images. Journal of Mathematics Teacher Education, 4(1), 3-28. 

 

 

WORKING GROUP 14

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2556



  

LEARNING MATHEMATICS WITHIN FAMILY DISCOURSES 

Birgit Brandt and Kerstin Tiedemann 

Goethe-University, Frankfurt a. Main, Germany 
In our research, we are concerned with early mathematical learning processes 
embedded in family discourses. Thereby, the focus is on interactional patterns which 
shape the mathematical experiences of preschoolers. What kind of mathematical 
discourse do preschoolers become familiar with? And what conceptions of 
mathematics arise from such everyday discourses? 
In this paper, the centre of attention is the research design of a study in progress. 
Thus, we present our theoretical framework and underlying methodological 
considerations. Additionally, we complete this article with some data from 
preliminary studies in order to illustrate our approach.  
Keywords:  home mathematics, support structures, enculturation, acculturation 

INTRODUCTION 

In mathematics education research, the understanding of mathematics as a human 

product, which cannot be separated from its cultural context, is more and more 
prevalent. Regarding this culturality of mathematics, two complementary views of 

learning mathematics can be recognised. On the one hand, learning mathematics 

means that one becomes a part of the mathematical culture which permeates one’s 
social environment (Bishop, 1988). On the other hand, mathematical learning 

processes are also an intended acquirement of an apparently unchangeable faculty 

culture with its specific set of terms, structures and principles (Prediger, 2003). In our 
opinion, these two descriptions supplement each other and correspond with the 

fundamental distinction between enculturation and acculturation (Bishop, 1988 & 

2002; Frade & Faira, 2008). In both conceptions, mathematical learning is embedded 
in discursive processes between one generation and the next. 

Against this background, we are interested in early mathematical learning processes. 

Toddlers and preschoolers already make varied experience with mathematics in 
different social activities. Thereby, discourses with their parents are of prime 

importance. Thus, our main research question is: What kind of mathematical 

discourse from the familial context is familiar to the child entering school? We want 
to pursue this question in an empirical and qualitatively laid out study, which is in 

line with the interactionistic research paradigm (Cobb & Bauersfeld, 1995). 

In the following pages, we shed light on the picture of mathematics as a cultural 
property and clarify the implications for our conception of learning mathematics. 

Subsequently, the methodological approach derived from this framework will be 

presented and, finally, be illustrated by data from our preliminary studies.  
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THEORETICAL FRAMEWORK 

In looking back at children’s experiences with mathematics, we necessarily do so 

with a certain preconception of mathematics. „Mathematics is an intellectual 

instrument created by the human species to describe the real world and to help in 
solving the problems posed in everyday life.” (D’Ambrosio, 2001, p. 67) For our 

theoretical framework, we adopt this idea from the research in ethnomathematics: 

mathematics is no entity existing outside human experience, but a human product 
(Prediger, 2003; Street, Baker & Tomlin, 2005).  

This assumption about the nature of mathematics affects our conception of learning 

mathematics. Thus, children do not encounter mathematics itself, but a cultural 
practice that is recognized as mathematical by capable members of the belonging 

culture (Sfard, 2002). For this reason, not only is mathematics a social construction, 

but learning mathematics is as well. Therefore, Bishop demanded as early as 1988:  
“[…] a mathematical education must have at its core the assumption of being a social 

process.” (Bishop, 1988, p. 13) Consequently, learning mathematics means that a 

child participates in a practice to an increasing degree. This idea of learning is 
explicitly exhibited in Sfard’s theoretical work. She defines learning mathematics as 

“becoming fluent in a discourse that would be recognized as mathematical by expert 

interlocutors.” (Sfard, 2002, p. 5) Pursuant to this latter definition, adults are of prime 
importance for the child’s development due to the fact that they can spur 

mathematical discourses.  

In line with this approach to mathematical learning, we focus on the emergence of 
mutual understanding and coordination in discourses between a child and an adult as 

expert interlocutor in a certain degree.  

Home Mathematics 

With regard to early mathematics and its conjunction with school mathematics, van 
Oers states: “In fact, students are from the beginning of their life a member of a 

community that extensively employs embodiments of mathematical knowledge. The 

school focuses attention on these embodiments and their underlying insights, and by 
so doing draws young children into a new world of understanding.” (van Oers, 2001, 

p. 59) Subsequent to this claim, we focus in our research project on the type of 

constitution of these “embodiments of mathematical knowledge” emerging in the 
familial environment of preschoolers. According to our theoretical fundamentals 

presented above, we assume that the individual conditions under which the children 

enter the “new world of understanding” are fundamentally different according to their 
cultural experiences at home.  

For children, family is a place of experience beside others such as the nursery school 

or peer groups. In spite of being just one component of the child’s life-world, family 
has an extraordinary relevance, with its own values, rules and practices.  

With regard to our research focus “learning mathematics within family discourses”, 

we refer to Bishop’s differentiation between enculturation and acculturation (1988 & 
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2002). These two conceptions contain two different perceptions of learning 
mathematics. In the first one, learning mathematics is seen as the induction, by the 

cultural group, of young people into their culture (Bishop, 1988). Pursuant to this 

point of view, mathematics is a natural part of the everyday life that is shared with the 
young. By contrast, Bishop (2002) delineates learning mathematics as a process of 

acculturation. Following Walcott, he defines acculturation as a “modification of one 

culture through continuous contact with another” (Bishop, 2002, p. 193f.). So, in this 
case, mathematics is regarded as a separate culture which is, for a start, disconnected 

from children’s everyday life. With regard to our field of observation, we don’t 

commit ourselves to one of Bishop’s opposed conceptions. In fact, we like to identify 
the degree to which home mathematics learning can be thought as an enculturative or 

acculturative experience (Fade & Faria, 2008).  

Furthermore, mathematical discourses practiced at home are of particular importance 
not only because they carry certain pictures of mathematics, but because they 

familiarize children with particular interactional patterns (Street et al., 2005). An 

empirical study conducted by Street et al. (2005) shows that children’s experiences of 
these discourses are dramatically different. In terms of mathematical discourses at 

home and at school, the researchers explain that, for some children, there is a gulf 

between these contexts: “The school replicates the Primary Discourse of middle class 
homes whilst it presents children from other backgrounds with a Secondary 

Discourse.” (Street et al., 2005, p. 7) At this point, we can clearly see the connection 

between early mathematics, discourse practices at home and their relation to 
mathematics education. According to the study just cited, many children are restricted 

in their prospects to succeed in mathematics education because they are confronted 

with a problem of language: the switch between home and school discourses can be a 
source of difficulty because of different values, rules and patterns. In line with those 

conclusions, but without relating her research to classes, Sfard exposes interactional 

patterns that are especially similar to school discourses. “This structural similarity 
can be seen mainly in the type of questions presented to the children, in the parent’s 

fine-tuned scaffolding actions, and in their tendency for repeating one kind of tasks 

several times, until the children show evidence of some mastery.” (Sfard, 2005, p. 
249; see also Street et al., 2005).  

Support Structures 

This view on early learning processes is related to our idea of support structures in 
child-parent-discourses and to the general discussion about the decisive role of adults 

for children’s development (Vygotsky 1978, Bruner 1983, Rogoff 1989). Vygotsky 

delineates learning as a process in which children internalize skilled approaches from 
their participation in joint activities with more skilled partners. These joint activities 

that would be impossible for the child on its own define the so-called “zone of 

proximal development” (Vygotsky, 1978). With this theory of development Vygotsky 
realizes the integration of individual learning in social and cultural context. In another 

manner, Bruner (1983) does the same. He conceptualises learning with regard to a 
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support system provided by capable interlocutors. The child is induced in a certain 
“format”, which contains the idea of increasing autonomy and responsibility for the 

child. An advancement of these two theories was introduced by Rogoff (1989). With 

regard to Bruner, she pushes the interactional equality of adults and children closer to 
the spotlight: “The mutual roles played by children and their caregivers rely both 

upon the interest of caregivers in fostering mature roles and skills and on children’s 

own eagerness to participate in adult activities and to push their development.” 
(Rogoff, 1989, p. 209) According to this basic assumption, she describes the learning 

process as a “guided participation”. Thereby, she replaces Vygotsky’s idea of 

internalization by that of “appropriation”. In the process of appropriation, the children 
“can carry over to future occasions their earlier participation in social activity.” 

(Rogoff, 1989, p. 213) In other words, in her opinion, learning is a process of 

transformation of individual participation in cultural activities. Because of this 
analogy to interactionistic fundamentals, we regard the concept of guided 

participation as especially valuable for our theoretical framework. What kind of 

guided participation shapes the child’s early mathematical experiences? And, in more 
detail, what picture of mathematics do young children become familiar with?  

Pursuing these key questions, we plan to explore the different forms of guided 

participation in German families between the two poles of enculturation and 
acculturation. 

METHODOLOGY 

Our main focus is on everyday mathematical discourses between preschoolers and 

their parents. In order to achieve a well-rounded picture of early mathematical 
learning processes in families, we plan to collect different types of data, which will 

be related to each other via the help of data triangulation. Hence, we will collect basic 

data of the family (age, siblings, educational background, etc.), data of interaction 
and data from parent interviews. This need not mean that we use the diversity in data 

to mutually check their validation, but rather to shed light on the subject matter – 

namely processes of enculturation or acculturation within the family – and, as such, 
gain a more multi-faceted than inherently consistent image. We lay out our study as a 

comparative set of case studies, which means that we will collect data in several 

families and, after analysing them case by case, we will compare different families on 
the one hand and insights from different kinds of data on the other.  

In the following, we will describe the main data types - “interaction processes” and 

“guideline interview” - and illustrate them with examples from our preliminary 
studies.   

Interaction processes 

To get access to interaction processes which are of interest within the scope of our 

research project, we have chosen two impulses which we consider as more or less 
typical for the familial context: picture-books and games. Therefore, we would like to 

ask a child of preschool age and its parent in each case to take a look at a picture 
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book, or to play a game together. These situations will then be videotaped for later 
analysis. 

The reason we regard picture books and games as adequate for initiating 

mathematical discourses is because of their value in the child’s everyday life: „The 
underlying thought of using picture books for mathematics education is that they can 

offer a meaningful context for learning mathematics and can offer a ‘cognitive 

framework’ with ‘cognitive hooks’ to explore mathematical concepts and skills. 
Picture books are also ascribed an important role for the development of 

mathematical language.” (Heuvel-Panhuizen, Boogaard, Scherer, 2007, p. 831) In our 

opinion, games can be of similar relevance for learning mathematics.  

In order to initiate mathematical discourses, we chose picture books and games that 

offer varied mathematical contents. In addition, we will invite the participating 

families to present a book or game they are familiar with. In each case, the 
participants may choose the place as well as the book or game and, finally, stop 

reading or playing whenever they wish to. Thereby, we assume that everyday 

practices and discourse structures emerge even in contact with potentially strange 
material. Analysing such discourse structures referring to mathematical learning 

processes, we focus on emerging support structures. 

In order to identify support structures in these initiated discourses, we will conduct an 
analysis of interaction which refers to the interactional theory of learning (Cobb & 

Bauersfeld, 1995). This method was devised by a working group around Bauersfeld, 

in reference to ethnomethodological conversation analysis. Focusing on the 
evolvement of the topic(s) and patterns of interaction, this analysis serves as a 

foundation. Thus, an analysis of participation follows which focuses on the issues of 

“responsibility and originality that one can ascribe to a person’s utterance” 
(Krummheuer, 2007, p. 67; Brandt, 2007).  

Interview 

These interactional situations are to be complemented by semi-structured interviews 

taken with each parent at the beginning of the study, thus, nearly a year before the 
start of school, and also at the end, a few weeks after the child’s first day at school. 

The interviews are based on problem-centered guidelines (Patton, 2002; Witzel, 

2000). The first interview is to shed light on the parents’ ideas of mathematics, of 
mathematical and general learning processes, the families’ practices concerning 

books and games and the preparation for the forthcoming school start. In the final 

interview, however, different priorities are set. So, the focus is rather on the 
experiences made with our materials during the preceding months, on the potential 

impact that the study has on the family’s everyday life, and on the experience with 

school start.  

In line with the conception of the problem-centered interview, the respondents are 

always considered as “experts of their orientations and actions” (Witzel, 2000). For 

this reason, the interview guidelines just serve as a basic checklist during the 
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interview to make sure that all relevant topics are covered. In fact, the most important 
point is that the interview situation provides “a framework in which respondents can 

express their own understandings in their own terms” (Patton, 2002).  

In order to find the basic ideas outlined by the parent, we will conduct the qualitative 
content analysis devised by Mayring (Mayring, 2000). We will use this generally 

accepted method in a certain form witch includes two central steps: “inductive 

category development and deductive category application” (Mayring, 2000, p. 3). 
The scope for the category development will be the distinction between mathematics 

as a social practice in everyday live and as a fixed faculty culture and in this sense 

learning mathematics as enculturation or acculturation.  

EXAMPLES FROM PRELIMINARY STUDIES  

In order to illustrate our research design, we will present examples of the main data 

types and first conclusions in the following. 

Example 1: Florian – mathematical discourse 

This first episode is extracted from a reading session with Mrs. Gerlach, her 5-year-
old son Florian and her 2-year-old daughter Loni [1]. They look at the picture book 

“365 Pinguine” [2].   

Mrs. G. Every morning, a new penguin arrives. How many are there? 

Florian Hum. 

Loni Two! 

Mrs. G. 31 plus 28 equal? 

Florian Hum, I don’t know. 

Loni (citing the book) Ring! Ring! 

Florian Oh. 

Mrs. G. That’s rather difficult. 

Florian Yes, but it is... Well, 20 plus 30 equal, oh, 50. Then, plus 8 is 58. Yeah, it is 

58. 

Mrs. G. You did it really well. However, you missed one. 

Florian 59.  

Mrs. G. Fif, and here is the solution (points at the solution presented in the book). 

In this short sequence, a mathematical matter arises from reading. Entering into that 

question, Mrs. Gerlach doesn’t push her son for an answer. By emphasising the 

intricacy of the problem at hand, she opens the situation for him. From now on, he 

can fail to answer the question without losing face. Against this background, Felix 

uses the opportunity to exhibit his mathematical capacity. He ventures to enter a 
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mathematical field with which he isn’t familiar yet. Thereby, he decomposes the 

problem into two steps. The second step of calculation is not affirmed by Mrs. 

Gerlach. She refers to the solution presented in the book instead. Altogether, Felix is 

responsible for the solution process; in terms of the analysis of participation, he is the 

“author” which means that he expresses his own ideas in his own words 

(Krummheuer, 2007).  

Example 2: Linus – mathematical discourse 

This second episode is from a reading session with Mrs. Bultmann and her 5-year-old 

son Linus. They look at the picture book “Es fährt ein Boot nach Schangrila” [3]. 

Mrs. B. At pier 6, the woodpecker starts feeling sick. For this 
reason, five koalas immediately complain to the captain. 
Five bears, small and grey. Do you know where they are? 

Linus  (tips a koala in the picture) 

Mrs. B. One. Point a finger at the koalas! Look here, one (points the finger at 
another koala in the picture). With the finger, Linus! 

<Linus  (points at all the five koalas one after another) 

<Mrs. B.  One, two, three, four, five – great!  

In this episode, Mrs. Bultmann reads the text out at first. Subsequently, she sets a 
specific structure, asking Linus to find the koalas. Instead of answering verbally, he 

points at a koala in the picture. This nonverbal answer is marked as inadequate by 

Mrs. Bultmann. Thus, she gives the number word and asks Linus to point at the 
koalas, although he already did the latter. By this means, she specifies how to 

perform the fixed algorithm she demands: pointing and pronouncing the number 

words at the same time and step by step. In the following, she initiates the counting 
process once again, starting with another koala. Linus continues pointing at the 

koalas, whereas his mother pronounces the number words. Altogether, the mother 

insists on a specific structure, in which Linus’ action is integrated; in terms of the 
analysis of participation, Linus is a „relayer“, which means that he “claims no 

responsibility neither for the syntactical nor for the semantic aspect of his statement” 

(Krummheuer, 2007, p. 67).  

Example 3: Different ideas of mathematics - interview  

In addition to the reading sessions, we interviewed all parents. Here are three answers 

to the question: What comes first to your mind when you hear the word mathematics? 

Mrs. Gerlach: Hum, mathematics? Well, logic, structures. Hum… Hum, and everyday 

life as well, so, the relevance for the everyday life, thus, there are a lot of 

things which have to be calculated. So, it is of great importance on all levels 

and, it is, yes, I think, it is really important. 
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Mrs. Bultmann: When I think about math? Oh, my God… Everything with plus, I would 

say. So, spontaneously, I would think about everything with plus.  

Mrs. Yoritomo: Mathematics, so, systematic thinking. And very useful. And, for me, with 

the piano, it is especially important, no, the foundation of course. It’s really 

counting and playing at the same time. This is really of prime importance.  

These three answers shed light on the diversity of views on mathematics. While both 

Mrs. Gerlach and Mrs. Yoritomo spontaneously emphasise rather abstract ideas of 
mathematics, Mrs. Bultmann names the concrete operation of addition – but as a 

strange idea without connection to her everyday live. Against the background of the 

complete interviews, this difference between the answers will be even more obvious. 
While Mrs. Gerlach and Mrs. Yoritomo regard the mathematical basic operations 

(like addition and subtraction) as part of their everyday lives, Mrs. Bultmann 

constricts useful mathematics to counting. Her larger distance from mathematical 
matters comes to the fore as well, when she describes situations in which her son 

encounters mathematics within the family’s everyday life. In this regard, she speaks 

about proportionality, whereas her son just copes with counting up to ten in the 
reading situation. By contrast, Mrs. Gerlach’s and Mrs. Yoritomo’s examples 

concerning the same topic are more concrete. They report on kitchen activities, 

playing shops or games of dice, planning holidays or taking interest in mathematical 
basic operations. It is an astonishing notice that Marc, Mrs. Yoritomo’s 4-year-old 

son, spontaneously names preparing jam as something with relation to counting. 

Quite afterwards, his mother explains this concrete kitchen experience and the 
embedded mathematical activities.   

Summary and Conclusions 

As a summary, we will relate the presented diversity in the parents’ views on (home) 

mathematics and in forms of support structures to our basic idea of learning 
mathematic as enculturation or acculturation.  

Firstly, the ideas of (home) mathematics, reported in the interview, shed light on 

different levels of familiarity with mathematics. For instance, Mrs. Bultmann regards 
even mathematical basic operations aside from counting processes as strange and 

disconnected from her everyday life. Consequently, her son may adopt this distance 

to mathematics, experiencing elementary calculations in an acculturation process. 
The other two families treat mathematical topics as more common and integrated in 

their everyday discourses. This is discernable in Marc’s spontaneous insertion during 

the interview mentioned above and in the short interaction sequence with Mrs. 
Gerlach and her two children: Not only Florian’s participation, but also Loni’s 

reaction shows understanding of the problem at hand: Although “two” is a wrong 

answer regarding the number of penguins, the utterance is thematically adequate. In 
contrast to Linus, the children in these families become familiar with mathematical 

practices within an enculturation process.  
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These expositions can be supplemented by a deeper examination of the reading 
sessions. Within these sequences, different kinds of support structures emerge. More 

precisely, we can see the space given by the conception of “guided participation” 

(Rogoff, 1989). While one support structure focuses on the child’s involvement in a 
fixed practice, the other one emphasises the child’s role as a competent interlocutor 

who produces ideas on his own. We assume that, by these different kinds of 

participation, the children get different ideas of how to learn mathematics: adopting a 
fixed structure or probing a flexible tool according to individual ideas. On a more 

theoretical level, the first form conforms to an intended acquirement of an apparently 

unchangeable faculty culture, thus, to an acculturative experience.  By contrast, the 
second form corresponds the conception of enculturation, which includes 

mathematics as a natural part of everyday life.  

NOTES 

1. Transciption rules: This font marks text read from the picture book. < marks persons speaking 

simultaneously. 

2. “365 Penguins”. Fromental, J.-l. & Jolivet, J. (2008). 365 Pinguine. Hamburg: Carlsen Verlag. 

3. “A boat goes to Shangrila”. März, L. & Scholz, B. (2006). Es fährt ein Boot nach Schangrila. Stuttgart/Wien: 

Thienemann Verlag. 
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ORCHESTRATION OF MATHEMATICAL ACTIVITIES IN THE 

KINDERGARTEN: THE ROLE OF QUESTIONS 

Martin Carlsen, Ingvald Erfjord and Per Sigurd Hundeland 

University of Agder (UiA), Kristiansand, Norway 

The aim of this study is to address the subtleties in the process of how kindergarten 

teachers orchestrate mathematical activities with a group of children. Drawing on a 

sociocultural perspective on learning and development, talk-in-interaction, emerging 

from naturally occurring data, has been analysed to get insight into how a 

kindergarten teacher orchestrate mathematical activities. The analyses show that the 

kindergarten teacher's use of questions, which we categorise into six groups, played 

a significant role in the orchestration of children’s learning process. Through the use 

of questions and a pair of scales, verbal and non-verbal responses were engendered, 

relevant mathematical terminology was offered, and an inquiry approach towards 

measuring as a mathematical topic was initiated.   

Keywords: kindergarten teacher, orchestration, teacher questions collaboration, 

inquiry  

INTRODUCTION 

During the recent years, mathematics in the kindergarten has been on the agenda with 

respect to the content of Norwegian kindergartens and their role in the society. In 

particular, this is emphasised in the curriculum for kindergarten (KD, 2006), where 

mathematics for the first time is explicitly mentioned as a topic with which children 

are supposed to be engaged. These societal demands of the kindergarten have put to 

the fore questions such as “What are we supposed to do with regard to mathematics 

in the kindergarten?” and “How do we do it?”.  

A research project called Teaching Better Mathematics (TBM
1
) has been initiated at 

the University of Agder. In this project, we are collaborating with several schools and 

kindergartens to promote learning and development in mathematics teaching. This 

paper reports from a case study situated within this project, analysing an activity in 

one kindergarten.  

In this study, we use the notion of orchestration to describe a kindergarten teacher’s 

actions when the children worked with measuring tasks. This includes an emphasis 

on the role of the kindergarten teacher’s questions and comments to children’s 

responses in the conversation. We also include the preparations made ahead of the 

sessions as being part of the orchestration, that is planned tasks, use of a pair of scales 

as well as the framing of the learning environment and number of children involved 
                                                 
1
 The TBM project is supported by the Research Council in Norway (NFR no. 176442/S20) and is managed by 

didacticians at UiA. The TBM project is based on collaboration between didacticians and teachers, kindergarten 

teachers and their leaders in two local councils and the local county where UiA is situated. The TBM project aims to 

promote development of mathematics teaching in schools and kindergartens, including participation in workshops 

arranged by didacticians at UiA, and research into these processes. 
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in the activity. Teachers’ actions and arrangements during sessions are included in 

what Kennewell denotes as “supporting features” in teachers’ orchestration:  

The teacher’s role is to orchestrate the supporting features – the visual cues, the prompts, 

the questions, the instructions, the demonstrations, the collaborations, the tools, the 

information sources available, and so forth… (Kennewell, 2001, p. 106). 

From our collaboration with the kindergarten teacher, the following research question 

has been formulated: What roles do a kindergarten teacher’s questions play in 

interaction with children when orchestrating mathematical activities? 

 

THEORETICAL FRAMEWORK 

In this study we adopt a sociocultural perspective on learning and development, that 

is we view learning as a social and situated process of appropriation where 

individuals make concepts, tools, and actions their own through collaborating and 

communicating with others (Rogoff, 1990, Säljö, 2005; Wertsch, 1998). In the 

process of appropriation, the role of tools is significant, in particular language in 

interaction with other psychological as well as physical tools (Vygotsky, 1978, 1986). 

The reason for adopting this theoretical position is our aim of describing and making 

sense of institutionalised interaction and learning activities among adults and children 

in the kindergarten. This perspective is useful for our emphasis on the orchestration 

of participation in social, mathematical activities. In adopting such a perspective 

when analysing our data, we aim at making sense of how adults and children are 

engaging in interaction by using verbal and non-verbal actions. 

The experience the children do with measuring at various points and in different 

settings, altogether constitutes the basis from which the children are making shared 

meanings (Rogoff, 1990). By orchestrating a mathematical activity, the kindergarten 

teacher creates a learning environment for the children to engage and participate with 

ideas and arguments. 

The theoretical stance of our study is in accordance with the TBM project’s 

theoretical perspective in general (cf. Jaworski, 2007), where inquiry is a main 

theoretical notion. An intention from the didacticians’ point of view in the project has 

been to study and promote development of mathematics teaching through inquiry 

(Jaworski, 2005; Wells, 1999). According to Wells (1999), inquiry is a process 

described as “a willingness to wonder, to ask questions, and to seek to understand by 

collaborating with others in the attempt to make answers to them” (p. 121). The 

nature of the collaboration with respect to the inquiry process is in accordance with 

how Wagner (1997) describes a co-learning agreement: 

In a co-learning agreement, researchers and practitioners are both participants in 

processes of education and systems of schooling. Both are engaged in action and 

reflection. By working together, each might learn something about the world of the other.  

Of equal importance, however, each may learn something more about his or her own 

world and its connections to institutions and schooling (p. 16). 
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We acknowledge that didacticians (researchers) and teachers (practitioners) bring 

different expertise and engage in inquiry together to inform and develop their 

different practices.  

In the study we aim to consider how the kindergarten teacher’s orchestration 

promotes inquiry in learning and teaching. This is done through an emphasis on how 

the kindergarten teacher and the children explore mathematics together. The 

questions posed by the kindergarten teacher and the actions resulting from those 

questions are the unit of analysis in this study.  

Studies have documented that whole-class interaction often is dominated by teachers’ 

questioning to control and support their teaching (Barnes, Britton, & Torbe, 1986; 

Kirby, 1996; Myhill & Dunkin, 2005). Although several of these studies report that 

teachers also want to support students’ investigations and reflections, their use of 

factual questions, or what Kirby (1996) calls simple questions, inactivated the 

students. Kirby argues that the way children interpret a story is heavily dependent on 

the kind of questions used by teachers. Kirby focused on the amount of information 

contained in the questions, and he found that use of simple questions was dominating. 

The lack of more complex questions used by the teachers prevented the children to 

make sense of the story text. 

We want to argue with Roth (1996), that questions per se are not ”universally good 

but need to be evaluated in terms of their situational adequacy” (p. 710). In 

accordance with what Roth argues, we are not treating the kindergarten teacher 

questions alike and categorise them indistinguishably. We are interested in the role 

these questions play, with respect to context, content, and children responses, “in 

student-centered, open-inquiry learning environments” (op. cit., p. 710).  

 

ANALYSIS AND RESULTS 

In this study we have collected empirical material through the use of video camera as 

well as field notes from one kindergarten. Our data consisted of a video tape of 27 

minutes which was transcribed in full. Naturally occurring talk-in-interaction has 

been captured on an occasion when a kindergarten teacher has been engaging in 

measuring activities together with several children. In this case, the kindergarten 

teacher called Unni orchestrated a mixed-aged group of children who were 

participating in a measuring activity through interaction and communication. They 

were engaging with a pair of scales to measure which were heavier of various things 

with different size and weight.   

In the activity, Unni interacted with six children 3-4 years of age, two girls and four 

boys. In Figure 1, a picture from the activity is presented.  
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Figure 1: The children and the kindergarten teacher engaging in the activity 

Unni was a well experienced kindergarten teacher, with a background of more than 

ten years from working in a kindergarten. The measuring activity orchestrated in this 

case had previously been introduced to the kindergarten teacher in a workshop at the 

university. The introduction to the activity was made by didacticians at the university, 

but only as an example of an activity that might be possible to orchestrate in a 

kindergarten. No explicit guidelines were given with respect to how to orchestrate the 

activity and it was the total enterprise of Unni the measuring activity observed. 

Thematically, we divided the data material into two parts. In the first part, the 

orchestration and interaction are about the weight of a toy crocodile and a box 

including plastic bears of various sizes and weight. The comparison of weights 

between these was made by all children both when holding them in their hands and 

with the use of a pair of scales. The second part concerned comparing the weight of 

small plastic bears of different sizes and weight. The children were challenged by the 

Unni to reason about the weight of the largest bear in comparison with the smaller 

ones. Both these activities were tightly orchestrated by Unni. 

In analysing the transcribed material, we observed over 150 questions asked by Unni   

(cf. Table 1 below). We do not find the exact number of questions significant. Rather, 

we found it interesting to register that the communication and interaction between the 

kindergarten teacher and the children were fundamentally oriented around those 

questions and the children’s verbal and non-verbal responses to them. With this as a 

background, we were able to categorise the questions into six different kinds of 

questions, and we analysed what kind of responses the various types of questions 

initiated. Some categories of questions were dominating more than others and some 

categories initiated more responses from the children than others. We are aware that 

others have categorised teacher questions as well (cf. Barnes et al., 1986; Myhill & 
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Dunkin, 2005; Roth, 1996; Wood, 1988). Roth, for instance, developed a typology of 

questions asked by one teacher with respect to their content. However, this typology 

of questions does not immediately fit with the categories we have forwarded. We 

focus on the role the questions played in the communicative practice and not 

exclusively on their content. Thus, our categories are elaborated with respect to the 

children’s responses (Roth, 1996). 

Table 1: Frequency table of the six categories of questions 

Suggesting action  30 

Open  71 

Asking for argument  12 

Problem solving invitation 12 

Re-phrasing 19 

Concluding  10 

Total 154 

 

In the following we will give a description of the six categories of questions. We will 

continue our analysis by going deeper into the role the different categories of 

questions played in the kindergarten teacher’s orchestration. We consider what kinds 

of responses we observed from students, both verbal and non-verbal, to questions in 

the different categories.  

Suggesting action: Questions within this category are characterised by their feature 

of initiating physical actions among the children, and not solely as initiating an oral 

answer. Typical questions in this category were: “Stein, can you feel?”, “But do you 

think that it will go up if we put more into that?”, and “Can you count them, and see 

if it is as many as this?”.  

Open: Almost half of the questions were categorised as open. Questions within this 

category inquired into the children’s knowing with respect to the problem they 

studied. For instance, “Do you think this one weighs the most?”, “How can we decide 

which one of them are the heaviest?”, and “What has happened now?”.  

Asking for argument: This category includes the questions asked which follow up 

on an utterance from a child. The content of these questions includes that the child is 

asked to give reason(s) for his or her answer or opinion. Examples of this kind of 

questions are: “Why do you think that?”, “How can we know that they have the same 

weight?”, and “Why wasn’t it equal this time?”. 

Problem solving invitation: Some of the questions included a problem or a 

challenge. These questions initiated opportunities for reasoning as well as being 

motivating with regard to experimenting and solving the problem. For instance, Unni  
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challenged the children by asking questions such as: “Is it possible to estimate how 

many such bears we need for them to be as heavy as a large one?”, and somewhat 

later “If I put two large bears into this one (puts two large plastic bears in one of the 

scales), what do you have to do to make it even?”. These questions are different from 

Suggesting action questions in that the former do not suggest any concrete actions to 

do to solve the challenge or problem. 

Re-phrasing: At several occasions Unni re-formulated the children’s utterances into 

coherent sentences and questions. Very often the children responded with single 

words or short utterances, which were re-phrased as questions by Unni. Firstly, the 

questions set forth a mode of wondering among the children. When one boy called 

Tore said “this is heaviest”, Unni responded with “Do you think that one is the 

heaviest?”. Secondly, in these questions Unni took the opportunity to introduce new 

concepts, for instance the concept of weighing. When a boy called Arild said “That is 

the largest, therefore it is the heaviest”, Unni responded with a confirmation and a 

new question: “That is largest, but which one weighs the most?”. This is coinciding 

with Roth (1996), that teachers elicit specific content knowledge through questions.   

Concluding: This category is used to describe those questions where the 

kindergarten teacher promotes a mathematical relationship or observation. The aim of 

those questions seem to be the children’s approval or for them to acknowledge a 

specific issue. For instance, in the following question Unni argues for adding more 

plastic bears in one of the scales: “That has to be heavier so that it can come further 

down, doesn’t it?”. Moreover, later she makes the point that “And then they have the 

same weight?”. The conclusions are given in the questions, but she wants the children 

to reason and conclude for themselves. 

In the initial phase of working with the measuring tasks, Unni often asked suggesting 

action questions. In these questions, the children were asked to do actions with the 

pair of scales. In approximately all cases, such questions were followed by physical 

actions by the children instead of verbal responses. It is worth mentioning here, that it 

is possible to doubt if the questions are genuine questions (cf. Roth, 1996) or if they 

are invitations to what the kindergarten teacher Unni wants the children to do. 

However, those questions signal to the children that it is up to them to decide whether 

to do something or not. 

In her orchestration, Unni’s use of these questions typically was followed by posing 

open questions. We observed that the open questions created attention to the practical 

activities that the children were involved in. For instance, when Unni asked “What 

happened now?”, the purpose with the question was probably to focus the children’s 

attention on the measurement activity. At several occasions, the open questions also 

served as a follow-up on questions from other categories. It seems as if the open 

questions were necessary to (a) keep their conversation going, (b) to engage and 

motivate the various children in their problem-solving efforts, and (c) to make them 

having a shared focus of attention.  
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The open questions challenged the children to respond verbally. Typically the open 

questions resulted in short replies such as “yes” or “no. Unni often continued with re-

phrasing questions or asking for argument questions. By doing that, Unni seemed to 

have further initiated verbal responses from the children.  

The re-phrasing questions were tools for adjusting the children’s use of mathematical 

language. Unni never explicitly corrected them, but through her re-phrasing, she 

emphasised the preferable terms to use. This issue is exemplified when Unni 

rephrased Arild’s utterance “And now they are equal of size” into “Are they equally 

heavy?”.  

Re-phrasing questions were responded to by the children with affirmative replies 

such as “yes” or with comments such as “that” and pointing with fingers if they were 

asked to decide which of two things were heavier. In order to challenge students more 

verbally, Unni continued with asking for argument questions or by way of new open 

questions. When students responded successfully to asking for argument questions, it 

often led to concluding questions. If students did not succeed replying verbally to the 

asking for argument questions, Unni usually continued with some open questions, but 

also sometimes with suggesting action questions in her orchestration. To use those 

kinds of questions seemed not to have been a preferable choice by Unni, but 

questions she utilised when students did not manage to succeed with their 

argumentation.  

We have already emphasised that the session we observed consisted of two parts. In 

the second part the children worked with the plastic bears and Unni started to use 

problem solving invitation questions. These questions usually invited the children to 

propose actions or to accomplish actions. Unni then followed up with open questions 

or asking for arguments questions which challenged the children verbally. 

Occasionally, she also used suggesting action questions to follow up the problem 

solving invitation questions. When a new sequence was initiated by a problem 

solving invitation question, the conversation usually fell into a similar sequence of 

questions as discussed above.    

The concluding questions often occurred as a result of a previous discussion of a 

phenomenon. These questions occurred in three different settings. In one setting the 

questions concerned what they observed, such as “And when the scale is down, it is 

heaviest?”. In a second setting the questions concerned what the children were 

supposed to do. The questions included suggestions to actions, but the suggestions 

were assumed by Unni to be the correct thing to do. The question “Should we remove 

one from this scale too?” is an example of this setting. The third setting concerned 

mathematical conclusions. Questions used within this setting we interpret as being an 

important step in the kindergarten teacher’s efforts to facilitate the children’s process 

of appropriation. The question “So, if we take out two of the same size, we will 

restore balance again, if we take one from each?” exemplifies her effort to achieve a 

shared focus of attention among the children with respect to a certain mathematical 
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relationship. After different questions have been posed and responded to, the 

concluding questions may help the children to achieve a shared meaning for various 

terms and actions.  

DISCUSSION 

As argued above, the children’s actions and utterances are divided into verbal and 

non-verbal responses. Concerning the children’s responses to the questions, only a 

few questions resulted in inadequate response or no response from the children. Most 

often, they were able to give relevant verbal responses or they responded with 

pointing gestures or actions with respect to the given artefacts in order to answer the 

kindergarten teacher’s questions.  

The verbal responses were often supported by different types of gesturing. The 

children did rarely answer questions with complete sentences. This is, however, not 

surprising, thinking of their age (3-4 years). This observation might also be explained 

by studying the way the kindergarten teacher posed the questions. Many of the 

questions were formulated in ways that initiated short responses. On the other hand, 

when the kindergarten teacher used questions that from our perspective initiated more 

elaborated responses, the children still gave short responses.  

Since the questions were so closely linked to the practical activity, the children were 

able to respond to several questions in a non-verbal way. They answered lot of 

questions by pointing, shaking their heads or by moving the artefacts. For instance, in 

working with balancing the scales, the kindergarten teacher asked about how they 

could lift one of the scales so that they restore balance. In stead of verbally answer 

the question, Kari put a brick in the highest scale. Occasionally the children also 

combined verbal and non-verbal responses. This observation, we argue, signifies the 

importance of including physical artefacts as tools in orchestrating mathematical 

activities.  

The complexity in the interaction is illustrated in the kindergarten teacher’s use of 

different categories of questions, and we observed a sequence in her use of these 

categories. Such a sequence typically was initiated by using a suggesting action 

question (occasionally problem solving invitation question). Then she continued with 

an open question, followed by either an asking for argument question or a re-

phrasing question. The sequence ended with one or several concluding questions. 

This finding that the kindergarten teacher has an aim for the activity which was 

supposedly reached by her sequencing of questions coincides with Roth (1996). He 

also found that the teacher controlled the communicative practice among her 

students, not through a classical IRE
2
 sequence, but by means of a sequence of 

queries. 

                                                 
2
 IRE is an abbreviation of a communicative pattern found in traditional classrooms: The teacher takes Initiative, the 

students give Response, and the teacher Evaluates the response 
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We argue that the kindergarten teacher played a significant role in the children’s 

learning process. Kirby (1996) claims that lack of complex questions prevented the 

children to make sense of mathematical ideas. However, we believe that the 

kindergarten teacher, in her orchestration tied the mathematical ideas together 

through her frequent use of questions, in a way that made it possible for the children 

to participate. Thus, the children were involved in a joint activity where they 

achieved shared foci of attention, and opportunities for achieving shared meanings 

were given (Rogoff, 1990; Wertsch, 1998). It seemed as if that the kindergarten 

teacher expected short answers and never went empty for new questions to ask in 

order to bring the learning process forward.  

An aim of the TBM project is for the kindergarten teachers’ to develop inquiry as a 

way of being in teaching. Indication of this development is in Jaworski (2007) 

described in the following way: “So, developing inquiry as a way of being involves 

becoming, or taking the role of, an inquirer; becoming a person who questions, 

explores, investigates and researches within everyday, normal practice” (p. 127). We 

argue that the kindergarten teacher’s orchestration of the activity, with her use of 

questions to promote investigation and reasoning, is exemplifying inquiry as a way of 

being. Our observations suggest that questions represent an effective tool in order to 

engage a group of children in learning activities. In accordance with Kirby’s (1996) 

findings, the children did not pose questions. Therefore it might be objected whether 

the children made sense of the mathematical issues in this case. However, we believe 

that the joint participation and collaboration created a mathematically goal-directed 

activity, from which the children made shared meanings for concepts, terminology, 

and actions. From an analytical point of view, not every question may be 

characterised as genuine questions. For instance, some of the suggesting action 

questions and concluding questions are hidden suggestions or instructions. This is in 

accordance with what Myhill and Dunkin (2005) found, that teachers often “had a set 

answer in mind” (p. 424) even when they asked open questions. Nevertheless, it is 

likely to assume that the children perceived these questions as real since they both 

verbally and non-verbally actively participated in the activity. Our study thus shows 

that through the use of questions, the kindergarten teacher created a milieu of inquiry 

(Wells, 1999), and they were a substantial part of her orchestration.  
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DIDACTICAL ANALYSIS OF A DICE GAME 

Jean-Luc Dorier and Céline Maréchal 

Equipe DiMaGe Université de Genève 

Abstract: in this paper, we analyse an activity for 1st grade students, taken from the 
official pedagogical material for mathematics in French-speaking Switzerland. This 
activity is part of the curriculum about addition and comes in the form of a dice 
game. After some succinct considerations about games in mathematics education, we 
give an a priori analysis (according Brousseau’s theory of didactic situations) of the 
activity. We then give account of an experimentation we made in Geneva, first with 
the teacher in her class and then with two duos of students outside the class. Finally, 
we suggest some modification in the didactical design in order to make this activity 
more pertinent. 

INTRODUCTION 

In the whole of French-speaking Switzerland, for mathematics teaching , there is a 

single common official set of pedagogical material, including text-books and files for 

students and a teacher’s book with curriculum and didactical commentaries. Like in 

many other countries, especially for lower grades, many of the mathematical 

activities are presented in the form of games. 

The interest for games in mathematics teaching is nearly as old as mathematics. 

Huizinga (1989) refers to Piaget (1945), who put forward the importance of games 

with rules in opposition to fiction games for education. Caillois (1951) claims that a 

game is rather a challenge than just an exercise: “A Child does not train for a specific 

task. He acquires through games a wider capacity for overcoming difficulties.” (p. 

319). The virtues of games are widely recognised in mathematics education 

especially for lower grades (Milliat & Neyret 1990). Nevertheless, some critical 

voices can be heard about certain excesses (Valentin, 2001). Indeed, games may be a 

very good means for learners to acquire mathematical knowledge, yet, it is not always 

easy to match the game’s stake with a precise mathematical goal. In this sense, we 

recall here some basic principles of Brousseau’s theory of didactic situations: 

Doing mathematics is only possible by solving problems, yet, it should be reminded that 

solving a problem is only part of the work at stake; finding good questions is as important 

as finding their solution. […] In order to make possible such an activity, the teacher 

should therefore imagine and offer to students, situations that they can apprehend, in 

which knowledge appears as the optimal reachable solution to the given problem. 

(Brousseau 1986, 35) or (Brousseau 1998, 49). 

Therefore, when setting up a mathematical activity in the form of a game, one needs 

to analyse the adequacy of the game’s finality with the potential for acquisition of the 

specific intended mathematical knowledge as an optimal solution to win the game.  
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In a survey about the use of the official pedagogical material by teacher in French-

speaking Switzerland, Tièche-Christinat (2001) noticed that games are usually chosen 

in reference to the pleasure they are supposed to give to students, while the 

mathematical content is secondary. It is also well-known that some students do not 

like games at school. In this research work, we analyze and experiment an activity in 

the form of a game proposed in the official pedagogical material for the first year of 

primary school in Geneva. Some work in this sense, but about other activities, had 

already been done during a one-day seminar organised by the Institute for 

Pedagogical Research (IRDP) in Neuchâtel (Jaquet & Tièche-Christinat, 2002). 

A PRIORI ANALYSIS OF THE ACTIVITY “TURN THE DICE” 

This activity is part of the official material for 1P (first year of primary school, age 6) 

in French-speaking Switzerland. It is located in module 3. Problems to get to know 
sums, in a sub-section entitled: Add and subtract in situation and refers to the 

objective: Getting to 20 by adding numbers. Here is a translation of the text of the 

activity as it is found in the teacher’s book: 

Turn the dice 

Description      2 students / One dice  

- Rules : One student rolls the dice and says loudly how many points he got. The 

other turns the dice on one of the lateral sides and adds the points to the preceding 

total. The game follows on this way: each player, in turn, turns the dice on one of the 

lateral sides and adds the numbers. The first who gets to 20 wins. 

Possible extension: starting with 20 to reach 0. The first who overcome 20 wins…  

The first goal of an a priori analysis is to look at an activity from a more distant 

viewpoint in order to localise some blind spots and elucidate some hidden goals. In 

this sense, Brousseau’s theory of didactic situations (see (Bessot, 2003) for a basic 

yet enlightening introduction) provides some tools in order to interpret an activity as 

a special case of a more general set of didactic situations. Describing such a set 

means revealing didactical variables and their different possible values, such that the 

activity correspond to a particular choice of value for each variable. A didactical 

variable correspond to a potential (yet often implicit) choice for the teacher that 

modifies the accessibility of different strategies for solving the problem. Thus, a 

different choice of value for any didactical variable changes the nature of the learning 

and correlatively the meaning of the knowledge at stake. Such a methodology 

consists in revealing implicit choices made against other possible ones. Therefore, it 

reveals what is usually hidden because implicit. Listing possible students’ answers, 

which is what an a priori analyses is too often reduced to, is only one part of the 

analysis and is only fully valuable when one knows how to interpret different 

strategies in the whole set of possibilities. In this sense, the activity “Turn the dice” 

can be seen as a specific element of the set of situations in form of a game with two 

players: 
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In turn, each player chooses or picks up at random (this may vary at each turn) a 
number in a set Ei (ith turn): The number is then added to the preceding total. The 
winner is the player who reaches first a certain predetermined value N. 
We define six didactical variables: 

- two about the general rule of the game: 
Vov = “yes” or “no”, depending whether the final value N can be overcome or not. 

VN = N, the value to be reached or overcome in order to win. 

- two variables that can change at each turn: 
Vrand = “yes” or “no” according to the fact that the number is respectively picked up 

at random or chosen by the player.  

VEi = Ei, the set of possible numbers to be chosen or picked up at random at the i
th

 

turn.  

- two variables that deals with the material used for the games: 
Vrep: determines, in relation to the material used, the type of representation for the 

numbers (side of a dice either with dots or numerals, cards with numbers written with 

letters, numerals or constellations, etc., tokens, spoken numbers…) 

Vwrit = “yes” or “no”, depending whether the players can write their sums or not.  

Of course, this list of variable is only partial and partly subjective. This is why we 

have to justify our choices by showing how the subsequent a priori analysis is 

relevant for our observation. We distinguish two levels: the knowledge at stake 

locally at each turn of the game, and the global strategy of the game. 

Making sums (local knowledge) 

Regarding competencies for addition in 1
st
 grade, the value of VN cannot really 

exceed 20, and the numbers in the sets Ei are also limited to 5 or 6. Moreover, in 1
st
 

grade, many students still counts on their fingers and make additions by over-

counting one-by-one from the first number of the sum (to do 4+3, the student count 

loudly or in his head raising fingers three times: “five, six, seven”). The memorised 

repertory is still very limited, which means that very few sums are known by heart. 

Vwrit is quite important in this game, not only because students can actually make 

the addition using written devices, but also because writing the sums at each turn 

reduces the effort of memorisation. In the activity “Turn the dice”, the value of this 

variable is left to the teacher’s choice. In our experimentation, the teacher chose not 

to let students the possibility to write. Furthermore, the various possible values of 

Vmat modify the possible techniques for making sums. Dice (with spots), cards with 

constellations, tokens… make possible, even promote, techniques using one-by-one 

over-counting. On the opposite, numbers in numerals, letters or just spoken promote 

other techniques like recalling a repertoire or “calcul réfléchi” or necessitates to use 

fingers or written techniques if Vwrit=yes. In the activity “turn the dice”, the type of 

representation of the numbers on the side of the dice is not specified. In our 

experimentation, the teacher chose a dice with spots. However, one of the objective 
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in 1
st
 grade is to progressively bring students to abandon techniques using one-by-one 

over-counting. They should start memorising the repertoire and use “calcul réfléchi”. 

This first analysis shows that the choices for the activity “Turn the dice” are coherent 

with the level of 1
st
 grade students. The game is possible. Yet, regarding the learning 

of addition, there are some contradictions with the goals at this level of education. 

Moreover, the game does not provide a milieu with possible feedback for the learning 

of sums. Indeed, nothing in the game offers a possible feedback to a mistake in a 

sum, except the control of the other player, or the teacher if s/he is watching at the 

right time. In other terms, if one student gives a wrong result for a sum and if the 

other player does not react and the teacher is not watching, the game can go on 

without the mistake being corrected. Therefore, “making sums” is a knowledge 

necessary for the game to be played, but is not subject to a control and certainly not 

the main tool for an optimal winning strategy. Therefore, if we refer to Brousseau’s 

quotation given above, we can see that there is an inadequacy here between the 

game’s stake and the didactical objective: Problems to get to know sums. In order to 

play correctly, students have to know how to make sums correctly. If they do not, 

they may play anyway, but nothing in the milieu organised through the game gives 

any feedback. Nothing is organised didactically for them to learn sums, they have to 

know, but they can make errors without being corrected, except if the other player 

knows better or the teacher is here to correct. Furthermore, we have seen that the use 

of a dice with spots is likely to promote the basic technique “over-counting one-by-

one”, which is supposed to be progressively banished in 1
st
 grade. Such an activity is 

therefore not especially good in order to train 1
st
 grade students to do sums. At most, 

if they have a reliable technique, this game may help them memorizing sums, but the 

excitation of the game is likely to overcome this goal! 

Game’s stake (global strategy) 

At this level, the values given to VEi , Vrand and Vov are crucial.  

For the choice Vrand = “no” and VEi = {1,2} at each turn and Vov = “no”, the game 

is called the “race to 20” and has been analysed by Brousseau (1998, 25-44). Such a 

game has a winning strategy, corresponding to the series of winning numbers 2, 5, 8, 

11, 14, 17, 20, that can be discovered by subtracting 3 to 20 repetitively down to 2, or 

by dividing 20 by 3, the rest being 2. Brousseau showed how such a situation can be 

used to make 4
th
 grade students discover the Euclidean division and debate about a 

general strategy for being sure to win. In the case of the activity “turn the dice”, there 

is no such strategy. Even if a strategy for winning is possible, it is far from being 

reachable by 1
st
 grade or even much older students. 

In the opposite, if Vrand = “yes” at each turn, this is just a game of chance, which, 

therefore, doesn’t call for any strategy, at least in relation to any mathematical 

content. Moreover, dices are often related to games of chance, it is therefore likely 

that students act just as if “turn the dice” is only a question of chance, especially 

considering the fact that on the first go, the player rolls the dice. 
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Is there a possible strategy to win the game “turn the dice”? If yes what can 1
st
 grade 

student catch from it? The main difficulty of this game is that Ei changes at each turn. 

Moreover Ei depends on the choice made at the (i-1)
th
 turn, therefore by the other 

player. Two opposite sides of a dice always add to 7. This gives the rule for possible 

choices with regard to the last chosen number. Each turn can be represented by the 

number “i” (order of the turns), the name of the player who just played (P1 or P2) and 

S(n), S being the last sum calculated and n the last side chosen. 

For instance [3 , P2, 12(5) ] means that it is the 3
rd

 turn, P2 has turned 5 which adds 

to a total of 12. At the 4
th

 turn, P1 must therefore choose in E4 = {1,3,4,6}.  

- If P1 chooses 1, the status is 13(1) and E5 = {2,3,4,5}. if P2 chooses to turn 4, 

the status is 17(4). Since 3 is not possible, and numbers over 3 are too big, P1 must 

choose 1 or 2 and P2 wins at the next turn. Thus, 1 is not a good choice for P1. 

- If P1 chooses 3, the status is 15(3), and P2 can turn 5 and wins. 

- If P1 chooses 4, the status is 16(4), P2 cannot win but if he turns 2, the status is 

18(2), so P1 has no other choice than turning 1 and the game is blocked. 

- If P1 chooses 6, the status is 18(6), P2 can turn 2 and wins. 

This example shows that the strategy is quite complex. A player must anticipate all 

the possibilities and short time anticipation may be fatal. Moreover if Vov = “no” like 

in the original game, some games may lead to a dead-end. This is far too complicated 

for 1
st
 grade students. Indeed, at this level, students are likely to be unable to just 

anticipate the result of the next turn. Indeed, this requires more than just addition, but 

also knowledge about complements to 20, which is a first step toward subtraction: 

“how much is it from 14 to 20?”, etc. 

In conclusion, the game’s stake does not have to do just with adding numbers (no 

more than 6) to reach 20, but also being able to anticipate the next (one possibly two 

or more) turn(s). One mathematical knowledge needed is then to be able to anticipate 

the effect of adding a number and knowing the complements to 20, from at least 14. 

It is therefore impossible to hope that 1
st
 grade students develop a strategy that leads 

to victory in each case. At most, they can anticipate one or two turns when the sum 

gets over 12, or a bit more. Therefore some important  didactical questions are: “what 

knowledge can be aimed at through such an activity?”. “Are 1
st
 grade students 

sufficiently knowledgeable to do their sums without mistakes?”. “Can they do more 

than play at random and develop some strategy at least towards the end of the game, 

involving some abilities for anticipation on sums, and complements to 20?”. 

In order to answer these questions, we organised an experimentation of this activity 

in a 1
st
 grade class near Geneva. 

EXPERIMENTATION 

The class counts 22 students of average level, in a village near Geneva. The teacher 

has only 3 years of practice and teaches 1
st
 grade for the first time, she also uses this 
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activity for the first time and we did not exchange with her about it before. The 

experiment took place in March. The teacher decided to explain the game to the 

whole class for about 10 minutes, before splitting the class in two. One half plays (5/6 

duos), while the rest of the class has to do some work individually in autonomy. Each 

half-class played for about 15 minutes. In the end, a conclusive session with the 

whole class is organised. Our observation is based on a video recording of the whole 

class (beginning and end) and for each half-class, on a video recording of one duo, 

plus an audio recording of another duo. 

Devolution 

The teacher reads the rules of the game and asks questions. Some students comment 

with their own words. Then, the teacher chooses two students to play a game, which 

is summarised in the following table: 

Player Marie Renan Marie Renan Marie Renan Marie Renan 

Number chosen 3 6 2 3 2 1 2 1 

Total  3 9 11 14 16 17 19 20 

Neither Marie, nor Renan take time to think about what they choose (except Renan at 

the last turn!). This validates our hypothesis that, for them, it is like a game of 

chance. At each choice of a new number, the teacher asks for the total and several 

students raise their hands, and there is a quick general agreement on the result. Renan 

starts with a big number, in order to get near 20 quickly. Marie is more careful and on 

the contrary chooses the smallest number she can, in order to prevent Renan from 

getting too near to 20! At the 5
th

 turn, Renan chooses 3, getting to 14(3). That can 

lead Marie to win id she chooses 6! Yet, she does not and nobody notices. She 

chooses 2, getting to 16(2), Renan can win by choosing 4, but he chooses 1 (nobody 

notices) getting to 17(1). Again Marie can win, but she chooses 2 (nobody notices 

either), getting to 19(2). Renan cannot do anything else than win!  

This shows clearly that the game’s stake is not accessible to the students 

straightaway. They concentrate on their sums and do not see the goal. Getting to 20 is 

the criterion to stop but not a goal to reach first. The teacher does not try either any 

devolution of the stake. One student spontaneously says. “ Marie always makes 2 and 

Renan 1”. The teacher interprets: “Oh why do they always choose small numbers?” 

and Marie instantly replies: “This way it is easier to count!”. Clearly the students are 

concentrated on their sums and reduce the difficulty without care for the game’s 

stake. Therefore, in this collective phase of devolution (5 min.), all is about sums and 

nothing about the game’s stake is debated. 

The games 

In this paper, we cannot analyse in detail all the games we observed, we only give 

some general comments (see Dorier & Maréchal (in press) for more details). Some 

students did not understand that they had to choose one side after the first go, instead 

they rolled the dice at each turn. This validates again our hypothesis that they play 
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like a game of chance. Something we did not anticipate lead to some unnecessary 

noise and excitation. Indeed, to turn the dice, many students pressed the edge of the 

top-side. As a result, the dice often rolled several times or even off the table. The 

students play fast, which is a sign that they do not choose really their numbers. 

Globally, they tend to choose big number at the beginning and small ones near the 

end. This is a sign that the game’s stake is taken into account at a basic level. 

However, several times, students made a choice that allowed the next player to win, 

while it could have been avoided. Some duos did not respect the fact that 20 should 

not be overcome. Systematically, students looked around the dice to check the 

possible choices. Most of the time, they over-counted one-by-one, pointing each spot 

on the side. Some counted on their fingers and very few recalled memorised results. 

This validates our analysis and shows that the choice of a dice with spots favours an 

elementary technique for making sums. Some mistakes on the results of sums (even 

with the elementary technique) occurred and were usually not corrected by the other 

player. Some duos have great difficulties in memorising the totals or even making the 

additions. Nevertheless, some duos show that they tried to anticipate the results near 

the end of the game. However, the complements to 20 did not seem to be known by 

heart and students usually counted on their fingers or directly on the sides of the dice. 

No duo anticipated two turns. No example of a game coming to a dead end had been 

observed. However, the students were happy, they had play! 

Conclusive phase – Whole class 

Spontaneously, the students tell stories about their games “I won twice and he won 

three times!” , “we did not manage to finish..”… This has nothing to do with 

strategies or even sums, it is all centred on social aspects of the game. In order to re-

direct the debate, the teacher asks: “Do you think that, in this game, there is a 

technique to win? Something that would help to win… more easily?”. One student 

suggests that it is good to choose big numbers. A short debate starts on the effects on 

the game of choosing big or small numbers. After some discussion, Pierre suggests 

that choosing alternatively big and small numbers allows to win. In response, the 

teacher asks Pierre to play against her. At the fourth turn, the status is 14(6) and it is 

the teacher’s turn. She realises suddenly the difficulty and ask the students what she 

should play. 2 and 5 are given as answers, she chooses 5, getting to 19(5), which 

allows Pierre to win. The teacher’s conclusion is that Pierre’s technique only works if 

the other player follows his rule! One of the observer then ask what would have 

happened if the teacher had chosen something else than 5, like 3. The teacher agrees 

and turns 3, the status is then 17(3). She asks Pierre what he would do. He stays silent 

for quite a long time and finally says he would choose 3. Obviously at this stage, the 

teacher is not quite sure of herself, so she closes the discussion by saying: “Is there 

only one technique?”. There is quite a long silence before a student starts talking 

again. But even then, nothing really interesting happens. Finally the teacher says: “Is 

there a time in the game, … maybe one number… from which you know you can 

win… maybe…for instance if you get to 10, can you be sure to win?”. We can hear a 
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few “no”… the teacher goes on: “Is there a number, that you can say: ‘if my friend 

put this number, I am able to win if I turn the right side?’.” No answer. Then Marie 

claims that she has a technique: “In fact I… at first, I choose nothing special… and 

then, toward the end when it is a bit more difficult, eh.. I look around the dice and I 

count the sums, and…”. The teacher goes on: “You look around the sides and you 

look which comes to 20. Did you all think about looking at the possible sides before 

you turned the dice?”. Around 8 students raise their finger. “Did that help you to 

win?”. One student answers: “There was not the side I wanted, because it was 

underneath.” At this moment the bell rings and the class is finished. 

The conclusive phase shows that the teacher struggles with her goals and the 

students’ reactions. She had probably under-estimated the difficulty of the game. Of 

course, this is a lack of questioning from her part, but this is also due to the difficulty 

of the situation itself and the lack of didactical analysis in the official pedagogical 

material, in order to help teachers lead this activity. Our a priori analysis shows that 

the milieu of the situation is not suitable to give sufficient feedback to the students on 

the validity of their sums. It also shows that, without any other didactical device, 

students are likely to play by chance and develop very few strategies. At most, they 

try big numbers at the beginning of the game and small ones at the end. Our 

observation confirms these conclusions. It also confirms that students use only one-

by-one over-counting strategies and do not use more elaborate techniques for their 

sums. Nevertheless, some students do try to anticipate the results of their choices 

toward the end of the game and try to guess the complement to 20, mostly by 

counting on the visible sides of the dice. Yet, without stronger motivation, they fail to 

really develop a strategy, and do not anticipate more than one turn. Our observation 

also shows that students do not spontaneously reflect on the reason that made them 

loose, by analysing the last turns of the game they just played. They do not try other 

choices, to see what could have changed. In our experimentation, the teacher did not 

try to make students do so. Moreover, when one of the observers tries to initiate such 

an analysis in the collective conclusive part, the teacher finally gives up. 

New experimentation with duos out of the class 

Even if this experimentation allowed us to validate our a priori analysis, we wanted to 

see what kind of behaviour students may have, if they were asked to reflect on the 

end of a game they just played, and anticipate the effects of other choices. Therefore, 

a few weeks later, we asked the teacher if we could work individually with a couple 

of duos. She accepted and we organised a new experimentation during an hour with 

two duos of students, in a separate room, while the teacher stayed with the rest of the 

class. We do not have space here to analyse what happened then, so we will only give 

a short account (see (Dorier & Maréchal, in press) for more details). 

Globally, this experimentation shows that when asked to reflect on the last turns of a 

game they have just played, the students we observed are able to anticipate the two or 

even three next turns. They understand that they have to find the complement to 20 

and anticipate the possible choice for the next player. Once this type of reflection is 
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initiated, they play more carefully the following games, and develop some 

anticipating strategies, that make them reflect on the complements to 20 and possible 

issues. Moreover, this experimentation showed that students knew their sums by 

heart, and were able to give up the “one-by-one over-counting strategy”, if they were 

asked to, or when they had to anticipate and therefore were not able to use the dice to 

count. This confirms the fact that in its basic version the activity “turn the dice” 

promote a technique that students can overcome using a more expert one. It also 

shows that making them anticipate the next turns, induces them to switch technique. 

CONCLUSION 

Our observations have been limited, thus, we have to be careful about the conclusions 

we can draw. Globally, the experimentation in class with the teacher confirms the 

conclusion of our a priori analysis, that such an activity is likely to be reduced to a 

game of chance, which means that students do not learn much. The second 

experimentation shows, on the contrary, that on certain specific conditions, students 

can be led to reflect on the way they play and develop some more expert strategies, 

and in particular, acquire some knowledge about complements to 20. In this sense, 

“turn the dice” may be seen as a consistent mathematical activity accessible to 1
st
 

grade students. However, the conditions of our second experimentations are too 

particular to be reproduced as such in normal conditions. Therefore, we need to find a 

didactical device in order to make the realisation of this activity possible in “normal 

conditions” and proper to induce a consistent learning. Using a dice with numbers 

written in numerals rather than spots, could be a solution in order to block the one-

by-one over-counting strategy, but then it is impossible to use it to check sums in 

case students fail. Therefore, this solution is only possible, if students do know their 

sums by heart. Therefore, this activity should not be given in the beginning of 1
st
 

grade, but rather at a time when most students have memorised sums with little 

numbers.  

Letting the students play a few games at the beginning is quite important in terms of 

devolution, even if they just play by chance. During this phase of appropriation, it is 

important to check that all the rules are understood (the dice is rolled only at the 

beginning, it is forbidden to exceed 20, it is important to control the turning of the 

dice…). It may also be possible to tell students that they can (should?) use other 

techniques than one-by-one over-counting on the side of the dice (or this can be 

debated in the next phase only). 

After this first phase (as short as possible) a first time in common can be organised by 

the teacher. After asking the students what they did, two can be chosen to play a 

game in front of the class. Then, the teacher can organise a collective reflection on 

the last turns of the game and analyse the effects of alternative choices. This should 

produce a change in attitude for most students (like what we observed in our last 

experimentation). This can be repeated once or twice, before students are asked to 

play again in duos, 8 games each. It is important to limit the number of games and to 
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give sufficient time, to prevent students from going too fast trying to play as many 

games as possible, like we observed in the beginning of our experimentation. Each 

time a player wins he gets one point. The totals are to be compared at the end. This 

gives a bit of competition in the games, in order to favour the search for a strategy 

and not just chance. A final collective debate should lead to the institutionnalisation 

on the strategies as well as complements to 20. 

Of course, a new experimentation is necessary to see if this new proposition inspired 

by our first analysis would lead to a more satisfactory lesson.  
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 “TELL THEM THAT WE LIKE TO DECIDE FOR OURSELVES” – 
CHILDREN’S AGENCY IN MATHEMATICS EDUCATION 

Troels Lange 
Aalborg University, Denmark 

Interviews with primary school children about their lived world of school 
mathematics, unanimously and strikingly revealed that the practical/creative school 
subjects were their favourites. These subjects granted them agency and modes of 
bodily expressions that were not available in mathematics and the other academic 
school subjects. The interviews are analysed from a perspective of school 
mathematics education as a social practice that draws attention to and valorises the 
children's perspective. The question is raised whether the children's preferences 
reflect a genuine perception of postmodern life conditions that should be taken 
seriously. 
Keywords: children’s agency, embodied agency, children’s perspectives  

INTRODUCTION 
If learning is assumed to involve intentional action (Skovsmose, 2005), then students’ 
agency in mathematics teaching and learning is an important issue. Yet, studies on 
agency in mathematics classrooms (e.g. Boaler & Greeno, 2000; Klein, 2001b) have 
rarely considered the perceptions of primary school children. In high school classes 
and teacher education situations, agency has been discussed in terms of students’ 
opportunities to make choices and to have authorship within the discourse around 
mathematics. Interviews with 10-year-old children in a Year 4 class in Denmark also 
revealed restrictions on agency in mathematical activity in these respects. As well, the 
children perceived their bodily actions as being restricted. When asked about their 
preferred school subjects, almost unanimously, the children pointed to design 
(needlework), visual art, physical education, and swimming as the subjects, they liked 
the best. These subjects provided opportunities for creative, physical, and/or playful 
forms of agency. This was in stark contrast to the subjects they considered to be the 
most important subjects, i.e. Danish, mathematics and English where they 
experienced very little, if any, agency and much tighter bodily control. They felt that 
they had to do what the teachers requested and could hardly imagine the situation 
being any different, i.e. what agency could be in these subjects. 
The children's preferences could be a reflection of the long-term effort of learning 
mathematics and the challenges involved, as opposed to the immediacy of the 
practical/creative subjects, or they could be a voicing of popular notions of so-called 
academic schools subjects as tedious. Regardless of their validity, these explanations 
to children’s views seem unlikely to be exhaustive, and troubling questions remain. 
Could it be that the children's preference for practical/creative school subjects – with 
their space for creative playful whole-body agency – reflect a valid perception of 
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what is important for them to develop in order to grow up as competent citizens in a 
postmodern world [1]? What does the perceived absence of agency do to their 
perception and learning of mathematics? Are children in difficulty in learning 
mathematics especially affected by this apparent lack of agency? 

THE NOTION OF AGENCY 
The Oxford English Dictionary defines agency as “the faculty of an agent or of 
acting; active working or operation; action, acting”. Agent comes from Latin agere, to 
act, or to do. An agent acts or exerts power, as distinguished from the patient and the 
instrument; the agent acts upon the patient/instrument. Hence, in sociology and social 
sciences, human agency denotes the faculty to act deliberately according to one’s 
own will and thus to make free choices. A central issue in these sciences is the 
relation between structure and agency; i.e. how social and cultural factors such as 
social class, religion, gender, ethnicity, customs, etc. shape the opportunities that 
individuals have, and how does human agency change these factors.  
Schooling, and mathematics education as part hereof, constitute a major social and 
societal arena in the organisation and rhythm of children's daily life as well as their 
future lives as independent adult. In this arena of mathematics teaching and learning, 
children's agency could be seen to involve three aspects. The first is based on an 
assumption of children as social actors (Højlund, 2002; James, Jenks, & Prout, 1998; 
Kampmann, 2000). Consequently, they make sense of their experiences in school 
mathematics irrespective of the agency granted to them at school. They ascribe 
meaning (Skovsmose, 2005) from a ‘global’, holistic life world perspective (Kvale & 
Brinkmann, 2009) that integrates their experiences in mathematics learning with their 
future life perspectives (Lange, 2008a). The second aspect concerns the organisation 
of their mathematical activity, which may leave them more or less agency in the sense 
of opportunities or expectations to (co-)create mathematical concepts, discuss 
mathematical ideas, make choices, think for themselves, etc. as part of their learning 
process (Boaler & Greeno, 2000). The third aspect relates to embodied agency 
(Benner, 2000; Shilling, 1999) in that school norms impose physical restraints on 
students’ bodily freedom such as requiring them to sit on their chair at their desk, 
keep quiet, have their mobile phones turned off, etc. As is discussed later, children 
are very aware of these restraints.  
Interviewing high school students in advanced calculus classes in USA, Boaler and 
Greeno (2000) found that ‘traditional’ mathematics education, dominated by 
instruction in and training of procedures to find the one correct answer to diverse 
mathematical problems, afforded virtually no agency to students, but required them to 
“surrender agency and thought in order to follow predetermined routines” (p 171). 
Boaler and Greeno discussed students’ agency with reference to the notion of figured 
worlds, a key term in Holland, Lachicotte, Skinner and Cain’s (1998) discussion of 
social systems. Within this framework, agency is conceived in terms of authorship 
and as a prime aspect of identity. Seeing mathematics classrooms as figured worlds 
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and agency as authorship, draws attention to the children’s/students’ and teachers’ 
interpretations of the rituals of their shared practice and their positions and roles, and 
to the shaping of their sense of self, their identities, in the social practices of 
mathematics education. Boaler and Greeno (2000) found that:  

[i]n the schools in which the students worked through calculus books alone, the students 
appear to view the domain of mathematics as a collection of conceptually opaque 
procedures. The majority of students interviewed from the traditional classes reported 
that the goal of their learning activity was for them to memorize the different procedures 
they met. Such a figured world of didactic teaching and learning rests on an epistemology 
of received knowing. In this kind of figured world, mathematical knowledge is 
transmitted to students, who learn by attending carefully to teachers’ and textbook 
demonstrations (Boaler & Greeno, 2000, p. 181). 

In order to be successful, students in ‘didactic’ classes needed to “assume the role of 
a received knower and develop identities that were compatible with a procedure-
driven figured world” and be willing “to build identities that give human agency a 
minimal role” (p. 183). The students saw success as requiring “a form of received 
knowing, in which obedience, compliance, perseverance, and frustration played a 
central role” (p. 184). Some students, girls in particular, rejected mathematics because  

they were not prepared to give up the agency that they enjoyed in other aspects of their 
lives, or the opportunities to be creative, use language, exercise thought, or make 
decisions. … [T]hey wanted to pursue subjects that offered opportunities for expression, 
interpretation, and agency (p. 187). 

Referring to Pickering’s (1995) discussion of agency in mathematics and science 
Boaler and Greeno concluded that the students only had opportunities to learn what 
Pickering termed “the agency of the discipline” which is the agency aspects of 
mathematics, in which human agency play the least role,  thereby seriously distorting 
their perception of mathematics as a scientific discipline.  
While Boaler and Greeno criticised procedural teaching for its reduction in students’ 
agency, Klein (2001a; 2001b) criticised pedagogical practices that base mathematics 
education on conjecture, reasoning, investigation and inquiry. Writing from a 
poststructuralist position, she claimed that current practices are framed by humanist 
notions of rational, autonomous learners. These notions take students’ agency for 
granted, overlook always present power relations, disregard that identity and agency 
are discursively constituted and not an individual disposition, and hence do not 
recognise that students’ agency needs to be considered in every learning encounter 
(Klein, 2001a). Like Boaler and Greeno (2000),  Klein discussed agency in terms of 
authorship, but with reference to Bronwyn Davies: 

[S]tudents can experience a sense of agency in a discourse where they have a knowledge 
of themselves as respected and competent in (a) speaking and writing the commonly 
accepted truths of the discourse, in (b) enacting established ways-of-being, and in (c) 
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going beyond these to forge something new (Davies, 1991). Agency has to do with 
authority, not in the sense of control over but in the sense of authorship; authorship of 
voice and action in a community conversation. All pedagogic discourses, regardless of 
whether we see them as transmissive, child-centred, constructivist or social constructivist, 
support agentic behaviour to the extent that they impart a robust knowledge and skills 
base and authorise student initiated constructions and ways of making sense of 
experience (Klein, 2001b, p. 340).  

Boaler and Greeno (2000) looked at high achieving high school students perceptions 
of agency in USA, and Klein analysed agency in an Australian teacher education 
context. I am exploring young children’s perspectives (Lange, 2008b) on agency in a 
Danish folkeskole (public primary and lower secondary school). These children also 
seem to experience restrictions on expressing their agency in their mathematics 
lessons. However, apart from illustrating their perceptions of lack of choice and 
ability to author discourse, I discuss how bodily aspects of agency may be 
particularly relevant for smaller children. My contention is that the children seem to 
be suspended between two conflicting experiences. On the one hand, they experience 
joy and engagement arising from spaces of agency in the practical/creative school 
subjects that they do not believe is important. On the other hand, they think of 
mathematics as a school subject that are important for their future, but the agency 
they value so much is virtually absent in their perception of their learning experiences 
in this subject. 

METHODOLOGY 
The empirical material for this paper comes from interviews with children about 10 
years old in a Danish Year 4 class. I observed their mathematics classes for almost a 
year and interviewed students in groups, pairs and individually. The aim of the 
research was to explore children’s knowledge about their mathematics education, 
especially the meaning they ascribed to and the sense they made of their experiences 
with being in difficulty in learning mathematics (Lange, 2007). As I took the 
children's meaning ascriptions to be in a narrative form, my conversations with them 
invited them to tell about their experiences. Hence, the interviews I conducted were 
semi-structured life world interviews, i.e. interviews  that “seek to obtain descriptions 
of the interviewees’ lived world with respect to interpretation of the meaning of the 
described phenomena” (Kvale & Brinkmann, 2009, p. 27). 
There were twenty children in the class. All but one participated in one of three group 
interviews early in the school year. Half of the children were interviewed in pairs or 
individually a little later, and again near the end of the school year, with some 
overlapping of the two groups. The interviews took place at the school, lasted 30-45 
minutes, and were audio recorded; the group interviews were also video recorded. 
Taking children's agency to be a theoretical construct, only “visible” in the interviews 
from theoretical perspectives, I wanted my interpretative activity to be as transparent 
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as possible. This was especially necessary because my empirical material was 
interviews with young children whose life world and linguistic universe are rather 
different from mine. I contend that children's meaning ascriptions, the “web of logic”, 
the discourse in which they embed their experiences with school mathematics, are to 
be found in stories about their lived school mathematics world. The children’s 
narratives that I was looking for were rarely found as rounded well-formed stories 
ready to be copy-pasted into research papers. More often they unfolded as dialogues 
involving my active listening and questions (Kvale & Brinkmann, 2009). 
Consequently, a longer transcript is given rendering an example of the children’s 
voices. The following interpretation shows the analytical process. For reason of 
space, extracts from other interviews are summarised within the interviewees’ 
horizon of understanding and such condensates are used as a points of departure for 
the interpretation (Kvale, 1984; Lange, 2008a).  

WE LIKE TO DECIDE OURSELVES  
In an interview in October 2006, Maria and Isabella (all names apart from mine are 
pseudonyms) expressed that they liked the school subjects of design, swimming, 
physical education and visual art. Recently Maria had also started to like maths. 
When asked to comment on my observation that all the children seemed to like these 
subject the dialogue went as follows [2]. 

1 Maria … because in design we do something creative and such. I like that 
and in physical education it is not only think, think, think, think, think, 
think, think, think all the time … 

2 Isabella It is also more that you, for instance in design we are allowed to 
decide ourselves how it [a teddy bear] should look like, how it should 
be, and also in physical education and such we sort of run around and 
play. (She explains the different ball games they play assisted by 
Maria)… 

3 Troels Ok. And some of the good things [about visual art and design] is that 
you are allowed to decide more yourself? 

4 Isabella Yes I think so because 
5 Troels  Yes, is it so that in mathematics and Danish and English you are not 

allowed to decide very much? 
6 Maria I don’t think so 
7 Isabella No, yes but (Maria: you are not allowed so much) we are not allowed 

like decide (Maria: ourselves how) we must just like do the problems 
we get and 

8 Maria And then we must do them and we may decide ourselves the way we 
do it, just that it is right. And that, then I like better some (Isabella: yes 
some) subjects where you just “Ah, what sh[ould]? How? Oh, I think I 
will do like this.” 

9 Isabella Yes for instance you decide (Maria: how you yourself also) if you are 
going to draw a drawing if it should be a face or it should be, yes then 
you decide yourself and then. Yes it is like more, you can just sew  
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10 Maria Also where you can come up with ideas yourself. You cannot really 
do that, ‘cos you cannot really come up with ideas. _ I don’t think _ I 
just think it would be a good idea if like this sum came in because it 
was more difficult or a little easier because you cannot just 

11 Isabella No decide just like that 
12 Maria Here you can come up yourself, because when we should sew those 

teddy bears then you figured out yourself. I figured out myself that 
mine should have dots and that it should have such long legs 

13 Troels So it is important that about deciding for yourself? 
14 Maria Yes 
15 Isabella Yes I like that 

By the end of the interview Maria and Isabella asked me for what I was going to use 
the interview and if it was because I wanted to become a teacher. I told them that I 
was a “teacher teacher”. 

16 Maria So you can see what you should do to make your class better? 
17 Troels You may say so. It is because I would like to know how children think 

about mathematics 
18 Maria Are you only teaching mathematics? 
19 Troels Yes that is I teach how student teachers, people who want to become 

teachers, I teach them how they should teach mathematics 
20 Maria And then you can tell it to them 
21 Troels Yes 
22 Maria And then they can do it and then they can see that you like to decide 

for yourself 
23 Troels Yes 
24 Isabella Yes 
25 Maria I think that is good 

Maria likes design because they do something creative (1; numbers refer to the 
transcript lines). She also likes physical education because it not only about thinking 
(1). Isabella likes that in design they may decide how a teddy bear should look like 
and that in physical education they run and play ball games (2, 4). In mathematics, 
they must do the problems they get (7); they may decide how they do them as long as 
they get them right (8), but they cannot really come up with their own ideas (10, 11). 
They like to use their imagination (8-12) and find it important to be able to decide for 
themselves as they can in visual art and design (13-15). This is the message they want 
me to bring to my teacher education students (16-25). 
Interpreting the interview excerpt from my adult, research perspective, Maria and 
Isabella express that they appreciate when school subjects make space for their 
creative imagination (1, 8, 9, 10, 12) and decision making (2, 4, 9, 12-14, 22-25) 
and/or the presence of their whole playful body (1, 2). They experience these spaces 
in design, visual art, and physical education but not in mathematics (7, 10, 11). Here 
they are given problems that they have to get right (7, 8), and they cannot imagine 
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how ideas of their own could come into play (10, 11). They do not talk about getting 
a right answer, which would presuppose that there was a question. In Danish, Isabella 
talks about “lave opgaver” (“do problems”; 7), which is common “school 
mathematics” Danish. Nonetheless, it is a linguistic mix between the older phrase 
from the days of arithmetic “lave regnestykker” (“do sums”) and the language of the 
more recent reform curriculum “løse opgaver” (“solve problems”). There is a 
linguistic consistency between how they describe their activity as doing problems (7) 
and getting them right (8) – as opposed to solving problems, or answering or 
exploring questions as stipulated in the curriculum – and their experience of not being 
able to come up with ideas (10). 
The other children interviewed in the same round of interviews as Maria and Isabella 
also liked practical/creative subjects and by and large for the same reasons: that they 
could use their imagination, do something with their hands, decide something, or 
engage in playful, physical activity often with competitive elements. They also 
thought that they did not make decisions in mathematics. The following paragraphs 
add more details to the picture drawn from the interview with Maria and Isabella.  
Asked about differences between the subjects, in regards to what the children could 
decide, some children, all of immigrant background, said that there were no 
differences. After all, children cannot say no to what the teacher says (Hussein and 
Kamal); the teacher tells them what to do and then the children do it (Sahra and 
Bahia). Responding to the question, Kamal said that in history they are told off the 
least. Sometimes, they may decide a little in swimming. In maths, they are not 
allowed to decide anything and they are not told off so much either. Jette [the maths 
teacher] gives many five-minutes [short breaks]. An interpretation of this statement 
could be, that in the absence of agency in learning situations, what becomes of 
interest is how the teacher control is exercised (amount of telling off) and the 
allowance for time and space that is free of teacher control. 
In school discourse, the academic subjects, in particular Danish, mathematics, and 
English (as a second language), are positioned and resourced as more important than 
the practical/creative. The children have incorporated this in their meaning ascription 
to their school experiences. Mathematics is important because being good in 
mathematics gives access to education which is a prerequisite for at future of their 
own choice (Lange, 2008a). Some children are explicit about the different 
valorisation of school subjects. Bahia and Sahra said that apart from mathematics, 
Danish was also an important subject; visual art not so much, design a little bit, and 
physical education was there in order to have fun. Kalila reflected the valorisation 
indirectly. When I asked which subjects she liked, she said that she liked mathematics 
and Danish, and asked, “Is it not that kind of subjects you are thinking of?” In reality, 
of all the subjects, she liked design and swimming the best. “That is more like 
something for me, I think”.  
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Many of the children described physical and bodily restraints imposed on them at 
school. Kalila in particular gave a vivid and heart-felt description of this and of her 
joy of using her imagination: In design, the teacher explains something if you keep 
your mouth shut. After that, you may run around, get up, talk and jump. In Danish, 
you must remain seated and not talk to your neighbour. In swimming, you may talk 
and be together and you cannot do that in maths. In design you make your own 
imagination of a doll, for instance, one crooked and one long eye, no nose, eyebrows 
– you may decide yourself. It is good to use your imagination. Kalila imagines her 
doll while the teacher tells about it. In Danish and maths, you cannot use your 
imagination. You must calculate in maths and not make your own numbers. After 
school, the smaller children in the recreation centre cannot go out and then come back 
whereas in the club for the bigger children like her you may go home and come back, 
go to the kiosk, bring lollies and have you mobile phone open. Children are generally 
very aware that they are growing. Agency is an important marker in this process; as 
Kalila explained older children have more physical freedom to move and to decide 
for themselves than younger children.  
Thus, the subjects that the children like because of the agency, imagination and 
bodily freedom they are allowed, are positioned as not important, and the subjects 
positioned as important grant them little agency, space for choice or creativity, and 
exert a tight control of their bodies. 

I DON’T LIKE MATHS WHEN I DON’T KNOW WHAT TO DO  
These children grow up in a society where it is highly unclear which experiences of 
the older generations are valid, where the faculty to chose in almost every issue of life 
is paramount, and where creativity is highly valued in public discourse about present 
and future needs of individuals and society. Choice making and creativity are prime 
examples of agency, and the children in this research really appreciated when such 
features were part of their learning. The practical/creative subjects, thought of in the 
school discourse as recreational, seem to have more to offer in this respect, than 
mathematics and the other subjects positioned as the most important.  
When making sense of their experiences, the children perceived no agency for them 
in school mathematics learning, and they could not imagine what it could be either. 
You are not supposed to make up your own numbers, as Kalila put it. Like the much 
older US high school students that Boaler and Greeno (2000) wrote about, these 
much younger student in a Danish comprehensive school were ascribed identities 
with minimal human agency. In the terminology of Klein (2001b), they did not 
perceive invitations and support to develop their authorship of mathematical 
constructions and ways of making sense. They did make sense – the sense seen in the 
interviews, but their sense-making was not part of their “official” mathematical 
activities. These sense-making processes are active undertakings on part of the 
children in which they contribute to the construction of the discursive field 
embedding mathematics education and thus need to be seen as an aspect of children's 
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agency. As such, they are co-creators of the social practices of mathematics 
education, even when these social practices lead to a restriction on agentic behaviour. 
The “no agency” experience of mathematics learning is problematic for several 
reasons. It gives a distorted picture of academic mathematics, and it reinforces 
instrumental learning rationales (Mellin-Olsen, 1981). Such rationales are not 
conducive to the learning of students in difficulty with mathematics (Lange, 2008a) – 
if they were, they would not be in difficulty. When such children do not succeed in 
“getting it right” in what to them seem unrelated tasks, void of inherent meaning and 
agency, they are left with having to cope with unproductive and awful feelings of 
helplessness. Maha expressed these feelings when she said that she hates Sudokus 
and metre and centimetre, and that she does not like mathematics when she does not 
know what to do, and nobody comes to help her, and she just sits and waits and waits. 

NOTES 

1 I understand postmodernity as “a social condition, comprising particular patterns of social, 
economic, political and cultural relations” (Hargreaves, 1994, p. 38) 

2 The Danish transcript is rather detailed and forms the basis of the interpretation together with the 
audio recording. The translation into English is a compromise between a direct translation, an 
attempt to retain some of the linguistic features of children's spoken language, and a light 
approximation to written language by removing some of the repetitions and incomplete sentences. 
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EXPLORING THE RELATIONSHIP BETWEEN 

JUSTIFICATION AND MONITORING AMONG 

KINDERGARTEN CHILDREN 

Pessia Tsamir, Dina Tirosh, and Esther Levenson  

Tel-Aviv University 
This paper investigates the types of justifications given by kindergarten children 
as well as the monitoring behavior exhibited by these children as they work on 
number and geometry tasks. Results showed that kindergarten children are 
capable of using valid mathematical procedures as well as the critical attributes 
of geometric figures in their justifications. Children also exhibited monitoring 
behaviors on both tasks. The study suggests a possible reciprocal relationship 
between giving justifications and monitoring behaviors in young children.  
INTRODUCTION 

According to the Principles and Standards for School Mathematics (NCTM, 
2000), "Instructional programs from prekindergarten through grade 12 should 

enable all students to recognize reasoning and proof as fundamental aspects of 

mathematics" (p. 122). It is important to note that reasoning and proof are not 
relegated solely to the upper elementary and high school grades. These aspects 

of mathematics may be nurtured and should be nurtured from a young age. Two 

fundamental components of children's reasoning processes are justifications and 
metacognition (Tang & Ginsburg, 1999). In this article, justification refers to the 

act of defending or explaining a statement. Metacognition includes monitoring 

one's work. In this article, monitoring refers to those managerial skills which 
guide the problem solving process. This study is an initial investigation into 

kindergarten children's reasoning process and the possible relationship between 

giving justifications and monitoring. 

THEORETICAL FRAMEWORK 

In analyzing the long-term cognitive development of different types of 

reasoning, Tall and Mejia-Ramos (2006) described three mental worlds of 
mathematics: the conceptual-embodied, the proceptual-symbolic, and the 

axiomatic-formal. The thought-processes of early childhood are said to be 

embedded in the first two worlds and may be used to describe the types of 
reasoning displayed by young children as they develop geometrical orientation 

and number concepts. The first world focuses on objects and begins with 

perceptions based on the physical world. Through the use of language, children 
refine their mental perceptions by focusing on the object's properties, leading to 

the use of definitions which in turn are used to make inferences. This world is 

particularly apt for describing the development of geometric reasoning as 
described by the van Hiele levels (van Hiele & van Hiele, 1958). The 

proceptual-symbolic world builds on actions or procedures. These are 

encapsulated into symbols that function both as "processes to do and concepts to 
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think about" (Tall, 2004, p. 285). For example, the act of counting leads to the 

concept of number.  

Different types of justifications are an outgrowth of the different cognitive 

worlds. "Initially, something is true in the embodied world because it is 'seen' to 

be true" (Tall, 2004, p. 287). Later on, justifications are based on definitions 
such as used in Euclidean geometry. In the proceptual world, something is true 

because some procedure shows it to be true. As reasoning in this world 

develops, justifications are given using symbolic manipulations. Yet, knowing 
how to use some procedure or knowing the definitions of some concepts are not 

always enough. Mason and Spence (1999) differentiated between knowing-

about the subject and knowing-to act in the moment. They claimed that students 
do not always appear to know-to use what they have learned and that it is 

essential to raise students' awareness of their behaviors.  

Awareness and expression of one's thinking and behaviors, as well as 
recognition of mistakes and adaptability contribute to students' success in 

problem solving (Pappas, Ginsburg, & Jiang, 2003). Schoenfeld (1992), building 

on Poya's (1945) work of problem solving, pointed to several important aspects 
of monitoring: the ability to plan, assess progress "on line," act in response to 

this assessment, and look back. Research has shown that secondary school 

students, as well as undergraduate students, exhibit few monitoring behaviors 
during the problem solving process (Jurdak & Shahin, 2001; Lerch, 2004). At 

the elementary level, Nelissen (1987) reported significant differences in 

monitoring behaviors between high-achieving and low-achieving students. 
Preschool children were shown to have little awareness of mistakes and little 

ability to select appropriate strategies without adult assistance (Pappas, 

Ginsburg, & Jiang, 2003). All in all, students of different age levels were found 
to encounter difficulties with monitoring. Yet, since these processes are 

important, they should be an integral part of mathematics instruction (NCTM, 

2000). Being that mathematics is part of the kindergarten curriculum, we should 
also look for ways to foster monitoring among young children. It has been 

suggested that, for school-age students, the act of explaining and justifying one's 

responses may facilitate monitoring (Pape & Smith, 2002). Is this true also for 
young children? And is this relationship reciprocal? May the act of monitoring 

provide an impetus for children to justify their responses?  

This paper focuses on justification and monitoring among kindergarten children. 
Specifically we investigate (1) the types of justifications given by young 

children, (2) the existence of monitoring among young children, and (3) the 

possible relationship between justification and monitoring among young 
children. 

METHOD 

Fourteen preschool classes in low-socioeconomic neighborhoods participated in 
this study. Each class consisted of approximately 30 pre-kindergarten and 

kindergarten children between the ages of four and six years old. In this paper 
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we focus on different types of monitoring and justifying responses given by 

the kindergarten children (between the ages of five and six years old), to two 
tasks. These children were expected to enter first grade in the upcoming school 

year.  

Two main focal points of the kindergarten curriculum are number concepts 
(counting objects, identifying number symbols, and comparing the number of 

items in different sets) and geometry (identifying different two-dimensional and 

three-dimensional geometrical shapes). In this paper we describe the children's 
responses to two tasks. Each child sat with the researcher in a quiet corner of the 

class. Verbal responses as well as gestures were recorded by the researcher.  

Task one: Which has more? Two bunches of nine and 12 bottle caps, 
respectively, were placed on a table before the child. All the bottle caps were of 

the same shape and size. Each bunch was placed by the fistful on the table, 

keeping the caps bunched together, without any set order of placement. The 
child was asked two questions: (1) Which bunch has more bottle caps? (2) Can 

you check? The questions which accompanied this task were designed to assess 

children's ability to estimate amounts as well as their ability to check their 
estimation. The request for monitoring (Can you check?) came from the 

researcher. Our aim was to investigate if this request would lead the child to 

justify his answer and if so, what type of justification would the child give.  

Task two: Is this a pentagon? For this task, children were shown six cards, two 

cards, each with a drawing of a pentagon, and four cards, each with a drawing of 

a non-pentagon shape. Children were asked two questions: (1) Is this a 
pentagon? (2) Why? The questions which accompanied this task were designed 

to assess children's ability to identify a pentagon as well as their ability to use 

the critical attributes of a pentagon in their justifications. Reasoning based on 
critical attributes indicates a more mature level of reasoning than merely 

visualizing the whole shape (van Hiele & van Hiele, 1958). In this activity, the 

researcher asked for a justification. Our aim was to investigate if the request for 
a justification would then lead the child to monitor his answer. 

Analyzing the results. Students' responses were assessed on two levels. First, 

the type of justifications given were analyzed according to Tall's (2006) theory 
of the three mental worlds of mathematics described previously. Second, the 

types of monitoring behaviors exhibited by the children were analyzed with a 

focus on the following behaviors: (1) expression of one's thinking, (2) planning, 
(3) assessing progress "on line", (4) awareness of mistakes, and (5) looking 

back. 

RESULTS 

In this section we offer a sample of the justifications and monitoring exhibited 

by kindergarten children in the tasks described above. Samples were chosen in 

order to illustrate typical responses as well as to demonstrate the range of 
justifications and monitoring exhibited by these children.  
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Task one: Which has more? 

We begin by presenting children who offered correct estimations, with valid and 

invalid justifications. We then present a child who offered an incorrect 

estimation. 

Correct estimations and valid justifications. One of the strategies used to check 

which bunch had more bottle caps was counting. Counting the number of bottle 

caps in each separate bunch was considered a valid justification.  

C1: (The child counts the bottle caps in each bunch separately.) I told you that I 

know there are more bottle caps here (pointing to the bunch of 12 caps). 

C2: We can count. (The child proceeds to count the bottle caps in each bunch 

separately and smiles in recognition of her correct estimation.) I was right! 

C3: We can count. (The child proceeds to count the bottle caps in each bunch 

separately.) Here (pointing to the bunch of 12 bottle caps) there are more. 

Twelve is bigger than nine. 

The reasoning exhibited by all three children was embedded in the proceptual-

symbolic world. All of the above children took action upon being requested to 
monitor their estimation and each had a valid procedure used to justify their 

estimations. C1 and C2 both followed their actions with an assessment of their 

initial estimations. In other words, an external request for monitoring was 
followed by a justification, which in turn was followed by monitoring (looking 

back). Yet the quality of their monitoring had a subtle difference. C1's response, 

"I told you", hints at the child's response being directed outward, toward the 
interviewer. C2's smile, along with his response "I was right" was directed 

inward and hints at the possibility that the outside request for monitoring led to a 

more introspective form of monitoring. C3 had a method for monitoring his 
estimation (counting) which was followed by a justification (12 is bigger than 

nine). This justification indicates that the child has possibly abstracted the bottle 

caps to numbers and can now compare the number concepts without reference to 
the physical objects at hand. Both C2 and C3 expressed their thoughts ("We can 

count") before plunging into actions. Yet, C3 does not look back. 

One child was unsure of how to apply the counting procedure: 

C4: (The child counts the smaller bunch first, stops, and looks at the second 

bunch.) Should I continue from here? (C4 considers if he should continue the 

counting sequence by counting the second bunch starting from 10.) Or should I 

start from the beginning? (C4 does not wait for an answer but proceeds to count 

the second bunch of 12 caps correctly, starting from 1 and concluding with 12.) 

Here (pointing to the bunch of 12) there are more. 

C4 is developing his reasoning ability within the proceptual-symbolic world. He 

knows he ought to use a counting procedure. He monitors his procedure "on 

line" by stopping mid-way and thinking of how to proceed. C4 is struggling to 
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connect the procedure with the concept. By monitoring his actions he switches 

from doing mathematics to thinking about mathematics. 

Not all children responded immediately to the question of which bunch had 

more bottle caps. Instead, when asked which bunch had more, one child 

responded, "I need to count." Only after she was told to answer first without 
counting did she choose the bunch with 12 bottle caps as having more than the 

other. In other words, this child had a plan which she wished to implement 

before answering the question.  

Other than the counting procedure, children relied on the principle of one-to-one 

correspondence to compare the amount of bottle caps in each bunch: 

C5: (The child lines up each bunch in two separate rows, making sure that each 

cap touches the next. He then compares the length of each row.) This one is 

longer. 

C5 compared the lengths of the two rows of bottle caps. As the caps were all of 
the same size and each cap touched the following one, this was a valid method. 

For C5, the procedure of lining up the bottle caps led to a reflection on the 

concept of length. 

Correct estimations but invalid justifications. Some children estimated correctly 

which bunch had more but replied with invalid justifications stemming from 

improper use of the counting procedure.  

C6: (The child counts the smaller bunch first, 1…9, and proceeds to count the 

second bunch, 10…21.) There are 21 bottle caps in this bunch (pointing to 

bunch of 12 caps). 

Unlike C4, who had thought about counting both bunches together but did not, 

the counting activity of C6 may be considered a rote procedure divorced from 

conceptual meaning.  

An invalid justification sometimes left the child unable to assess the correctness 

of his estimation: 

C7: (The child counts the bunch of 12 bottle caps but does not count the bunch 

of nine bottle caps.) 

Researcher: And how do you know that there are more in this bunch than in the 

other bunch? 

C7: I don't know. 

Other children, although correctly estimating which bunch had more, did not 

respond with justifications based on mathematical procedures or concepts: 

Researcher: How do you know which bunch has more? 

C8: Because we see.  

Researcher: Can you check? 

C8: Yes. 
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Researcher: How? 

C8: With the eyes. 

This child seems to be reasoning within the conceptual-embodied world instead 

of choosing an action or procedure. His correct estimation was based solely on 

his visual perception. The outside call for monitoring did not trigger a switch to 
an appropriate mathematical procedure.  

Incorrect estimation but correct conclusion. The opportunity to monitors one's 

thinking was noticeable when a wrong estimation was given. For example, one 
child incorrectly estimated that the bunch of nine bottle caps had more caps than 

the bunch of 12 bottle caps. When asked to check, he responded:  

 C9: (The child counts each bunch separately and smiles.) Oh! This bunch 

 (pointing to the 12 bottle caps) has more. 

For C9, the external request for monitoring was followed by a valid action and 

justification, which in turn was followed by the awareness ("oh!") that a mistake 
was made.  

Task two: Is this a pentagon? 

Children were shown six different shapes and asked to identify the shapes as 
pentagons or non-pentagons and to justify their identification. At times, their 

initial identifications remained unchanged and at times children's final 

identifications differed from that of their initial identifications. In this section we 
review typical responses to one pentagon shape and to one non-pentagon shape 

(see Figure 1).  

 

 

Pentagon 

 

 

Non-pentagon 

Figure 1: Two shapes presented to children for the pentagon task  

Correct initial and final identifications with critical attribute reasoning. 

Regarding the pentagon, children who identified this shape correctly often 

justified their identification by referring to critical attributes of the pentagon. 

C10: It has five vertices, it's a closed shape, and it has five straight lines. 

Regarding the non-pentagon, some children who correctly identified this shape 

as a non-pentagon referred in their justifications to "crooked" or "rounded" lines. 
One child justified his correct identification by saying, "It's not (a pentagon) 

because it has two rounded sides… actually is has four rounded sides… it 

doesn't matter." This child assessed his justification "on line". At first he noticed 
two rounded sides. Then he took a closer look and noticed four rounded lines. 

However, he realized immediately, that in fact it does not matter how many 

rounded sides the shape has, because even one is sufficient to nullify the shape 
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as a pentagon. This child exhibited monitoring, not of his solution (which was 

correct) but of his justification. As he was justifying his conjecture, he 
monitored the correctness and perhaps quality of his justification. 

Regarding both shapes, some children first counted the vertices or sides and 

only then responded to the question of identification. Such children thought 
about how to go about identifying the shape, acted on their plan, identified the 

shape and then justified their identification.  

Incorrect initial identification but correct final identification with critical 
attribute reasoning. Children who corrected their initial incorrect identifications, 

typically referred to the critical attributes of a pentagon in their justifications. 

Regarding the pentagon: 

C11: It's not a pentagon. Let's check. (The child counts the vertices.) It is a 

pentagon because it has five sides and five vertices and it's closed. 

C12: It's not a pentagon. The line here points to here (referring to the 

concaveness of the pentagon). (The child counts the vertices.) It is a pentagon. 

C11 immediately went to check his conjecture, even before the researcher had a 

chance to ask him why he claimed the shape was not a pentagon. In other words, 
he initiated the monitoring (when he declared "let's check" and counted the 

vertices) which in turn led to a correct identification based on a correct 

justification. C12 initially used a justification based on a non-critical attribute 
(the direction of the line). This justification was followed by monitoring 

(counting the vertices) which in turn led to a correct identification. Both C11 

and C12 exhibit reasoning which integrates both the conceptual-embodied world 
with the proceptual-symbolic world. They begin by using perceptual reasoning. 

This reasoning is monitored by using the counting procedure and number 

concepts of the proceputal world, which ultimately leads back to reasoning 
based on properties and critical attributes. 

Regarding the non-pentagon, one child claimed at first that this shape was a 

pentagon. When asked why he thought it was a pentagon, he proceeded to count 
the points and said, "Yes… uh… no. It has five vertices but it's not straight." In 

this case, justifying the conjecture led to self-initiated monitoring.  

Incorrect initial and final identification with critical attribute reasoning. At 
times, children gave incorrect identifications along with critical attribute 

reasoning. For example, regarding the pentagon: 

C13: It's not a pentagon. It doesn't have five sides. (There was no indication that 

the child had counted the sides.) 

It seems that C13 gave a verbal justification without carrying out any action. 

Although he gave a justification befitting his (incorrect) identification, the 
request for justification did not lead this child to monitor his response. He did 

not look back and was not aware of his mistake.  
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Unchanging identifications (correct and incorrect) with visual reasoning. Not 

all children justified their identifications using the critical attributes of a 
pentagon. Regarding the pentagon: 

 C14: It's a pentagon because it looks like a pentagon. 

C15: It's not a pentagon because it looks like a tooth.  

C16: It's not a pentagon because it doesn't have the shape of a pentagon. 

Regarding the non-pentagon: 

C17: It's not a pentagon because it looks like a circus (tent).  

C18: It's not a pentagon because it's not in the shape of a pentagon. 

The above children used visual reasoning in their justifications. Within the 

conceptual-embodied world, their reasoning has not advanced past their 
perceptions. Both C15 and C17 embodied the rather abstract concept of a 

pentagon into a more familiar physical entity. C14, C16, and C18 have a mental 

image of a pentagon which does not fit the shape on the card. These 
justifications accompanied both correct and incorrect identifications and were 

not accompanied by monitoring.   

Some children gave justifications that were a mix of perceptual reasoning along 
with reasoning based on attributes. Regarding the non-pentagon: 

C19: It's not a pentagon because it has five vertices but it doesn't look like a 

pentagon.  

C19 is a child in transition. Previously, he had correctly identified the pentagon 

noting only its five vertices. His justification regarding the non-pentagon takes 

note of the five points (they are not vertices as they do not connect straight 
lines), but disregards them because the shape "doesn't look like a pentagon." In 

other words, he realizes that the attribute of "vertices" is worthy of notice but he 

may not have the knowledge or words to describe that the sides need to be 
straight lines. Instead, his final justification relies on his visual perception. In a 

sense, C19 exhibits monitoring. He clearly has a strategy by which he checks if 

a shape is a pentagon (counting vertices) but "on line" rejects that reason in 
favor of relying on his mental image of what a pentagon should look like.   

DISCUSSION 

This paper has shown that young children are able to justify their conjectures by 
using appropriate mathematical procedures, such as counting, or by reverting 

back to critical, geometrical attributes. Some children, capable of giving 

complete mathematical justifications, also exhibited monitoring behaviors. A 
child who knows a pentagon must have five straight sides as well as five vertices 

is ultimately better equipped to monitor both his answer, as well as the quality of 

his justification.  

Some of the justifications given by children were based on visual reasoning. For 

these children, operating at the first van Hiele level of reasoning, a visual 
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justification is a convincing justification. They "see" with their eyes that one 

bunch has more than another and either feel no further need to verify their 
perception or do not have the knowledge to do so. Although we may value and 

encourage visual estimation, justification and proof are about necessary and 

sufficient conditions that validate or refute a mathematical assumption. 
Furthermore, children who base their justifications solely on visual reasoning, 

claiming that something looks like or does not look like something else, have 

limited recourse when it comes to monitoring their answers.  

Referring back to Schoenfeld (1992), this paper suggests that young children are 

able to plan a strategy in advance (counting the vertices before identifying the 

shape), monitor their progress "on line" (change from visual reasoning to 
reasoning based on critical attributes), as well as act in accordance with this 

assessment. When encouraged to do so, children are able to express their 

thinking. This paper has also shown that justification and monitoring may have a 
reciprocal relationship. A request for monitoring may encourage justification 

which in turn may encourage further monitoring. At the same time, a request for 

a justification may encourage the child to monitor his actions, which in turn may 
improve the justification.  

In this paper we presented two tasks which acted as springboards for children to 

monitor and justify their responses. More research is needed to examine how 
different tasks, activities, and games, and the questions which accompany them, 

may be used to promote both monitoring and justification among young 

children. At this young age, we are interested in children developing a proving 
attitude (Simpson, 1995), where they value the opportunity to convince 

themselves and others. This paper focused on the relationship between an 

individual's monitoring behaviors and justification. We call for more research in 
the area of monitoring and justifications among young children.  
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EARLY YEARS MATHEMATICS – THE CASE OF FRACTIONS  
Ema Mamede 

University of Minho 
This paper describes children’s understanding of order and equivalence of quantities 
represented by fractions, and their learning of fraction labels in part-whole and 
quotient situations. The study involves children aged 6 and 7 years who were not 
taught about fractions before. Two questions were addressed: (1) How do children 
understand the order and equivalence of quantities represented by fractions in 
quotient and part-whole situations? (2) Do children learn fraction labels more easily 
in one type of situation than another? Quantitative analysis showed that the 
situations in which the concept of fractions is used affected children’s understanding 
of the quantities represented by fractions; their performance in quotient situations 
was better than in part-whole situations regarding order, equivalence and labelling. 
 
This paper focuses on the effects of part-whole and quotient situations on children’s 
understanding of the concept of fraction. It explores the impact of each of this type of 
situation on children’s informal knowledge of fractions. 
Framework 
The Vergnaud’s (1997) theory claims that to study and understand how mathematical 
concepts develop in children’s minds through their experience in school and outside 
school, one must consider a concept as depending on three sets: a set of situations that 
make the concept useful and meaningful; a set of operational invariants used to deal 
with these situations; and a set of representations (symbolic, linguistic, graphical, 
etc.) used to represent invariants, situations and procedures. Following this theory, 
this paper describes a study on children’s informal knowledge of quantities 
represented by fractions, focused on the effects of situations on children’s 
understanding of the concept of fraction. 
Literature distinguishes different classifications of situations that might offer a 
fruitful analysis of the concept of fractions. Kieren (1988, 1993) distinguished four 
types of situations – measure (which includes part-whole), quotient, ratio and 
operator - referred by the author as ‘subconstructs’ of rational number, considering a 
construct a collection of various elements of knowing; Behr, Lesh, Post and Silver 
(1983) distinguished part-whole, decimal, ratio, quotient, operator, and measure as 
subconstructs of rational number concept; Marshall (1993) distinguished five 
situations – part-whole, quotient, measures, operator, and ratio – based on the notion 
of ‘schema’ characterized as a network of knowledge about an event. More recently, 
Nunes, Bryant, Pretzlik, Evans, Wade and Bell (2004), based on the meaning of 
numbers in each situation, distinguished four situations – part-whole, quotient, 
operator and intensive quantities. In spite of the diversity, part-whole and quotient 
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situations are distinguished in all these classifications. These situations were selected 
to be included in the study reported here. 
In part-whole situations, the denominator designates the number of parts into which a 
whole has been cut and the numerator designates the number of parts taken. So, 2/4 in 
a part-whole situation means that a whole – for example – a chocolate was divided 
into four equal parts, and two were taken. In quotient situations, the denominator 
designates the number of recipients and the numerator designates the number of items 
being shared. In a quotient situation, 2/4 means that 2 items – for example, two 
chocolates – were shared among four people. Furthermore, it should be noted that in 
quotient situations a fraction can have two meanings: it represents the division and 
also the amount that each recipient receives, regardless of how the chocolates were 
cut. For example, the fraction 2/4 can represent two chocolates shared among four 
children and also can represent the part that each child receives, even if each of the 
chocolates was only cut in half each (Mack, 2001; Nunes, Bryant, Pretzlik, Evans, 
Wade & Bell, 2004).  Thus number meanings differ across situations. Therefore, it 
becomes relevant to know more about the effects of situations on children’s 
understanding of fractions when building on their informal knowledge. 
Applying Vergnaud’s (1997) theory to the understanding of fractions, one also needs 
to consider a set of operational invariants that can be used in these situations. It is 
relevant to know under what condition children understand the relations between 
numerator, denominator and the quantity. The invariants analysed here are 
equivalence and ordering of the magnitude of fractions, more specifically, the inverse 
relation between the quotient and the magnitude. 
Thus this study considers a set of situations (quotient, part-whole), a set of 
operational invariants (equivalence, ordering of fractional quantities), and a set of 
representations (symbolic, linguistic, pictorial) used to represent invariants, situations 
and procedures. This study investigates whether the situation in which the concept of 
fractions is used influences children’s performance in problem solving tasks. The 
study was carried out with first-grade children who had not been taught about 
fractions in school. Two specific questions were investigated: (1) How do children 
understand the order and equivalence of fractions in part-whole and quotient 
situations? (2) Do children learn fraction labels differently in these situations?  
Previous research (Correa, Nunes & Bryant, 1998; Kornilaki & Nunes, 2005) on 
children’s understanding of division on sharing situations has shown that children 
aged 6 and 7 understand that, the larger the number of recipients, the smaller the part 
that each one receives, being able to order the values of the quotient. However, these 
studies were carried out with divisions in which the dividend was larger than the 
divisor. It is necessary to see whether the children will still understand the inverse 
relation between the divisor and the quotient when the result of the division would be 
a fraction. The study reported here tries to address these issues focusing on the 
qualitative understanding of this inverse relation. The equivalent insight using part-
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whole situations – the larger the number of parts into which a whole was cut, the 
smaller the size of the parts (Behr, Wachsmuth, Post & Lesh, 1984) – has not been 
documented in children of these age. Regarding equivalence in quotient situations, 
Empson (1999) found some evidence for children’s use of ratios with concrete 
materials when children aged 6 and 7 years solved equivalence problems. In part-
whole situations, Piaget, Inhelder and Szeminska (1960) found that children of this 
age level understand equivalence between the sum of all the parts and the whole and 
some of the slightly older children could understand the equivalence between parts, 
1/2 and 2/4, if 2/4 was obtained by subdividing 1/2.  
In a previous study, Mamede and Nunes (2008) compared the performance of 6 and 7 
year-olds children when solving equivalence and ordering problems of quantities 
represented by fractions after being taught fraction labels in quotient, part-whole and 
operator situations. They found out that children who worked in quotient situations 
could succeed in some equivalence and ordering problems, but those who worked in 
part-whole and operator situations did not, despite all of them succeeded in labelling 
fractions. This shows that children are able to learn fraction labels without 
understanding the logic of fractions. The results of this study suggested that quotient 
situations were more suitable than the others when building on children’s informal 
knowledge. Nevertheless, more research is needed regarding these issues. 
Research about the impact of each of the situations in which fractions are used on the 
learning of fractions is difficult to find. Although some research has dealt with these 
situations with young children, these were not conceived to establish systematic and 
controlled comparisons between the situations. We still do not know much about the 
effects of each of these situations on children’s understanding of fractions. 
Nevertheless, if we find out that there is a type of situation in which fractions make 
more sense for children, it would be a relevant finding to introduce fractions to them 
in the school. There have been no detailed comparisons between part-whole and 
quotient situations documented in research on children’s understanding of fractions. 
This paper provides of such evidence. 

METHOD 
Participants 
Portuguese first-grade children (N=80), aged 6 and 7 years, from the city of Braga, in 
Portugal, were assigned randomly to work in part-whole or quotient situations with 
the restriction that the same number of children in each level was assigned to each 
condition in each of the two schools involved in this study.  
The children had not been taught about fractions in school, although the words 
‘metade’ (half) and ‘um-quarto’ (a quarter) may have been familiar in other social 
settings.  
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The tasks 
An example of a problem of equivalence and ordering presented to the children is 
given below on Tables 1 and 2.  

Problems of equivalence of quantities represented by fractions 
Quotient situations Part-whole situations 

Two girls have to share 1 bar of 
chocolate fairly; 4 boys have to share 
2 chocolates fairly. Does each girl eat 
the same, more, or less than each boy? 
Why do you think so? 

Peter and Emma each have a bar of 
chocolate of the same size; Peter breaks 
his bar in 2 equal parts and eats 1 of 
them; Emma breaks hers into 4 equal 
parts and eats 2 of them. Does Peter eat 
more, the same, or less than Emma? 
Why do you think so? 

Table 1: A problem of equivalence presented to the children in each type of situation. 

Problems of ordering of quantities represented by fractions 
Quotient situations Part-whole situations 

Two boys have to share 1 bar of 
chocolate fairly; 3 girls have to share 1 
chocolate bar fairly. Does each girl eat 
the same, more, or less than each boy? 
Why do you think so? 

Bill and Ann each have a bar of 
chocolate of the same size; Bill breaks 
his bar into 2 equal parts and eats 1 of 
them; Ann breaks hers into 3 equal 
parts and eats 1 of them. Who eats 
more, Bill or Ann? Why do you think 
so? 

Table 2: A problem of order presented to the children in each type of situation. 

Regarding the labelling problems, there were two types: the ‘what fraction?’ 
problems, in which the child was asked to write the fractions that would represent the 
quantity; and the ‘inverse’ problem in which the fraction was given and the child was 
asked to identify the meaning of the numerator and denominator. An example of each 
type of labelling problems presented to the children is given below on Table 3.  

Problem Situation Example 

Part-whole Paul is going to cut his chocolate bar into 4 equal parts 
and eats 3 of them. What fraction of the chocolate bar is 
Paul going to eat? Write the fraction in the box. 

 
What 
fraction? 

Quotient Three chocolate bars are going to be shared fairly 
among 4 friends. What fraction of chocolate does each 
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friend eat? Write the fraction in the box. 

Part-whole Anna divided her chocolate bar and ate 3/5 of it. Can 
you draw the chocolate bar and show how she did it? 

 

Inverse  
Quotient Some children will share some chocolate bars. Each 

child gets 3/5 of the chocolate. How many children do 
you think there are? How many chocolates? Can you 
draw the children and the chocolates? 

Table 3: An example of each type of labelling problems presented to the children in 
each type of situation. 

Problems presented in part-whole situations were significantly longer than those 
presented in quotient situations. To reduce this effect, the interviewer made sure that 
each child understood the posed problem. All the problems were presented orally by 
the means of a story, with the support of computer slides. The children worked on 
booklets which contained drawings that illustrated the situations described. No 
concrete material was involved. 
Design 
At the beginning of the session, the six equivalence items and the six ordering items 
were presented in a block in random ordered. The children were seen individually by 
the experimenter. In the second part of the session, the children were taught how to 
label fractions with the unitary fractions 1/2, 1/3, 1/4 and 1/5 and the non-unitary 
fraction 2/3, in this order. After that, they were asked to solve three ‘what fraction?’ 
problems and one ‘inverse’ problem. All the numerical values were controlled for 
across situations. 

RESULTS 
Descriptive statistics for the performances on the tasks on quotient and part-whole 
situation are presented in Table 4. 

 Problem Situation 
 
 

Quotient  
(N = 40; mean age 6.9 years) 

Part-whole 
(N = 40; mean age 6.9 years)

Tasks 6 years 7 years 6 years 7 years 

Equivalence  2.1(1.5) 2.95 (1.54) 0.6 (0.7) 0.6 (0.5) 
Ordering  3.3 (2.1) 4.25 (1.3) 1.45 (1.4) 1.2 (0.83) 

Table 4: Mean (out of 6) and standard deviation (in brackets) of children’s correct 
responses by task and situation. 
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A three-way mixed-model ANOVA was conducted to analyse the effects of age (6- 
and 7-year-olds) and problem solving situation (quotient vs part-whole) as between-
participants factor, and tasks (Equivalence, Ordering) as within-participants factor.  
There was a significant tasks effect, (F(1,76)=18.54, p<.001), indicating that 
children’s performance on ordering tasks was better than in equivalence tasks. There 
was a significant main effect of the problem situation, (F(1,76)=146.26, p< .001), and 
a significant main effect of age, (F(1,76)=4.84, p<.05); there was a significant 
interaction of age by problem solving situation, (F(1,76)=7.56, p<.05). The older 
children performed better than the younger ones in quotient situations; in part-whole 
situations there was no age effect. There were no other significant effects.  
An analysis of children’s arguments was carried out and took into account all the 
productions, including drawings and verbalizations.  
Based on the classifications of children’s arguments when solving sharing problems 
(see Kornilaki & Nunes, 2005) and when solving equivalence problems in quotient 
situations (see Nunes et al., 2004), five types of arguments were distinguished 
attending to children’s justifications solving equivalence and ordering problems in 
quotient situations, which were: a) invalid, comprising arguments that are not related 
to the problem; b) perceptual comparisons, the judgements are sustained on 
perceptual comparisons based on partitioning; c) valid argument, based on the inverse 
relation between the number of recipients and the size of the shares; d) only to the 
dividend (or numerator), based on the number of items to share and the shares, 
ignoring the inverse relation between the recipients and the shares; e) only to the 
divisor (or denominator), based on number of recipients and the shares, ignoring the 
number of items being shared.  
Based on a classification of children’s arguments on equivalence and ordering 
problems of fractions (see Behr et al., 1984), four arguments were distinguished also 
from children’s justifications when solving equivalence and ordering problems, in 
part-whole situations. These four arguments were: a) invalid, comprising arguments 
that are not related to the problem; b) valid argument, based on the inverse relation 
between the number of parts into which the whole was cut and the number of parts 
eaten/taken, attending to the size of the shares; c) only to the dividend (or numerator), 
based on the number of  parts eaten/taken, ignoring their sizes and the number of 
parts into which the whole was cut; d) only to the divisor (or denominator), based on 
the number of equal parts into which the whole was divide, ignoring their sizes and 
the number of parts eaten/taken. 
Table 5 shows the children’s arguments when solving equivalence and ordering 
problems and the rate of correct responses for problems in quotient and part-whole 
situations.  
Children presented more valid arguments based on the inverse relation between the 
number of recipients and the size of the shares, when solving problems in quotient 
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situations. In part-whole situations, the valid arguments were based on the inverse 
relation between the number of parts into which the whole was cut and the number of 
parts eaten/taken. In part-whole situations the most frequent arguments used were 
based on the number of parts eaten/taken, ignoring their sizes and the number of parts 
into which the whole was cut. 

 Type of situation 
 Quotient (N=240) Part-whole (N=240) 

Type of argument Equiv. Order Equiv. Order 

Invalid  0 .01 .01 .02 
Perceptual comparisons .03 .09 - - 
Valid  .27 .38 .03 .06 
Only to the dividend (numerator) .09 .14 .18 .13 
Only to the divisor (denominator) .03 .01 .05 .01 

Table 5: Type of argument and proportion of correct responses when solving the tasks 
in quotient and part-whole situations. 

These results show that, when solving ordering problems in quotient situations, 
almost 40% of the responses were correct and justified with an explanation attending 
to the numerator, denominator and the quantity. This was not achieved when solving 
the correspondent problems in part-whole situations. 
Also the fraction labels were analysed for each condition of study. Descriptive 
statistics for the performances on the labelling problems on quotient and part-whole 
situation are presented in Table 6. 

 Problem Situation 
 Quotient  

(N = 40; mean age 6.9 years) 
Part-whole  

(N = 40; mean age 6.9 years)
Tasks 6 years 7 years 6 years 7 years 
Labelling 3.5(1.1) 3.5 (0.95) 2.3 (0.92) 2.4 (1.1) 

Table 6: Mean (out of 4) and standard deviation (in brackets) of children’s correct 
responses by task and situation. 

In order to analyse the effect of situation on children’s learning to label fractions, a 
two-factor ANOVA was conducted to analyse the effects of age (6- and 7-year-olds) 
and situation (quotient vs part-whole) as the main factors.  
There was a significant main effect of situation, (F(1,76)=25.45, p<.001): children 
learned fractions labels more easily in quotient situations than in part-whole 
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situations. There was no significant age effect and no interactions. Thus it can be 
concluded that the children learned to label fractions more easily in quotient 
situations than in part-whole situations and that is not dependent on age. 
Figures 1 and 2 show examples of children’s drawings when solving the inverse 
problems in quotient and part-whole situations, respectively. Some incorrect solutions 
will be shown and discussed in presentation. 

           

Figure 1: Children’s solution of the inverse problem in quotient situation. 

               

Figure 2: Children’s solution of the inverse problem in part-whole situation. 

These children were not taught about any strategies to solve the problems. In spite of 
succeeding in labelling problems in quotient and part-whole situations, only 30% of 
those who solved the inverse problem in part-whole situations drew the correct  
number of cuts and the correct number of parts taken. When dividing the chocolate 
bar, 37.5% of the children counted the number of cuts instead of the number of parts, 
ending up with the incorrect number of parts into which the whole was divided; 20% 
of the children drew incorrect number of cuts and incorrect number of parts taken, 
and 12.5% of the children could not to solve the problem.  This contrasts with the 
92.5% of children who successful solved the inverse problem in quotient situation, 
drawing the correct number of chocolates and the correct numbers of children; 2.5% 
drew the incorrect number of children but the correct number of chocolates, and 5% 
did not solve the problem. 

DISCUSSION AND CONCLUSION 
Children’s ability to solve problems of equivalence and ordering of quantities 
represented by fractions is better in quotient than in part-whole situations. Children’s 
arguments when solving these problems reveal that quotient situations are easier for 
the child to understand the relations between the numerator, denominator and the 
quantity. The levels of success on children’s performance in quotient situations, 
supports the idea that children have some informal knowledge about equivalence and 
ordering of quantities represented by fractions. These results extend those obtained 
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by Kornilaki and Nunes (2005), who showed that children aged 6 and 7 years 
succeeded on ordering problems, in sharing situations, where the dividend was larger 
than the divisor. The results presented here showed that the children still be able to 
use the same inverse reasoning when dealing with quantities represented by fractions. 
The findings of this study also extended those of Empson (1999) who showed that 6-
7-year-olds children could solve equivalence and ordering problems in quotient 
situations, after being taught about equal sharing strategies. The children of this study 
were not taught about any strategies. 
Regarding the labelling of fractions, the children’s performance in both situations 
reveals that quotient situations are easier for children to master fraction labels, 
understanding the meaning of the numbers involved, than part-whole situations. In 
part-whole situations, the majority of the children also succeeded in labelling 
problems and understood the meaning of the numbers involved clearly enough to 
identify them in a new situation. These results converge with those found by Mamede 
and Nunes (2008) who showed that children of 6-7-year-olds could successful learn 
fractions labels in quotient and part-whole situations, understanding the meaning of 
the numbers involved, without being able to solve equivalence and ordering problems 
in these situations, having difficulties in understanding the relations between the 
numerator, denominator and the quantity.  
In spite of succeeding in labelling fractions in both situations, the learning to label 
fractions in quotient and in part-whole situations seems to involve different types of 
difficulties for the children. Whereas in quotient situations the values involved in the 
fractions could easily be represented by drawing, as they refer to different variables – 
number of recipients and number of items being shared-, in part-whole situations, as 
both variables refer to parts, partitioning (division of a whole into equal parts) may 
play an important role for some children in this task. 
This study shows that part-whole and quotient situations affect differently children’s 
understanding of fractions. These results suggest that quotient situations should be 
explored in the classroom in the first years of school. Nevertheless, more research is 
needed providing a deeper insight on the effects of situations in which fractions are 
used on children’s understanding of fractions. 
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ONLY TWO MORE SLEEPS UNTIL THE SCHOOL HOLIDAYS: 
REFERRING TO QUANTITIES OF THINGS AT HOME 

Tamsin Meaney 
Charles Sturt University 

Children bring a wealth of mathematical knowledge from home to school but 
sometimes this knowledge may not be utilised in the most appropriate way. In this 
paper, one six/seven year old girl’s home interactions over 20 weeks about 
measurable quantities are presented. It would seem that most of the interactions used 
terms to compare discrete amounts with an undiscussed norm, with only a few 
interactions involving units of measurement. There were no references to reading a 
scale, except in regard to time. Time was discussed in far greater detail than any 
other attribute. Although time is considered to be difficult to learn because of its 
abstract nature, it may in fact be an easier concept to start with when introducing the 
sense of how units of a quality are related to each other. 

THE INTERCHANGE OF HOME AND SCHOOL MATHEMATICAL 
KNOWLEDGE 
Many children arrive at school with significant mathematical understandings 
(Clemson & Clemson, 1994). However, the challenge is how to build on “this rich 
base of mathematical experiences in ways that acknowledge and support the family’s 
role” (Clarke & Robbins, 2004). In order to do this, we need to understand how 
mathematics is used in the home and how these experiences change as children 
become older. In this paper, I examine a six/seven year old child’s interactions at 
home around measurement ideas over the course of twenty weeks. Although she had 
been at school for two years, there was still frequent communication between home 
and school. For this child, amounts of different qualities were discussed in different 
ways. Discussions of time were some of the few occasions where units were used and 
the only occasions where units were compared and contrasted. Yet the unit concept is 
often considered something that should be taught in regard to other measurement 
attributes such as length, before introducing time units (NZ Ministry of Education, 
2007). Consequently, there is a need to query assumptions about how to introduce 
measurement units that build on children’s home experiences. 
Most research into mathematical practices at home has concentrated on young 
children, generally preschoolers, and number concepts (Vandermaas-Peeler, 2008; 
Gifford, 2004; Clarke & Robbins, 2004). Once children start school, although the 
influence of home activities is still acknowledged as being important, less is known 
about the types of activities done and how they could connect into formal school 
mathematics development.  
Socio-cultural approaches about acquiring mathematical understanding at home are 
now seen as adding useful background to how children become mathematically 
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competent (Benigno & Ellis, 2008). Using socio-cultural ideas, Street, Baker and 
Tomlin (2005) developed the ideological model of numeracy so that they could better 
describe why there might be differences between home and school numeracy 
practices. Table 1 describes the four inter-related dimensions of the model. 

Dimensions Description 
Content The mathematical concepts, such as measurement.  
Context The situation in which a numeracy practice takes place. 
Values and Beliefs The participants beliefs about how numeracy practices 

should progress and how new skills and knowledge are 
taught within them. 

Social and 
Institutional 
Relations 

The overarching factors that channel what are seen as 
appropriate choices in the other three dimensions. 

Table 1: Dimensions from the ideological model of numeracy (Street et al., 2005) 
This model is useful as an analytical tool as it provides insights into whether a simple 
transfer of mathematical practices can occur between home and school, or whether 
explicit discussions about differences between home and school need to occur. For 
example, in an earlier paper, I discussed how the child seemed to have more control 
in her interactions at home than she did at school (Meaney, 2008). This may have 
been because different power relations exist in the home situation compared to those 
between a student and their teacher and even between mother and child in a school 
setting. The interactions discussed in that paper also showed how the power relations 
interacted with the values and beliefs of the participants about how mathematical 
practices should be conducted. Therefore, the dimensions of the model can provide 
useful insights into why differences occur and the sorts of discussions that are needed 
if home mathematical practices are to be acknowledged in school. 
Although the influence of context, values and beliefs and social and institutional 
relations is reasonably well known (Benigno & Ellis, 2008), the influence of content 
is not so clear. Measurement concepts have not received any specific attention when 
considering mathematical practices in the home. This is despite the fact that there 
have been recent calls in Hawai’i to redesign the early years school mathematics 
curriculum so that it focuses on measurement ideas before introducing number 
(Dougherty, 2003). Although some measurement concepts do appear in the data of 
some projects (Clarke & Robbins, 2004 for example), these are not discussed 
explicitly in regard to the implications for formal school mathematics teaching. It 
may well be that as a consequence, teachers teach about measurement presuming that 
students have had certain experience at home, whilst at the same time ignoring the 
experiences that students may actually have. Therefore, exploring the measurement 
concepts used at home is a rich area for investigation. 
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METHODOLOGY 
Research about home mathematical practices has tended to rely on parents’ 
nominated examples (Blevins-Knabe & Musun-Miller, 1996) and to some degree on 
them documenting them through diaries or photos (Clarke & Robbins, 2004). These 
methods have raised concerns about parents’ ability to recognise mathematical 
interactions (Bottle, 1999). In some cases, parents and children have been recorded in 
laboratory situations where they have been provided with toys and other props 
(Vandermaas-Peeler, 2008). This non-home setting may well have affected the data 
that was collected. Bottle (1999) used a video camera to film interactions as they 
happened in the home and felt that it allowed for more comprehensive data to be 
collected. She visited each family for approximately two hours every four months. 
However, she also acknowledged that the intrusive nature of the researcher’s 
videoing activities may have influenced the activities that were recorded. 
For this research, it was decided to audio tape the interactions of a six/seven year old 
child in order to investigate how she acquired the mathematics register at home and at 
school. Given the amount of recording that was done, video recording would not have 
been logistically possible. Although only one child was recorded, this was done 
consistently over half a year and produced an enormous amount of data. 
The child was recorded for one day a week, for twenty weeks, in the second half of 
2005. From when she woke in the morning until she went to school, the research 
child wore a lapel microphone connected to a digital voice recorder. During her 
mathematics lesson, she was again recorded and the class discussion captured on 
another voice recorder connected to a conference microphone. After she was 
collected from school, the child wore the voice recorder until she went to bed. The 
child’s parents are Samoan speakers but English was the primary language spoken at 
home. The mother was the research assistant for this study and organised recording 
the child’s interactions. Her mother listened to all of the recordings and sent to a 
transcriber those she believed were worth transcribing. 
The mother’s awareness of the purpose of the project could have influenced the types 
of activities done at home. However, most of the time the child seemed unaware of 
the microphone and that she was being recorded. Therefore, although the set of 
transcripts may not be a true representation of the mathematics interactions that 
occurred, they are a rich alternative source of data to that collected by other methods. 

TALKING ABOUT AMOUNTS 
In the transcripts, more interactions made reference to size or amounts of things than 
to number. The attributes discussed included height, depth, volume, space, mass, 
heat, speed, tightness, strength, loudness, and amount. However, these quantity 
references are not easily connected to what Buys and de Moor (2008) described as 
the “basic pattern of the learning-teaching trajectory” (p. 23) for measurement. This 
trajectory includes three stages: 
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• measuring through comparing and ordering 
• measuring through pacing off using a measurement unit 
• measuring through reading off with the help of a measuring instrument (p. 25) 
Many of the interactions used measurement terms as specific amounts “big girl/little 
girl” (Week 3) where an implicit comparison was made to an undiscussed norm. This 
does suggest an order, but no examples of explicit ordering occurred in the 
transcripts. There were also no instances of comparisons between items using 
expressions, such as “bigger than” or “more than”. What was evident was that 
measurement terms often appeared in relationship to actions such as “turn the volume 
down” (Week 2). In the transcript from Week 3, a connection is made about the 
research child’s brother being too tall to walk under a table. 

Mother:  Oh come here, ah you bumped your head.  Oh dear, oh dear.  Did you see 
he bumped his head?  Watch where you’re going.  You’re tall, see you’re 
too tall to walk under that. 

Research Child:  Then he went on the ground, he went like this, mum.   

Mother:  Oh, he fell down.  He used to be able to just walk under it because he was 
short but now  

This extract shows that a comparison is made between the height of the table and the 
toddler, but the emphasis seems to be more on walking under than on the differences 
in height between the child and the table. 
Sometimes, some of the terms suggested that there was a continuum of amounts; 
often this came through the addition of “bit” to an expression such as in “a bit chilly”. 
The following extract comes from Week 8 where the discussion is about how 
something’s mass could result in a cushion popping. Different animals are discussed, 
showing a sense of ordering the animals according to their varying masses However, 
there is no explicit discussion of what is being compared and therefore no actual 
ordering of the animals. The lines indicate where speech was not clear enough to be 
transcribed. 

Mother: I thought the one [activity] that you jump on the blue cushion would’ve 
been fun. 

Research Child: Too bad you’re not a child. 

Mother: ___ blue cushion. 

Research Child: ‘Cause then you’ll pop it. [Mum laughs] 

Mother: I’m not that heavy, it’s a big cushion. ___ after would pop it, not me, I’m 
not fat. 

Research Child: ___ . 

Mother: Who do you think?  Maybe someone as big as a whale. 
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Research Child: A whale would really pop it. 

Mother: If a whale jumped on it, it would definitely pop. 

Research Child: And we’d all get hurt. 

Mother: If an elephant jumped on it, it might pop. 

Research Child: Then we might all get hurt. 

Mother: What other animal do you think might pop it? 

Research Child: Giraffes wouldn’t.  What about antelope? 

Occasionally, units were used to describe the amount of something. Generally, these 
were whole units, “two, three big teaspoons” (Week 18) that could not be broken 
down into smaller units, even when discussing the unit of a half. The following 
extract comes from Week 6 

Mother: If you’re hungry you can have one of the mandarins. 

Research Child: Then can I have a scone, half? 

Mother: ___ half. 

Research Child: Half is the same, half is a half. 

Time 
The exception in the interactions was in discussions about time. Of all the attributes, 
time was talked about more often and for longer periods. The discussions were 
around all three stages outlined by Buys and de Moor (2008). In regard to comparing 
and ordering, there were also examples involving an implicit comparison. For 
example in the Week 5 transcripts, the mother wants to go out. 

Mother: What time does that program finish?  Does it take long? 

Research Child: No, not very long.   

Mother: Good. 

Although there were still no discussions about activities taking longer or shorter than 
other activities, there were occasions when the time taken for certain activities was 
discussed. The following comes from Week 7. 

Mother: Alright, you do need to think Research Child, to stop us from being late all 
the time, what time do you think you should get up in the morning? 

Research Child: 6 o’clock. 

Mother: (Amazed and unbelieving sound) Six, but you don’t have to be at school 
until 9?  Wouldn’t that be too early? 

Research Child: Don’t worry, just stay there until it opens. 

Mother: That’s three hours before 9 o’clock, it’s too early. 
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Research Child: How about 7? 

Mother: That’s not too bad.  How long does it take you to get ready, like, get your 
clothes on and brush your teeth? 

Research Child: Well I’m not sure about 7 o’clock, ‘cause that’s the time when you get 
ready, and 8 o’clock was when it’s only two things we do. 

Mother: What? 

Research Child: Just all we have to do is, you know, you do my hair and do my face. 

Mother: What about breakfast? 

Research Child: Yeah, we’d, it’d, um, 7 o’clock we do breakfast. 

Mother: You don’t eat breakfast until you’re dressed. 

Research Child: Yeah, then, dressed, break.., I mean, brush your teeth, breakfast, ___ 
and then do my hair, face, yeah.  Is that, is there anything else? 

Mother: Shoes? 

Research Child: Do my shoes up. 

Mother: Pack your bag. 

Research Child: Pack my bag and then go. 

Mother: Alright, so then what time do you get up in the morning? 

Research Child: Still 7 o’clock. 

Mother: 7 o’clock.  Are you sure you can do that? 

Research Child: I’m not sure. 

Mother: (laughs) You can try.  Well if you can’t, 7.30 is alright. 

Research Child: Yeah, 7.30. 

Mother: ‘Cause it’s not too early. 

Research Child: Let’s go at 7.30. 

Mother: No that’s when you wake up.  Wake up at 7 or 7.30?  I think 7.30 is 
realistic, ‘cause we used to do that, and by the time it’s 8.30 you’ll just be 
eating and ready to go, and you would have finished eating. 

There were several discussions around specific units of time – minutes, hours, days, 
weeks, months, seasons and years. Whilst watching television, during week 9, the 
Research Child says to herself “Only two more sleeps until school holidays”. She 
used units of time, ‘sleeps’, to think about an upcoming event.  
Over the course of the twenty weeks, the mother began teaching her daughter how to 
read both an analogue clock and a digital clock. By the end of the year, the child had 
just about mastered being able to read an analogue clock. The following extract 
comes from Week 13. 
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Mother: Research Child, come and see what time it is by looking at the clock. 

Research Child: Something to 9. 

Mother: Good girl.  How many minutes?  Can you count? 

Research Child: Mmm.  Oh wait.  Can I have it down because I can’t see it properly. 

Mother: You only ___ __ under 12.  How many dots are in between that little space? 

Research Child: 5? 

Mother: Yeah – good!  Now what does that tell you?  5 what.  What does that mean? 

Research Child: 5 to 9. 

Mother: Good girl.  5 what to 9?  5 hours?  5… 

Research Child: Minutes? 

Mother: Good girl.  5 minutes to 9.  Because what happens when the big hand gets 
to the 12? 

Research Child: It means that it’s 9 o’clock. 

Mother: Good girl.  See – you’re learning fast. If the long hand was on the 1, it 
would be… and the little hand ___ ___. 

Research Child: It would be 1 past 9. 

Mother: Are you sure it would be 1 past 9?  How many minutes is the gap? 

Research Child: Oh no.  That gap is… 5?  

Mother: Yeah. 

Research Child: 5 past 9. 

Mother: What if the long hand was on the 2? 

Research Child: It would be 10 past 9. 

Mother: Good – and what if it was on the 3? 

Research Child: Yeah, but 15 isn’t on it. 

Mother: No – you can’t see 15, but each gap remember is 5.  So it’s like 5, 10, 15… 

Research Child: Oh, so it does count 15? 

Mother: Yeah! 

Research Child: Oh.  Is it 15 past 9? 

From interrogating the data, it was clear that discussions about measurement were 
frequent with a range of different attributes. Although there were references to units, 
these were few and there were no references to reading measurements from a scale. 
Time was the major exception to this. It was discussed more often than any other 
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attributes and the way it was discussed included all three of the stages suggested by 
Buys and de Moor (2008) in their learning trajectory.   

DISCUSSION 
Buys and de Moor (2008) suggested that length is the most primary of physical 
quantities to measure. This is because “[n]ot only is it available to children’s 
perception, it is the most indicative quantity people want to find out about all sorts of 
objects” (p. 18). Time on the other hand is considered more abstract where the 
children need to develop a sense of time before they could learn to tell the time. It 
was therefore extremely interesting to find that in the twenty days of home 
discussions that time was much more prominent than length.  
Street et al.’s (2005) ideological model of numeracy can provide insights into why 
time has such a prominent role in these home interactions. The social and 
institutional relations seem not to be different regardless of the content of the 
conversation. However, what is discussed at home is influenced by perceptions of 
what is “normal” to discuss in the home. The mother clearly believes that it is at 
home where the child should learn about time. Given the child’s facility with number 
and counting (as seen in Meaney 2008), this may no longer be considered something 
that needs as much attention at home. The other social and institutional relation that 
impacts on why time has become important is that the research child is constantly late 
for school which has implications for the child and her family and how they are 
perceived by the teacher and the school more generally. In order to continue being 
seen as a good family who supports their child’s education, attempts were made to 
improve the situation, such as the discussion from Week 7. For the child to take some 
role in ensuring she meets the expectation that she will arrive before the first bell, she 
needs to be able to read a clock and speed up her activities appropriately. 
Having accepted the need for the child to learn about time and specifically how to 
read a clock, the mother makes some unconscious decisions about how to introduce it 
so that the child acquires the necessary knowledge. Although other units of time are 
used more generally, such as “sleeps” for example, the mother used a “school-like” 
discourse to teach her daughter how to read a clock. Given that the mother has 
experience as a teacher, albeit a secondary English teacher, then using formal 
instructions may well be something she can draw upon. However, it is interesting that 
reading a clock face is the only occasion where she chooses to use such skills.  
In discussions that involve references to attributes, it is clear that context of being at 
home results in an emphasis on the actions related to the attributes. Even in the 
discussions about time, the context relates to actions – decorations come down 
because the child’s birthday is over but will go up again for Christmas. This is likely 
to be different to school where comparing items, such as the size of feet, is done for 
the sake of the comparison, not because it is related to another action. Context 
therefore does have an impact on how the activity is framed (Benigno & Ellis, 2008). 
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There are some interactions where an implicit comparison about time is made in the 
same way as there was in the discussions about other attributes. However, the nature 
of time means that it is actually difficult to discuss it without referring to specific 
units – years, months, weeks, days, hours, and minutes. Getting a sense of time (Buys 
& de Moor, 2008), actually means becoming familiar with units of time and how they 
are related. Content does interact with context, values and beliefs and social and 
institutional relations. This was the case for all the measurable attributes, but in the 
transcripts was particularly so for time. 

USING HOME MATHEMATICAL PRACTICES IN SCHOOL 
These transcripts come from interactions with one child over the course of 20 weeks 
and are not representative of what may occur in other households. However, these do 
raise questions about how to make use of home mathematical practices in school.  
The transcripts suggest that a belief that length is the primary physical quality may 
not in fact match what children experience in their home situations where discussing 
time, in one form or other, is something that is discussed regularly. For this child, 
time was given prominence, probably because her continual late arrival at school 
meant that she and her family were not meeting societal expectations. For other 
children, it may be different circumstances that affect what measurement attribute is 
given prominence. Also for this child, interactions around measurable attributes were 
connected to actions. Schools need to talk with their students’ families to find out 
whether measurement is connected to action in their homes so that teachers can take 
this into consideration when designing their teaching programmes. 
For this child, there were many interactions that discussed the relationship between 
different units of time. If this is also the case for other children, this may provide a 
better context for introducing formal units than the more common one of length. 
The data from this research suggest that home measurement practices cannot be taken 
for granted but instead must be investigated further. This will allow for greater 
discussions between families and teachers in which the school may better learn how 
to make use of the mathematical experiences that children have had at home. 
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SUPPORTING CHILDREN POTENTIALLY AT RISK IN 
LEARNING MATHEMATICS – FINDINGS OF AN EARLY 

INTERVENTION STUDY 
Andrea Peter-Koop 
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Recent psychological studies as well as research findings in mathematics education 
highlight the significance of number skills for the child’s performance in mathematics 
at the end of primary school. In this context, the three year longitudinal study (2005-
2008) involving years K – 2 that provided the background of this paper seeks to 
investigate the influence of intervention based on number skills prior to school on 
children’s later achievement in primary school mathematics. Following an overview 
of the theoretical background and the design of the study, quantitative findings from 
the first year of the study regarding the mathematical achievements of children 
potentially at risk learning school mathematics one year and immediately prior to 
them starting school will be presented and discussed. 
BACKGROUND AND FOCUS OF THE PAPER 
Children start to develop mathematical knowledge and abilities a long time before 
they start formal education (e.g. see Anderson, Anderson, & Thauberger 2008; 
Ginsburg, Inoue, & Seo, 1999). In their play and their everyday life experiences at 
home and in child care centres they develop a base of skills, concepts and 
understandings about numbers and mathematics (Baroody & Wilkins, 1999). Ander-
son et al. (2008) recently reviewing international studies on preschool children’s 
development and knowledge conclude that research 

(…) points to young children’s strong capacity to deal with number knowledge prior to 
school, thus diminishing the value of the conventional practice that pre-number activities 
are more appropriate for this age group upon school entry. (p. 102) 

However, the range of mathematical competencies which children develop prior to 
school obviously varies quite substantially. While most preschoolers manage to 
develop a wide range of informal knowledge and skills in early numeracy, there is a 
small number of children who for various reasons struggle with the acquisition of 
knowledge about numbers (e.g. see Clarke, Clarke, Grüßing, Peter-Koop 2008). 
Furthermore, recent clinical psychological studies suggest that children most likely to 
develop learning difficulties in mathematics can already be identified one year prior 
to school entry by assessing their number concept development (Krajewski 2005; 
Aunola, Leskinen, Lerkkanen, & Nurmi, 2004). Findings from these studies also 
indicate that these children benefit from an early intervention prior to school helping 
them to develop a base of knowledge and skills for successful school-based 
mathematics learning. This seems to be of crucial importance as findings from the 
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SCHOLASTIK project (Weinert & Helmke, 1997) suggest that students who are low 
achieving in mathematics at the beginning of primary school in general tend to stay in 
this position. In most cases, a recovery does not occur. In addition, Stern (1997) 
emphasises that subject-specific previous knowledge is more important with respect 
to success at school than general cognitive factors such as intelligence. Thus, the 
study reported in this paper aims to investigate how children potentially at risk in 
learning school mathematics can be identified one year prior to them starting school 
and compares the effects of early intervention on one-on-one basis carried out by 
student teachers with that of small group interventions 
DEVELOPMENT OF NUMBER CONCEPT 
While pre-number activities based on Piaget’s logical foundations model are 
frequently still current practice in the first year of school mathematics (Anderson et 
al. 2008), research findings as well as curriculum documents increasingly stress the 
importance of students’ early engagement with sets, numbers and counting activities 
for their number concept development. Clements (1984) classified alternative models 
for number concept development that deliberately include early counting skills 
(Resnick, 1983) as skills integrations models. 
Piaget (1952) assumed that the development of number concept is based on logical 
operations based on pre-number activities such as classification, seriation and number 
conservation and emphasised that the understanding of number is dependent on 
operational competencies. In his view, counting exercises do not have operational 
value and hence no conducive effect on conceptual competence regarding number.  
However, since the late 1970s this theory has been questioned due to research 
evidence suggesting that the development of number skills and concepts results from 
the integration of number skills such as counting, subitzing and comparing. Studies 
by Fuson, Secada, & Hall (1983) and Sophian (1995) for example demonstrate that 
children performing on conservation tasks who compare sets by counting or using a 
visual correspondence are highly successful. Clements (1984) investigated the effects 
of two training sequences on the development of logical operations and number. Two 
groups of four-year-olds were trained for eight weeks on either logical foundations 
focussing on classification and seriation or number skills based on counting. A third 
group with no training input served as a control group. Instruments measuring logical 
operations and number abilities were designed as pre- and post-test measures. It is not 
surprising that both experimental groups significantly outperformed the control group 
in both tests, however, the children that were trained on number skills significantly 
outperformed the logical foundations group on the number test while there was no 
significant differences between these two groups on the logical operations test. 
Clements’ results comply with and extend previous research that had indicated that 
number skills such as counting and subitizing affect the development of number 
conservation (Fuson, Secada, & Hall, 1983; Acredolo, 1982). Hence, he concludes: 
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(…) the counting act may provide the structure and/or representational tool with which to 
construct  logical operations including classification and seriation, as well as number 
conservation. … Not only may explicit readiness training in logical operations be 
unnecessary, but well structured training in counting may facilitate the growth of these 
abilities as well as underlie the learning of other mature number concepts. (Clements, 
1984, 774-775) 

An early training based on number abilities such as counting, comparing and 
subitizing may be especially important for children who are likely to develop 
mathematical learning difficulties. The longitudinal intervention study reported in 
this paper investigates the identification and subsequent enhancement of preschool 
children potentially at risk learning school mathematics prior to their first year at 
school. 
METHODOLOGY 
Based on current research findings reported in the previous section, the longitudinal 
study (2005 – 2008) that provides the background for this paper seeks  
� to investigate young children‘s mathematical understanding in the transition 

from Kindergarten to primary school, 
� to evaluate appropriate assessment instruments, and 
� to explore how children potentially at risk learning school mathematics can be 

supported effectively in terms of their number concept development in early 
childhood education. 

This paper focuses on the third aspect – exploring the effectiveness of early inter-
vention based on the following two underlying research questions:  

1. What are the effects of an eight months intervention program aimed at the 
development of number abilities for kindergarten children (five-year-olds) 
identified to be potentially at risk learning school mathematics upon school 
entry? 

2. In how far has the early intervention a lasting effect with respect to their 
achievement in mathematics at the end of grade 1 and grade 2? 

In this paper however, due to space restrictions only the first of the two research 
questions will be addressed by comparing the performance of the children potentially 
at risk learning mathematics from two groups before and after an eight months 
intervention prior to school entry. 
Overall, 1020 five-year-old preschoolers from 35 kindergartens (17 in urban, 18 in 
rather rural regions) in the northwest of Germany took part in the first year of the 
study (September 2005 – August 2006). With the permission of their parents these 
children performed on three different tests/interviews conducted at three different 
days within a fortnight by preservice mathematics teachers from Oldenburg Uni-
versity who had been especially trained for their participation in the study: 
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� the German version of the Utrecht Early Numeracy Test (OTZ; van Luit, van 

de Rijt, & Hasemann, 2001) – a standardized test aiming to measure children‘s 
development of number concept conducted in small groups involving logical 
operations based tasks as well as counting related items, 

� the First Year at School Mathematics Interview (FYSMI) [1] developed in the 
context of the Australian Early Numeracy Research Project (Clarke, Clarke, & 
Cheeseman, 2006) – a task-based one-on-one interview aiming at five-year-
olds which allows children to articulate their developing mathematical under-
standing through the use of specific materials provided for each task, 

� the Culture Fair Test (CFT1) – an intelligence test for preschoolers to be con-
ducted in groups between four and eight children (Cattell, Weiß & Osterland, 
1997) in order to be able to control this variable with respect to the children 
identified at potentially at risk learning mathematics. 

A total of 947 children performed on all three tests. Their data provided the basis of 
the quantitative analysis based on the use of SPSS. While the majority of the children 
interviewed demonstrated elaborate abilities and knowledge as described by Ander-
son et al. (2008), 73 children (about 8 %) in the sample severely struggled with 
certain areas relevant to the development of number concept such as seriation, part-
part-whole-relationships, ordering numbers and counting small collections. They 
were identified as ‘children at risk’ with respect to their later school mathematics 
learning on the basis of their performance at the OTZ and the FYSMI. 26 of these 73 
children (35.6 %) came from non-German speaking background families. However, 
only 13.6 % of the children in the complete sample (n=947) had a migrant back-
ground. Hence, these children from migrant families were over-represented in the 
groups of children potentially at risk.  
The intervention program for the children identified to be potentially at risk learning 
school mathematics was conducted in two groups: Children in group 1 had weekly 
visits from a pre-service teacher who had been prepared for this intervention as part 
of a university methods course. The pre-service primary teachers were introduced to 
the children as `number fairies` who wanted to show them games and activities that 
they could later share with their peers. This was done to ensure that the children did 
not feel pressure and experience themselves as slow learners at a very early point in 
their education. The intervention program for the group 2 children in contrast was 
conducted by the kindergarten teachers within their groups. While the intervention in 
group 1 was done one-on-one at a set time each week, the kindergarten teachers 
working with the children in group 2 primarily tried to use every day related mathe-
matical situations, focussing on aspects such as ordering, one-to-one correspondence 
or counting as they arose in the children’s play or everyday routine, in particular 
challenging the children identified to be at risk in these areas. The kindergarten 
teachers completed a diary in which they described these situations, noted how often 
they arose and what they did with the children in the whole group (or a small sub-
group as in a game situation) and with the children at risk in particular. Like in group 
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1 the children of group 2 were not aware of the fact that they took part in an 
intervention. However, the parents of all children that took part in the intervention 
had been informed and given their written permission. It is important to note that for 
ethical reasons it was not possible to establish a control group, i.e. children identified 
to be potentially at risk who did not receive special support in the form of an inter-
vention as parents would not have agreed for their children to be part of this group.  
In both groups the intervention was conducted over eight months, involving about 45 
min a week and based on individual learning plans developed by the pre-service and 
kindergarten teachers. During the intervention the pre-service as well as the kinder-
garten teachers were supported by the researchers to the same degree to ensure com-
parability of the two groups. The activities were based on number work and counting 
activities following the skills integration model described above. 
PRESENTATION AND DISCUSSION OF RESULTS 
While it was to be expected that the performance of most children would increase 
from pre- to post-test due to age related advancement with respect to their cognitive 
abilities, the results of the study demonstrate that the total group of the children 
identified to be at risk in learning mathematics showed the highest increase. Figure 1 
shows the means of the pre- and post-tests conducted in September/October 2005 and 
June/July 2006 comparing the complete sample with the children at risk. The analysis 
was based on the number of children that had completed all three tests in 2005 as 
well as the OTZ and FYSMI in 2006. Hence, the number in the complete sample 
decreased to n = 715 with 60 children (8.4 %) potentially at risk. 
 

 
Figure1: Means of the pre- and post-test of the FYSMI  
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The data clearly shows that the children potentially at risk have in particular in-
creased their competencies in those areas that were aimed at during the intervention, 
i.e. knowledge about numbers and sets as well as counting abilities, and performed 
significantly better in the post-test in the tasks related to ordinal numbers, matching 
numerals to dots, ordering numbers, numbers before/after and part-part-whole 
relationships [2]. However, it is important to note that due to the fact that for ethical 
reasons a control group was unavailable, a distinct effect of the intervention omitting 
other potential factors cannot be substantiated by this particular research design. 
Furthermore, ceiling effects hamper the comparison of the increase in mathematical 
competencies between the whole sample and the group of children identified to be 
potentially at risk in learning school mathematics. Despite this, the children poten-
tially at risk undoubtedly demonstrated increased number knowledge and skills – 
domains which are seen as key predictors for later achievement in school mathe-
matics (Krajewski 2005, Aunola et al. 2004). 
Data from this study also suggests that children from non-German speaking back-
ground families show lower competencies in number concept development one year 
prior to school entry than their German peers. A comparison of the FYSMI pre-test 
data of the children with German as their first language and the children with a 
migration background based on a total of 947 children who completed the interview 
(see Fig. 2), shows a significant difference in achievement (p < 0.001) in the areas 
language of location, subitizing, matching numerals to dots, ordering numbers and 
numbers before and after. 
 

 
Figure 2: Mean scores of children with a migration background and German speaking 
background children in the FYSMI pre-test 

Complying with these results, children with a migration background demonstrated 
significantly lower counting abilities with respect to the number related items in the 
OTZ. A detailed investigation of these results indicates that language related factors 
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play an important role. In the sub-group of the children from Turkish families [3] it 
was found that most of these children identified as potentially at risk in learning 
school mathematics, showed better performances in counting and number activities 
when they were encouraged to answer in Turkish (Schmitman gen. Pothmann, 2008). 
Thus, the intervention obviously proved beneficial with respect to their mathematical 
performance in the German language. The 23 children with a migration background 
in the group of 60 children identified potentially at risk demonstrated a clear increase 
in achievement in the post-test. While the achievement of both groups significantly 
increased (p < 0.001) within the test interval, these children on average demonstrated 
an increase of 3.6 points between pre- and post-test compared to an increase of 2.9 
points in the remaining group of the 37 children from German families. However, the 
difference in achievement between these two groups is not significant (p = 0,164). In 
comparison, the growth in achievement in the group of children with migration 
background but without a potential risk factor in terms of their school mathematics 
learning is 1.3 points, while the mean score in this group of German children is 1.1. 
Again, the difference between those two groups (p = 0,629) in not significant (ibid, 
161). Immediately before school entry the mathematical competencies of children 
with and without migration background obviously have converged – in some areas, 
i.e.  matching numerals to dots, ordering numbers and part-part-whole, they even 
show slightly (however, not significantly) better results (ibid, 121). 
And also another finding with respect to early intervention for preschoolers identified 
to be potentially at risk in learning school mathematics is encouraging. With respect 
to the  substantial increase in achievement demonstrated by the 60 children with a 
risk factor in the FYSMI post-test, no significant difference between the group of 13 
children who worked once a week with pre-service teachers introduced as number 
fairies (group 1) and the remaining 37 children who received remedial action within 
their groups by their kindergarten teachers (group 2) was found (Fig. 3). 
 

 
Figure 3: Mean score of the FYSMI comparing the two intervention groups 
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This suggests that an intervention in the everyday practice by the kindergarten 
teacher who had received professional development in this area is as effective as a 
weekly one-on-one intervention by a visiting and hence more cost-intensive outside 
specialist. In addition, Figure 3 shows a clear increase in achievement in both groups 
of an average 2.5 points in group 1 and even 3.2 points in group 2 which is clearly 
higher than the increase in the complete sample (see above). 
IMPLICATIONS  
The findings of the study suggests that preschoolers who had been identified as 
potentially at risk in learning school mathematics one year prior to school entry could 
benefit significantly from an eight months intervention program based on the 
enhancement of number knowledge and counting abilities. Data from the pre- and 
post-tests clearly indicate increased knowledge, skills and understanding of numbers 
and sets, i.e. particularly those areas of number concept development regarded as 
predictors for later achievement in school mathematics (Krajewski, 2005, Aunola et 
al., 2004). Further analyses suggest that for more than 50 % of these children this 
increase in their mathematical achievement prior to school entry proves to be of 
lasting effect at the end of grade 1 (Grüßing & Peter-Koop, 2008). In how far this 
will hold true at the end of grade 2 is currently under investigation. 
Furthermore, there were no significant differences in achievement found in the post-
test between the groups of children that had experienced a one-on-one intervention by 
the preservice mathematics teachers who had been particularly trained for this task, 
and the children that had worked with their kindergarten teachers within their home 
groups. While clinical studies had already shown positive effects of early intervention 
(e.g. Krajewski 2005), this study suggests that there is not necessarily a need to bring 
external specialists into the kindergarten to work with individual children [4]. A com-
prehensive screening and respective enhancement of preschoolers potentially at risk 
by their kindergarten teachers is possible – given that the kindergarten teachers are 
prepared for this task during their initial and/or inservice training.  
In addition, the findings show that children with a migration background are not only 
over-represented in the group of preschoolers with a risk factor with respect to school 
mathematics, they also demonstrated the highest increase in mathematical achieve-
ment in the test interval. Hence, it appears to be important not only to focus on 
screenings that determine (German) language development prior to school as it is 
currently done in all German states, but also to investigate early mathematical 
abilities in order to identify children who need extra support in their number concept 
development. Since the PISA study has emphasized that the group of migrant 
children is overrepresented among the low achieving students at the age of 15 
(Deutsches PISA-Konsortium, 2001) and findings from the SCHOLASTIK project 
(Weinert & Helmke, 1997) indicate that low achievers in mathematics at the 
beginning of primary school in general stay in this position, this seems of crucial 
importance. While the German version of the Utrecht Early Numeracy Test (van Luit 
et al., 2001) – the OTZ – showed clear ceiling effects and also proved to be very 
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difficult for non German speaking background children due to its demands on 
German language comprehension, his study suggests that the FYSMI (Clarke et al., 
2006) is a suitable instrument for the collection of information on preschoolers’ 
number concept development and the respective identification of children potentially 
at risk in learning school mathematics. This instrument allows children to articulate 
their developing mathematical understanding through the use of simple materials 
provided for each task in a short one-on-one interview that takes about 10 to 15 
minutes for each child. Bruner (1969) has already highlighted the importance of 
material based activities for young children who for various reasons cannot yet 
verbally articulate their developing and sometimes already yet quite elaborate 
(mathematical) understanding. 
NOTES 
1. The FYSMI is designed to be conducted in the first year of school, which in Australia is the preparatory grade 
preceding grade 1. This preparatory year is compulsory for all five-year-old children. In Germany in contrast, formal 
schooling starts with grade 1 when children are six years old. While a majority of German five-year-olds attend 
kindergarten, this is not compulsory and involves fees to be paid by the parents. 

2. The analysis of the data from the standardised OTZ showed clear ceiling effects. Over 40 % of the children reached 
level A which supposedly represents the top 25 % of the children in this age group. However, in level E representing the 
bottom 10 % of the scale, the test differentiated sufficiently with respect to the sample. 

3. The majority of the children with a migrant background in the sample was from Turkish parents, followed by families 
from Russia, Kazakhstan, Lebanon and Iraq. 

4. However, it is acknowledged that there might be cases in which a specialist based one-on-one training in addition to 
the help provided by the kindergarten teacher is expedient. 
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THE STRUCTURE OF PROSPECTIVE KINDERGARTEN 
TEACHERS’ PROPORTIONAL REASONING  

Demetra Pitta-Pantazi & Constantinos Christou 
University of Cyprus 

Lamon (1997) claimed the development of proportional reasoning relies on different 
kinds of understanding and thinking processes. The critical components she 
suggested are: understanding of rational numbers, partitioning, unitizing, relative 
thinking, understanding quantities and change, ratio sense. In this study we 
empirically tested a theoretical model based on Lamon’s model, with data collected 
from 244 prospective kindergarten teachers. The analysis of the data provided 
support to this theoretical model and revealed that rational number, reasoning 
proportionally up and down and relative thinking are statistically significant 
predictors of proportional reasoning. These findings allow us to make some first 
speculations of which type of processes should be emphasized for the development of 
proportional reasoning in early years.  
Key words: proportional reasoning, rational number 

INTRODUCTION 
Ratio, proportional thinking and reasoning abilities are seen as a corner stone of 
school mathematics; this observation is reflected in current syllabus documents, (e.g., 
National Council of Teachers of Mathematics, 2004) and by educators (e.g., Nabors, 
2002). Researchers have often noted that the topic of proportional thinking can be 
challenging for schoolchildren (Fuson, 1988; English & Halford, 1995; Gelman, 
1991; Steffe & Olive, 1991; Kilpatrick, Mack, 1995; Swafford, & Findell, 2001). 
Proportional reasoning is in essence a process of comparing one relative amount with 
another. From a psychological perspective, proportional reasoning is a late 
accomplishment developmentally because it entails second-order reasoning; 
inasmuch as proportions are relations between two quantities, comparisons between 
proportions entail considering relations between relations (Piaget & Inhelder, 1975). 
However, although there is indeed considerable evidence that a full understanding of 
proportional relations develops slowly (e.g., Moore, Dixon, & Haines, 1991; 
Noelting, 1980), the notion that reasoning about relations among relations is 
intrinsically beyond the capabilities of young children has been strongly questioned 
(Spinillo & Bryant, 1991). To develop young students’ understanding, teachers 
should be aware of the critical components of understanding proportions. Thus, the 
main focus of the present study is to shed some light on the structure of kindergarten 
prospective teachers’ understanding of proportional problems.  
Until recently, we have had little understanding of how proportional reasoning 
develops. Based on previous research, we will develop and validate a framework of 
kindergarten pre-service teachers’ thinking while they work on representations of 
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proportional problems. Lamon (1999, 2007) asserted that understanding rational 
numbers marks the beginning of the process of proportional reasoning. Thus, in the 
proposed framework we will articulate the understanding of kindergarten prospective 
teachers’ on rational numbers, and related concept such as unitizing, partitioning, 
relative thinking, understanding quantities and change, ratio sense.  
Specifically, in this study, we will propose a conceptual framework, which is mostly 
based on previous research on rational numbers (Kieren, 1988) and on the features of 
Lamon’s (1999) model of proportional thinking. This framework constitutes an 
attempt to encompass the whole spectrum of kindergarten prospective teachers’ 
understanding of proportional situations and problems. Furthermore, the study 
provides an empirical verification of the proposed model and traces the different 
types of thinking projected by kindergarten prospective teachers in the context of 
rational number and proportional tasks.  

THEORETICAL BACKGROUND 
Components of proportional reasoning 
Lamon (1999, 2007) suggested that proportional reasoning is complex and to achieve 
it one has to master different kinds of understanding, thinking processes and contexts. 
Specifically, she proposed six areas that contribute to proportional reasoning: 
partitioning, unitizing, quantities and change, rational numbers, relative thinking and 
rate. Kieren (1988) claimed that the concept of rational number consists of four 
interrelated subconstructs, ratio, operator, quotient and measure, and part-whole 
permeates these four subconstructs. A short description of each proportional 
reasoning components and a brief definition of each subconstruct are provided below: 
Relative thinking is a cognitive function which describes the ability to analyze change 
in relative terms. It is also called multiplicative thinking (Lamon, 1999).     
Unitizing is the cognitive process of mentally chunking or restructuring a given 
quantity into familiar or manageable or conveniently sized pieces in order to operate 
with that quantity (Lamon, 2007).    
Quantitative reasoning in visual and verbal situations is the ability to interpret and 
operate on changing quantities. Quantitative reasoning may or may not involve 
numbers. It may involve the comparison of numbers in standard form or qualitative 
judgments (such as more, less, etc) without actually having a quantity (Lamon, 1999).     
The partitioning and part-whole subconstruct of fractions is defined as a situation in 
which a continuous quantity or a set of discrete objects are partitioned into parts of 
equal size (Lamon, 1999). 
The ratio subconstruct of rational numbers is regarded as a comparison between two 
quantities. Thus, it is considered as a comparative index, rather than as a number 
(Carraher, 1996). 
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In the operator interpretation, rational numbers are viewed as functions applied to 
some number, object, or set (Behr, Harel, Post, Lesh, 1993; Marshall, 1993). One 
could conceive operator either as a single composite function that results from the 
combination of two multiplicative operations or as two discrete, but related functions 
that are applied consecutively.  
The quotient subconstruct can be seen as the result of a division situation. In 
particular, the fraction x/y indicates the numerical value obtained when x is divided 
by y, where x and y represent whole numbers (Kieren, 1993).  
In the measure subconstruct, a fraction is associated with two closely interrelated and 
interdependent notions. First, it is considered as a number, which conveys the 
quantitative personality of fractions, its size. Second, it is associated with the measure 
assigned to some interval. For example, 2/3 corresponds to the distance of 2 (1/3-
units) from a given point. This is the reason that this subconstruct is associated with 
the use of number lines.  
Prospective teachers’ subject matter and pedagogical knowledge 
Although previous studies have examined teachers’ abilities to solve proportionality 
problems (Post, Harel, Behr, & Lesh, 1991) and their ability to distinguish between 
proportional and non proportional situations (Simon & Blume, 1994) until now, no 
studies have described teachers’ understanding of all the above mentioned 
components of proportional reasoning and whether they actually contribute to 
proportional reasoning. Since we encourage teachers to aim to a more conceptual 
understanding of mathematical concepts, we need to determine whether they have the 
necessary understanding of the concept and certainly its related components (Cramer, 
Post, & Currier, 1993).  
There is no doubt that teachers’ understanding of proportional reasoning also affects 
the way that they will present this topic to their students. In other words, the way in 
which a teacher will present proportional activities in her classroom is an indicator of 
what she believes to be more important and appropriate for students to learn, and 
hence, affects the way that their students understand mathematics (Thompson, 1992). 
The fact that mathematics in kindergarten may appear to some individuals as simple 
or trivial can be very misleading. Kindergarten teachers must know the mathematical 
concepts that students need to master and facilitate them to build necessary 
knowledge that these children are capable of, in those early years.  
Proportional reasoning is a topic often introduced in the last years of primary school. 
Still, it is believed that it is not an all-or-nothing affair but various dimensions 
contribute to its construction which grows over a period of time (Lamon, 1999). 
During students’ kindergarten years some of these dimensions may be addressed. It is 
important to clearly identify the contribution of these various dimensions to 
proportional reasoning and find ways that these may be introduced and addressed in 
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the kindergarten classroom. It is very likely that the exposure to one or some of these 
dimensions may provide a better in-road to proportional reasoning. 
The Proposed Model 
The model proposed in this article is based on Lamon’s (1999) conceptualisation of 
different kinds of understanding and thinking process necessary for the development 
of proportional reasoning and Kieren’s (1988) theory on the multifaceted personality 
of rational number (see Figure 1). Two modifications were made to Lamon’s model. 
Firstly, we added the dimension “reasoning proportionally up and down”. Reasoning 
proportionally up and down, involves students’ ability to analyse the quantities in a 
given situation to determine that they are related proportionally and that it is 
appropriate to scale them up or down (Lamon, 1999). We felt that this dimension was 
necessary and was missing from the Lamon’s model. Secondly, the rate dimension 
was taken as one of the four subconstructs of rational number and not an isolated 
dimension (Kieren, 1988).  
The proposed model consists of nine first-order factors as shown in Figure 1. Figure 
1, makes easy the conceptualisation of the way in which the nine first order factors 
are: unitizing, understanding quantities and change, relative thinking, ability to reason 
proportionally up and down, partitioning/part-whole, ratio, operator, quotient and 
measure. There are also two second order factors, rational number and proportional 
reasoning. The model suggests that proportional reasoning is related to students’ 
abilities in unitizing, quantities and change, relative thinking, reasoning 
proportionally up and down and rational number. Rational number is presented as a 
multi-dimensional factor which is composed of four subconsturcts: ratio, operator, 
quotient and measure, with partitioning/part-whole being the basis for the 
development of these four subconstructs. 

METHODOLOGY 
Purpose of the study 
Drawing on Lamon’s (1999) and Kieren’s (1988) theoretical models and employing 
tasks used in previous studies, the present study aimed to examine prospective 
kindergarten teachers’ proportional reasoning. In particular, the study aims to 
investigate the relationship amongst: partitioning, unitizing, understanding quantities 
and change, relative thinking, reasoning proportionally up and down, measure, rate, 
operator and quotient with proportional reasoning as they will be projected through 
prospective kindergarten teachers’ responses. 
Participants and tasks 
To answer our research questions, a test on proportional reasoning was constructed 
guided by the criteria regarding the development and the measurement of the 
concepts embedded in the theoretical models described earlier. The test included 31 
items measuring the participants’ abilities in part-whole, unitizing, quantities and 
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change, rational numbers, relative thinking and reasoning proportionally up and 
down. For the measurement of rational number, the test included tasks on its four 
interrelated subconstructs: ratio, operator, quotient and measure. Most of the tasks 
that were used were taken from previous studies such as Lamon’s (1999) and 
Charalampous and Pitta-Pantazi (2007). 
The test was administered to 244 kindergarten pre-service teachers studying at three 
universities in Cyprus.  
Scoring and Analysis 
Students’ fully correct responses were marked with 1 and the incorrect responses with 
0. If a student gave a partly correct response, for example if s/he gave a correct 
answer but wrong justification, this again was marked with 0. The confirmatory 
factor analysis (CFA), which is part of a more general class of approaches called 
structural equation modeling, was applied in order to assess the results of the study. 
CFA is appropriate in situations where the factors of a set of variables for a given 
population are already known because of previous research. In the case of the present 
study, CFA was used to test hypotheses corresponding to Lamon’s theoretical 
conceptualization of what constitutes proportional reasoning and Kieren’s model of 
rational number subconstructs. Specifically, our task was not to determine the factors 
of a set of variables or to find the pattern of the factor loadings. Instead, our purpose 
of using CFA was to investigate whether proportional reasoning is a composite 
function of various types of understanding presented by previous research (Kieren, 
1988; Lamon, 1999, 2007).  
One of the most widely used structural equation modeling computer programs, 
MPLUS (Muthen & Muthen, 1998), which is appropriate for discrete variables, was 
used to test for model fitting in this study. In order to evaluate model fit, three fit 
indices were computed: The chi-square to its degree of freedom ratio (x²/df), the 
comparative fit index (CFI), and the root mean-square error of approximation 
(RMSEA) (Marcoulides & Schumacker, 1996). The observed values of x²/df should 
be less than 2, the values for CFI should be higher than .9, and the RMSEA values 
should be close to zero.  

RESULTS 
The results are presented in relation to the aim of the study. Figure 1, represents the 
model which best describes the theoretical model we proposed for proportional 
reasoning. More specifically, it illustrates that proportional reasoning is a result of 
abilities in partitioning, unitizing, understanding quantities and change, relative 
thinking, reasoning proportionally up and down and rational number. From a 
structural point of view, nine first order factors were included: unitizing, 
understanding quantities and change, relative thinking, reasoning proportionally up 
and down, part-whole, measure, rate, quotient and operator. Each of these factors 
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involved three to six tasks. There were also two second order factors: rational number 
and proportional reasoning.  
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Figure 1: Model for proportional reasoning. 
The numbers in the diagrams indicate the factor loadings and the * the values that are 
statistically significant 

 

Confirmatory factor analysis (CFA) was used to evaluate the construct validity of the 
model. CFA showed that 30 out of the 31 tasks employed in the present study 
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significantly correlated on each factor, as shown in Figure 1. It also showed that the 
observed and theoretical factor structures matched the data set of the present study 
and determined the “goodness of fit” of the factor model (CFI=0.933, x²= 641.330, 
df= 418, x²/df=1.53, RMSEA=0.047), indicating that, unitizing, understanding of 
quantities and change, relative thinking, reasoning proportionally up and down and 
rational number can represent distinct function of prospective kindergarten teachers’ 
proportional reasoning. 
The structure of the proposed model also addressed the predictions of unitizing, 
understanding of quantities and change, relative thinking, reasoning proportionally up 
and down and rational number, in proportional reasoning. First, the results obtained 
confirmed Kieren’s (1988) conceptualisation, that the concept of rational number is 
comprised by four subconstructs: ratio (r=.467 p<0.05), operator (r=.878 p<0.05), 
quotient (r=-.417 p<0.05) and measure (r=.434 p<0.05). The three subconstructs, 
ratio, operator and measure correlated significantly with rational number whereas the 
quotient subconstruct had a negative significant correlation with rational number (r= -
.417 p<0.05). This may be due to the fact that the quotient task required division, a 
reverse type of thinking. It was also confirmed that the part whole/partitioning 
interpretation of rational number is related to the four subconstructs, ratio (r=.296 
p<0.05), measure (r=.270 p<0.05), operator (r= -.044 p>0.05), and quotient (r=.149 
p>0.05). However, only the relationships to ratio and measure subconstructs were 
statistically significant. 
Second, the results obtained showed that to develop proportional reasoning different 
kinds of understanding, thinking processes and contexts are essential. The analysis 
revealed that the critical components of proportional reasoning are: unitizing, 
understanding of quantities and change, relative thinking, reasoning proportionally up 
and down and rational number. The loadings of each of these factors on proportional 
reasoning indicated that rational number (r=.809 p<0.05), reasoning proportionally up 
and down (r=.760 p<0.05) and relative thinking (r=.766 p<0.05) significantly 
predicted students’ performance in proportional reasoning. Performance in rational 
number was the strongest predictor for success in proportional reasoning. Unitizing 
(r=.058 p>0.05), and understanding of quantities and change (r=.181 p>0.05) 
although appeared to predict abilities in proportional reasoning, did not significantly 
contribute to proportional reasoning.  

DISCUSSION 
The present study aimed to empirically test a theoretical model based on Lamon’s 
(1999) conceptualisation of proportional reasoning, with prospective kindergarten 
school teachers. The results of this study confirmed the theoretical model and also 
indicated the extent of the impact that different components have in proportional 
reasoning. It was confirmed that part-whole, unitizing, understanding of quantities 
and change, relative thinking, reasoning proportionally up and down and rational 
number predicted prospective teachers’ abilities in proportional reasoning, with 
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rational numbers, relative thinking and reasoning proportionally up and down being 
the most significant predictors. The results of the study also lend support to Kieren’s 
(1988) conceptualisation of the multifaceted construct of rational number, since this 
construct was significantly related to all four subordinate constructs measure, rate, 
operator and quotient. As a whole, these findings suggest that a profound 
understanding of rational number, unitizing, relative thinking, thinking about 
quantities and change, reasoning proportionally up and down are related to students’ 
performance in proportional reasoning. 
The findings of the study suggest that different thinking processes and contexts are 
necessary for the teaching of proportional reasoning. For instance, teachers may 
present children with situations which require relative thinking or scenarios where 
quantities and change need to be discussed. Students may be asked to compare 
extensive (the length of two ribbons) or intensive quantities (the sweetness of a drink 
when adding sugar) (Nunes, Desli, & Bell, 2004). Other teachers may decide to start 
with partitioning tasks, by asking students to share one item or a set of items to two 
or more individuals. Another possibility is to introduce activities where reasoning 
proportionally up and down is required. Previous research (Sophian & Madrid, 2003) 
has shown that young students are capable of this type of thinking. Such reasoning 
can be introduced through activities where students are required to carry out many-to-
one correspondence. These processes allow young students to build an understanding 
of composite units, provide additive solutions which may later be linked to 
multiplicative solutions (Sophian & Madrid, 2003).  
Obviously, designing instruction that will develop young students’ proportional 
reasoning requires an understanding of young students’ intuitive knowledge. It is 
very likely that from their everyday life, young students may develop a tendency 
towards certain ways of thinking which may make one of the abovementioned 
approaches to proportional reasoning more effective. It still needs to be investigated 
which teaching approach and emphasis on which one of these proportional reasoning 
dimensions can be more effective for students development of proportional reasoning 
in their early years of schooling.   
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HOW CAN GAMES CONTRIBUTE TO EARLY MATHEMATICS 
EDUCATION? – A VIDEO-BASED STUDY 

Stephanie Schuler, Gerald Wittmann 
Pädagogische Hochschule Schwäbisch Gmünd 

 
In recent years early mathematics education has become an area of increased 
interest and research activity. Consequently, a growing number of educational 
programs and especially developed materials are published and used in 
kindergarten. Games, however, are an often underestimated yet promising approach 
for the early years. We asked if, how, and under what conditions early mathematics 
education (3- to 6-year-olds) can be organized with everyday materials, for example 
games. In a two-phase design, we first developed criteria based on didactical 
considerations to assess materials. In the following empirical study we videotaped 
children using selected materials. The research resulted in first descriptions of the 
conditions under which potentially suitable materials can develop mathematical 
potential in young children. 
Keywords: number concept, arithmetic skills, early childhood education, 
kindergarten, learning materials, video study, grounded theory, games 

1 THE CONSTRUCTION OF NUMBER CONCEPT 
Since the late 1990s a growing research activity can be observed in the field of early 
mathematics education. Within this research there is a consensus about the contents 
that should be part of a preschool curriculum. The answers differ in detail but many 
authors focus on fundamental ideas or important aspects of mathematical thinking 
like number and quantitative thinking, geometry and spatial thinking, algebraic 
reasoning (patterns, relationships) or data and probability sense (cf. Ramani & 
Siegler, 2008; Peter-Koop & Grüßing, 2007; Clements & Sarama, 2007a/b; Baroody 
et al, 2006; Lorenz, 2005; Balfanz et al, 2003; Krajewski, 2003; Arnold et al, 2002;). 
Some authors also mention process ideas like mathematization and communication or 
argumentation (cf. Perry et al, 2007; Clements & Sarama, 2007b, 463).  
Our research relates to the construction of number concept and quantitative thinking, 
because “for early childhood, number and operations is arguably the most important 
area of mathematics learning. In addition, learning of this area may be one of the best 
developed domains in mathematics research” (Clements & Sarama, 2007b, 466). 
Consequently, there are not only a lot of games and materials for kindergarten which 
address this area, but there also exists a well-developed theory on the construction of 
number concept our research can be based on. Although our research concentrates on 
this area we know that early childhood education needs a broader approach and a 
widespread fostering of abilities. 
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In the past fifty years, the research on children’s development of quantitative thinking 
and construction of number concept has seen a change from Piaget’s logical-
foundation-model to the current skills-integration-model (cf. Baroody et al, 2006; 
Clements, 1984; Peter-Koop & Grüßing, 2007).  
Piaget’s developmental theory emphasizes that the construction of number concept 
depends on the development and synthesis of logical thinking abilities, especially of 
classifying and ordering (cf. Piaget, 1964, 50ff). According to this view counting 
does hardly benefit the construction of number concept but might rather be an 
obstacle. The logical thinking abilities are not available until concrete operational 
stage, that is at the age of seven (cf. Piaget, 1952, 74). Therefore the construction of 
number concept is not possible until primary school and activities to foster this goal 
do not make any sense in kindergarten. In the pedagogical practice Piaget’s theory led 
to set theory that postponed teaching number and arithmetic concepts until preschool 
and primary school (cf. for example Neunzig, 1972). 
Particularly since the late 1970s Piaget’s theory has given rise to a lot of criticism. In 
contrast to Piaget, Gelman and Gallistel (1978) underline the meaning of counting for 
the construction of number concept. In their opinion counting principles are innate 
and therefore available in kindergarten. Starkey and Cooper (1980) demonstrated that 
even infants are capable of distinguishing sets of small numbers and Wynn (1998) 
even speaks of infants’ sensitivity to numbers. Thus nowadays there is a wide 
consensus that preschoolers show considerable informal arithmetic knowledge in 
spite of the existence of large inter-individual differences (cf. Baroody et al, 2006; 
Schipper, 1998). A well-developed number concept is not naturally given but requires 
nurturing: Learning number words for example may help to construct an 
understanding of number. There is also agreement on the skills-integration-model. 
The following skills seem to be central for the years before school attendance (cf. 
Resnick, 1989; Gerster & Schultz, 2000; Krajewski, 2003; Lorenz, 2005): 
! Perceptual and conceptual subitizing: Perceptual subitizing is the spontaneous 

recognition of recurrent configurations up to sets of four that are associated with 
number words; whereas conceptual subitizing allows the instant recognition of 
sets bigger than four. Conceptual subitizing requires visual structuring processes 
(numbers as units of units) (cf. Clements 1999). 

! Verbal and object counting: Verbal counting extends from simply reciting the 
number line (string level) to skills like counting forwards, backwards, counting 
on, counting in steps (bidirectional chain level) (cf. Fuson, 1988, 34–60); object 
counting contains counting sets and naming the number word (cardinality rule); 
and counting out objects to a given number word. 

! Comparing and ordering sets: Comparison and ordering of sets is possible on a 
perceptual level (more, less, even) and on a numerical level (5 is more than 3). For 
small sets it is possible by perceptual subitizing. 
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! Part-whole-connections, composing and decomposing sets: These skills are 

closely connected to conceptual subitizing and the numerical comparison of sets. 
Understanding that a number is composed of other numbers is seen as the central 
skill for the construction of number concept (cf. Resnick 1989). 

! Beginning addition and subtraction with material and in concrete contexts: 
Children can use either counting procedures and/or visual structuring processes to 
solve first arithmetical problems. 

In a longitudinal study Krajewski (2003) proved that some of these skills are of great 
importance for later school achievement and success. They even allow the statistical 
prediction of marks in primary school mathematics. 

2 RESEARCH QUESTIONS 
In recent years different approaches to early mathematics education have been 
developed. One can distinguish at least two types: 
! Course-like educational programs in kindergarten, focussing on the purposeful 

construction of specific mathematical skills, sometimes even following a relatively 
strict curriculum (e.g. in Germany Preiß, 2004/05; Krajewski et al, 2007; in the 
USA Clements & Sarama, 2007a; Ramani & Siegler, 2008). 

! Implementation of games, educational materials and informal learning 
opportunities in the daily kindergarten practice, subsequent to joint activities, 
realized in a playful way, aiming at a wide spread fostering of children’s abilities 
(e.g. in Germany Hoenisch & Niggemeyer, 2004; Müller & Wittmann, 2002/04; 
e.g. in the USA Balfanz et al, 2003). 

Our study refers to the latter approach which seems promising but often 
underestimated. Examples for materials can be 
! well-known commercially available games like common board games, card games 

and dice games, 
! special educational games and materials to foster arithmetic skills which can be 

either purchased or developed by the educational staff (and the children) 
themselves. 

The goal of our study is to analyze the role of these materials in early mathematics 
education. In detail we ask the following research questions:  
1. What (theoretical) potential for children’s construction of number concept do 

these materials have in principle?  
2. Under what conditions can potentially suitable games and materials can develop 

their mathematical potential? 
3. In which way can games contribute to early mathematics education? Is it possible 

to organize early mathematics education, at least partially, with games? 
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3 RESEARCH METHODS AND METHODOLOGY 
Our research follows a qualitative design. According to the research questions it is a 
two-phase design (cf. figure 1) that will lead to a (grounded) theory about the 
conditions for a substantial and rich mathematical learning environment (cf. Strauss 
& Corbin, 1996): 
! The first phase is a theoretical analysis of games and educational materials. We 

established theory-driven criteria on the basis of didactical considerations (cf. 
section 1) to assess the suitability of materials for the construction of number 
concept (cf. Schuler, 2008). 

! The second phase is an empirical evaluation of selected, theoretically proved 
games and educational materials. A theoretical study can never capture all aspects 
of a learning environment. Thus we started a video-based study in cooperation 
with the staff of a selected kindergarten to test the criteria’s workability, to 
develop further and more detailed criteria and to develop learning environments 
with materials that meet the criteria’s requests. In a first step of data inquiry we 
videotaped educators while playing with children during an open offer at several 
occasions with selected materials. In a second step the researcher took the role of 
an educator and offered games during free play at several occasions. 

 
 
 
 
 
 
 
 

Figure 1: Two-phase research design 

According to the methodology of Grounded Theory (Strauss & Corbin, 1996), which 
requires the ongoing change and interplay between action (data inquiry) and 
reflection (data analysis and theory construction) (cf. Mey & Mruck 2007, 13), the 
video-based study is still in progress. Basis of the data analysis are transcripts of 
video sequences. These transcripts do not include only verbal data but also the 
paraphrase of actions, gesture, facial expressions, as well as screenshots and a 
storyboard. The data analysis provided first answers to some of the earlier questions 
and led to further research activities following theoretical sampling (cf. Strauss & 

Materials in early mathematics education 
 

 

 

 

 

Criteria for material assessment 
! Distinctions on a conceptual 

level 
! Materials’ mathematical 

potential 
! Materials’ didactical features 

Empirical video-based study 
! Criteria’s workability 
! Development of further criteria 
! Evaluation of learning 

environments 

Theory about conditions of a substantial and rich mathematical learning environment 
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Corbin, 1996, 148ff). Using the three most important tools in Grounded Theory 
methodology – theoretical coding, theoretical sampling, and permanent comparison – 
there was reason to believe that, aside from the material chosen, the educator’s role is 
crucial to the development of mathematical potential. It has become obvious that the 
initial criteria need supplementing because the development of the mathematical 
potential is linked to conditions. 

4 RESEARCH RESULTS 

4.1 Criteria for material assessment 
During the past decade many suggestions for early mathematics education were 
published. Thus it seems necessary to develop criteria to assess these materials and to 
choose carefully (cf. Schuler, 2008). 
1. In accordance with previous remarks, we first distinguished the materials from one 

another on a conceptual level. 
! Does mathematics appear as a part of kindergarten everyday life or is there the 

idea of a special class? 
! Does the material aim at support of at-risk children or of all children? 
! Does the material support one content idea (e.g. number) or different content 

ideas? 
2. Following the skills-integration-model about the construction of number concept 

we asked what mathematical content and potential is inherent in the material. For 
the content idea “number and quantitative thinking” the skills mentioned in 
section 1 guide the analysis: 
! Does the material make it possible to compare sets on a perceptual and a 

numerical level? 
! Does the material support the construction of mental images of numbers (for 

example following the patterns of dice images)? 
! Does the material prompt counting activities (forward, backward, counting in 

steps, precursor/successor)? 
! Are composing, decomposing and first arithmetic activities possible? 

3. Following the idea of an early mathematics education implementing mathematics 
in every day practices and fostering all children of different ages, we asked in 
addition the following questions: 
! Does the material meet different levels of previous knowledge? 
! Does the material allow access and challenge at different levels? 
 

WORKING GROUP 14

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2651



  

Mathematical content and potential 
Comparing and ordering sets + 
Constructing ideas of dice images (up to 6) ++ 
Constructing ideas of other images (up to 6) ++ 
Counting objects ++ 
Assigning sets to numerical symbols + 
Assigning numerical symbols to sets + 
Counting verbally  
Finding precursor/successor   
Composing and decomposing set images/numbers + 
Beginning addition and subtraction + 

+: possible  ++: appropriate, highly supported 

Table 1: Implementation of the criteria for the chips game 

(1)         (2)         (3)   

Figure 2: Boards for the chips-game 

Games are one possible material to meet the conceptual needs. We want to illustrate 
the implementation of the criteria by an example (see table 1). The chips-game is 
played by two persons. Each person gets a board (three or more alternative versions, 
see figure 2) and chips of one colour. Throwing alternately one puts chips on the 
matching square. The person who covers all squares first wins. Variations take into 
account different levels of previous knowledge, access and challenge:  
! playing and covering alone with or without a dice,  
! boards with different images,  
! two persons playing on one board with chips of different colours,  
! covering the squares with number cards. 

General mathematical skills like describing, giving reasons, arguing, forming 
hypotheses or making predictions are not material inherent. But data analysis showed 
that they can be stimulated by the educator’s questions (see section 4.2). Thus 
process ideas can be described as mathematical potential that develops in interaction. 
One goal of the video data analysis is to generate more knowledge about how 
mathematical potential develops. 
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4.2 The video-based study 
As mentioned above data inquiry, data analysis, and theory construction are still in 
progress. Therefore the following section reflects the contemporary status of the 
research process and the results we have got so far. In a first step coding and 
comparing sequences of the kindergartens educators on the one hand and the 
researcher taking the role of an educator on the other hand, led to three preconditions 
on the part of the educator to develop a game’s mathematical potential: 
! Mathematical and didactical competence contains the analysis, assessment, choice 

and presentation of materials and results in sensitivity for possibilities and 
variations in the games course. 

! Individual presence emphasizes that the educator’s actions and support depend on 
the individual child’s needs and competences. The educator’s presence can 
support affordance and lasting involvement with the material by creating game 
situations, explaining rules and goals, helping to follow the rules, to solve 
conflicts and to facilitate feelings of competence. 

! Conversational competence means to develop the mathematical potential through 
comments on the game’s course, questions that stimulate objective explanations, 
reflections on actions and thoughts, interchange between children, assumptions 
and hypotheses. 

Concerning these three preconditions we observed difficulties on the part of the 
educators. Except for counting activities they were mostly not aware of the game’s 
mathematical potential. They consequently could not stimulate other mathematical 
opportunities. Supporting presence during free play was often an organisational 
problem and aggravated the perception and realisation of individual needs. The 
educators questioning repertoire was mainly reduced to narrow questions like: How 
many are there? How many chips do you need? Where are five? Examples for 
questions to understand and stimulate the child’s thinking are open and reasoning 
questions: How have you seen these are precise five? How do you know here are 
more/less than /just as many as there?  
In a second step we started to investigate the mathematical opportunities during the 
game sequences. According to the differences in mathematical potential we 
distinguished different game sequences: 
! introduction of a new game or material (1),  
! game situation with fostering elements (2),  
! game among children of similar age (3),  
! game among children of different age (4).  
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Detailed analysis and open coding of transcripts of type (2), mostly a one-to-one-
situation of educator and child, revealed so far the following characteristics: 
! Individual affordance (cf. Lewin following Heckhausen 2006, 31, 105ff) by 

optical or haptic features: An example for optical affordance is a child’s 
confusion and curiosity about differing set images in the chips game (see board 3 
in figure 2). Haptic affordance can manifest in covering the set images with chips 
without using a dice. 

! Demonstration of skills and abilities: In a game situation with fostering elements, 
children want to show what they already can. One can distinguish explicit ways of 
demonstration like “I can those.” or “This is easy for me.” from implicit ways that 
manifest in the child’s increased gestural and verbal engagement. 

! Gestural and verbal explanation: The chips game can be played on different 
levels of articulation – actions (having a throw, covering), gestural and verbal 
comments on actions (naming and showing dice and board images), gestural and 
verbal explanations (showing and explaining the differences and similarities 
between images of board 2/3 and dice images). The latter level requires the 
educator’s purposeful questions and stimuli. 

6 DISCUSSION 
As we expounded in section 1 there is a wide consensus about contents in early 
mathematics education and about the importance of the construction of number 
concept and quantitative thinking. The theoretical analysis of selected games could 
show that games have a mathematical potential concerning the number concept. To 
identify this potential, central skills were reformulated for the analysis of 
kindergarten materials (see table 1). 
Aside from contents, the question of methods in early mathematics education is an 
interesting and still little investigated issue: „little is known about preschool teachers’ 
role in promoting math skills“ (Arnold et al 2002, 762). One can distinguish different 
statements about this subject: 
! General statements about how children can learn mathematics emphasize the area 

of conflict between construction and instruction: “Early childhood educators face 
a balancing act – that is, an approach that is neither too direct nor too hands off” 
(Baroody et al, 2006, 203).  

! A further discussion focuses on the role of playing and learning: “Play is not 
enough. […] children need adult guidance to reach their full potential” (Balfanz et 
al, 2003).  

! In addition, some authors stress the differences in content and method between 
kindergarten and primary school. “Early childhood mathematics should not 
involve a push-down curriculum” (Balfanz et al, 2003, 266) and kindergarten aims 

WORKING GROUP 14

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2654



  
at “preparing children for school but not by school methods” (Woodill et al, 1992, 
77).  

Our data analysis indicates so far that potentially suitable games need a competent 
educator with regard to didactical and conversational aspects. For one type of 
sequences – game situation with fostering elements – we phrased characteristics. 
These characteristics imply and allow more specific statements about an educator’s 
didactical and conversational competence. The educator has to discern the child’s 
individual approach to the material and has to consider the mathematically productive 
aspects. He has to make possible the demonstration of abilities and has to facilitate 
and challenge gestural and verbal explanations through suitable game materials, 
stimuli and questions. 
For other types of sequences this work still is to come. We expect new findings from 
sequences where children play with other children of the same or of a different age 
and from sequences which have both elements – children playing together with 
selective educator’s interventions. Whereas we could find some answers to the still 
little investigated educator’s role in early mathematics education we do not know 
much about what children at this age can actually learn with and from each other. We 
also have to do further research on suitable ways of interventions to make a game 
mathematically productive without reducing the game’s idea and affordance. 
Games can be described as one possibility to organize early mathematics education in 
correspondence with the daily kindergarten practice. But as we have seen this is not 
without requirements. These requirements simultaneously show the limitations of this 
approach. 
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NATURAL DIFFERENTIATION IN A PATTERN ENVIRONMENT 
(4 YEAR OLD CHILDREN MAKE PATTERNS) 1 

Ewa Swoboda  

University of Rzeszów, Rzeszów, Poland  

Manipulation in learning geometry is a disputable topic because of different 
theoretical bases for creation of geometrical concepts. Some theories underline a 
great importance of visual information in forming the first level of understanding 
geometry. For children, such visual geometrical information could be provided by 
patterns. Assuming that visual information gives the first stimulus for creation of 
geometrical concept, I undertook the experiment to observe the possibility of going 
beyond visual states in early geometry, towards its dynamic images.  

INTRODUCTION  

Many children have a well-developed, spontaneous and intuitive mathematical 
competence before their school education (Clarke, Clarke, Cheeseman, 2006). 
Researches in this field put a great emphasis on early numeracy and competence in 
counting, although in  some articles the topic of “spatial and geometrical competence 
and concepts” is described as well. In these attempts, “spatial development” is 
described by relations like: behind, beside, in front of…; concepts are usually limited 
to the basic geometrical shapes: triangles, squares, circles. 

I strongly believe that  guasi – geometrical activities can develop widely understood 
children’s mathematical competence. On one hand, since geometrical approach to 
mathematics is closer to children than arithmetical one, geometry can open doors to a 
world of mathematics. Geometrical cognition starts from a reflection upon the 
perceived phenomena and in this way correlates with the basic ways of learning 
among children. On the other hand, it gives a chance to develop such ways of 
thinking, that are typical for mathematical thinking. Skills like generalization, 
abstraction, perceiving relations, understanding rules are the base for this aim. Early 
geometry is in-between physical and abstracts worlds. By this, it enables to 
mathematize this world. 

By stating an issue of enriching children’s mathematics by adding geometrical 
activities, we simultaneously pose a question: what such activities should include? 
Should they be focused on geometrical figures, or should they go beyond 
traditionally understood areas of children’s geometry? It seems, that geometrical 
regularities (patterns) are unexploited areas for such goals. 

                                           
1This paper was partly prepared in the frame of Comenius Project titled “Motivation via Natural Differentiation”, no. 
142453-2008-LLP-PL-COMENIUS-CMP 
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Many educators are in opinion, that during the work with patterns, elements of 
mathematical thinking occur. A pattern is a form, a template, a model (or, more 
abstractly, a set of rules). It is a well-known fact that geometrical regularities rooted 
in patterns can be described by the language of geometrical transformations. My 
previous research confirm, that 4-7 year old children are capable of organizing the 
space and arranging it accordingly to geometrical relations in a spontaneous way 
(Swoboda, 2006).  But these are static relations, represented visually, and 
connections between such grasping of relations and their dynamic representations are 
not scientifically proven. 

PERCEPTION VERSUS ACTION IN EARLY GEOMETRY  

Some theories stress the fact that geometrical knowing and understanding is created 
in a specific way. In those theories, the priority is given to perception.  

The most popular theory of forming the geometrical concept comes from P.van 
Hiele. He describes the first level of understanding as “visual”, connected with non-
verbal thinking. The emphasis is placed on the ability of recognizing shapes, which 
are  judged by their appearance as the ‘whole’. Not much concerning the role of 
action is spoken, although a didactics conceptions suggest activities based on the 
action with objects. In J. de Lange's opinion (who comments van Hiele’s theory), a 
pupil who is on the visual level can obtain the first level of thinking when s/he is able 
to manipulate in  domain of regularities. (1987, p.78).  

Some very interesting depictions related to geometrical understanding are present in 
conceptions worked out in Czech Republic by M. Hejný and P. Vopěnka. In their 
opinion, geometrical world  is hidden in the real world, and it is emerging from the 
surroundings through the special intellectual activity which can be called “the 
geometrical insight” (Hejný, M. 1993,  Vopěnka, P. 1989). At the beginning, there is 
no geometrical world nor geometrical object in  a child’s mind. Only objects from 
the real world exist. But we focus our attention on those objects in various ways. 
Sometimes we perceive „something”. Vopěnka (1989, p. 19) describes such a 
situation in the following way: To see „this”, means to focus attention on “this”, to 
distinguish “this” from the whole rest. This, what can absorb the whole attention on 
itself, we call „phenomenon”. Perceiving „something” creates the first 
understanding. For example, a child can focus his or her attention on a shape of an 
object or on a specific position of one object in relation to another.  Phenomena open 
the geometrical world to a child. In spite of the fact that our attention is attracted by 
these phenomena, this first understanding is passive: stimulus goes from the 
phenomenon. In this depiction, the role of perception is large  – the perception of 
„something”  is the first step to creation of the child’s own geometrical world.  

In these depictions, the role of an action is lost. Results of psychological researches 
confirm that in understanding of shapes, the great importance lays upon the pictorial 
designate.  But the next stage is needed. Acts of perception are important but are not 
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a sufficient source of geometrical cognition. Szemińska (1991, p.131) states that: 
perception give us only static images; through these, we can catch only some states, 
whereas by actions we can understand what causes them. It also guides us to 
possibilities of creating dynamic images. 

Szemińska has worked very closely with Piaget and, widely known his results show 
that children (on the pre-operational level) have great difficulties in movements 
reproduction – they are not able to foresee a movement of an object in a space. The 
process of acquisition of such skills is lengthy and gradual. During manipulations, 
child’s attention should be focused on action, not on the very result of action. It 
requires a different type of reflection than the one that accompanied his or her 
perception. 

This short juxtaposition above shows that the relation between visual recognition of 
geometrical objects and actions which can lead to creation of dynamic images of 
those objects, need further investigations. They are still not recognized as an 
educational problem. For this reason I undertook the experiment to observe the role 
of manipulation in early geometry.  

EXPERIMENT 

In my experiment, as the basis I took Vopěnka’ and Hejný’s  theories about  the 
opening of the geometrical world. First of all, I based on the assumption, that the 
first understanding takes place when a child turns its attention on any geometrical 
phenomenon. I was interested in situations where children can manipulate. Results of 
my previous experiments showed that making patterns (arranging them out of blocks, 
folding out of puzzles, drawing), can fulfill our expectations.  

In order to test the possibilities of creating a “path” from perception to manipulation, 
I prepared an experiment, which took place in March - April 2008. Children from a 
nursery school, aged 4, 5, 6 , were the subject of the series of observations. Clinical 
observation an interview with a small group of children was chosen as a methods.  

Children were tested individually. As a research tool we used 
„tiles” (two types), shown on the right (Fig.1). The whole 
investigation of one child consists of two parts.       Fig. 1 – research tool 

Part I, Stage I: A teacher makes a segment of the 
pattern (Fig.2). 

              Fig.2 – a segment of the pattern prepared by a teacher 
On the table, there are also tiles arranged into two separate piles. Teacher says: Look 
carefully at this pattern and try to continue it. If a child doesn’t undertake the task, 
the teacher will say: look how I do it. After that you will continue. If a child 
undertakes a task, then after having finished making the pattern, he/she will take part 
in the next stage of an investigation.  
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Part I, Stage II: Teacher says: Now, please close your eyes, and I will change 
something in your pattern. After that, you will say what has been changed. (Teacher 
exchanges one tile in the pattern, so that the regularity is distorted). Then, the teacher 
shows the pattern and asks a child: Is there something wrong here? Why? Regardless 
of  the answer received from the child, the teacher says: and now try to correct the 
mistake I have just done. 

Part II, Stage I: Teacher says: some days before we made a pattern by using these 
tiles. Do you remember? Now, try to build it again. If a child does not remember, the 
teacher starts to create the pattern and invites the child to cooperate.  
Part II, Stage II: Teacher says: and now, I will invite your colleague and you will be 
the teacher for her. Firstly, you will show her how to work to make the pattern, and 
after that you will play with her in correcting it. You will do it just like we did it 
some days ago. 

General aims of the experiment were to observe the possibility of awareness of 
results of different types of movements: translations and rotations (possible by using 
only one type of tiles) and mirror symmetry (which requires reverse copy of the 
shape). Additionally, for group of 4 year old children, I tried to find answers on these 
questions: 

• How do children understand the task presented visually, 
• How do they understand a verbal instruction related to the given task, 
• How do they act by making and  retrieving patterns. 

RESULTS OF THE EXPERIMENT 

In this paper I will present some results gathered in a group of 4 year old children 
and only from Part I. This educational and developmental level, in each of 
investigated domain, turned out very diverse. Children demonstrated both: various 
understanding of the task and various ways of its realization.  

1. Reflection upon the visual information 

Many children started to work spontaneously, just after hearing the command: take a 
careful look at this pattern and try to continue arranging it. From the command they 
depicted only the words: try arranging it. It is also possible that they acted in a 
spontaneous way: while seeing the fragment of the pattern and material for 
manipulations they started to play with them. The other group observed all that used 
to be on a table for a long time. Sometimes, they were taking and analyzing separate 
tiles. Therefore, different strategies were possible. It is showed by the following 
examples: 

Strategy „helpless”. Here, a child did not actually know how to create motifs. It 
could act only when guided by the teacher. Left alone, the child could not follow 
these guidelines. According to Vygotski’s theory, the creation of the whole motif is 
beyond the zone of proximal development.  
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Example: Kaja (girl)  

Teacher:  Look carefully at this pattern and try to continue it …..5 seconds break…  
you can take it into hands. 

Pupil: She takes one tile, keeps it for 8 seconds without  any movement. Finally 
she says: I don’t  know. 

Teacher:  Look, put this tile here (the one in your hands), take another tile from the 
second pile, connect them – and what do you obtain? (a girl acts according 
to teacher’s instructions). Could you continue your work in the same way?   
…(10 sec. girl does not do anything). Take one from this pile, ….. and from 
the second one … (girl connects the motif in an upside-down position). 

Strategy „trials and errors”.  The beginning of work can be based on „blind” 
experiments: child has some materials for manipulation, but she/he doesn’t know 
how to use it in order to obtain the aim. A child decides „to do something”. 
Manipulations can lead to interesting findings and frequently a child can draw 
conclusions from previous experiences.  

Example: Oliwka (girl)  

Pupil: Quickly reaches for two tiles from one pile and tries to create a motif above 
the pattern. Although she manipulates and does not succeed, she accepts the 
arrangement consisting of two tiles of the same type, placed in an opposite 
way. She continues her work by taking tiles from the same pile again. This 
time she is not satisfied with the outcome so she takes two different tiles 
and creates a motif, which is upside-down. The last one she created was 
correct so she finished her work (Fig.3).   

            
       Fig. 3.  

Strategy of a conscious creation of one motif by using two different types of 
ti les. Before starting the work, a child visually analyzed the whole pattern prepared 
by the teacher, as well the manipulative material.  He/she could perceive the relation 
which enables them to continue the work without any trials proceeding the right 
action. Sometimes only few manipulations support his/her decisions.  

Example: Kuba (boy)  

Pupil: Observes…18 second motionless. 
Teacher:  Go on. If you have any questions, you can ask. You can do whatever you 

want.  
Pupil: Takes one tile in his left hand, arranges it in a certain distance from the 

pattern as if he was planning to place the second one to match them. 10 sec 
break. 

Teacher:  You started well.  
Pupil: 8 seconds. He takes a tile from the second pile and connects it to the motif. 

Then, he takes two tiles from the left pile, places them close to each other. 
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He manipulates them for a while but quickly puts them back and reaches for 
the other tile from the right pile. Next couples of tiles are arranged well. He 
continues the pattern from both sides.  

Commentary: On this level actions from two distinct areas of activity exist: primal 
instinctive actions stimulated by a visual impulse and actions preceded by a 
reflection and a visual analysis of shape. Observations confirm that visual 
information is very important and many children can use it in a way, which is 
significant for ‘geometrical seeing’. This means that children have the ability to 
analyze shapes, create a visual relation between the whole and the part, and perceive 
the relation of mirror reflection. 

2. Various understandings of the instruction: try to continue.  

Strategy „any nice motif”. In this situation, 4 year old children understand that tiles 
are a means to create a motif. They reach for them eagerly, and observe 
configurations of two tiles. Every interesting arrangement is a good solution for 
them.   

Example: Stasiu (boy) 

Pupil: He takes two tiles from one pile and he manipulates them in the corner of 
the table. He arranges them in a way which is shown at fig. 4 and, with 
satisfaction, looks at them. 

Teacher: Is this like in our pattern? 
Pupil: He puts tiles crookedly, trying to connect the line from tiles (fig.5).  
Teacher: It is nice, but does it fit into our pattern? 
Pupil: He manipulates again, exchanges a tile for another one but still of the same 

type. Then, he creates a configuration like shown at the fig.6. Very satisfied, 
he looks at the teacher. 

Teacher: And again you have something different than we have here (the teacher 
shows the pattern). I will give you a small hint: try to take a tile from this 
pile. 

 Pupil: Quickly he reaches to the second pile and connects the motif (fig.7).   
Teacher: So. ….  And what do you think? 
Pupil: He  moves his motif to the pattern and says: this is a happy face. 

 

       Fig.4.                       Fig.5                                                             Fig.6            Fig.7 

          

Strategy „one, identical motif”. Among 4 year old children continuity does not 
necessarily mean infinity. This may mean that a child will create just one, identical 
motif. A child notices a rule but it is realized only by a simple duplication. This is 
rather a manifestation of the noticed rule than its continuity.  

Example: Roksana (girl) 
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Pupil: reaches for one of the motifs that were previously created by the teacher. 
She puts her hands on her knees, sits still and looks at the teacher.  

Teacher: So you moved one motif towards you. Now let us do the same with the 
second and the third one. And now try to continue. Try to make the pattern 
longer. 

 Pupil: Simultaneously, she reaches for tiles from both piles, takes one out of each, 
checks the motif in the air and connects it to the pattern. She looks at the 
teacher.   

Strategy „a lot of identical motifs”.  

In this case, a child sees that the pattern consists of certain motifs and there is a large 
number of them. They do not necessarily have to match one another.  

Example: Zuzia (girl) 

Pupil: First, she decides to arrange a motif using the same type of tiles but quickly 
she changes her strategy. She takes tiles from two piles, arranges a couple of 
separately placed motifs.   

Strategy „one-dimensional continuation”. A child demonstrates the awareness that 
a pattern can be continued in both directions – to the right and to the left.  

Example: Tomek (boy) 

Pupil: Immediately reaches for separate tiles from piles and correctly, in turns, he 
continues his work. Seeing that the space on the right side of table is 
finished, he continues his work on the left side.    

Strategy „two-dimensional continuation”. A child wants to arrange tiles for as 
long as it is possible. If there is not enough space in a horizontal direction then it 
starts to build the next level, a vertical one. Nevertheless, the relation between the 
tiles is maintained.  

Example: Ola (girl) 

Pupil: Immediately takes two different tiles in both hands and she places the 
connected motif close to the pattern. Without any hints she continues work 
in both directions – left and right. When there is no empty place in the line 
she asks: also here? (she shows the place over the pattern). She continues 
work as long as she has tiles.  

Commentary: The possibility of manipulation may create occasions for something 
which P. Vopěnka calls ‘the first geometrical recognition’ - focusing attention on 
geometrical phenomena and specific relations of one object to another. A child may 
find satisfaction in searching for different configurations of two identical objects. 
But children at this age usually analyze patterns, search for repeated motifs. Finding 
and constructing motifs indicates a certain developmental level. In the framework of 
this period we may find examples of children that can spontaneously receive 
information from the pattern as an encouragement and challenge for making a whole 
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series of repeated motifs, for continuing them both in one and two-dimensional 
space. It is an action aimed at a rhythmical organization of infinite space.   

Ad.3. Various methods of  retrieving the „destroyed” pattern. 

The correction of regularities progressed in two different ways: 

A. A child  rejected a „wrong tile” immediately and  replaced it with the correct tile, 
taken from the proper pile – “replaced strategy”.  

B. A child started to manipulate  the „wrong tile”, trying at all costs to obtain the 
mirror position – “manipulative strategy”. Despite of his previous experience 
gathered while making the pattern, children undertook attempts of  matching up two 
tiles of the same type. The strategy can be divided into three subcategories:   

B1. A blind manipulation, simultaneous rotation of one or two tiles. Here, a child 
is convinced that two tiles don’t match each other but through a certain movement 
they could fit.   

B2. A feeling that one tile is right but the second one is somehow wrongly placed. 
Therefore, manipulations, mainly rotations, are made with only one tile. 
Frequently a  change order of tiles and their places occur.   

B3. Going to the reverse side of the tile. Initial manipulations (rotations and 
translations) occur only in the area of a one-side oriented plane. After this stage, a 
child reverses the tile to its other side and checks the possibility of placing it in a 
different orientation.   

Commentary: The occurrence of manipulation strategy suggest that there is a big 
conceptual gap between a static understanding of axis relation and its dynamic 
depiction. In the observed age group there was no crucial connection between the 
stage of making the pattern and the stage of correcting it. It seems that children 
treated the tasks as two totally different activities. As the children could not see any 
relation, they did not use the experience from the first stage. The first stage required 
only visual information. If they used it, they succeeded. The second stage introduced 
a false suggestion. Children recognized that the motif on the exchanged tile consists 
of a circle and arch configuration but they could not recognize the mirror symmetry 
in it. Because of obvious reasons, this manipulation strategy could not lead to 
success, but it seems that by these actions children gained many important 
experiences. For example, they became convinced that certain movements on a plane 
lead only to a limited range of final configurations. This type of movements will 
probably have a great significance for creating concepts of geometrical 
transformations or dynamic visual imaginations of geometrical objects.  

The action, where a child uses a ‘replaced strategy” could be interpreted dually. It is 
very probable that a child is well capable of benefitting from visual information. It is 
possible that a child sees the connections between two separate piles with tiles and 
the whole motif and can analyze shapes. In this case, when a child decides to replace  
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a tile, he/she chooses the „strategy of certainty”. The other interpretation is that a 
child knows only that two different piles exist, and by using tiles from both it is 
possible to be successful in some way. Those two interpretations do not give any 
answer about children’s intuitive knowledge regarding mirror symmetry as a 
transformation. The fact that some children immediately exchanged tiles for the 
proper ones does not necessarily mean that they were aware of the relation type or 
the type of the movement which is required for mirror translation. Such intuitions 
could only emerge during manipulations.  

The table below contains the quantitative specification which shows the presence of 
these strategies in children’s work. 

Replaced strategy (A) Manipulative strategy (B) Helpless Other 

4 13 1 12 

Table 1. Pattern correction strategies 

SUMMARY 

In the research, which I partially describe in this article, educational level of four 
year old children came out to be diverse. The results of investigations show different 
phases, activity levels in the framework of geometrical regularities. 

Psychologists underline the great importance of visual information in early 
childhood. It is important for thinking development as perceived objects provoke a 
closer active recognition. Such direction should be obligatory when we speak about 
geometrical objects. The perceived geometrical phenomenon should be investigated 
by means of a spontaneous manipulation. Therefore, the direction should be as 
follows:  phenomenon -> manipulation. 

At this stage, manipulations are evoked by perception and are subordinated to 
perception. The manipulation itself is only a tool which enables to reach the aim. A 
child has a vague feeling that some kind of manipulations can establish an expected 
relation between objects, but has no idea what kind of movement is needed. While 
solving the problem, child does not consider what kind of manipulation he/she 
makes. In spite of this, these manipulations are important for further discoveries. The 
research showed that in this age group beginnings of behaviors that may be treated as 
a good basis for creating geometrical concepts in the future (dynamic images of 
geometrical transformations) take place.  

Educational level of four year old children in this field may prove to be important. 
Observations in older age groups indicate a loss of dominance of a manipulative 
strategy to the advantage of a replaced strategy. Does it mean that the awareness of 
axis-symmetrical transformation increase? In my opinion, no. To my mind, it is the 
outcome of a higher ability to analyze shapes, to decompose a whole object into its 
attendants. A symmetrical object consists of two ‘identical’ halves, and older 
children find it easier to recognize them. But static relation of axis symmetry does 
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not mean that children understand transformations that change one half into the 
other.  

A question arises: are these the following developmental steps of understanding 
these regularities or maybe they are the outcome of different relations between visual 
representations and actions? An overall glance on the course of individual children’s 
work confirm that actions in the first phase do not give any reasons to forecast the 
way in which children will work in the second one. These problems require further 
investigations.  

On the other hand – in this case, immaturity in visual analysis of shapes can be 
beneficial. Children do not make decisions on the basis of visual recognition of 
differences among tiles. They make most of their manipulations in a spontaneous 
way, and by this they gain experience which activates a dynamic understanding of 
geometrical relations.  

The level of work with 4 year old children, for various reasons,  is a very promising 
one. Every time, when a child is able to start the work, the outcome of undertaken 
actions can be treated as a springboard for a further discussion. None of chosen 
approaches towards the task can be understood as wrong and by this children do not 
suffer from the feeling of defeat. It gives a chance to compare results, discussion. It 
give a chance to function in the world of regularities, which is crucial for general 
mathematical understanding. 
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CAN YOU DO IT IN A DIFFERENT WAY? 
Dina Tirosh, Pessia Tsamir & Michal Tabach  

Tel Aviv University 
 
In order to distinguish between two things one employs explicitly or 
implicitly a certain criterion. This criterion, being relevant to make the 
distinction in a given setting might be irrelevant in another setting. What 
counts as different in mathematics needs to be agreed upon. In this paper we 
analyze kindergarten children's different solutions to one task in order to 
learn about their ways of coping with multiple solutions and with multiple 
solution strategies. Our findings suggest that kindergarten children are able 
to suggest multiple solutions to this task and to apply several strategies to 
solve it, and that these abilities could be promoted by their engagement in 
related activities. 
Let us start with a story about two kindergarten children, Nir and Jonathan, 
who were engaged in the Create an Equal Number (CEN) task. In this task, a 
child sat in a quiet corner of the kindergarten with an adult. He was 
presented with two distinct sets of bottle caps – three bottle caps were placed 
on one side of the table and five bottle caps were placed on the other (see 
Figure 1). All bottle caps had the same shape, size, and color. The child was 
asked: "Can you make it so that there will be an equal number of bottle caps 
on each side of the table?" After the child rearrange the bottle caps, the 
interviewer returned the bottle caps to their original arrangement (three in 
one set, five in the other) and asked the child, "Is there a different way to 
make the number of bottle caps on each side equal"? This rearrangement of 
the bottle cops (3 and 5) and the related question were repeated until the 
child said that there is no other way. 
 
 
 
 
  

 
 

Figure 1: The initial stage of the CEN Task 

WORKING GROUP 14

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2667



The story of Nir: Nir looked closely at the two sets of bottle caps, and then 
he took out two caps from the set of five, and arranged each set of three in a 
similar position.  In each set the caps were placed to formulate the vertices 
of an isosceles triangle. The interviewer then returned the caps to their 
original arrangement, asking Nir: "Is there a different way to make the 
number of bottle caps on each side equal"? Nir took out again two caps from 
the set of five, and this time he placed the caps in each set in a straight line, 
equally spread (see Figure 2). 

 
 
 
 
 
 
 

Figure 2: Nir's second solution 

Once more, the interviewer returned the setting to its original position, 
repeating his question. Again, Nir took out two caps from the set of five, 
rearranging the three caps in each set in a way similar to his first solution 
(isosceles triangles), but this time creating a larger distance between each 
pair of caps.  
The interviewer rearranged the setting to its original position. Nir suggested 
a fourth solution, similar to his second solution (straight line), but this time 
with larger distances among the caps in each set (see Figure 3). In the 
following, and last iteration of the process, Nir provided the same solution as 
his first one. 

 
 
 
 
 
 

Figure 3: Nir's forth solution 

WORKING GROUP 14

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2668



The story of Jonathan: Jonathan looked closely at the two sets of bottle caps, 
and then he took one cap from the set of five, and added it to the set of three. 
This act resulted in two sets with four bottles caps in each.  Jonathan 
disregarded the actual arrangement of the caps in each set. The interviewer, 
then returned the caps to the original arrangement, asking Jonathan: "Is there 
a different way to make the number of bottle caps on each side equal"? 
Jonathan asked: "may I take caps out?" the interviewer approved, and 
Jonathan took out one cap from the set of three, and three caps from the set 
of five, creating two sets of two caps each.  
Once more, the interviewer returned the setting to its original position, 
repeating his question. This time, Jonathan removed all the caps from both 
sets, saying "two sets of nothing".  
The interviewer returned again the setting to its original position, and posed 
the question. Jonathan took out two caps from the set of five, creating two 
sets of three caps each. In the next iteration, Jonathan took out two caps 
from the set of three and four caps from the set of five, creating two sets of 
one cap each. In the last iteration Jonathan said: "there are no other options".  
It seemed that for Jonathan the spatial arrangement of the caps on the table 
was insignificant. 
What can we learn from these two stories? The two children were engaged 
in the task and each of them provided several solutions, attempting to fulfill 
the interviewer's request for different solutions. Nir based his solutions on 
spatial attributes and differentiated between them in two ways: the relative 
placement of the caps in each set (a line shape versus a triangle shape), and 
the relative distance among the caps in each set. Note that in each of Nir's 
solutions there were three caps in each set, i.e., equal numbers of caps. 
Jonathan's solutions differed in one way: the (equal) number of bottle caps 
for each solution.  
The solutions of the children were based on two main criteria: the spatial 
placement (figural arrangement, distance); the number of elements. Within 
mathematics discourse, each of these criteria can be considered as relevant 
for differentiating among solutions in a given context. A triangle may be 
considered different from a line when sorting geometrical figures. The 
distance among elements may be considered as a relevant criterion when 
comparing lengths. The number of elements is a criterion for differentiating 
quantities. Thus, the relevance of a given criterion as a means to differentiate 
among solutions is related to the task at hand and to the norms related to 
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problem solving. These two issues are addressed in the theoretical 
background.   
THEORETICAL BACKGROUND 
During the last two decades there is a growing interest in early childhood 
mathematics education, and a growing recognition of its importance (e.g., 
NCTM, 2000; Sylva, Melhuish, Sammons, Siraj-Blatchford, & Taggett, 
2004). NCTM recommends to provide children with activities aiming at 
promoting their mathematical thinking and understanding: "students 
understanding of mathematical ideas can be built throughout their school 
years if they actively engage in tasks and experiences designed to deepen 
and connect their knowledge" (NCTM, 2000, p. 21).   
One way of promoting children's mathematical literacy is by engaging them 
in tasks with multiple solutions, and with a variety of related strategies: 
"opportunities to use strategies must be embedded naturally in the 
curriculum across the content areas" (NCTM, 2000, p. 54). The ability to 
identify differences and similarities among various strategies is context 
dependent and is by no means straight forward.  
Yackel and Cobb (1996) highlighted the process of developing a common 
understanding of what counts as 'a different solution' in a classroom 
community.  They claimed that "the sociomathematical norm of what 
constitutes mathematical difference supports higher-level cognitive activity" 
(p. 464). Establishing a socio-mathematical norm of what counts as different 
solution strategies is a key component in the creation of an autonomic 
learner. 
Sfard and Levia (2005) analyzed a process in which Roni and Eynat, 4,0 and 
4,7 year old, learned to interpret the term "the same" in a mathematical 
discourse with Roni's parents. Roni's mother presented the girls with two 
identical, closed boxes that contained marbles (the number of marbles could 
not be seen). She asked the girls "in which box are there more marbles? (p. 
3)". To the mother's surprise, the girls chose one of the boxes, without 
attempting to count the number of marbles in the boxes.  It was evident, 
from their reaction to the mother's later request to count, that both of them 
were capable of counting.  When presented with two open boxes with the 
same number of marbles, upon the mother's request, the girls were able to 
count the marbles in each box, however did not use the term "the same" as 
an answer to the question "which box has more marbles?"  Seven months 
later, the girls use counting as a strategy for comparing the number of 
marbles in the boxes on their own initiative, and they were also able to use 
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the term "the same".  Sfard and Levia concluded that the use of words in a 
mathematical setting needs to be learned by children.  
In the present study, we examined 5-6 year old children's perceptions of 
"what counts as different and what counts as the same" in the context of the 
CEN task (creating two equivalent sets when presented with two 
unequivalent ones). 
SETTING 
Two groups of 5-6 year old children participated in this study. The first 
group consisted of 81 children, who were taught by teachers participating in 
a two-year, Starting Right: Mathematics in Kindergarten program (this 
program was initiated in Israel, in collaboration with the Rashi Foundation. 
Details about Starting Right: Mathematics in Kindergarten can be found in 
http://www.tafnit.org.il//pageframe.htm?page=http://www.tafnit.org.il/).  
The CEN task and other such tasks were discussed with the Project-K-
teachers.  The project children worked on tasks from various mathematical 
domains, such as geometry, measurement, number and operations. Some of 
the tasks involved pictorial mediators, and others involved physical 
mediators, like the CEN task. We bring here as an illustration one other task.  
The task dealt with the concept of equality, oriented to promote the 
children's understanding of equivalent sets. Four children sit in a quiet 
corner with their teacher. Each child had a set of cards and a game board. 
Some cards had printed items on, and the others had the equal sign on. The 
number of items on each card varied from one to ten. The drawings on each 
card consisted of identical items. Each quantity was represented on four 
different cards and there where different pictures on each card (Card 1: two 
cars, Card 2: two pencils, Card 3: two balls and card 4: two flowers). Each 
child in turn was expected to place the equal sign on the board, and then to 
choose from among his cards two cards which displayed an equal number of 
objects. The child was then expected to place the cards on the game board on 
both sides of the equal sign, creating a "mathematical sentence". The other 
children were expected to confirm or to reject the correctness of the 
"mathematical sentence", and explain their decisions. It was also possible to 
place more then one card on each side of the equal sign, as long as the total 
number of items on each side was equal. 
The second group consisted of 82 children, who were taught by teachers 
who did not participate in the program.   
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All the children learned were from low socio-economic backgrounds in the 
same town. Jonathan was one of the project-group children, while Nir 
belonged to the other group. 
The CEN Task analysis 
In the CEN task, a child was individually presented in the initial stage with 
two sets of identical items. The sets differed in the number of elements. In 
other words, in the initial stage, children were presented with two 
unequivalent sets. Then, they were asked to create two sets with the same 
number of bottle caps. After a child offered a solution, the caps were 
rearranged in the original setting, and s/he was asked once more to create 
two sets with the same number of bottle caps. This process continued until 
the child responded that there are no more solutions. The way the situation 
was presented, and the wording of the request, implied that the critical 
criterion for "different and same" is the number of elements in each set.   
Two characteristics of the task at hand may be somewhat unusual. First, the 
task has more than one solution. In fact, the task has five different solutions. 
Also, several strategies can be used to solve the task. Some are one step 
strategies: (a) Taking from both sets a number of elements, obtaining the 
same number of caps in each set. This strategy led to one of the following 
solutions: ((1;1) - i.e., one element in each set), (2;2). (b) Removing all the 
elements from both sets. This strategy led to the solution (0;0). (c) Taking 
only from the larger set, which, in our case, meant taking two elements from 
the set of five, obtaining the solution (3;3). (d) Shifting from one set to the 
other, which, in our case, led to the solution (4;4). A two-step strategy is (e) 
Collecting all the elements, and then creating two new sets "from scratch". 
The collecting all strategy could result in each of the five solutions of the 
task. 
RESULTS AND DISCUSSION 
First we report on the children's solutions, then on their solution strategies. 
Solutions. As mentioned above, this task has five solutions. Table 1 shows 
that while 45% of the non project children came up with no more than one 
solution, 56% of the project children offered at least four solutions.  
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Table 1: The numbers of solutions per child (in %) 
 No 

solution 
One 
solution 

Two 
solutions

Three 
solutions

Four 
solutions 

Five 
solutions

Project 
(N=81) 2 6 15 21 37 19 

Non-
project 
(N=82) 

7 38 12 16 20 7 

 
Table 2 indicates that, the percentages of project children who suggested    
each solution was larger than those of the non-project children. The 
percentages in Table 2 may also point to the level of difficulty of each 
solution: the solution (4;4) was the easiest, (3;3) was somewhat harder, (2;2) 
and (1;1) were evidently harder. The cognitively problematic solution, 
consisting of empty sets (Linchevsky & Vinner, 1998), was employed only 
by 27% of the project children and 9% of the non-project children.  
Table 2: The solutions provided by the children (in %) 

 (0;0) (1;1) (2;2) (3;3) (4;4) 
Project 
(N=81) 27 52 65 80 88 

Non-
project 
(N=82) 

9 38 39 67 72 

 
Solution strategies. While analyzing the task, we relate to five strategies that 
were used by the children, namely take from both, remove all, taking only 
from the larger, shifting from one set to the other, and collecting all. Table 3 
presents the percentages of children from both groups who employed each 
strategy. 
The strategy of shifting one cap from the set of five caps to the set of three 
caps was the dominant strategy for the children in both groups. Collecting all 
the elements from the two sets into one large set, and then creating two new, 
equal-number sets with some of the elements, was the least popular strategy. 
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Table 3: The strategies used by the children (in %) 
 Shifting 

from one 
set to the 
other 

Take only 
from the 
larger 

Take from 
both 

Remove 
all 

Collect all 

Project 
(N=81) 80 73 74 27 17 

Non-
project 
(N=82) 

70 51 40 9 6 

Table 3 also shows that each strategy was used by larger percentages of 
project children than non-project children. The remove all strategy was 
employed by 27% of the project children. This strategy requires special 
thinking, since the sets remained empty.  
The percentages presented in Table 4 may suggest that most children used 
more than one strategy while working on the task.  Table 4 presents the 
percentages of the number of different solution strategies used by the 
children.  
Table 4: The number of solution strategies per child (in %) 
 no 

strategy 
One Two Three Four Five 

Project 
(N=81) 2 9 25 44 19 1 

Non-
project 
(N=82) 

7 44 23 17 9 -- 

About 90% of the project children employed more than one solution strategy 
while working on this task, and only about 50% of the non-project children 
did so. Children's ability to approach the task from several angels and to use 
more than one strategy is impressive.  
SUMMING UP AND LOOKING AHEAD 
The main focus of our study involved examining 5-6 year old children's 
perceptions of "what counts as different and what counts as the same" in the 
context the CEN task. This task has multiple solutions and multiple solution 
strategies. A task may include an unspoken constrain –all the caps should be 
used while creating the two sets. Maybe Jonathans' first solution was base on 
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this constrain. When Jonathan was asked to find another solution, he 
explicitly asked "may I take caps out?" In this question, Jonathan might have 
expressed an understanding of the need to define the constrains of the task. 
Thus, he tried to find out the unspoken rules in this case. However, from 
Nir's behaviour we can learn that he did not have a similar constrains, and 
from his first solution he took out caps. Our data suggests that the project 
children outperformed their peers in the aspects we analyzed.  
What could be concluded from the data presented here?  
It seems that kindergarten children are capable of handling complex 
mathematical tasks, involving both multiple solutions and multiple solution 
strategies. The children provided creative solutions and employed creative 
solution-strategies.  Silver (1997) argues that "mathematics educators can 
view creativity not as a domain of only a few exceptional individuals but 
rather as an orientation or disposition toward mathematical activity that can 
be fostered broadly in the general school population" (p. 79). He relates to 
three core features of creativity in the context of problem solving: fluency, 
flexibility and novelty. Problems that are characterized by many solution 
methods, or answers, have the potential, according to Silver, to enhance two 
core components of students' creativity: fluency and flexibility.  
Our data suggests that young students at the age of 5-6 year-old may already 
be engaged in such activities. Yet, many students who did not take part in 
the project, gave many solutions, and used a variety of solution strategies. At 
the same time, some project children did not displayed such behavior. This 
raises the questions: What determines a child's ability to provide several 
solutions? and What kind of experience may foster creative behavior? 
In our study the two sets were presented with concrete materials (identical 
bottle caps).  Gullen (1978) studied K-2nd students' strategies while 
comparing the number of elements in two sets, but he presented them 
pictorially. He found strong dependencies between the strategy used to 
compare the sets and students' grade levels, and also dependencies between 
the numbers of elements in the sets and the employed strategies. His findings 
suggest that students' performance may be depended on the task design. 
More research is needed to identify parameters of tasks that may promote 
learning, i.e. presenting the task with concrete materials vs. presenting it 
pictorially?  Starting from unequal, asking to create equal sets or starting 
with equal sets and asking to create unequal sets? Using homogenous 
elements or heterogeneous elements? Some other questions are:  How many 
elements should be in each set? What other tasks can be presented to 
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kindergartens to elicit several solution and several solutions strategies? What 
types of tasks could encourage children to identify the critical mathematical 
criteria that apply for a given setting? 
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INTRODUCTION 
THEORY AND RESEARCH ON THE ROLE OF HISTORY 

IN MATHEMATICS EDUCATION 
 

Fulvia Furinghetti, Jean-Luc Dorier, Uffe Jankvist,  
Jan van Maanen and Constantinos Tzanakis (the “joint chairs”) 

 
In this working group, which was active for the first time in CERME 6, 23 papers 
were submitted. Four of them were rejected; four were accepted as a poster. In the 
end three of the accepter posters and one of the accepted papers were withdrawn. So 
in Lyon, 13 papers and one poster were presented. 
If one takes into account that the working group has no tradition in CERME, and that 
those who submit and those who review have to find out what are the criteria for 
sound research about "Theory and research on the role of History in Mathematics 
Education", then the percentage of rejections is reasonable.  
Especially the demarcation of the subject area was not always clear for the 
researchers who submitted. In one case, which extended to a whole series of papers, 
the joint chairs of the working group decided that the subject area should be defined 
in such a manner that these papers could be included, provided that they would have 
sufficient quality. Yet, originally, the subject area was described by the joint chairs in 
a narrower manner. The papers meant in this remark concern the history of 
mathematics education.  
One could argue that these papers are about history and that their content may 
influence mathematics education, in the sense that the awareness about the nature of 
mathematics and its role in education that may be brought in by a study of issues of 
the history of mathematics education is important for pre- and in-service teacher 
education. Yet, this was not the manner in which the joint chairs had originally 
described "the role of history in mathematics education". The original idea was to 
assemble in the working group those colleagues who research the effects that 
integration of historical elements (problems, texts) in current mathematics education 
may have. The subdivision of the main theme in seven topics was clear in this 
respect, as may be seen from the list: 

1. Theoretical and/or conceptual frameworks for including history in mathematics 
education 

2. The role of history of mathematics at primary and secondary level, both from 
the cognitive and affective points of view 

3. The role of history of mathematics in pre- and in-service teacher education, 
both from the cognitive, pedagogical, and affective points of view 
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4. Possible parallelism between the historical development and the cognitive 
development of mathematical ideas 

5. Ways of integrating original sources in classrooms, and their educational 
effects, preferably with conclusions based on classroom experiments 

6. Surveys on the existing uses of history in curriculum, textbooks, and/or 
classrooms in primary, secondary, and university levels 

7. Design and/or assessment of teaching/learning materials on the history of 
mathematics 

This is not aiming at having papers about the history of mathematics education. This 
means to work with students in current mathematics lessons and to find out how they 
respond to the historical elements in these lessons. Nevertheless, after some 
deliberation and also because some interesting papers were submitted, the joint chairs 
decided to add a new topic, n° 8, to the above list  

8. Relevance of the history of mathematical practices in the research of 
mathematics education 

and to review submissions in this area. In the preparations for CERME 7 it should be 
decided and clearly stated whether this topic 8 (briefly described as "the history of 
mathematics education") should be included or excluded from the programme.  
Looking back on the proceedings of the working group during CERME6, we may 
conclude that there were two main streams of papers, one about the original theme of 
integration of history in current teaching (subtopics 1 to 7), and the other about how 
mathematics was taught in the past (subtopic 8). The two went together in a fairly 
harmonious manner.  
The papers and the subtopics on which they focused are summarized in Table 1; the 
numbers refer to the above list of subtopics.  
 

Ba & Dorier 1, 2, 8 Lawrence 2, 3, 5 

Bjarnadóttir 8 Menghini 8 

Blanco & Ginovart 5, 7 Milevicich & Lois (poster) 1, 4 

Da Costa 8 Novaes & Pinto 8 

Demattè & Furinghetti 2, 7 Rogers 3, 6 

Jankvist 1, 2, 6 Tardy & Durand-Guerrier 1, 3, 7 

Hoff-Kjeldsen 1, 2, 5 Thomaidis &Tzanakis 5, 6 
Table 1. Main focus of the papers according to the 8 topics listed above 

 
As to the working procedures, the time available for each paper was 45 minutes, 
which was equally divided between time for presentation and time for discussion. 
The discussions proceeded in a pointed and engaged manner, with input in the 
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respective aspects of the working group: research methodology, historical references, 
educational and mathematical points. 
In the evaluation one important observation was made about the relation of this 
working group with another group which is active in the intersection of mathematics 
education and the history of mathematics, which is the affiliated study group of ICMI 
about the relations between the History and Pedagogy of Mathematics (HPM). We 
observed that HPM has contributions of more varied character. In this WG 15 we 
tried to work with a specific methodology (or maybe two methodologies: an 
educational research method - often influenced by historical research and 
methodology - for subtopics 1 to 7 and an historical methodology for subtopic 8), 
which as one of its elements includes a theoretical framework, in which the relevant 
literature is discussed.  
Finally we propose for CERME7 to include this working group again, and to then 
name it:  

"Historical dimensions and mathematics education: theory and practice 
so as to include all 8 subtopics of the current working group 15.  
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THE TEACHING OF VECTORS IN MATHEMATICS AND 

PHYSICS IN FRANCE DURING THE 20
TH

 CENTURY 

Cissé Ba* & Jean-Luc Dorier** 

* Université Cheikh Anta Diop – Dakar  

** Equipe DiMaGe – Université de Genève 

 
The work presented in this text is part of a doctorial dissertation in mathematics 
education (Ba 2006) about the teaching and learning of vectors, translations, forces, 
velocity and movement of translation in mathematics and physics. Here, we present 
the evolution of the teaching of vectors and vector quantities in mathematics and 
physics from the end of the 19th century up to now. We analyse this evolution in the 
light of the ecology of knowledge, as developed by Yves Chevallard (1994). This 
helps us understand the difficulties in recent periods, in order to create a successful 
interdisciplinary approach in the teaching of these notions in mathematics and 
physics. 
 

INTRODUCTION 

Vectors emerged during the 19
th

 century at the border of mathematics and physics. 

We will not recall here their historical evolution (see e. g. CROWE 1967, DORIER 

1997 and 2000, FLAMENT 1997 and 2003). Our interest is clearly into the history of 

their teaching in the curricula of both mathematics and physics in France since the 

end of the 19
th

 century. Today, in France, vectors in mathematics occupy a small part 

of the curriculum of geometry in secondary education (8
th
 to 12

th
 grades), while 

vector quantities are taught in Physics in 11
th
 and 12

th
 grades. Introducing an 

interdisciplinary approach has been suggested in recent programs, but is yet not very 

successful, as shown by our study of textbooks and teachers’ practices (BA 2006, BA 

& DORIER 2007). The bad effects of partitioning in curricula between mathematics 

and physics teaching has been pointed out, especially about vectors, by several 

authors (see LOUNIS 1989 for a review). In this context, our aim is to understand 

how such a partitioning has been made possible, in order to find a way to make the 

interrelation between mathematics and physics teaching better. 

The ecological approach developed by CHEVALLARD (1994), is a theoretical tool 

proper to help us tackle this issue. Indeed, it allows to study the different positions 

and functions of vectors and vector quantities in the moving landscape of 

mathematics and physics teaching, with conditions and constraints for survival and 

development. The idea is to analyse the evolution of objects of knowledge in various 

(didactic) institutions like organisms in various ecosystems. 
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The ecologists distinguish, when referring to an organism, its habitat and its niche. To put 

it in an anthropomorphic way, the habitat is, in a way, the address, the place where it 

lives. The niche regroups the functions that the organism fulfils. It is, in a way, its 

profession in this habitat
i
. (Op. cit., p. 142). 

Following CHEVALLARD, ARTAUD (1997) analyses under which conditions new 

objects can emerge and live in an ecosystem.  

For a new object of knowledge O to emerge in a didactical ecosystem, it is necessary that 

a certain milieu exists for this object, i.e. a set of known objects (in the sense that a non 

problematic institutional relation exists) with which O comes in interrelation. […] A 

mathematical object cannot exist on its own; it must be able to occupy a specific position 

in a mathematical organisation, that has to be brought to life. The necessity for a milieu 

implies that a new mathematical organisation cannot emerge ex nihilo. It must lean on 

already existing mathematical or non-mathematical organisations
i
.
 
(Op. cit., p. 124). 

The ecological approach consists therefore in bringing to light a network of 

conditions and constraints that determines the evolution of the positions that objects 

(vectors in our work) can have in the different periods corresponding to changes in 

the programs. In this perspective, we have to take into account various institutions 

(and their specific constraints): school in general, but also mathematicians and 

physicists.   

We do it chronologically from 1852 up to today, according to various phases, 

corresponding to the main teaching reforms. 

THE BEGINNINGS (1852-1925) 

In 1852, techniques for obtaining the resultant of two forces is taught in physics in 

11
th
 grade (age 17). There is a reference to the parallelogram of forces, but no vectors 

as such, just a technique based on a geometrical pattern. The same year the term 

radius vector (rayon vecteur) is used in geometry. This comes from astronomy, where 

the radius vector designates the segment joining one of the foci of the ellipse 

describing a planet’s trajectory to its position on the orbit. It has therefore not much 

to do with what we call a vector now. 

Until 1902, vector and vector quantities are absent from French secondary teaching 

both in mathematics and physics. In 1902, the radius vector disappears, but the 

vector, as a directed line segment appears in the program of 11
th
 grade in mechanics 

and kinematics, part of mathematics then. Meanwhile, in 11
th

 grade too, in statics and 

dynamics, the scalar product is used to calculate the work done by a force. Therefore 

vectors enter the curriculum in 11
th
 grade in the habitat of what we can call 

“paraphysics”
1
, with a niche as representations of orientated quantities. This is 

                                         

1
 This designates the topics at the border between physics and mathematics, a border that moved 

along the time and according to different countries. 
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coherent with their origin and use in science of that time. It is also coherent with the 

general aims of the 1902 reform, which promotes mathematics as the root of natural 

sciences. Moreover, the 1902 reform insists on collaborations between mathematics 

and physics teachers:  

It would be good that [...] mathematics and physics teachers in the same support each 

other mutually. Physics teachers must always know at what stage of mathematics 

knowledge are their students and conversely mathematics teachers would gain in not 

ignoring some examples that they could choose, in the experimental knowledge already 

acquired, in order to illustrate the theories they have explained in an abstract way. 

(Introduction to Programmes du lycée, 1902, p.3) 

The 1902 reform is quite ambitious and gives to the sciences and mathematics in 

particular a privileged position. A result of this ambition is that the curriculum is too 

important, therefore teachers complain that it is impossible to cover everything. In 

1905, the ministry of education has to reduce the program. In this technical 

adaptation, vectors are moved from 11
th
 to 12

th
 grade and enter a new habitat, since 

they are now part of the geometry curriculum, where they have to be presented as 

tools for physics (their niche): 

In mechanics, […] teachers must avoid any development on purely geometrical aspect; it 

is in order to suppress any such occasion, that theorems on vectors have been reduced to 

a minimum and moved in the geometry curriculum, where they appear under their real 

aspect
i
. (Instruction du 27 juillet 1905 relative à l’enseignement des mathématiques, p. 

676) 

Vectors are therefore transported from mathematical physics into geometry, in order 

to technically solve a purely didactical problem.  

In 1925, without being explicitly in the program, vectors appear in the 9
th

 grade, as a 

possible concrete representation of “algebraic numbers”, “concrete notions on 

positive and negative numbers”. This is a new potential habitat in arithmetics, as 

representations of one-dimensional orientated quantities (their niche). Here again, the 

reasons are mostly of didactical order. 

In 12
th
 grade, the content about vectors remains more or less the same than during the 

preceding period. Yet, vectors have migrated into trigonometry, for which they 

facilitate the didactical presentation. In kinematics, the use of vectors to represent 

velocity and acceleration is more systematic, like in mechanics, with forces. The 

habitat and niche in physics are therefore reinforced. Meanwhile, a comment in the 

program in 1925 is quite interesting: 

In statics, the confusion that happened very often between the properties of systems of 

forces and those of associated systems of vectors, will disappear because of the general 

study of the latter. 

Therefore the geometrical status of vector is reinforced, so is their niche in this 

habitat, due to the new connection with trigonometry.  
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In a bit more than 20 years, fore purely didactical reasons, vectors initially hybrid 

objects at the border between physics and mathematics, acquired a geometrical status 

and a potential arithmetical one. Their use in physics is not anymore essential, since 

they have to be introduced separately. 

A SLOW EVOLUTION (1937-1967) 

In 1937, the use of vectors to represent algebraic numbers in 9
th
 grade is made 

official, and the projection of parallel vectors on the same axis is suggested as a 

means to illustrate the multiplication of numbers with a sign. In the same vein, 

vectors are used in the presentation of homotheties. The arithmetical habitat is 

therefore reinforced. 

The habitat in trigonometry remains but is moved down to 11
th

 grade. 

Habitats and niches are therefore identical. Clearly one-dimensional vectors live in 

arithmetic for the 9
th
 grade, where multiplication by a scalar is important, while 

higher dimensional vectors are introduced in the 11
th
 grade in trigonometry. The 

habitat in physics appears later, but more systematically, as an application. No 

mention of possible bridges between the different habitats is made, while difficulties 

in the use of vectors in physics are noticed officially. 

In 1947, there are no major changes. For the first time, vectors are used to present a 

vector version of Thales’ theorem in the 9
th
 grade, following the use of vectors for 

homotheties. In the 11
th

 grade, vectors are now a separate chapter in geometry, no 

longer part of trigonometry. The term of equipollent vector is introduced, and the link 

with translation is made. 

Therefore, vectors have now gained an autonomous mathematical status. The 

dichotomy between arithmetics (one dimension) and geometry (higher dimension) 

still exists. Yet, Thales’ theorem makes a bridge between the two habitats, and put 

forward the multiplication by a scalar, which originally was not very important in the 

use for physics. 

In 1957, the potential bridge between the arithmetical and geometrical habitat is 

made. Vectors appear in the 9
th

 grade, in geometry, in relation with homotheties and 

Thales’ theorem: the arithmetic habitat has been absorbed into geometry. In the 10
th

 

grade, 3 dimensional directed line segments are introduced as part of the geometry 

curriculum, in relation with translations and analytic geometry. In the 11
th
 grade, the 

distinction between directed line segments and free vectors is made. Applications to 

geometry and kinematics are important. Barycentres also appear for the first time and 

are linked to vectors. The geometric habitat is therefore stronger and has absorbed the 

arithmetic habitat, which only survive in a transitory phase in the 9
th

 grade. In this 

enlarged geometric habitat, the niche is not anymore the representation of vector 

quantities from physics, but more an efficient tool for solving geometrical problems. 

For educational purposes, vectors have therefore become geometrical objects. They 
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are used to introduce analytic geometry and barycentres, two fields of geometry that 

historically existed before vectors! 

In physics, in 12
th

 grade, vectors are also used in magnetism, yet mostly through 

representation by coordinates. This, again, is quite ironical, compared to the historical 

development, when one recalls that Maxwell’s formulae played an important role in 

the history of vectors, to impose the coordinate-free notations! 

MODERN MATHEMATICS (1968-1985) 

In the enormous changes brought by modern mathematics, geometry teaching was to 

be profoundly renewed. Vectors were introduced in 7
th
 grade, very formally. In 9

th
 

grade, the axiomatic structure of vector space was defined, yet limited to finite 

dimensions. In his history of linear algebra, Dorier (1997 or 2000a) has shown that 

the model of geometrical space, as the Euclidean three-dimensional vector space has 

been promoted by Dieudonné (1964) because, in his mind, it was the best preparation 

for the Hilbert and more general function spaces, which were important in the 

curriculum for post graduates in mathematics. Indeed, promoters of modern 

mathematics (among whom Dieudonné was one of the most radical) had a 

descending view of mathematics education: students had to be trained as young as 

possible to ideas that were essential to professional mathematicians. In this 

perspective, introducing geometry through vectors made possible to introduce the 

structure of Euclidean vector space very early. “Geometrical vectors” became then 

the (quasi unique) prototype of Euclidean vector spaces. Yet, this is a reduction and a 

deviation from the historical genesis. 

[…] the nature of the geometrical vector […] is the outcome of a dialectical perspective 

between algebraic structure and geometric intuition. It has to be underlined here that the 

expression “algebraic structure” does not mean that the geometrical vector is essentially 

the emergence of the theory of vector space in geometry. Indeed, one should not be 

misled by the proximity of vocabulary. The theory of vector space is by nature axiomatic, 

algebraic vectors (elements of a vector space) are not constructed, they are given objects 

defined only by their properties as element of a structure. Geometrical vectors on the 

contrary are the result of a dynamic process of abstraction: the object is created through 

an algebraic elaboration in interaction with geometric intuition. Moreover, the roles of 

vector and scalar products have been essential in the genesis of geometrical vector, 

whereas the linear structure put forward the multiplication by a scalar, which is not 

essential with regard to geometrical vectors
i
. (DORIER 2000b, pp. 76-77) 

A totally new mathematical organisation took place in geometry, in which vectors 

were central. But the nature of vectors was also changed, they became mostly 

examples of linear algebra theory. Therefore, a new niche appeared in the habitat of 

geometry: preparation of students to linear algebra, which was taught from 10
th
 grade, 

up to post-graduate level (functional analysis). Vectors were also used in Physics, but 

the gap between formal objects and applications got very important and many 

students had difficulties: 
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The coordination mathematics-physics is getting complicated: in addition to the time lag 

between mathematics teaching and the needs of physics teaching there is a gap between 

modern mathematics taught and applicable mathematics used in the teaching of physics. 

Thus, a group will be constituted at the junction between the Laguarrigue and the 

Lichnerowicz commissions
ii
.
i
 (BELHOSTE, GISPERT & HULIN 1996, p. 112) 

Research works in physics education in the seventies pointed out several difficulties 

in the use of mathematics in physics, especially regarding vectors. MALGRANGE, 

SALTIEL & VIENNOT (1973) for instance interviewed students entering university 

and pointed out that a correct use of addition of vectors about forces or velocities was 

a major problem. 

However, it is well known that the reform was quickly criticised and rejected. 

A reform conducted by tertiary education for its own sake and interest without any clear 

vision of missions specific to secondary education, was certainly bound to fail right from 

the beginning, whatever was its scientific legitimacy and its promoters’ good will. 

(BELHOSTE, GISPERT & HULIN 1996, p. 37) 

In the late seventies, some modifications were adopted, but it is only in the early 

eighties, that a total reconstruction of the curricula took place. 

THE COUNTER REFORM (1985-2002) 

Following the failure of introduction of modern mathematics, in 1985 the teaching of 

vector space theory disappears from secondary education, replaced by a more 

concrete approach to geometry. The new program specifies: “vectors should not be 

only algebraic entities; mastering their relations with configurations play an essential 

role in the solving of geometric problems”.  

This eludes the fact that vectors are intrinsically algebraic, and that this algebraic nature 

does not refer just to the theory of vector space. Operations on geometrical vectors are 

part of their constitution as objects : 

- Magnitude is the basis of arithmetic since Ancient Greeks. 

- Orientation on the same line is what allows considering negative entities, a 

decisive step towards addition. 

- Direction finally comes from the necessity of multiplication. 

This last idea is the most complicated to understand. But, let us look at what is vector 

multiplication. In Greek algebraic geometry, the product of two numbers (lines) is the 

rectangle’s area. If one considers a parallelogram instead of a rectangle, the sine of the 

angle formed by the two lines has to be taken into account in the formula for the area, i.e. 

the relative position of the two lines (the idea of negative implies to take into account the 

orientation of the lines). Thus, like Grassmann (1844) underlines it, in his introduction to 

the Ausdehnungslehre, the parallelogram, not the rectangle, symbolises the true concept 

of multiplication, if one considers orientated entities in geometry. This brings to light the 

importance of direction of lines in the construction of the product
i
. (DORIER 2000b, pp. 

79-80). 
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As a consequence of the rejection of any formal viewpoint in the teaching of vectors, 

these appear as tools for solving geometric problems, and eventually for physics, but 

have no clear status as objects. Even the use of vectors to illustrate operation on one-

dimensional orientated quantities has disappeared. After the rejection of modern 

mathematics, the teaching of vector is lacking of theoretical reference. The model of 

linear algebra has been banished but nothing came in the place. Yet, some residues 

remain in few places. For instance it is still common today in textbooks for 10
th

 

grade, to show that vectors have some properties, which are actually the axioms of 

vector space (but it is not explicit).  

Since the counter-reform in France, vectors are introduced in a naïve way in relation 

with translation. This viewpoint is not new, it has been developed for instance by 

Jacques HADAMARD (1898) in his Leçons de géométrie: 
If by all the points of a figure, one draws equal parallel lines with the same orientation, 

the end points of these lines constitutes a figure equal to the original. […] The operation 

through which one passes from the first to the second figure was given the name of 

translation. One sees that a translation is determined when a line is given in magnitude, 

direction and orientation such as AA’, which goes from one point to its homologue. Thus 

a translation is designated by the letter of such a line: e.g. the translation AA’i
. (op. cit., p. 

51). 

The vector first introduced in the 8
th
 grade, finally got introduced only in the 9

th
 

grade. Moreover, in recent years, the content about vectors has been reduced to a 

minimum. The link with physics is promoted in the programs. But, as our survey of 

textbooks and teachers’ practices (BA 2007) showed, it is very limited and very often 

not effective. On the other hand, vectors are used in physics to represent forces and 

velocity, but physics teachers keep complaining that their students are not competent 

enough with vectors. 

In this last period, the habitat of vectors has been reduced to a small part in geometry. 

They are presented as efficient tools to solve geometric problems and models for 

forces and velocity. These niches however have difficulty in surviving. Indeed, 

several research works in mathematics education (e.g. BITTAR 1998, LE THI HOAI 

1997, PRESSIAT 1999) have shown the difficulty in convincing students of the 

power of vectors for solving geometric problems. On the other hand, the distance and 

partitioning between mathematics and physics teaching makes the interrelation 

difficult. In our work, we have studied this problem not only about vectors but also 

about translations and movement of translation (BA & DORIER 2007). 

CONCLUSION 

Despite the rejection of modern mathematics in the eighties, the model of linear 

algebra, even if it has disappeared from secondary education, remains implicitly the 

only algebraic model for vectors, influencing the mathematical organisation of the 

teaching of vectors. In this sense, the multiplication by a scalar is overestimated 
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while, on the contrary, the vector product is underestimated. The axioms of vector 

spaces appear implicitly, while algebraic aspects more specific to geometric vectors 

are eluded, like the link with Thales’ theorem and one-dimensional orientated 

quantities. The vanishing of any algebraic habitat or niche is like something missing 

after the (well founded) rejection of linear algebra. A reflection on the true algebraic 

nature of geometric vector and its link with geometric intuition is totally absent of the 

teaching of vector, since the beginning, while it had been an essential aspect in the 

genesis of vectors. 

The niche “efficient tool for solving geometric problems” is quite problematic. It is 

indeed difficult to find geometric problems, accessible to students in 10
th
 grade, in 

which vectors appear really as more efficient than more basic geometric methods. 

Moreover, our study of the evolution of the teaching of vectors shows that the 

geometric habitat was not “natural” at the beginning. From its origin as hybrid 

objects between mathematics and physics, vectors have been transformed, in a 

didactical process of transposition, into geometric entities. We have shown that 

several changes between 1925 and the beginning of modern mathematics have been 

motivated by purely didactical (not epistemological) constraints. Ideology on 

teaching and practical reasons often (if not always) have surpassed scientific motives. 

The changes occurred during the reform of modern mathematics are even more 

obviously driven by ideology and subject to suspicion on epistemological grounds. 

The niche “tool for physics’ entities” remains throughout the century up to now. Yet, 

our analysis of the evolution of the teaching of vectors shows that the gap between 

habitats in mathematics and in physics has constantly grown bigger. Until the sixties, 

parts of mechanics and kinematics constituted a common ground between 

mathematics and physics where vectors were used. Even then, an artificial separation 

was made and vectors got “rejected” in geometry. In today’s mathematics textbooks, 

the examples taken from physics to illustrate the use of vectors are mostly inaccurate 

and often wrong from a physicist’s viewpoint, while physics teachers refuse to do 

mathematics and expect mathematical tools to be at disposal in time (BA & DORIER 

in press).  

For the interrelations between mathematics and physics teaching to get better, 

changes in the curricula will be necessary, but it will not be sufficient. For each 

subject capable of strengthening the relations between mathematics and physics, an 

epistemological analysis has to be conducted in order to make the adequate changes. 

Our claim is that this study must take into account the historical evolution of the 

concepts at stake AND the evolution of the teaching of these concepts, with a 

description of the constraints of the educational context. Such analyses must be the 

bases for teaching experimented completed by didactical analysis. Finally specific 

teachers’ training is necessary, in order to make the changes possible. 
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GEOMETRY TEACHING IN ICELAND IN THE LATE 1800S AND 

THE VAN HIELE THEORY 

Kristín Bjarnadóttir 

University of Iceland – School of Education 

The first Icelandic textbook in geometry was published in 1889. Its declared aim was 
to avoid formal proofs. Concurrently geometry instruction was being debated in 
Europe; whether it should be taught as purely deductive science, or built on 
experiments and intuitive thinking. The policy of Icelandic intellectuals was to 
enhance strategies to lead their country towards independence and technical 
progress, which partly coincided with foreign didactic currents. The discussion on 
geometry teaching is connected to the van Hiele theory of the 1950s on geometric 
thinking.  

INTRODUCTION 

Iceland has a well recorded history of its educational and cultural issues since its 

settlement around 900 AD. A large collection of literature of various kinds exists 

from the 12
th
-14

th
 century. This includes literature of encyclopaedic nature, which 

contains some mathematics, mainly arithmetic and chronology. There is, however, 

little evidence that geometry of the Elements was ever studied in the two cathedral 

schools in Iceland in the period from the 12
th
 to the early 19

th
 century, while 

astronomical observations and geodetic measurements were made in the 1500s, 1600s 

and 1700s by local people who had studied at Northern European universities. 

Iceland became a part of the Danish realm by the end of the 14
th
 century. The two 

cathedral schools were united into one state Latin School in 1802. Their goal was to 

prepare their pupils for the church, and for studies at the University of Copenhagen, 

which introduced stricter entrance requirements in mathematics in 1818.  

From the middle of the 19
th
 century there were growing demands for independence 

from Denmark. Detailed proposals were written on schools for farmers and a lower 

secondary school for the middle class, as ways of raising educational standards of a 

future independent nation. Classical geometry was to be provided for those aiming 

for university entrance, while practical measuring skills and geodesy were proposed 

for future farmers. 

As a milestone towards independence, the Icelandic parliament became a legislative 

body in 1874; an event followed up with legislation in 1880 on teaching children 

arithmetic and writing, and the establishment of a public lower secondary school, run 

by the state, established in 1880 in Northern Iceland. The school was intended for 

future farmers and craftsmen. Its syllabus, however, became more theoretical over 

time, and from 1908 its final examination was recognised as a qualification for 

entrance into the Latin School, which remained the only school of its kind until 1928. 
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Several privately-run lower secondary schools, as well as technical schools, were 

established from the 1880s with some support from the state. 

Along with the establishment of schools, textbooks in the vernacular were written and 

published. Among them was the subject of this paper, the first Icelandic textbook in 

geometry, published in 1889, Flatamálsfræði/Plane Geometry by the Reverend 

Halldór Briem, teacher at the new lower secondary school in Northern Iceland.  

EUCLIDIAN GEOMETRY AS A MODEL FOR DEDUCTIVE SYSTEMS 

The study of geometry was collected into a coherent logical system by Euclid in his 

Elements in 300 BC. The main goal of studying classical Euclidian geometry, with its 

logical deductive axiom system, has been regarded as to provide training in logical 

reasoning. The Euclidian system provided a model for creating various axiom 

systems in the 19
th

 century, such as for the set of positive integers in the 1880s; and 

Dedekind contributed to a precise definition of the idea of a real number in the same 

period.  

There were, however, several flaws in Euclid’s system, e.g. an assumption 

concerning continuity, not explicitly mentioned. D. Hilbert published his Grundlagen 
der Geometrie in 1899, where he defined five sets of axioms, a complete set, from 

which Euclidian geometry could be derived. Hilbert’s set of axioms contains two 

which concern the basic idea of continuity, where Euclid’s tacit assumption is made 

explicit (Katz, 1993: 718–721). 

THEORIES OF GEOMETRY LEARNING 

According to the theory of Pierre and Dina van Hiele, developed in the late 1950s, 

pupils progress through levels of thought in geometry. Their model provides a 

framework for understanding geometric thinking (Clements, 2003: 152–154). The 

theory is based on several assumptions: that learning is a discontinuous process 

characterised by qualitatively different levels of thinking; that the levels are 

sequential, invariant, and hierarchical, not dependent on age; that concepts, implicitly 

understood at one level, become explicitly understood at the next level; and that each 

level has its own language and way of thinking.  

In the van Hiele model, level 1 is the visual level, where pupils can recognise shapes 

as wholes but cannot form mental images of them. At level 2, the descriptive, analytic 

level, pupils recognise and characterise shapes by their properties. At level 3, the 

abstract/relational level, students can form abstract definitions, distinguish between 

necessary and sufficient sets of conditions for a concept, and understand, and 

sometimes even provide logical arguments in the geometric domain, whereas at level 
4, students can establish theorems within an axiomatic system.  

According to Clements (2003), research generally supports that the van Hiele levels 

are useful in describing pupil’s geometric concept development, even if the levels are 

too broad for some tastes. The van Hiele levels may e.g. not be discrete. Pupils 
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appear to show signs of thinking at more than one level in the same or different tasks 

in different contexts. They possess and develop competences and knowledge at 

several levels simultaneously, although one level of thinking may predominate. 

GEOMETRY IN EUROPEAN SCHOOLS 

The Euclidian axiomatic deductive presentation of geometry was the norm for the 

subject in secondary schools of the early modern age. When people began to talk 

about geometry teaching based on observation and experiments, by the end of the 18
th

 

century in Denmark, the idea was hard to fight for (Hansen, 2002: 106).  

Planting the seed of a new era, Rousseau wrote in his Émile in 1762:  

I have said that geometry is not within the reach of children. But it is our fault. We are 

not aware that their method is not ours, and that what becomes for us the art of reasoning, 

for them ought to be only the art of seeing (Rousseau, 1979:145).  

This quotation is in agreement with the van Hiele theory; the children are still at level 
1, the visual level. 

During the 19
th

 and early 20
th
 centuries, the prevailing view of geometry instruction 

and general education in England was challenged (Prytz, 2007: p. 41–42). 

Mathematicians resumed the criticism regarding tacit assumptions and lack of rigour 

in Euclid’s Elements. Educators argued that geometry could be made more palatable 

to pupils, and others demanded that mathematics instruction should be adapted to 

practical matters.  

German philosopher and pedagogue Herbart (1776-1841) argued in 1802 that 

intuitive skills are important in connection to geometry instruction. Textbook writers 

Treutlein (1845-1912) in Germany and Godfrey (1876-1924) in England were 

influenced by him. Both of them underscored the importance of developing intuitive 

thinking in connection to mathematics instruction (Prytz, 2007: p. 43–44).   

Thus experimental and intuitive approaches to geometry instruction in secondary 

schools were discussed in Germany and England by the turn of the 20
th

 century. In 

both these countries, official reports stressed the importance of such teaching 

methods and they were included in the first geometry courses at the secondary 

schools (Prytz, 2007: p. 43).   

University study by Icelanders was confined to University of Copenhagen, and they 

may have been influenced by Germans through Denmark. Their contact with Anglo-

Saxon culture was through mass emigration from Iceland to North America from 

1880 onwards. Evidence exists that there were currents of changes there too: “In the 

1890s (and probably the 1880s) a major movement existed to steer geometry in the 

direction of practical geometry [in Canada]. There were a couple of guys from New 

York … who were spearheading this movement” (Sigurdson, 2008).  
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THE POLITICS OF MATHEMATICS EDUCATION IN ICELAND 

In the first half of the 19
th
 century, in 1822-62, the Latin School was served by 

mathematician B. Gunnlaugsson. He had won a gold medal at the University of 

Copenhagen and, working alone, achieved the feat of making a geodetic survey of 

Iceland, to create the outlines of the country’s modern map. During his period 

classical geometry teaching was developed at the school according to the 1818 

requirements of the University of Copenhagen. Gunnlaugsson had to use Danish 

textbooks, but in order to enhance the pupils’ motivation he gave them geodesy 

problems (Bjarnadóttir, 2006: 90–93; National Archives, Bps. C. VII, 3a).     

Secondary schools in Denmark were split in 1871 into a language-history stream and 

a mathematics-science stream. The Icelandic Latin School was subject to the same 

law, but had its own regulations. It was too small to be divided into two streams, so 

after some lobbying and compromises the school was classified as a language-stream 

school in 1877; mathematics was only taught for four years of its six-year programme 

(Bjarnadóttir, 2006: 112-118). This decision caused some dispute and conflict for 

several years. University student F. Jónsson, later professor of philology at the 

University of Copenhagen, wrote in 1883, criticising the school and its regulations: 

... to teach mathematics without practical exercises ... is ... as useless as it can possibly 

be, ... the worst has been the lack of written exercises; … all deeper understanding has 

been missing, all practical use has been excluded ... the new regulations have 1) thrown 

out trigonometry, 2) prescribed that mathematics is only to be taught during the 4 first 

years (previously all) and thereby dropped for the graduation examination, and 3) 

geometry is to commence straight away in the lowest class; these three items are as I 

conceive them equally many blunders; … 

…to leave out the trigonometry is to leave out what is the most useful and interesting in 

the whole bulk of mathematics ... that the [geometry] study is to commence in the first 

grade; in order to grasp it, more understanding, more independent thought is needed than 

those in the first grade generally have; [I] tutored two lads in geometry and both of them 

were not stupid, and not young children, and for both of them it was very difficult to 

understand even the simplest items; but the reason was that they neither had the 

education nor the maturity of thought needed to study such things, which is entirely 

natural (Jónsson, 1883: 115–116). 

The pupils of the Latin School were sons of farmers, clergymen and officials. The 

clergy also made their living from farming, as did county magistrates, so the majority 

of the pupils came from farming communities where there were no primary schools. 

New pupils came to school prepared by clerics in Latin, Danish and basic arithmetic, 

having seldom met geometric concepts. Land was e.g. not measured in square units, 

but valued according to how much livestock it could carry.  

In terms of the van Hiele theory, one may take the view that the pupils did not 

possess ‘the maturity of thought’ needed to study deductive geometry as presented in 

the Danish author Jul. Petersen’s system of textbooks, written in the period 1863-78 
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and used at the Latin School at the time to which Jónsson refers. The pupils were 

expected to jump to level 3 of geometric thinking without any preparatory training at 

lower levels. Petersen’s obituary said: 

It was first around the turn of the century people began to realise that the advantages of 

these textbooks were more obvious for the teachers than for the pupils ... the great 

conciseness and the left-out steps in thinking did not quite suit children (Hansen, 2002: p. 

51).  

A reviewer wrote about the introduction to Petersen’s 1905 edition: 

... one reads between the lines the author’s disgust against modern efforts, which in this 

country as in other places deals with making children’s first acquaintance with 

mathematics as little abstract as possible by letting figures and measurements of figures 

pave their way to understanding of geometry’s content ... 

Working with figures ... aids the beginner in understanding the content of the theorems, 

which too often has been completely lost during the effort on ‘training the mind’. If the 

author knew from daily teaching practice, how often pupils’ proofs have not been a chain 

of reasoning but a sequence of words, he would not have formed his introduction this 

way ... for the middle school, it [the textbook] is not suitable (Trier, 1905). 

Petersen’s textbook on introduction to geometry remained as an introductory course 

at the school for nearly a hundred years, to be discarded in the late 1960s 

(Bjarnadóttir, 2006: 320); and it may have disrupted the life of many a young pupil.    

GEOMETRY BY HALLDÓR BRIEM 

The Reverend Halldór Briem (1852-1919) published his Flatamálsfræði/Plane 
Geometry in 1889. Briem studied 1865-71 at Reykjavík School, where he benefited 

from the controversial mathematics teaching described above by Jónsson. Briem 

stayed during 1876-81 in the Icelandic communities in Manitoba and Winnipeg in 

Canada, where he was editor of an Icelandic journal and was ordained as pastor to the 

immigrants. He may have become acquainted with school mathematics there, but 

there is no record of this. H. Briem wrote textbooks on geometry, English, Nordic 

mythology, Icelandic grammar and Icelandic history, in addition to plays, and made 

various translations into Icelandic, e.g. of the story of Robin Hood. 

In the foreword to the Plane Geometry, H. Briem declared his policy: 

... no textbook in geometry in Icelandic has been available. I have therefore had to make 

use of foreign textbooks ... Other schools for the public in this country have not been in a 

better situation in this respect, and this shortage is the more severe, as knowledge of 

mensuration is completely indispensable in various daily tasks of farmers, carpenters and 

others, besides that it is an important aspect of general education ... 

In composing it, my goal has mainly concerned what is the most important in general 

working life and therefore I have emphasised the main items concerning that as much as 

possible, and omitted other items that are less important to working life. The arrangement 
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of the content is therefore different from what is customary in this kind of textbook, 

where every sentence is supported by scientific proofs, but according to my policy that 

did not apply here (Briem, 1889: iii-iv).  

H. Briem’s brother, the Reverend E. Briem, was also a textbook writer. His 

Reikningsbók/Arithmetic (1869) was a dominant textbook for adolescents, also at the 

Latin School, from 1869 to the 1910s. The brothers were hardly much involved in 

didactic discussions such as those which took place in Europe, about mathematics as 

a discipline exclusively to train the mind. They declared that it was their first aim to 

meet the immediate needs of young people for practical knowledge. One might even 

conjecture that they saw the bother of proving self-evident facts as an intellectual 

luxury (or adversity) that was not to be foisted on educationally-deprived youth.  

The introduction to H. Briem’s Plane Geometry is devoted to basic assumptions, such 

as the attributes of a space, a body, a plane or surface, a line and a point, in this order. 

The body is not composed of planes, the author states, and the plane not of lines, as 

the planes have no thickness. The line has no width and it is not composed of points. 

However, he does claim that two lines meet in a point. If one thinks of a point 

moving from one spot to another, its track is a line. If a line moves in a direction 

perpendicular to itself, its track will be a plane and if a plane moves in a direction 

perpendicular to itself, its track will be a solid (Briem, 1889: 1–3). 

The great master, Gunnlaugsson, who had taught H. Briem’s teacher and his brother 

at Latin School, also presented lines as tracks of points, planes as track of lines and 

bodies as the track of planes, but he did not mention that lines were not composed of 

points. However, a geometric plane could not be parted from the body of which it is a 

border, except in the mind by abstraction; nor could a geometric line be parted from 

the plane of which it is a border, or a geometric point be parted from the line of which 

it is a border, except in the mind by abstraction (Gunnlaugsson, 1868). 

H. Briem seems to have thought of points as discrete objects and a line as a 

continuous track, not thinkable as made up of points. Briem had little opportunity to 

become acquainted with modern ideas of real analysis or the work of Dedekind in the 

1880s. The work of Hilbert on Euclidian geometry, where Euclid’s ambiguity about 

continuity was amended, had not yet appeared. But a clergyman teaching geometry to 

adolescents on the periphery of Europe felt a need to philosophise on his own, about 

the nature of lines and planes and their relations to points. 

Briem continued with definitions: of parallel lines, an angle, of plane figures, such as 

triangles, various quadrilaterals, polygons, the circle and the ellipse and of similarity 

and congruence. The names of the shapes are in Icelandic with Latin in parentheses. 

Remembering the names must have been difficult, as this was the first Icelandic book 

on geometry. A score of exercises follow the definitions. Attached to the exercises 

are answers to them and explanations. This was necessary, as lower secondary 

schools were scarce and the textbook was to serve for home studies as well. 

In connection to the definition of a triangle, its attributes are also investigated: 

WORKING GROUP 15

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2697



  

All the angles in a triangle are 180° in total. In the triangle ABC (diagram 19) CB is 

perpendicular to AB, therefore the angle B = 1R [R a right angle], 

furthermore CB is equal to AB; by drawing the triangle ADC equally 

large and similar to the triangle ABC [congruence had not yet been 

defined], one may see that x and y each are half of a right angle, 

therefore the sum of the angles in the triangle is 2R. The same applies to 

all triangles, as the larger or smaller one of the angles is, the others (one 

of them or both) become smaller or larger (Briem, 1889: 14). 

In this text reference is made to a diagram; but because of the high printing cost, all 

diagrams are printed together as an appendix at the back of the book. Clearly the 

author appeals to the intuition of the reader to see that the angles x and CAD are 

complementary, as well as y and ACD. Furthermore, the triangle ABC is a special 

case of an isosceles right triangle, but the reader is invited to take its attributes as 

universal. The author had introduced parallel lines and their angles to a transversal 

line, and so he could have presented the regular proof of the sum of angles in a 

triangle, but preferred to do it this way. 

The common reader, the future farmer or carpenter, may not have been expected to 

need more ‘scientific’ proofs. The fact that the sum of the angles in the triangle ABC 

is two right angles is more or less obvious from the diagram, but more credulousness 

is needed for believing that it applies to all triangles. Schools, through the centuries, 

have expected their pupils to believe what is stated in textbooks. This is not much 

different, except for the point of view that mathematics studies are expected to foster 

critical thinking among their students. 

In continuation, the square root is introduced, as are common 

measuring units, which were fairly complicated before the 

introduction of the metric system in 1907. The next chapter 

concerns areas of parallelograms, squares, rhombi and 

triangles, with plausible explanations aided by the diagrams at 

the back of the book. The areas of a trapezoid and polygons are 

deduced from the area of a triangle. Heron’s rule is introduced 

without proof or explanation, as is the Pythagorean Theorem, 

whose proof is stated to be too difficult for the readers. A 

diagram of the 3 – 4 – 5 triangle (diagram 51) is presented as an illustration of the 

rule.  

In a circle the perimeter is stated to be 113
163 times the radius, while later this and other 

values for π are said to be approximations to the true value, which may be reached as 

accurately as desired. The circle is conceived as composed of many small triangles, 

whose top-angles meet at the centre of the circle, from which the area of a circle was 

deduced. This continues with areas of sectors and annuli, and finally of an ellipse. 
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A chapter is devoted to proportions, which was probably difficult, as the pupils may 

not have had much experience in solving equations. When discussing proportions in 

the right triangle, the author reveals the algebraic proof of the Pythagorean Theorem. 

In the final chapter, the author introduced constructions; to bisect a segment, to divide 

a segment into any number of segments, to construct a right angle, to double the area 

of a square and a circle, and to transform a rectangle to a 

square with the same area. This is illustrated in diagram 45, 

where the dimensions of the rectangle are AD and DB and 

the side of the square is the altitude CD. This is a 

consequence of proportions in the right triangle already 

introduced, and the author refers to it through diagrams. 

Earlier, the necessary prerequisite, that a periphery angle is 

half the centre angle of the same arc, had been illustrated for 

a right periphery angle, sufficient for this construction.  

All things considered, the text, after the initial introduction of concepts, is readable, 

although concise, with sensible explanations of most of the formulas with the aid of 

diagrams, which regrettably could not be attached to the text in concern. The 

exercises were mainly computations of sizes of angles, lengths of sides in right 

triangles and various area computations, but no constructions. One may suggest that 

the level of the book was closer to van Hiele level 2 than e.g. Petersen’s textbook, but 

was certainly not level 1. 

However, though it may be arguable that Briem’s Geometry was based on 

observations of his diagrams, it can hardly be maintained that they concerned the 

pupils’ real world. The problems seldom had content, and if so they were synthetic, in 

the sense that they asked to find areas that few would want to know. It was not 

customary to compute the area of land except to estimate the time needed to mow it, 

and few had reasons to determine the area of an ellipse-shaped dining table. The 

author was indeed faithful to the Euclidian content, but was unafraid to simplify 

proofs and appeal to intuition. 

The author of Plane Geometry taught mathematics, Danish, singing and physical 

education in the state-run lower secondary school in Northern Iceland. Plane 
Geometry was used in that school and possibly in some other schools, but not at the 

Latin School, which adhered to law on Danish Latin schools. However, Briem’s 

second geometry textbook on volumes (Briem, 1892), which was not as sensitive to 

rigour, was used there for some years. 

In 1904 a learned mathematician, Dr. Ó. Daníelsson, graduated from Copenhagen 

University and returned to Iceland to teach. He completed his doctoral degree in 

1909, with geometry as his special field. Until his time there was no mathematician 

with whom to debate geometry instruction. Dr. Daníelsson tried to use Briem’s Plane 
Geometry in teacher training for one year, but gave up. He turned to foreign 

textbooks until he published his own, where he used e.g. the definitions of parallel 
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lines and their angles to a transversal line to prove that the sum of the angles in a 

triangle is 180°. He also proved the theorem of Pythagoras with the aid of geometric 

figures (Daníelsson, 1914).   

DISCUSSION 

Many pedagogues emphasise that learning is dependent on the cultural environment 

(see e.g. D’Ambrosio, 2001). It is notable that through the history of education in 

Iceland, trigonometry and geodesy stand out as being considered interesting and 

useful subjects, while no trace is found of rigid Euclidian geometry for any other 

purpose than fulfilling the entrance requirements of the University of Copenhagen.  

H. Briem belonged to a generation of intellectuals who were much aware of the low 

status of education in Iceland, and who participated in the campaign for independence 

in order to be able to form own Icelandic educational policy. Briem was one of two 

teachers who were appointed to a new lower secondary school, of which people had 

great expectations that it would raise the level of education of the general public. The 

school was not restricted by any regulations on mathematics content, so Briem had 

freedom to form the mathematics instruction as he saw fit. 

Briem’s Plane Geometry may be seen as a reaction to the criticism of teaching in the 

Reykjavík School and of Petersen’s textbook. Briem maintains that no foreign 

textbooks suited him as a model. However, his textbook seems to have been created 

according to international currents, promoting geometry teaching based on intuition 

and observation. This approach has resonance in the van Hiele theory, that pupils go 

through sequential levels of thought and have difficulties in reaching without 

preparation the abstract/relational level �  to understand or provide logical arguments 

�  unless they have been through lower levels of visualisation and description. One 

can hardly claim, however, that Briem was entirely successful in meeting the pupils’ 

level of geometric thinking, but he did avoid bothering them with proving what they 

might have thought ‘obvious facts’. His collection of exercises did not contain any 

pure deduction, but consisted of fairly approachable numerical exercises.  

These were times of rapid change, from a stagnant agricultural society. Craftsmen 

were a rising class in the 1890s and the textbook was intended to introduce them to 

basic facts of geometry. It must have been of use in their trade, in view of the fact 

that no other text on the subject was available in the vernacular. Briem made a great 

effort to transform concepts from foreign languages into Icelandic, which had no 

tradition of geometry. It is, however questionable how far he succeeded in connecting 

the content to the Icelandic environment.   

Briem’s textbook was indeed an ambitious textbook for its time; and no comparable 

textbook intended for the non-college-bound general public, and reaching that level 

of complexity, has been published since in Iceland. 

WORKING GROUP 15

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2700



  

REFERENCES 

Bjarnadóttir, K. (2006). Mathematical Education in Iceland in Historical Context. 

Reykjavík: Háskólaútgáfan; and IMFUFA tekst,  Roskilde University. electronic 

library. http://rudar.ruc.dk/bitstream/1800/2914/1/Chapter0_IMFUFA.pdf, 

retrieved September 17 2008. 

Briem, E. (1869). Reikningsbók. Reykjavík: Einar Þórðarson and Eiríkur Briem. 

Briem, H. (1889). Flatamálsfræði handa alþýðuskólum. Reykjavík.  

Briem, H. (1892). Kennslubók í þykkvamálsfræði. Reykjavík. 

Clements, D.H. (2003). Teaching and learning geometry. In J. Kilpatrick, W.G. 

Martin & D. Schifter, A Research companion to Principles and standards for 
school mathematics. Reston, VA: National Council of Teachers of Mathematics. 

D'Ambrosio, U. (2001). Ethnomathematics. Link between tradition and modernity. 

Rotterdam / Taipei: Sense Publishers. 

Daníelsson, Ó. (1914). Reikningsbók. Reykjavík: Arinbjörn Sveinbjarnarson. 

Gunnlaugsson, B. (around 1868). National Library Manuscripts. Lbs. 2007a. 

Hansen, H.C. (2002). Fra forstandens slibesten til borgerens værktøj. Regning og 
matematik i borgerens skole 1739–1938. Aalborg: Aalborg Universitet. 

Katz, V. (1993). A history of mathematics. An introduction. New York: 

HarperCollins College Publisher.  

Jónsson, F. (1883). Um hinn lærða skóla á Íslandi. Andvari, 9, pp. 97–135. 

Reykjavík: Þjóðvinafélagið.  
National Archives of Iceland: Biskupsskjalasafn. Bps. C. VII, 3a. Bréf til biskups eða 

stiftsyfirvalda um Bessastaðaskóla 1820–1826. 

Trier, V. (1905). Anmelding. Nyt tidsskrift for matematik, pp. 115–116. 

Prytz, J. (2007). Speaking of geometry. A study of geometry textbooks and literature 
on geometry instruction for elementary and lower secondary levels in Sweden, 
1905-1962, with a special focus on professional debates. Uppsala: Uppsala 

University. 

Rousseau, J. (1973). Émile or On Education. London: Penguin Books Ltd.  

Sigurdson, S. An email, Dec. 2008. 

WORKING GROUP 15

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2701



INTRODUCING THE NORMAL DISTRIBUTION BY 
FOLLOWING A TEACHING APPROACH INSPIRED BY 

HISTORY: AN EXAMPLE FOR CLASSROOM 
IMPLEMENTATION IN ENGINEERING EDUCATION 

Mónica Blanco 

Marta Ginovart 

Department of Applied Mathematics III 
Technical University of Catalonia, SPAIN 

 

Abstract: Probability and random variables turn out to be an obstacle in the 
teaching-learning process, partly due to the conceptual difficulties inherent in the 
topic. To help students get over this drawback, a unit on “Probability and Random 
Variables” was designed following the guidelines of the European Higher Education 
Area and subsequently put into practice at an engineering school. This paper focuses 
on the design, implementation and assessment of a specific activity of this unit 
concerning the introduction of the normal probability curve from a teaching-learning 
approach inspired by history. To this purpose a historical module on the normal 
curve elaborated by Katz and Michalowicz (2005) was adapted to develop different 
aspects of the topic. 
 
Keywords: probability, normal distribution, European Higher Education Area, 

teaching-learning materials on history of mathematics. 

 

INTRODUCTION 

Teaching probability and random variables turn out to be essential for the introducing 

of statistical inference in any undergraduate course in basic statistics. Statistics is one 

of the compulsory undergraduate subjects included in the syllabus of any engineering 
school. This subject, as developed at the School of Agricultural Engineering of 

Barcelona (ESAB) of the Technical University of Catalonia (Spain), primarily 

encompasses Data Analysis and Basic Statistical Inference. We believe that the very 
nature of the subject calls for special consideration in the teaching of the subject, 

especially with regard to the new European Higher Education Area (EHEA). Besides, 

the essentially biological profile of the ESAB seems to weaken interest in 
mathematical domains.  

From our experience in teaching statistics at different engineering schools, we are 

well aware that probability and random variables represent a rather overwhelming 
obstacle for students, due to the conceptual difficulties inherent in the topic. To help 

students get over this drawback, a unit on “Probability and Random Variables” was 

designed following the guidelines of the EHEA. Subsequently, this unit was put into 
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practice at the ESAB. Throughout the module, the teaching-learning process was 

assessed using several evaluation techniques so as to analyse the learning outcome 

(Blanco & Ginovart, 2008). This paper focuses on the design, implementation and 
assessment of a specific activity of this unit concerning the introduction of the normal 

probability curve and some related aspects from a historical point of view. 

Mathematical and statistical topics have been traditionally taught in a deductively 
oriented manner, presented as a cumulative set of “polished” products. Through a 

collection of axioms, theorems and proofs, the student is asked to become acquainted 

with and competent in handling the symbols and the logical syntax of theories, 
logical clarity being sufficient for the understanding of the subject. As a result, the 

traditional teaching of mathematics tends to overlook the mistakes made, the doubts 

and misconceptions raised when doing mathematics, detaching problems from their 
context of origin. However, since the construction of meaning is only fulfilled by 

linking old and new knowledge, the learning of mathematics, in general, and 

statistics, in particular, lies in the understanding of the motivations for problems and 
questions. In this respect, integrating the history of mathematics in education 

represents a means to reflect on the immediate needs of society from which the 

mathematical problems emerged, providing insights into the process of constructing 
mathematics (Tzanakis & Arcavi, 2000; Swetz et al., 1995). 

How to introduce a historical dimension in our unit on probability and random 

variables turned out to be a challenge to our “standard” teaching activity, all the more 
so because first we had to determine which role history would play in the unit. Of the 

three different ways suggested by Tzanakis & Arcavi (2000) to integrate history in 

the learning of mathematics, the one that seemed to serve our purpose best was to 
follow a teaching-learning approach inspired by history. In the context of this paper 

history was integrated implicitly, since the main aim was to understand mathematics 

(statistics, in particular) in its modern form, bearing in mind, throughout the teaching 
process, those “concepts, methods and notations that appear later than the topic under 

consideration” (Tzanakis & Arcavi, 2000, p. 210). Accordingly, after having selected 

a historical module on the normal curve elaborated by Katz and Michalowicz (2005, 
pp. 40-57), we adapted it to develop different aspects of the topic. The aims of the 

activity were to: 

Aim 1.- Show motivation for the topic. 

Aim 2.- Show interrelation between mathematical domains, on the one hand, and 

mathematical and non-mathematical domains, on the other. 

Aim 3.- Compare modern “polished” results with earlier results. 

Aim 4.- Produce a source of problems not artificially designed for the purpose. 

Aim 5.- Develop “personal” skills in a broader educational sense. 

These aims are explicitly connected with the ones described by Tzanakis & Arcavi 
(2000, §§7.2. (a) and 7.2. (c1), pp. 204-206). 
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THE NORMAL DISTRIBUTION: AN INTRODUCTION INSPIRED BY 

HISTORY 

Right at the beginning of the course our students are informed about the specified 

learning outcomes, classified according to Bloom’s taxonomy (Bloom, 1956) into: 

Knowledge, Comprehension and Application. The learning outcomes regarding the 

normal distribution have been articulated as follows: 

Table 1. Learning outcomes regarding the normal distribution.  

After attending the course the student will be able to:  
a) Define and recognize the normal (or Gaussian) distribution, as 

well as the standard normal distribution. 

[Knowledge] 

b) Convert an arbitrary normal distribution to a standard normal 

distribution. 

[Comprehension] 

c) Calculate probabilities of events when a normal distribution is 

involved, using the table of the standard normal distribution. 

[Comprehension] 

d) Describe the empirical rule 68-95-99.7. [Comprehension] 

e) Apply the rule 68-95-99.7 to assess whether a data set is normally 

(or approximately normally) distributed.  

[Application] 

f) Estimate the approximation of the normal distribution to the 

binomial distribution. 

[Application] 

To adapt the historical module it was first necessary to frame the activity within well-

defined boundaries (Katz & Michalowicz, 2005). Therefore, we started selecting and 
later reflecting on some questions suggested by Pengelley (2002) for assessing 

historical material: (a) What is the purpose of studying the material? (b) How does it 

fit in with the curriculum? (c) Are there appropriate exercises, with an appropriate 
difficulty level and well chosen to demonstrate concepts? (d) Will it motivate 

students? (e) Will it help with something students have trouble with? Since the 

activity described in this paper was directed towards the learning outcomes 
mentioned above (see Table 1), question (b) was explicitly involved. 

To show the original motivation for the topic of the normal distribution, the activity 

emphasized interrelation between statistics and health and social sciences, hence 
covering Aims 1, 2 and 4. Although the topic had already been introduced in the 

classroom, the teaching-learning process was able to benefit from the study of non- 

artificially designed problems. From Katz and Michalowicz’s module we elaborated 
the material for the activity combining information about the historical development 

of the normal curve with some “appropriate” questions. There were no accompanying 

answer sheets as the activity was designed to be worked out in a two-hour computer 
lab session, individually or in pairs. Most of the students worked individually, 

whereas only few computers were shared by two students working together. The 

teacher acted as a consultant during the session. Students managed the time given 
over to every section of the activity themselves, according to their individual needs 

and skills. If they could not accomplish their work in the computer lab, they had the 

possibility to do it as homework. It is worth pointing out that the questions were 
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chosen not only to assess understanding of the information provided, but also to bring 

out the connection with other mathematical domains. Hence, students were asked to 

prove expressions and formulae, to use a spreadsheet to carry out elementary 
probability calculations and to represent data, and to investigate supplementary 

aspects regarding the contents of the activity. All these aspects were planned in order 

to cover Aims 3 and 5.  

In connection with question (a) stated above, this activity attempts to introduce the 

normal probability distribution in its original context, and to help students to get 

acquainted with basic calculations involving the normal curve. The first section of the 
activity shows how De Moivre (1667-1754) obtained his discovery of the empirical 

rule 68-95-99.7. The second section gathers the discussion on the error curve in 

which Laplace (1749-1827) and Gauss (1777-1855) were involved. How Quetelet 
(1796-1874) calculated the table of the normal distribution from the approximation of 

the normal distribution by the binomial distribution is the target of the third section. 

To close the activity, the fourth section is centered on the first uses of the normal 
distribution in the real world, namely: i) analysis of the chest circumference of 5732 

Scottish soldiers; ii) analysis of the heights of French conscripts to assess the 

normality of the distribution, revealing a significant figure of men who illegally 
avoided recruitment. 

We interspersed the text with seven leading questions related to the topics discussed, 

conveniently placed after a specific topic, and not on a separate sheet at the end. 
Questions 1, 4, 6 and 7 were directly inspired by the ones suggested by Katz and 

Michalowicz (2005) on pages 46, 55, 56 and 57, respectively. The rest were stated by 

us, to ensure that a particular point was fully understood. The questions were 
conveniently placed after a specific topic or a related result. The following 

paragraphs briefly describe each question, drawing attention to the educational aims 

served by each one. 

Question 1: In an experiment in which 100 fair coins are flipped, about how many 

heads would you expect to see? What is the corresponding standard deviation? Find 

the limits (lower and upper) for the number of heads we would get 68%, 95% and 

99.7% of the times. 

This first question deals with direct manipulation of a binomial distribution, followed 
by a first encounter with the connection between the normal and the binomial 

distributions. This was intended to help students “warm up” by stating a link between 

the activity and a topic they had already learned in the classroom, thus relating to 
Aim 1. 

Questions 2 through 4 are connected with Quetelet’s calculation of a symmetric 

binomial distribution. He considered the experiment of drawing 999 balls from an urn 
containing a large number of balls, half of which were white, and half black.  
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Question 2: Prove Quetelet’s shortened procedure for the calculation of relative 

probabilities: )(
1

999
)1( nXP

n
nnXP =!

+
"

=+= , where )( nXP = represents the 

probability of drawing n black balls from the urn. Setting the value of )500( =XP  to 

be 1, calculate the relative probabilities )501( =XP  and )502( =XP . 

Students had to deduce this recursive formula from the probability function of the 

binomial distribution. This question was inserted to show the interrelation between 
mathematical domains, namely, probability and recursive proofs (Aim 2). In this case 

the interest lies in how to evaluate mathematical arguments and proofs, and to select 

and use diverse types of reasoning and methods of proof as appropriate (Ellington, 
1998). Given that students often meet difficulties in proving recursive formulae, this 

exercise seems to be consistent with questions (c) and (e) suggested above. 

Question 3: Using an Excel worksheet recalculate column A of Quetelet’s table for 
the values 500 to 579 and graph the corresponding curve. 

To get a deeper knowledge of the binomial-normal link, students were here asked to 

use a spreadsheet, in particular, the spreadsheet program Microsoft Excel. Since the 

activity was developed in the context of computer practical sessions, students had 
computers at their disposal. The computer practicals offer students the possibility to 

be actively engaged in the learning process, as well as to apply the concepts learnt to 

the prospective working practice. Since this topic turns out to be a usual source of 
difficulty, this exercise connects again with question (e). Besides, it helps not only to 

compare modern results with earlier ones, but also to develop “personal” skills such 

as how to manipulate a spreadsheet. Therefore, this exercise focuses on Aims 3 and 5.  

Question 4: A discrete variable can be approximated by a continuous variable 

considering the following estimation:  

continuousdiscrete kxkPkxP )5.05.0()( +!!"#= . 

For instance, normalbinomial xPxP )5.5005.499()500( !!"= .  

Using this information, recalculate the first four values in column A using a modern 

table of the normal distribution.  

It can be assumed that the results of drawing balls out of the urn are normally 

distributed with mean of the number of black balls equal to 500 and standard 

deviation equal to 8.15999
2

1
! . Compare these results with Quetelet’s binomial 

table. 

Understanding why we do things the way we do, and how mathematical concepts, 

terms and symbols arose, plays a relevant role in grasping the topic (Ellington, 1998). 
This question allowed the students to compare a modern table of the normal curve 

with the earliest table. Thus Aim 3 is again involved in the proposed activity. 
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Finally, Questions 5, 6 and 7 concern some real world applications of the normal 

distribution. 

Question 5: Read carefully Quetelet’s procedure for determining whether the chest 

circumferences of the Scottish soldiers were normally distributed. Write down those 
points you do not understand completely.  

Question 6: From the results in the example of the heights of French conscripts, 

discuss how Quetelet concluded there had been a fraud.  

From the reading and through understanding of the example on the chest 
circumferences (Question 5) students were to draw conclusions in the case of the 

heights of French conscripts (Question 6). However, as we will see in the following 

section, since Quetelet’s procedure proved to be difficult to understand, only a few 
students managed to answer Question 6 correctly. 

Questions 4, 5 and 6 contribute to Aim 3 in that they help to compare historical 

results with modern “polished” ones. Likewise, Aim 4 could be achieved, since these 
questions convey the idea that probabilistic tools represent a means to solve real-

world problems, rather than just artificial designed exercises, framed in a theoretical 

context. By and large, this set of questions also fosters the practice of reading 
comprehension skills (Aim 5).  

Question 7: On the Internet, browse for information on Galton’s machine. What was 

the relationship between the inventor Francis Galton (1822-1911) and Charles 
Darwin (1809-1882)? 

The intend of this last question was to help develop some “personal” skills, in a 

broader educational sense, such as reading, summarising, writing and documenting 

(Aim 5). Additionally, it was interesting to point out the interrelation between 
mathematical and non-mathematical domains, namely, between statistics and the 

theory of evolution put forward by Darwin (Aim 2). A fundamental part of this 

question involves the writing component and documenting. The incorporation of a 
writing component in statistics courses has been encouraged in recent years by 

Radke-Sharpe (1991) and Garfield (1994). Writing helps students to think about the 

assumptions behind statistical, graphical or instrumental procedures, to formulate 
these assumptions verbally, and to critically examine the suitability of a particular 

procedure based on its assumptions. The inclusion of documenting (i.e. browsing the 

Internet) facilitates student reading, understanding and summarizing from different 
sources. In short, reading, writing and documenting are tools that will serve students 

well in their future scientific or academic writing. Encouraging students to put 

concepts such as these into words will strengthen their understanding of those 
concepts. 
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ASSESSMENT OF THE TEACHING-LEARNING PROCESS 

Among the questions mentioned above for assessing historical material, Pengelley 

(2002) suggests considering whether it will motivate students (question (d)). Though 

not the only source of feedback, student ratings provide an excellent guide for 
designing the teaching-learning process and, in particular, for assessing their 

motivation. Therefore, at the end of the activity students were asked to rate the 

activity thus: 

(1) Very good, (2) Good, (3) Satisfactory, (4) Poor, and (5) Very poor. 

Figure 1 shows the results of this survey. Of the 60 students who took part in the 

activity, half of them regarded it positively (22 satisfactory, 6 good, 1 very good), 
whereas the other half rated it as poor. 

 

 

 

 

 

 

 

Figure 1. Student ratings on the activity. 

Another aspect suggested by Pengelley (2002) for assessing historical material 

concerned the suitability of the degree of difficulty (question (c)). In order to 

determine whether the activity was appropriately difficult, we analysed in detail a 
random sample of size 20 drawn from the students who had handed in their answers. 

Every question (except Question 5) was marked with either Non-Answered, Poor, 

Fair or Good. From the graphics of Figure 2 regarding the assessment of the 
questions, it is clear that Questions 1 through 4 are most frequently marked as 

“Good”. Surprisingly, all the students answered Questions 1 and 2, whereas the ratio 

of “Non-Answered” in Question 6 exceeded the rest of marked ratios. As for 
Question 7, most of the students got “Fair”. This was partly due to the fact that 

students merely copied the information from the Internet and pasted it on their 

worksheets, thus showing no interest in summarising the information in their own 
words. 

Relating to Question 5, from the comments given by our students we gathered that 

the construction of the table proved to be, in general terms, rather cumbersome.  
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Figure 2. Assessment of the Questions of the activity with Non-Answered (NA), Poor (P), 

Fair (F) or Good (G). 

 

FINAL REMARKS 

As Fauvel and van Maanen (2000) point out, one should not underestimate the 

difficult task of the teacher to achieve a proper transmission of historical knowledge 
into a productive classroom activity for the learner. Given our lack of expertise in the 

field, in this first experience we were not able to foresee all the possible obstacles in 

the understanding process. Now we are aware of some difficulties inherent in the 
material (for instance, in Questions 5 and 6). First of all, the mathematical language 

0

5

10

15

20

NA P F G

Question 1

0

5

10

15

20

NA P F G

Question 2

0

5

10

15

20

NA P F G

Question 3

0

5

10

15

20

NA P F G

Question 4

0

5

10

15

20

NA P F G

Question 6

0

5

10

15

20

NA P F G

Question 7

WORKING GROUP 15

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2709



and form (notation, computational methods, etc) turned out to be rather confusing 

right from the beginning. In addition, the syllabus and a sense of lack of time made us 

cram the activity into a two-hour class. Likewise, we had a slight doubt about how 
useful the topic was for our students. Why not give the opportunity to appreciate the 

topic in itself, stressing the aesthetics, the intellectual curiosity, or the recreational 

purposes involved? Finally, we borrowed and adapted part of Katz and 
Michalowicz’s historical modules on Statistics, but in keeping with our syllabus, 

more didactic resource material on this topic should be elaborated for future use.  

On the whole, however challenging, the experience proved to be rewarding in the 
end. Not only did the activity supply a collection of non-artificially designed 

problems, but it also helped to develop further skills, such as reading, writing and 

documenting. Above all, it was a means to show the original motivation of the 
normal curve and hence, to render it more understandable. This experience has shown 

that probability cannot be regarded as a collection of “polished” products within a 

deductive structured system, but rather as a system with a peculiar life (expectations, 
false expectations and false starts), as Guzmán (1993) put it, determined and 

influenced by external factors and connected with mathematical and non-

mathematical domains.  
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The arithmetic is part of mathematical knowledge based on the idea of the number. 
The teaching of intuitive calculation in Brazil in primary education level at the end of 
the nineteenth century and early twentieth century seems to be influenced directly by 
the “Cartas de Parker”. These arithmetic charts based on the ideas of Pestalozzi, 
Froebel and Herbart were diffused in arithmetic textbooks and educational journals, 
testimonies of their strong influence in Brazil. This article is based on methodological 
presuppositions of the Cultural History, of the History of School Disciplines and the 
studies on the School Culture. 
Keys-words: Arithmetic, Intuitive Calculation, Cartas de Parker, Grube’s Method, 

Elementary level. 

INTRODUCTION 

This article presents a partial result of the literature research related to a doctorate 

thesis, still under development. It aims to investigate the historical route 

Mathematical Education in Brazilian primary education teaching. It seeks to analyze 

the part “to count” of “the school of reading, writing and counting”; and includes 

understanding the process of its teaching by seeking answers to questions like, for 

example: which textbooks were adopted for the teaching of arithmetic at school? 

What was the role of Psychology in the evolution of the textbooks of arithmetic for 

primary education teaching? How were the contents of arithmetic school in the 

textbooks modified? What kind of modifications have the arithmetic’s textbooks been 

under to? 

Considering the contributions of the Cultural History, the History of the School 

Disciplines and the studies on the School Culture, this research focuses the 

documentary sources such as textbook, school files, legislative texts relating to 

teaching as well as old daily materials (teachers’ personal files, pupils’ books, tests, 

periodic school magazines and exams questions)[1] . 

According to Enfert (2003), unlike what occurred to the research of the French’s 

history of the primary education teaching, the history of the teaching of mathematics 

at this level did not receive the attention which it deserves. Except some cases of 

specialized studies, research, in a general way, mostly treated mathematics teaching 

at the secondary or higher level. The history of this discipline has not been treated as 

a whole (Arithmetic, Geometry, Geometrical Drawing, Algebra, Accountancy, etc), 

nor over its long duration.  
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In the History of the School Disciplines, Chervel (1998) defines a particular 

phenomenon called “vulgata”. At each time, the teaching given by teachers is, grosso 
modo, identical, similar for the same discipline and at the same level. All textbooks, 

or nearly all, say the same thing then, or almost. The concepts, the adopted 

terminology, the succession of the headings and the chapters, the organization of the 

corpus of the knowledge, even the examples or types of exercises performed are 

identical, except for some small variations. These variations justify the publication of 

new textbooks although they present only tiny variations. 

The description and the analysis of the “vulgatas” are fundamental tasks for the 

School Discipline’s historian. If it is not possible to examine into the entire editorial 

production carefully, they must determine a sufficiently representative corpus of their 

various aspects. This is the only way that the historian can arrive at concrete and 

conclusive results. 

The research in the teaching of mathematics in Brazil in primary education level at 

the end of the nineteenth century, particularly among textbooks of representative 

authors’ of their community, revealed a reference particular called “Cartas de 

Parker”. Their contents appears as a model and reference adopted by several 

textbooks published at the beginning of the twentieth century, and it seems to be like 

a “vulgata” and influences the teaching of the rudiments of calculus on this level of 

education. 

INTUITIVE CALCULATION 

According to Buisson (1880), intuitive calculation is a term which means a way of 

teaching the first elements of calculation. This methodology was borrowed from 

Germany and diffused in Russia, in the Netherlands, in Sweden and found a strong 

adhesion in the United States. This way of teaching was called Grube’s method. 

In 1842, Grube published in Berlin the first edition of his Leitfaden für das Rechnen 
in der Elementarschule nach den Grundsätzen einer heuristischen Methode (Guide 

for calculation in the elementary classes, following the principles of a heuristic 

method). This “Essai d'instruction éducative”, as he called it, after causing warm 

discussions, was approved by membership of the class of teacher. His book was 

successfully in agreement with the new system of weight and measurements and got 

to its 5th edition in 1873. Many textbooks, in all the languages, were reproduced, 

imitated or applied the Grube’s method. 

The Grube’s method consists in making the pupils to do themselves, by intuition, the 

fundamental operations of elementary calculation. Such method aims to make them 

known the numbers: to understand an object, which it is not only to know its name, 

but to apprehend it in all its forms, in all its states and in its various relations with 

other objects; to be able to compare it with others, to follow the transformations, to 

write it and measure it, compose it and break up of them, at their will. 
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By treating the numbers as unspecified objects that are familiar to the pupils, Grube 

opposes to the old long-established method in arithmetic which is calculated to teach 

the first four processes of addition, subtraction, multiplication, division, in the order 

in which they are named, finishing addition with small and large numbers, before 

subtraction is begun, and so on. An improvement on this method consisted in 

excluding the larger numbers altogether at the beginning and dividing the numbers on 

which the first four processes were taught, into classes, or so-called circles. The pupil 

learns each of the four processes with the small numbers of the first circle (i.e., from 

1 to 10) before larger numbers are considered; then the same processes are taught 

with the numbers of the second circle, from 10 to 100, then of the third, from 100 to 

1000, and so on. 

Grube, however went beyond this principle of classification. He discarded the use of 

large numbers, hundreds and thousands, at the beginning of the course, as others had 

done before him; but instead of dividing the primary work in arithmetic into three or 

four circles or parts only, i.e., from 1 to 10, 10 to 100, etc., he considered each 

number as a circle or part by itself. He recommended that the pupil should learn each 

of the smaller numbers in succession, and all the operations within the range of each 

number, before proceeding to the next higher one, addition, subtraction, 

multiplication, and division, before proceeding to the consideration of the next higher 

number. 

Treating, for instance, the number 2, Grube leads the child to perform all the 

operations that are possible within the limits of this number, i.e., all those that do not 

presuppose the knowledge of any higher number, no matter whether in the usual 

classification these operations are called addition, subtraction, multiplication, or 

division. The child has to see and to keep in mind that 

1 + 1 = 2,   2 x 1 = 2,   2 – 1 = 1,   2 ÷1 = 2, etc. 

The whole circle of operations up to 2 is exhausted before the pupil proceeds to the 

consideration of the number 3, which is to be treated in the same way. 

The four processes are the direct result of comparing, or “measuring”, as Grube calls 

it, two numbers with each other. Only when the child can perform all these 

operations, for instance, within the limits of 2, can it be supposed really to have a 

perfect knowledge of this number. So Grube takes up one number after the other, and 

compares it with the preceding ones, in all imaginable ways, by means of addition, 

subtraction, multiplication and division. This comparing or “measuring” takes place 

always on external, visible objects, so that the pupil can see the objects, the numbers 

of which he has to compare with each other.  

This methodology does not only prepare the pupil to study the arithmetic, but it offers 

an advantage over the other methods about the necessary conditions to the promotion 

of mental calculation. The pupils subjected to this method do not become slaves of 

the numbers and pencils and their “armed operations”.  
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Soldan (1878) exposes the six most important points about the Grube’s method of 

teaching: 

a) Language - the language is the only way that the teacher will have access to what 

the pupil is thinking, because it is not requested any records of the calculations made 

by them. A complete answer must be required from the pupil, because it is only by 

doing it that the teacher will be able to evaluate what the pupil learned or not. 

b) Questions - teachers should avoid asking too many questions. Such questions, 

moreover, as, by containing half the answer, prompt the pupils, should be omitted. 

The pupils must speak themselves as much as possible. 

c) Individual recitation and jointly with the class - In order to animate the lesson, 

answers should be given alternately by the pupils individually, and by the class in 

concert. The typical numerical diagram [2] are especially fit to be recited in concert.  

d) Illustration – Every process and each example should be illustrated by means of 

objects. Fingers, lines, or any other objects can be used to answer the purpose, but 

some kinds of objects must always be presented to the class. 

e) Comparison and measurement – the operation of each new stage consist in 

comparing or measuring each new number with the preceding ones. Since this 

measuring can take place either in relation to difference (arithmetical ratio), or in 

relations to quotient (geometrical ratio), it will be found to comprise the first four 

rules. A comparison of two numbers can only take place by means of one of the four 

processes. This comparison of the two numbers, illustrated by objects, should be 

followed by exercises of fast-solving problems and a view of the numerical relations 

of the numbers just treated, in more difficult combinations. The latter offer a good 

test as to whether the results of the examination of the arithmetical relations of the 

number treated have been converted into ideas by a process of mental assimilation. In 

connection with this, a sufficient number of examples in applied numbers are given 

to show that applied numbers hold the same relation to each other that pure numbers 

[3] do. 

 f) Writing of figures – on neatness in writing the figures, the requisite time must be 

spent. Since an invariable diagram for each number will re-appear in all stages of this 

course of instruction, the pupil will soon become able to prepare the work for each 

coming number by writing its numerical diagrams on their slates.   

The study of the Grube’s methodology turns possible to hypothesize the influences of 

Grube’s methodology into the publications of Mr. Parker. 
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Fig. 1 – The Grube’s Method. 

INTUITIVE’S METHOD AND THE “CARTAS DE PARKER” (NUMERICAL 

DIAGRAMS) 

Research on the teaching of mathematics in Brazil in primary education level at the 

end of the nineteenth century through the sources, revealed a particular reference to 

Mr. Parker, this eminent American teacher, author of “Cartas de Parker”. 

According to Montagutelli (2000), Francis Wayland Parker (1837-1902) developed 

an educational system which was recognized by John Dewey as the “father of 

progressive education”, also inspiring a few years later Granville Stanley Hall. 

Coming from a family of educators, Parker became a teacher when he was sixteen 

years, and later also served in the army at the time of the Succession War in the 

United States. At the end of the hostilities, he took the direction of a school in Ohio. 
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In 1872, he did a study trip in Europe: in Germany, he became familiarized with 

Herbart’s pedagogy. It is possible that he took note of the Grube’s method by this 

time. In 1875, he got back to the United States, where he became the supervisor of 

the schools of the town of Quincy, in Massachusetts. By this time, Parker develops 

the so-called “Quincy System”. In an atmosphere without the rigid discipline 

imposed in the majority of the schools of this time, the pupils read newspapers or 

texts composed by their teachers; on the basis of knowledge, they approached the 

new concepts concretely followed by working groups besides also the practice of 

drawing and music. 

Parker published five books on education: Talks on Teaching [4] (New York, 1883); 

The Practical Teacher (1884); Course in Arithmetic (1884); Talks on Pedagogies 

(1894) and How to Teach Geography (1885). 

An important educational journal of the beginning of the twentieth century, “Revista 

de Ensino”, created in 1902 by the Association of Public’s Teacher of São Paulo 

(Brazil), devoted in several editions, in its section called Teaching Practice, several 

articles about the way of using the “Cartas de Parker”. 

According Pierre Ognier (1984), the educational journal, is one of vast documentary 

corpus, because it is a living witness evidence of teaching methods from an era and 

the conceptions of moral ideology, social and politics of a professional group. This 

makes it an excellent observatory, a picture of the ideology that governs.  

Accordingly, it is a practical guide to everyday educational and school, allowing the 

researcher to study the pedagogical thought of one determined sector or a social 

group from the analysis of reported speech and resonance of the issues discussed 

within and outside the universe school. 

This educational publication, “Revista de Ensino”, over a number of editions, 

published about fifty charts, diffusing them in Brazil. These charts concretize the 

appropriation by Parker of the numerical diagrams stated in the Grube’s method. 

They represent the way of treating the teaching of Arithmetic in an intuitive way. 

Moreover, they are presented like references for the development of textbooks of 

mathematics for the first levels. 

By a heuristic process, i.e., a procedure which consists in discovering by the pupil 

what exactly wants to teach to him, the teacher questioned the pupil in front of the 

chart. Example extracted the fourth chart (see Figure 2): in the items h, i and l are 

representative drawings of the number ten. And by the observation, the pupil should 

give his answers or make remarks about this number formation. Thus, in the letter h, 

it is needed two five to have a ten; in letter l we find three + three + four to have a 
ten; in letter i, it is needed five times of two to have a ten. This way the pupil learned 

how to compose and break up the number into equal or unequal parts. The idea of the 

addition, subtraction, multiplication as of division is concomitantly subjacent with 

this process. 
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Fig. 2 – 4th Carta de Parker   

 

In Brazil, in addition to the quotations and the articles of “Revista de Ensino” on 

“Cartas de Parker”, an important textbook of the beginning of the twentieth century, 

written by Arnaldo de Oliveira Barreto, Série Graduada de Matemática Elementar, 

published by the Salesians, in São Paulo, in 1912, quotes the name of Parker and the 

“Cartas de Parker” in the foreword signed by Oscar Thompson, director of the 

Normal School (Teacher School). There are also quotations in the presentation of the 

book and the final comments relating to the conferences pronounced by Parker. 

The effective methodology of teaching during this time treated intuitive method 

which had been adopted in second half of the nineteenth century in the European, 

American and Brazilian schools; it was based on the ideas of Pestalozzi and Fröbel. 

For Valdemarin (1998), the intuitive method was influenced directly by the current 

empiric of philosophy, carried by Francis Bacon and John Locke (seventeenth 

century) by determining the procedures of teaching based on the observation. 

This method was presented in the form of a response to the abstract character and 

little utility of the instruction up to that point of use, by developing new didactic 

materials and a diversification of the teaching activities. It also brought others 
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innovations that were spread on successive Universal Expositions which were 

organized for the diffusion of teaching practices, like the ones held in London (1862), 

in Paris (1867), Vienna (1873) and Philadelphia (1876).  

The presence of the intuitive method in teaching of arithmetic reveals a new teaching 

method which is opposed to the preceding way of teaching where the memorizing of 

the knowledge was privileged. The “Cartas de Parker” are the elements that made 

possible to associate the influence of this intuitive movement of the teaching of 

arithmetic in Brazil at this time. Evidences of dissemination of this methodology are 

present in articles in major educational journals such as the “Revista do Ensino” and 

of the textbooks like “Aritmética Escolar” of Ramon Roca Dordal [5] or “Contador 
Infantil” of Heitor Lacerda [6], among others. 

 

CONCLUSION 

According to Chervel (1998), the first task of the School Disciplines’s historian is to 
study the explicit contents of disciplinary teaching. The study of a “vulgata”, 

configured as “Cartas de Parker” enables us to connect the form and the contents of 

the teaching of mathematics in the primary education level at the end of the 
nineteenth century - beginning of the twentieth century in Brazil, becoming an 

important element of the writing of the History of Mathematical Education in Brazil. 

Moreover, this study allows hypothesizing that the relation is given at educational 

backgrounds of the ideas that circulated in the late nineteenth century in Europe and 

materialize in Brazil on publications of textbooks and articles in educational journals. 

This seems to point towards the influence of intuitive teaching, conceived by their 

European authors as a pedagogical tool capable of reversing not only the inefficiency 

of school, but also reduce the existing economic development gap, since the emergent 

industrial labour demanded literate and think quickly and creatively individuals. 

According to Valdemarin (1998) this inefficiency of school teaching was 

characterized by the formation of pupils with insufficient reading and the writing 

notions and also without satisfactory concepts of calculation, mainly because of the 

learning based exclusively on memory, giving priority to the abstraction, enhancing 

the value of repetition to the detriment understanding and impose contents without 

examination and discussion. 

The explicit proposal of the “Cartas de Parker” appears to be consistent with the 

aspirations of a time that rejects the methods primarily based on the memory and 

develops the observation as a way of effective training of calculation. 

It is through historical studies that we have access the way that great teaching 

thinkers thought about the teaching of mathematics and the way it echoes in Brazil. 
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NOTES 

1. This research is subordinated to one of the thematic projects which are developed by the 

GHEMAT – Grupo de Pesquisa de História da Educação Matemática do Brasil (Group of Search 

for History of the Mathematical Education of Brazil): “A EDUCAÇÃO MATEMÁTICA NA 

ESCOLA DE PRIMEIRAS LETRAS, 1850-1950” coordinated by Prof. Dr. Wagner Rodrigues 

Valente and financed by the FAPESP. Through a financial support obtained from CNPq – Conselho 

Nacional de Desenvolvimento Científico e Tecnológico (National Council of Technological and 

Scientific Development), I have been developed my research of doctorate at INRP/SHE (Institut 

National Recherche Pédagogique, Service d’Histoire de l’Education – Paris – France) under 

supervision of Prof. Dr. Alain Chopin (05/2008 to 04/2009).  

2. The numerical diagram of the Grube’s method will be presented later on in this article as “Cartas 

de Parker”. 

3. A pure number also called an abstract number, which is that makes mention only quantity. Four, 

thirty, twelve are examples of pure numbers. Applied to an object, it will be called a applied 
number or concrete number. Thirty apples, four trees, three meters, are examples of applied 

numbers or concrete numbers. 

4. This book was translated into Portuguese by Arnaldo de Oliveira Barreto in 1909 and edited by 

Livraria Francisco Alves: “As Conferências de Parker”. 

5. See article Costa, D.A., Valente, W.R. (2007). Análise da Arithmética Escolar de Ramon Roca 

Dordal. In: Simpósio Internacional do Livro Didático, 2007, São Paulo. Livro Didático - Educação 

e memória. São Paulo: Centro de Memória da Educação – FEUSP, v.1. 

6. See Revista do Ensino, 1902, p.146. 
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HISTORICAL PICTURES FOR ACTING ON THE VIEW OF 

MATHEMATICS 

Adriano Demattè & Fulvia Furinghetti 

GREMG, Dipartimento di Matematica, University of Genoa 

The article illustrates the underlying philosophy of an in progress book in which 
pictures taken from historical books are used to hint some fundamental ideas of the 
history of mathematics. Both epistemological and disciplinary issues are taken into 
account. The aim of the book is to let its potential readers know different aspects of 
mathematics as a science operating inside the socio-cultural context. 

Keywords: historical pictures, original sources, mathematics view. 

INTRODUCTION 

This paper deals with the problem of the view of mathematics held by students and 
the means suitable to act on it. In previous works we have studied students’ view of 

mathematics as a socio-cultural process with particular reference to the historical 

development, see (Demattè & Furinghetti, 1999). Our main conclusion was that this 
view was very narrow focused and based on common myths on mathematics. To 

answer the question “How to act on the image of mathematics held by students?” a 

book has been designed by one of the authors (A. D.) addressed to students of the 
final years of secondary school (16 years old onward) or readers who are interested in 

the popularisation of mathematics. The book is based on pictures taken from 

historical sources. Pictures have been largely used in history for communicating 
mathematical ideas, see (Mazzolini, 1993), and thus it is not difficult to collect 

materials for composing such a book. Words accompany pictures in order to create a 

unitary discourse and to focus on some aspects. Pictures strengthen what the verbal 
part say, like in a natural history museum where things and words, verbal and non-

verbal communication coexist. Knowledge required for using the book in classroom 

(or elsewhere) is confined to elementary mathematics. As we will see in sections 3 
and 4 some chapters are more suitable to develop mathematical topics stricto sensu, 

other are more oriented to raise reflections on historical-epistemological questions.  

THE ROLE OF PICTURES 

The idea of this book does not come out of the blue. We have already described in 

(Demattè, 2005; 2006a; 2006b) our work with pictures in the classroom. In particular, 

in the latter two papers we have discussed how students in front of a historical figure 

are able to mobilize some kind of narratives and to produce conjectures. This is due 

to the particular nature of the information provided by figures. Often images show 

supplemental details, which are not pertinent to the specificity of discourse. Readers 

can interpret these images in different ways. A discourse follows a logical track 

(sometimes very rigorous), a picture often permits freedom to the interpreter. 
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Therefore it is ‘friendly’ i.e. rich in possibility of reflections and personal reasoning. 

Our claim may be illustrated by some examples taken from the book. 

 

 

 

 

 

Fig. 1. Oronce Finé, Protomathesis, 1532 

Pictures like Fig. 1 are aimed at showing how an instrument can be used, but the 

painter has added many details (hills, grass, trees, birds, elegant dress of the man) 

which make the scene realistic. The draw of the right-angled triangle and of the 

instrument (a “quadrant in a fourth part of a circle”) focuses on mathematical aspects. 

To reflect on the use of the picture in Fig. 1 in classroom raises the following 

questions for the researcher: Can students appreciate these kinds of images? Do 

pictures like Fig. 1 make them want to use the facilities offered by mathematics? Do 

students see the relationship between the concepts and procedures shown in historical 

pictures and what they learn in school today? Maybe the answer is no, for each 

question. In any case the mathematics view suggested by this kind of pictures appears 

potentially positive in the fact that they address the attention to geometrical details 

and, in the same time, stimulate guessing the finalities of the action illustrated in the 

picture. A scene like the one in Fig. 1 suggests a simple story, a narration with a 

precise structure (some events happen before, some after, a goal of the action – 

including the implicit use of mathematics - is noticeable). (Demattè, 2006a; 2006b) 

report on an experiment where students were asked to write how they interpret Fig. 2.  

 

 
 

 

 
 

 

 

 

 

 

Fig. 2. A mural painted at Abd-el-Qurna, Egypt, around 1400 B.C 
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Some protocols show that they followed the pattern of a narrative. Because of the 

need to complete the story, students formulated also conjectures (e.g. the kings’ 

servants on the cart have the task of rewriting the data and, as the student write, “the 

aim of giving an account of them to the king”). 

Students are rather naturally brought to formulate conjectures, which are coherent 

with context and with elements present in the scene, if they have adequate 

knowledge. To interpret mathematical aspects in the previous image from Finé’s 

Protomathesis or in the following Fig. 3 the concept of similarity among triangles is 

required. But many other aspects require more knowledge: e.g. Why the square? 

Which is the purpose of the action of the man in the picture? etc. 

 

 

 

 

Fig. 3. Oronce Finé, Protomathesis, 1532 

PICTURES AND MATHEMATICAL TOPICS 

In the book the focus is on some grounding mathematical ideas that may be 

elaborated through the history of mathematics. These ideas regard the main chapters 

of mathematics (numeration, algebra, probability, etc., see Appendix). Some ideas are 

inherent to procedures and concepts: images suggest first of all the incipit of 

mathematical reasoning and its global structure. For example, the reader may reflect 

on the different ways of approaching the same theorem by considering the Chinese 

theorem of Pythagoras (Fig. 4) and what is done using Cartesian graphs. 

 

 

 

 

 

 

Fig. 4. ‘Pythagorean’ theorem from Chou Pei Suan Ching, about 500-200 b.C. 

Moreover pictures, suggest at a glance some metacognitive information e.g. the level 

of complexity and the need of a detailed mathematical reasoning, as exemplified by 
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the Leibnizian graphs shown in Fig. 5 from Nova methodus pro maximis et minimis, 
itemque tangentibus, quae nec fractas, nec irrationales quantitates moratur, et 
singulare pro illis calculi genus (A new method for maxima and minima as well as 

tangents, which is impeded neither by fractional nor by irrational quantities, and a 

remarkable type of calculus for this), see (Dupont & Roero, 1991). 

 

Fig. 5. Gottfried Wilhelm Leibniz, Nova Methodus …, 1684 

1. PICTURES AND HISTORICAL-EPISTEMOLOGICAL IDEAS 
Some chapters address historical and socio-cultural aspects such as: reckoning and 

measuring as answers to problems of human activities. The students may perceive the 

hypothetical-deductive structure of mathematics as a model for other branches of the 

human knowledge such as philosophy and economy, or for every day life. Through 

these chapters some myths about mathematics may be discussed: the development of 

mathematics seen as a linear progress from ancient to contemporary times, euro 

centrism, independence from external factors. 

In our previous papers, see (Demattè & Furinghetti, 1999; Furinghetti, 2007) we 

discussed how students and teachers may conceive the development of mathematics 

just as an evolutionary process. In doing that they loose the richness of the path of 

mathematical ideas that are lateral to the main stream of the development of 

mathematical concepts. Moreover we know that the intertwining and the reciprocal 

influence of internalist and esternalist factors is a powerful perspective for studying 

mathematical concepts and its development, as shown in the paper (Radford, 2006). 

Mathematics has changed during the time but has become also different in different 

countries and cultural contexts. 

Ethnomathematics (see a product in Fig. 6) is a fruitful branch of research in 

education. It is about learning mathematics connected to other areas, to social and 
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environmental problems (Joseph, 2003; Katsap, 2006). It lead to reflect on the fact 

that not only the European mathematics is the ‘true mathematics’ 

Fig. 6. The most elaborate altar from the Indian Sulbasutras (the first part probably 

was written in the 6
th

 century B.C.). Many of the triangular and trapezoidal altars 

described in the Sulbasutras use then theorem of Pythagoras 

Some external factors influence the daily work of researchers: relations among 

colleagues (well known ‘spy stories’ regarded 16
th
 century Italian algebraists, see Fig. 

7), salary (not ethically impeccable ‘involvements’ come from the fact that ancient 

and modern war requires a wide apparatus of mathematical knowledge), national 

policy pushed by the dominating class, see (Barnett, 2006; Swetz, 1987), etc. This is 

enough to confirm that context influences advancement of science. 

 

 

 

 

Fig. 7. Italian mathematicians Niccolò Fontana (“Tartaglia”; 1499-1557) and 

Gerolamo Cardano (1501-1576) 

MATHEMATICS VIEW 

The ultimate aim of the book is to suggest a different mathematics view. Every 

chapter ends with a discussion about beliefs on the nature of mathematics, which are 

connected with the aspect treated in it. This part of the book regards factors that are 

not always made explicit in the classroom, but influence the personal relation with 

mathematics. We deem it is important to stimulate students’ awareness on these 

factors. In the book the pictures and the related comments show unusual, but in our 

opinion more realistic, aspects of mathematics. As discussed above, mathematics: 

 is an historical construction which is socially and culturally bounded, therefore 

different cultural context have produced different forms of mathematics; 

 is used in many professions and jobs; is present in the everyday life; has 

epistemological and also psychological aspects which are intertwined (such as the 

role of error and its acceptance by individuals); 

 has relationships with other disciplines; requires debate, communication and 

involvement and may also originate wish to investigate. 

We briefly recall some beliefs widespread among students and ordinary people that 

were detected in our study (Demattè & Furinghetti, 1999). These are some of the 

beliefs considered in the book with respect to the content of the chapters:  

 it is better if I remember rules by heart and I don’t attempt to reason with my 
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brain; 

 when I solve a mathematical problem I know that there is only one exact 

solution; 

  mathematics learnt in school has not a practical use; not everybody has a 

‘mathematical mind’; 

  creativity is not necessary in mathematical reasoning; different topics, such as 

arithmetic, geometry, algebra, must be taught and learnt separately because they 

don’t have any connections; in mathematics approximated results are incorrect 

and do not give useful information; 

 in mathematics errors are absolutely negative experiences; 

  mathematics doesn’t depend on culture; I think that men have began to use the 

signs +, -, x, : before Christ; 

 if I study alone (not with mates) I’ll have better results in mathematics. 

FINAL REMARKS 

In a previous paper, see (Furinghetti, 1997) it is pointed out that there are two main 

streams in the use of history in the classroom: - to promote the image of mathematics, 

- to introduce mathematical contents. From our presentation it follows that our work 

is set in the first stream. Only a few parts of the chapters have been administered in 

the classroom. After completing the work it is planned to use it and to study students’ 

reactions. We expect to carry out empirical research that allows to answer questions 

such as the following: 

• How will readers consider the kind of mathematics presented in the book? Will 

they establish connections with mathematics they learned at school or will they 

consider it an ‘extraneous entity’? 

• What beliefs could change through learning the history of mathematics? What 

activities could be more useful?  

• Learning history (in a broad sense) is also to remember facts and dates. What 

historical information could mathematics teacher require the students to 

remember? Could pictures create an opportunity to remember significant aspects 

of the history of mathematics? 

• In our opinion, the citizen mathematics education requires new didactical 

choices. Could historical-epistemological analysis of mathematics replace some 

parts of traditional curriculum? 
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APPENDIX. The structure of the book 
In the book there is a preface explaining the aim and the rationale of the work and 30 

chapters whose titles and some representative figures are shown below. 

 

Legenda 

E: Chapters mainly concerning 
historical or Epistemological ideas. 
M: Chapters over mainly concerning 
relevant Mathematical topics. 

1. The first files of 
data (M*) 

 

2. Mathematics for 
administering a Nation 
(E) 

 
3. Is mathematics we 
learn at school ancient? 
(E) 

 

4. How to write a 
number (M) 

 
5. Algebra begins (M) 

 

6. Mathematics is full 
of errors (E) 

 

7. Pythagoras in China 
(M) 

 

8. A model to be 
imitated (E) 

 

E 

Γ 

A B ∆ 
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9. What is geniality? (E) 

 

10. Does it depend on 
material we have? (E) 

 

11. Mathematical 
knowledge doesn’t 
“accumulate in layers” 
(E) 

 

12. Recreational 
problems (M) 

 
13. Does an authority 
hold knowledge? (E) 

 

14. Mathematics is 
culture (E) 

 

15. Masters of abacus 
(E) 

 

16.Mathematics and 
trade (E) 

 
17. Geometry for 
builders (M) 

 18. Mathematics and 
politics (E) 
 

 
19. More recent than we 
think (E) 

 

20. Is mathematics the 
same everywhere? (E) 
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21. Problems of 
paternity (E) 
 

 

22. Mathematics and 
war (E) 

 
23. Let’s bet everything 
(M) 

 

24. Calculus (M)  

25. Mathematics and 
other sciences (E) 

 

26. Geometry of 
position (M) 

 

27. Beyond infinity (M)  28. Etnomathematics 
(E) 

 
29. Past, present and 
future (E) 

 

30. Imagine a 
mathematician (E) 
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STUDENTS’ BELIEFS ABOUT THE EVOLUTION 

AND DEVELOPMENT OF MATHEMATICS 

Uffe Thomas Jankvist 

IMFUFA, Department of Science, Systems and Models, Roskilde University 

 
The paper is an empirical study of students’ beliefs about the history of mathematics. 
26 students in an upper secondary mathematics class were exposed to a line of 
questions concerning the evolution and development of mathematics in the form of a 
questionnaire and follow-up interviews. In the paper it is argued that the existing 
literature on students’ beliefs, in general, lacks a discussion of goals dealing with, for 
instance, desirable beliefs among students in order to provide them with a more 
coherent image of mathematics as a discipline. A couple of descriptions from the 
Danish literature and upper secondary regulations are provided as an example of 
such a dimension. The concrete student beliefs from the research study are evaluated 
against these descriptions. 
 

KEYWORDS: History and epistemology of mathematics; students’ beliefs and 

images; a goal-oriented dimension for students’ beliefs.  

 

INTRODUCTION 

Beliefs about the history of mathematics is a topic which is touched upon from time 

to time in the literature on history in mathematics education, e.g. in Furinghetti 

(2007) and Philippou and Christou (1998). However, when scanning these samples, 

one soon finds that these concern the beliefs of in-service or pre-service teachers. 

Studies on students’ beliefs about the history of mathematics seem to be rather poorly 

represented in the literature, if not altogether absent.1 One reason for this that I can 

think of is that, in general, studies of beliefs in mathematics education are conducted 

with the purpose of improving mathematical thinking, learning, and instruction.2 

Beliefs, both cognitive and affective ones,3 are investigated in order to identify the 

‘ingredients’ which do or do not make students capable of solving mathematical tasks 

or teachers capable of teaching differently and/or more effectively. Certain beliefs are 

identified as advantageous in the learning of certain mathematical contents, the 

solving of related tasks, etc., and educational studies are then conducted on how to 

change already existing beliefs into these more favorable ones. In this sense beliefs 

are regarded as means – or tools – to achieve understanding in the individuals’ 

constructive learning process. Only rarely is providing students or teachers with 

certain beliefs, e.g. by changing existing ones, about mathematics or mathematics as 

a discipline considered as a goal in itself. And when this is done, the term ‘beliefs’ is 

usually not used. Instead mathematical appreciation, mathematical awareness, or 

providing students with a more profound image of what mathematics is, are the 

words or phrases more commonly used (e.g. Furinghetti, 1993; Niss, 1994; Ernest, 

1998).  
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It seems to me that the beliefs discussion in mathematics education lacks a goal-

oriented dimension. A dimension which addresses students’ mathematical world view 

and proposes and evaluates some desirable beliefs in order to turn students into more 

critical citizens by providing them with intelligent and concerned citizenship and with 

some Allgemeinbildung in general (Niss, 1994). That is to say, to provide students 

with a more coherent image of mathematics as a discipline, the influence of 

mathematics in society and culture, the impact of society and culture on mathematics, 

and the historical evolution and development of mathematics as a product of time and 

space, to mention a few of the more ‘pressing’ ones. Occasionally researchers will 

touch upon these issues in the form of personal opinions, e.g. in curriculum 

development. However, a dimension about ‘beliefs about desirable beliefs’ – meta-

beliefs we may call them – can only be addressed properly if the meta-beliefs are 

articulated as such, i.e. as goals in themselves.  

 

In this paper I shall first present some extracts from the 2007-regulations for the 

Danish upper secondary mathematics program and the Danish report on 

competencies and learning of mathematics, the so-called KOM-report, which may 

serve as such a goal-oriented dimension for students’ beliefs. Especially I shall focus 

on students’ beliefs concerning the history of mathematics. Secondly, I shall report 

on a piece of empirical research in which a number of students were asked about their 

beliefs concerning the evolution and development of mathematics.
4
 Thirdly, these 

students’ beliefs are analyzed and evaluated against the goal-oriented descriptions. 

The paper is ended with some final remarks and reflections on the presented 

empirical data and the larger research study which they are part of. 

 

THE DANISH CONTEXT 

Since 1987 history of mathematics has been part of the formal regulations for the 

Danish upper secondary mathematics program (see e.g. Fauvel and van Maanen, 

2000, pp. 5-7), and with the newest reform and the present regulations of 2007 this 

part has become more dominant. Students are now expected to be able to 

“demonstrate knowledge about the evolution of mathematics and its interaction with 

the historical, the scientific, and the cultural evolution”, knowledge acquired through 

teaching modules on history of mathematics (Undervisningsministeriet, 2007, my 

translation from Danish).5 The official regulations for the Danish upper secondary 

mathematics program of 2007 are to some extent based on the Danish report 

Competencies and Learning of Mathematics, the so-called KOM-report, (Niss and 

Jensen, 2002, title translated from Danish) where it says the following about history: 

In the teaching of mathematics at the upper secondary level the students must acquire 

knowledge about the historical evolution within selected areas of the mathematics which 

is part of the level in question. The central forces in the historical evolution must be 

discussed including the influence from different areas of application. Through this the 

students must develop a knowledge and an understanding of mathematics as being 

created by human beings and, in fact, having undergone an historical evolution – and not 
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just being something which has always been or suddenly arisen out of thin air. (Niss and 

Jensen, 2002, p. 268, my translation from Danish). 

In the report, the focus of integrating history of mathematics is discussed in terms of 

a certain kind of overview and judgment which the students should acquire as part of 

their mathematics education.  

The form of overview and judgment should not be confused with knowledge of ‘the 

history of mathematics’ viewed as an independent subject. The focus is on the actual fact 

that mathematics has developed in culturally and socially determined environments, and 

subject to the motivations and mechanisms which are responsible for this development. 

On the other hand it is obvious that if overview and judgment regarding this development 

is to have solidness, it must rest on concrete examples from the history of mathematics. 

(Niss and Jensen, 2002, p. 68, my translation from Danish) 

The 2007-regulations describe the “identity” of mathematics in the following way: 

Mathematics builds upon abstraction and logical thinking and embraces a long line of 

methods for modeling and problem treatment. Mathematics is indispensable in many 

professions, in natural science and technology, in medicine and ecology, in economics 

and social sciences, and as a platform for political decision making. At the same time 

mathematics is vital in the everyday. The expanded use of mathematics is the result of the 

abstract nature of the subject and reflects the knowledge that various very different 

phenomena behave uniformly. When hypotheses and theories are formulated in the 

language of mathematics new insight is often gained hereby. Mathematics has 

accompanied the evolution of cultures since the earliest civilizations and human beings’ 

first considerations about number and form. Mathematics as a scientific discipline has 

evolved in a continual interrelationship between application and construction of theory. 

(Undervisningsministeriet, 2007, my translation from Danish) 

Thus, when the students are to “demonstrate knowledge about the evolution of 

mathematics” etc., as stated in the academic goals of the regulations, one must 

assume that it is within the frame of this “identity” that they are expected to do so. 

Another way of phrasing this is to say that one purpose of the teaching of 

mathematics at the Danish upper secondary level is to shape the students’ beliefs 

about mathematics according to the above description of identity. The purpose of 

including elements of the history of mathematics has to do with showing the students 

that mathematics is dependent on time and space, culture and society, that 

mathematics is not ‘God given’, that humans play an essential role in the 

development of it, etc., etc. 

 

STUDENTS’ BELIEFS ABOUT THE ‘IDENTITY’ OF MATHEMATICS 

In the beginning of 2007, I conducted a questionnaire and interview research study of 

second year upper secondary students’ (age 17-18) beliefs about the ‘identity’ of 

mathematics. A number of these questions had to do with evolutionary and 

developmental perspectives of mathematics, others had to do with sociological 

perspectives, and others again with perspectives of a more philosophical nature. In 

the following I shall present the students’ answers to three of these questionnaire 
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questions, one from each aspect. All in all 26 students answered the questionnaire. 

The students’ questionnaire answers have been indexed in the following manner: 

one<few<some<many<the majority<the vast majority, a partition which roughly 

corresponds to the percentage intervals: 0-5%; 6-15%; 16-35%; 36-50%; 51-85%; 

86-100%. Based on the questionnaire answers 12 students were chosen as 

representatives for the class in general, and these 12 students were interviewed about 

their answers. All quotes from the questionnaires and the interviews have been 

translated from Danish. 

 

1. When do you think the mathematics in your textbooks came into being? 
The majority believe that the mathematics in their textbooks came into being “some 

time long ago”. The suggestions concerning exactly when are, however, many and 

varied: “from even before da Vinci’s time!”; “when the numbers were invented”; 

“when we began using Arabic numerals”; “way before it says in the books”. Some 

points to antiquity and provide as argument that “the construction of, for instance, the 

pyramids must have required at least some mathematics”. One of the more interesting 

answers goes: “Long, long ago it all began and since then it has continued. But I am 

confident that the development goes more and more slowly, because you eventually 

know quite a bit.” 

 

Out of this majority of students, some share the perception that mathematics has 

always existed, or at least has existed as long as human beings have been around. One 

says: “Mathematics in general has existed since the dawn of time, but highly 

developed [mathematics] has only emerged within the last 200-100 years.” Only one 

student believes the mathematics in the textbooks to be of a more recent date, and he 

is not afraid to fix this to “40 years ago”. 

 

In the follow-up interviews, events in the history of mathematics were occasionally 

fixed within some not too unreasonable orders of magnitude, for instance, the 

beginning of mathematics to 4000-5000 years ago; Pythagoras to the first couple of 

centuries; and Fermat’s last theorem to “the Middle Ages or something”. But only 

few students were able to do this. Whether this is due to lack of knowledge about 

history of mathematics or lack of knowledge about history in general, or maybe both, 

is not to say. Finally, one of the students seemed very strong in her belief that it was 

impossible to practice mathematics without the Arabic numerals. When asked why, 

she answered: “the mathematics you do today, you wouldn’t have been able to do 

that... [without the Arabic numerals]”. 

 

2. Do you believe that mathematics in general is something you discover or invent? 
The majority of the students believe that mathematics in general is something you 

discover. Only a few believe that it is something you invent. Some students, though, 

believe that it might be a combination of the two. Examples of the discovery answers 

are: “Discover. I don’t think you can invent mathematics – it is something ‘abstract’ 
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you find with already existing things.”; “Discover. Because mathematics is already 

invented. What happens today is only that you discover new elements in it.”; 

“Mathematics is all over – in our society, our surroundings and in the things we do. 

Therefore I do not believe mathematics to be something you invent, but on the 

contrary something you discover along the way. Of course, it might be difficult to say 

precisely, because where do we draw the line between discovery and invention?” 

Examples of students believing it to be a combination of discovery and invention are: 

“Many things might begin as an invention, but afterwards they are explored and 

people discover new elements in the ‘invention’ in question”; “Both, [I] think that 

you discover a problem and then solve it by inventing a solution or applying already 

known rules of calculation”; “You invent formulas after having discovered 

relationships”. One student’s answer touch upon the question of what mathematics 

‘really’ is: “Good question... very philosophical. I think there are many different 

standpoints to this. I personally believe that it is something you discover. Numbers 

and all the discoveries already made are all connected. So for me it is more a world 

you enter into than one you make.” 

 

In the follow-up interviews the student responsible for the last remark explained 

further: “Well, I see it as if mathematics is just there, like all natural science is, for 

instance, outer space. Outer space is there and now we are just discovering it and 

learning what it is. That’s what I think: It’s the same thing with mathematics.” When 

the remaining interviewees in favor of discovery were asked if the ‘exploration’ of 

mathematics corresponds to the exploration of the universe they all confirmed this 

belief. That is to say that they believed mathematics to always have existed, or as one 

student phrased it: “Mathematics has always been there, in the form of chemistry or 

something like that at the creation of Earth. And then we haven’t found out about it 

until later.” Or another one: “I think it has always been there, but I just think that the 

human beings are exploring mathematics more and more and are discovering new 

things.”  

 

3. Do you think mathematics has a greater or lesser influence in society today than 
100 years ago? 
The vast majority of the students believe the influence is greater. This answer is in 

general based on the increased amount of technology in our everyday life in society. 

Answers as “definitely, more computer=more mathematics” and “everything 

develops and everything has to be high-technology” are often given. A few of those 

who believe that mathematics has a greater influence today also points to economic 

affairs as the reason, or that “the use of mathematics has become more advanced in 

our time”. Some think that mathematics has the same influence today as it had 100 

years ago, and only very few believe that the influence today is lesser. One of the 

more ‘sensational’ answers of the latter kind is: “No, I don’t believe that, because 

even though we use mathematics a lot more in space etc. we have modern machines 

to do it.” 
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The follow-up interviews to a large degree confirm the beliefs described above. To 

the deepening question of why a student found the influence today to be greater, she 

answered: 

Student: Because today you can, for instance, get an education at... or study mathematics 

at the university and things like that, and that you couldn’t do a hundred years ago. [...] 

Interviewer: So it is something relatively new that you can study mathematics at the 
university? 

Student: No not new, but I do believe at a higher level. That is, you didn’t know as many 

things back then as you do today. 

Interviewer: And you couldn’t get an education as a mathematician in the same way, you 
think? 

Student: No. 

The student who argued for lesser influence due to the use of modern machines is 

also given the opportunity to expand on her view in the interviews. She finds, 

amongst other things, that mathematics appears less present because we rely on 

technical aids to a great extent, and because the use of mathematics is mostly about 

“pushing some buttons”. 

 

EVALUATING STUDENTS’ BELIEFS AGAINST THE ‘GOALS’ 

How do the above presentation of students’ beliefs about the evolution and 

development of mathematics correspond with the goal-oriented description of 

overview and judgment in the KOM-report and the ‘identity’ of mathematics in the 

2007-regulations? For example, are students able to “demonstrate [display] 

knowledge about the evolution of mathematics and its interaction with the historical, 

the scientific, and the cultural evolution”? Overall the students’ answers to some of 

the questions appear rather diffuse, but let us look at the questions in turn. 

 

In the answers to question 1 there seem to be an agreement that mathematics is ‘old’. 

One student implies that da Vinci is old and that mathematics is older than him. 

However, only very few are capable of providing years on the origin of mathematics 

as well as on concrete mathematical results. That some students believe that 

mathematics only could come into existence by aid of the Arabic numerals does not 

strengthen the interpretation that the students possess knowledge about the evolution 

of mathematics in interplay with historical and cultural events either. 

 

In question 2 the majority give expression to the fact that they believe mathematics in 

general to be discovered. In a Danish educational context this may appear surprising 

since, as Hansen (2001, p. 71, my translation from Danish) puts it: “it is clear that the 

strong position of constructivism in school circles fertilizes the ground for a more 

radical constructivist perception of the entire nature of mathematics. Because of the 

pedagogical constructivism in schools, children and young people are likely to have 

difficulties believing in special existence of mathematical quantities, figures, and 
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concepts.” Of course there are students who are inclined toward a view of 

mathematics in general as something invented, but they are few in number. The 

majority give expression to a Platonic stance. With the words of one of the students, 

it is “a world you enter into” – a world of ideas – where you explore the already 

existing mathematical objects in a similar way as we are exploring the Milky Way 

and the rest of the universe our planet is part of. 

  

On the other hand, the students seem to have a quite good understanding of the fact 

that mathematics today has a much greater influence in society than it did 100 years 

ago (question 3). Again it is computers and other technology that are given credit for 

this. The fact that students only pay scant attention to economic affairs and political 

decision-making, e.g. based on mathematical models, may be seen as a consequence 

of the invisibility of mathematics in society (Niss, 1994). One student touched upon 

this when she said that mathematics appears less present due to use of technology. 

Another example is the student who in question 1 believed that the development of 

mathematics was happening at a slower and slower pace and who in the interviews 

explained herself: 

Yes, but they just discovered more a long time ago, didn’t they? It isn’t very often you 

hear about someone who has discovered something new within mathematics, is it? 

Maybe it’s just me who isn’t enough of a mathematics geek to be told about it. But it just 

seems to me that nothing is really happening. Things are happening more often within 

natural science: now they have found a method to see the fetus at a very early stage by 

means of a new type of scanning or something. 

This student seldom hears about new discoveries in mathematics, even though she is 

exposed to the subject several times a week, therefore she believes nothing is 

happening. Beside this, her remark also touches upon one of the differences between 

mathematics and the natural sciences: just because mathematics now is able to prove 

Fermat’s last theorem or the Poincaré conjecture, then this is not something that will 

change our everyday or society neither tomorrow nor in 50 years (most likely), 

something which would be far more likely for discoveries in physics, chemistry, or 

biology – and to a larger extent for technology basing itself on these disciplines.  

 

In general the fact that mathematics is driven by both outer as well as inner driving 

forces is not an aspect which the students seem to be very aware of. And concrete 

examples from the history of mathematics, in the form of the KOM-report’s talk of 

“solidness” (cf. page 3), is not something which the students seem able to provide 

either. 

 

FINAL REMARKS AND REFLECTIONS 

According to Lester, Jr. (2002, p. 352), Kath Hart at a PME conference once asked: 

“Do I know what I believe? Do I believe what I know?” Lester’s version of this 

question is: “Do students know what they believe?” Furinghetti and Pehkonen (2002) 

argue that one should take into consideration both the beliefs that students hold 
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consciously as well as unconsciously. But how to do this? Lester, Jr. (2002, pp. 352-

353) sows doubt about some of the more usual methods for doing this: “I am simply 

not sure that core beliefs can be accessed via interviews [...] or written self-reports 

[...] because interview and self-report data are notoriously unreliable. Furthermore, I 

do not think most students really think much about what they believe about 

mathematics and as a result are not very aware of their beliefs.” Thus, the results 

above must perhaps be viewed in this light. However, other researchers (e.g. Presmeg 

2002) argue that questionnaires, interviews, etc. are perfectly well suited to access 

students’ beliefs about mathematics as long as the usual precautions, for example the 

interviewee trying to please the interviewer, are taken into account.  

 

In the research reported in this paper, the students knew nothing about my personal 

viewpoints on the evolution and development of mathematics; they were not familiar 

with the descriptions in the KOM-report, nor the ‘identity’-description in the 

regulations for that matter. So it seems reasonable to say that none of these views 

could have affected the students’ answers. Of course, they knew that the interviewer 

was a mathematician which might have led them to alter some of their views. Also, it 

is true that many students do not have a clear and conscious idea about their beliefs 

about mathematics, as Lester says. When asking the interviewees to deepen or 

expand their questionnaire answers some of them would have trouble remembering 

what they answered, some would be puzzled about their own answers, and some 

would take on different viewpoints in the interviews than what they had expressed in 

the questionnaire. Especially the question of invention and discovery was one that 

seemed to puzzle the students; often they would have difficulties in making up their 

minds. From an educational perspective, this is, however, the power of precisely this 

question: that there is no correct answer to it. It is a matter of conviction, whether you 

are a Platonist, a formalist, a constructivist, a realist, an empiricist, or something else. 

Thus, students will have to reflect about the question on their own in order to take a 

standpoint. 

 

Especially reflection and the ability to perform reflection are considered to be major 

factors in changing beliefs (Cooney et al., 1998; Cooney, 1999). Thus, if the students 

who took part in the research presented above were to have their beliefs ‘molded’ or 

‘shaped’ in such a fashion that they would fit the previously presented goal-oriented 

descriptions, then one way of doing this would be to set a scene which enabled them 

to perform reflections. In fact, the students’ questionnaire and interviews reported 

above are an initial part of a larger research study, one purpose of which was to 

provide the students with classroom situations in which they were expected to work 

actively with and reflect upon issues related to, amongst other questions 1, 2, and 3. 

More precisely, these situations consisted of two larger teaching modules which the 

upper secondary class was to engage in over a longer period of time.6 During and 

after the period of implementation, the changes in students’ beliefs were attempted 

evaluated through more questionnaires and interviews but also by means of videos of 
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classroom situations taking as the point of departure the ‘initial’ student beliefs as 

presented in this paper.
7
 A comparison of the questionnaire and interview results 

presented in this paper, i.e. those from before implementing the modules, with the 

later research findings, those from during and after the implementations, will be 

presented in Jankvist (2009). 

 

As a very final remark, I shall point to my own belief that reflections ought not only 

be considered as a means for changing existing beliefs, or creating new ones. A 

students’ image of mathematics should include an awareness of mathematics as a 

discipline that consists of and gives rise to questions to which there are no correct 

answers (e.g. that of invention versus discovery), and for this reason the ability to 

reflect is equally important. That is to say that not only is the act of providing 

students with an image of, or a set of beliefs and views about, mathematics as a 

discipline a goal in itself, the act of making the students capable of reflecting about 

their images is a goal as well. 

 

NOTES 

1. An exception is a Danish study of Christensen and Rasmussen (1980). 

2. A few examples are Schoenfeld, (1985) and Leder and Fortaxa, (2002). 

3. I shall not here enter the discussion of defining ‘beliefs’. I do, however, implicitly base my 

understanding of beliefs on the definition given by Philipp (2007). 

4. The full questionnaire consisted of 20 questions covering the three different aspects mentioned as 

well as more personal, affective matters of mathematics to be used in a larger study (Jankvist, 

2009).   

5. The word ‘demonstrate’ in Danish has a dual meaning; it may be used both as the word ‘prove’ 

and as the word ‘display’. Thus, students may only need to display knowledge. 

6. Descriptions of and preliminary results from this research study may be found in Jankvist, 

(2008a) and Jankvist, (2008b). 

7. E.g. beliefs on question 2 were evaluated by posing more specific questions relating to the cases 

of the two modules. 
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USING HISTORY AS A MEANS FOR THE LEARNING OF 

MATHEMATICS WITHOUT LOSING SIGHT OF HISTORY:  

THE CASE OF DIFFERENTIAL EQUATIONS 

Tinne Hoff Kjeldsen 

IMFUFA, Department of Science, Systems and Models, Roskilde University.  

The paper discusses how and in what sense history and original sources can be used 
as a means for the learning of mathematics without distorting or trivializing history. 
It will be argued that this can be pursued by adopting a multiple-perspective 
approach to the history of the practice of mathematics within a competency based 
mathematics education. To provide some empirical evidence, a student project work 
on physics’ influence on the development of differential equations will be analysed 
for its potential learning outcomes with respect to developing students’ historical 
insights and mathematical competence.  

INTRODUCTION 

Fried (2001) argues that when history is used to teach mathematics the teacher must 

either (1) remain true to one’s commitment to modern mathematics and modern 

techniques and risk being Whiggish, […] or, at best, trivializing history, or (2) take a 

genuinely historical approach to the history of mathematics and risk spending time on 

things irrelevant to the mathematics one has to teach. (Fried, 2001, p. 398). 

Whig history refers to a reading of the past in which one tries to find the present.  

The purpose of the present paper is to argue that this dilemma can be resolved by 

adopting (1) a competency based view of mathematics education, and (2) a multiple-

perspective approach to the history of the practice of mathematics. Hereby, a 

genuinely historical approach to the history of mathematics can be taken, in which 

the study of original sources is also relevant to the mathematics one has to teach. To 

present some empirical evidence for this claim a student directed project work on the 

influence of physics on the development of differential equations will be analysed. 

The project belongs to a cohort of mathematics projects made over the past 30 years 

by students at Roskilde University, Denmark. Only one project is analysed in the 

present paper, but the reflections and discussions brought forward are based on 

knowledge about and experiences from supervising many of those projects. 

First, mathematical competence and the role of history in a competency based 

mathematics education are presented. Second, a multiple-perspective approach to a 

history of the practice of mathematics will be introduced. Third, the chosen project 

work will be analysed and discussed with respect to specific potentials for the 

learning of differential equations within the proposed methodology. Finally, the paper 

ends with some conclusions and critical remarks.  
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MATHEMATICAL COMPETENCE AND THE ROLE OF HISTORY 

In the Danish KOM-project (2000-2002) mathematics education is described in terms 

of mathematical competence. In this context mathematical competence means the 

ability to act appropriately in response to mathematical challenges of given situations. 

It can be spanned by eight main competencies (Niss, 2004). Half of them involves 

asking and answering questions in and with mathematics: (1) to master modes of 

mathematical thinking; to be able to formulate and solve problems in and with 

mathematics, i.e. (2) problem solving and (3) modelling competency, resp.; (4) to be 

able to reason mathematically. The other half concerns language and tools in 

mathematics: (5) to be able to handle different representations of mathematical 

entities; (6) to be able to handle symbols and formalism in mathematics; (7) to be able 

to communicate in, with, and about mathematics; (8) to be able to handle tools and 
aids of mathematics. In the discussion below, the possible learning outcomes of 

reading sources will be analysed with respect to these competencies. 

History of mathematics is not one of the main competencies, but is included in the 

KOM-project as one of three kinds of overview and judgement regarding 

mathematics as a discipline. The first concerns actual applications of mathematics in 

other areas, the second, historical development of mathematics in culture and 

societies, and the third, the nature of mathematics as a discipline (Niss, 2004).  

The KOM-understanding of the role of history in mathematics education has the 

honesty to history as an intrinsic part. In Danish secondary school this understanding 

of history is included in the curriculum (Jankvist, forthcoming). The objective of the 

present paper is to discuss in what sense such an understanding of history can be 

implemented in situations where the curriculum does not include history and does not 

assign time to teach history. Under such circumstances, history of mathematics is 

most likely going to play no role at all in the learning and teaching of mathematics 

unless it can also be used as a means to learn and teach subjects in the syllabus. 

A MULITPLE PERSPECTIVE APPROACH TO HISTORY OF MATH 

How can we understand and investigate mathematics as a historical product? One 

way is to think of mathematics as a human activity and of mathematical knowledge 

as created by mathematicians. This has been the foundation for many recent studies 

in the history of the practice of mathematics (Epple, 2000), (Kjeldsen et al., 2004).  

To study the history of the practice of mathematics involves asking why 

mathematicians situated in a certain society, and/or intellectual context at a particular 

time, decided to introduce specific definitions and concepts, to study the problems 

they did, in the way they did it. In this line of thinking, mathematics is viewed as a 

cultural and social phenomenon, despite its universal character. Studying the history 

of mathematics then also involves searching for explanations for historical processes 

of change, such as changes in our perception of mathematics, our understanding of 

mathematical notions, and our idea of what counts as a valid argument. 
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A way of answering such questions is to adopt a multiple perspective approach 

(Jensen, 2003) to history where episodes of mathematical activities are analysed from 

multiple points of observations (Kjeldsen, forthcoming). The perspectives can be of 

different kinds and the mathematics can be looked upon from different angles, such 

as sub-disciplines, techniques of proofs, applications, philosophical positions, other 

scientific disciplines, institutions, personal networks, beliefs, and so forth.  

How can this approach be brought into play to ensure the honesty to history, in a 

teaching situation where the teacher wants to use history as a means for students to 

learn a specific mathematical topic or concept? It can be implemented on a small 

scale, by having students read pieces of original mathematical texts focusing on 

perspectives that address research approaches or the nature and function of specific 

mathematical entities (problems, concepts, methods, arguments), in order to uncover, 

discuss, and reflect upon the differences between how these approaches and entities 

are presented in their text book and the former way of conceiving and using them. In 

such teaching settings, the students have to read the mathematical content of the 

original text as historians, using the “tools” of historians, and answering historians’ 

questions about the mathematics. For such tools, see e.g. (Kjeldsen, 2009). 

Through activities where students work with historical texts guided by historical 

questions, connections between the students’ historical experiences of the involved 

mathematics and their experiences from having been taught the text book’s version, 

can be created in the learning process. When students read historical texts from the 

perspectives of the nature and function of specific mathematical entities, they can be 

challenged to use other aspects of their mathematical conceptions in new situations. 

So, it is of didactical interest to analyse historical episodes of mathematical research 

with respect to their potential to challenge students’ mathematical conceptions. 

A HISTORY PROJECT: PHYSICS AND DIFFERENTIAL EQUATIONS 

In the following, the student directed project work will be analysed with respect to 

how and in what sense the students’ work with original sources provided potentials 

for the learning of differential equations – without losing sight of history.  

The educational context: problem oriented student directed project work 

The project report on physics influence on the development of differential equations 

was written by five students enrolled in the mathematics programme at Roskilde 

University (RUC). All programmes at RUC are organised such that in each semester 

the students spent half of their time working in groups on a problem oriented, student 

directed project supervised by a professor. The projects are not described by a 

traditional curriculum, but are constrained by a theme (Blomhøj & Kjeldsen, 2009).  

The requirement for this project was that the students should work with a problem 

that deals with the nature of mathematics and its “architecture” as a scientific subject 

such as its concepts, methods, theories, foundation etc., in such a way that the status 

of mathematics, its historical development, or its place in society gets illuminated. 
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Among the cohort of project reports, constrained by these objectives, this particular 

project was chosen, because the students happened to investigate differential 

equations, which are included in the core curriculum of advanced high school 

mathematics and mathematics and science studies in universities. Hence, the project 

work could be analyzed with respect to the issues addressed in the present paper. 

Analysis of the project work: learning outcomes and the competencies  

The students formulated the following problems for their project: 

How did physics influence the development of differential equations? Was it as problem 

generator? Did physics play a role in the formulation of the equations? Did physics play a 

role in the way the equations were solved? (Paraphrased from (Nielsen et. al., 2005, p.8)). 

On the one hand, these are fully legitimate research questions within history of 

mathematics. They address issues about an episode in the history of mathematics seen 

from the perspective of how another scientific discipline influenced mathematicians’ 

formulation of problems as well as the methods they used to solve the problems. On 

the other hand, these questions can only be answered by analysing the details of 

original sources that deal with this particular episode in the history of mathematics, 

studying how the differential equations were derived from the problems under 

investigation, how the equations were formulated, why they were formulated in that 

particular way, how they were solved and with which methods – issues which are 

also relevant for the learning and understanding of the subject of differential 

equations. Based on readings of three original sources from the 1690s, the students 

discussed these issues within the broader social and cultural context of the involved 

mathematicians, critically evaluating their own conclusions within the standards for 

research in history of mathematics. Hence, in this way of working with history in 

mathematics education history is neither Whiggish nor trivialized.   

I will discuss three instances where the students – qua the historical work – were 

forced into discussions in which they came to reflect on issues that enhanced their 

understanding of certain aspects of differential equations in particular and of 

mathematics in general. The discussion will end with a short presentation of some of 

the learning outcomes with regard to the eight main mathematical competencies. 

1: Johann’s differential equation of the catenary problem. The catenary problem 

is to describe the curve formed by a flexible chain hanging freely between two points. 

The students read the solution that Johann Bernoulli presented in his lectures on 

integral calculus to the Marquis de l’Hôpital, supported by English translations of 

extracts (Bos, 1975). Bernoulli formulated five hypotheses about the physical system 

that, as he claimed, follow easily from static. For the students, of which none studied 

physics, to derive these assumptions was the first mathematical challenge in reading 

Bernoulli’s text: “we had to derive most of them ourselves. We use 18 pages to 

explain what Johann Bernoulli stated on a single page” (Nielsen et. al., 2005, 19). 
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Below is one of the extract of Bernoulli’s text (Bos, 1975, 36) that the students read. 

As can be seen from the text, Bernoulli used the five hypotheses to describe the 

catenary and the infinitesimals dx and dy of the curve geometrically and derived an 

equation between the differentials. The figure was produced by the students and is 

similar to a figure in Bernoulli’s lecture, except from the sine-cosine circle. 

 

 

 

 

 

 

 

 

 

In their report, the students went through Bernoulli’s text and filled in all the 

arguments. They were not familiar with this way of setting up differential equations 

from scratch so to speak, so the mathematization of the physical system was a major 

challenge for which they needed to consult some textbooks on static and to combine 

the physics with mathematical results about triangles and the sine-cosine relations. 

Bernoulli’s arguments do not meet modern standards of rigour and that created 

cognitive hurdles for the students. Didactical, it is important to identify such hurdles 

because they create situations where the students, during their struggle with 

understanding the mathematical content of the original text, can be challenged to 

reflect upon the differences between our modern understanding and the one presented 

in the source, thereby enhancing their own understanding of the concept of, in this 

case, differential equations and the mathematical techniques and concepts 

underneath. A concrete example of this is Bernoulli’s use of the infinitesimal triangle. 

In the text above he used similar triangles, to argue that s:a = dx:dy but, as the 

students pointed out in their report, a does not lie on the tangent but on the catenary. 

Bernoulli also used the infinitesimal triangle later in the lecture, when he 

reformulated the differential equation derived above, using that 22 dydxds += . Again 

– as pointed out by the students – ds is a part of the catenary, not the hypotenuse of a 

right angled triangle. 

This mixed use of geometrical arguments and infinitesimals in deriving and 

reformulating the differential equation was very different from the students’ text book 

experiences of differential equations. The fact that Bernoulli’s method worked in this 

particular case, despite its lack of rigour, provoked a discussion among the students 

and their supervisor (the author) about Bernoulli’s use of the infinitesimal triangle 
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and his use of the infinitesimals, dx and dy, as actual infinitely small quantities. This 

made the students focus more systematically on the differences between now and 

then, questioning, at first, why we need to define a differential quotient as the limit 

(in case it exists) of difference quotients, then analysing the situation again to 

understand why Bernoulli’s method worked fine for the catenary,  and trying to 

picture situations where it would go wrong. This is an incidence where connections 

were created between the students’ historical experiences and their experiences from 

modern mathematics which challenged them to examine their own understanding of 

the involved concepts. Through these discussions, the students built up intuition 

about infinitesimals and awareness about the reasons behind the construction of our 

modern concepts. Major differences were the lack, in the seventeenth century, of the 

concept of a function, of a limit, and the formalised concept of continuity. In this 

project work the historical texts provided a framework for discussions among the 

students and with their supervising professor, about what constitute the concept of a 

differential equation, and how we can read meaning into it. Through these 

discussions, which were triggered by the historical texts, the students came to reflect 

upon the concept of a differential quotient and the meaning of a differential equation 

on a structural level that went beyond mere calculations and operational 

understanding of the concepts. This is an example of what Jahnke et. al (2000) calls a  

reorientation effect of studying original sources.  

2: Johann’s solution of the catenary differential equation. Through some further 

manipulations Bernoulli reached the following formulation of the equation for the 

catenary axxadxdy 22 +=  which he used to construct the curve geometrically. This 

puzzled the students and initiated discussions about, what it means to be a solution to 

a differential equation. 

 

 

 

 

As can be seen from the above extract (Bos, 1975, 41), Bernoulli interpreted the 

integral geometrically, as the area below a curve. The students added an illustration 

of this in their figure, as can be seen above, with the two shadowed areas which are 

not present in Bernoulli’s figure. This way of solving the equation by constructing the 

curve forced the students into discussions about conceptual aspects of solutions to 

differential equations. It made them articulate what constitute a solution in our 

modern understanding, an articulation that does not automatically manifest itself from 

solving differential equation exercises from modern textbooks. In order to follow 

Bernoulli’s construction, the students were challenged to think about and use 

integration differently than they would normally do when solving differential 

equations analytically. They were also forced to use the properties of the curve 
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represented geometrically which they felt as a challenge. They were used to using the 

direct relationship between the analytical expression of a function and the coordinate 

system, to produce a graph. Here they went “the other way” and had to think of the 

curve as being represented by its graph instead of its analytical expression. 

Historically, they realised that what is understood by a solution to a differential 

equation has changed in the course of time. 

3: Different solution methods of the brachistochrone problem. The brachisto-

chrone problem is to describe the curve of fastest descent between two points for a 

point only influenced by gravity. Jacob and Johann Bernoulli published different 

solution methods to the problem in 1697. Johann Bernoulli interpreted the point as a 

light particle moving from one point to another. By using Fermat’s principle of 

refraction, he derived an equation for the brachistochrone, i.e. the cycloid, involving 

the infinitesimals dx and dy. Jacob Bernoulli considered the problem as an extremum 

problem using that, since the brachistochrone gives the minimum in time, an 

infinitesimal change in the curve will not increase the time. 

The differences between Johann’s and Jacob’s solution of the brachistochrone 

illustrated for the students the power of mathematics. Johann’s solution was tied to 

the physical conditions of the problem and could not be generalised beyond the actual 

situation, whereas Jacob’s solution was independent of the physical situation and 

could be used on different kinds of extremum problems. Through the historical texts 

on the solution of the brachistochrone, the students experienced the characteristics of 

the nature of mathematics that makes it possible to generalise solution methods of 

particular problems. Thereby, they were able to understand why Jacob’s method 

could generate new kinds of questions that eventually led to a new research area in 

mathematics, the calculus of variations, and why Johann’s could not. For a didactical 

perspective on the brachistochrone problem see Chabert (1997).  

Development of mathematical competencies. In the discussions above of episodes 

where the students through their work with the original sources used other aspects of 

their mathematical conceptions in new situations and discussions, some learning 

potentials regarding differential equations and the mathematical concepts underneath 

have already been emphasised, especially in the discussion of the students’ work with 

Johann Bernoulli’s text on the catenary. A more systematic analysis of the students’ 

report with respect to the KOM-report showed that the students, in their work with 

the historical texts, were challenged within seven of the eight main competencies. 

The students’ awareness of the special nature of mathematical thinking (1) was 

especially enhanced in their comparison of Johann’s and Jakob’s solutions of the 

brachistochrone as discussed above. The students’ problem solving (2) skills were 

trained extensively and in different areas of mathematics. As mentioned in the 

discussion of their work with Johann’s solution of the catenary problem, the students’ 

had to fill in a lot of gaps in order to understand Johann’s results. Each of these gaps 

required that the students derived intermediate results on their own about similar 

triangles using trigonometry, and solved mathematization problems. Through their 
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work with understanding the Bernoulli brothers’ mathematization of the physical 

problems, parts of the students’ modelling competency (3) were developed. The 

competency to reason (4) in mathematics was developed in all those parts of the 

project work where the students tried to make sense of the original sources by means 

of their own mathematical training and knowledge. (5) Representations: As 

exemplified in the discussion of the students’ work with Bernoulli’s construction of 

the solution to the differential equation of the catenary, the students were challenged 

so work with a representation of the solution to the differential equation that is 

different from the analytical representation given in modern textbooks. In the report, 

the students also solved the differential equation analytically and compared the 

analytical representation with Bernoulli’s geometrical one. During their 

mathematization of the five hypotheses from static that Bernoulli took for granted, 

the students were trained both in working with different representations and in using 

the mathematical language of symbols and formalism (6). This competency was 

especially developed in the students’ work with the two original sources on the 

brachistochrone problem in their struggle to understand Johann’s mathematization of 

the path of the light particle and Jakob’s use of the minimising property of the 

brachistochrone. The writing of the report (90 pages) in which the students, through a 

thorough presentation and analysis of the original sources, answered their problems 

for their project work within the historical context, developed their competency to 

communicate (7) in, with, and about mathematics in ways that go far beyond what 

normal exercises in solving differential equations requires. The competency to handle 

tools and aids (8) was not represented.  

SOME CONCLUSIONS AND CRITICAL REMARKS 

Based on their studies of the original sources and relevant secondary literature, the 

students concluded that physics did function as problem generator in the early history 

of the development of differential equations and played a decisive role in the 

derivations of the equations describing the catenary and the brachistocrone. They 

further concluded that physics played a significant role for Johann’s solutions of both 

the catenary and the brachistochrone problem, but not for Jacob’s solution of the 

brachistochrone problem. Jacob’s arguments were not linked to the physical system; 

hence his method could be transferred to other problems of that type. This became the 

beginning of the calculus of variations. The students did not move beyond this in 

their project, but it is interesting to notice that the calculus of variation later became 

central in physics, providing an important feedback in the opposite direction. 

The analysis of the chosen project has shown that, if we adopt a competency based 

view of mathematics education and evaluate learning outcomes not with reference to 

standard procedures and lists of concepts and results, but with respect to how and 

which mathematical competencies, the students have been challenged to invoke, and 

thereby develop, and if we let the students work with the history of the practice of 

mathematics studied from specific perspective(s) that address(es) significant issues 
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regarding the mathematics in question, then history can be used as a means to teach 

and learn core curriculum subjects without losing sight of history. 

The above claims are further supported through analyses of other historically oriented 

mathematics projects that have been performed by students at RUC. A project on the 

history of mathematical biology, where the students read an original source of 

Nicholas Rashevsky on a mathematical model for cell division is treated in (Kjeldsen 

& Blomhøj, 2009) and analysed with respect to learning outcomes regarding deriving 

and understanding the general differential equation of diffusion, the students’ 

understanding of the integral concept, and development of the students’ modelling 

competency. Other examples of projects with substantial learning outcomes of core 

mathematics, in university mathematics education, are “Paradoxes in set theory and 

Zermelo’s III axiom”, “What mathematics and physics did for vector calculus”, 

“Generalisations in the theory of integration”, “Infinity and “integration” in 

Antiquity”, “Bolzano and Cauchy: a history of mathematics project”, “The real 

numbers: constructions in the 1870s”, and “D’Alembert and the fundamental theorem 

of algebra”. In the present paper focus has been on how history can be used for the 

learning of core curriculum mathematics without trivializing it or using a whiggish 

approach to history. The learning outcome of the above history projects can also be 

analysed with respect to Mathematical awareness, as explained by Tzanakis and 

Arcavi (2000), which includes aspects related to the intrinsic and the extrinsic nature 

of mathematical activity. These projects can then also be seen as empirical evidence 

for some of the possibilities history offers as referred to by Tzanakis and Arcavi 

(2000, 211). With respect to the KOM-report these aspects relate to the three kinds of 

overview and judgement.  
It can be raised as a critic that only certain perspectives of the history are considered, 

and that e.g. to gain insights into historical processes of change, episodes from 

different time periods need to be studied. In the above project work, the students did 

not experience the historical process of change, but they did experience that the 

understanding of the involved mathematics in the 17
th
 century was different from our 

understanding. The students did not solve a huge amount of differential equations, 

and they did not learn to distinguish between different types of differential equations. 
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WHAT WORKS IN THE CLASSROOM - PROJECT ON THE 

HISTORY OF MATHEMATICS AND THE COLLABORATIVE 

TEACHING PRACTICE  

Dr. Snezana Lawrence 

The Langton Institute for Young Mathematicians and the British Society for the 

History of Mathematics 

This paper describes the project that was undertaken in the South East of England, 
and which aimed to introduce the history of mathematics at the primary and 
secondary level. The project was conducted through collaborative teaching practice 
(peer based network of teachers collaborating on research, planning, teaching in 
teams, and assessing the outcomes of lessons) and was based on the premise that the 
history of mathematics can improve both the motivation and attainment when used as 
a contextual background in the teaching of mathematics at this level.  

THE PROJECT BACKGROUND 

The project described here was one of the first few projects awarded the support by 

the National Centre for Excellence in the Teaching of Mathematics (founded in June 

2006). Aims of the project were to: 

• Introduce the history of mathematics into everyday teaching in order to  

o Encourage students to begin making the connections between 

mathematical topics 

o Increase interest and motivation by setting the problems in historical 

context 

o Enrich mathematical understanding through historical explorations 

o Assess the role of the history of mathematics in setting the new 

curriculum  

• Introduce collaborative teaching practice as a model of continuing professional 

development, at the same time adopting an inquiry-led learning approach to the 

lesson development thus raising issues about  

o Teachers learning with pupils (simultaneously in some cases) and the 

effects this may have on his or her professional role 

o Training preparation for teachers in an inquiry-led learning environment. 

The answers to these questions will be provided in this paper in two-fold ways: 

through the personal reflections of teachers who participated in the project, and 

through a synthesis and explanation of methods used throughout the project. The 

latter is provided as a way of suggesting the model of continuing professional 

development for teacher groups and networks wishing to introduce the historical 

element into the teaching of mathematics through collaborative practice.   
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The project began in September 2006 and was completed in September 2008 with a 

national conference held at the London Mathematical Society at which experiences of 

the teachers involved were disseminated among the mathematics education 

community. Over the course of the project three secondary schools, with a total of 

fifteen teachers (two of whom were science specialists but taught mathematics to 

lower ability groups), and three primary schools with a total of three teachers have 

been involved. More than 450 pupils have been involved in the project at various 

times, spanning the age range between ten and fourteen (English Key Stages 2 and 3) 

and covering all ability ranges.  

The project has been conceived and led by the author of this paper, and, as already 

mentioned, was supported by the National Centre for Excellence in the Teaching of 

Mathematics (UK). In the second year of the project the British Society for the 

History of Mathematics provided financial and organisational support; the University 

of Plymouth Centre for Innovation in Mathematics Teaching provided the training for 

all involved teachers in the principles of collaborative teaching practice, and the 

British Society for the History of Science provided extra funds for the final 

conference celebrating the project. An additional private consultant has been involved 

in the project in the second year, offering support in the matters of teacher training 

and the uses of the history of mathematics in development of mathematical pedagogy.  

The new curriculum for England and Wales 

The recent changes in the National Curriculum, and the new approach taken by 

the Qualifications and Curriculum Authority (QCA) introduced a certain amount 

of freedom for teachers, teacher teams, and consortia of schools to develop their 

own syllabus in all subjects. The modernising of the curriculum is driven by the 

need to take into account local needs and needs for different types of vocational 

training. One of the more positive aspects of this development may be seen in the 

fact that the local provision of education will have a degree of freedom (not yet 

defined), and that personalised learning, project based work and mentoring will 

all have a big role to play in this new vision of education. This opens a valuable 

opportunity for teachers to demonstrate that mathematics, like any other creative 

pursuit, is an area where exciting and useful contributions can still be made – 

both by teachers and by pupils. As such, the introduction of the historical 

element in the mathematics syllabus, although not sufficiently developed in the 

quote that follows, offers the possibility of developing teaching strategies which 

do not necessarily provide only historical context, but use the history of 

mathematics as a tool for discovering facts and exploring mathematical 

techniques. The new curriculum states that the students should recognise the 

‘rich historical and cultural roots of mathematics’: 

Mathematics has a rich and fascinating history and has been developed across the world 

to solve problems and for its own sake. Students should learn about problems from the 

past that led to the development of particular areas of mathematics, appreciate that pure 

mathematical findings sometimes precede practical applications, and understand that 

mathematics continues to develop and evolve.1 
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Since the completion of the project, and based on the recommendations following 

from the project report, measures are being taken by the Joint Mathematical 

Council (UK) to define the ways in which history of mathematics can and should 

be deployed to help shape the future development of the curriculum, and the 

teacher pre-, and in-service training development and provision. 

The current challenge now facing English teacher-training institutions will be to 

address the imbalance between the desire to introduce the historical element to 

the teaching of mathematics and a lack of the formal teaching in the subject area 

for the serving teachers. The project described can therefore, give a valuable 

insight into the types of issues facing teachers in this situation, with a view of 

defining some benchmarks on which it would be possible to base a programme of 

in-service training in the history of mathematics.
2
  

METHODOLOGY, ACTIVITIES, DATA 

Collaborative Teaching Practice and the History of Mathematics  

The project has been pursued by practicing teachers with various degrees of 

experience in the teaching of mathematics (not all of whom are subject 

specialists), and therefore the question arose of how to create a professional 

learning environment which would be able to contain all levels of experience and 

mathematical ability in order to support their participation. Of major interest was 

the possibility of introducing a model of continuing professional development 

based on a set of principles which could be replicated elsewhere and which would 

help teachers develop a range of techniques, and introduce a new element which 

could help them structure their own learning at the same time as structuring their 

teaching programme.  

We chose the model of collaborative teaching practice as one which would offer 

opportunities for teachers to develop their subject knowledge through research into 

the history of mathematics. Collaborative teaching practice was developed in 

different countries as far back as the 19
th
 century (most prominently Japan, but 

recently also in the United States and England) and is sometimes also closely linked 

and/or referred to as ‘lesson study’.3 The collaborative teaching practice that was part 

of the described project as a way of peer-discussion and collective teaching tool was 

based on the simple cycle of planning - researching - sharing resources - teaching 

collaboratively - and finally assessing the outcomes of a lesson. 

At the core of this envisaged professional learning model stood a belief that the 

interest and personal development can only be achieved in those situations and 

environments where the professionals themselves find an area of research they 

would like to pursue further.  

Various mathematics educators have seen the different roles the history of 

mathematics can take through its introduction into the education of mathematics 

teachers - Freudenthal (1981) for example conceived it as giving a background to 

the teachers’ mathematical knowledge, while others concentrated on offering a 
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possible pathway to the deepening of teachers’ reflection capabilities through an 

in-depth study of the development of mathematical concepts through history (see 

Arcavi, Bruckheimer, & Ben-Zvi, 1982, 1987; Swetz, 1995). One of the 

approaches, developed by Hsieh and Hsieh (2000), and Philippou and Christou 

(1998a, b) dealt with using the history of mathematics as a particular tool and 

context to develop beliefs and attitudes in mathematics.  

The benefit of the use of history of mathematics however, in the context of the 

described project, can be best seen on the influence in which it created an opportunity 

for a focus of cooperation and collaboration as well as an impetus for the creation of 

a conceptual landscape which offered opportunities to teachers to develop their 

individual interests.  

This highly individualist approach to the continual professional development of 

teachers can increase their subject knowledge and enable them, through the 

modern technologies, to share their experiences and knowledge with mathematics 

teachers and students from around the world. Our agreed aim was to adopt a 

creative and individualistic ethos in teaching, providing ample opportunity for 

bringing the history of mathematics alive to the present generation of school 

children. Eventually, in practical terms, the defined foci were enlarged to include, 

apart from the collaborative teaching practice and the individual research, the 

creation of a networking platform in the form of web-quests
4
.  

Teachers’ learning in an inquiry-led learning environment, and the 

collaborative teaching practice 

The inquiry-led learning as developed throug
5
h this project grew organically 

from the collaboration with similary-minded colleagues. The successful outcomes 

were produced in those instances in which a few necessary prerequsites were 

fulfiled - existence of full professional trust and exchange of information and 

knowledge had to be devoid of all performance management in participating 

groups of teachers. Collaborative teaching practice was described in the teacher 

reflections thus: 

The students appreciated the teachers cooperating between themselves and being more 

relaxed and focused on learning rather than discipline. 

It (this project) has certainly been a huge milestone in my professional development.  

Firstly, it has shown me the true value of collaborative teaching and the focus on the 

‘learning’ rather than the ‘teaching’.  Secondly, it has made me question why I am 

teaching what I am teaching, and how to help the children answer the ‘why’ do we do 

this questions by giving them relevance and meaning to the maths. My next milestone 

experience will be to embed this into my teaching and more crucially into the teaching of 

my colleagues.  

History of mathematics and the development of the curriculum  

In the description of the other aspects of this project it is described how the history of 

mathematics helped shape the building of the professional learning environment 
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which then spilt over into the classroom. Historical dimension, apart from earlier 

mentioned benefits (see pages 1-4) was also important for teachers in terms of their 

involvement with the whole-school issues: 

The maths becomes ‘embedded’ in the culture and life and is not seen as something 

totally dry and devoid of meaning. This also changed the perception of mathematics in 

my department… (by a science teacher) 

There is a large scope in my school to bring about change in the mathematics curriculum 

and I am hoping to introduce an element of the History of Maths into the curriculum.  

‘Using and Applying Mathematics’ is the common strand that is across the whole maths 

curriculum, and my experience on the project is that practical maths (in and out of the 

classroom) is a powerful medium by putting the children in the shoes of mathematicians 

from history so they can appreciate the ‘why’ and not just the ‘how’. 

OUTCOMES - STRUCTURING THE SELF-REGULATORY CONTINUING 

PROFESSIONAL DEVELOPMENT THROUGH COLLABORATION AND 

RESEARCH 

The project showed how the history of mathematics can set the ‘scene’ and act as 

a catalyst in creating a professional learning environment as well as giving a 

structure to endorse inquiry both in the student and in the teacher. In mathematics, 

this dimension is or can be, added to any such particular conceptual landscape.  

The history of mathematics and the process of reorientation 

As Furinghetti has shown (2007) some teachers tend to believe that the style of 

mathematics teaching they were affected by or exposed to must be reproduced in 

their own practice. In the case of the described project, this was most evident in the 

attitudes of teachers who were non-specialists in the subject. Furinghetti showed that 

the history of mathematics context allows for an exploration of topics in a new light 

and hence helps teachers construction of teaching sequences. While this was one of 

the added benefits of introducing the history of mathematics into the collaborative 

practice, we were also aware of the uses of history of mathematics in teaching, 

therefore allowing us to explore the various roles the history of mathematics can take 

in the classroom practice.  

Whilst the history of mathematics in teacher education programmes has been 

described at some length by Furinghetti (2007), Schubring (Schubring et al., 2000), 

and Heiede (1996), little has been so far written about the in-service training of 

practicing teachers in this regard. This project aimed to begin the task by making a 

sketch of the possible influence the history of mathematics can have on in-service 

specialist and non-specialist mathematics teachers.  

Therefore one of the project’s aims became to try to introduce what Furinghetti 

(2007) calls ‘reorientation’: 

…the learners involved in the process … are forced to find their own path towards the 

appropriation of meaning of mathematical objects.6 
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In this context, the acquisition of meaning was attempted through exposing beliefs 

about, and the partial understanding of, the concept in question with the new, 

‘foreign’ meaning: 

A meaning only reveals its depth once it has encountered and come into contact with 

another, foreign meaning: they engage in a kind of dialogue, which surmounts the 

closedness and one-sidedness of these particular meanings.7  

In short, one of the teacher testimonies illustrates these described process thus: 

… I was… astounded (by)… the depth there is in so many topics we have covered 

through this project. It has rekindled interest in mathematics in me; students find it 

interesting as well. 

Scaffolding knowledge for non-specialist mathematics teachers 

An increasing body of research shows that inquiry-based-learning helps create an 

environment in which the teacher may be required to act in manifold ways.8 

These manifold roles of a teacher relate to the theory of ‘Knowledge Manifolds’, 

in which teachers are ‘promoted’ from teacher/preacher to teacher/consultant and 

teacher/resource type of roles. Naeve (2005) defined the ‘Knowledge Manifolds’ 

as ‘linked information landscapes (contexts) where one can navigate, search for, 

annotate and present all kinds of electronically stored information’.9 Such open 

information landscapes have developed with an exponential speed since the 

founding of Wikipedia (domain launched only in January 2001), and rest on 

fundamental principles of communal and self-governance in the same way in 

which Naeve suggests future ‘teaching landscapes’ will develop. This theory is in 

concordance with the network theories of knowledge as much as it is with the 

theory of ‘mobile learning’. The described project opted to further explore in 

practice such approach to teaching and learning in which teachers are as much 

learners as their pupils by making parallels between the sets of teachers with the 

sets of pupils. Some teacher reflections addressing this particular aspect are: 

This project has developed my skills to be able to find resources and to try to relate 

things to the history.  

Research was good for subject knowledge; because of the historical content, it 

widened our own perspective about mathematical topics, and gave us time to find 

about something in more depth.  

Historical element shows you the different aspects of something in more depth; it 

allows for ‘scaffolding’ of the knowledge and easier transference to children. The 

historical element can also offer easier focus. 

Furthermore, Naeve’s (2005) approach to knowledge which he identifies as that 

consisting of ‘efficient fantasies’ and learning as that consisting of ‘inspiring 

fantasies’ has a lot to offer in the context of creating a learning environment in which 

both teachers and students discover new facts and exchange ideas in a more 

elaborate, creative, and yet mathematically sound ways. Naeve’s description of 

fantasy has a lot to offer in terms of initiating a process of learning not only in the 
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here and now, but one that draws upon the initial interest in the ‘fantasy’ and how it 

(the fantasy) occupies a mind of a learner for a longer period of time, offering a 

prolonged urge to find ever increasingly new content about a subject matter. Teachers 

from the project spoke often about these ‘fantasies’ as most important in the initial 

stages of introducing a new mathematical topic or concept. The length of this paper 

does not, unfortunately, allow for further analysis on the subject matter in more 

depth.  

What the conclusions teachers made however, agrees with Naeve’s suggestion that 

the education process consists in 

…exposing the learner to inspiring fantasies and assisting her/him in transforming them 

into efficient fantasies.10 

While Naeve somewhat exaggerated the view of the traditional ‘learning 

architectures’ being exclusively teacher-centric and consequently his concept of 

knowledge ‘pushing’ rather than knowledge ‘pulling’ may be lacking in subtlety, his 

intention to shift the focus onto the system of initiation into an interest field, whilst at 

the same time offering the system of skills to equip a learner with a set of tools to 

undertake the task of discovery and learning is at the centre of all: ‘collaborative’, 

‘flexible’, and ‘personalised’ learning concepts.11  

So far, as in the case of Mariotti (2000), the focus on developing strategies to initiate 

‘learning fantasies’ has been on the pupils. In the new type of learning environment, 

one in which ‘knowledge pulling’ rather than ‘knowledge pushing’ is taking place, 

teachers and pupils are learners and communicators of insights into mathematical 

facts at the same time, interchanging roles at different levels. From the experience of 

our project it became clear however, that some of the roles of the learner and some of 

the roles of the teacher are interchangeable, whilst others remain strongly rooted in 

the  

a) evolutionary roles and  

b) social roles these two groups represent.  

CONCLUSION 

Although no external evaluation had taken place to date, the internal, self-evaluation, 

concluded that this was an invaluable opportunity for all teachers involved in the 

project in terms of re-awakening their interest in the subject and increasing their self-

awareness on their abilities in terms of subject knowledge, pedagogy and ability to 

conduct academic research. Additionally, teachers identified acquisition of skills in 

terms of ability to envisage their own CPD landscapes through building ‘knowledge 

patches’ and increased ICT competencies as further valuable benefits of their 

involvement in the project.  

The nature of learning is a constantly changing environment, in which learners are 

often ahead in terms of their technological competencies than their teachers. The 

knowledge content does not move at such a great speed, but it’s presentation and 

availability is something that often lacks sophistication in the eyes of the learner. In 
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mathematics this is sometimes more often apparent than in subjects such as literature 

or history.  

Mathematics learning has to gain an enormous amount from developing landscapes 

of knowledge patches that students can tap into through and because of their interests 

and abilities. This project began the process of enabling the teachers to be able to 

start developing these landscapes in collaborative environment, and having for a 

focus the wealth of resources that the history of mathematics has to offer.  
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INTUITIVE GEOMETRY IN EARLY 1900S ITALIAN MIDDLE 

SCHOOL 

Marta Menghini 

Sapienza University of Rome 
A distinction between intuitive and rational geometry formally appeared in the Italian 
school programmes after the Italian unification of 1861. This distinction, that is not 
just an Italian issue, loosely corresponds to the points of view also adopted in the 
current geometry school programs both at a primary (6-10 and 11-14) and at a 
secondary (14-19) level. It is not difficult to define rational geometry: Although it has 
been approached with various methods, it is undeniable it arises from Euclid’s 
elements. On the contrary, it is more complex to give a definition of intuitive 
geometry and to understand in which way it leads to rational geometry. This paper 
will illustrate the interpretation given to intuitive geometry by the school programs 
and by the many authors of textbooks at the end of 1800s and beginning of 1900s in 
Italy. This analysis can help to discuss today’s curricular issues. 
Key – words: Intuitive geometry – curriculum – history – school books. 

INTRODUCTION 

The term rational geometry first appears in the Italian school programs in 1867, a few 

years before the complete Italian reunion, which occurred in 1871. A school 

reorganization brought in Euclid’s Elements as the geometry textbook aimed to teach 

the subject in the Gymnasium-Lycée.
1
  

In 1881, intuitive geometry comes to life to be taught in the first three years of the 

Gymnasium (the “lower Gymnasium” corresponding to the present middle school). 

Previously, geometry was not part of the school programs for students in this age. 

As we will see forward, intuitive geometry was explicitly introduced as an 

introductory (propaedeutic) subject to let students better understand the rational 

geometry studies.  

It was not just an Italian issue to make a distinction between intuitive and rational 

geometry. Although with a different interpretation, references to intuitive geometry 

                                         

1
 Secondary education was divided into a first and a second level. To cover classical secondary 

education, a law of 1859 had introduced the Gymnasium and the Lycée - The Technical School and 

the Technical Institute were set up for technical secondary education. 

The Gymnasium and the Technical School were preceded by four years of primary school. The 

Technical School thus covered the same age range as the present-day middle school (11–14) while 

the Gymnasium lasted for five years and hence included the first two years of high school followed 

by three years of Lycée. 
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can be found also in the German and English literature of the same period (Fujita et 

al., 2004). In the textbooks of Treutlein (1911) and Godfrey & Siddons (1903), 

intuitive geometry -  still an introduction to rational geometry – is identified with the 

ability to perceive a shape in a space, partially aiming to provide the basic elements 

which explain the real world, and partially aiming to develop logical skills. 

Accordingly, Fujita et al. describe intuitive geometry as “the skill to ‘see’ geometrical 

shapes and solids, creating and manipulating them in the mind to solve problems in 

geometry”. This definition surely does not correspond to the characterization given 

by the Italian legislators at the end of the 19
th
 century. 

It is not difficult to give a definition for rational geometry. The term rational, as 

opposed to intuitive, is meant to refer to any aspect of the logical and theoretical  

organization of the geometry (Marchi et al. 1996); although rational geometry can be 

approached in different ways, Euclid’s Elements always remain at the foundations of 

this subject. On the other hand, it is more complex to define intuitive geometry and to 

analyze the way it is linked to rational geometry. Many researchers in mathematics 

education tackled this issue; a particular example is given by the theory of the Van 

Hiele levels (cfr. Cannizzaro & Menghini, 2006). 

The lack of a formal definition and of a detailed description of the tasks of intuitive 

geometry caused continuous role changes in the Italian school programs. We believe 

it is important to discuss and analyze the reasons and the episodes which led to the 

introduction of intuitive geometry in the Italian school programs in the period 

between the 19
th

 and the 20
th
 centuries. 

SCHOOL PROGRAMMES 

In 1881, elementary geometry and geometrical drawing were introduced in the first 
three years of the Gymnasium. An earlier intuitive experimental approach was 
considered a good help for students to overcome the difficulties caused by rational 
geometry and by the logical deduction of Euclid’s textbook. Geometrical drawing 
should also contribute to overcome these difficulties. Intuitive geometry had to  

give to youngsters, with easy methods and, as far as possible, with practical proofs, the 

first and most important notions of geometry, …useful not only to access geometry, but 

also to let the students desire to learn, in a rational way, the subject throughout the Lycèe. 

Moreover, rational geometry was postponed to the Lycèe, skipping the two years of 
the higher Gymnasium, in order to avoid all the difficulties caused by its study. 
Three years later, the new minister, following a suggestion of the mathematician 
Beltrami, abolished the study of intuitive geometry from the lower Gymnasium and 
moved down rational geometry to the 4th year of the Gymnasium. This decision was 
a consequence of a lack of clear boundaries, and of the fear that teachers could not 
emphasize in the right way the experimental-intuitive nature of geometry being tied 
to the traditional logic-deductive aspect of rational geometry (Vita, 1986 p.15).     
In the following years, only a few changes were introduced concerning the beginning 
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of the study of rational geometry - which could be moved down to the third year of 
the Gymnasium - and the learning approach to Euclid’s books. According to Vita 
(1986, p.16), “the oscillation reflects a clear didactic anxiety and the desire of finding 
the most psychologically adequate time to teach The Elements by Euclid, with all its 
logical-deductive layout, to the 13-15 year old pupils”. 
In the 1900s a new program was broadcast: intuitive geometry was restored in lower 
Gymnasium, but, to prevent past problems, the programme included only elementary 
notions such as the names of the easiest geometrical shapes, the rules to calculate 
lengths, areas and volumes and also basic geometrical drawing. Some instructions 
specify that the new studies “were an introduction to rational geometry”. Moreover, 
they underline that these new studies were “a review and an expansion of the notions 
acquired by the students at the elementary school”, and required a practical approach, 
amplified by the teaching of geometrical drawing. With regard to rational geometry, 
the new programmes gave more freedom in the choice of the textbook, as long as it 
followed the “Euclidean method” (cfr. Maraschini & Menghini, 1992). 

INTUITIVE GEOMETRY TEXTBOOKS IN EARLY 1900S 

Since the program dated 1881 was effective for a very short period, we cannot find 

textbooks of intuitive geometry in those years. Instead, they appeared right after 

1900. One of the first was the textbook by Giuseppe Veronese (1901). In Veronese’s 

book we can easily notice the effort made to follow the ministerial programmes2, 

considering the main properties of the geometrical shapes using simple observation, 

rather than intuition. Veronese wants to deal only with “those shapes that have an 

effective representation in the limited field of observation”. Initially, not even the 

straight line, the plane and unlimited space are the sibject of his dissertation, given 

that they need an abstraction process. Furthermore, Veronese believed it is dangerous 

to introduce concepts that will need to be amended at some stage in higher studies. 

In the Peliminary Notions, Veronese gives examples of objects (table, house..) and of 

their properties (colour, weight..). Material points (grains of sand) lead to the abstract 

concept of point, and material lines (a cotton thread) lead to the abstract concept of 

line, which is defined, both with practical examples (a pencil line) and as a linear set 
of points (an anticipation of what students would find in his textbook for the Lyceé). 

All the authors of intuitive geometry books of this period introduced the straight line 

using the idea of a stretched string, and explain later on the way it can be drawn using 

a ruler. Veronese ‘surrendered’ to the temptation of stating the reflexive, symmetric 

and transitive properties of the equality relation for the segments in a more abstract 

way. Afterwards, he explained that the congruence of the segments could be verified 

                                         
2
 Index: preliminary notions; line; plane; equal shapes; plane polygons; circle; perpendicular lines 

and planes; polyhedra; cone – cylinder – sphere; sum, difference and measure of segments and 

angles; measure of segments and angles; surface areas, volumes; exercises. Drawing tools; basic 

constructions; Line, plane and unlimited space. 
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using a ruler or a compass. Here is an example on how the classical distance axiom 

was interpreted from the observer’s point of view: 

Assuming that the extension of the field of observation is appropriate, it is possible to 

verify that: On a straight line r, given a point A and a segment XY, two segments exist 

CA and AB having the same direction and length of XY. The axiom can be proved using 

a piece of paper marked with a segment of the same length of XY, and sliding it along the 

line r in the direction showed by the arrow   C ---> A ---> B       X       Y   (p. 9). 

The textbook included only one simple proof. After the definition of symmetric 

points about a given point O (central symmetry), Veronese stated the following: 

The shape symmetric to a line about a given point is another line. 

Let ABC be a line and A’B’C’ the shape opposite to ABC about a point O. Using a 

compass, or copying the shape AOB on a piece of drawing paper and turning the paper 

up side down so that OA corresponds to OA’ and OB to OB’, we can verify that the point 

C’ is on the line identified by B’ and A’... (p.13).  

We positively consider the fact that geometric transformations were considered 

suitable for an intuitive introduction to geometry: as a tool. Motions can in fact be 

carried out experimentally. We will find this use of geometrical transformations also 

in other books. 

To avoid infinity, Veronese stated that two lines are parallel when they are symmetric 

about a point, and explained how to verify that two lines are parallel manually (p.14). 

He listed elementary definitions for triangles, quadrilaterals, other polygons and for 

the circle without stating any property of these shapes. 

Throughout his book, Veronese included simple drawing exercises, meant to be done 

by hand (to draw a dotted line, to duplicate a segment marking some corresponding 

points, to draw symmetric shapes using a specific point as centre of symmetry). Only 

at the end of the book did he introduce some geometrical constructions, “aiming to 

improve, with practice, the intuitive perception of geometrical shapes, whose 

structure will be later analyzed using logical proofs”. The chapter, describing 

geometrical constructions (of a triangle given three sides, of the bisector of an angle 

and other more complex constructions) which are not linked to the previous chapters, 

tacitly used theorems never illustrated earlier in the book (especially those concerning 

the congruence of triangles). Some instructions precede this chapter, explaining how 

to execute a clear drawing and how to test the quality of rulers, squares, rubbers and 

pencils. Although Veronese made a good work of keeping the manuscript simple, we 

have to note that no intuitive or rational effort was required from the student. 

Frattini’s textbook (1901) has a structure which is similar to book by Veronese. He 

only gave less importance to the preliminary notions, more weight to the properties of 

polygons, and he also added some minor practical proof. In the introduction, Frattini 

underlines that a “geometrical truth” exists, and it comes from “an immediate 

observation of the things, which is the essence of the intuitive method”. In Frattini’s 
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book, lines and planes are unlimited from the beginning and parallel lines 

characterization changes to the one that everyone knows (parallel lines never meet). 

Lets us see the characteristics of some of his proofs. 

There is exactly one perpendicular line through a given point to line on a plane (p.21). 

Let us bend a plane, imagine an immense piece of paper, and shape right angles so that 

one folding follows the line we want to draw the perpendicular to, and the other folding 

must include the point where the perpendicular passes through. Let us reopen the paper, it 

will be possible to see the trace of the perpendicular through the point and the line. 

On their hand, perpendicular lines are defined basing on what can be seen in a folded 

paper, with a “correct” informal definition. 

To state that “the sum of the three angles of any triangle is equal to two right angles 

(p.29)”, Frattini uses the classic proof, based on the congruence of alternate angles. 

This congruence, anyway, is introduced without a proof (“the student can find a 

reason”). Veronese does not write about this property, not even about its 

consequences. 

The diagonals of a parallelogram mutually bisect (p.33). Suppose we cut out the 

parallelogram from a piece of paper, we would have, then, an empty space which could 

be filled either placing the parallelogram back in the same position or placing the angle 

A, marked with an arc, on top of the equivalent angle C, the side AD on the equivalent 

side CB and the side AB on CD. In this way the diagonals of the shape, though upside 

down, would be in the previous position, the same for their crossing point. The two 

segments OC and OA would switch their positions: this means they are the same length. 

We note again the use of geometric transformations, in this case really introductory 

to the proof that will be given within rational geometry. 

With regard to geometrical constructions, they were placed at the end of the book, 

just as in Veronese’s book. However, when it is possible, Frattini tries to explain 

them using the properties of polygons. 

In 1907, a book by Pisati was published. In the preface he slightly dissented from the 

structure of the programmes as follows: 

it seems proved that, in lower middle school, it would be a big mistake to leave the 

formal aspect of the subject completely apart. Pupils’ intellect, in the previous years of 

their life, has a formal nature….. Certainly, intuitive teaching of geometry is not easier 

than formal teaching; 

In fact, his book started by stating the concepts such as axiom, postulate, theorem, 

corollary and problem. In his textbook, we can find explicit theorems and proofs. In 

example, Pisati introduced the idea of reflection about a line and proved that: 

Theorem - All points on the perpendicular bisector of a segment, and no other points, are 

equidistant from the endpoints of the segment.  
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Proof. The first part of the statement follows from the properties of the axis of symmetry. 

To proof the second part, we see that, when the point M does not belong to the axis of the 

segment PQ, one of the line segments MP, MQ must intersect the 

axis (see fig.). Let us suppose that MP is the segment intersecting 

the axis and N the point of intersection. Consequently, we have 

NP=NQ. Thus MP = NP + NM = NQ + NM. Since NQ + NM > 

MQ; we have MP > MQ. 

The theorem which states that the sum of any two sides of a triangle is always greater 

than the third is justified by considering the line as the shortest distance between any 

two given points. This contested metric definition of the line, which was also used by 

Frattini, will never be used again in any geometry textbook for the secondary Italian 

school. The theorems proved by Pisati, allow him to explain all geometrical 

constructions stated at the end. 

The title “intuitive geometry”, which is not in Pisati’s book anymore, completely 

disappeared from middle school textbooks, and will only reappear with  Emma 

Castelnuovo’s book in 1948. 

FURTHER DEVELOPMENTS 

In 1905, the Minister Bianchi felt the need to remind us to “escape from abstract 

statements and demonstrations” adding, on the other hand, to use “simple inductive 

reasoning” to teach the “truths required by the school programmes”. In 1923, the 

reform made by Gentile turned the clock back. In the first three years of the 

Gymnasium, geometry studies “must only aim to keep alive all geometrical notions 

that the pupils have learnt at the primary school and to fix the terminology properly in 

their memory”. Therefore, there are fewer requirements than in the provisions dated 

1900. Amongst the books published right after the reform of Gentile, we have to 

mention Severi’s textbook (1928) which includes a preface by the Minister of Public 

Education. In spite of the good comments given in the preface, it is difficult to say 

that the book follows the school programmes guidelines. Over the years, middle 

school geometry had lost its experimental-intuitive nature, or even its terminological 

function, becoming more and more rational. Textbooks were almost independent 

from the school programmes –which were in fact very brief and without any 

particular didactic connotation. The book by Severi is surely not an exception 

(although his book for higher school has always been appreciated for the 

experimental approach to theorems). It includes many theorems (also those regarding 

the angles at the centre and the angles at the circumference of a circle), with the most 

traditional proofs, except for using transformations (rotation and symmetry) as a 

support to the proofs and for avoiding the word “theorem”. 

In 1936 and 1937, a couple of reforms introduced only minor variations, which 

allowed some simple deductive analysis in the lower Gymnasium. 
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In 1940, the first three-years of the Gymnasium, of the Technical school ad of Istituto 

Magistrale3 were unified to form the middle school. With reference to geometry, 

although its intuitive nature was confirmed, it was suggested to emphasize the evident 

properties “by means of several suitable examples and exercises, which, sometime, 

can also assume a demonstrative connotation…”. So, we can find a bigger change 

compared to the small ones introduced in 1936: the purpose is to start from an 

intuitive way of thinking to go towards a more abstract logical nature. 

An interesting book by Ugo Amaldi (1941) followed this reform. Amaldi completely 

stopped the process of “rationalization” of geometry. His textbook is similar to 

Frattini’s book, but it contains some new important changes: measurements and 

geometrical constructions are not illustrated in separate chapters but they are 

integrated with the other parts of the book, providing a useful didactic tool. We find 

many figures and references to real life (i.e. an opening door gives the idea of infinite 

planes all passing through the same straight line, paper bands illustrate congruent 

segments…), which had completely disappeared in the meantime. So, given the 

instructions to draw the axis of symmetry of a segment using a ruler and a compass, 

Amaldi suggests to check the construction by folding the paper and verifying that the 

circumferences, used for the construction, overlap. To know the sum of the angles of 

a triangle, he suggests cutting the corners of a triangle drawn on paper, to place them 

next to each other and to check that they form an angle on a line (but let us note that 

in this way the action is not introductory to a formal proof). Similarly, he suggests 

cutting and folding techniques to verify the properties of quadrilaterals. 

At the end of the world war in 1945, a Committee, named by the Allied Countries, 

deliberated some programmes which were later adopted by the Italian Minister. The 

middle school programme reverted to practical and experimental methods, but the 

methodological guidelines for the higher Gymnasium are particularly interesting: it is 

suggested to leave more space to intuitive skills, to common sense, to the 

psychological and historical origin of theories, to physical reality, ... to use 

spontaneous dynamic definitions which fit the intuitive method better. 

Vita observes that “unfortunately these suggestions appear to be disjointed from the 

school programmes that do not show any peculiar innovation”. An innovation is, 

indeed, represented by the book of intuitive geometry by Emma Castelnuovo (1948). 

In her book, Castelnuovo follows in Amaldi’s footsteps, using drawings, pictures, 

cross-references to reality and integration of constructions and measurements. In 

addition to this, her book, for the very first time, interacts with the student, not only 

to let him follow a logical deduction or a proof but also she also raises questions in 

his mind. 

What is the meaning – you would question – of the statement that there is only one line 

passing through two distinct points A, B? How can the contrary be possible? It is true: it 

                                         

3
 Training school for primary school teachers. 
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is not possible to imagine two o more distinct lines passing through A and B. It is 

possible, however, to draw with a compass several circles passing through two points…  

The book starts with paper folding, and goes on with ruler and square constructions. 

As Amaldi does, she re-uses the idea of the stretched string to introduce the 

properties of segments and straight lines; a method already used by Clairaut, who was 

Castelnuovo’s inspiration. Simple tools are made-up, as a folding meter to show how 

to transform a quadrilateral into a different one, and to analyze the limit situations. 

CONCLUSIONS  

Our analysis clearly shows the difficulty of finding an equilibrium between the 

notions that a pupil is supposed two learn, and the notions which he can accept by 

means of a non rigorous argumentation. It could seem that geometrical constructions 

were a real nuisance for early 1900 authors, due to their hidden theoretical content. 

Around the twenties, the problem seemed to be overcome by amplifying the rational 

aspect of geometry. It was only in the forties that the books of Amaldi and Emma 

Castelnuovo succeeded in the attempt to integrate constructions in the intuitive 

geometry textbooks, reducing their number and their technical aspect. We have to 

admit that most authors, starting from Veronese and Frattini, as Amaldi and 

Castelnuovo, perceived the need to reduce the dissertation: books are concise, authors 

are not eager to complete all topics, on the contrary, everybody tends to prefer a 

specific aspect of the subject. 

Anyhow, the very aspect that seems to be relevant for approaching geometry in a 

really intuitive way is the active learning role of the student. Programmes tried, 

several times, to deny this role, and it was interpreted in different ways by authors. 

Emma Castelnuovo foresaw and opened the door to the use of concrete materials. 
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TECHNICAL FEDERAL SCHOOL OF PARANA IN 1960 AND 1970 

DECADES 
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The subject of this text is the appropriation of the New Math on the Technical 
Federal School of Parana in 1960’s and 1970’s. From a historical perspective, 
founded by Certeau (1982), Chartier (1990) and Julia (2001), this study sources from 
scholar documents, located on ETFPR files. The study concludes that the ETFPR did 
not prioritize in its Course Plans, the teaching of the New Math. In this period, the 
scholar culture of ETFPR was marked by teacher initiatives directed to  elaboration 
of didactic material suited to the technical courses which were, in that moment, 
engaged in approaching the scholar mathematics to the technical culture, 
transforming it in a useful tool for the urgent need of forming the necessary work 
force to the industrial and technological development of the country. 
Since 1960, the international New Math Movement (NMM) has penetrated several 

countries schools, seeking to introduce a new language into the scholar Mathematics 

as well as trying to adjust it to the new challenges brought by scientific and 

technological development that emerged in this period. 

In Brazil, the movement has increased its force through actions of countless math     

teachers, like the ones triggered by the Group of Study of Mathematics Teaching 

(GEEM). The GEEM was created in São Paulo – Brazil and coordinated by teacher 

Osvaldo Sangiorgi, one of the most enthusiasts members of the NMM in Brazil.  

In Brazilian educational context, the technical industrial teaching had a fundamental 

role in society economic projects, essentially in 1960 and 1970 decades. At that time, 

the increasing of education levels, especially for poor people, had the main objective 

of preparing the taskforce for industries, as well as absorbing imported technologies 

from rich countries. The Federal Technical School of Paraná (ETFPR) [1] carries out 

a main role, at that moment, of forming taskforce to technological and industrial 

development in Paraná State.  

Considering the importance of local studies for understanding the national history of 

the NMM, recognized as a major change applied to Scholar Mathematics in a World 

level basis, the present study aims to understand how the New Math was appropriated 

by the ETFPR, in 1960 and 1970 decades. According to Valente (2008, p.665): 

The NMM constitutes a fundamental reference to the Mathematics Education as a 

Research Field. The associated historical moment had triggered the 

organization and the systematization of scientific activities related to the 

teaching and learning of Mathematics. In other words: The NMM made the 

emerging of the Mathematics Education Research Field. 
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Oriented by a cultural and historical perspective, the study uses as sources the 

theoretical-methodological approaches of Certeau (1982), which conceives history as 

an “operation” that requires for its writing, as a practice activity, of a scientific 

approach. Besides, Certeau uses the concept of “Appropriation”, from Chartier 

(1990), with the objective to understand the use that scholar agents have made of the 

New Math, disseminated by the Movement in a scholar culture (Julia, 2001). The 

study arise questions about changes occurred in the Mathematics discipline offered 

by the ETFPR, in the NMM discussion period.  

The study sources were based in files archived in the Nucleous of Historical 

Documents (NUDHI) and the General Files of Federal Technological University of 

Paraná State (UTFPR), in Brazil. In those files, some documents were consulted, 

such as: Professors Council Proceedings, Class Diaries, Courses Plans, Curricular 

Grades, Math Books and normative documents.  

To confront the date related to the NMM reception, in the scholar practices of the 

investigated institution, some interviews were conducted with three teachers and an 

ex-student, which were witness of the teaching, and learning process that took place 

at ETFPR in 1960 and 1970 decades. 

THE PROFESSIONAL TEACHING IN BRAZIL 

Professional teaching, in Brazil, has begun in the Imperial time when the first 

nucleous of professional formation were founded, in Jesuitical colleges and 

residences. They were called “factory-schools of artisans and other professions” 

(Manfredi, 2002, p.68). In that period, the most part of manual and manufacturing 

jobs were done by slaves. In first Republic, when Brazil was entering a new stage in 

terms of economical and social development, the professional schools gained a new 

role, becoming truly technical schools networks. The teaching system of those 

schools then takes the objective of teaching people in great Cities. This type of 

schools, at that time, were directed essentially to poor people, and due to this 

considered as a second category school. There was also a great problem of scholar 

evasion. The most part of the professions that were offered were manual or artisan 

type, like joiner, shoemaking and tailor’s workshop.  

After the 1930 revolution, with the large scale industrial development model adopted 

by the president Getúlio Vargas, that superseded the agro-exportation model, the 

factory-schools of artisans and other professions, which were initially the 

responsibility of agriculture ministry, became part  of the new created Education and 

Health ministry.  

In the New State Period, the professional education has the same role of the previous 

period, which was directed to poor classes. On the other hand, the secondary course 

was directed to elite classes. This duality was strongly discussed in the “Pioneers 

Manifest”, in 1932, which makes the proposal of the organization of academic and 

professional courses in the same institution as well as the adaptation of schools to 

WORKING GROUP 15

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2772



  

regional interests. In spite of that, only in 1942 the pioneers concerns were accepted 

by Gustavo Capanema Minister, whose Organic Laws, among other things, rebuild 

the Industrial Teaching. According to Cunha (1977, p.55), one of the main factors of 

the new organization was the Second World War economical context. According to 

the author, the countries that were involved in the war drastically decreased the 

exportation of manufactured products to Brazil. One great change proposed by the 

Organic Laws was the definition of the Industrial Teaching as a secondary course, 

destined to professional preparation of workers to the industry. With that, the 

industrial courses students could enter superior courses related to the corresponding 

professional course. 

In the same period, complementary legislation in professional teaching, the edict-law 

4.048 of 22nd of January, 1942, created a professional teaching system which was 

“parallel” to the official system, sustained by enterprises. This new system, 

nominated National Service of Industrial Learning (SENAI), was supported by the 

Industrial Confederation and had the finality of organizing and administrating the 

Industrial Learning Schools of SENAI all over the country. The motivation to the 

creation of SENAI was that, due to the extinction of the “factory-schools of artisans 

and other professions”, the old tasks of those schools then became an obligation of 

the Industries. So, professional enterprises assumed the task of preparing their own 

taskforce through SENAI and became, gradually, the inspiring model to the technical 

education for Brazil in later years.  

Organized in two cycles (gymnasium and collegial), the first, brought by the 

Industrial Schools and second, by the Technical Schools, and systematized through 

the Organic Laws, technical education remained as a branch of education leading to 

the formation of professional demanded by the production system, therefore, a 

terminal branch of education. In the 1950’s, through the 1821 Act, the forming 

students from technical, industrial, commercial and agricultural secondary courses 

were able to access university courses, provided if they submit to the demands of 

college entrance examination. 

At the end of 1950, with the new National order “education for development”, in the 

administration of Juscelino Kubitschek, occurred the reform of Industrial Education. 

With the Law 3552/59, federal technical schools have been given own legal 

personality, introducing administrative, educational, technical and financial 

autonomy and leaving them to constitute a uniform system, with organization and 

similar courses. 

According to Cunha (1977, p.81), despite the autonomy given to technical schools, 

the control was taken by the Ministry of Education. This control was even increased 

by the Direction of Industrial Education (DEI) fixing the minimum required 

curriculum for technician’s certificates in specific areas. Among other functions, DEI 

was responsible for development of curriculum guidelines, the evaluation system, 

examinations and promotions, besides the development of teaching materials, courses 

plans and school performance indicators. 
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At that time of growth and improvement of the Brazilian industrial chain, the spirit of 

the technique has been widely sown in industrial schools throughout the country. The 

work of the technical, according to Cunha (1977, p. 30), "begins to depend more on 

their knowledge than their manual skill or ability of direction" 

With the Law of Guidelines and Bases of Education (LDB), which restructured the 

education in three Degrees: primary, middle and high, technical education began to 

be offered in three ways: industrial, agricultural and commercial. It was only with this 

Law that in fact the entry to high education was consolidated for students of 

professional education. 

From 1960, more and more young people were seeking high education as a mean of 

social ascension, as the economic model of concentration income left no other 

alternatives. According to Cunha (1977), in that decade, the social-economic profile 

of students in technical courses was changing. The number of technicians enrolled in 

high education during the period between 1962-1966 (about 33%), showed that 

students of the technical industrial courses hoped that the function of the courses 

were propaedeutic, an instrument of social ascent. 

THE MATHEMATICS DISCIPLINE IN ETFPR, AT NMM PERIOD 

According to the Information Bulletin of the Brazilian-American Commission of 

Industrial Education (CBAI, 1960e, p. 4) [2], the qualified professional is: 

 [...] the professional who knows the technology, the practice and still has sufficient basis 

for progressing into the professional field [...] needs of the concepts of 

general education as math, drawing, as well as extensive knowledge of 

technology related to their profession for the development of new 

techniques and improving of his work. 

Considering Mathematics as a basic discipline for the technique culture of students, 

the biggest challenge that was presented to the teachers of technical courses was to 

contextualize the content, from problems of practical applications in technological 

world. 

According Clemente (1948, p. 86): 

[...] it is usual to say that mathematics teaches reason and, in industrial education, this 

proposition assumes a broader character. It's the Math that plays the most 

important role in the mental training of specialists. Therefore, follows that 

the teacher of mathematics has, perhaps, the most important part in the sum 

of knowledge that will form the expert Professional. 

In this article, Arlindo Clemente proposes that the teacher of mathematics workshop 

must bring the factory into the classroom and seek to solve real problems of the job, 

replacing abstract mathematical problems by concrete ones. 

The mathematical reasoning is the element that will transform the older worker, 

empirically formed, in the modern workman much more capable, with a 
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greater intellectual capacity. And, no doubt, this parcel of culture is one that 

will give the worker the possibility of connecting his brain to his hands. 

This is the function of mathematics in the education industry. (Clemente, 

1948, p. 87) 

The main concern of Clemente was the practical application of mathematical 

concepts to technical disciplines of industrial education and the choice of essential 

and minimum contents, necessary for the training of technicians. 

The article by Martignoni (1951, p.695), "The Mathematics in Practice and 

Education," published in the Bulletin of CBAI, in July 1951, also highlights the 

importance of mathematics to bring the workshops and cut the superfluous. His 

speech, full of pragmatism, questioned the need to study contents that were not 

directly related to the practical application. He stated that math science is the reason 

for scientific progressand also that more elaborate math should be left for advanced 

studies because it will not meet the purposes of technical courses under the guidance 

of CBAI. In this context, Math should have a strong character practical and utility. 

Meanwhile, the Federal Technical School of Parana, already in late 50’s, faced major 

problems with teachers of Industrial Technical Education, focusing on courses’ 

quality. Then, Director of Technical School of Curitiba, Dr. Lauro Wilhelm, 

indicated in 1959 two major factors for technical courses low quality: the poor 

training of all kind of teachers and the lack of control over teacher’ activities. 

In the end of 1950’s, the discussion on the mathematics in industrial technical courses 

had national repercussions. In III Brazilian Congress of Mathematics Education 

(Ministério da Educação e Cultura, 1959), held in Rio de Janeiro in 1959, coordinated 

by the Campaign for Improvement of Secondary Education and Broadcasting 

(CADES), the Industrial Education, whose committee was directed by Arlindo 

Clemente who presented for discussion, a Program dedicated to the teaching of 

mathematics in technical courses, highlighting the math in the workshops and the 

correlation of  mathematics disciplines culture technique (Ministério da Educação e 

Cultura, 1959, p. 28). 

NEW MATH TRACES OF ETFPR 

The modernization of Mathematics was associated with betting on technical progress. 

For Valente (2006, p. 39), “the Math was valued as part of a scientific training that 

would have continuity in Higher Education and to do so was needed an aproximation 

between approaches of mathematics in Higher Education and in secondary, 

considering conceptual terms, methodology and language”. This approach to the 

mathematics of Higher Education was expressed on the main features in NMM: 

Accuracy, precision of language, deductive method, a higher level of abstraction, use 

of contemporary vocabulary, thought axiomatic among others. 

However, even taking the Technical School teachers to participate in the preparation 

of textbooks of New Math of the group's Center for Research and Dissemination in 
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Mathematics Teaching (NEDEM) in Parana’s State College (CEP), these actions do 

not seem to result in an upgrade of Mathematics programs. In the "Daily Class" 

(document 6) [3] of 1967 and 1972, teachers of the ETFPR Industrial Gymnasium do 

not show any trace of New Math. 

In oral testimony, the teacher E1 [4] reported that mathematics’ books, used in 

industrial Gymnasium, at end of the 1960’s, were Marcondes (1969). The collection 

was divided into three volumes: algebra, arithmetic and geometry. Referring to the 

edition of 1969, there was not any New Math content. 

It is important to remember that some Mathematics teachers, employed by ETFPR in 

the second half of 1960’s, were still students in the Course of Mathematics at the 

Federal University of Parana (UFPR), and had no authority over his colleagues to 

propose changes in programs and in the textbooks adopted. The new teachers were in 

contact with contents of Modern Mathematics. In despite of that, they kept using 

programs developed by old teachers. Their independence was conditioned by a 

specific technical school culture which was the rule for many years. 

Also, at the beginning of 1970’s, new Mathematics teachers were minority. This is 

confirmed by the testimony of a former student from Industrial Gymnasium: They 

had some new teachers, but 70% were most experienced teachers (E3). 

The teacher E1, in testimony to the researcher, reported that the first time he heard 

Theory of Sets was in 1967, when his teacher asked him an option to work on this 

topic. In 1970, when he graduated in Mathematics, by UFPR, he began working in 

the State Network for Teaching and ETFPR, teaching Mathematics belonging to 

gymnasium’s course. According to E1, the network state of education first adopted 

the Mathematics book of NEDEM and later Oswaldo Sangiorgi´s book. He said he 

came to work a full year in the State Network with Theory of Sets. In ETFPR he 

taught some notions of collections, but that was not intensive (E1). 

In 1966, teacher Ricardo assumed the direction of ETFPR. The entry of this new 

director gave new direction to the teaching-learning organization of the school. He 

brought in baggage more than the experience of CBAI, the coexistence with the 

Americans and the commitment with institution and students. The strong American 

influence received by the new director was largely responsible for the ideas of 

method, rationality, profficiency that came with greater intensity. In his testimony, 

Professor Ricardo Luis Knesebeck reported that first, as coordinator of instruction, 

and after as Director, implanted in a draconian way a program of education for all 

teachers. To him, was an something absurd to teach and don’t commit with anything. 

The document "Content to be determined" (document 11) [6], prepared by 

Mathematics teachers and approved by Didactic Coordination, in 1969, showed that 

the program was based on the contents sequence of Quintella’s books’ collection in 

(1966), which until 1970 did not have any trace of New Math, Theory of Sets, 

relations, matrices, etc. as specified in the "Pilot Program" (document 12) [7] 

published by GEEM, in the year 1968. 
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In oral testimony E1 said that teachers closely followed the book (the first to the last 

page) and the Head of the Department selected the book’s exercises that the teacher 

should do. In his opinion, this hand method worked very well. In Mathematics 

Program in first years (document 11), we found a topic: "General Review of the 1st 

cycle of matter." This may be an indication of teachers concern about maintaining a 

certain quality of education. In their opinion, the low quality in Mathematics taught in 

the gymnasium could be problem. 

In the analysis of the goals of textbooks delivered to students, called "Auroras", 

observed in 1973, compared with the program of 1969, the complex numbers and 

trigonometric equations were removed, as well as the study of vectors and orthogonal 

views was simplified. We also note a greater emphasis given to trigonometric 

functions. 

In the “Auroras” program  in 1975 some contents were evaluated: 

I - SET - Goal 1: Operating with sets. 1.1 - Determine the union of sets. 1.2 - Determine 

the intersection of sets. 1.3 - Determining the difference between two sets . 

1.4 - Determine the complement of a set. 1.5 - Correctly use the symbols of 

the theory of sets. II - NUMBERS (NUMERICAL SETS BASIC) - Goal 2 - 

Understand the fundamental numerical sets (...). III - RELATIONS AND 

FUNCTIONS. Goal 3 - Represent graphically relationship and function. 

(...)3.3 - Determine the Cartesian product between two sets. (...) 

This portion of student’s evaluation manual confirms the evidence E1 of the 

introduction of theory of sets for students in secondary technical course and the new 

approach to function concept according to modern mathematics. Notion of variation 

and functional dependence of functions was virtually forgotten over the NMM that 

adopted the design of structural function of Bourbaki. 

In the year 1975, the term "field of existence" has been replaced by "dominion" and 

"image" of trigonometric functions, which was the term used in the book Iezzi et al. 

(1973) [8]. Making a comparison between the "Pilot Program" (document 12), 

prepared by GEEM in 1968, for the first two years of secondary education, noted that 

ETFPR's program, although more extensive, included topics such as the 

trigonometric functions and triangles resolution, suggested by São Paulo’s group.  

In 1975 ETFPR made a complete revision of Algebra programs (Math I). With 

adoption book Iezzi´s et al., (1980), the topics turn to a deal with sets, sets numerical 

key, full study of the functions of the 1st and 2nd grade, depending Exponential, 

logarithmic function, the study inequalities of 1st and 2nd grades, exponential and 

logarithmic. The subjects were addressed in accordance with the "Pilot Program" 

(document 12) suggested by GEEM in 1968. 

Iezzi's book presented the contents of duty by a graphical approach. Separating each 

chapter, there was an example of mathematics application in today's world. There 
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was a concern with the formal mathematics, but not so exaggerated. At the end of the 

book, there were several references about Modern Mathematics. 

We noticed that probably the book's Iezzi et al, (1980) deals with the theory of sets to 

meet a market need, as Kline (1976, p.135) warned "Other texts begins with a chapter 

on the theory of sets, It was then back to the traditional math and would henceforth 

no longer refer to the theory of sets or any other topic in modern mathematics". 

The book's Gelson Iezzi et al have consolidated a discussion of teachers in 

curriculum modernization, which was commom among ETFPR Mathematicians. In 

his testimony, teacher E1 said that he and his colleagues in the early of 1970 began to 

define functions as a particular case of the relationship between two sets (a structural 

design adopted by the NMM) rather than as a functional dependence as was discussed 

of Ary Quintella´s book. According E2, a teacher of ETFPR the 1960’s, the technical 

course did not give much emphasis to the theory of sets, considering it was an 

education more focused on practice. One possible explanation for slow integration of 

Modern Mathematics in ETFPR could be one of the goals for Educational System in 

ETFPR "(document 4) [9] as defined in 1972:" Cut programs of study fictitions 

topics". Would be "fictitious subject", the content broadcast by the NMM? Would be 

inappropriate to technical education? 

In the first half of 1970’s, despite the strong tendency to follow faithfully the 

textbook, some mathematics’ teachers of ETFPR started developing their own 

material to work with students, such as "Geometry of Space Material" (document 15) 

[10]. 

The exercises in first worksheets had not any relation with technical matters because 

there was a culture of integration between the areas. According to the interviewed, 

the teaching of mathematics was not aimed at career academies: No, it was generic. 

At the time, from 1969 until 1974, it didn’t have a very great integration between the 

teachers of general education and culture specific; they worked half apart (E3). 

In 1970’s, with the support and encouragement of the Department Mathematics 

Coordinator, the production of teaching material itself was improved and marked in a 

more intensive way the culture of ETFPR. This initiative was not alone, it was 

occurring in several federal technical schools in Brazil. In ETFPR, this initiative was 

consolidated in 1980’s and resulted in a collection mathematics books  directed to the 

Technical Education. 

FINAL CONSIDERATIONS 

The study indicates some aspects emphasized by NMM, as the theory of sets, the 

axiomatization, the new mathematical language, laden with symbolism, seemed 

incompatible with the needs of the students training in a technical school in the 

1960’s and 1970’s. 

Concerned to offer a "practical education", required by technical training, an ETFPR 

not prioritized the teaching of modern mathematics in their courses, at the top of the 
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movement. The testimonies show that there was non-official insertion of "some" 

ideas of NMM and this can be evidenced by the few traces of Modern Math, in 

documents found in the school. 

The study shows that only from 1970, some contents of New Math were introduced 

in the course of school, and that means textbook from 1980, Mathematics teachers 

ETFPR started the preparation of a Mathematics textbook colletion, putting an old 

idea to feature a "practice" to discipline by proposing a specific methodology able to 

articulate the rationale, graphic interpretations, problems applying physics problems 

and technical subjects. The weak presence of New Math  in ETFPR, far from setting 

itself as a resistance from teachers to the ideals of the movement, indicates that in 

decades in question, a ETFPR wanted to amalgamate a difference in their school 

culture, slowly making a "creative consumption" of textbooks, strong responsible for 

the insertion of New Math  in Brazilian schools. 

NOTES 

1. Today is called Federal Technological University of Parana (UTFPR). Use the name Federal Technical School of 

Parana (ETFPR), like this named because most of the period defined in the study, namely the 1960’s and 1970’s.  

2. Bulletin of CBAI. Brazilian-American Commission of Industrial Education. Educational program of cooperation 

maintained by the governments of Brazil and the United States Research and Training of Teachers. Vol. XIV, n.5, 

1960e, 16p. 

3. Document 6: Diaries of the course  belonging class of 1967 and 1972. - Archive of General UTFPR. 1967 to 1972.  

4. The name of the interviewees E1, E2 and E3 was not revealed at their request. 

5. KNESEBECK, Ricardo Luis ex-student, ex-teacher of physics, ex-director of the Federal Technical School of 

Parana. (Interview granted to Gilson Leandro San Mateo - NUDHI / UTFPR. Curitiba, 16/17 May 1995). 

6. Document 11: Content to be established in 1969, 1969, 17p. 

7. Document 12: Pilot Program for the school course prepared by GEEM in 1968. Sao Paulo: GEEM, 1968, 5p.  

8. The first edition of this book is the year of 1973. In this study found was the eighth edition, published in 1980.  

9. Document 4: The educational system of the Federal Technical School of Parana produced by the Education 

Department through the coordination of the Didactic ETFPR.  

10. Document 15: Geometry of Space Materialmade by teachers of ETFPR. Library of UTFPR, s / date. 
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HISTORY, HERITAGE, AND THE UK 
MATHEMATICS CLASSROOM 

Leo Rogers, Oxford University 
Abstract 
Since 1989 the UK mathematics curriculum has been dominated by a culture of 
testing ‘core skills’. From September 2008, a new curriculum places the history of 
mathematics as one of its “Key Concepts’ which is now a statutory right1 for all 
pupils. While the curriculum has changed, there has been virtually no relevant 
training for teachers, and while the testing regime remains in place, there seems little 
chance that pupils will obtain their entitlement. This paper examines the problem of 
teachers’scant knowledge of history of mathematics and proposes a new approach to 
introducing relevant materials together with a pedagogy which capitalises on recent 
research, to introduce the heritage of mathematics into our curriculum. 
 
1. THE NEW ENGLISH CURRICULUM  
The first chapter of Fauvel and van Maanen (2000) considered the 

political context of the history of mathematics in school curricula. At that 

time, the UK curriculum
2
 underwent radical changes, which produced a 

curriculum based on ‘core skills’ with modularised
3
 lessons that 

enshrined traditional beliefs about ‘levels’ of knowledge and portrayed 

school mathematics as a collection of disparate topics rarely connected in 

any sensible way. Textbook design followed the topics, and test papers 

became de facto part of the curriculum, setting the norms for the new 

culture. The emphasis on utilitarianism and examination results produced 

little serious engagement with substantial mathematical thinking4. The 

latest Inspectors’ report on our secondary schools shows that, as a 

consequence, too many pupils are taught formulas that they do not 
understand, and cannot apply: 
“The fundamental issue for teachers is how better to develop pupils’ mathematical 
understanding. Too often, pupils are expected to remember methods, rules and facts 
without grasping the underpinning concepts, making connections with earlier learning 
and other topics, and making sense of the mathematics so that they can use it 
independently.” (Ofsted 2008: 5)   
In contrast, the most recent version of the curriculum states that for the 11 
to 16 age group, “Recognising the rich historical and cultural roots of 
mathematics” is one of its “Key Concepts” (QCA 2007)5.  

                                                
1 A ‘statutory right’ means that by Law, all pupils at primary and secondary level have the right to be 
taught about the “rich historical and cultural roots of mathematics”. 
2 The UK mathematics curriculum applies to England and Wales. Due to government devolution 
Scotland and Northern Ireland have different curricula, regulations and examination systems. 
3 Modules purport to be convenient ‘packages of knowledge’ within the curriculum, with a well 
defined and limited range of knowledge. They are consequently easy to ‘teach’ and easy to pass.  
4 There are, of course, a number of exceptional teachers who have overcome these difficulties. 
5 The Key Concepts are: Competence, Creativity, Applications and Implications, Critical 
Understanding, and the Key Processes are: Representing, Analysing, Interpreting and Evaluating, 
Communicating and Reflecting. Applied to all pupils from age 11 to 16 (Key Stage 3 to Key Stage 4). 
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For the last fifteen years very few secondary school teachers have had the 
chance to discover the kind of contributions that history of mathematics 
could make to pupils’ learning, and with the pressures of ‘teaching to the 
test’ it seems doubtful whether history of mathematics will make any 
impression in our classrooms while the examination structure remains the 
same6.  So, what would ‘recognising the rich historical and cultural roots 
of mathematics’ mean in practical terms for our teachers? 
 
Recently, colleagues have renewed their call for history of mathematics 
to be taken seriously as an essential part of the mathematics curriculum. 
Radford et. al. (2007) argue that an important sense of meaning lies 
within the cultural-epistemic conception of the history of mathematics: 
 
“The very possibility of learning rests on our capability of immersing ourselves −in 
idiosyncratic, critical and reflective ways− in the conceptual historical riches 
deposited in, and continuously modified by, social practices. … Classroom emergent 
knowledge is rather something encompassed by the Gadamerian link between past 
and present.  And it is precisely here, in the unravelling and understanding of this 
link, which is the topos or place of Meaning, that the history of mathematics has much 
to offer to mathematics education.” (2007: 108) (italics mine) 
 
In the terms described above, history stands in opposition to the utilitarian 
demands of the old curriculum, but having put history of mathematics 
into the curriculum, the government organization, QCA7 have now 
revealed the pressing problems of resources and training. Changes need 
to happen not only in the classroom but also, and more importantly, in 
teacher training. So, how can we provide material from the history of 
mathematics that can be integrated in a meaningful and effective way into 
the everyday activities of the classroom? 
 
2. NOT HISTORY BUT HERITAGE   
Ivor Grattan-Guiness (2004) has made an important distinction between 
the History and the Heritage of mathematics. History focuses on the 
detail, cultural context, negative influences, anomalies, and so on, in 
order to provide evidence, so far as we are able to tell, of what happened 
and how it happened. Heritage, on the other hand, address the question 
“how did we get here?” where previous ideas are seen in terms of 
contemporary explanations and similarities are sought.   
 
                                                
6
 Recently, the government has decided to abandon the tests at KS3 (age 14), and plans have been 

published to include ‘Interpretation and Analysis’ of problems as part of the assessments from 2010. 
7
 The Qualifications and Curriculum Authority, the Government sponsored body set up to maintain and 

develop the national curriculum and associated assessments, tests and examinations. 
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“The distinction between the history and the heritage of [an idea] clearly involves its 
relation to its prehistory and its posthistory. The historian may well try to spot the 
historical foresight - or maybe lack of foresight - of his historical figures, …. By 
contrast, the inheritor may seek historical perspective and hindsight about the ways 
notions actually seemed to have developed.” and “…heritage suggests that the 
foundations of a mathematical theory are laid down as the platform upon which it is 
built, whereas history shows foundations are dug down, and not necessarily into firm 
territory.” (2004:168; 171) 
 
The interpretation of Euclid’s work as ‘geometrical algebra’ has since 
shown to be quite misguided8 as history, but as heritage is quite 
legitimate because it is the form in which some of the Arabs interpreted 
the Elements when they were creating algebra. 
 
We have to be careful. Deterministically constructed heritage conveys the 
impression that the progress of ideas shows mathematics simply as a 
cumulative discipline. But, while mathematics does build on past 
achievements, and while we make stories about the links between the 
mathematics of the past to the present, the mathematics of the past is not 
the same as the mathematics of now.  As Mathematics Educators we have 
a means of passing on our Heritage by bringing the links between the 
content we find in the curriculum to the attention of teachers and 
students. In this way it becomes possible to describe significant ideas in 
the history of mathematics in terms that teachers can use and pupils can 
understand without making impossible demands on their historical 
capability or on curriculum teaching time.  
 
3. PROJECT AIMS AND OUTLINE 
 
The project I describe is just beginning. It has arisen from the experiences 
of myself and other colleagues in presenting ‘episodes’ from the history 
of mathematics in workshop form to both teachers and pupils, so that 
interesting and worthwhile problems arise from interpretations of the 
historical context.  Response to these classes has been encouraging, and 
has prompted wider experimentation. Some twenty teachers and teacher 
trainers around the country have joined an informal on-line workshop to 
experiment with the available materials and suggest ideas for the 
classroom presentation of current material and new topics to be explored. 
Initially, the principal interest is in providing Secondary teachers with 
materials for professional development that start from some of the 
important ideas in the existing curriculum, and to open up the possibilities 

                                                
8
 Typically, this is done with Euclid II,4 and described as ‘completing the square’, but see the 

examples in Katz (2008) 
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of developing the concepts involved by finding ‘historical antecedents’ to 
support the connections between and motivations for these ideas and the 
possible links between them. Exactly what form this material may take is 
still under consideration9. Some examples can be found on the NRICH 
website10 where themed historical ‘episodes’ are available with notes and 
pedagogical questions for teachers and pupils to explore. 
 
While the web episodes are currently chronologically arranged, a more 
general idea is to produce a series of ‘concept maps’ that are intended to 
provide a topographical view of the significant features of a particular 
mathematical landscape11(Burke & Papadimitriou 2002). A map can be 
examined and used from ‘inside-out’ and from ‘outside-in’, from 
following particular trails of thought to obtaining a broader overview of 
historical development. The ‘unravelling and understanding’ of the links 
between ideas, is the topos that Radford and our colleagues (quoted 
above) are talking about. The idea of a map is important here; it is 
intended to be a guide to how ideas might be connected, not a 
deterministically constructed list of events. In contrast, most curriculum 
activities are presented to teachers as a narrative, a list of topics to teach 
in a particular order, and often restricted to some imagined ‘levels of 
competence’ of the pupils.  A map is there for teachers to have the 
freedom to make their own narrative. They have the responsibility for 
producing lessons, and it is up to them what parts of the map they want to 
use, and how they approach the pedagogical problems of dealing with the 
curriculum in their own classroom. The map can throw light on certain 
problems, it can suggest different approaches to teaching, it can help to 
generate didactical questions, but in the end it is there to be used or not, 
appropriately. The intention here is to develop ways in which the teacher, 
starting from a particular point in the standard curriculum, will be able to 
link a conceptual area with important developments in the history of 
mathematics through the use of ‘idealised’ historical problems and 
canonical situations12 as part of the Heritage of mathematics. There is, of 
course, a considerable literature of historical and pedagogical material to 
draw on. The practical task is to find appropriate ways in which to link 
the source material with the curriculum opportunities.  
 

                                                
9
 Today, many options present themselves: texts, posters, PowerPoint, DVD are all possibilities. 

10
 The NRICH site is part of the UK Millennium Mathematics Project. 

11
 I am indebted to my colleague Jeremy Burke for the use of this idea in his research, and for our 

conversation on 15 November 2008. I make no claims that such a map is (or even could be) ‘complete’. 
12

 By a canonical situation I mean a diagram, or a way of setting out a problem or process which is 

developable, has potential to represent more than one idea, and is presented to students to encourage 

potential links between apparently different areas of mathematics. See the Appendix for an example. 
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4. METHODOLOGY AND PEDAGOGICAL APPROACH. 
 
Since the English curriculum now focuses more on what we call the 
‘process’ aspects of learning mathematics, it may now become easier to 
incorporate the teaching of the ‘key concepts’ in such a way as to enable 
the history to emerge from the discussion of canonical situations (be they 
images, texts, or conceptual problems) introduced by the teacher. This 
approach also has the advantage of being able to link different areas of a 
standard curriculum, thereby enabling pupils to see connections between 
parts of mathematics that have been concealed by the traditions of official 
curriculum organisation. When the text-books and exercises are arranged 
so that their chapter headings conform to the same organisation as the 
curriculum, it is most unlikely that pupils will gain any idea that different 
areas of mathematics are connected at all.  In this pedagogical strategy we 
are concerned with the dynamics of production of the pupils’ ideas 
stimulated by episodes from the history of mathematics retold in heritage 
form. In principle, this is not new. I am advocating a methodology that is 
already available, which can bring mathematics education and the 
teaching of history of mathematics together. The principles are well-
established, and the use of examples as a focus for discussion and 
exploration has been a tradition in teaching for many years. However, as 
Sierpinska (1994) has recognised:  
 
“Pedagogues, of course, think of paradigmatic examples ….  of instances that can best 

explain a rule, or a method, or a concept. The learner is also looking for 

such paradigmatic examples as he or she is learning something new. The problem is, 

however, that before you have a grasp of a whole domain of knowledge you are 

learning, you are unable to tell a paradigmatic example from a non-paradigmatic one.” 

(1994; 88-89) 

 
This problem is always present in the classroom, but there are many ways 
in which we try to alleviate the situation. Grosholz (2005) has 
demonstrated the role of ‘constructive ambiguity’ in Galileo’s discussion 
of free fall,13 and shows that ambiguity can play a constructive part in 
mathematics since it leads in this case to reading a particular diagram in 
more than one way. Galileo’s argument was put forward in terms of 
proportions, geometrical figures, numbers, and natural language. He was 
then able to exploit Euclidean results and the arithmetical pattern of the 
diagram, but in reading the intervals as infinitesimals he led the 
participants heuristically to his analysis of accelerated motion. The use of 
ambiguity in mathematical heuristic is still alive today. Changing the 

                                                
13

 Galileo (1638) Discorsi e Dimostrazioni Matematiche Day 3, Theorem 1, Proposition 1 (Dover 
edition p.173). 
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mathematical context by conceptualising new objects and the processes 
we use to deal with them, changes the ways in which arguments can be 
understood. This kind of ambiguity has been shown to provide useful 
material for classroom discussion.  
 
The use of canonical situations is important in this context. A diagram 
can be interpreted in a number of ways, and this is where conceptualising 
new objects and new relationships becomes possible. 
 

 
Starting from the properties of right-angled triangles, elementary 
knowledge of ratio and proportion and its early practical applications to 
measurement of all kinds of heights and distances can be developed.  

 
Using dynamic geometry, it is easy to show how the product of the 
segments produces a square, and thus we have entry to the diagrams used 
by Viete and Descartes for demonstrating their quadratic solutions. 
 
In reading texts, Barbin (2008), has shown how text considered as a 
message to an audience can motivate a discussion about the intention and 
meaning of the author, and how it can be used as a means of encouraging 
pupils to consider the ways it could be interpreted and understood.  
 
There is no sure way of posing problems or offering examples, but once 
done, then the learner’s response has to be respected and managed 
carefully. We have become used to the principles of heuristic teaching, 
but Brent Davis claims that heuristic listening is also important: 
“Heurisitic Listening …… is more negotiatory, engaging, messy, involving the hearer 

and the heard in a shared project [which] is an imaginative participation in the 

formation and transformation of experience through an ongoing interpretation of the 

This diagram from Euclid VI, 13 is an 

example of a canonical situation. It 

describes a mean proportional between 

AX and XB and is fundamental to ideas 

of ratio and proportion. Pupils who know 

the properties of similar triangles can 

deduce that AX.XB = PX
2
.  
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taken-for-granted and the prejudices that frame perceptions and actions.” (Davis,  

1996: 53) 
When we engage in mathematical problems we inevitably construct our 
own examples to help us illustrate the ideas involved, and use these 
examples as material for personal contemplation or discussion amongst 
our peers. If we do this as adult mathematicians, why should it be 
different for pupils? Why is it not possible to develop this idea of self-
construction in the classroom?  
 
In England, there has been a tradition of producing materials for teachers 
and pupils that focuses on an individual’s learning process and 
encourages active engagement in, and discussion of mathematical 
problems14.  Recent examples like Watson and Mason (1998) and Swan 
(2006) encapsulate this tradition and provide practical guidance to help 
teachers develop pupils’ powers of constructing mathematics for 
themselves in the classroom:  
 
“Our interest is in using mathematical questions as prompts and devices for promoting 
students in thinking mathematically, and thus becoming better at learning and doing 
mathematics. … We hope our work will show how higher order mathematical 
thinking can be provoked and promoted as an integral part of teaching and learning 
school mathematics…” (Watson & Mason 1998: 4)  
 
Such publications display ideas for situations that are generic and offer 
ways for teachers of promoting ‘Learner Generated Examples’ applicable 
at all stages of teaching and learning mathematics. The materials are 
prepared to promote the kinds of activities that focus on ambiguity, raise 
doubts about interpretations, and encourage the learner (and the teacher) 
to develop a security with mathematical ideas that enables them to engage 
in intelligent questioning and active discussion of the problems 
concerned. A number of teachers are already engaged in this pedagogy 
that raises pupils’ learning above mere acquisition of skills, and helps 
pupils to develop their own cognitive tools and achieve a higher order of 
mathematical activity.  
 
 
 
 
5. THE MATERIALS: BRIEF DESCRIPTION AND EXAMPLES.  
                                                
14

 This kind of material was introduced by the Association of Teachers of Mathematics, and has been 

its enduring hallmark. It is the result of a tradition of collaborative research and writing where texts and 
other materials have developed a particular type of pedagogical practice by offering examples of 
classroom work which require discussion, involve heuristic forms of reasoning, analogy and inference, 
and encourage the learner to create and verify their own examples.  

WORKING GROUP 15

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2787



 
Completing the Square is one of the drafts that has been used in a 
number of classrooms15 and covers is a traditional area of the curriculum 
showing some of the connections between the stages to the solution of 
quadratic equations. It comprises a series of links from one period to 
another, stressing the transformation of the ideas from simple surveying 
to ‘cut and paste’ problems in Mesopotamia, and more sophisticated 
procedures of ‘dissection and re-arrangement’ in India and China, and 
how the problems were transposed and represented within the more 
abstract ideals of classical geometry in Greece. The conceptual blending 
of different traditions by the Arabs in the 9th and 10th century introduced 
algebraic concepts which found their way into Europe and resulted in the 
attempts to find solutions of different types of equations.  The materials 
provide plenty of opportunities to discuss the development of geometrical 
and number concepts and the way these were represented in text and 
diagram form (ratios, proportions, integers, fractions, rationals non-
rationals and eventually ‘imaginary’ numbers). Key ideas like geometric 
visualisation and the different forms of representation, appropriate 
notation, and whether a particular procedure is ‘allowed’ in a given 
context, can be discussed, and show how finding representations for 
‘impossible’ numbers like 3  or π  can have a liberating effect in 
allowing new ideas to flourish. And, of course, there is the ever-present 
idea of ‘infinity’ to be explored. The material has been gathered from 
published research and expert analysis16 to identify and characterise 
significant moments in the evolution of particular ideas. In these 
examples we have not only translations into ‘modern’ language, but 
something of the pedagogical interpretations, so that these might be 
brought into the modern classroom and used in creative ways. The 
material is designed so that it can be used in ‘episodes’ in the normal 
course of teaching in school. Included are notes and references to the 
historical background, and ‘pedagogical notes’ aimed to help teachers 
raise questions and see where the material can be used in their classroom. 
In this way, selections can also be used as a basis for teachers’ 
professional development both in the historical and mathematical sense. 
There are optional entry (and exit) points to the material that allow 
considerable flexibility in its use. These ‘episodes’ apply to particular 
topics (or lack of them) in the English mathematics curriculum, and are 

                                                
15

 This material has been used in whole or in part, with various groups of pupils from age 10 to 18, 

with teachers, teacher trainers, and with graduate teacher trainees. I gratefully acknowledge their 

feedback, which has been most useful. 
16

 For example, over the years I have been able to access the specialised work of many researchers on 

Ancient, Classical, Mediaeval and Renaissance mathematics. Now we can find substantial examples of 

much of the ancient mathematical material collected and specially written up in Katz (2007).  
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each recognised as an interpretation of a particular context in our 
heritage. The historical process can be described in terms communicable 
to a modern school audience and furthermore, the teaching is specifically 
designed to focus on the pupils’ contemplation and discussion of the 
problems, and engagement in a dialogue with the material. Using the 
pedagogy described above, we have a real chance to recognise “the rich 
historical and cultural roots of mathematics” in our classrooms. 
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1. Indian Area Methods. 

                        
 (a)    (b)    (c) 
These diagrams and are inspired by practical Altar Building rules from the 
Sulbasutras, (15th - 5th Centuries BCE), (c) is the ‘Kite Altar’ still used in Kerala. 
Challenge: It is easy to see how the combined areas of two equal squares can be found 
(a); with only a rope for measuring and drawing arcs, what about the combined area 
of (b)? Allow time for experiment and discussion of pupils’ procedures. Ask pupils if 

they can find any more solutions. Does it work for any size of squares?  

                        
            (d) 
Explore the visual dynamic of diagram with software; extend to rectangles and other 

shapes; identify basic properties and justify procedures. 

Link with ideas from Mesopotamian mathematics and Euclid Book II. 

2. The ‘Babylonian Algorithm’. 

A number game: “I am thinking of two numbers, their sum is 7 and their product 12, 

what are the numbers?” Extend with increasing pairs of sum and product numbers, 

encourage pupils to discover the original numbers. Pupils to challenge each other, 

share results, and find a way of writing instructions or developing a notation. 

Introduce a standard algorithm: ‘Take half of 7, square it, subtract 12 from this square 

and find the square root of the result, then add and subtract this square root from half 

of 7.’ Use this to test other pairs. If it works for integers, try it with simple fractions. 

This algorithm originates in Mesopotamia and variations of it are found in Al-

Khowarizmi, Fibonnaci, Cardano and others. 

Extensions what happens when the pairs are 7, 11 and 7,13? These simple variations 

give non-rational ( 5 ) and complex results ( !3 ) respectively. 

Note 1: I see no problem in introducing quite young pupils to ideas like this. The 

process of ‘following the algorithm’ with simple numbers allows pupils to arrive at 

results which mirror in the discovery of these  ‘impossible’ numbers. 

Note 2: In this context, we also have the opportunity of introducing an iterative 

solution method for finding square roots, linked to the famous Old Babylonian tablet 

YBC7289. Discussion about the number that when multiplied by itself can produce 2, 

can lead to pupils’ experimenting and developing their own methods of ‘trial and 

error’. This is also one of the important opportunities to contemplate how we can 

manage and understand an infinite process. 

Note 3: Finding a suitable notation is an important part of mathematical history and 

communication. In most cases in school mathematics notation is given unmotivated to 

pupils. Situations where pupils are challenged to communicate ideas to their peers 

through such examples provide opportunities for exploiting historical analogy. 

Cannonical Activity: Use square dot-lattice paper to draw 
squares with a dot at each corner and no dots on the edge. 
Find areas using the smallest square as the unit. Discuss 

methods of dissecting the squares to find equivalent areas 

and how these may be combined. Display diagram (d) 

and discuss ‘transformation of areas’. 
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Abstract: To introduce an anthropological and historical perspective in mathematics 
from middle school is a challenge that we have tried to face for several years. We 
first present what we mean with “an anthropological and historical perspective in 
mathematics”, our theoretical and didactical references, and our motivations for 
choosing the theme of irrationality. In the second part, we will present elements of 
three experimentations carried out with grade 8 (age 13-14) and grade 10 (age 15-
16) pupils.  
Key words: History of mathematics – Anthropological approach – Didactics of 

mathematics – Epistemology - Irrationality  

I. MOTIVATIONS  

In France, attempts to introduce an historical perspective in mathematics have been 

developed for several years, in particular, but not only, through the IREM 

Commission on History and Epistemology of Mathematics
3

. Some historical elements 

are also often introduced in textbooks (but most often without taking mathematical 

considerations into account). Beyond this, a crucial issue in a didactic perspective is 

the way it is possible to articulate historical elements with mathematical knowledge 

in teaching at the various levels of the curriculum. To approach historical texts 

mathematically most often necessitates an important effort to understand them, and 

the possibility of putting these texts in relation to the mathematical content for 

teaching is difficult and far from an evident choice, due in particular to the fact that 

the modern concepts are more efficient for solving the related problems. This could 

explain the rather common choice of limiting the introduction of history to 

informative aspects aiming mostly to motivate the students. Although this aspect 

should not be neglected, because it could allow us to modify the common 

representation of mathematics as timeless knowledge, it does not take into account 

the potential contribution of History of Mathematics for the learning of Mathematics 

itself. With Bkouche (2000), we consider that an historical perspective in the teaching 

of sciences « can be inserted less as a motivation than a problematisation » in the 

following meaning: “Epistemology of problems aims to analyse how the problems 

that lead humanity to elaborate this mode of knowledge that we name scientific 

knowledge have modeled the theories invented in order to solve these problems”
4

.  

II. THEORETICAL BACKGROUND 

II.1. Anthropological foundations of mathematics  
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In continuity with Tardy (1997), we have chosen to situate the historical perspective 
in the field of Anthropology. Chevallard (1991) considers that Didactics of 
mathematics is the  headland of the anthropological continent in the mathematics 
universe”, that specifies its place in the field of Anthropology. In this perspective, he 
mainly studies the didactic transposition, i.e. the transformation undergone by 
mathematical knowledge when it is taught and used. For him, “present epistemology” 
studies the question of knowledge production while he considers Epistemology in the 
broader sense of Anthropology of knowledge.  
In this paper, we refer to the sense of “present epistemology”, including 
anthropological considerations, according to Kilani (1992) that Anthropology 
searches for relations between local knowledge or specific discourses on cultures to 
global knowledge or general discourse on humanity. 
II.2. Genetic psychology and Anthropology 

Genetic Psychology elaborated by Piaget questions Anthropology. In opposition to 

Piaget, present Anthropology does not consider hierarchy among different stages. 

The stages that Piaget has distinguished (practical intelligence; subjective, egocentric, 

symbolic or operative thought) cut across the questions of Anthropology on the 

relationship between culture and thought, leading to debate around myth and 

rationality, magic and science and the way to pass from one aspect to another. 

Anthropology states that operative and symbolic thoughts have different purposes; 

that they do not exclude each other, coexisting in a singular person as well as in a 

given society
5

. Moreover, it could be thought that Imagination as well as reason could 

play a role in scientific discoveries (Kilani, 1992)  

Following Vergnaud, we can add that in mathematics activity, these different modes 

of thought are necessary and complementary.  

“Explicit concepts and theorems only form the visible part of the iceberg of 

conceptualisation: without the hidden part formed by operative invariants, this visible 

part would be nothing. Reciprocally, we are unable to talk about operative invariant 

integrated in Schemas without the categories of explicit knowledge: propositions, 

propositional functions, objects, arguments.” (Vergnaud, 1991, p.145)
iii

 

II.3. The epistemological model of « milieu » in the Theory of Didactical 

Situations (Bloch, 2002) 

 About the concept of milieu  
The concept of « milieu » plays an important role in the Theory of Didactical 
Situations (Brousseau, 1997). Several authors have reworked and developed this 
concept, which was one of the themes of The 11th Didactic Summer School in France 
in 2001. From our perspective, the models of milieu presented in this frame by Bloch 
is particularly enlightening. In the introduction to her course7

, Bloch indicates:  

“In this course, we aim to attempt a clarification of some fundamental concepts of Theory 

of Didactical Situations, and for this purpose to propose a reorganisation of the models of 
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milieu of this theory to predict and analyse teaching phenomena. It is clearly an 

elaboration aiming to classify the theoretical elements related to the milieu according 

with their functionality (from knowledge; from experiment; from contingency)” (Bloch, 

2002, p.2)
iv

.  

This led her to propose the three following models: the epistemological milieu that 
concerns the cultural knowledge and their organisation, and the fundamental 
situations - the experimental a priori milieu, that concerns the researcher’s work 
preparing for the relevant teaching situations, and the milieu for the contingency 
concerning the effective realisation of these situations. In this section we focus on the 
epistemological model. 

 About fundamental situations 
For Brousseau, a fundamental situation for a given body of knowledge ought to 

permit the generation of a family of situations characterised by a set of relationships 

between student and milieu permitting the establishment of an adequate relationship 

to this knowledge.  

 The need of a model of epistemological milieu 
 To give a definition of what could be an adequate relationship to a given body 

of knowledge is not as easy as it might appear at first sight. It is the task of a 
researcher who attempts to elaborate a model of epistemological milieu:  

“Such a model (written MiT ) is elaborated taking in account the cultural mathematical 

knowledge, but is not restricted to it. To elaborate milieus consists in grouping 

problems that do not necessarily strictly obey the knowledge organisation, thus a 

conjunction of mathematical, epistemological, and referential practices is necessary. I 

will also add the identification of knowing. Thus, one has to take into account not only 

problems for which this knowledge is functional, but also the relationship between 

these problems, and as far as it is possible, the related knowing (possible actions, 

intuitions, personal and cultural references) that the student could be able to actualise 

in the situation. “ (Bloch, 2002, p.5)  

Our ambition, in this research, was not to elaborate a fundamental situation for a 
given notion (for us the notion of irrational number), but to attempt to enrich the 
net of relevant problems for the learning of this notion, leaning on a study (non 
exhaustive) of « the historical genesis of the knowledge concerning this concept 
and its ancient or contemporaneous occurrences, its functionalities in 
mathematics... » (Op. cit. p.7) as well as its links with other fields of human 
activity (philosophy; sociology; history; psychology; didactics …), all links that 
have to be taken into account in the elaboration of an epistemological milieu as 
defined above. This permits us to investigate the way to elaborate the milieu for 
a teaching situation aiming to integrate this historical genesis and this 
anthropological perspective. In other words, how to make possible that historical 
or cultural references, beyond their function of motivation, contribute in a 
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genuine way to the teacher’s project of the elaboration by students of knowing 
coherent and consistent with the involved knowledge. We will give further some 
elements that we have identified in this research. 
III. AN EXAMPLE IN SECONDARY SCHOOL:  IRRATIONALITY 

III.1. Preliminary: a logical point of view 

In a major work of Analytic Philosophyv, the philosopher and logician Quine support 
the thesis that attributing a pre logical mentality to natives is wrong; in particular, 
rather than considering that they have contradictory believes, we have better to bet on 
an inadequate translation, or in a domestic situationvi, on a linguistic disagreement. In 
other words, the irrationality or the incoherence of humans is less probable than a non 
adequate interpretation by the observer of the provided indicators. We have shown 
(Durand-Guerrier, 1996) an example of the domestic version in mathematics 
education in order to lift a suspicion of incoherence that might bear on students’ 
responsesvii. Matters concerning contradiction, rationality and irrationality are 
subjects of study for logicians, either those attempting to elaborate systems accepting 
contradictory propositions, due to the fact that such propositions are everywhere in 
ordinary life (e.g. Da Costa, 1977), or those developing theories taking in account 
simultaneously syntactic, semantic and pragmatic considerations in natural 
languagesviii. In this perspective, the Model Theory developed by Tarski (1936) offers 
a relevant theoretical framework to deal with the questions of necessity and 
contingency, and to treat apparent contradictions (Durand-Guerrier, 2006, 2008).  
The project of Granger (1998) is « to consider the sense and the role of irrational in 
some human works, in some major creations of human spirit, and particularly in 
sciences. »ix (Op.cit. p.10). From an author who has devoted his work to description, 
analysis and promotion of what is rational in human thought, this is not an apology of 
irrationality, but the testimony of an inscription in « the perspective of an open and 
dynamic rationality, in order to recognise and delimitate the role of what is positive in 
irrational. » (Op.cit. p.10). Indeed, Granger considered that « the irrationality, 
eminently polymorphic, draws in hollows, so saying, the form of rationality (…), and 
always supposes, at least for analysis, a representation of what it is opposing with.” 
(Op.cit.  p.9) 
Accordingly, these short insights show that the crucial opposition in number theory 
between rational and irrational number, articulated by the opposition between 
coherence and contradiction, is a candidate for our exploration. 
III.2 Our research hypotheses 

Two main hypotheses are structuring our work. The first one is that the problematic 
of the articulations between various modes of thought, in particular the relationship 
between Science and Myth, Rationality and Beliefs, is relevant for the study of 
anthropological fundamentals of mathematics. The second one is that, through the 
intermediary of the genesis of mathematical knowledge, we will be able to achieve an 
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anthropological mode of/way of thinking concerning mathematics and its links with 
the various modes of human thoughts. 
III.3 The inscription of Irrationality in our investigation 

The term Irrational (in Greek: alogon) has two main significations. First, it means « 
without a common measure; that cannot be measured as a quotient of two integers ». 
Second, it means « that is unable to insure the coherence of discourse; illogical ». For 
Granger (1998) the encounter of irrational numbers in Greece was an example of 
what he named « the irrational as an obstacle, starting point of the conquest of 
rationality anew ». This leads to two partly philosophical questions: what does the 
obstacle really consist of? How can we come to its resolution? Arsac (1987) claims 
that the encounter with Irrationality is at the origin of the transformation of 
mathematics in hypothetical deductive system. Of course, it is clear that the 
confrontation of Irrationality by itself is not sufficient to create anew the conditions 
of the apparition of the proof, but this invites us to turn toward an interdisciplinary 
approach to rigor, that we have modestly done in our work. If students of grade 8 or 
10 are not a priori able to overcome the epistemological obstacle14 (indeed, it would be 
necessary to work along two axes: Euclidean Theory of magnitudes; and a real 
number construction), our weaker hypothesis is that the confrontation of students 
with a mathematical or an interdisciplinary work about Irrationality could permit 
them to approach the question of the nature of this obstacle. 
IV. OUR DIDACTIC INVESTIGATION 

IV.1. General conditions for a didactical situation in our perspective  

In coherence with our theoretical exploration, we propose conditionsx that a didactical 
situation dedicated to the introduction of an historical and anthropological 
perspective for a given body of knowledge in mathematics in secondary school ought 
to fulfil.  
1. The situation is based on a moment well identified in the genealogy of this 
knowledge. 2. The situation permits us to question the formidable efficacy of 
mathematics to act in the real world. 3. The situation fulfils the minimal conditions of 
a problem situation, in particular favouring framework changes (Douady, 1986)xi. 4. 
The milieu is rich enough to provide retroactions permitting to go forward in the 
situation and conditions for an intern validation. 5. From the situation, a contradiction 
between a priori beliefs and constraints from reality would emerge. 6. The situation 
permits us to end up in an institutionalisation of the concept involved in coherence 
with the curriculum, and of the specific contribution of mathematics to a more 
general problematic, linked most often to Human and Social Sciences. 
IV.2. Brief description of the experiment in grade 8 

This experiment took place in December 2000 and January 2001, in an 
interdisciplinary project. It comprised four sessions in History course (on the 18th 
century); five sessions in French (Literature) course, on the theme of rational and 
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irrational; and four sessions of mathematics that we describe below.  

• First session: construction of a square from a pair of superposable squares with 
sides of 10 cm, using a minimal number of cuttings with scissors; elaboration of a 
proof that the figure is actually a square.      

   

 

 

 

 

      Solution a 

 

 

 

 

      Solution b 

• Second session: synthesis of the proofs elaborated in the first session; 
investigation in order to determine the area of the big square.  
• Third session: enlightening of the fact that the length of the side of the big square 
is not a decimal number. Emergence of the following question: is it a rational 
number?  
• Fourth session: elaboration of a proof that  is not a rational number. 
Information about the circumstances of this discovery; historical and anthropological 
aspects; links with what had been done in History and French courses.  
In April 2001, an evaluation was made through a role-playing game (Pythagoras’ 
Trial) organised by the three teachers involved in the experiment. 
IV.3. Some results of the experiment in grade 8 

The interdisciplinary work has permitted us to make the links explicit, although the 
students did not always perceive them. Concerning mathematics, it is necessary to 
find a balance between levels of difficulty on the one hand and interest and relevance 
of the problem on the other hand. This is the case in general for problem situations, 
but here due to the conceptual ambition it is more acute. Teachers do not wish their 
students to face difficulties; but the contents, although they do not really exceed the 
programmes, mobilize cognitive capacities hardly required in the ordinary school 
mathematical work. However, the effective experiment allows us to reveal that most 
students appreciated this type of problem and were able to provide rich and relevant 
arguments.  
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Students have dealt with the following mathematical notions: area of a square by 
cutting out shapes; property of areas to be additive; units; recognition of equality of 
two squares constructed by two different methods; calculations with decimal 
numbers, and rational numbers; interrogation of the results given by a calculator. 
Moreover, they have developed argumentation and deductive reasoning in geometry 
(for example, justify that a figure is a square), and in the numerical field (it is 
impossible that the square of a decimal / a rational number be equal to 2). Notice that 
the last proof is that one using the possible digits of the numerator and the 
denominator, and reductio ad absurdum (or infinite descent).  

The analyses of the evaluation (Pythagoras’ trial) on the one hand, and of three 
interviews with students on the other hand, give us a posteriori information. The 
development of the trial seems to indicate that students have understood the 
arguments; have discussed together, but did not have enough time for a right 
appropriation of the working of a trial. Here are some arguments developed buy 
students: “If the diagonal of the square is neither an integer, nor a decimal, nor a 
rational, he (Pythagoras) has not invented it, for this length existed.” / “The 
accusation: it is serious not to reveal this discovery, it is a lost of time -The defence: 
he will not have been believed. -The accusation: but he had explication! In the end he 
will be believed; he had a theorem.” / “If he revealed the irrational numbers, his 
whole previous theory would have been wrong. -these numbers are frightening - to 
say these numbers would have caused the end of the world ; it would have disturbed 
everything.” (this student makes a distinction between ordinary people and 
scientists). / “When he (Pythagoras) said everything is number, he was not lying 
because at that time, he did not know about the existence of irrational numbers.”  

The students interviewed remembered precisely what had been done in the four 
sessions of mathematics. The link between Irrationality in Mathematics and in French 
and /or History courses is not done by all of them, but one of them summarized it 
saying “when we see the superstitions of humans, the sects, it may disrupt the world, 
and the number too, it may disrupt the world. There is a small link, but it is different.”  

This project provides an alternative to the aspect of “tools” generally devoted to 
mathematics. Although this aspect of “tools” is quite relevant, many teachers 
perceived it as a reduction of what mathematics really is. This project shows that 
school mathematics can also play its role, beside others disciplines, in the elaboration 
of elements of human culture, beyond the strictly technical aspects, that an excessive 
recourse to algorithms tends to reduce it to. 
IV.4. Brief description of the experiment in grade 10 

The experiment by an experienced teacher, took place in 2002-2003, and in 2006-
2007 by a prospective teacher in the context of the professional dissertation in the 
Teacher Training Institute (IUFM) in Lyon. It comprised of five sessions:  
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 • First session: Introduction of the problem of incommensurability through 
the following problem: given a square ABCD, is it possible to find a unit measuring 
both the side and the diagonal of the square; you may use calculator but not the key 
of square root. Students worked first in small groups; a square of side 12 cm had been 
provided; the synthesis was collective in the whole class.  

• Second session: Working on the link between Incommensurability and 
GCD (Euclid Algorithm) in the whole class.  

• Third session: Proof of the incommensurability of the diagonal and the side 
of a given square, by reductio ad absurdum in the geometric framework.  

• Fourth session: Irrationality of  ; approximation by rational numbers.  
• Fifth session: work on texts and documents; making of posters. 

IV.5. Some results of the experiment in grade 10 

In grade 10, the teachers considered that the first four sessions were rich for the 
following reasons. 1. They give a meaning and a legitimacy to proof, as said a 
teacher. « Indeed, some students have difficulties to understand the necessity of 
proof. When we propose a proof for a problem for which they know the result, they 
do not understand why they are proving. Here, a debate rose at the first session. Some 
were convinced of incommensurability of the side and the diagonal of the square, but 
others were not. The objective of the proof was to convince, to argue. Let us notice 
the role of reductio ad absurdum in the third session; however it is not involved a 
priori in the numerical field to prove irrationality, but in the geometrical situation that 
permits to prove this incommensurability; moreover this incommensurability has 
been studied experimentally in the first session (in a geometrical or numerical field, 
according with the process used by students), that permits us to pose the problem in a 
better way »;  2. “They make links between the numerical and geometrical fields. 
Some notions allowing solving the problem have got signification for students as 
GCD or Euclid algorithm.” / 3. “These sessions have permitted an evolution of the 
vision that students had of mathematics: « we have discovered the fact that the 
construction of mathematics did not occur in a linear way but through ruptures ». So 
the students could change their mind that mathematics “vont de soi”. As sometimes 
mathematicians face difficulties to apprehend some notions, students realise that their 
own difficulties were normal.” / 4. “They allow various mathematical notions to be 
revised: GCD – Euclidean Algorithm – Pythagoras theorem – rational number …” / 
5. “All students have been involved in this work (at school as well as for homework), 
and interested whatever their level.” 
CONCLUSION  

We consider we have given some evidence (in an existential sense) that it is possible 
in grade 8 and 10 in France to do interdisciplinary work, structured around a 

mathematical notion, for which a study, even of the partial historical genesis allows 
us to show the anthropological dimension in the sense we have defined above. 

Irrationality appears as a paradigmatic theme, or even an ad hoc theme, of what we 
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aim to develop. That other notions could permit such a work remains for us an open 
question, but it seems to us that it would be possible to find candidates towards 

themes common to mathematicians and philosophers, sociologists, historians, 

without forgetting artists; themes like propositions; infinity; emptiness; space-time; 
paradox; truth; necessity; transcendence…. 

We are aware that more work has to be done, particularly in defining relevant 

characteristics of the didactical situations in order to reach our learning objectives on 
the one hand, in identifying potential institutional “niches” depending on the 

curriculum on the other hand. 

Another question concerns the way to elaborate and share with teachers situations 
aiming to integrate the historical genesis and the anthropological perspective for a 
given theme. 
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Annex 

Didactical conditions Implementation in 4
ème 

(Grade 8) 

Implementation in 2
nd 

(Grade 10) 

Genealogy The problem of the duplication of a 

square; Pythagoras’ discovery of √2 

Incommensurability of the 

diagonal of a square with its side; 

Euclid’s algorithm about GCD. 

Efficiency Effective production of a square the 

area of which being 2 from a square 

with an area of 1 

 

Frames Numerical/Geometrical Arithmetical/geometrical 

Geometrical/numerical 

“Milieu” Effective realisations; success 

checking 

Construction of a decreasing 

series of squares 

Contradictions “to double the area, you must double 

the side” 

We know how to fix a measure 

to any measure of length 

Institutionalisation The length of the side of the square 

of area 2 in not a decimal number 

Incommensurability of the 

diagonal of a square with its side; 

Irrationality of the number   

square of 2 

Connections with 

human sciences 

History, Philosophy (Menon’ s 

dialog) Arts, 

Respective positions and roles of   

rational and irrational numbers;  

questioning about the meaning of 

“to exist” 

 

                                         
i
 Institute for Teacher Training 

ii
 LEPS-LIRDHIST : Laboratoire d’Etude du Phénomène Scientifique, EA 4148, équipe Didactique 

et Histoire des Sciences et des techniques 
iii

 Our translation 
iv

 Our translation 
v
 Quine (1960) Word and object 

vi
 That means our co speaker 

vii
 Durand-Guerrier (1996) pp. 276-280 

viii The use of such a perspective in primary and lower secondary education can be found in 
Durand‐Guerrier & al (2006)  
ix

 Our translation 
x
 You can see a table about them in the annex 

xixi
 Framework changes refer to Jeux de cadres: framework is here to be taken in its usual meaning 

(algebraic, arithmetical, geometrical…); such changes are supposed to favour research process in 

problem solving and evolution of students’ conceptions. 
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THE IMPLEMENTATION OF THE HISTORY OF 

MATHEMATICS IN THE NEW CURRICULUM AND 

TEXTBOOKS IN GREEK SECONDARY EDUCATION 

Yannis Thomaidis, Constantinos Tzanakis 

Experimental High School, University of Macedonia, Thessaloniki, Greece 

Department of Education, University of Crete. 74100 Rethymnon, Crete, Greece 

The official textbooks for the teaching of mathematics in the Greek high school (7th-9th 
grades) include a lot of historical material, following the guidelines of the new curriculum. 
However, their use is questionable because of serious historical errors, obscurities, or 
omissions. We support this conclusion by some examples, suggest alternative ways to use 
this material, and outline a deeper and more demanding implementation of the history of 
mathematics in the context of cross-curricular teaching activities. 
Keywords: historical snippet, mathematics curriculum, cross-curricular, original 

sources, junior high school. 

1. INTRODUCTION 

In the last two decades, there is an internationally increasing interest in introducing a 

historical dimension in mathematics education (ME), both in didactical research and in 

educational policy, curriculum design and textbook content. This is reflected in the 

appearance of several publications, the organization of conferences, especially in the 

context of the HPM Study Group (e.g. Fauvel & van Maanen 2000, Siu & Tzanakis 

2004, Katz & Michalowicz 2005, Schubring 2006, Furinghetti et al 2006, 2007, Barbin 

et al 2008). In Greece, there has always been an active interest in this area, as early as 

the late ‘80s, mainly in didactical research (Fauvel & van Maanen 2000 §11.8, 

Kastanis & Kritikos 1991, Thomaidis et al 2006, Chasapis 2002, 2006) and 

occasionally in the inclusion of short historical comments in school textbooks. Possibly, 

the influence of active researchers and educators’ work in this area, made officials of the 

Ministry of Education more attentive to what international research and practice suggests on 

the role of the History of Mathematics (HM) in ME. Thus, for the first time in Greece the 

(new 2002) mathematics curriculum for compulsory education (Pedagogical Institute 2002) 

includes so extensive references to a historical dimension in ME, varying from the specific 

teaching objectives, to the didactical methodology and the textbook content, e.g. 

(Pedagogical Institute 2002 pp.311, 367-369; our translation): 

 

Special objectives: “….. to reveal the virtue of mathematics (historical evolution of 
mathematical tools, symbols and notions).” 

Didactical methodology: “... It is important to provide students with “safety valves” 
in the pursuit of knowledge; namely, students should be given the possibility to 
approach a notion in a variety of ways, i.e.: (a) By means of several different 
representations (using symbols, graphs, tables, geometrical figures); (b) In an 
interdisciplinary way; (c) With reference to the HM (the HM is a field rich of ideas to 

WORKING GROUP 15

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 2801



  

approach a notion didactically).” 
Didactical material: “... Moreover, reference to the great historical moments that 
step by step have determined the development of mathematics should be included in 
the mathematics textbooks, so that the student becomes aware of the genesis of the 
ideas, which is a prerequisite for grasping each subject. It is not necessary that the 
historical notes appear separately at the end of each §. (If required), they can also be 
(briefly) presented, at intermediate parts of the text.” 

Though these guidelines follow what didactical research suggests on the role HM can 

play in ME, their actual classroom implementation is not satisfactory: the authors
1
 

have tried to follow these guidelines, incorporating in the new mathematics textbooks 

a great deal of material from the HM in the form of historical notes and associated 

activities. These notes and activities (called historical snippets; Fauvel & van 

Maanen 2000, ch.7) have different format and colors from the main text and usually 

contain pictures. Here we examine critically the validity of this material and its 

relevance to the curriculum, by means of specific examples and suggest other ways to 

integrate the HM in teaching, taking into account modern trends in this direction. 

2. THE HISTORICAL TEXTBOOK MATERIAL & ITS RELEVANCE TO 

THE CURRICULUM  

The quotations from the mathematics curriculum in §1 directly connect the use of the HM 

with a central issue of teaching and learning: how to pursue and grasp knowledge. Thus 

historical snippets in the textbooks should not be limited to factual information, but 

contribute to understanding the notions to be taught (Fauvel & van Maanen 2000, §7.4.1); 

they should provide ideas and material to organize teaching and motivate students to learn. 

Therefore, they should meet two reasonable requirements: (a) to be mathematically and 

historically correct; (b) to serve the objectives of the teaching units in which they are 

incorporated. 

Unfortunately, in many cases the historical snippets in the new high school textbooks 

violate these requirements; the authors’ insistence on restricting the historical material to 

(often inaccurate and contradictory) biographical information, is a typical case. In 

general this material is presented in an informal style, inserted in separate boxes in the 

text, usually emphasizing historical facts, rather than the mathematical exposition. In 

some cases it also includes related activities (cf. Fauvel & van Maanen 2000, §7.4.1). 

Table 1 gives a summary of the historical material in the new textbooks: 
Table 1 

Grade Number of 

historical 

snippets 

Percentage of 

textbook pages 

covered 

Percentage of 

snippets which 

include activities 

 

Comments in the teachers book 

7 21 11/220 = 5% 5/11 = 45,5% Some comments on the HM 

8 9 6/230 = 2.6% 0/6 = 0% 2 additional activities are recommended 

9 5 5/240 = 2.1% 2/5 = 40% 10 additional comments covering 12 of the 100 

pages (1 activity recommended as an 

interdisciplinary activity. 

We illustrate this material and its weaknesses by means of indicative examples, 

mainly from the 7
th

 grade textbook (Vandoulakis et al 2007, Vlamos et al 2007)
2
. 
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Example 1: factual information; no mathematics involved 

In the 7
th
 grade textbook, the authors cite 3 contradictory lifetimes of Euclid giving 

contradictory results: p.26: 330-275BC; p.147: 300-275BC; p.182: 330-270BC, ignoring 

that the only existing valid historical source on this point, is an extract from Proclus’ 
Commentary on Book I of Euclid’s Elements with no possibility to specify exact dates. In 

addition to historical confusion, this note does not serve any of the purposes of introducing 

HM in teaching as detailed in the new curriculum (cf. §4 below). 

Example 2: factual information; reference to mathematical & scientific results 

In a separate box of the same textbook (p.29), brief information is given on Eratosthenes’ 

life and some of his scientific achievements (e.g. the measurement of the earth’s 

circumference), claiming that: Eratosthenes lived from 276BC to 197BC; from 235BC and 

for 40 years he was director of Alexandria’s famous library; at the age of 82, he committed 

suicide because he became blind. These data are contradictory, however: Since 276-197=79 

and 235-40=195, he lived 3 years less than the age at which he died, and directed 

Alexandria’s library for two years after his death! This note could include interesting activities 

in accordance to the regulations of the new curriculum (e.g. the simplicity of the measurement 

method of the earth’s circumference), but being restricted to simply assert the results, it is 

mystifying, rather than enlightening! 

Example 3: fiction, mathematical results and a related mathematical activity 

Occasionally, the historical narrative is fictitious. In the 7
th
 grade textbook, historical 

accuracy is sacrificed in favor of a controversial story, aiming to dramatize an 

episode from Gauss’ childhood (p.75, our translation): 

“Sometimes a simple thought of a man is more worthwhile than the whole world’s 
gold. With some clever ideas battles are gained, monumental pieces of work are 
done, people become famous and at the same time, science is developed, technology 
evolves, history is shaped and life changes. Just an example is the “smart addition” 
that Gauss (Karl Friedrich Gauss 1777-1850) had thought of in a small German 
village, around 1789, when he started learning about numbers and arithmetical 
operations in his first year at school. When the teacher asked his students to calculate 
the sum 1+2+3+...+98+99+100, little Gauss had found it before the others even 
started. Then, he wrote on the blackboard:  
(1+100)+(2+99)+(3+98)+...+(48+50)+(50+51)= 101+101+101+...+101+101=101·50=5,050 

Try to calculate in Gauss’ way the sum 1+2+3+...+998+999+1000 and measure the 
time needed. How long would it have taken if calculated it in the normal way?” 

However, (a) Braunscheweig, Gauss’ native place, was a political and cultural 

center, capital of a ducat, with about 20.000 residents in the late 18
th
 century, not a 

village; (b) given that Gauss had been characterized as a mathematics “child-prodigy” 

from the age of 3, how is it possible that he began learning arithmetical operations in 

1789, at the age of 12? Gauss entered the Volksschule (elementary school) in 1784, 

the Gymnasium in 1788 and the Collegium in 1792 (Wussing & Arnold 1978, p.318); 

(c) Gauss died in 1855, not 1850!  

More importantly, this note makes an extreme statement, suggesting that 
mathematical progress is due to a few geniuses, not a collaborative enterprise in 
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which personal skill is harmoniously combined with preceding achievements of the 

scientific community at the right moment. Thus, it implicitly gives a distorted view 

of history, which, considered didactically, is expected to discourage rather than 

engage students in mathematical activities in the classroom. Hence, this example 

shows lack of relevance of the textbook’s historical material with the curriculum 

objective “to provide students with ‘safety valves’ in the pursuit of knowledge”. 

Example 4: historical snippets with historically motivated mathematical activity  

In the same textbook there is the following activity (p.75, our translation): 

ACTIVITY: On a gravestone the following problem is inscribed, whose solution 
gives the age of the great ancient Greek mathematician Diophantus: 
“This tomb holds Diophantus. Ah, how great a marvel! The tomb tells scientifically the 
measure of his life. God granted him to be a boy for the sixth part of his life, and adding a 
twelfth part to this, he clothed his cheeks with down; He lit him the light of wedlock after a 
seventh part, and five years after his marriage He granted him a son. Alas! Late-born 
wretched child; after attaining the measure of half his father’s life, chill Fate took him. After 
consoling his grief by this science of numbers for four years he ended his life.”3

 

But where lies this gravestone? We do know that this story appears in the Palatine 
Anthology, of the Byzantine era, with no other reliable evidence for it. This activity, 

included in the chapter on “Equations and Problems”, is not accompanied by any 

query, except mentioning in the teacher’s book that (p.53, our translation): 

“A. 4.2. Problem Solving: Indicative design of the material of this unit.  1 teaching hour. 
The suggested activity aims to understand: The notions used in problems, their solutions, 

as well as, the solution process followed [Answer: Diophantus lived for 74 years]”. 

If this requires the formulation of an equation for Diophantus’ age x, then the 

epigram implies: 
x x x x

5 4 x x 84
6 12 7 2

+ + + + + = ! =  

However, 7
th
 graders are not able to formulate and solve this equation, since 

solving such equations is taught in the 8
th
 grade! Hence, this historical note is related 

neither to the mathematics of the textbook unit in which it is included, nor to the 

cognitive level of the students to whom it is addressed. 

This epigram appears in an introductory note in the 8
th

 grade textbook’s chapter on 

“Equations and inequalities” with the following comments (Vlamos et al 2007, 

p.120, our translation): 

“…From his [Diophantus’] 13 pieces of work only 10 had been found (6 in Greek 
manuscripts and 4 in Arabic translation). The most famous of his works is the 
“Arithmetika” (6 books). It is the most ancient Greek work in which for the first time 
a variable is used in problem solving…When he died, …his students composed a 
riddle and wrote it on his grave, upon his request.  Here is Diophantus Epigram…” 

According to Diophantus’ own statement, Arithmetika were divided into 13 “books”; 

6 have been preserved in the Greek original and 4 in Arabic translation of the 9
th
 century 

discovered in the 1960’s. We also know another of Diophantus’ works - “On polygonal 
numbers” – only fragments of which survive. Hence, the textbook confuses the 13 books 
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of “Arithmetika” and the total number of his works. 

 

3. SOME CONCLUSIONS 

All examples in §2 concern historical errors (there are still more, reinforcing the bad 

flavor got from the textbooks’ historical snippets) that nevertheless, could easily be 

corrected in a new textbook edition, though it is strange that they have not been 

avoided. It seems as if they were hurriedly written, mainly aiming to satisfy the 

relevant term of the announcement of the textbook writing competition and not to 

introduce a historical dimension in teaching. 

The main characteristic of this historical material is the large amount of information 

and the rich illustrations, without however some methodological hints of how to benefit 

didactically from it. Though, the corresponding suggestions and instructions in the 

teacher’s book in general emphasize the positive contribution of the HM, the way this 

could be realized is left to the initiative and ideas of the teacher, with reference to the 

relevant bibliography. E.g., the teacher’s book for the 7
th
 grade mentions that: 

“In some sections, there are historical notes, which intend to stimulate the student 
interest and love for Mathematics and to inform them on the historical development 
of mathematical thinking. Their use in teaching depends on the initiative and the 
ideas developed by the teachers” (Vandoulakis et al 2007, p.31, our translation) 

In the teacher’s book for the 9
th

 grade this issue is detailed more: 

“In some units there are topics from the HM intended to give the description of the problem 
that has been posed and the presentation of the conceptual tools applied to solve them. 
These topics, with the accompanying questions, aim to exploit the HM in the best possible 
way. Integrating the HM in teaching has become the subject of systematic studies at an 
international level. The positive contribution of the HM is corroborated in three groups of 
arguments: (a) It stimulates students’ interest and contributes to the development of a 
positive attitude towards mathematics. (b) It reveals and stresses the human nature of the 
mathematical activity throughout history. (c) It contributes to the understanding of 
mathematical concepts and problems, revealing not only the context and circumstances in 
which they originated, but also the conditions of their development. 
These topics [from the HM and the accompanying questions], together with those points 
raised in the teacher’s book, should not be considered as complete studies; it is for this 
reason that references to the literature are given for those teachers and students who will 
have a special interest.” (Argyrakis et al 2007, pp.10-11, our translation) 

Remark: Points (a)-(c) form part of the arguments for integrating HM in ME, put forward 

more systematically in Fauvel & van Maanen 2000, §7.2 (particularly §§(a1), (c1), (d1).  

Introducing a historical dimension in the teaching of mathematics, based on teachers’ 

interest, initiative and ideas, needs extra teaching time. But, apart from the usual 

obligation to cover the school material (a very difficult problem in itself!), teachers have 

also to cope with the innovations of the new curriculum, like group-cooperative teaching 

based on learning activities, or an interdisciplinary approach to mathematics. Hence, 

introducing a historical dimension in ME to the benefit of both teachers and students, 
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requires additional support in the form of detailed guidelines (e.g. examples serving to 

illustrate how history could be integrated into teaching), extensive references for further 

reading and availability of relevant resources. Unfortunately, existing resources are 

limited (Fauvel & van Maanen 2000, p.212). In addition, from the evidence here, it is 

clear that the material of the new textbooks is not the most appropriate and valid guide in 

this direction. Therefore, high school mathematics teachers are not given any real 

motivation to take up the initiative to benefit from the new textbooks’ historical material. 

In the next section, we examine whether the available historical snippets (after being 

corrected) can contribute positively to the teaching of high school mathematics.  

4. USING HISTORICAL SNIPPETS IN CROSS-CURRICULAR ACTIVITIES 

The errors in the historical notes of §2 indicate that integrating the HM in ME is a 

demanding activity, presuming, not only mathematical knowledge and the ability to 

approach, read and interpret the historical sources, but also to cross-check facts, to 

conclude and narrate. This seems to suggest cross-curricular activities as a privileged 

framework in this connection. Fortunately, such activities form an integral part of the 

new curricula and high school textbooks in Greece, an example being the 

determination of Euclid’s lifetime: As mentioned in §2, the only valid historical 

source on this point comes from Proclus, who lived in the 5th century A.D. In his 

Commentary on the 1st Book of Euclid’s Elements, he writes: 

“[Euclid] lived in the time of Ptolemy the First, for Archimedes, who lived after the 
time of the first Ptolemy mentions Euclid. It is also reported that Ptolemy once asked 
Euclid if there was not a shorter road to geometry than through the Elements, and 
Euclid answered that there was no royal road to geometry. He was therefore later 
than Plato’s group, but earlier than Eratosthenes and Archimedes, for these two men 
were contemporaries, as Eratosthenes somewhere says.” (Morrow 1970, pp.56-57) 

This is a nice extract for an activity, combining mathematics, history and language 

(for Greek students). Translating the ancient text into modern Greek, collecting 

information for the persons involved, studying more the historical period in which 

they lived, could be a student activity to provide material for further discussion in the 

classroom, leading to the following conclusion: 

We know that Ptolemy the 1st, a general of Alexander the Great had been the satrap of 
Egypt from 323 to 305 B.C., and its king from 304 to 283, and Archimedes lived from 287 to 
212 BC. Proclus cites the dialogue of Euclid with Ptolemy the 1st and says that he was 
older than Archimedes. Therefore,  Euclid’s period of activity is very close to 300 BC. 
This activity has interesting didactical extensions and could lead to insightful 

discussions on the concept of mathematical proof: The method and logical arguments 

leading, from historical sources to the above conclusion, can be paralleled to those 

used to justify a general mathematical result from definitions, axioms and others 

previously proven. Hints can also be given for those characteristics of theoretical 

geometry that led Ptolemy to ask Euclid for a “short” learning path to it. Similarly, 

ancient texts on Eratosthenes’ life and work could be used, with emphasis on the 

measurement of the earth’s circumference (Thomaidis & Poulos 2006, p.110).  

Cross-curricular activities could be also disconnected from conventional teaching 
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and be realized more efficiently in parallel school events, like the formation of a 

group of students, who, under the teachers’ supervision and help, read mathematical 

works. E.g., studying Tent’s book (2006) could be pedagogically and didactically 

more efficient results than the note on Gauss in § 2.  

5. ANCIENT GREEK MATHEMATICAL TEXTS IN THE TEACHING OF 

EUCLIDEAN GEOMETRY IN HIGH SCHOOL: A CROSS-CURRICULAR 

APPROACH 

We present some elements of a deeper and more demanding approach to integrate the 

HM in teaching mathematics, than the use of historical snippets; namely the use of 

original texts in carefully designed worksheets, implemented in cross-curricular 

activities (Fauvel & van Maanen 2000, ch.9).  

We developed a cross-curricular activity in 4 classes of 10
th
-graders (15-16 year old 

students; 25 girls and 25 boys in total), for 2-hour sessions in which the teachers of 

mathematics, ancient Greek language and history were involved with alternating 

interventions. To this end excerpts from Euclid’s Elements and Proclus' Commentary, have 

been used to construct 4 worksheets, each one of which was used in a 2-hour classroom 

session. They concern: (a) Euclid, Proclus and Pappus’ different proofs of the equality of an 

isosceles triangle’s angles; (b) the construction of an angle’s bisector; (c) the triangle 

inequality for the sides of a triangle; (d) the sum of the angles of a triangle.  

This activity aimed to (i) integrate original texts in a cross-curricular teaching of 

Euclidean Geometry in the 10
th
 grade; (ii) to create a new didactical environment and 

accordingly explore the realization of specific teaching aims; “initiation in 

mathematical proof”, and “development of critical thinking”. More specifically, by 

the chosen excerpts and the questions addressed to the students, we sought to 

examine whether the students (i) share the criticism of the ancient philosophers 

against Euclid, (ii) understand the expediency of giving different proofs for the same 

geometrical proposition, particularly for obvious properties of geometric figures (as 

Proclus did while defending Euclid) and (iii) understand the expediency of 

mathematical proof in general. Under the teachers’ supervision, students analyzed 

ancient texts mathematically, linguistically and historically, with focus on 

formulating corresponding questions emerging from this analysis and the classroom 

discussion of students’ point of view on them. 

The worksheets’ structure was: (a) Ancient Greek mathematical text; (b) Request to read 

and translate the text; (c) Questions on the text: 2 to 3; (d) Homework: 1 or 2 assignments. 

Remarks: (1) Three of the worksheets contained 2 excerpts, with this structure for 

each excerpt; the fourth included 4 excerpts. We outline this approach for worksheet 

No1. (2) The discussions in the classroom were videotaped. Students’ answers below 

refer to questions raised in the classroom (Q1-Q3 below) and come from the analysis 

of videotapes and the teachers’ hand-notes.   

Worksheet No1 
Excerpts: (i) Euclid “Elements” Book I, prop.V: equality of the basis angles of an isosceles 

triangle (Heath 1956, pp.251-252). (ii) Proclus’ “Commentary”, §§248, 250: Alternative 
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proofs of this proposition by Proclus and Pappus (Morrow 1970, pp.193-195). 

Questions: Find: (1) the corresponding theorem in the geometry textbookq 

(2) similarities & differences between Euclid’s and the textbook’s proofs. 

Homework: (1) Translate the ancient text keeping to Euclid’s spirit as close as 

possible (e.g. avoid terminology and notation not used by Euclid). 

(2) Get information on Euclid and his Elements from encyclopedias or other resources. 

(3) Translate Proclus’ text to modern Greek. 

(4) Find similarities and differences among Euclid, Proclus and Pappus’ proofs. 

(5) Try to explain why all ancient proofs are different from that in the textbook
4
.    

Classroom discussion on the following questions: 

Q1. In your opinion, why did Euclid give a complicated proof? 

Q2. Why did the ancients avoid using the bisector of the angle at the top vertex? How 

it can be ensured that the usual construction (by ruler and compass) of the bisector of 

an angle, does indeed bisect the angle? 

Q3. Comment on Proclus’ and Pappus’ proofs.    

Some of students’ responses 
On Q1, Q2:  

(i) Euclid wanted to impress his readers, because when scientists do complicated 

things, their authority increases. 

(ii) Euclid wanted to show how to use the triangles’ equality criteria. 

(iii) Euclid wants a theoretical, not a practical proof. Bisecting an angle is a practical 

issue and is not accurate. This construction is naïve, possible for all people, because it 

is like folding in two a piece of paper. 

(iv) Euclid could not draw the bisector accurately; he could not prove that the two 

angles are equal. The bisector concept had not been discovered yet. 

(v) Euclid wanted to exploit that particular proof in order to prove other properties 

that exist in that particular figure.  
On Q3 (for Pappus’ proof): 
(i) It looks like proofs that we gave at the elementary school. 

(ii) It is a proof appropriate for babies(!)
5
 

(iii) It is more difficult; it requires more thinking (more probable to make a mistake). 

(iv) It is adapted to practice, whereas, Proclus’ and Euclid’s proofs have elements of 

logic and scientific reasoning.  

Remarks on methodological issues concerning cross-curricular activities: 

(1) This cross-curricular approach helped to face important issues concerning translation & 

interpretation and placed original texts in the appropriate historical context. 

(2) The original texts and the translation process led to etymological comments on the 

origin, meaning and accurateness of mathematical terminology. 

(3) The clarity and conciseness of ancient Greek mathematical language was revealed by 

connecting two apparently disjoint disciplines; ancient Greek language and mathematics.  

Some results: The remarks, and the analysis of the classroom discussion stimulated 
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by the study of the other three worksheets suggests: 

(a) Studying original texts created a new didactical environment, in which students 

actively participated in the classroom discourse and exhibited a positive attitude 

towards the subject, which never happens in conventional geometry teaching (this 

was particularly clear in the critical discussions on worksheet No3 on the triangle 

inequality and Stoics’ objections reported by Proclus, that tried to ridicule Euclid). 

(b) Students’ commented that this activity led them to a more global understanding of 

what Euclidean geometry really is (e.g. see answers (ii) and (v) to Q2).  

(c) The variety and mutual incompatibility of students’ answers produced by studying 

original texts, reveal factors that influence the understanding of metamathematical 

concepts, like the concept of proof (e.g. compare answers to Q3; (i) & (ii) to (iii)). 

(d) Critical thinking requires both the technical ability to formulate particular proofs, 

and more general abilities to globally conceive notions, to formulate correct 

assertions etc (e.g. see answers (iii) to Q3 and (iv) to Q2). 

(e) The requirements for studying original texts, link the didactical aims of learning 

specific pieces of mathematics, with wider pedagogical aims of ME: raising 

metamathematical issues, access to philosophical & epistemological concepts, links 

to the historical & cultural tradition etc (e.g. see answers (i), (iii) and (iv) to Q2). 
                                                
1
In Greece, there is only one textbook per subject in each grade of primary or secondary education, imposed by state 

regulation as a result of a public competition for writing these textbooks. 
2
In Greece, grades 1 to 9 constitute compulsory education: the elementary school (grades 1-6; students 6-12 year-old) 

and the “gymnasium” (junior high-school, grades 7-9, students 13-15 year-old). There are essentially no historical 

aspects in the elementary school textbooks; hence we restrict the discussion to junior high school.   
3
 See Cuomo 200, p.245. 

4
 In the textbook, the angle at the top vertex is bisected and the two resulting triangles are shown to be equal. 

5
 In Pappus’ proof an isosceles triangle is turned and the resulting triangle is shown to be equal to the initial one. 
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